1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * Copyright (C) 2006 Qumranet, Inc.
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 */
15
16 #include <kvm/iodev.h>
17
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54 #include <linux/suspend.h>
55
56 #include <asm/processor.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59
60 #include "coalesced_mmio.h"
61 #include "async_pf.h"
62 #include "mmu_lock.h"
63 #include "vfio.h"
64
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
67
68 #include <linux/kvm_dirty_ring.h>
69
70 /* Worst case buffer size needed for holding an integer. */
71 #define ITOA_MAX_LEN 12
72
73 MODULE_AUTHOR("Qumranet");
74 MODULE_LICENSE("GPL");
75
76 /* Architectures should define their poll value according to the halt latency */
77 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
78 module_param(halt_poll_ns, uint, 0644);
79 EXPORT_SYMBOL_GPL(halt_poll_ns);
80
81 /* Default doubles per-vcpu halt_poll_ns. */
82 unsigned int halt_poll_ns_grow = 2;
83 module_param(halt_poll_ns_grow, uint, 0644);
84 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
85
86 /* The start value to grow halt_poll_ns from */
87 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
88 module_param(halt_poll_ns_grow_start, uint, 0644);
89 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
90
91 /* Default resets per-vcpu halt_poll_ns . */
92 unsigned int halt_poll_ns_shrink;
93 module_param(halt_poll_ns_shrink, uint, 0644);
94 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
95
96 /*
97 * Ordering of locks:
98 *
99 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
100 */
101
102 DEFINE_MUTEX(kvm_lock);
103 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
104 LIST_HEAD(vm_list);
105
106 static cpumask_var_t cpus_hardware_enabled;
107 static int kvm_usage_count;
108 static atomic_t hardware_enable_failed;
109
110 static struct kmem_cache *kvm_vcpu_cache;
111
112 static __read_mostly struct preempt_ops kvm_preempt_ops;
113 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
114
115 struct dentry *kvm_debugfs_dir;
116 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
117
118 static const struct file_operations stat_fops_per_vm;
119
120 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
121 unsigned long arg);
122 #ifdef CONFIG_KVM_COMPAT
123 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
124 unsigned long arg);
125 #define KVM_COMPAT(c) .compat_ioctl = (c)
126 #else
127 /*
128 * For architectures that don't implement a compat infrastructure,
129 * adopt a double line of defense:
130 * - Prevent a compat task from opening /dev/kvm
131 * - If the open has been done by a 64bit task, and the KVM fd
132 * passed to a compat task, let the ioctls fail.
133 */
kvm_no_compat_ioctl(struct file * file,unsigned int ioctl,unsigned long arg)134 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
135 unsigned long arg) { return -EINVAL; }
136
kvm_no_compat_open(struct inode * inode,struct file * file)137 static int kvm_no_compat_open(struct inode *inode, struct file *file)
138 {
139 return is_compat_task() ? -ENODEV : 0;
140 }
141 #define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl, \
142 .open = kvm_no_compat_open
143 #endif
144 static int hardware_enable_all(void);
145 static void hardware_disable_all(void);
146
147 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
148
149 __visible bool kvm_rebooting;
150 EXPORT_SYMBOL_GPL(kvm_rebooting);
151
152 #define KVM_EVENT_CREATE_VM 0
153 #define KVM_EVENT_DESTROY_VM 1
154 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
155 static unsigned long long kvm_createvm_count;
156 static unsigned long long kvm_active_vms;
157
kvm_arch_mmu_notifier_invalidate_range(struct kvm * kvm,unsigned long start,unsigned long end)158 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
159 unsigned long start, unsigned long end)
160 {
161 }
162
kvm_is_zone_device_pfn(kvm_pfn_t pfn)163 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn)
164 {
165 /*
166 * The metadata used by is_zone_device_page() to determine whether or
167 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
168 * the device has been pinned, e.g. by get_user_pages(). WARN if the
169 * page_count() is zero to help detect bad usage of this helper.
170 */
171 if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn))))
172 return false;
173
174 return is_zone_device_page(pfn_to_page(pfn));
175 }
176
kvm_is_reserved_pfn(kvm_pfn_t pfn)177 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
178 {
179 /*
180 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
181 * perspective they are "normal" pages, albeit with slightly different
182 * usage rules.
183 */
184 if (pfn_valid(pfn))
185 return PageReserved(pfn_to_page(pfn)) &&
186 !is_zero_pfn(pfn) &&
187 !kvm_is_zone_device_pfn(pfn);
188
189 return true;
190 }
191
192 /*
193 * Switches to specified vcpu, until a matching vcpu_put()
194 */
vcpu_load(struct kvm_vcpu * vcpu)195 void vcpu_load(struct kvm_vcpu *vcpu)
196 {
197 int cpu = get_cpu();
198
199 __this_cpu_write(kvm_running_vcpu, vcpu);
200 preempt_notifier_register(&vcpu->preempt_notifier);
201 kvm_arch_vcpu_load(vcpu, cpu);
202 put_cpu();
203 }
204 EXPORT_SYMBOL_GPL(vcpu_load);
205
vcpu_put(struct kvm_vcpu * vcpu)206 void vcpu_put(struct kvm_vcpu *vcpu)
207 {
208 preempt_disable();
209 kvm_arch_vcpu_put(vcpu);
210 preempt_notifier_unregister(&vcpu->preempt_notifier);
211 __this_cpu_write(kvm_running_vcpu, NULL);
212 preempt_enable();
213 }
214 EXPORT_SYMBOL_GPL(vcpu_put);
215
216 /* TODO: merge with kvm_arch_vcpu_should_kick */
kvm_request_needs_ipi(struct kvm_vcpu * vcpu,unsigned req)217 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
218 {
219 int mode = kvm_vcpu_exiting_guest_mode(vcpu);
220
221 /*
222 * We need to wait for the VCPU to reenable interrupts and get out of
223 * READING_SHADOW_PAGE_TABLES mode.
224 */
225 if (req & KVM_REQUEST_WAIT)
226 return mode != OUTSIDE_GUEST_MODE;
227
228 /*
229 * Need to kick a running VCPU, but otherwise there is nothing to do.
230 */
231 return mode == IN_GUEST_MODE;
232 }
233
ack_flush(void * _completed)234 static void ack_flush(void *_completed)
235 {
236 }
237
kvm_kick_many_cpus(cpumask_var_t tmp,bool wait)238 static inline bool kvm_kick_many_cpus(cpumask_var_t tmp, bool wait)
239 {
240 const struct cpumask *cpus;
241
242 if (likely(cpumask_available(tmp)))
243 cpus = tmp;
244 else
245 cpus = cpu_online_mask;
246
247 if (cpumask_empty(cpus))
248 return false;
249
250 smp_call_function_many(cpus, ack_flush, NULL, wait);
251 return true;
252 }
253
kvm_make_vcpus_request_mask(struct kvm * kvm,unsigned int req,struct kvm_vcpu * except,unsigned long * vcpu_bitmap,cpumask_var_t tmp)254 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
255 struct kvm_vcpu *except,
256 unsigned long *vcpu_bitmap, cpumask_var_t tmp)
257 {
258 int i, cpu, me;
259 struct kvm_vcpu *vcpu;
260 bool called;
261
262 me = get_cpu();
263
264 kvm_for_each_vcpu(i, vcpu, kvm) {
265 if ((vcpu_bitmap && !test_bit(i, vcpu_bitmap)) ||
266 vcpu == except)
267 continue;
268
269 kvm_make_request(req, vcpu);
270
271 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
272 continue;
273
274 /*
275 * tmp can be "unavailable" if cpumasks are allocated off stack
276 * as allocation of the mask is deliberately not fatal and is
277 * handled by falling back to kicking all online CPUs.
278 */
279 if (!cpumask_available(tmp))
280 continue;
281
282 /*
283 * Note, the vCPU could get migrated to a different pCPU at any
284 * point after kvm_request_needs_ipi(), which could result in
285 * sending an IPI to the previous pCPU. But, that's ok because
286 * the purpose of the IPI is to ensure the vCPU returns to
287 * OUTSIDE_GUEST_MODE, which is satisfied if the vCPU migrates.
288 * Entering READING_SHADOW_PAGE_TABLES after this point is also
289 * ok, as the requirement is only that KVM wait for vCPUs that
290 * were reading SPTEs _before_ any changes were finalized. See
291 * kvm_vcpu_kick() for more details on handling requests.
292 */
293 if (kvm_request_needs_ipi(vcpu, req)) {
294 cpu = READ_ONCE(vcpu->cpu);
295 if (cpu != -1 && cpu != me)
296 __cpumask_set_cpu(cpu, tmp);
297 }
298 }
299
300 called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
301 put_cpu();
302
303 return called;
304 }
305
kvm_make_all_cpus_request_except(struct kvm * kvm,unsigned int req,struct kvm_vcpu * except)306 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
307 struct kvm_vcpu *except)
308 {
309 cpumask_var_t cpus;
310 bool called;
311
312 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
313
314 called = kvm_make_vcpus_request_mask(kvm, req, except, NULL, cpus);
315
316 free_cpumask_var(cpus);
317 return called;
318 }
319
kvm_make_all_cpus_request(struct kvm * kvm,unsigned int req)320 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
321 {
322 return kvm_make_all_cpus_request_except(kvm, req, NULL);
323 }
324 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request);
325
326 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
kvm_flush_remote_tlbs(struct kvm * kvm)327 void kvm_flush_remote_tlbs(struct kvm *kvm)
328 {
329 ++kvm->stat.generic.remote_tlb_flush_requests;
330
331 /*
332 * We want to publish modifications to the page tables before reading
333 * mode. Pairs with a memory barrier in arch-specific code.
334 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
335 * and smp_mb in walk_shadow_page_lockless_begin/end.
336 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
337 *
338 * There is already an smp_mb__after_atomic() before
339 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
340 * barrier here.
341 */
342 if (!kvm_arch_flush_remote_tlb(kvm)
343 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
344 ++kvm->stat.generic.remote_tlb_flush;
345 }
346 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
347 #endif
348
kvm_reload_remote_mmus(struct kvm * kvm)349 void kvm_reload_remote_mmus(struct kvm *kvm)
350 {
351 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
352 }
353
354 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache * mc,gfp_t gfp_flags)355 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
356 gfp_t gfp_flags)
357 {
358 gfp_flags |= mc->gfp_zero;
359
360 if (mc->kmem_cache)
361 return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
362 else
363 return (void *)__get_free_page(gfp_flags);
364 }
365
kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache * mc,int min)366 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
367 {
368 void *obj;
369
370 if (mc->nobjs >= min)
371 return 0;
372 while (mc->nobjs < ARRAY_SIZE(mc->objects)) {
373 obj = mmu_memory_cache_alloc_obj(mc, GFP_KERNEL_ACCOUNT);
374 if (!obj)
375 return mc->nobjs >= min ? 0 : -ENOMEM;
376 mc->objects[mc->nobjs++] = obj;
377 }
378 return 0;
379 }
380
kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache * mc)381 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
382 {
383 return mc->nobjs;
384 }
385
kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache * mc)386 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
387 {
388 while (mc->nobjs) {
389 if (mc->kmem_cache)
390 kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
391 else
392 free_page((unsigned long)mc->objects[--mc->nobjs]);
393 }
394 }
395
kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache * mc)396 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
397 {
398 void *p;
399
400 if (WARN_ON(!mc->nobjs))
401 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
402 else
403 p = mc->objects[--mc->nobjs];
404 BUG_ON(!p);
405 return p;
406 }
407 #endif
408
kvm_vcpu_init(struct kvm_vcpu * vcpu,struct kvm * kvm,unsigned id)409 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
410 {
411 mutex_init(&vcpu->mutex);
412 vcpu->cpu = -1;
413 vcpu->kvm = kvm;
414 vcpu->vcpu_id = id;
415 vcpu->pid = NULL;
416 rcuwait_init(&vcpu->wait);
417 kvm_async_pf_vcpu_init(vcpu);
418
419 vcpu->pre_pcpu = -1;
420 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
421
422 kvm_vcpu_set_in_spin_loop(vcpu, false);
423 kvm_vcpu_set_dy_eligible(vcpu, false);
424 vcpu->preempted = false;
425 vcpu->ready = false;
426 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
427 vcpu->last_used_slot = 0;
428 }
429
kvm_vcpu_destroy(struct kvm_vcpu * vcpu)430 void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
431 {
432 kvm_dirty_ring_free(&vcpu->dirty_ring);
433 kvm_arch_vcpu_destroy(vcpu);
434
435 /*
436 * No need for rcu_read_lock as VCPU_RUN is the only place that changes
437 * the vcpu->pid pointer, and at destruction time all file descriptors
438 * are already gone.
439 */
440 put_pid(rcu_dereference_protected(vcpu->pid, 1));
441
442 free_page((unsigned long)vcpu->run);
443 kmem_cache_free(kvm_vcpu_cache, vcpu);
444 }
445 EXPORT_SYMBOL_GPL(kvm_vcpu_destroy);
446
447 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
mmu_notifier_to_kvm(struct mmu_notifier * mn)448 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
449 {
450 return container_of(mn, struct kvm, mmu_notifier);
451 }
452
kvm_mmu_notifier_invalidate_range(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long start,unsigned long end)453 static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn,
454 struct mm_struct *mm,
455 unsigned long start, unsigned long end)
456 {
457 struct kvm *kvm = mmu_notifier_to_kvm(mn);
458 int idx;
459
460 idx = srcu_read_lock(&kvm->srcu);
461 kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
462 srcu_read_unlock(&kvm->srcu, idx);
463 }
464
465 typedef bool (*hva_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
466
467 typedef void (*on_lock_fn_t)(struct kvm *kvm, unsigned long start,
468 unsigned long end);
469
470 struct kvm_hva_range {
471 unsigned long start;
472 unsigned long end;
473 pte_t pte;
474 hva_handler_t handler;
475 on_lock_fn_t on_lock;
476 bool flush_on_ret;
477 bool may_block;
478 };
479
480 /*
481 * Use a dedicated stub instead of NULL to indicate that there is no callback
482 * function/handler. The compiler technically can't guarantee that a real
483 * function will have a non-zero address, and so it will generate code to
484 * check for !NULL, whereas comparing against a stub will be elided at compile
485 * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
486 */
kvm_null_fn(void)487 static void kvm_null_fn(void)
488 {
489
490 }
491 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
492
__kvm_handle_hva_range(struct kvm * kvm,const struct kvm_hva_range * range)493 static __always_inline int __kvm_handle_hva_range(struct kvm *kvm,
494 const struct kvm_hva_range *range)
495 {
496 bool ret = false, locked = false;
497 struct kvm_gfn_range gfn_range;
498 struct kvm_memory_slot *slot;
499 struct kvm_memslots *slots;
500 int i, idx;
501
502 /* A null handler is allowed if and only if on_lock() is provided. */
503 if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
504 IS_KVM_NULL_FN(range->handler)))
505 return 0;
506
507 idx = srcu_read_lock(&kvm->srcu);
508
509 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
510 slots = __kvm_memslots(kvm, i);
511 kvm_for_each_memslot(slot, slots) {
512 unsigned long hva_start, hva_end;
513
514 hva_start = max(range->start, slot->userspace_addr);
515 hva_end = min(range->end, slot->userspace_addr +
516 (slot->npages << PAGE_SHIFT));
517 if (hva_start >= hva_end)
518 continue;
519
520 /*
521 * To optimize for the likely case where the address
522 * range is covered by zero or one memslots, don't
523 * bother making these conditional (to avoid writes on
524 * the second or later invocation of the handler).
525 */
526 gfn_range.pte = range->pte;
527 gfn_range.may_block = range->may_block;
528
529 /*
530 * {gfn(page) | page intersects with [hva_start, hva_end)} =
531 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
532 */
533 gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
534 gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
535 gfn_range.slot = slot;
536
537 if (!locked) {
538 locked = true;
539 KVM_MMU_LOCK(kvm);
540 if (!IS_KVM_NULL_FN(range->on_lock))
541 range->on_lock(kvm, range->start, range->end);
542 if (IS_KVM_NULL_FN(range->handler))
543 break;
544 }
545 ret |= range->handler(kvm, &gfn_range);
546 }
547 }
548
549 if (range->flush_on_ret && ret)
550 kvm_flush_remote_tlbs(kvm);
551
552 if (locked)
553 KVM_MMU_UNLOCK(kvm);
554
555 srcu_read_unlock(&kvm->srcu, idx);
556
557 /* The notifiers are averse to booleans. :-( */
558 return (int)ret;
559 }
560
kvm_handle_hva_range(struct mmu_notifier * mn,unsigned long start,unsigned long end,pte_t pte,hva_handler_t handler)561 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
562 unsigned long start,
563 unsigned long end,
564 pte_t pte,
565 hva_handler_t handler)
566 {
567 struct kvm *kvm = mmu_notifier_to_kvm(mn);
568 const struct kvm_hva_range range = {
569 .start = start,
570 .end = end,
571 .pte = pte,
572 .handler = handler,
573 .on_lock = (void *)kvm_null_fn,
574 .flush_on_ret = true,
575 .may_block = false,
576 };
577
578 return __kvm_handle_hva_range(kvm, &range);
579 }
580
kvm_handle_hva_range_no_flush(struct mmu_notifier * mn,unsigned long start,unsigned long end,hva_handler_t handler)581 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn,
582 unsigned long start,
583 unsigned long end,
584 hva_handler_t handler)
585 {
586 struct kvm *kvm = mmu_notifier_to_kvm(mn);
587 const struct kvm_hva_range range = {
588 .start = start,
589 .end = end,
590 .pte = __pte(0),
591 .handler = handler,
592 .on_lock = (void *)kvm_null_fn,
593 .flush_on_ret = false,
594 .may_block = false,
595 };
596
597 return __kvm_handle_hva_range(kvm, &range);
598 }
kvm_mmu_notifier_change_pte(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long address,pte_t pte)599 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
600 struct mm_struct *mm,
601 unsigned long address,
602 pte_t pte)
603 {
604 struct kvm *kvm = mmu_notifier_to_kvm(mn);
605
606 trace_kvm_set_spte_hva(address);
607
608 /*
609 * .change_pte() must be surrounded by .invalidate_range_{start,end}().
610 * If mmu_notifier_count is zero, then no in-progress invalidations,
611 * including this one, found a relevant memslot at start(); rechecking
612 * memslots here is unnecessary. Note, a false positive (count elevated
613 * by a different invalidation) is sub-optimal but functionally ok.
614 */
615 WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
616 if (!READ_ONCE(kvm->mmu_notifier_count))
617 return;
618
619 kvm_handle_hva_range(mn, address, address + 1, pte, kvm_set_spte_gfn);
620 }
621
kvm_inc_notifier_count(struct kvm * kvm,unsigned long start,unsigned long end)622 void kvm_inc_notifier_count(struct kvm *kvm, unsigned long start,
623 unsigned long end)
624 {
625 /*
626 * The count increase must become visible at unlock time as no
627 * spte can be established without taking the mmu_lock and
628 * count is also read inside the mmu_lock critical section.
629 */
630 kvm->mmu_notifier_count++;
631 if (likely(kvm->mmu_notifier_count == 1)) {
632 kvm->mmu_notifier_range_start = start;
633 kvm->mmu_notifier_range_end = end;
634 } else {
635 /*
636 * Fully tracking multiple concurrent ranges has dimishing
637 * returns. Keep things simple and just find the minimal range
638 * which includes the current and new ranges. As there won't be
639 * enough information to subtract a range after its invalidate
640 * completes, any ranges invalidated concurrently will
641 * accumulate and persist until all outstanding invalidates
642 * complete.
643 */
644 kvm->mmu_notifier_range_start =
645 min(kvm->mmu_notifier_range_start, start);
646 kvm->mmu_notifier_range_end =
647 max(kvm->mmu_notifier_range_end, end);
648 }
649 }
650
kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier * mn,const struct mmu_notifier_range * range)651 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
652 const struct mmu_notifier_range *range)
653 {
654 struct kvm *kvm = mmu_notifier_to_kvm(mn);
655 const struct kvm_hva_range hva_range = {
656 .start = range->start,
657 .end = range->end,
658 .pte = __pte(0),
659 .handler = kvm_unmap_gfn_range,
660 .on_lock = kvm_inc_notifier_count,
661 .flush_on_ret = true,
662 .may_block = mmu_notifier_range_blockable(range),
663 };
664
665 trace_kvm_unmap_hva_range(range->start, range->end);
666
667 /*
668 * Prevent memslot modification between range_start() and range_end()
669 * so that conditionally locking provides the same result in both
670 * functions. Without that guarantee, the mmu_notifier_count
671 * adjustments will be imbalanced.
672 *
673 * Pairs with the decrement in range_end().
674 */
675 spin_lock(&kvm->mn_invalidate_lock);
676 kvm->mn_active_invalidate_count++;
677 spin_unlock(&kvm->mn_invalidate_lock);
678
679 __kvm_handle_hva_range(kvm, &hva_range);
680
681 return 0;
682 }
683
kvm_dec_notifier_count(struct kvm * kvm,unsigned long start,unsigned long end)684 void kvm_dec_notifier_count(struct kvm *kvm, unsigned long start,
685 unsigned long end)
686 {
687 /*
688 * This sequence increase will notify the kvm page fault that
689 * the page that is going to be mapped in the spte could have
690 * been freed.
691 */
692 kvm->mmu_notifier_seq++;
693 smp_wmb();
694 /*
695 * The above sequence increase must be visible before the
696 * below count decrease, which is ensured by the smp_wmb above
697 * in conjunction with the smp_rmb in mmu_notifier_retry().
698 */
699 kvm->mmu_notifier_count--;
700 }
701
kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier * mn,const struct mmu_notifier_range * range)702 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
703 const struct mmu_notifier_range *range)
704 {
705 struct kvm *kvm = mmu_notifier_to_kvm(mn);
706 const struct kvm_hva_range hva_range = {
707 .start = range->start,
708 .end = range->end,
709 .pte = __pte(0),
710 .handler = (void *)kvm_null_fn,
711 .on_lock = kvm_dec_notifier_count,
712 .flush_on_ret = false,
713 .may_block = mmu_notifier_range_blockable(range),
714 };
715 bool wake;
716
717 __kvm_handle_hva_range(kvm, &hva_range);
718
719 /* Pairs with the increment in range_start(). */
720 spin_lock(&kvm->mn_invalidate_lock);
721 wake = (--kvm->mn_active_invalidate_count == 0);
722 spin_unlock(&kvm->mn_invalidate_lock);
723
724 /*
725 * There can only be one waiter, since the wait happens under
726 * slots_lock.
727 */
728 if (wake)
729 rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait);
730
731 BUG_ON(kvm->mmu_notifier_count < 0);
732 }
733
kvm_mmu_notifier_clear_flush_young(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long start,unsigned long end)734 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
735 struct mm_struct *mm,
736 unsigned long start,
737 unsigned long end)
738 {
739 trace_kvm_age_hva(start, end);
740
741 return kvm_handle_hva_range(mn, start, end, __pte(0), kvm_age_gfn);
742 }
743
kvm_mmu_notifier_clear_young(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long start,unsigned long end)744 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
745 struct mm_struct *mm,
746 unsigned long start,
747 unsigned long end)
748 {
749 trace_kvm_age_hva(start, end);
750
751 /*
752 * Even though we do not flush TLB, this will still adversely
753 * affect performance on pre-Haswell Intel EPT, where there is
754 * no EPT Access Bit to clear so that we have to tear down EPT
755 * tables instead. If we find this unacceptable, we can always
756 * add a parameter to kvm_age_hva so that it effectively doesn't
757 * do anything on clear_young.
758 *
759 * Also note that currently we never issue secondary TLB flushes
760 * from clear_young, leaving this job up to the regular system
761 * cadence. If we find this inaccurate, we might come up with a
762 * more sophisticated heuristic later.
763 */
764 return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn);
765 }
766
kvm_mmu_notifier_test_young(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long address)767 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
768 struct mm_struct *mm,
769 unsigned long address)
770 {
771 trace_kvm_test_age_hva(address);
772
773 return kvm_handle_hva_range_no_flush(mn, address, address + 1,
774 kvm_test_age_gfn);
775 }
776
kvm_mmu_notifier_release(struct mmu_notifier * mn,struct mm_struct * mm)777 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
778 struct mm_struct *mm)
779 {
780 struct kvm *kvm = mmu_notifier_to_kvm(mn);
781 int idx;
782
783 idx = srcu_read_lock(&kvm->srcu);
784 kvm_arch_flush_shadow_all(kvm);
785 srcu_read_unlock(&kvm->srcu, idx);
786 }
787
788 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
789 .invalidate_range = kvm_mmu_notifier_invalidate_range,
790 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
791 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
792 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
793 .clear_young = kvm_mmu_notifier_clear_young,
794 .test_young = kvm_mmu_notifier_test_young,
795 .change_pte = kvm_mmu_notifier_change_pte,
796 .release = kvm_mmu_notifier_release,
797 };
798
kvm_init_mmu_notifier(struct kvm * kvm)799 static int kvm_init_mmu_notifier(struct kvm *kvm)
800 {
801 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
802 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
803 }
804
805 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
806
kvm_init_mmu_notifier(struct kvm * kvm)807 static int kvm_init_mmu_notifier(struct kvm *kvm)
808 {
809 return 0;
810 }
811
812 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
813
814 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
kvm_pm_notifier_call(struct notifier_block * bl,unsigned long state,void * unused)815 static int kvm_pm_notifier_call(struct notifier_block *bl,
816 unsigned long state,
817 void *unused)
818 {
819 struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
820
821 return kvm_arch_pm_notifier(kvm, state);
822 }
823
kvm_init_pm_notifier(struct kvm * kvm)824 static void kvm_init_pm_notifier(struct kvm *kvm)
825 {
826 kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
827 /* Suspend KVM before we suspend ftrace, RCU, etc. */
828 kvm->pm_notifier.priority = INT_MAX;
829 register_pm_notifier(&kvm->pm_notifier);
830 }
831
kvm_destroy_pm_notifier(struct kvm * kvm)832 static void kvm_destroy_pm_notifier(struct kvm *kvm)
833 {
834 unregister_pm_notifier(&kvm->pm_notifier);
835 }
836 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
kvm_init_pm_notifier(struct kvm * kvm)837 static void kvm_init_pm_notifier(struct kvm *kvm)
838 {
839 }
840
kvm_destroy_pm_notifier(struct kvm * kvm)841 static void kvm_destroy_pm_notifier(struct kvm *kvm)
842 {
843 }
844 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
845
kvm_alloc_memslots(void)846 static struct kvm_memslots *kvm_alloc_memslots(void)
847 {
848 int i;
849 struct kvm_memslots *slots;
850
851 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
852 if (!slots)
853 return NULL;
854
855 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
856 slots->id_to_index[i] = -1;
857
858 return slots;
859 }
860
kvm_destroy_dirty_bitmap(struct kvm_memory_slot * memslot)861 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
862 {
863 if (!memslot->dirty_bitmap)
864 return;
865
866 kvfree(memslot->dirty_bitmap);
867 memslot->dirty_bitmap = NULL;
868 }
869
kvm_free_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)870 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
871 {
872 kvm_destroy_dirty_bitmap(slot);
873
874 kvm_arch_free_memslot(kvm, slot);
875
876 slot->flags = 0;
877 slot->npages = 0;
878 }
879
kvm_free_memslots(struct kvm * kvm,struct kvm_memslots * slots)880 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
881 {
882 struct kvm_memory_slot *memslot;
883
884 if (!slots)
885 return;
886
887 kvm_for_each_memslot(memslot, slots)
888 kvm_free_memslot(kvm, memslot);
889
890 kvfree(slots);
891 }
892
kvm_stats_debugfs_mode(const struct _kvm_stats_desc * pdesc)893 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
894 {
895 switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
896 case KVM_STATS_TYPE_INSTANT:
897 return 0444;
898 case KVM_STATS_TYPE_CUMULATIVE:
899 case KVM_STATS_TYPE_PEAK:
900 default:
901 return 0644;
902 }
903 }
904
905
kvm_destroy_vm_debugfs(struct kvm * kvm)906 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
907 {
908 int i;
909 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
910 kvm_vcpu_stats_header.num_desc;
911
912 if (!kvm->debugfs_dentry)
913 return;
914
915 debugfs_remove_recursive(kvm->debugfs_dentry);
916
917 if (kvm->debugfs_stat_data) {
918 for (i = 0; i < kvm_debugfs_num_entries; i++)
919 kfree(kvm->debugfs_stat_data[i]);
920 kfree(kvm->debugfs_stat_data);
921 }
922 }
923
kvm_create_vm_debugfs(struct kvm * kvm,int fd)924 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
925 {
926 static DEFINE_MUTEX(kvm_debugfs_lock);
927 struct dentry *dent;
928 char dir_name[ITOA_MAX_LEN * 2];
929 struct kvm_stat_data *stat_data;
930 const struct _kvm_stats_desc *pdesc;
931 int i, ret;
932 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
933 kvm_vcpu_stats_header.num_desc;
934
935 if (!debugfs_initialized())
936 return 0;
937
938 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
939 mutex_lock(&kvm_debugfs_lock);
940 dent = debugfs_lookup(dir_name, kvm_debugfs_dir);
941 if (dent) {
942 pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
943 dput(dent);
944 mutex_unlock(&kvm_debugfs_lock);
945 return 0;
946 }
947 dent = debugfs_create_dir(dir_name, kvm_debugfs_dir);
948 mutex_unlock(&kvm_debugfs_lock);
949 if (IS_ERR(dent))
950 return 0;
951
952 kvm->debugfs_dentry = dent;
953 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
954 sizeof(*kvm->debugfs_stat_data),
955 GFP_KERNEL_ACCOUNT);
956 if (!kvm->debugfs_stat_data)
957 return -ENOMEM;
958
959 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
960 pdesc = &kvm_vm_stats_desc[i];
961 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
962 if (!stat_data)
963 return -ENOMEM;
964
965 stat_data->kvm = kvm;
966 stat_data->desc = pdesc;
967 stat_data->kind = KVM_STAT_VM;
968 kvm->debugfs_stat_data[i] = stat_data;
969 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
970 kvm->debugfs_dentry, stat_data,
971 &stat_fops_per_vm);
972 }
973
974 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
975 pdesc = &kvm_vcpu_stats_desc[i];
976 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
977 if (!stat_data)
978 return -ENOMEM;
979
980 stat_data->kvm = kvm;
981 stat_data->desc = pdesc;
982 stat_data->kind = KVM_STAT_VCPU;
983 kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
984 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
985 kvm->debugfs_dentry, stat_data,
986 &stat_fops_per_vm);
987 }
988
989 ret = kvm_arch_create_vm_debugfs(kvm);
990 if (ret) {
991 kvm_destroy_vm_debugfs(kvm);
992 return i;
993 }
994
995 return 0;
996 }
997
998 /*
999 * Called after the VM is otherwise initialized, but just before adding it to
1000 * the vm_list.
1001 */
kvm_arch_post_init_vm(struct kvm * kvm)1002 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
1003 {
1004 return 0;
1005 }
1006
1007 /*
1008 * Called just after removing the VM from the vm_list, but before doing any
1009 * other destruction.
1010 */
kvm_arch_pre_destroy_vm(struct kvm * kvm)1011 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
1012 {
1013 }
1014
1015 /*
1016 * Called after per-vm debugfs created. When called kvm->debugfs_dentry should
1017 * be setup already, so we can create arch-specific debugfs entries under it.
1018 * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so
1019 * a per-arch destroy interface is not needed.
1020 */
kvm_arch_create_vm_debugfs(struct kvm * kvm)1021 int __weak kvm_arch_create_vm_debugfs(struct kvm *kvm)
1022 {
1023 return 0;
1024 }
1025
kvm_create_vm(unsigned long type)1026 static struct kvm *kvm_create_vm(unsigned long type)
1027 {
1028 struct kvm *kvm = kvm_arch_alloc_vm();
1029 int r = -ENOMEM;
1030 int i;
1031
1032 if (!kvm)
1033 return ERR_PTR(-ENOMEM);
1034
1035 KVM_MMU_LOCK_INIT(kvm);
1036 mmgrab(current->mm);
1037 kvm->mm = current->mm;
1038 kvm_eventfd_init(kvm);
1039 mutex_init(&kvm->lock);
1040 mutex_init(&kvm->irq_lock);
1041 mutex_init(&kvm->slots_lock);
1042 mutex_init(&kvm->slots_arch_lock);
1043 spin_lock_init(&kvm->mn_invalidate_lock);
1044 rcuwait_init(&kvm->mn_memslots_update_rcuwait);
1045
1046 INIT_LIST_HEAD(&kvm->devices);
1047
1048 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
1049
1050 if (init_srcu_struct(&kvm->srcu))
1051 goto out_err_no_srcu;
1052 if (init_srcu_struct(&kvm->irq_srcu))
1053 goto out_err_no_irq_srcu;
1054
1055 refcount_set(&kvm->users_count, 1);
1056 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1057 struct kvm_memslots *slots = kvm_alloc_memslots();
1058
1059 if (!slots)
1060 goto out_err_no_arch_destroy_vm;
1061 /* Generations must be different for each address space. */
1062 slots->generation = i;
1063 rcu_assign_pointer(kvm->memslots[i], slots);
1064 }
1065
1066 for (i = 0; i < KVM_NR_BUSES; i++) {
1067 rcu_assign_pointer(kvm->buses[i],
1068 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
1069 if (!kvm->buses[i])
1070 goto out_err_no_arch_destroy_vm;
1071 }
1072
1073 kvm->max_halt_poll_ns = halt_poll_ns;
1074
1075 r = kvm_arch_init_vm(kvm, type);
1076 if (r)
1077 goto out_err_no_arch_destroy_vm;
1078
1079 r = hardware_enable_all();
1080 if (r)
1081 goto out_err_no_disable;
1082
1083 #ifdef CONFIG_HAVE_KVM_IRQFD
1084 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
1085 #endif
1086
1087 r = kvm_init_mmu_notifier(kvm);
1088 if (r)
1089 goto out_err_no_mmu_notifier;
1090
1091 r = kvm_arch_post_init_vm(kvm);
1092 if (r)
1093 goto out_err;
1094
1095 mutex_lock(&kvm_lock);
1096 list_add(&kvm->vm_list, &vm_list);
1097 mutex_unlock(&kvm_lock);
1098
1099 preempt_notifier_inc();
1100 kvm_init_pm_notifier(kvm);
1101
1102 return kvm;
1103
1104 out_err:
1105 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1106 if (kvm->mmu_notifier.ops)
1107 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
1108 #endif
1109 out_err_no_mmu_notifier:
1110 hardware_disable_all();
1111 out_err_no_disable:
1112 kvm_arch_destroy_vm(kvm);
1113 out_err_no_arch_destroy_vm:
1114 WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
1115 for (i = 0; i < KVM_NR_BUSES; i++)
1116 kfree(kvm_get_bus(kvm, i));
1117 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
1118 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
1119 cleanup_srcu_struct(&kvm->irq_srcu);
1120 out_err_no_irq_srcu:
1121 cleanup_srcu_struct(&kvm->srcu);
1122 out_err_no_srcu:
1123 kvm_arch_free_vm(kvm);
1124 mmdrop(current->mm);
1125 return ERR_PTR(r);
1126 }
1127
kvm_destroy_devices(struct kvm * kvm)1128 static void kvm_destroy_devices(struct kvm *kvm)
1129 {
1130 struct kvm_device *dev, *tmp;
1131
1132 /*
1133 * We do not need to take the kvm->lock here, because nobody else
1134 * has a reference to the struct kvm at this point and therefore
1135 * cannot access the devices list anyhow.
1136 */
1137 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1138 list_del(&dev->vm_node);
1139 dev->ops->destroy(dev);
1140 }
1141 }
1142
kvm_destroy_vm(struct kvm * kvm)1143 static void kvm_destroy_vm(struct kvm *kvm)
1144 {
1145 int i;
1146 struct mm_struct *mm = kvm->mm;
1147
1148 kvm_destroy_pm_notifier(kvm);
1149 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
1150 kvm_destroy_vm_debugfs(kvm);
1151 kvm_arch_sync_events(kvm);
1152 mutex_lock(&kvm_lock);
1153 list_del(&kvm->vm_list);
1154 mutex_unlock(&kvm_lock);
1155 kvm_arch_pre_destroy_vm(kvm);
1156
1157 kvm_free_irq_routing(kvm);
1158 for (i = 0; i < KVM_NR_BUSES; i++) {
1159 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
1160
1161 if (bus)
1162 kvm_io_bus_destroy(bus);
1163 kvm->buses[i] = NULL;
1164 }
1165 kvm_coalesced_mmio_free(kvm);
1166 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1167 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1168 /*
1169 * At this point, pending calls to invalidate_range_start()
1170 * have completed but no more MMU notifiers will run, so
1171 * mn_active_invalidate_count may remain unbalanced.
1172 * No threads can be waiting in install_new_memslots as the
1173 * last reference on KVM has been dropped, but freeing
1174 * memslots would deadlock without this manual intervention.
1175 */
1176 WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait));
1177 kvm->mn_active_invalidate_count = 0;
1178 #else
1179 kvm_arch_flush_shadow_all(kvm);
1180 #endif
1181 kvm_arch_destroy_vm(kvm);
1182 kvm_destroy_devices(kvm);
1183 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
1184 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
1185 cleanup_srcu_struct(&kvm->irq_srcu);
1186 cleanup_srcu_struct(&kvm->srcu);
1187 kvm_arch_free_vm(kvm);
1188 preempt_notifier_dec();
1189 hardware_disable_all();
1190 mmdrop(mm);
1191 }
1192
kvm_get_kvm(struct kvm * kvm)1193 void kvm_get_kvm(struct kvm *kvm)
1194 {
1195 refcount_inc(&kvm->users_count);
1196 }
1197 EXPORT_SYMBOL_GPL(kvm_get_kvm);
1198
1199 /*
1200 * Make sure the vm is not during destruction, which is a safe version of
1201 * kvm_get_kvm(). Return true if kvm referenced successfully, false otherwise.
1202 */
kvm_get_kvm_safe(struct kvm * kvm)1203 bool kvm_get_kvm_safe(struct kvm *kvm)
1204 {
1205 return refcount_inc_not_zero(&kvm->users_count);
1206 }
1207 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe);
1208
kvm_put_kvm(struct kvm * kvm)1209 void kvm_put_kvm(struct kvm *kvm)
1210 {
1211 if (refcount_dec_and_test(&kvm->users_count))
1212 kvm_destroy_vm(kvm);
1213 }
1214 EXPORT_SYMBOL_GPL(kvm_put_kvm);
1215
1216 /*
1217 * Used to put a reference that was taken on behalf of an object associated
1218 * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1219 * of the new file descriptor fails and the reference cannot be transferred to
1220 * its final owner. In such cases, the caller is still actively using @kvm and
1221 * will fail miserably if the refcount unexpectedly hits zero.
1222 */
kvm_put_kvm_no_destroy(struct kvm * kvm)1223 void kvm_put_kvm_no_destroy(struct kvm *kvm)
1224 {
1225 WARN_ON(refcount_dec_and_test(&kvm->users_count));
1226 }
1227 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
1228
kvm_vm_release(struct inode * inode,struct file * filp)1229 static int kvm_vm_release(struct inode *inode, struct file *filp)
1230 {
1231 struct kvm *kvm = filp->private_data;
1232
1233 kvm_irqfd_release(kvm);
1234
1235 kvm_put_kvm(kvm);
1236 return 0;
1237 }
1238
1239 /*
1240 * Allocation size is twice as large as the actual dirty bitmap size.
1241 * See kvm_vm_ioctl_get_dirty_log() why this is needed.
1242 */
kvm_alloc_dirty_bitmap(struct kvm_memory_slot * memslot)1243 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
1244 {
1245 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
1246
1247 memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
1248 if (!memslot->dirty_bitmap)
1249 return -ENOMEM;
1250
1251 return 0;
1252 }
1253
1254 /*
1255 * Delete a memslot by decrementing the number of used slots and shifting all
1256 * other entries in the array forward one spot.
1257 */
kvm_memslot_delete(struct kvm_memslots * slots,struct kvm_memory_slot * memslot)1258 static inline void kvm_memslot_delete(struct kvm_memslots *slots,
1259 struct kvm_memory_slot *memslot)
1260 {
1261 struct kvm_memory_slot *mslots = slots->memslots;
1262 int i;
1263
1264 if (WARN_ON(slots->id_to_index[memslot->id] == -1))
1265 return;
1266
1267 slots->used_slots--;
1268
1269 if (atomic_read(&slots->last_used_slot) >= slots->used_slots)
1270 atomic_set(&slots->last_used_slot, 0);
1271
1272 for (i = slots->id_to_index[memslot->id]; i < slots->used_slots; i++) {
1273 mslots[i] = mslots[i + 1];
1274 slots->id_to_index[mslots[i].id] = i;
1275 }
1276 mslots[i] = *memslot;
1277 slots->id_to_index[memslot->id] = -1;
1278 }
1279
1280 /*
1281 * "Insert" a new memslot by incrementing the number of used slots. Returns
1282 * the new slot's initial index into the memslots array.
1283 */
kvm_memslot_insert_back(struct kvm_memslots * slots)1284 static inline int kvm_memslot_insert_back(struct kvm_memslots *slots)
1285 {
1286 return slots->used_slots++;
1287 }
1288
1289 /*
1290 * Move a changed memslot backwards in the array by shifting existing slots
1291 * with a higher GFN toward the front of the array. Note, the changed memslot
1292 * itself is not preserved in the array, i.e. not swapped at this time, only
1293 * its new index into the array is tracked. Returns the changed memslot's
1294 * current index into the memslots array.
1295 */
kvm_memslot_move_backward(struct kvm_memslots * slots,struct kvm_memory_slot * memslot)1296 static inline int kvm_memslot_move_backward(struct kvm_memslots *slots,
1297 struct kvm_memory_slot *memslot)
1298 {
1299 struct kvm_memory_slot *mslots = slots->memslots;
1300 int i;
1301
1302 if (WARN_ON_ONCE(slots->id_to_index[memslot->id] == -1) ||
1303 WARN_ON_ONCE(!slots->used_slots))
1304 return -1;
1305
1306 /*
1307 * Move the target memslot backward in the array by shifting existing
1308 * memslots with a higher GFN (than the target memslot) towards the
1309 * front of the array.
1310 */
1311 for (i = slots->id_to_index[memslot->id]; i < slots->used_slots - 1; i++) {
1312 if (memslot->base_gfn > mslots[i + 1].base_gfn)
1313 break;
1314
1315 WARN_ON_ONCE(memslot->base_gfn == mslots[i + 1].base_gfn);
1316
1317 /* Shift the next memslot forward one and update its index. */
1318 mslots[i] = mslots[i + 1];
1319 slots->id_to_index[mslots[i].id] = i;
1320 }
1321 return i;
1322 }
1323
1324 /*
1325 * Move a changed memslot forwards in the array by shifting existing slots with
1326 * a lower GFN toward the back of the array. Note, the changed memslot itself
1327 * is not preserved in the array, i.e. not swapped at this time, only its new
1328 * index into the array is tracked. Returns the changed memslot's final index
1329 * into the memslots array.
1330 */
kvm_memslot_move_forward(struct kvm_memslots * slots,struct kvm_memory_slot * memslot,int start)1331 static inline int kvm_memslot_move_forward(struct kvm_memslots *slots,
1332 struct kvm_memory_slot *memslot,
1333 int start)
1334 {
1335 struct kvm_memory_slot *mslots = slots->memslots;
1336 int i;
1337
1338 for (i = start; i > 0; i--) {
1339 if (memslot->base_gfn < mslots[i - 1].base_gfn)
1340 break;
1341
1342 WARN_ON_ONCE(memslot->base_gfn == mslots[i - 1].base_gfn);
1343
1344 /* Shift the next memslot back one and update its index. */
1345 mslots[i] = mslots[i - 1];
1346 slots->id_to_index[mslots[i].id] = i;
1347 }
1348 return i;
1349 }
1350
1351 /*
1352 * Re-sort memslots based on their GFN to account for an added, deleted, or
1353 * moved memslot. Sorting memslots by GFN allows using a binary search during
1354 * memslot lookup.
1355 *
1356 * IMPORTANT: Slots are sorted from highest GFN to lowest GFN! I.e. the entry
1357 * at memslots[0] has the highest GFN.
1358 *
1359 * The sorting algorithm takes advantage of having initially sorted memslots
1360 * and knowing the position of the changed memslot. Sorting is also optimized
1361 * by not swapping the updated memslot and instead only shifting other memslots
1362 * and tracking the new index for the update memslot. Only once its final
1363 * index is known is the updated memslot copied into its position in the array.
1364 *
1365 * - When deleting a memslot, the deleted memslot simply needs to be moved to
1366 * the end of the array.
1367 *
1368 * - When creating a memslot, the algorithm "inserts" the new memslot at the
1369 * end of the array and then it forward to its correct location.
1370 *
1371 * - When moving a memslot, the algorithm first moves the updated memslot
1372 * backward to handle the scenario where the memslot's GFN was changed to a
1373 * lower value. update_memslots() then falls through and runs the same flow
1374 * as creating a memslot to move the memslot forward to handle the scenario
1375 * where its GFN was changed to a higher value.
1376 *
1377 * Note, slots are sorted from highest->lowest instead of lowest->highest for
1378 * historical reasons. Originally, invalid memslots where denoted by having
1379 * GFN=0, thus sorting from highest->lowest naturally sorted invalid memslots
1380 * to the end of the array. The current algorithm uses dedicated logic to
1381 * delete a memslot and thus does not rely on invalid memslots having GFN=0.
1382 *
1383 * The other historical motiviation for highest->lowest was to improve the
1384 * performance of memslot lookup. KVM originally used a linear search starting
1385 * at memslots[0]. On x86, the largest memslot usually has one of the highest,
1386 * if not *the* highest, GFN, as the bulk of the guest's RAM is located in a
1387 * single memslot above the 4gb boundary. As the largest memslot is also the
1388 * most likely to be referenced, sorting it to the front of the array was
1389 * advantageous. The current binary search starts from the middle of the array
1390 * and uses an LRU pointer to improve performance for all memslots and GFNs.
1391 */
update_memslots(struct kvm_memslots * slots,struct kvm_memory_slot * memslot,enum kvm_mr_change change)1392 static void update_memslots(struct kvm_memslots *slots,
1393 struct kvm_memory_slot *memslot,
1394 enum kvm_mr_change change)
1395 {
1396 int i;
1397
1398 if (change == KVM_MR_DELETE) {
1399 kvm_memslot_delete(slots, memslot);
1400 } else {
1401 if (change == KVM_MR_CREATE)
1402 i = kvm_memslot_insert_back(slots);
1403 else
1404 i = kvm_memslot_move_backward(slots, memslot);
1405 i = kvm_memslot_move_forward(slots, memslot, i);
1406
1407 /*
1408 * Copy the memslot to its new position in memslots and update
1409 * its index accordingly.
1410 */
1411 slots->memslots[i] = *memslot;
1412 slots->id_to_index[memslot->id] = i;
1413 }
1414 }
1415
check_memory_region_flags(const struct kvm_userspace_memory_region * mem)1416 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
1417 {
1418 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1419
1420 #ifdef __KVM_HAVE_READONLY_MEM
1421 valid_flags |= KVM_MEM_READONLY;
1422 #endif
1423
1424 if (mem->flags & ~valid_flags)
1425 return -EINVAL;
1426
1427 return 0;
1428 }
1429
install_new_memslots(struct kvm * kvm,int as_id,struct kvm_memslots * slots)1430 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
1431 int as_id, struct kvm_memslots *slots)
1432 {
1433 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
1434 u64 gen = old_memslots->generation;
1435
1436 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1437 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1438
1439 /*
1440 * Do not store the new memslots while there are invalidations in
1441 * progress, otherwise the locking in invalidate_range_start and
1442 * invalidate_range_end will be unbalanced.
1443 */
1444 spin_lock(&kvm->mn_invalidate_lock);
1445 prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait);
1446 while (kvm->mn_active_invalidate_count) {
1447 set_current_state(TASK_UNINTERRUPTIBLE);
1448 spin_unlock(&kvm->mn_invalidate_lock);
1449 schedule();
1450 spin_lock(&kvm->mn_invalidate_lock);
1451 }
1452 finish_rcuwait(&kvm->mn_memslots_update_rcuwait);
1453 rcu_assign_pointer(kvm->memslots[as_id], slots);
1454 spin_unlock(&kvm->mn_invalidate_lock);
1455
1456 /*
1457 * Acquired in kvm_set_memslot. Must be released before synchronize
1458 * SRCU below in order to avoid deadlock with another thread
1459 * acquiring the slots_arch_lock in an srcu critical section.
1460 */
1461 mutex_unlock(&kvm->slots_arch_lock);
1462
1463 synchronize_srcu_expedited(&kvm->srcu);
1464
1465 /*
1466 * Increment the new memslot generation a second time, dropping the
1467 * update in-progress flag and incrementing the generation based on
1468 * the number of address spaces. This provides a unique and easily
1469 * identifiable generation number while the memslots are in flux.
1470 */
1471 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1472
1473 /*
1474 * Generations must be unique even across address spaces. We do not need
1475 * a global counter for that, instead the generation space is evenly split
1476 * across address spaces. For example, with two address spaces, address
1477 * space 0 will use generations 0, 2, 4, ... while address space 1 will
1478 * use generations 1, 3, 5, ...
1479 */
1480 gen += KVM_ADDRESS_SPACE_NUM;
1481
1482 kvm_arch_memslots_updated(kvm, gen);
1483
1484 slots->generation = gen;
1485
1486 return old_memslots;
1487 }
1488
kvm_memslots_size(int slots)1489 static size_t kvm_memslots_size(int slots)
1490 {
1491 return sizeof(struct kvm_memslots) +
1492 (sizeof(struct kvm_memory_slot) * slots);
1493 }
1494
kvm_copy_memslots(struct kvm_memslots * to,struct kvm_memslots * from)1495 static void kvm_copy_memslots(struct kvm_memslots *to,
1496 struct kvm_memslots *from)
1497 {
1498 memcpy(to, from, kvm_memslots_size(from->used_slots));
1499 }
1500
1501 /*
1502 * Note, at a minimum, the current number of used slots must be allocated, even
1503 * when deleting a memslot, as we need a complete duplicate of the memslots for
1504 * use when invalidating a memslot prior to deleting/moving the memslot.
1505 */
kvm_dup_memslots(struct kvm_memslots * old,enum kvm_mr_change change)1506 static struct kvm_memslots *kvm_dup_memslots(struct kvm_memslots *old,
1507 enum kvm_mr_change change)
1508 {
1509 struct kvm_memslots *slots;
1510 size_t new_size;
1511
1512 if (change == KVM_MR_CREATE)
1513 new_size = kvm_memslots_size(old->used_slots + 1);
1514 else
1515 new_size = kvm_memslots_size(old->used_slots);
1516
1517 slots = kvzalloc(new_size, GFP_KERNEL_ACCOUNT);
1518 if (likely(slots))
1519 kvm_copy_memslots(slots, old);
1520
1521 return slots;
1522 }
1523
kvm_set_memslot(struct kvm * kvm,const struct kvm_userspace_memory_region * mem,struct kvm_memory_slot * old,struct kvm_memory_slot * new,int as_id,enum kvm_mr_change change)1524 static int kvm_set_memslot(struct kvm *kvm,
1525 const struct kvm_userspace_memory_region *mem,
1526 struct kvm_memory_slot *old,
1527 struct kvm_memory_slot *new, int as_id,
1528 enum kvm_mr_change change)
1529 {
1530 struct kvm_memory_slot *slot;
1531 struct kvm_memslots *slots;
1532 int r;
1533
1534 /*
1535 * Released in install_new_memslots.
1536 *
1537 * Must be held from before the current memslots are copied until
1538 * after the new memslots are installed with rcu_assign_pointer,
1539 * then released before the synchronize srcu in install_new_memslots.
1540 *
1541 * When modifying memslots outside of the slots_lock, must be held
1542 * before reading the pointer to the current memslots until after all
1543 * changes to those memslots are complete.
1544 *
1545 * These rules ensure that installing new memslots does not lose
1546 * changes made to the previous memslots.
1547 */
1548 mutex_lock(&kvm->slots_arch_lock);
1549
1550 slots = kvm_dup_memslots(__kvm_memslots(kvm, as_id), change);
1551 if (!slots) {
1552 mutex_unlock(&kvm->slots_arch_lock);
1553 return -ENOMEM;
1554 }
1555
1556 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1557 /*
1558 * Note, the INVALID flag needs to be in the appropriate entry
1559 * in the freshly allocated memslots, not in @old or @new.
1560 */
1561 slot = id_to_memslot(slots, old->id);
1562 slot->flags |= KVM_MEMSLOT_INVALID;
1563
1564 /*
1565 * We can re-use the memory from the old memslots.
1566 * It will be overwritten with a copy of the new memslots
1567 * after reacquiring the slots_arch_lock below.
1568 */
1569 slots = install_new_memslots(kvm, as_id, slots);
1570
1571 /* From this point no new shadow pages pointing to a deleted,
1572 * or moved, memslot will be created.
1573 *
1574 * validation of sp->gfn happens in:
1575 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1576 * - kvm_is_visible_gfn (mmu_check_root)
1577 */
1578 kvm_arch_flush_shadow_memslot(kvm, slot);
1579
1580 /* Released in install_new_memslots. */
1581 mutex_lock(&kvm->slots_arch_lock);
1582
1583 /*
1584 * The arch-specific fields of the memslots could have changed
1585 * between releasing the slots_arch_lock in
1586 * install_new_memslots and here, so get a fresh copy of the
1587 * slots.
1588 */
1589 kvm_copy_memslots(slots, __kvm_memslots(kvm, as_id));
1590 }
1591
1592 r = kvm_arch_prepare_memory_region(kvm, new, mem, change);
1593 if (r)
1594 goto out_slots;
1595
1596 update_memslots(slots, new, change);
1597 slots = install_new_memslots(kvm, as_id, slots);
1598
1599 kvm_arch_commit_memory_region(kvm, mem, old, new, change);
1600
1601 kvfree(slots);
1602 return 0;
1603
1604 out_slots:
1605 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1606 slot = id_to_memslot(slots, old->id);
1607 slot->flags &= ~KVM_MEMSLOT_INVALID;
1608 slots = install_new_memslots(kvm, as_id, slots);
1609 } else {
1610 mutex_unlock(&kvm->slots_arch_lock);
1611 }
1612 kvfree(slots);
1613 return r;
1614 }
1615
kvm_delete_memslot(struct kvm * kvm,const struct kvm_userspace_memory_region * mem,struct kvm_memory_slot * old,int as_id)1616 static int kvm_delete_memslot(struct kvm *kvm,
1617 const struct kvm_userspace_memory_region *mem,
1618 struct kvm_memory_slot *old, int as_id)
1619 {
1620 struct kvm_memory_slot new;
1621 int r;
1622
1623 if (!old->npages)
1624 return -EINVAL;
1625
1626 memset(&new, 0, sizeof(new));
1627 new.id = old->id;
1628 /*
1629 * This is only for debugging purpose; it should never be referenced
1630 * for a removed memslot.
1631 */
1632 new.as_id = as_id;
1633
1634 r = kvm_set_memslot(kvm, mem, old, &new, as_id, KVM_MR_DELETE);
1635 if (r)
1636 return r;
1637
1638 kvm_free_memslot(kvm, old);
1639 return 0;
1640 }
1641
1642 /*
1643 * Allocate some memory and give it an address in the guest physical address
1644 * space.
1645 *
1646 * Discontiguous memory is allowed, mostly for framebuffers.
1647 *
1648 * Must be called holding kvm->slots_lock for write.
1649 */
__kvm_set_memory_region(struct kvm * kvm,const struct kvm_userspace_memory_region * mem)1650 int __kvm_set_memory_region(struct kvm *kvm,
1651 const struct kvm_userspace_memory_region *mem)
1652 {
1653 struct kvm_memory_slot old, new;
1654 struct kvm_memory_slot *tmp;
1655 enum kvm_mr_change change;
1656 int as_id, id;
1657 int r;
1658
1659 r = check_memory_region_flags(mem);
1660 if (r)
1661 return r;
1662
1663 as_id = mem->slot >> 16;
1664 id = (u16)mem->slot;
1665
1666 /* General sanity checks */
1667 if (mem->memory_size & (PAGE_SIZE - 1))
1668 return -EINVAL;
1669 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1670 return -EINVAL;
1671 /* We can read the guest memory with __xxx_user() later on. */
1672 if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1673 (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
1674 !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1675 mem->memory_size))
1676 return -EINVAL;
1677 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1678 return -EINVAL;
1679 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1680 return -EINVAL;
1681
1682 /*
1683 * Make a full copy of the old memslot, the pointer will become stale
1684 * when the memslots are re-sorted by update_memslots(), and the old
1685 * memslot needs to be referenced after calling update_memslots(), e.g.
1686 * to free its resources and for arch specific behavior.
1687 */
1688 tmp = id_to_memslot(__kvm_memslots(kvm, as_id), id);
1689 if (tmp) {
1690 old = *tmp;
1691 tmp = NULL;
1692 } else {
1693 memset(&old, 0, sizeof(old));
1694 old.id = id;
1695 }
1696
1697 if (!mem->memory_size)
1698 return kvm_delete_memslot(kvm, mem, &old, as_id);
1699
1700 new.as_id = as_id;
1701 new.id = id;
1702 new.base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1703 new.npages = mem->memory_size >> PAGE_SHIFT;
1704 new.flags = mem->flags;
1705 new.userspace_addr = mem->userspace_addr;
1706
1707 if (new.npages > KVM_MEM_MAX_NR_PAGES)
1708 return -EINVAL;
1709
1710 if (!old.npages) {
1711 change = KVM_MR_CREATE;
1712 new.dirty_bitmap = NULL;
1713 memset(&new.arch, 0, sizeof(new.arch));
1714 } else { /* Modify an existing slot. */
1715 if ((new.userspace_addr != old.userspace_addr) ||
1716 (new.npages != old.npages) ||
1717 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
1718 return -EINVAL;
1719
1720 if (new.base_gfn != old.base_gfn)
1721 change = KVM_MR_MOVE;
1722 else if (new.flags != old.flags)
1723 change = KVM_MR_FLAGS_ONLY;
1724 else /* Nothing to change. */
1725 return 0;
1726
1727 /* Copy dirty_bitmap and arch from the current memslot. */
1728 new.dirty_bitmap = old.dirty_bitmap;
1729 memcpy(&new.arch, &old.arch, sizeof(new.arch));
1730 }
1731
1732 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1733 /* Check for overlaps */
1734 kvm_for_each_memslot(tmp, __kvm_memslots(kvm, as_id)) {
1735 if (tmp->id == id)
1736 continue;
1737 if (!((new.base_gfn + new.npages <= tmp->base_gfn) ||
1738 (new.base_gfn >= tmp->base_gfn + tmp->npages)))
1739 return -EEXIST;
1740 }
1741 }
1742
1743 /* Allocate/free page dirty bitmap as needed */
1744 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1745 new.dirty_bitmap = NULL;
1746 else if (!new.dirty_bitmap && !kvm->dirty_ring_size) {
1747 r = kvm_alloc_dirty_bitmap(&new);
1748 if (r)
1749 return r;
1750
1751 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1752 bitmap_set(new.dirty_bitmap, 0, new.npages);
1753 }
1754
1755 r = kvm_set_memslot(kvm, mem, &old, &new, as_id, change);
1756 if (r)
1757 goto out_bitmap;
1758
1759 if (old.dirty_bitmap && !new.dirty_bitmap)
1760 kvm_destroy_dirty_bitmap(&old);
1761 return 0;
1762
1763 out_bitmap:
1764 if (new.dirty_bitmap && !old.dirty_bitmap)
1765 kvm_destroy_dirty_bitmap(&new);
1766 return r;
1767 }
1768 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1769
kvm_set_memory_region(struct kvm * kvm,const struct kvm_userspace_memory_region * mem)1770 int kvm_set_memory_region(struct kvm *kvm,
1771 const struct kvm_userspace_memory_region *mem)
1772 {
1773 int r;
1774
1775 mutex_lock(&kvm->slots_lock);
1776 r = __kvm_set_memory_region(kvm, mem);
1777 mutex_unlock(&kvm->slots_lock);
1778 return r;
1779 }
1780 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1781
kvm_vm_ioctl_set_memory_region(struct kvm * kvm,struct kvm_userspace_memory_region * mem)1782 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1783 struct kvm_userspace_memory_region *mem)
1784 {
1785 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1786 return -EINVAL;
1787
1788 return kvm_set_memory_region(kvm, mem);
1789 }
1790
1791 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1792 /**
1793 * kvm_get_dirty_log - get a snapshot of dirty pages
1794 * @kvm: pointer to kvm instance
1795 * @log: slot id and address to which we copy the log
1796 * @is_dirty: set to '1' if any dirty pages were found
1797 * @memslot: set to the associated memslot, always valid on success
1798 */
kvm_get_dirty_log(struct kvm * kvm,struct kvm_dirty_log * log,int * is_dirty,struct kvm_memory_slot ** memslot)1799 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1800 int *is_dirty, struct kvm_memory_slot **memslot)
1801 {
1802 struct kvm_memslots *slots;
1803 int i, as_id, id;
1804 unsigned long n;
1805 unsigned long any = 0;
1806
1807 /* Dirty ring tracking is exclusive to dirty log tracking */
1808 if (kvm->dirty_ring_size)
1809 return -ENXIO;
1810
1811 *memslot = NULL;
1812 *is_dirty = 0;
1813
1814 as_id = log->slot >> 16;
1815 id = (u16)log->slot;
1816 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1817 return -EINVAL;
1818
1819 slots = __kvm_memslots(kvm, as_id);
1820 *memslot = id_to_memslot(slots, id);
1821 if (!(*memslot) || !(*memslot)->dirty_bitmap)
1822 return -ENOENT;
1823
1824 kvm_arch_sync_dirty_log(kvm, *memslot);
1825
1826 n = kvm_dirty_bitmap_bytes(*memslot);
1827
1828 for (i = 0; !any && i < n/sizeof(long); ++i)
1829 any = (*memslot)->dirty_bitmap[i];
1830
1831 if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
1832 return -EFAULT;
1833
1834 if (any)
1835 *is_dirty = 1;
1836 return 0;
1837 }
1838 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1839
1840 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1841 /**
1842 * kvm_get_dirty_log_protect - get a snapshot of dirty pages
1843 * and reenable dirty page tracking for the corresponding pages.
1844 * @kvm: pointer to kvm instance
1845 * @log: slot id and address to which we copy the log
1846 *
1847 * We need to keep it in mind that VCPU threads can write to the bitmap
1848 * concurrently. So, to avoid losing track of dirty pages we keep the
1849 * following order:
1850 *
1851 * 1. Take a snapshot of the bit and clear it if needed.
1852 * 2. Write protect the corresponding page.
1853 * 3. Copy the snapshot to the userspace.
1854 * 4. Upon return caller flushes TLB's if needed.
1855 *
1856 * Between 2 and 4, the guest may write to the page using the remaining TLB
1857 * entry. This is not a problem because the page is reported dirty using
1858 * the snapshot taken before and step 4 ensures that writes done after
1859 * exiting to userspace will be logged for the next call.
1860 *
1861 */
kvm_get_dirty_log_protect(struct kvm * kvm,struct kvm_dirty_log * log)1862 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
1863 {
1864 struct kvm_memslots *slots;
1865 struct kvm_memory_slot *memslot;
1866 int i, as_id, id;
1867 unsigned long n;
1868 unsigned long *dirty_bitmap;
1869 unsigned long *dirty_bitmap_buffer;
1870 bool flush;
1871
1872 /* Dirty ring tracking is exclusive to dirty log tracking */
1873 if (kvm->dirty_ring_size)
1874 return -ENXIO;
1875
1876 as_id = log->slot >> 16;
1877 id = (u16)log->slot;
1878 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1879 return -EINVAL;
1880
1881 slots = __kvm_memslots(kvm, as_id);
1882 memslot = id_to_memslot(slots, id);
1883 if (!memslot || !memslot->dirty_bitmap)
1884 return -ENOENT;
1885
1886 dirty_bitmap = memslot->dirty_bitmap;
1887
1888 kvm_arch_sync_dirty_log(kvm, memslot);
1889
1890 n = kvm_dirty_bitmap_bytes(memslot);
1891 flush = false;
1892 if (kvm->manual_dirty_log_protect) {
1893 /*
1894 * Unlike kvm_get_dirty_log, we always return false in *flush,
1895 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There
1896 * is some code duplication between this function and
1897 * kvm_get_dirty_log, but hopefully all architecture
1898 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1899 * can be eliminated.
1900 */
1901 dirty_bitmap_buffer = dirty_bitmap;
1902 } else {
1903 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1904 memset(dirty_bitmap_buffer, 0, n);
1905
1906 KVM_MMU_LOCK(kvm);
1907 for (i = 0; i < n / sizeof(long); i++) {
1908 unsigned long mask;
1909 gfn_t offset;
1910
1911 if (!dirty_bitmap[i])
1912 continue;
1913
1914 flush = true;
1915 mask = xchg(&dirty_bitmap[i], 0);
1916 dirty_bitmap_buffer[i] = mask;
1917
1918 offset = i * BITS_PER_LONG;
1919 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1920 offset, mask);
1921 }
1922 KVM_MMU_UNLOCK(kvm);
1923 }
1924
1925 if (flush)
1926 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1927
1928 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1929 return -EFAULT;
1930 return 0;
1931 }
1932
1933
1934 /**
1935 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1936 * @kvm: kvm instance
1937 * @log: slot id and address to which we copy the log
1938 *
1939 * Steps 1-4 below provide general overview of dirty page logging. See
1940 * kvm_get_dirty_log_protect() function description for additional details.
1941 *
1942 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1943 * always flush the TLB (step 4) even if previous step failed and the dirty
1944 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1945 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1946 * writes will be marked dirty for next log read.
1947 *
1948 * 1. Take a snapshot of the bit and clear it if needed.
1949 * 2. Write protect the corresponding page.
1950 * 3. Copy the snapshot to the userspace.
1951 * 4. Flush TLB's if needed.
1952 */
kvm_vm_ioctl_get_dirty_log(struct kvm * kvm,struct kvm_dirty_log * log)1953 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1954 struct kvm_dirty_log *log)
1955 {
1956 int r;
1957
1958 mutex_lock(&kvm->slots_lock);
1959
1960 r = kvm_get_dirty_log_protect(kvm, log);
1961
1962 mutex_unlock(&kvm->slots_lock);
1963 return r;
1964 }
1965
1966 /**
1967 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1968 * and reenable dirty page tracking for the corresponding pages.
1969 * @kvm: pointer to kvm instance
1970 * @log: slot id and address from which to fetch the bitmap of dirty pages
1971 */
kvm_clear_dirty_log_protect(struct kvm * kvm,struct kvm_clear_dirty_log * log)1972 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
1973 struct kvm_clear_dirty_log *log)
1974 {
1975 struct kvm_memslots *slots;
1976 struct kvm_memory_slot *memslot;
1977 int as_id, id;
1978 gfn_t offset;
1979 unsigned long i, n;
1980 unsigned long *dirty_bitmap;
1981 unsigned long *dirty_bitmap_buffer;
1982 bool flush;
1983
1984 /* Dirty ring tracking is exclusive to dirty log tracking */
1985 if (kvm->dirty_ring_size)
1986 return -ENXIO;
1987
1988 as_id = log->slot >> 16;
1989 id = (u16)log->slot;
1990 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1991 return -EINVAL;
1992
1993 if (log->first_page & 63)
1994 return -EINVAL;
1995
1996 slots = __kvm_memslots(kvm, as_id);
1997 memslot = id_to_memslot(slots, id);
1998 if (!memslot || !memslot->dirty_bitmap)
1999 return -ENOENT;
2000
2001 dirty_bitmap = memslot->dirty_bitmap;
2002
2003 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
2004
2005 if (log->first_page > memslot->npages ||
2006 log->num_pages > memslot->npages - log->first_page ||
2007 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
2008 return -EINVAL;
2009
2010 kvm_arch_sync_dirty_log(kvm, memslot);
2011
2012 flush = false;
2013 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2014 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
2015 return -EFAULT;
2016
2017 KVM_MMU_LOCK(kvm);
2018 for (offset = log->first_page, i = offset / BITS_PER_LONG,
2019 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
2020 i++, offset += BITS_PER_LONG) {
2021 unsigned long mask = *dirty_bitmap_buffer++;
2022 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
2023 if (!mask)
2024 continue;
2025
2026 mask &= atomic_long_fetch_andnot(mask, p);
2027
2028 /*
2029 * mask contains the bits that really have been cleared. This
2030 * never includes any bits beyond the length of the memslot (if
2031 * the length is not aligned to 64 pages), therefore it is not
2032 * a problem if userspace sets them in log->dirty_bitmap.
2033 */
2034 if (mask) {
2035 flush = true;
2036 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2037 offset, mask);
2038 }
2039 }
2040 KVM_MMU_UNLOCK(kvm);
2041
2042 if (flush)
2043 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
2044
2045 return 0;
2046 }
2047
kvm_vm_ioctl_clear_dirty_log(struct kvm * kvm,struct kvm_clear_dirty_log * log)2048 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
2049 struct kvm_clear_dirty_log *log)
2050 {
2051 int r;
2052
2053 mutex_lock(&kvm->slots_lock);
2054
2055 r = kvm_clear_dirty_log_protect(kvm, log);
2056
2057 mutex_unlock(&kvm->slots_lock);
2058 return r;
2059 }
2060 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2061
gfn_to_memslot(struct kvm * kvm,gfn_t gfn)2062 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
2063 {
2064 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
2065 }
2066 EXPORT_SYMBOL_GPL(gfn_to_memslot);
2067
kvm_vcpu_gfn_to_memslot(struct kvm_vcpu * vcpu,gfn_t gfn)2068 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
2069 {
2070 struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
2071 struct kvm_memory_slot *slot;
2072 int slot_index;
2073
2074 slot = try_get_memslot(slots, vcpu->last_used_slot, gfn);
2075 if (slot)
2076 return slot;
2077
2078 /*
2079 * Fall back to searching all memslots. We purposely use
2080 * search_memslots() instead of __gfn_to_memslot() to avoid
2081 * thrashing the VM-wide last_used_index in kvm_memslots.
2082 */
2083 slot = search_memslots(slots, gfn, &slot_index);
2084 if (slot) {
2085 vcpu->last_used_slot = slot_index;
2086 return slot;
2087 }
2088
2089 return NULL;
2090 }
2091 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_memslot);
2092
kvm_is_visible_gfn(struct kvm * kvm,gfn_t gfn)2093 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
2094 {
2095 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
2096
2097 return kvm_is_visible_memslot(memslot);
2098 }
2099 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
2100
kvm_vcpu_is_visible_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)2101 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2102 {
2103 struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2104
2105 return kvm_is_visible_memslot(memslot);
2106 }
2107 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
2108
kvm_host_page_size(struct kvm_vcpu * vcpu,gfn_t gfn)2109 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
2110 {
2111 struct vm_area_struct *vma;
2112 unsigned long addr, size;
2113
2114 size = PAGE_SIZE;
2115
2116 addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
2117 if (kvm_is_error_hva(addr))
2118 return PAGE_SIZE;
2119
2120 mmap_read_lock(current->mm);
2121 vma = find_vma(current->mm, addr);
2122 if (!vma)
2123 goto out;
2124
2125 size = vma_kernel_pagesize(vma);
2126
2127 out:
2128 mmap_read_unlock(current->mm);
2129
2130 return size;
2131 }
2132
memslot_is_readonly(struct kvm_memory_slot * slot)2133 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
2134 {
2135 return slot->flags & KVM_MEM_READONLY;
2136 }
2137
__gfn_to_hva_many(struct kvm_memory_slot * slot,gfn_t gfn,gfn_t * nr_pages,bool write)2138 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2139 gfn_t *nr_pages, bool write)
2140 {
2141 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
2142 return KVM_HVA_ERR_BAD;
2143
2144 if (memslot_is_readonly(slot) && write)
2145 return KVM_HVA_ERR_RO_BAD;
2146
2147 if (nr_pages)
2148 *nr_pages = slot->npages - (gfn - slot->base_gfn);
2149
2150 return __gfn_to_hva_memslot(slot, gfn);
2151 }
2152
gfn_to_hva_many(struct kvm_memory_slot * slot,gfn_t gfn,gfn_t * nr_pages)2153 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2154 gfn_t *nr_pages)
2155 {
2156 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
2157 }
2158
gfn_to_hva_memslot(struct kvm_memory_slot * slot,gfn_t gfn)2159 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
2160 gfn_t gfn)
2161 {
2162 return gfn_to_hva_many(slot, gfn, NULL);
2163 }
2164 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
2165
gfn_to_hva(struct kvm * kvm,gfn_t gfn)2166 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
2167 {
2168 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
2169 }
2170 EXPORT_SYMBOL_GPL(gfn_to_hva);
2171
kvm_vcpu_gfn_to_hva(struct kvm_vcpu * vcpu,gfn_t gfn)2172 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
2173 {
2174 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
2175 }
2176 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
2177
2178 /*
2179 * Return the hva of a @gfn and the R/W attribute if possible.
2180 *
2181 * @slot: the kvm_memory_slot which contains @gfn
2182 * @gfn: the gfn to be translated
2183 * @writable: used to return the read/write attribute of the @slot if the hva
2184 * is valid and @writable is not NULL
2185 */
gfn_to_hva_memslot_prot(struct kvm_memory_slot * slot,gfn_t gfn,bool * writable)2186 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
2187 gfn_t gfn, bool *writable)
2188 {
2189 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
2190
2191 if (!kvm_is_error_hva(hva) && writable)
2192 *writable = !memslot_is_readonly(slot);
2193
2194 return hva;
2195 }
2196
gfn_to_hva_prot(struct kvm * kvm,gfn_t gfn,bool * writable)2197 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
2198 {
2199 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2200
2201 return gfn_to_hva_memslot_prot(slot, gfn, writable);
2202 }
2203
kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu * vcpu,gfn_t gfn,bool * writable)2204 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
2205 {
2206 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2207
2208 return gfn_to_hva_memslot_prot(slot, gfn, writable);
2209 }
2210
check_user_page_hwpoison(unsigned long addr)2211 static inline int check_user_page_hwpoison(unsigned long addr)
2212 {
2213 int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
2214
2215 rc = get_user_pages(addr, 1, flags, NULL, NULL);
2216 return rc == -EHWPOISON;
2217 }
2218
2219 /*
2220 * The fast path to get the writable pfn which will be stored in @pfn,
2221 * true indicates success, otherwise false is returned. It's also the
2222 * only part that runs if we can in atomic context.
2223 */
hva_to_pfn_fast(unsigned long addr,bool write_fault,bool * writable,kvm_pfn_t * pfn)2224 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
2225 bool *writable, kvm_pfn_t *pfn)
2226 {
2227 struct page *page[1];
2228
2229 /*
2230 * Fast pin a writable pfn only if it is a write fault request
2231 * or the caller allows to map a writable pfn for a read fault
2232 * request.
2233 */
2234 if (!(write_fault || writable))
2235 return false;
2236
2237 if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
2238 *pfn = page_to_pfn(page[0]);
2239
2240 if (writable)
2241 *writable = true;
2242 return true;
2243 }
2244
2245 return false;
2246 }
2247
2248 /*
2249 * The slow path to get the pfn of the specified host virtual address,
2250 * 1 indicates success, -errno is returned if error is detected.
2251 */
hva_to_pfn_slow(unsigned long addr,bool * async,bool write_fault,bool * writable,kvm_pfn_t * pfn)2252 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
2253 bool *writable, kvm_pfn_t *pfn)
2254 {
2255 unsigned int flags = FOLL_HWPOISON;
2256 struct page *page;
2257 int npages = 0;
2258
2259 might_sleep();
2260
2261 if (writable)
2262 *writable = write_fault;
2263
2264 if (write_fault)
2265 flags |= FOLL_WRITE;
2266 if (async)
2267 flags |= FOLL_NOWAIT;
2268
2269 npages = get_user_pages_unlocked(addr, 1, &page, flags);
2270 if (npages != 1)
2271 return npages;
2272
2273 /* map read fault as writable if possible */
2274 if (unlikely(!write_fault) && writable) {
2275 struct page *wpage;
2276
2277 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
2278 *writable = true;
2279 put_page(page);
2280 page = wpage;
2281 }
2282 }
2283 *pfn = page_to_pfn(page);
2284 return npages;
2285 }
2286
vma_is_valid(struct vm_area_struct * vma,bool write_fault)2287 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2288 {
2289 if (unlikely(!(vma->vm_flags & VM_READ)))
2290 return false;
2291
2292 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2293 return false;
2294
2295 return true;
2296 }
2297
kvm_try_get_pfn(kvm_pfn_t pfn)2298 static int kvm_try_get_pfn(kvm_pfn_t pfn)
2299 {
2300 if (kvm_is_reserved_pfn(pfn))
2301 return 1;
2302 return get_page_unless_zero(pfn_to_page(pfn));
2303 }
2304
hva_to_pfn_remapped(struct vm_area_struct * vma,unsigned long addr,bool * async,bool write_fault,bool * writable,kvm_pfn_t * p_pfn)2305 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
2306 unsigned long addr, bool *async,
2307 bool write_fault, bool *writable,
2308 kvm_pfn_t *p_pfn)
2309 {
2310 kvm_pfn_t pfn;
2311 pte_t *ptep;
2312 spinlock_t *ptl;
2313 int r;
2314
2315 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2316 if (r) {
2317 /*
2318 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2319 * not call the fault handler, so do it here.
2320 */
2321 bool unlocked = false;
2322 r = fixup_user_fault(current->mm, addr,
2323 (write_fault ? FAULT_FLAG_WRITE : 0),
2324 &unlocked);
2325 if (unlocked)
2326 return -EAGAIN;
2327 if (r)
2328 return r;
2329
2330 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2331 if (r)
2332 return r;
2333 }
2334
2335 if (write_fault && !pte_write(*ptep)) {
2336 pfn = KVM_PFN_ERR_RO_FAULT;
2337 goto out;
2338 }
2339
2340 if (writable)
2341 *writable = pte_write(*ptep);
2342 pfn = pte_pfn(*ptep);
2343
2344 /*
2345 * Get a reference here because callers of *hva_to_pfn* and
2346 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
2347 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP
2348 * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will
2349 * simply do nothing for reserved pfns.
2350 *
2351 * Whoever called remap_pfn_range is also going to call e.g.
2352 * unmap_mapping_range before the underlying pages are freed,
2353 * causing a call to our MMU notifier.
2354 *
2355 * Certain IO or PFNMAP mappings can be backed with valid
2356 * struct pages, but be allocated without refcounting e.g.,
2357 * tail pages of non-compound higher order allocations, which
2358 * would then underflow the refcount when the caller does the
2359 * required put_page. Don't allow those pages here.
2360 */
2361 if (!kvm_try_get_pfn(pfn))
2362 r = -EFAULT;
2363
2364 out:
2365 pte_unmap_unlock(ptep, ptl);
2366 *p_pfn = pfn;
2367
2368 return r;
2369 }
2370
2371 /*
2372 * Pin guest page in memory and return its pfn.
2373 * @addr: host virtual address which maps memory to the guest
2374 * @atomic: whether this function can sleep
2375 * @async: whether this function need to wait IO complete if the
2376 * host page is not in the memory
2377 * @write_fault: whether we should get a writable host page
2378 * @writable: whether it allows to map a writable host page for !@write_fault
2379 *
2380 * The function will map a writable host page for these two cases:
2381 * 1): @write_fault = true
2382 * 2): @write_fault = false && @writable, @writable will tell the caller
2383 * whether the mapping is writable.
2384 */
hva_to_pfn(unsigned long addr,bool atomic,bool * async,bool write_fault,bool * writable)2385 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
2386 bool write_fault, bool *writable)
2387 {
2388 struct vm_area_struct *vma;
2389 kvm_pfn_t pfn = 0;
2390 int npages, r;
2391
2392 /* we can do it either atomically or asynchronously, not both */
2393 BUG_ON(atomic && async);
2394
2395 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2396 return pfn;
2397
2398 if (atomic)
2399 return KVM_PFN_ERR_FAULT;
2400
2401 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
2402 if (npages == 1)
2403 return pfn;
2404
2405 mmap_read_lock(current->mm);
2406 if (npages == -EHWPOISON ||
2407 (!async && check_user_page_hwpoison(addr))) {
2408 pfn = KVM_PFN_ERR_HWPOISON;
2409 goto exit;
2410 }
2411
2412 retry:
2413 vma = vma_lookup(current->mm, addr);
2414
2415 if (vma == NULL)
2416 pfn = KVM_PFN_ERR_FAULT;
2417 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
2418 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
2419 if (r == -EAGAIN)
2420 goto retry;
2421 if (r < 0)
2422 pfn = KVM_PFN_ERR_FAULT;
2423 } else {
2424 if (async && vma_is_valid(vma, write_fault))
2425 *async = true;
2426 pfn = KVM_PFN_ERR_FAULT;
2427 }
2428 exit:
2429 mmap_read_unlock(current->mm);
2430 return pfn;
2431 }
2432
__gfn_to_pfn_memslot(struct kvm_memory_slot * slot,gfn_t gfn,bool atomic,bool * async,bool write_fault,bool * writable,hva_t * hva)2433 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
2434 bool atomic, bool *async, bool write_fault,
2435 bool *writable, hva_t *hva)
2436 {
2437 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
2438
2439 if (hva)
2440 *hva = addr;
2441
2442 if (addr == KVM_HVA_ERR_RO_BAD) {
2443 if (writable)
2444 *writable = false;
2445 return KVM_PFN_ERR_RO_FAULT;
2446 }
2447
2448 if (kvm_is_error_hva(addr)) {
2449 if (writable)
2450 *writable = false;
2451 return KVM_PFN_NOSLOT;
2452 }
2453
2454 /* Do not map writable pfn in the readonly memslot. */
2455 if (writable && memslot_is_readonly(slot)) {
2456 *writable = false;
2457 writable = NULL;
2458 }
2459
2460 return hva_to_pfn(addr, atomic, async, write_fault,
2461 writable);
2462 }
2463 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
2464
gfn_to_pfn_prot(struct kvm * kvm,gfn_t gfn,bool write_fault,bool * writable)2465 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
2466 bool *writable)
2467 {
2468 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
2469 write_fault, writable, NULL);
2470 }
2471 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
2472
gfn_to_pfn_memslot(struct kvm_memory_slot * slot,gfn_t gfn)2473 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
2474 {
2475 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL, NULL);
2476 }
2477 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
2478
gfn_to_pfn_memslot_atomic(struct kvm_memory_slot * slot,gfn_t gfn)2479 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
2480 {
2481 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL, NULL);
2482 }
2483 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
2484
kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu * vcpu,gfn_t gfn)2485 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
2486 {
2487 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2488 }
2489 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
2490
gfn_to_pfn(struct kvm * kvm,gfn_t gfn)2491 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
2492 {
2493 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
2494 }
2495 EXPORT_SYMBOL_GPL(gfn_to_pfn);
2496
kvm_vcpu_gfn_to_pfn(struct kvm_vcpu * vcpu,gfn_t gfn)2497 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2498 {
2499 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2500 }
2501 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
2502
gfn_to_page_many_atomic(struct kvm_memory_slot * slot,gfn_t gfn,struct page ** pages,int nr_pages)2503 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2504 struct page **pages, int nr_pages)
2505 {
2506 unsigned long addr;
2507 gfn_t entry = 0;
2508
2509 addr = gfn_to_hva_many(slot, gfn, &entry);
2510 if (kvm_is_error_hva(addr))
2511 return -1;
2512
2513 if (entry < nr_pages)
2514 return 0;
2515
2516 return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
2517 }
2518 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2519
kvm_pfn_to_page(kvm_pfn_t pfn)2520 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
2521 {
2522 if (is_error_noslot_pfn(pfn))
2523 return KVM_ERR_PTR_BAD_PAGE;
2524
2525 if (kvm_is_reserved_pfn(pfn)) {
2526 WARN_ON(1);
2527 return KVM_ERR_PTR_BAD_PAGE;
2528 }
2529
2530 return pfn_to_page(pfn);
2531 }
2532
gfn_to_page(struct kvm * kvm,gfn_t gfn)2533 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2534 {
2535 kvm_pfn_t pfn;
2536
2537 pfn = gfn_to_pfn(kvm, gfn);
2538
2539 return kvm_pfn_to_page(pfn);
2540 }
2541 EXPORT_SYMBOL_GPL(gfn_to_page);
2542
kvm_release_pfn(kvm_pfn_t pfn,bool dirty,struct gfn_to_pfn_cache * cache)2543 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache)
2544 {
2545 if (pfn == 0)
2546 return;
2547
2548 if (cache)
2549 cache->pfn = cache->gfn = 0;
2550
2551 if (dirty)
2552 kvm_release_pfn_dirty(pfn);
2553 else
2554 kvm_release_pfn_clean(pfn);
2555 }
2556
kvm_cache_gfn_to_pfn(struct kvm_memory_slot * slot,gfn_t gfn,struct gfn_to_pfn_cache * cache,u64 gen)2557 static void kvm_cache_gfn_to_pfn(struct kvm_memory_slot *slot, gfn_t gfn,
2558 struct gfn_to_pfn_cache *cache, u64 gen)
2559 {
2560 kvm_release_pfn(cache->pfn, cache->dirty, cache);
2561
2562 cache->pfn = gfn_to_pfn_memslot(slot, gfn);
2563 cache->gfn = gfn;
2564 cache->dirty = false;
2565 cache->generation = gen;
2566 }
2567
__kvm_map_gfn(struct kvm_memslots * slots,gfn_t gfn,struct kvm_host_map * map,struct gfn_to_pfn_cache * cache,bool atomic)2568 static int __kvm_map_gfn(struct kvm_memslots *slots, gfn_t gfn,
2569 struct kvm_host_map *map,
2570 struct gfn_to_pfn_cache *cache,
2571 bool atomic)
2572 {
2573 kvm_pfn_t pfn;
2574 void *hva = NULL;
2575 struct page *page = KVM_UNMAPPED_PAGE;
2576 struct kvm_memory_slot *slot = __gfn_to_memslot(slots, gfn);
2577 u64 gen = slots->generation;
2578
2579 if (!map)
2580 return -EINVAL;
2581
2582 if (cache) {
2583 if (!cache->pfn || cache->gfn != gfn ||
2584 cache->generation != gen) {
2585 if (atomic)
2586 return -EAGAIN;
2587 kvm_cache_gfn_to_pfn(slot, gfn, cache, gen);
2588 }
2589 pfn = cache->pfn;
2590 } else {
2591 if (atomic)
2592 return -EAGAIN;
2593 pfn = gfn_to_pfn_memslot(slot, gfn);
2594 }
2595 if (is_error_noslot_pfn(pfn))
2596 return -EINVAL;
2597
2598 if (pfn_valid(pfn)) {
2599 page = pfn_to_page(pfn);
2600 if (atomic)
2601 hva = kmap_atomic(page);
2602 else
2603 hva = kmap(page);
2604 #ifdef CONFIG_HAS_IOMEM
2605 } else if (!atomic) {
2606 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
2607 } else {
2608 return -EINVAL;
2609 #endif
2610 }
2611
2612 if (!hva)
2613 return -EFAULT;
2614
2615 map->page = page;
2616 map->hva = hva;
2617 map->pfn = pfn;
2618 map->gfn = gfn;
2619
2620 return 0;
2621 }
2622
kvm_map_gfn(struct kvm_vcpu * vcpu,gfn_t gfn,struct kvm_host_map * map,struct gfn_to_pfn_cache * cache,bool atomic)2623 int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
2624 struct gfn_to_pfn_cache *cache, bool atomic)
2625 {
2626 return __kvm_map_gfn(kvm_memslots(vcpu->kvm), gfn, map,
2627 cache, atomic);
2628 }
2629 EXPORT_SYMBOL_GPL(kvm_map_gfn);
2630
kvm_vcpu_map(struct kvm_vcpu * vcpu,gfn_t gfn,struct kvm_host_map * map)2631 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2632 {
2633 return __kvm_map_gfn(kvm_vcpu_memslots(vcpu), gfn, map,
2634 NULL, false);
2635 }
2636 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2637
__kvm_unmap_gfn(struct kvm * kvm,struct kvm_memory_slot * memslot,struct kvm_host_map * map,struct gfn_to_pfn_cache * cache,bool dirty,bool atomic)2638 static void __kvm_unmap_gfn(struct kvm *kvm,
2639 struct kvm_memory_slot *memslot,
2640 struct kvm_host_map *map,
2641 struct gfn_to_pfn_cache *cache,
2642 bool dirty, bool atomic)
2643 {
2644 if (!map)
2645 return;
2646
2647 if (!map->hva)
2648 return;
2649
2650 if (map->page != KVM_UNMAPPED_PAGE) {
2651 if (atomic)
2652 kunmap_atomic(map->hva);
2653 else
2654 kunmap(map->page);
2655 }
2656 #ifdef CONFIG_HAS_IOMEM
2657 else if (!atomic)
2658 memunmap(map->hva);
2659 else
2660 WARN_ONCE(1, "Unexpected unmapping in atomic context");
2661 #endif
2662
2663 if (dirty)
2664 mark_page_dirty_in_slot(kvm, memslot, map->gfn);
2665
2666 if (cache)
2667 cache->dirty |= dirty;
2668 else
2669 kvm_release_pfn(map->pfn, dirty, NULL);
2670
2671 map->hva = NULL;
2672 map->page = NULL;
2673 }
2674
kvm_unmap_gfn(struct kvm_vcpu * vcpu,struct kvm_host_map * map,struct gfn_to_pfn_cache * cache,bool dirty,bool atomic)2675 int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map,
2676 struct gfn_to_pfn_cache *cache, bool dirty, bool atomic)
2677 {
2678 __kvm_unmap_gfn(vcpu->kvm, gfn_to_memslot(vcpu->kvm, map->gfn), map,
2679 cache, dirty, atomic);
2680 return 0;
2681 }
2682 EXPORT_SYMBOL_GPL(kvm_unmap_gfn);
2683
kvm_vcpu_unmap(struct kvm_vcpu * vcpu,struct kvm_host_map * map,bool dirty)2684 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2685 {
2686 __kvm_unmap_gfn(vcpu->kvm, kvm_vcpu_gfn_to_memslot(vcpu, map->gfn),
2687 map, NULL, dirty, false);
2688 }
2689 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2690
kvm_vcpu_gfn_to_page(struct kvm_vcpu * vcpu,gfn_t gfn)2691 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
2692 {
2693 kvm_pfn_t pfn;
2694
2695 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
2696
2697 return kvm_pfn_to_page(pfn);
2698 }
2699 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
2700
kvm_release_page_clean(struct page * page)2701 void kvm_release_page_clean(struct page *page)
2702 {
2703 WARN_ON(is_error_page(page));
2704
2705 kvm_release_pfn_clean(page_to_pfn(page));
2706 }
2707 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2708
kvm_release_pfn_clean(kvm_pfn_t pfn)2709 void kvm_release_pfn_clean(kvm_pfn_t pfn)
2710 {
2711 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
2712 put_page(pfn_to_page(pfn));
2713 }
2714 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2715
kvm_release_page_dirty(struct page * page)2716 void kvm_release_page_dirty(struct page *page)
2717 {
2718 WARN_ON(is_error_page(page));
2719
2720 kvm_release_pfn_dirty(page_to_pfn(page));
2721 }
2722 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2723
kvm_release_pfn_dirty(kvm_pfn_t pfn)2724 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2725 {
2726 kvm_set_pfn_dirty(pfn);
2727 kvm_release_pfn_clean(pfn);
2728 }
2729 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2730
kvm_set_pfn_dirty(kvm_pfn_t pfn)2731 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
2732 {
2733 if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2734 SetPageDirty(pfn_to_page(pfn));
2735 }
2736 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2737
kvm_set_pfn_accessed(kvm_pfn_t pfn)2738 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
2739 {
2740 if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2741 mark_page_accessed(pfn_to_page(pfn));
2742 }
2743 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2744
next_segment(unsigned long len,int offset)2745 static int next_segment(unsigned long len, int offset)
2746 {
2747 if (len > PAGE_SIZE - offset)
2748 return PAGE_SIZE - offset;
2749 else
2750 return len;
2751 }
2752
__kvm_read_guest_page(struct kvm_memory_slot * slot,gfn_t gfn,void * data,int offset,int len)2753 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
2754 void *data, int offset, int len)
2755 {
2756 int r;
2757 unsigned long addr;
2758
2759 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2760 if (kvm_is_error_hva(addr))
2761 return -EFAULT;
2762 r = __copy_from_user(data, (void __user *)addr + offset, len);
2763 if (r)
2764 return -EFAULT;
2765 return 0;
2766 }
2767
kvm_read_guest_page(struct kvm * kvm,gfn_t gfn,void * data,int offset,int len)2768 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
2769 int len)
2770 {
2771 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2772
2773 return __kvm_read_guest_page(slot, gfn, data, offset, len);
2774 }
2775 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
2776
kvm_vcpu_read_guest_page(struct kvm_vcpu * vcpu,gfn_t gfn,void * data,int offset,int len)2777 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
2778 int offset, int len)
2779 {
2780 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2781
2782 return __kvm_read_guest_page(slot, gfn, data, offset, len);
2783 }
2784 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
2785
kvm_read_guest(struct kvm * kvm,gpa_t gpa,void * data,unsigned long len)2786 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
2787 {
2788 gfn_t gfn = gpa >> PAGE_SHIFT;
2789 int seg;
2790 int offset = offset_in_page(gpa);
2791 int ret;
2792
2793 while ((seg = next_segment(len, offset)) != 0) {
2794 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
2795 if (ret < 0)
2796 return ret;
2797 offset = 0;
2798 len -= seg;
2799 data += seg;
2800 ++gfn;
2801 }
2802 return 0;
2803 }
2804 EXPORT_SYMBOL_GPL(kvm_read_guest);
2805
kvm_vcpu_read_guest(struct kvm_vcpu * vcpu,gpa_t gpa,void * data,unsigned long len)2806 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
2807 {
2808 gfn_t gfn = gpa >> PAGE_SHIFT;
2809 int seg;
2810 int offset = offset_in_page(gpa);
2811 int ret;
2812
2813 while ((seg = next_segment(len, offset)) != 0) {
2814 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
2815 if (ret < 0)
2816 return ret;
2817 offset = 0;
2818 len -= seg;
2819 data += seg;
2820 ++gfn;
2821 }
2822 return 0;
2823 }
2824 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
2825
__kvm_read_guest_atomic(struct kvm_memory_slot * slot,gfn_t gfn,void * data,int offset,unsigned long len)2826 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2827 void *data, int offset, unsigned long len)
2828 {
2829 int r;
2830 unsigned long addr;
2831
2832 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2833 if (kvm_is_error_hva(addr))
2834 return -EFAULT;
2835 pagefault_disable();
2836 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
2837 pagefault_enable();
2838 if (r)
2839 return -EFAULT;
2840 return 0;
2841 }
2842
kvm_vcpu_read_guest_atomic(struct kvm_vcpu * vcpu,gpa_t gpa,void * data,unsigned long len)2843 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
2844 void *data, unsigned long len)
2845 {
2846 gfn_t gfn = gpa >> PAGE_SHIFT;
2847 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2848 int offset = offset_in_page(gpa);
2849
2850 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2851 }
2852 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
2853
__kvm_write_guest_page(struct kvm * kvm,struct kvm_memory_slot * memslot,gfn_t gfn,const void * data,int offset,int len)2854 static int __kvm_write_guest_page(struct kvm *kvm,
2855 struct kvm_memory_slot *memslot, gfn_t gfn,
2856 const void *data, int offset, int len)
2857 {
2858 int r;
2859 unsigned long addr;
2860
2861 addr = gfn_to_hva_memslot(memslot, gfn);
2862 if (kvm_is_error_hva(addr))
2863 return -EFAULT;
2864 r = __copy_to_user((void __user *)addr + offset, data, len);
2865 if (r)
2866 return -EFAULT;
2867 mark_page_dirty_in_slot(kvm, memslot, gfn);
2868 return 0;
2869 }
2870
kvm_write_guest_page(struct kvm * kvm,gfn_t gfn,const void * data,int offset,int len)2871 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2872 const void *data, int offset, int len)
2873 {
2874 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2875
2876 return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
2877 }
2878 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2879
kvm_vcpu_write_guest_page(struct kvm_vcpu * vcpu,gfn_t gfn,const void * data,int offset,int len)2880 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2881 const void *data, int offset, int len)
2882 {
2883 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2884
2885 return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
2886 }
2887 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2888
kvm_write_guest(struct kvm * kvm,gpa_t gpa,const void * data,unsigned long len)2889 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2890 unsigned long len)
2891 {
2892 gfn_t gfn = gpa >> PAGE_SHIFT;
2893 int seg;
2894 int offset = offset_in_page(gpa);
2895 int ret;
2896
2897 while ((seg = next_segment(len, offset)) != 0) {
2898 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2899 if (ret < 0)
2900 return ret;
2901 offset = 0;
2902 len -= seg;
2903 data += seg;
2904 ++gfn;
2905 }
2906 return 0;
2907 }
2908 EXPORT_SYMBOL_GPL(kvm_write_guest);
2909
kvm_vcpu_write_guest(struct kvm_vcpu * vcpu,gpa_t gpa,const void * data,unsigned long len)2910 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2911 unsigned long len)
2912 {
2913 gfn_t gfn = gpa >> PAGE_SHIFT;
2914 int seg;
2915 int offset = offset_in_page(gpa);
2916 int ret;
2917
2918 while ((seg = next_segment(len, offset)) != 0) {
2919 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
2920 if (ret < 0)
2921 return ret;
2922 offset = 0;
2923 len -= seg;
2924 data += seg;
2925 ++gfn;
2926 }
2927 return 0;
2928 }
2929 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2930
__kvm_gfn_to_hva_cache_init(struct kvm_memslots * slots,struct gfn_to_hva_cache * ghc,gpa_t gpa,unsigned long len)2931 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2932 struct gfn_to_hva_cache *ghc,
2933 gpa_t gpa, unsigned long len)
2934 {
2935 int offset = offset_in_page(gpa);
2936 gfn_t start_gfn = gpa >> PAGE_SHIFT;
2937 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2938 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2939 gfn_t nr_pages_avail;
2940
2941 /* Update ghc->generation before performing any error checks. */
2942 ghc->generation = slots->generation;
2943
2944 if (start_gfn > end_gfn) {
2945 ghc->hva = KVM_HVA_ERR_BAD;
2946 return -EINVAL;
2947 }
2948
2949 /*
2950 * If the requested region crosses two memslots, we still
2951 * verify that the entire region is valid here.
2952 */
2953 for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
2954 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2955 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2956 &nr_pages_avail);
2957 if (kvm_is_error_hva(ghc->hva))
2958 return -EFAULT;
2959 }
2960
2961 /* Use the slow path for cross page reads and writes. */
2962 if (nr_pages_needed == 1)
2963 ghc->hva += offset;
2964 else
2965 ghc->memslot = NULL;
2966
2967 ghc->gpa = gpa;
2968 ghc->len = len;
2969 return 0;
2970 }
2971
kvm_gfn_to_hva_cache_init(struct kvm * kvm,struct gfn_to_hva_cache * ghc,gpa_t gpa,unsigned long len)2972 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2973 gpa_t gpa, unsigned long len)
2974 {
2975 struct kvm_memslots *slots = kvm_memslots(kvm);
2976 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2977 }
2978 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2979
kvm_write_guest_offset_cached(struct kvm * kvm,struct gfn_to_hva_cache * ghc,void * data,unsigned int offset,unsigned long len)2980 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2981 void *data, unsigned int offset,
2982 unsigned long len)
2983 {
2984 struct kvm_memslots *slots = kvm_memslots(kvm);
2985 int r;
2986 gpa_t gpa = ghc->gpa + offset;
2987
2988 BUG_ON(len + offset > ghc->len);
2989
2990 if (slots->generation != ghc->generation) {
2991 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2992 return -EFAULT;
2993 }
2994
2995 if (kvm_is_error_hva(ghc->hva))
2996 return -EFAULT;
2997
2998 if (unlikely(!ghc->memslot))
2999 return kvm_write_guest(kvm, gpa, data, len);
3000
3001 r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
3002 if (r)
3003 return -EFAULT;
3004 mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
3005
3006 return 0;
3007 }
3008 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
3009
kvm_write_guest_cached(struct kvm * kvm,struct gfn_to_hva_cache * ghc,void * data,unsigned long len)3010 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3011 void *data, unsigned long len)
3012 {
3013 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
3014 }
3015 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
3016
kvm_read_guest_offset_cached(struct kvm * kvm,struct gfn_to_hva_cache * ghc,void * data,unsigned int offset,unsigned long len)3017 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3018 void *data, unsigned int offset,
3019 unsigned long len)
3020 {
3021 struct kvm_memslots *slots = kvm_memslots(kvm);
3022 int r;
3023 gpa_t gpa = ghc->gpa + offset;
3024
3025 BUG_ON(len + offset > ghc->len);
3026
3027 if (slots->generation != ghc->generation) {
3028 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3029 return -EFAULT;
3030 }
3031
3032 if (kvm_is_error_hva(ghc->hva))
3033 return -EFAULT;
3034
3035 if (unlikely(!ghc->memslot))
3036 return kvm_read_guest(kvm, gpa, data, len);
3037
3038 r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
3039 if (r)
3040 return -EFAULT;
3041
3042 return 0;
3043 }
3044 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
3045
kvm_read_guest_cached(struct kvm * kvm,struct gfn_to_hva_cache * ghc,void * data,unsigned long len)3046 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3047 void *data, unsigned long len)
3048 {
3049 return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
3050 }
3051 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
3052
kvm_clear_guest(struct kvm * kvm,gpa_t gpa,unsigned long len)3053 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
3054 {
3055 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3056 gfn_t gfn = gpa >> PAGE_SHIFT;
3057 int seg;
3058 int offset = offset_in_page(gpa);
3059 int ret;
3060
3061 while ((seg = next_segment(len, offset)) != 0) {
3062 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
3063 if (ret < 0)
3064 return ret;
3065 offset = 0;
3066 len -= seg;
3067 ++gfn;
3068 }
3069 return 0;
3070 }
3071 EXPORT_SYMBOL_GPL(kvm_clear_guest);
3072
mark_page_dirty_in_slot(struct kvm * kvm,struct kvm_memory_slot * memslot,gfn_t gfn)3073 void mark_page_dirty_in_slot(struct kvm *kvm,
3074 struct kvm_memory_slot *memslot,
3075 gfn_t gfn)
3076 {
3077 if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
3078 unsigned long rel_gfn = gfn - memslot->base_gfn;
3079 u32 slot = (memslot->as_id << 16) | memslot->id;
3080
3081 if (kvm->dirty_ring_size)
3082 kvm_dirty_ring_push(kvm_dirty_ring_get(kvm),
3083 slot, rel_gfn);
3084 else
3085 set_bit_le(rel_gfn, memslot->dirty_bitmap);
3086 }
3087 }
3088 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
3089
mark_page_dirty(struct kvm * kvm,gfn_t gfn)3090 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
3091 {
3092 struct kvm_memory_slot *memslot;
3093
3094 memslot = gfn_to_memslot(kvm, gfn);
3095 mark_page_dirty_in_slot(kvm, memslot, gfn);
3096 }
3097 EXPORT_SYMBOL_GPL(mark_page_dirty);
3098
kvm_vcpu_mark_page_dirty(struct kvm_vcpu * vcpu,gfn_t gfn)3099 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
3100 {
3101 struct kvm_memory_slot *memslot;
3102
3103 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3104 mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
3105 }
3106 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
3107
kvm_sigset_activate(struct kvm_vcpu * vcpu)3108 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
3109 {
3110 if (!vcpu->sigset_active)
3111 return;
3112
3113 /*
3114 * This does a lockless modification of ->real_blocked, which is fine
3115 * because, only current can change ->real_blocked and all readers of
3116 * ->real_blocked don't care as long ->real_blocked is always a subset
3117 * of ->blocked.
3118 */
3119 sigprocmask(SIG_SETMASK, &vcpu->sigset, ¤t->real_blocked);
3120 }
3121
kvm_sigset_deactivate(struct kvm_vcpu * vcpu)3122 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
3123 {
3124 if (!vcpu->sigset_active)
3125 return;
3126
3127 sigprocmask(SIG_SETMASK, ¤t->real_blocked, NULL);
3128 sigemptyset(¤t->real_blocked);
3129 }
3130
grow_halt_poll_ns(struct kvm_vcpu * vcpu)3131 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
3132 {
3133 unsigned int old, val, grow, grow_start;
3134
3135 old = val = vcpu->halt_poll_ns;
3136 grow_start = READ_ONCE(halt_poll_ns_grow_start);
3137 grow = READ_ONCE(halt_poll_ns_grow);
3138 if (!grow)
3139 goto out;
3140
3141 val *= grow;
3142 if (val < grow_start)
3143 val = grow_start;
3144
3145 if (val > vcpu->kvm->max_halt_poll_ns)
3146 val = vcpu->kvm->max_halt_poll_ns;
3147
3148 vcpu->halt_poll_ns = val;
3149 out:
3150 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
3151 }
3152
shrink_halt_poll_ns(struct kvm_vcpu * vcpu)3153 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
3154 {
3155 unsigned int old, val, shrink, grow_start;
3156
3157 old = val = vcpu->halt_poll_ns;
3158 shrink = READ_ONCE(halt_poll_ns_shrink);
3159 grow_start = READ_ONCE(halt_poll_ns_grow_start);
3160 if (shrink == 0)
3161 val = 0;
3162 else
3163 val /= shrink;
3164
3165 if (val < grow_start)
3166 val = 0;
3167
3168 vcpu->halt_poll_ns = val;
3169 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
3170 }
3171
kvm_vcpu_check_block(struct kvm_vcpu * vcpu)3172 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
3173 {
3174 int ret = -EINTR;
3175 int idx = srcu_read_lock(&vcpu->kvm->srcu);
3176
3177 if (kvm_arch_vcpu_runnable(vcpu)) {
3178 kvm_make_request(KVM_REQ_UNHALT, vcpu);
3179 goto out;
3180 }
3181 if (kvm_cpu_has_pending_timer(vcpu))
3182 goto out;
3183 if (signal_pending(current))
3184 goto out;
3185 if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
3186 goto out;
3187
3188 ret = 0;
3189 out:
3190 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3191 return ret;
3192 }
3193
3194 static inline void
update_halt_poll_stats(struct kvm_vcpu * vcpu,u64 poll_ns,bool waited)3195 update_halt_poll_stats(struct kvm_vcpu *vcpu, u64 poll_ns, bool waited)
3196 {
3197 if (waited)
3198 vcpu->stat.generic.halt_poll_fail_ns += poll_ns;
3199 else
3200 vcpu->stat.generic.halt_poll_success_ns += poll_ns;
3201 }
3202
3203 /*
3204 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
3205 */
kvm_vcpu_block(struct kvm_vcpu * vcpu)3206 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
3207 {
3208 ktime_t start, cur, poll_end;
3209 bool waited = false;
3210 u64 block_ns;
3211
3212 kvm_arch_vcpu_blocking(vcpu);
3213
3214 start = cur = poll_end = ktime_get();
3215 if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) {
3216 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
3217
3218 ++vcpu->stat.generic.halt_attempted_poll;
3219 do {
3220 /*
3221 * This sets KVM_REQ_UNHALT if an interrupt
3222 * arrives.
3223 */
3224 if (kvm_vcpu_check_block(vcpu) < 0) {
3225 ++vcpu->stat.generic.halt_successful_poll;
3226 if (!vcpu_valid_wakeup(vcpu))
3227 ++vcpu->stat.generic.halt_poll_invalid;
3228
3229 KVM_STATS_LOG_HIST_UPDATE(
3230 vcpu->stat.generic.halt_poll_success_hist,
3231 ktime_to_ns(ktime_get()) -
3232 ktime_to_ns(start));
3233 goto out;
3234 }
3235 cpu_relax();
3236 poll_end = cur = ktime_get();
3237 } while (kvm_vcpu_can_poll(cur, stop));
3238
3239 KVM_STATS_LOG_HIST_UPDATE(
3240 vcpu->stat.generic.halt_poll_fail_hist,
3241 ktime_to_ns(ktime_get()) - ktime_to_ns(start));
3242 }
3243
3244
3245 prepare_to_rcuwait(&vcpu->wait);
3246 for (;;) {
3247 set_current_state(TASK_INTERRUPTIBLE);
3248
3249 if (kvm_vcpu_check_block(vcpu) < 0)
3250 break;
3251
3252 waited = true;
3253 schedule();
3254 }
3255 finish_rcuwait(&vcpu->wait);
3256 cur = ktime_get();
3257 if (waited) {
3258 vcpu->stat.generic.halt_wait_ns +=
3259 ktime_to_ns(cur) - ktime_to_ns(poll_end);
3260 KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist,
3261 ktime_to_ns(cur) - ktime_to_ns(poll_end));
3262 }
3263 out:
3264 kvm_arch_vcpu_unblocking(vcpu);
3265 block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
3266
3267 update_halt_poll_stats(
3268 vcpu, ktime_to_ns(ktime_sub(poll_end, start)), waited);
3269
3270 if (!kvm_arch_no_poll(vcpu)) {
3271 if (!vcpu_valid_wakeup(vcpu)) {
3272 shrink_halt_poll_ns(vcpu);
3273 } else if (vcpu->kvm->max_halt_poll_ns) {
3274 if (block_ns <= vcpu->halt_poll_ns)
3275 ;
3276 /* we had a long block, shrink polling */
3277 else if (vcpu->halt_poll_ns &&
3278 block_ns > vcpu->kvm->max_halt_poll_ns)
3279 shrink_halt_poll_ns(vcpu);
3280 /* we had a short halt and our poll time is too small */
3281 else if (vcpu->halt_poll_ns < vcpu->kvm->max_halt_poll_ns &&
3282 block_ns < vcpu->kvm->max_halt_poll_ns)
3283 grow_halt_poll_ns(vcpu);
3284 } else {
3285 vcpu->halt_poll_ns = 0;
3286 }
3287 }
3288
3289 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
3290 kvm_arch_vcpu_block_finish(vcpu);
3291 }
3292 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
3293
kvm_vcpu_wake_up(struct kvm_vcpu * vcpu)3294 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
3295 {
3296 struct rcuwait *waitp;
3297
3298 waitp = kvm_arch_vcpu_get_wait(vcpu);
3299 if (rcuwait_wake_up(waitp)) {
3300 WRITE_ONCE(vcpu->ready, true);
3301 ++vcpu->stat.generic.halt_wakeup;
3302 return true;
3303 }
3304
3305 return false;
3306 }
3307 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
3308
3309 #ifndef CONFIG_S390
3310 /*
3311 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3312 */
kvm_vcpu_kick(struct kvm_vcpu * vcpu)3313 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3314 {
3315 int me, cpu;
3316
3317 if (kvm_vcpu_wake_up(vcpu))
3318 return;
3319
3320 /*
3321 * Note, the vCPU could get migrated to a different pCPU at any point
3322 * after kvm_arch_vcpu_should_kick(), which could result in sending an
3323 * IPI to the previous pCPU. But, that's ok because the purpose of the
3324 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the
3325 * vCPU also requires it to leave IN_GUEST_MODE.
3326 */
3327 me = get_cpu();
3328 if (kvm_arch_vcpu_should_kick(vcpu)) {
3329 cpu = READ_ONCE(vcpu->cpu);
3330 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
3331 smp_send_reschedule(cpu);
3332 }
3333 put_cpu();
3334 }
3335 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
3336 #endif /* !CONFIG_S390 */
3337
kvm_vcpu_yield_to(struct kvm_vcpu * target)3338 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
3339 {
3340 struct pid *pid;
3341 struct task_struct *task = NULL;
3342 int ret = 0;
3343
3344 rcu_read_lock();
3345 pid = rcu_dereference(target->pid);
3346 if (pid)
3347 task = get_pid_task(pid, PIDTYPE_PID);
3348 rcu_read_unlock();
3349 if (!task)
3350 return ret;
3351 ret = yield_to(task, 1);
3352 put_task_struct(task);
3353
3354 return ret;
3355 }
3356 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3357
3358 /*
3359 * Helper that checks whether a VCPU is eligible for directed yield.
3360 * Most eligible candidate to yield is decided by following heuristics:
3361 *
3362 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3363 * (preempted lock holder), indicated by @in_spin_loop.
3364 * Set at the beginning and cleared at the end of interception/PLE handler.
3365 *
3366 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3367 * chance last time (mostly it has become eligible now since we have probably
3368 * yielded to lockholder in last iteration. This is done by toggling
3369 * @dy_eligible each time a VCPU checked for eligibility.)
3370 *
3371 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
3372 * to preempted lock-holder could result in wrong VCPU selection and CPU
3373 * burning. Giving priority for a potential lock-holder increases lock
3374 * progress.
3375 *
3376 * Since algorithm is based on heuristics, accessing another VCPU data without
3377 * locking does not harm. It may result in trying to yield to same VCPU, fail
3378 * and continue with next VCPU and so on.
3379 */
kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu * vcpu)3380 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
3381 {
3382 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
3383 bool eligible;
3384
3385 eligible = !vcpu->spin_loop.in_spin_loop ||
3386 vcpu->spin_loop.dy_eligible;
3387
3388 if (vcpu->spin_loop.in_spin_loop)
3389 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
3390
3391 return eligible;
3392 #else
3393 return true;
3394 #endif
3395 }
3396
3397 /*
3398 * Unlike kvm_arch_vcpu_runnable, this function is called outside
3399 * a vcpu_load/vcpu_put pair. However, for most architectures
3400 * kvm_arch_vcpu_runnable does not require vcpu_load.
3401 */
kvm_arch_dy_runnable(struct kvm_vcpu * vcpu)3402 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
3403 {
3404 return kvm_arch_vcpu_runnable(vcpu);
3405 }
3406
vcpu_dy_runnable(struct kvm_vcpu * vcpu)3407 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
3408 {
3409 if (kvm_arch_dy_runnable(vcpu))
3410 return true;
3411
3412 #ifdef CONFIG_KVM_ASYNC_PF
3413 if (!list_empty_careful(&vcpu->async_pf.done))
3414 return true;
3415 #endif
3416
3417 return false;
3418 }
3419
kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu * vcpu)3420 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
3421 {
3422 return false;
3423 }
3424
kvm_vcpu_on_spin(struct kvm_vcpu * me,bool yield_to_kernel_mode)3425 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
3426 {
3427 struct kvm *kvm = me->kvm;
3428 struct kvm_vcpu *vcpu;
3429 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
3430 int yielded = 0;
3431 int try = 3;
3432 int pass;
3433 int i;
3434
3435 kvm_vcpu_set_in_spin_loop(me, true);
3436 /*
3437 * We boost the priority of a VCPU that is runnable but not
3438 * currently running, because it got preempted by something
3439 * else and called schedule in __vcpu_run. Hopefully that
3440 * VCPU is holding the lock that we need and will release it.
3441 * We approximate round-robin by starting at the last boosted VCPU.
3442 */
3443 for (pass = 0; pass < 2 && !yielded && try; pass++) {
3444 kvm_for_each_vcpu(i, vcpu, kvm) {
3445 if (!pass && i <= last_boosted_vcpu) {
3446 i = last_boosted_vcpu;
3447 continue;
3448 } else if (pass && i > last_boosted_vcpu)
3449 break;
3450 if (!READ_ONCE(vcpu->ready))
3451 continue;
3452 if (vcpu == me)
3453 continue;
3454 if (rcuwait_active(&vcpu->wait) &&
3455 !vcpu_dy_runnable(vcpu))
3456 continue;
3457 if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
3458 !kvm_arch_dy_has_pending_interrupt(vcpu) &&
3459 !kvm_arch_vcpu_in_kernel(vcpu))
3460 continue;
3461 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
3462 continue;
3463
3464 yielded = kvm_vcpu_yield_to(vcpu);
3465 if (yielded > 0) {
3466 kvm->last_boosted_vcpu = i;
3467 break;
3468 } else if (yielded < 0) {
3469 try--;
3470 if (!try)
3471 break;
3472 }
3473 }
3474 }
3475 kvm_vcpu_set_in_spin_loop(me, false);
3476
3477 /* Ensure vcpu is not eligible during next spinloop */
3478 kvm_vcpu_set_dy_eligible(me, false);
3479 }
3480 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
3481
kvm_page_in_dirty_ring(struct kvm * kvm,unsigned long pgoff)3482 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
3483 {
3484 #if KVM_DIRTY_LOG_PAGE_OFFSET > 0
3485 return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
3486 (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
3487 kvm->dirty_ring_size / PAGE_SIZE);
3488 #else
3489 return false;
3490 #endif
3491 }
3492
kvm_vcpu_fault(struct vm_fault * vmf)3493 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
3494 {
3495 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
3496 struct page *page;
3497
3498 if (vmf->pgoff == 0)
3499 page = virt_to_page(vcpu->run);
3500 #ifdef CONFIG_X86
3501 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
3502 page = virt_to_page(vcpu->arch.pio_data);
3503 #endif
3504 #ifdef CONFIG_KVM_MMIO
3505 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
3506 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
3507 #endif
3508 else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
3509 page = kvm_dirty_ring_get_page(
3510 &vcpu->dirty_ring,
3511 vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
3512 else
3513 return kvm_arch_vcpu_fault(vcpu, vmf);
3514 get_page(page);
3515 vmf->page = page;
3516 return 0;
3517 }
3518
3519 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
3520 .fault = kvm_vcpu_fault,
3521 };
3522
kvm_vcpu_mmap(struct file * file,struct vm_area_struct * vma)3523 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
3524 {
3525 struct kvm_vcpu *vcpu = file->private_data;
3526 unsigned long pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3527
3528 if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
3529 kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
3530 ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
3531 return -EINVAL;
3532
3533 vma->vm_ops = &kvm_vcpu_vm_ops;
3534 return 0;
3535 }
3536
kvm_vcpu_release(struct inode * inode,struct file * filp)3537 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
3538 {
3539 struct kvm_vcpu *vcpu = filp->private_data;
3540
3541 kvm_put_kvm(vcpu->kvm);
3542 return 0;
3543 }
3544
3545 static struct file_operations kvm_vcpu_fops = {
3546 .release = kvm_vcpu_release,
3547 .unlocked_ioctl = kvm_vcpu_ioctl,
3548 .mmap = kvm_vcpu_mmap,
3549 .llseek = noop_llseek,
3550 KVM_COMPAT(kvm_vcpu_compat_ioctl),
3551 };
3552
3553 /*
3554 * Allocates an inode for the vcpu.
3555 */
create_vcpu_fd(struct kvm_vcpu * vcpu)3556 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
3557 {
3558 char name[8 + 1 + ITOA_MAX_LEN + 1];
3559
3560 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
3561 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
3562 }
3563
kvm_create_vcpu_debugfs(struct kvm_vcpu * vcpu)3564 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
3565 {
3566 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
3567 struct dentry *debugfs_dentry;
3568 char dir_name[ITOA_MAX_LEN * 2];
3569
3570 if (!debugfs_initialized())
3571 return;
3572
3573 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
3574 debugfs_dentry = debugfs_create_dir(dir_name,
3575 vcpu->kvm->debugfs_dentry);
3576
3577 kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
3578 #endif
3579 }
3580
3581 /*
3582 * Creates some virtual cpus. Good luck creating more than one.
3583 */
kvm_vm_ioctl_create_vcpu(struct kvm * kvm,u32 id)3584 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
3585 {
3586 int r;
3587 struct kvm_vcpu *vcpu;
3588 struct page *page;
3589
3590 if (id >= KVM_MAX_VCPU_ID)
3591 return -EINVAL;
3592
3593 mutex_lock(&kvm->lock);
3594 if (kvm->created_vcpus == KVM_MAX_VCPUS) {
3595 mutex_unlock(&kvm->lock);
3596 return -EINVAL;
3597 }
3598
3599 kvm->created_vcpus++;
3600 mutex_unlock(&kvm->lock);
3601
3602 r = kvm_arch_vcpu_precreate(kvm, id);
3603 if (r)
3604 goto vcpu_decrement;
3605
3606 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
3607 if (!vcpu) {
3608 r = -ENOMEM;
3609 goto vcpu_decrement;
3610 }
3611
3612 BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
3613 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
3614 if (!page) {
3615 r = -ENOMEM;
3616 goto vcpu_free;
3617 }
3618 vcpu->run = page_address(page);
3619
3620 kvm_vcpu_init(vcpu, kvm, id);
3621
3622 r = kvm_arch_vcpu_create(vcpu);
3623 if (r)
3624 goto vcpu_free_run_page;
3625
3626 if (kvm->dirty_ring_size) {
3627 r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
3628 id, kvm->dirty_ring_size);
3629 if (r)
3630 goto arch_vcpu_destroy;
3631 }
3632
3633 mutex_lock(&kvm->lock);
3634 if (kvm_get_vcpu_by_id(kvm, id)) {
3635 r = -EEXIST;
3636 goto unlock_vcpu_destroy;
3637 }
3638
3639 vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
3640 BUG_ON(kvm->vcpus[vcpu->vcpu_idx]);
3641
3642 /* Fill the stats id string for the vcpu */
3643 snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
3644 task_pid_nr(current), id);
3645
3646 /* Now it's all set up, let userspace reach it */
3647 kvm_get_kvm(kvm);
3648 r = create_vcpu_fd(vcpu);
3649 if (r < 0) {
3650 kvm_put_kvm_no_destroy(kvm);
3651 goto unlock_vcpu_destroy;
3652 }
3653
3654 kvm->vcpus[vcpu->vcpu_idx] = vcpu;
3655
3656 /*
3657 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus
3658 * before kvm->online_vcpu's incremented value.
3659 */
3660 smp_wmb();
3661 atomic_inc(&kvm->online_vcpus);
3662
3663 mutex_unlock(&kvm->lock);
3664 kvm_arch_vcpu_postcreate(vcpu);
3665 kvm_create_vcpu_debugfs(vcpu);
3666 return r;
3667
3668 unlock_vcpu_destroy:
3669 mutex_unlock(&kvm->lock);
3670 kvm_dirty_ring_free(&vcpu->dirty_ring);
3671 arch_vcpu_destroy:
3672 kvm_arch_vcpu_destroy(vcpu);
3673 vcpu_free_run_page:
3674 free_page((unsigned long)vcpu->run);
3675 vcpu_free:
3676 kmem_cache_free(kvm_vcpu_cache, vcpu);
3677 vcpu_decrement:
3678 mutex_lock(&kvm->lock);
3679 kvm->created_vcpus--;
3680 mutex_unlock(&kvm->lock);
3681 return r;
3682 }
3683
kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu * vcpu,sigset_t * sigset)3684 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
3685 {
3686 if (sigset) {
3687 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
3688 vcpu->sigset_active = 1;
3689 vcpu->sigset = *sigset;
3690 } else
3691 vcpu->sigset_active = 0;
3692 return 0;
3693 }
3694
kvm_vcpu_stats_read(struct file * file,char __user * user_buffer,size_t size,loff_t * offset)3695 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
3696 size_t size, loff_t *offset)
3697 {
3698 struct kvm_vcpu *vcpu = file->private_data;
3699
3700 return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
3701 &kvm_vcpu_stats_desc[0], &vcpu->stat,
3702 sizeof(vcpu->stat), user_buffer, size, offset);
3703 }
3704
3705 static const struct file_operations kvm_vcpu_stats_fops = {
3706 .read = kvm_vcpu_stats_read,
3707 .llseek = noop_llseek,
3708 };
3709
kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu * vcpu)3710 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
3711 {
3712 int fd;
3713 struct file *file;
3714 char name[15 + ITOA_MAX_LEN + 1];
3715
3716 snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
3717
3718 fd = get_unused_fd_flags(O_CLOEXEC);
3719 if (fd < 0)
3720 return fd;
3721
3722 file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY);
3723 if (IS_ERR(file)) {
3724 put_unused_fd(fd);
3725 return PTR_ERR(file);
3726 }
3727 file->f_mode |= FMODE_PREAD;
3728 fd_install(fd, file);
3729
3730 return fd;
3731 }
3732
kvm_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)3733 static long kvm_vcpu_ioctl(struct file *filp,
3734 unsigned int ioctl, unsigned long arg)
3735 {
3736 struct kvm_vcpu *vcpu = filp->private_data;
3737 void __user *argp = (void __user *)arg;
3738 int r;
3739 struct kvm_fpu *fpu = NULL;
3740 struct kvm_sregs *kvm_sregs = NULL;
3741
3742 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_bugged)
3743 return -EIO;
3744
3745 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
3746 return -EINVAL;
3747
3748 /*
3749 * Some architectures have vcpu ioctls that are asynchronous to vcpu
3750 * execution; mutex_lock() would break them.
3751 */
3752 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
3753 if (r != -ENOIOCTLCMD)
3754 return r;
3755
3756 if (mutex_lock_killable(&vcpu->mutex))
3757 return -EINTR;
3758 switch (ioctl) {
3759 case KVM_RUN: {
3760 struct pid *oldpid;
3761 r = -EINVAL;
3762 if (arg)
3763 goto out;
3764 oldpid = rcu_access_pointer(vcpu->pid);
3765 if (unlikely(oldpid != task_pid(current))) {
3766 /* The thread running this VCPU changed. */
3767 struct pid *newpid;
3768
3769 r = kvm_arch_vcpu_run_pid_change(vcpu);
3770 if (r)
3771 break;
3772
3773 newpid = get_task_pid(current, PIDTYPE_PID);
3774 rcu_assign_pointer(vcpu->pid, newpid);
3775 if (oldpid)
3776 synchronize_rcu();
3777 put_pid(oldpid);
3778 }
3779 r = kvm_arch_vcpu_ioctl_run(vcpu);
3780 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
3781 break;
3782 }
3783 case KVM_GET_REGS: {
3784 struct kvm_regs *kvm_regs;
3785
3786 r = -ENOMEM;
3787 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
3788 if (!kvm_regs)
3789 goto out;
3790 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
3791 if (r)
3792 goto out_free1;
3793 r = -EFAULT;
3794 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
3795 goto out_free1;
3796 r = 0;
3797 out_free1:
3798 kfree(kvm_regs);
3799 break;
3800 }
3801 case KVM_SET_REGS: {
3802 struct kvm_regs *kvm_regs;
3803
3804 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
3805 if (IS_ERR(kvm_regs)) {
3806 r = PTR_ERR(kvm_regs);
3807 goto out;
3808 }
3809 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
3810 kfree(kvm_regs);
3811 break;
3812 }
3813 case KVM_GET_SREGS: {
3814 kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
3815 GFP_KERNEL_ACCOUNT);
3816 r = -ENOMEM;
3817 if (!kvm_sregs)
3818 goto out;
3819 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
3820 if (r)
3821 goto out;
3822 r = -EFAULT;
3823 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
3824 goto out;
3825 r = 0;
3826 break;
3827 }
3828 case KVM_SET_SREGS: {
3829 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
3830 if (IS_ERR(kvm_sregs)) {
3831 r = PTR_ERR(kvm_sregs);
3832 kvm_sregs = NULL;
3833 goto out;
3834 }
3835 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
3836 break;
3837 }
3838 case KVM_GET_MP_STATE: {
3839 struct kvm_mp_state mp_state;
3840
3841 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
3842 if (r)
3843 goto out;
3844 r = -EFAULT;
3845 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
3846 goto out;
3847 r = 0;
3848 break;
3849 }
3850 case KVM_SET_MP_STATE: {
3851 struct kvm_mp_state mp_state;
3852
3853 r = -EFAULT;
3854 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
3855 goto out;
3856 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
3857 break;
3858 }
3859 case KVM_TRANSLATE: {
3860 struct kvm_translation tr;
3861
3862 r = -EFAULT;
3863 if (copy_from_user(&tr, argp, sizeof(tr)))
3864 goto out;
3865 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
3866 if (r)
3867 goto out;
3868 r = -EFAULT;
3869 if (copy_to_user(argp, &tr, sizeof(tr)))
3870 goto out;
3871 r = 0;
3872 break;
3873 }
3874 case KVM_SET_GUEST_DEBUG: {
3875 struct kvm_guest_debug dbg;
3876
3877 r = -EFAULT;
3878 if (copy_from_user(&dbg, argp, sizeof(dbg)))
3879 goto out;
3880 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
3881 break;
3882 }
3883 case KVM_SET_SIGNAL_MASK: {
3884 struct kvm_signal_mask __user *sigmask_arg = argp;
3885 struct kvm_signal_mask kvm_sigmask;
3886 sigset_t sigset, *p;
3887
3888 p = NULL;
3889 if (argp) {
3890 r = -EFAULT;
3891 if (copy_from_user(&kvm_sigmask, argp,
3892 sizeof(kvm_sigmask)))
3893 goto out;
3894 r = -EINVAL;
3895 if (kvm_sigmask.len != sizeof(sigset))
3896 goto out;
3897 r = -EFAULT;
3898 if (copy_from_user(&sigset, sigmask_arg->sigset,
3899 sizeof(sigset)))
3900 goto out;
3901 p = &sigset;
3902 }
3903 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
3904 break;
3905 }
3906 case KVM_GET_FPU: {
3907 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
3908 r = -ENOMEM;
3909 if (!fpu)
3910 goto out;
3911 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
3912 if (r)
3913 goto out;
3914 r = -EFAULT;
3915 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
3916 goto out;
3917 r = 0;
3918 break;
3919 }
3920 case KVM_SET_FPU: {
3921 fpu = memdup_user(argp, sizeof(*fpu));
3922 if (IS_ERR(fpu)) {
3923 r = PTR_ERR(fpu);
3924 fpu = NULL;
3925 goto out;
3926 }
3927 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
3928 break;
3929 }
3930 case KVM_GET_STATS_FD: {
3931 r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
3932 break;
3933 }
3934 default:
3935 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
3936 }
3937 out:
3938 mutex_unlock(&vcpu->mutex);
3939 kfree(fpu);
3940 kfree(kvm_sregs);
3941 return r;
3942 }
3943
3944 #ifdef CONFIG_KVM_COMPAT
kvm_vcpu_compat_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)3945 static long kvm_vcpu_compat_ioctl(struct file *filp,
3946 unsigned int ioctl, unsigned long arg)
3947 {
3948 struct kvm_vcpu *vcpu = filp->private_data;
3949 void __user *argp = compat_ptr(arg);
3950 int r;
3951
3952 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_bugged)
3953 return -EIO;
3954
3955 switch (ioctl) {
3956 case KVM_SET_SIGNAL_MASK: {
3957 struct kvm_signal_mask __user *sigmask_arg = argp;
3958 struct kvm_signal_mask kvm_sigmask;
3959 sigset_t sigset;
3960
3961 if (argp) {
3962 r = -EFAULT;
3963 if (copy_from_user(&kvm_sigmask, argp,
3964 sizeof(kvm_sigmask)))
3965 goto out;
3966 r = -EINVAL;
3967 if (kvm_sigmask.len != sizeof(compat_sigset_t))
3968 goto out;
3969 r = -EFAULT;
3970 if (get_compat_sigset(&sigset,
3971 (compat_sigset_t __user *)sigmask_arg->sigset))
3972 goto out;
3973 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
3974 } else
3975 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
3976 break;
3977 }
3978 default:
3979 r = kvm_vcpu_ioctl(filp, ioctl, arg);
3980 }
3981
3982 out:
3983 return r;
3984 }
3985 #endif
3986
kvm_device_mmap(struct file * filp,struct vm_area_struct * vma)3987 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
3988 {
3989 struct kvm_device *dev = filp->private_data;
3990
3991 if (dev->ops->mmap)
3992 return dev->ops->mmap(dev, vma);
3993
3994 return -ENODEV;
3995 }
3996
kvm_device_ioctl_attr(struct kvm_device * dev,int (* accessor)(struct kvm_device * dev,struct kvm_device_attr * attr),unsigned long arg)3997 static int kvm_device_ioctl_attr(struct kvm_device *dev,
3998 int (*accessor)(struct kvm_device *dev,
3999 struct kvm_device_attr *attr),
4000 unsigned long arg)
4001 {
4002 struct kvm_device_attr attr;
4003
4004 if (!accessor)
4005 return -EPERM;
4006
4007 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4008 return -EFAULT;
4009
4010 return accessor(dev, &attr);
4011 }
4012
kvm_device_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)4013 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
4014 unsigned long arg)
4015 {
4016 struct kvm_device *dev = filp->private_data;
4017
4018 if (dev->kvm->mm != current->mm || dev->kvm->vm_bugged)
4019 return -EIO;
4020
4021 switch (ioctl) {
4022 case KVM_SET_DEVICE_ATTR:
4023 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
4024 case KVM_GET_DEVICE_ATTR:
4025 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
4026 case KVM_HAS_DEVICE_ATTR:
4027 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
4028 default:
4029 if (dev->ops->ioctl)
4030 return dev->ops->ioctl(dev, ioctl, arg);
4031
4032 return -ENOTTY;
4033 }
4034 }
4035
kvm_device_release(struct inode * inode,struct file * filp)4036 static int kvm_device_release(struct inode *inode, struct file *filp)
4037 {
4038 struct kvm_device *dev = filp->private_data;
4039 struct kvm *kvm = dev->kvm;
4040
4041 if (dev->ops->release) {
4042 mutex_lock(&kvm->lock);
4043 list_del(&dev->vm_node);
4044 dev->ops->release(dev);
4045 mutex_unlock(&kvm->lock);
4046 }
4047
4048 kvm_put_kvm(kvm);
4049 return 0;
4050 }
4051
4052 static const struct file_operations kvm_device_fops = {
4053 .unlocked_ioctl = kvm_device_ioctl,
4054 .release = kvm_device_release,
4055 KVM_COMPAT(kvm_device_ioctl),
4056 .mmap = kvm_device_mmap,
4057 };
4058
kvm_device_from_filp(struct file * filp)4059 struct kvm_device *kvm_device_from_filp(struct file *filp)
4060 {
4061 if (filp->f_op != &kvm_device_fops)
4062 return NULL;
4063
4064 return filp->private_data;
4065 }
4066
4067 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
4068 #ifdef CONFIG_KVM_MPIC
4069 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
4070 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
4071 #endif
4072 };
4073
kvm_register_device_ops(const struct kvm_device_ops * ops,u32 type)4074 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
4075 {
4076 if (type >= ARRAY_SIZE(kvm_device_ops_table))
4077 return -ENOSPC;
4078
4079 if (kvm_device_ops_table[type] != NULL)
4080 return -EEXIST;
4081
4082 kvm_device_ops_table[type] = ops;
4083 return 0;
4084 }
4085
kvm_unregister_device_ops(u32 type)4086 void kvm_unregister_device_ops(u32 type)
4087 {
4088 if (kvm_device_ops_table[type] != NULL)
4089 kvm_device_ops_table[type] = NULL;
4090 }
4091
kvm_ioctl_create_device(struct kvm * kvm,struct kvm_create_device * cd)4092 static int kvm_ioctl_create_device(struct kvm *kvm,
4093 struct kvm_create_device *cd)
4094 {
4095 const struct kvm_device_ops *ops = NULL;
4096 struct kvm_device *dev;
4097 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
4098 int type;
4099 int ret;
4100
4101 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
4102 return -ENODEV;
4103
4104 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
4105 ops = kvm_device_ops_table[type];
4106 if (ops == NULL)
4107 return -ENODEV;
4108
4109 if (test)
4110 return 0;
4111
4112 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
4113 if (!dev)
4114 return -ENOMEM;
4115
4116 dev->ops = ops;
4117 dev->kvm = kvm;
4118
4119 mutex_lock(&kvm->lock);
4120 ret = ops->create(dev, type);
4121 if (ret < 0) {
4122 mutex_unlock(&kvm->lock);
4123 kfree(dev);
4124 return ret;
4125 }
4126 list_add(&dev->vm_node, &kvm->devices);
4127 mutex_unlock(&kvm->lock);
4128
4129 if (ops->init)
4130 ops->init(dev);
4131
4132 kvm_get_kvm(kvm);
4133 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
4134 if (ret < 0) {
4135 kvm_put_kvm_no_destroy(kvm);
4136 mutex_lock(&kvm->lock);
4137 list_del(&dev->vm_node);
4138 mutex_unlock(&kvm->lock);
4139 ops->destroy(dev);
4140 return ret;
4141 }
4142
4143 cd->fd = ret;
4144 return 0;
4145 }
4146
kvm_vm_ioctl_check_extension_generic(struct kvm * kvm,long arg)4147 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
4148 {
4149 switch (arg) {
4150 case KVM_CAP_USER_MEMORY:
4151 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
4152 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
4153 case KVM_CAP_INTERNAL_ERROR_DATA:
4154 #ifdef CONFIG_HAVE_KVM_MSI
4155 case KVM_CAP_SIGNAL_MSI:
4156 #endif
4157 #ifdef CONFIG_HAVE_KVM_IRQFD
4158 case KVM_CAP_IRQFD:
4159 case KVM_CAP_IRQFD_RESAMPLE:
4160 #endif
4161 case KVM_CAP_IOEVENTFD_ANY_LENGTH:
4162 case KVM_CAP_CHECK_EXTENSION_VM:
4163 case KVM_CAP_ENABLE_CAP_VM:
4164 case KVM_CAP_HALT_POLL:
4165 return 1;
4166 #ifdef CONFIG_KVM_MMIO
4167 case KVM_CAP_COALESCED_MMIO:
4168 return KVM_COALESCED_MMIO_PAGE_OFFSET;
4169 case KVM_CAP_COALESCED_PIO:
4170 return 1;
4171 #endif
4172 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4173 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
4174 return KVM_DIRTY_LOG_MANUAL_CAPS;
4175 #endif
4176 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4177 case KVM_CAP_IRQ_ROUTING:
4178 return KVM_MAX_IRQ_ROUTES;
4179 #endif
4180 #if KVM_ADDRESS_SPACE_NUM > 1
4181 case KVM_CAP_MULTI_ADDRESS_SPACE:
4182 return KVM_ADDRESS_SPACE_NUM;
4183 #endif
4184 case KVM_CAP_NR_MEMSLOTS:
4185 return KVM_USER_MEM_SLOTS;
4186 case KVM_CAP_DIRTY_LOG_RING:
4187 #if KVM_DIRTY_LOG_PAGE_OFFSET > 0
4188 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4189 #else
4190 return 0;
4191 #endif
4192 case KVM_CAP_BINARY_STATS_FD:
4193 return 1;
4194 default:
4195 break;
4196 }
4197 return kvm_vm_ioctl_check_extension(kvm, arg);
4198 }
4199
kvm_vm_ioctl_enable_dirty_log_ring(struct kvm * kvm,u32 size)4200 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
4201 {
4202 int r;
4203
4204 if (!KVM_DIRTY_LOG_PAGE_OFFSET)
4205 return -EINVAL;
4206
4207 /* the size should be power of 2 */
4208 if (!size || (size & (size - 1)))
4209 return -EINVAL;
4210
4211 /* Should be bigger to keep the reserved entries, or a page */
4212 if (size < kvm_dirty_ring_get_rsvd_entries() *
4213 sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
4214 return -EINVAL;
4215
4216 if (size > KVM_DIRTY_RING_MAX_ENTRIES *
4217 sizeof(struct kvm_dirty_gfn))
4218 return -E2BIG;
4219
4220 /* We only allow it to set once */
4221 if (kvm->dirty_ring_size)
4222 return -EINVAL;
4223
4224 mutex_lock(&kvm->lock);
4225
4226 if (kvm->created_vcpus) {
4227 /* We don't allow to change this value after vcpu created */
4228 r = -EINVAL;
4229 } else {
4230 kvm->dirty_ring_size = size;
4231 r = 0;
4232 }
4233
4234 mutex_unlock(&kvm->lock);
4235 return r;
4236 }
4237
kvm_vm_ioctl_reset_dirty_pages(struct kvm * kvm)4238 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
4239 {
4240 int i;
4241 struct kvm_vcpu *vcpu;
4242 int cleared = 0;
4243
4244 if (!kvm->dirty_ring_size)
4245 return -EINVAL;
4246
4247 mutex_lock(&kvm->slots_lock);
4248
4249 kvm_for_each_vcpu(i, vcpu, kvm)
4250 cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
4251
4252 mutex_unlock(&kvm->slots_lock);
4253
4254 if (cleared)
4255 kvm_flush_remote_tlbs(kvm);
4256
4257 return cleared;
4258 }
4259
kvm_vm_ioctl_enable_cap(struct kvm * kvm,struct kvm_enable_cap * cap)4260 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4261 struct kvm_enable_cap *cap)
4262 {
4263 return -EINVAL;
4264 }
4265
kvm_vm_ioctl_enable_cap_generic(struct kvm * kvm,struct kvm_enable_cap * cap)4266 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
4267 struct kvm_enable_cap *cap)
4268 {
4269 switch (cap->cap) {
4270 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4271 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
4272 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
4273
4274 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
4275 allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
4276
4277 if (cap->flags || (cap->args[0] & ~allowed_options))
4278 return -EINVAL;
4279 kvm->manual_dirty_log_protect = cap->args[0];
4280 return 0;
4281 }
4282 #endif
4283 case KVM_CAP_HALT_POLL: {
4284 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
4285 return -EINVAL;
4286
4287 kvm->max_halt_poll_ns = cap->args[0];
4288 return 0;
4289 }
4290 case KVM_CAP_DIRTY_LOG_RING:
4291 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
4292 default:
4293 return kvm_vm_ioctl_enable_cap(kvm, cap);
4294 }
4295 }
4296
kvm_vm_stats_read(struct file * file,char __user * user_buffer,size_t size,loff_t * offset)4297 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
4298 size_t size, loff_t *offset)
4299 {
4300 struct kvm *kvm = file->private_data;
4301
4302 return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
4303 &kvm_vm_stats_desc[0], &kvm->stat,
4304 sizeof(kvm->stat), user_buffer, size, offset);
4305 }
4306
4307 static const struct file_operations kvm_vm_stats_fops = {
4308 .read = kvm_vm_stats_read,
4309 .llseek = noop_llseek,
4310 };
4311
kvm_vm_ioctl_get_stats_fd(struct kvm * kvm)4312 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
4313 {
4314 int fd;
4315 struct file *file;
4316
4317 fd = get_unused_fd_flags(O_CLOEXEC);
4318 if (fd < 0)
4319 return fd;
4320
4321 file = anon_inode_getfile("kvm-vm-stats",
4322 &kvm_vm_stats_fops, kvm, O_RDONLY);
4323 if (IS_ERR(file)) {
4324 put_unused_fd(fd);
4325 return PTR_ERR(file);
4326 }
4327 file->f_mode |= FMODE_PREAD;
4328 fd_install(fd, file);
4329
4330 return fd;
4331 }
4332
kvm_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)4333 static long kvm_vm_ioctl(struct file *filp,
4334 unsigned int ioctl, unsigned long arg)
4335 {
4336 struct kvm *kvm = filp->private_data;
4337 void __user *argp = (void __user *)arg;
4338 int r;
4339
4340 if (kvm->mm != current->mm || kvm->vm_bugged)
4341 return -EIO;
4342 switch (ioctl) {
4343 case KVM_CREATE_VCPU:
4344 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
4345 break;
4346 case KVM_ENABLE_CAP: {
4347 struct kvm_enable_cap cap;
4348
4349 r = -EFAULT;
4350 if (copy_from_user(&cap, argp, sizeof(cap)))
4351 goto out;
4352 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
4353 break;
4354 }
4355 case KVM_SET_USER_MEMORY_REGION: {
4356 struct kvm_userspace_memory_region kvm_userspace_mem;
4357
4358 r = -EFAULT;
4359 if (copy_from_user(&kvm_userspace_mem, argp,
4360 sizeof(kvm_userspace_mem)))
4361 goto out;
4362
4363 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
4364 break;
4365 }
4366 case KVM_GET_DIRTY_LOG: {
4367 struct kvm_dirty_log log;
4368
4369 r = -EFAULT;
4370 if (copy_from_user(&log, argp, sizeof(log)))
4371 goto out;
4372 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4373 break;
4374 }
4375 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4376 case KVM_CLEAR_DIRTY_LOG: {
4377 struct kvm_clear_dirty_log log;
4378
4379 r = -EFAULT;
4380 if (copy_from_user(&log, argp, sizeof(log)))
4381 goto out;
4382 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4383 break;
4384 }
4385 #endif
4386 #ifdef CONFIG_KVM_MMIO
4387 case KVM_REGISTER_COALESCED_MMIO: {
4388 struct kvm_coalesced_mmio_zone zone;
4389
4390 r = -EFAULT;
4391 if (copy_from_user(&zone, argp, sizeof(zone)))
4392 goto out;
4393 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
4394 break;
4395 }
4396 case KVM_UNREGISTER_COALESCED_MMIO: {
4397 struct kvm_coalesced_mmio_zone zone;
4398
4399 r = -EFAULT;
4400 if (copy_from_user(&zone, argp, sizeof(zone)))
4401 goto out;
4402 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
4403 break;
4404 }
4405 #endif
4406 case KVM_IRQFD: {
4407 struct kvm_irqfd data;
4408
4409 r = -EFAULT;
4410 if (copy_from_user(&data, argp, sizeof(data)))
4411 goto out;
4412 r = kvm_irqfd(kvm, &data);
4413 break;
4414 }
4415 case KVM_IOEVENTFD: {
4416 struct kvm_ioeventfd data;
4417
4418 r = -EFAULT;
4419 if (copy_from_user(&data, argp, sizeof(data)))
4420 goto out;
4421 r = kvm_ioeventfd(kvm, &data);
4422 break;
4423 }
4424 #ifdef CONFIG_HAVE_KVM_MSI
4425 case KVM_SIGNAL_MSI: {
4426 struct kvm_msi msi;
4427
4428 r = -EFAULT;
4429 if (copy_from_user(&msi, argp, sizeof(msi)))
4430 goto out;
4431 r = kvm_send_userspace_msi(kvm, &msi);
4432 break;
4433 }
4434 #endif
4435 #ifdef __KVM_HAVE_IRQ_LINE
4436 case KVM_IRQ_LINE_STATUS:
4437 case KVM_IRQ_LINE: {
4438 struct kvm_irq_level irq_event;
4439
4440 r = -EFAULT;
4441 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
4442 goto out;
4443
4444 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
4445 ioctl == KVM_IRQ_LINE_STATUS);
4446 if (r)
4447 goto out;
4448
4449 r = -EFAULT;
4450 if (ioctl == KVM_IRQ_LINE_STATUS) {
4451 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
4452 goto out;
4453 }
4454
4455 r = 0;
4456 break;
4457 }
4458 #endif
4459 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4460 case KVM_SET_GSI_ROUTING: {
4461 struct kvm_irq_routing routing;
4462 struct kvm_irq_routing __user *urouting;
4463 struct kvm_irq_routing_entry *entries = NULL;
4464
4465 r = -EFAULT;
4466 if (copy_from_user(&routing, argp, sizeof(routing)))
4467 goto out;
4468 r = -EINVAL;
4469 if (!kvm_arch_can_set_irq_routing(kvm))
4470 goto out;
4471 if (routing.nr > KVM_MAX_IRQ_ROUTES)
4472 goto out;
4473 if (routing.flags)
4474 goto out;
4475 if (routing.nr) {
4476 urouting = argp;
4477 entries = vmemdup_user(urouting->entries,
4478 array_size(sizeof(*entries),
4479 routing.nr));
4480 if (IS_ERR(entries)) {
4481 r = PTR_ERR(entries);
4482 goto out;
4483 }
4484 }
4485 r = kvm_set_irq_routing(kvm, entries, routing.nr,
4486 routing.flags);
4487 kvfree(entries);
4488 break;
4489 }
4490 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
4491 case KVM_CREATE_DEVICE: {
4492 struct kvm_create_device cd;
4493
4494 r = -EFAULT;
4495 if (copy_from_user(&cd, argp, sizeof(cd)))
4496 goto out;
4497
4498 r = kvm_ioctl_create_device(kvm, &cd);
4499 if (r)
4500 goto out;
4501
4502 r = -EFAULT;
4503 if (copy_to_user(argp, &cd, sizeof(cd)))
4504 goto out;
4505
4506 r = 0;
4507 break;
4508 }
4509 case KVM_CHECK_EXTENSION:
4510 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
4511 break;
4512 case KVM_RESET_DIRTY_RINGS:
4513 r = kvm_vm_ioctl_reset_dirty_pages(kvm);
4514 break;
4515 case KVM_GET_STATS_FD:
4516 r = kvm_vm_ioctl_get_stats_fd(kvm);
4517 break;
4518 default:
4519 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
4520 }
4521 out:
4522 return r;
4523 }
4524
4525 #ifdef CONFIG_KVM_COMPAT
4526 struct compat_kvm_dirty_log {
4527 __u32 slot;
4528 __u32 padding1;
4529 union {
4530 compat_uptr_t dirty_bitmap; /* one bit per page */
4531 __u64 padding2;
4532 };
4533 };
4534
4535 struct compat_kvm_clear_dirty_log {
4536 __u32 slot;
4537 __u32 num_pages;
4538 __u64 first_page;
4539 union {
4540 compat_uptr_t dirty_bitmap; /* one bit per page */
4541 __u64 padding2;
4542 };
4543 };
4544
kvm_vm_compat_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)4545 static long kvm_vm_compat_ioctl(struct file *filp,
4546 unsigned int ioctl, unsigned long arg)
4547 {
4548 struct kvm *kvm = filp->private_data;
4549 int r;
4550
4551 if (kvm->mm != current->mm || kvm->vm_bugged)
4552 return -EIO;
4553 switch (ioctl) {
4554 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4555 case KVM_CLEAR_DIRTY_LOG: {
4556 struct compat_kvm_clear_dirty_log compat_log;
4557 struct kvm_clear_dirty_log log;
4558
4559 if (copy_from_user(&compat_log, (void __user *)arg,
4560 sizeof(compat_log)))
4561 return -EFAULT;
4562 log.slot = compat_log.slot;
4563 log.num_pages = compat_log.num_pages;
4564 log.first_page = compat_log.first_page;
4565 log.padding2 = compat_log.padding2;
4566 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4567
4568 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4569 break;
4570 }
4571 #endif
4572 case KVM_GET_DIRTY_LOG: {
4573 struct compat_kvm_dirty_log compat_log;
4574 struct kvm_dirty_log log;
4575
4576 if (copy_from_user(&compat_log, (void __user *)arg,
4577 sizeof(compat_log)))
4578 return -EFAULT;
4579 log.slot = compat_log.slot;
4580 log.padding1 = compat_log.padding1;
4581 log.padding2 = compat_log.padding2;
4582 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4583
4584 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4585 break;
4586 }
4587 default:
4588 r = kvm_vm_ioctl(filp, ioctl, arg);
4589 }
4590 return r;
4591 }
4592 #endif
4593
4594 static struct file_operations kvm_vm_fops = {
4595 .release = kvm_vm_release,
4596 .unlocked_ioctl = kvm_vm_ioctl,
4597 .llseek = noop_llseek,
4598 KVM_COMPAT(kvm_vm_compat_ioctl),
4599 };
4600
file_is_kvm(struct file * file)4601 bool file_is_kvm(struct file *file)
4602 {
4603 return file && file->f_op == &kvm_vm_fops;
4604 }
4605 EXPORT_SYMBOL_GPL(file_is_kvm);
4606
kvm_dev_ioctl_create_vm(unsigned long type)4607 static int kvm_dev_ioctl_create_vm(unsigned long type)
4608 {
4609 int r;
4610 struct kvm *kvm;
4611 struct file *file;
4612
4613 kvm = kvm_create_vm(type);
4614 if (IS_ERR(kvm))
4615 return PTR_ERR(kvm);
4616 #ifdef CONFIG_KVM_MMIO
4617 r = kvm_coalesced_mmio_init(kvm);
4618 if (r < 0)
4619 goto put_kvm;
4620 #endif
4621 r = get_unused_fd_flags(O_CLOEXEC);
4622 if (r < 0)
4623 goto put_kvm;
4624
4625 snprintf(kvm->stats_id, sizeof(kvm->stats_id),
4626 "kvm-%d", task_pid_nr(current));
4627
4628 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
4629 if (IS_ERR(file)) {
4630 put_unused_fd(r);
4631 r = PTR_ERR(file);
4632 goto put_kvm;
4633 }
4634
4635 /*
4636 * Don't call kvm_put_kvm anymore at this point; file->f_op is
4637 * already set, with ->release() being kvm_vm_release(). In error
4638 * cases it will be called by the final fput(file) and will take
4639 * care of doing kvm_put_kvm(kvm).
4640 */
4641 if (kvm_create_vm_debugfs(kvm, r) < 0) {
4642 put_unused_fd(r);
4643 fput(file);
4644 return -ENOMEM;
4645 }
4646 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
4647
4648 fd_install(r, file);
4649 return r;
4650
4651 put_kvm:
4652 kvm_put_kvm(kvm);
4653 return r;
4654 }
4655
kvm_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)4656 static long kvm_dev_ioctl(struct file *filp,
4657 unsigned int ioctl, unsigned long arg)
4658 {
4659 long r = -EINVAL;
4660
4661 switch (ioctl) {
4662 case KVM_GET_API_VERSION:
4663 if (arg)
4664 goto out;
4665 r = KVM_API_VERSION;
4666 break;
4667 case KVM_CREATE_VM:
4668 r = kvm_dev_ioctl_create_vm(arg);
4669 break;
4670 case KVM_CHECK_EXTENSION:
4671 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
4672 break;
4673 case KVM_GET_VCPU_MMAP_SIZE:
4674 if (arg)
4675 goto out;
4676 r = PAGE_SIZE; /* struct kvm_run */
4677 #ifdef CONFIG_X86
4678 r += PAGE_SIZE; /* pio data page */
4679 #endif
4680 #ifdef CONFIG_KVM_MMIO
4681 r += PAGE_SIZE; /* coalesced mmio ring page */
4682 #endif
4683 break;
4684 case KVM_TRACE_ENABLE:
4685 case KVM_TRACE_PAUSE:
4686 case KVM_TRACE_DISABLE:
4687 r = -EOPNOTSUPP;
4688 break;
4689 default:
4690 return kvm_arch_dev_ioctl(filp, ioctl, arg);
4691 }
4692 out:
4693 return r;
4694 }
4695
4696 static struct file_operations kvm_chardev_ops = {
4697 .unlocked_ioctl = kvm_dev_ioctl,
4698 .llseek = noop_llseek,
4699 KVM_COMPAT(kvm_dev_ioctl),
4700 };
4701
4702 static struct miscdevice kvm_dev = {
4703 KVM_MINOR,
4704 "kvm",
4705 &kvm_chardev_ops,
4706 };
4707
hardware_enable_nolock(void * junk)4708 static void hardware_enable_nolock(void *junk)
4709 {
4710 int cpu = raw_smp_processor_id();
4711 int r;
4712
4713 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
4714 return;
4715
4716 cpumask_set_cpu(cpu, cpus_hardware_enabled);
4717
4718 r = kvm_arch_hardware_enable();
4719
4720 if (r) {
4721 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4722 atomic_inc(&hardware_enable_failed);
4723 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
4724 }
4725 }
4726
kvm_starting_cpu(unsigned int cpu)4727 static int kvm_starting_cpu(unsigned int cpu)
4728 {
4729 raw_spin_lock(&kvm_count_lock);
4730 if (kvm_usage_count)
4731 hardware_enable_nolock(NULL);
4732 raw_spin_unlock(&kvm_count_lock);
4733 return 0;
4734 }
4735
hardware_disable_nolock(void * junk)4736 static void hardware_disable_nolock(void *junk)
4737 {
4738 int cpu = raw_smp_processor_id();
4739
4740 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
4741 return;
4742 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4743 kvm_arch_hardware_disable();
4744 }
4745
kvm_dying_cpu(unsigned int cpu)4746 static int kvm_dying_cpu(unsigned int cpu)
4747 {
4748 raw_spin_lock(&kvm_count_lock);
4749 if (kvm_usage_count)
4750 hardware_disable_nolock(NULL);
4751 raw_spin_unlock(&kvm_count_lock);
4752 return 0;
4753 }
4754
hardware_disable_all_nolock(void)4755 static void hardware_disable_all_nolock(void)
4756 {
4757 BUG_ON(!kvm_usage_count);
4758
4759 kvm_usage_count--;
4760 if (!kvm_usage_count)
4761 on_each_cpu(hardware_disable_nolock, NULL, 1);
4762 }
4763
hardware_disable_all(void)4764 static void hardware_disable_all(void)
4765 {
4766 raw_spin_lock(&kvm_count_lock);
4767 hardware_disable_all_nolock();
4768 raw_spin_unlock(&kvm_count_lock);
4769 }
4770
hardware_enable_all(void)4771 static int hardware_enable_all(void)
4772 {
4773 int r = 0;
4774
4775 raw_spin_lock(&kvm_count_lock);
4776
4777 kvm_usage_count++;
4778 if (kvm_usage_count == 1) {
4779 atomic_set(&hardware_enable_failed, 0);
4780 on_each_cpu(hardware_enable_nolock, NULL, 1);
4781
4782 if (atomic_read(&hardware_enable_failed)) {
4783 hardware_disable_all_nolock();
4784 r = -EBUSY;
4785 }
4786 }
4787
4788 raw_spin_unlock(&kvm_count_lock);
4789
4790 return r;
4791 }
4792
kvm_reboot(struct notifier_block * notifier,unsigned long val,void * v)4793 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
4794 void *v)
4795 {
4796 /*
4797 * Some (well, at least mine) BIOSes hang on reboot if
4798 * in vmx root mode.
4799 *
4800 * And Intel TXT required VMX off for all cpu when system shutdown.
4801 */
4802 pr_info("kvm: exiting hardware virtualization\n");
4803 kvm_rebooting = true;
4804 on_each_cpu(hardware_disable_nolock, NULL, 1);
4805 return NOTIFY_OK;
4806 }
4807
4808 static struct notifier_block kvm_reboot_notifier = {
4809 .notifier_call = kvm_reboot,
4810 .priority = 0,
4811 };
4812
kvm_io_bus_destroy(struct kvm_io_bus * bus)4813 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
4814 {
4815 int i;
4816
4817 for (i = 0; i < bus->dev_count; i++) {
4818 struct kvm_io_device *pos = bus->range[i].dev;
4819
4820 kvm_iodevice_destructor(pos);
4821 }
4822 kfree(bus);
4823 }
4824
kvm_io_bus_cmp(const struct kvm_io_range * r1,const struct kvm_io_range * r2)4825 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
4826 const struct kvm_io_range *r2)
4827 {
4828 gpa_t addr1 = r1->addr;
4829 gpa_t addr2 = r2->addr;
4830
4831 if (addr1 < addr2)
4832 return -1;
4833
4834 /* If r2->len == 0, match the exact address. If r2->len != 0,
4835 * accept any overlapping write. Any order is acceptable for
4836 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
4837 * we process all of them.
4838 */
4839 if (r2->len) {
4840 addr1 += r1->len;
4841 addr2 += r2->len;
4842 }
4843
4844 if (addr1 > addr2)
4845 return 1;
4846
4847 return 0;
4848 }
4849
kvm_io_bus_sort_cmp(const void * p1,const void * p2)4850 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
4851 {
4852 return kvm_io_bus_cmp(p1, p2);
4853 }
4854
kvm_io_bus_get_first_dev(struct kvm_io_bus * bus,gpa_t addr,int len)4855 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
4856 gpa_t addr, int len)
4857 {
4858 struct kvm_io_range *range, key;
4859 int off;
4860
4861 key = (struct kvm_io_range) {
4862 .addr = addr,
4863 .len = len,
4864 };
4865
4866 range = bsearch(&key, bus->range, bus->dev_count,
4867 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
4868 if (range == NULL)
4869 return -ENOENT;
4870
4871 off = range - bus->range;
4872
4873 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
4874 off--;
4875
4876 return off;
4877 }
4878
__kvm_io_bus_write(struct kvm_vcpu * vcpu,struct kvm_io_bus * bus,struct kvm_io_range * range,const void * val)4879 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4880 struct kvm_io_range *range, const void *val)
4881 {
4882 int idx;
4883
4884 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4885 if (idx < 0)
4886 return -EOPNOTSUPP;
4887
4888 while (idx < bus->dev_count &&
4889 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4890 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
4891 range->len, val))
4892 return idx;
4893 idx++;
4894 }
4895
4896 return -EOPNOTSUPP;
4897 }
4898
4899 /* kvm_io_bus_write - called under kvm->slots_lock */
kvm_io_bus_write(struct kvm_vcpu * vcpu,enum kvm_bus bus_idx,gpa_t addr,int len,const void * val)4900 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4901 int len, const void *val)
4902 {
4903 struct kvm_io_bus *bus;
4904 struct kvm_io_range range;
4905 int r;
4906
4907 range = (struct kvm_io_range) {
4908 .addr = addr,
4909 .len = len,
4910 };
4911
4912 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4913 if (!bus)
4914 return -ENOMEM;
4915 r = __kvm_io_bus_write(vcpu, bus, &range, val);
4916 return r < 0 ? r : 0;
4917 }
4918 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
4919
4920 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
kvm_io_bus_write_cookie(struct kvm_vcpu * vcpu,enum kvm_bus bus_idx,gpa_t addr,int len,const void * val,long cookie)4921 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
4922 gpa_t addr, int len, const void *val, long cookie)
4923 {
4924 struct kvm_io_bus *bus;
4925 struct kvm_io_range range;
4926
4927 range = (struct kvm_io_range) {
4928 .addr = addr,
4929 .len = len,
4930 };
4931
4932 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4933 if (!bus)
4934 return -ENOMEM;
4935
4936 /* First try the device referenced by cookie. */
4937 if ((cookie >= 0) && (cookie < bus->dev_count) &&
4938 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
4939 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
4940 val))
4941 return cookie;
4942
4943 /*
4944 * cookie contained garbage; fall back to search and return the
4945 * correct cookie value.
4946 */
4947 return __kvm_io_bus_write(vcpu, bus, &range, val);
4948 }
4949
__kvm_io_bus_read(struct kvm_vcpu * vcpu,struct kvm_io_bus * bus,struct kvm_io_range * range,void * val)4950 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4951 struct kvm_io_range *range, void *val)
4952 {
4953 int idx;
4954
4955 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4956 if (idx < 0)
4957 return -EOPNOTSUPP;
4958
4959 while (idx < bus->dev_count &&
4960 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4961 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
4962 range->len, val))
4963 return idx;
4964 idx++;
4965 }
4966
4967 return -EOPNOTSUPP;
4968 }
4969
4970 /* kvm_io_bus_read - called under kvm->slots_lock */
kvm_io_bus_read(struct kvm_vcpu * vcpu,enum kvm_bus bus_idx,gpa_t addr,int len,void * val)4971 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4972 int len, void *val)
4973 {
4974 struct kvm_io_bus *bus;
4975 struct kvm_io_range range;
4976 int r;
4977
4978 range = (struct kvm_io_range) {
4979 .addr = addr,
4980 .len = len,
4981 };
4982
4983 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4984 if (!bus)
4985 return -ENOMEM;
4986 r = __kvm_io_bus_read(vcpu, bus, &range, val);
4987 return r < 0 ? r : 0;
4988 }
4989
4990 /* Caller must hold slots_lock. */
kvm_io_bus_register_dev(struct kvm * kvm,enum kvm_bus bus_idx,gpa_t addr,int len,struct kvm_io_device * dev)4991 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
4992 int len, struct kvm_io_device *dev)
4993 {
4994 int i;
4995 struct kvm_io_bus *new_bus, *bus;
4996 struct kvm_io_range range;
4997
4998 bus = kvm_get_bus(kvm, bus_idx);
4999 if (!bus)
5000 return -ENOMEM;
5001
5002 /* exclude ioeventfd which is limited by maximum fd */
5003 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
5004 return -ENOSPC;
5005
5006 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
5007 GFP_KERNEL_ACCOUNT);
5008 if (!new_bus)
5009 return -ENOMEM;
5010
5011 range = (struct kvm_io_range) {
5012 .addr = addr,
5013 .len = len,
5014 .dev = dev,
5015 };
5016
5017 for (i = 0; i < bus->dev_count; i++)
5018 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
5019 break;
5020
5021 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
5022 new_bus->dev_count++;
5023 new_bus->range[i] = range;
5024 memcpy(new_bus->range + i + 1, bus->range + i,
5025 (bus->dev_count - i) * sizeof(struct kvm_io_range));
5026 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5027 synchronize_srcu_expedited(&kvm->srcu);
5028 kfree(bus);
5029
5030 return 0;
5031 }
5032
kvm_io_bus_unregister_dev(struct kvm * kvm,enum kvm_bus bus_idx,struct kvm_io_device * dev)5033 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5034 struct kvm_io_device *dev)
5035 {
5036 int i, j;
5037 struct kvm_io_bus *new_bus, *bus;
5038
5039 lockdep_assert_held(&kvm->slots_lock);
5040
5041 bus = kvm_get_bus(kvm, bus_idx);
5042 if (!bus)
5043 return 0;
5044
5045 for (i = 0; i < bus->dev_count; i++) {
5046 if (bus->range[i].dev == dev) {
5047 break;
5048 }
5049 }
5050
5051 if (i == bus->dev_count)
5052 return 0;
5053
5054 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
5055 GFP_KERNEL_ACCOUNT);
5056 if (new_bus) {
5057 memcpy(new_bus, bus, struct_size(bus, range, i));
5058 new_bus->dev_count--;
5059 memcpy(new_bus->range + i, bus->range + i + 1,
5060 flex_array_size(new_bus, range, new_bus->dev_count - i));
5061 }
5062
5063 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5064 synchronize_srcu_expedited(&kvm->srcu);
5065
5066 /* Destroy the old bus _after_ installing the (null) bus. */
5067 if (!new_bus) {
5068 pr_err("kvm: failed to shrink bus, removing it completely\n");
5069 for (j = 0; j < bus->dev_count; j++) {
5070 if (j == i)
5071 continue;
5072 kvm_iodevice_destructor(bus->range[j].dev);
5073 }
5074 }
5075
5076 kfree(bus);
5077 return new_bus ? 0 : -ENOMEM;
5078 }
5079
kvm_io_bus_get_dev(struct kvm * kvm,enum kvm_bus bus_idx,gpa_t addr)5080 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5081 gpa_t addr)
5082 {
5083 struct kvm_io_bus *bus;
5084 int dev_idx, srcu_idx;
5085 struct kvm_io_device *iodev = NULL;
5086
5087 srcu_idx = srcu_read_lock(&kvm->srcu);
5088
5089 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
5090 if (!bus)
5091 goto out_unlock;
5092
5093 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
5094 if (dev_idx < 0)
5095 goto out_unlock;
5096
5097 iodev = bus->range[dev_idx].dev;
5098
5099 out_unlock:
5100 srcu_read_unlock(&kvm->srcu, srcu_idx);
5101
5102 return iodev;
5103 }
5104 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
5105
kvm_debugfs_open(struct inode * inode,struct file * file,int (* get)(void *,u64 *),int (* set)(void *,u64),const char * fmt)5106 static int kvm_debugfs_open(struct inode *inode, struct file *file,
5107 int (*get)(void *, u64 *), int (*set)(void *, u64),
5108 const char *fmt)
5109 {
5110 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
5111 inode->i_private;
5112
5113 /*
5114 * The debugfs files are a reference to the kvm struct which
5115 * is still valid when kvm_destroy_vm is called. kvm_get_kvm_safe
5116 * avoids the race between open and the removal of the debugfs directory.
5117 */
5118 if (!kvm_get_kvm_safe(stat_data->kvm))
5119 return -ENOENT;
5120
5121 if (simple_attr_open(inode, file, get,
5122 kvm_stats_debugfs_mode(stat_data->desc) & 0222
5123 ? set : NULL,
5124 fmt)) {
5125 kvm_put_kvm(stat_data->kvm);
5126 return -ENOMEM;
5127 }
5128
5129 return 0;
5130 }
5131
kvm_debugfs_release(struct inode * inode,struct file * file)5132 static int kvm_debugfs_release(struct inode *inode, struct file *file)
5133 {
5134 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
5135 inode->i_private;
5136
5137 simple_attr_release(inode, file);
5138 kvm_put_kvm(stat_data->kvm);
5139
5140 return 0;
5141 }
5142
kvm_get_stat_per_vm(struct kvm * kvm,size_t offset,u64 * val)5143 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
5144 {
5145 *val = *(u64 *)((void *)(&kvm->stat) + offset);
5146
5147 return 0;
5148 }
5149
kvm_clear_stat_per_vm(struct kvm * kvm,size_t offset)5150 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
5151 {
5152 *(u64 *)((void *)(&kvm->stat) + offset) = 0;
5153
5154 return 0;
5155 }
5156
kvm_get_stat_per_vcpu(struct kvm * kvm,size_t offset,u64 * val)5157 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
5158 {
5159 int i;
5160 struct kvm_vcpu *vcpu;
5161
5162 *val = 0;
5163
5164 kvm_for_each_vcpu(i, vcpu, kvm)
5165 *val += *(u64 *)((void *)(&vcpu->stat) + offset);
5166
5167 return 0;
5168 }
5169
kvm_clear_stat_per_vcpu(struct kvm * kvm,size_t offset)5170 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
5171 {
5172 int i;
5173 struct kvm_vcpu *vcpu;
5174
5175 kvm_for_each_vcpu(i, vcpu, kvm)
5176 *(u64 *)((void *)(&vcpu->stat) + offset) = 0;
5177
5178 return 0;
5179 }
5180
kvm_stat_data_get(void * data,u64 * val)5181 static int kvm_stat_data_get(void *data, u64 *val)
5182 {
5183 int r = -EFAULT;
5184 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
5185
5186 switch (stat_data->kind) {
5187 case KVM_STAT_VM:
5188 r = kvm_get_stat_per_vm(stat_data->kvm,
5189 stat_data->desc->desc.offset, val);
5190 break;
5191 case KVM_STAT_VCPU:
5192 r = kvm_get_stat_per_vcpu(stat_data->kvm,
5193 stat_data->desc->desc.offset, val);
5194 break;
5195 }
5196
5197 return r;
5198 }
5199
kvm_stat_data_clear(void * data,u64 val)5200 static int kvm_stat_data_clear(void *data, u64 val)
5201 {
5202 int r = -EFAULT;
5203 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
5204
5205 if (val)
5206 return -EINVAL;
5207
5208 switch (stat_data->kind) {
5209 case KVM_STAT_VM:
5210 r = kvm_clear_stat_per_vm(stat_data->kvm,
5211 stat_data->desc->desc.offset);
5212 break;
5213 case KVM_STAT_VCPU:
5214 r = kvm_clear_stat_per_vcpu(stat_data->kvm,
5215 stat_data->desc->desc.offset);
5216 break;
5217 }
5218
5219 return r;
5220 }
5221
kvm_stat_data_open(struct inode * inode,struct file * file)5222 static int kvm_stat_data_open(struct inode *inode, struct file *file)
5223 {
5224 __simple_attr_check_format("%llu\n", 0ull);
5225 return kvm_debugfs_open(inode, file, kvm_stat_data_get,
5226 kvm_stat_data_clear, "%llu\n");
5227 }
5228
5229 static const struct file_operations stat_fops_per_vm = {
5230 .owner = THIS_MODULE,
5231 .open = kvm_stat_data_open,
5232 .release = kvm_debugfs_release,
5233 .read = simple_attr_read,
5234 .write = simple_attr_write,
5235 .llseek = no_llseek,
5236 };
5237
vm_stat_get(void * _offset,u64 * val)5238 static int vm_stat_get(void *_offset, u64 *val)
5239 {
5240 unsigned offset = (long)_offset;
5241 struct kvm *kvm;
5242 u64 tmp_val;
5243
5244 *val = 0;
5245 mutex_lock(&kvm_lock);
5246 list_for_each_entry(kvm, &vm_list, vm_list) {
5247 kvm_get_stat_per_vm(kvm, offset, &tmp_val);
5248 *val += tmp_val;
5249 }
5250 mutex_unlock(&kvm_lock);
5251 return 0;
5252 }
5253
vm_stat_clear(void * _offset,u64 val)5254 static int vm_stat_clear(void *_offset, u64 val)
5255 {
5256 unsigned offset = (long)_offset;
5257 struct kvm *kvm;
5258
5259 if (val)
5260 return -EINVAL;
5261
5262 mutex_lock(&kvm_lock);
5263 list_for_each_entry(kvm, &vm_list, vm_list) {
5264 kvm_clear_stat_per_vm(kvm, offset);
5265 }
5266 mutex_unlock(&kvm_lock);
5267
5268 return 0;
5269 }
5270
5271 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
5272 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
5273
vcpu_stat_get(void * _offset,u64 * val)5274 static int vcpu_stat_get(void *_offset, u64 *val)
5275 {
5276 unsigned offset = (long)_offset;
5277 struct kvm *kvm;
5278 u64 tmp_val;
5279
5280 *val = 0;
5281 mutex_lock(&kvm_lock);
5282 list_for_each_entry(kvm, &vm_list, vm_list) {
5283 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
5284 *val += tmp_val;
5285 }
5286 mutex_unlock(&kvm_lock);
5287 return 0;
5288 }
5289
vcpu_stat_clear(void * _offset,u64 val)5290 static int vcpu_stat_clear(void *_offset, u64 val)
5291 {
5292 unsigned offset = (long)_offset;
5293 struct kvm *kvm;
5294
5295 if (val)
5296 return -EINVAL;
5297
5298 mutex_lock(&kvm_lock);
5299 list_for_each_entry(kvm, &vm_list, vm_list) {
5300 kvm_clear_stat_per_vcpu(kvm, offset);
5301 }
5302 mutex_unlock(&kvm_lock);
5303
5304 return 0;
5305 }
5306
5307 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
5308 "%llu\n");
5309 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
5310
kvm_uevent_notify_change(unsigned int type,struct kvm * kvm)5311 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
5312 {
5313 struct kobj_uevent_env *env;
5314 unsigned long long created, active;
5315
5316 if (!kvm_dev.this_device || !kvm)
5317 return;
5318
5319 mutex_lock(&kvm_lock);
5320 if (type == KVM_EVENT_CREATE_VM) {
5321 kvm_createvm_count++;
5322 kvm_active_vms++;
5323 } else if (type == KVM_EVENT_DESTROY_VM) {
5324 kvm_active_vms--;
5325 }
5326 created = kvm_createvm_count;
5327 active = kvm_active_vms;
5328 mutex_unlock(&kvm_lock);
5329
5330 env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
5331 if (!env)
5332 return;
5333
5334 add_uevent_var(env, "CREATED=%llu", created);
5335 add_uevent_var(env, "COUNT=%llu", active);
5336
5337 if (type == KVM_EVENT_CREATE_VM) {
5338 add_uevent_var(env, "EVENT=create");
5339 kvm->userspace_pid = task_pid_nr(current);
5340 } else if (type == KVM_EVENT_DESTROY_VM) {
5341 add_uevent_var(env, "EVENT=destroy");
5342 }
5343 add_uevent_var(env, "PID=%d", kvm->userspace_pid);
5344
5345 if (kvm->debugfs_dentry) {
5346 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
5347
5348 if (p) {
5349 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
5350 if (!IS_ERR(tmp))
5351 add_uevent_var(env, "STATS_PATH=%s", tmp);
5352 kfree(p);
5353 }
5354 }
5355 /* no need for checks, since we are adding at most only 5 keys */
5356 env->envp[env->envp_idx++] = NULL;
5357 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
5358 kfree(env);
5359 }
5360
kvm_init_debug(void)5361 static void kvm_init_debug(void)
5362 {
5363 const struct file_operations *fops;
5364 const struct _kvm_stats_desc *pdesc;
5365 int i;
5366
5367 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
5368
5369 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
5370 pdesc = &kvm_vm_stats_desc[i];
5371 if (kvm_stats_debugfs_mode(pdesc) & 0222)
5372 fops = &vm_stat_fops;
5373 else
5374 fops = &vm_stat_readonly_fops;
5375 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5376 kvm_debugfs_dir,
5377 (void *)(long)pdesc->desc.offset, fops);
5378 }
5379
5380 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
5381 pdesc = &kvm_vcpu_stats_desc[i];
5382 if (kvm_stats_debugfs_mode(pdesc) & 0222)
5383 fops = &vcpu_stat_fops;
5384 else
5385 fops = &vcpu_stat_readonly_fops;
5386 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5387 kvm_debugfs_dir,
5388 (void *)(long)pdesc->desc.offset, fops);
5389 }
5390 }
5391
kvm_suspend(void)5392 static int kvm_suspend(void)
5393 {
5394 if (kvm_usage_count)
5395 hardware_disable_nolock(NULL);
5396 return 0;
5397 }
5398
kvm_resume(void)5399 static void kvm_resume(void)
5400 {
5401 if (kvm_usage_count) {
5402 #ifdef CONFIG_LOCKDEP
5403 WARN_ON(lockdep_is_held(&kvm_count_lock));
5404 #endif
5405 hardware_enable_nolock(NULL);
5406 }
5407 }
5408
5409 static struct syscore_ops kvm_syscore_ops = {
5410 .suspend = kvm_suspend,
5411 .resume = kvm_resume,
5412 };
5413
5414 static inline
preempt_notifier_to_vcpu(struct preempt_notifier * pn)5415 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
5416 {
5417 return container_of(pn, struct kvm_vcpu, preempt_notifier);
5418 }
5419
kvm_sched_in(struct preempt_notifier * pn,int cpu)5420 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
5421 {
5422 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5423
5424 WRITE_ONCE(vcpu->preempted, false);
5425 WRITE_ONCE(vcpu->ready, false);
5426
5427 __this_cpu_write(kvm_running_vcpu, vcpu);
5428 kvm_arch_sched_in(vcpu, cpu);
5429 kvm_arch_vcpu_load(vcpu, cpu);
5430 }
5431
kvm_sched_out(struct preempt_notifier * pn,struct task_struct * next)5432 static void kvm_sched_out(struct preempt_notifier *pn,
5433 struct task_struct *next)
5434 {
5435 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5436
5437 if (current->on_rq) {
5438 WRITE_ONCE(vcpu->preempted, true);
5439 WRITE_ONCE(vcpu->ready, true);
5440 }
5441 kvm_arch_vcpu_put(vcpu);
5442 __this_cpu_write(kvm_running_vcpu, NULL);
5443 }
5444
5445 /**
5446 * kvm_get_running_vcpu - get the vcpu running on the current CPU.
5447 *
5448 * We can disable preemption locally around accessing the per-CPU variable,
5449 * and use the resolved vcpu pointer after enabling preemption again,
5450 * because even if the current thread is migrated to another CPU, reading
5451 * the per-CPU value later will give us the same value as we update the
5452 * per-CPU variable in the preempt notifier handlers.
5453 */
kvm_get_running_vcpu(void)5454 struct kvm_vcpu *kvm_get_running_vcpu(void)
5455 {
5456 struct kvm_vcpu *vcpu;
5457
5458 preempt_disable();
5459 vcpu = __this_cpu_read(kvm_running_vcpu);
5460 preempt_enable();
5461
5462 return vcpu;
5463 }
5464 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
5465
5466 /**
5467 * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
5468 */
kvm_get_running_vcpus(void)5469 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
5470 {
5471 return &kvm_running_vcpu;
5472 }
5473
5474 struct kvm_cpu_compat_check {
5475 void *opaque;
5476 int *ret;
5477 };
5478
check_processor_compat(void * data)5479 static void check_processor_compat(void *data)
5480 {
5481 struct kvm_cpu_compat_check *c = data;
5482
5483 *c->ret = kvm_arch_check_processor_compat(c->opaque);
5484 }
5485
kvm_init(void * opaque,unsigned vcpu_size,unsigned vcpu_align,struct module * module)5486 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
5487 struct module *module)
5488 {
5489 struct kvm_cpu_compat_check c;
5490 int r;
5491 int cpu;
5492
5493 r = kvm_arch_init(opaque);
5494 if (r)
5495 goto out_fail;
5496
5497 /*
5498 * kvm_arch_init makes sure there's at most one caller
5499 * for architectures that support multiple implementations,
5500 * like intel and amd on x86.
5501 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
5502 * conflicts in case kvm is already setup for another implementation.
5503 */
5504 r = kvm_irqfd_init();
5505 if (r)
5506 goto out_irqfd;
5507
5508 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
5509 r = -ENOMEM;
5510 goto out_free_0;
5511 }
5512
5513 r = kvm_arch_hardware_setup(opaque);
5514 if (r < 0)
5515 goto out_free_1;
5516
5517 c.ret = &r;
5518 c.opaque = opaque;
5519 for_each_online_cpu(cpu) {
5520 smp_call_function_single(cpu, check_processor_compat, &c, 1);
5521 if (r < 0)
5522 goto out_free_2;
5523 }
5524
5525 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
5526 kvm_starting_cpu, kvm_dying_cpu);
5527 if (r)
5528 goto out_free_2;
5529 register_reboot_notifier(&kvm_reboot_notifier);
5530
5531 /* A kmem cache lets us meet the alignment requirements of fx_save. */
5532 if (!vcpu_align)
5533 vcpu_align = __alignof__(struct kvm_vcpu);
5534 kvm_vcpu_cache =
5535 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
5536 SLAB_ACCOUNT,
5537 offsetof(struct kvm_vcpu, arch),
5538 offsetofend(struct kvm_vcpu, stats_id)
5539 - offsetof(struct kvm_vcpu, arch),
5540 NULL);
5541 if (!kvm_vcpu_cache) {
5542 r = -ENOMEM;
5543 goto out_free_3;
5544 }
5545
5546 r = kvm_async_pf_init();
5547 if (r)
5548 goto out_free;
5549
5550 kvm_chardev_ops.owner = module;
5551 kvm_vm_fops.owner = module;
5552 kvm_vcpu_fops.owner = module;
5553
5554 r = misc_register(&kvm_dev);
5555 if (r) {
5556 pr_err("kvm: misc device register failed\n");
5557 goto out_unreg;
5558 }
5559
5560 register_syscore_ops(&kvm_syscore_ops);
5561
5562 kvm_preempt_ops.sched_in = kvm_sched_in;
5563 kvm_preempt_ops.sched_out = kvm_sched_out;
5564
5565 kvm_init_debug();
5566
5567 r = kvm_vfio_ops_init();
5568 WARN_ON(r);
5569
5570 return 0;
5571
5572 out_unreg:
5573 kvm_async_pf_deinit();
5574 out_free:
5575 kmem_cache_destroy(kvm_vcpu_cache);
5576 out_free_3:
5577 unregister_reboot_notifier(&kvm_reboot_notifier);
5578 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
5579 out_free_2:
5580 kvm_arch_hardware_unsetup();
5581 out_free_1:
5582 free_cpumask_var(cpus_hardware_enabled);
5583 out_free_0:
5584 kvm_irqfd_exit();
5585 out_irqfd:
5586 kvm_arch_exit();
5587 out_fail:
5588 return r;
5589 }
5590 EXPORT_SYMBOL_GPL(kvm_init);
5591
kvm_exit(void)5592 void kvm_exit(void)
5593 {
5594 debugfs_remove_recursive(kvm_debugfs_dir);
5595 misc_deregister(&kvm_dev);
5596 kmem_cache_destroy(kvm_vcpu_cache);
5597 kvm_async_pf_deinit();
5598 unregister_syscore_ops(&kvm_syscore_ops);
5599 unregister_reboot_notifier(&kvm_reboot_notifier);
5600 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
5601 on_each_cpu(hardware_disable_nolock, NULL, 1);
5602 kvm_arch_hardware_unsetup();
5603 kvm_arch_exit();
5604 kvm_irqfd_exit();
5605 free_cpumask_var(cpus_hardware_enabled);
5606 kvm_vfio_ops_exit();
5607 }
5608 EXPORT_SYMBOL_GPL(kvm_exit);
5609
5610 struct kvm_vm_worker_thread_context {
5611 struct kvm *kvm;
5612 struct task_struct *parent;
5613 struct completion init_done;
5614 kvm_vm_thread_fn_t thread_fn;
5615 uintptr_t data;
5616 int err;
5617 };
5618
kvm_vm_worker_thread(void * context)5619 static int kvm_vm_worker_thread(void *context)
5620 {
5621 /*
5622 * The init_context is allocated on the stack of the parent thread, so
5623 * we have to locally copy anything that is needed beyond initialization
5624 */
5625 struct kvm_vm_worker_thread_context *init_context = context;
5626 struct kvm *kvm = init_context->kvm;
5627 kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
5628 uintptr_t data = init_context->data;
5629 int err;
5630
5631 err = kthread_park(current);
5632 /* kthread_park(current) is never supposed to return an error */
5633 WARN_ON(err != 0);
5634 if (err)
5635 goto init_complete;
5636
5637 err = cgroup_attach_task_all(init_context->parent, current);
5638 if (err) {
5639 kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
5640 __func__, err);
5641 goto init_complete;
5642 }
5643
5644 set_user_nice(current, task_nice(init_context->parent));
5645
5646 init_complete:
5647 init_context->err = err;
5648 complete(&init_context->init_done);
5649 init_context = NULL;
5650
5651 if (err)
5652 return err;
5653
5654 /* Wait to be woken up by the spawner before proceeding. */
5655 kthread_parkme();
5656
5657 if (!kthread_should_stop())
5658 err = thread_fn(kvm, data);
5659
5660 return err;
5661 }
5662
kvm_vm_create_worker_thread(struct kvm * kvm,kvm_vm_thread_fn_t thread_fn,uintptr_t data,const char * name,struct task_struct ** thread_ptr)5663 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
5664 uintptr_t data, const char *name,
5665 struct task_struct **thread_ptr)
5666 {
5667 struct kvm_vm_worker_thread_context init_context = {};
5668 struct task_struct *thread;
5669
5670 *thread_ptr = NULL;
5671 init_context.kvm = kvm;
5672 init_context.parent = current;
5673 init_context.thread_fn = thread_fn;
5674 init_context.data = data;
5675 init_completion(&init_context.init_done);
5676
5677 thread = kthread_run(kvm_vm_worker_thread, &init_context,
5678 "%s-%d", name, task_pid_nr(current));
5679 if (IS_ERR(thread))
5680 return PTR_ERR(thread);
5681
5682 /* kthread_run is never supposed to return NULL */
5683 WARN_ON(thread == NULL);
5684
5685 wait_for_completion(&init_context.init_done);
5686
5687 if (!init_context.err)
5688 *thread_ptr = thread;
5689
5690 return init_context.err;
5691 }
5692