1 /*
2  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License, version 2, as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
17  */
18 
19 #include <linux/mman.h>
20 #include <linux/kvm_host.h>
21 #include <linux/io.h>
22 #include <linux/hugetlb.h>
23 #include <linux/sched/signal.h>
24 #include <trace/events/kvm.h>
25 #include <asm/pgalloc.h>
26 #include <asm/cacheflush.h>
27 #include <asm/kvm_arm.h>
28 #include <asm/kvm_mmu.h>
29 #include <asm/kvm_mmio.h>
30 #include <asm/kvm_asm.h>
31 #include <asm/kvm_emulate.h>
32 #include <asm/virt.h>
33 #include <asm/system_misc.h>
34 
35 #include "trace.h"
36 
37 static pgd_t *boot_hyp_pgd;
38 static pgd_t *hyp_pgd;
39 static pgd_t *merged_hyp_pgd;
40 static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
41 
42 static unsigned long hyp_idmap_start;
43 static unsigned long hyp_idmap_end;
44 static phys_addr_t hyp_idmap_vector;
45 
46 static unsigned long io_map_base;
47 
48 #define S2_PGD_SIZE	(PTRS_PER_S2_PGD * sizeof(pgd_t))
49 #define hyp_pgd_order get_order(PTRS_PER_PGD * sizeof(pgd_t))
50 
51 #define KVM_S2PTE_FLAG_IS_IOMAP		(1UL << 0)
52 #define KVM_S2_FLAG_LOGGING_ACTIVE	(1UL << 1)
53 
memslot_is_logging(struct kvm_memory_slot * memslot)54 static bool memslot_is_logging(struct kvm_memory_slot *memslot)
55 {
56 	return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
57 }
58 
59 /**
60  * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
61  * @kvm:	pointer to kvm structure.
62  *
63  * Interface to HYP function to flush all VM TLB entries
64  */
kvm_flush_remote_tlbs(struct kvm * kvm)65 void kvm_flush_remote_tlbs(struct kvm *kvm)
66 {
67 	kvm_call_hyp(__kvm_tlb_flush_vmid, kvm);
68 }
69 
kvm_tlb_flush_vmid_ipa(struct kvm * kvm,phys_addr_t ipa)70 static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
71 {
72 	kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, kvm, ipa);
73 }
74 
75 /*
76  * D-Cache management functions. They take the page table entries by
77  * value, as they are flushing the cache using the kernel mapping (or
78  * kmap on 32bit).
79  */
kvm_flush_dcache_pte(pte_t pte)80 static void kvm_flush_dcache_pte(pte_t pte)
81 {
82 	__kvm_flush_dcache_pte(pte);
83 }
84 
kvm_flush_dcache_pmd(pmd_t pmd)85 static void kvm_flush_dcache_pmd(pmd_t pmd)
86 {
87 	__kvm_flush_dcache_pmd(pmd);
88 }
89 
kvm_flush_dcache_pud(pud_t pud)90 static void kvm_flush_dcache_pud(pud_t pud)
91 {
92 	__kvm_flush_dcache_pud(pud);
93 }
94 
kvm_is_device_pfn(unsigned long pfn)95 static bool kvm_is_device_pfn(unsigned long pfn)
96 {
97 	return !pfn_valid(pfn);
98 }
99 
100 /**
101  * stage2_dissolve_pmd() - clear and flush huge PMD entry
102  * @kvm:	pointer to kvm structure.
103  * @addr:	IPA
104  * @pmd:	pmd pointer for IPA
105  *
106  * Function clears a PMD entry, flushes addr 1st and 2nd stage TLBs. Marks all
107  * pages in the range dirty.
108  */
stage2_dissolve_pmd(struct kvm * kvm,phys_addr_t addr,pmd_t * pmd)109 static void stage2_dissolve_pmd(struct kvm *kvm, phys_addr_t addr, pmd_t *pmd)
110 {
111 	if (!pmd_thp_or_huge(*pmd))
112 		return;
113 
114 	pmd_clear(pmd);
115 	kvm_tlb_flush_vmid_ipa(kvm, addr);
116 	put_page(virt_to_page(pmd));
117 }
118 
mmu_topup_memory_cache(struct kvm_mmu_memory_cache * cache,int min,int max)119 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
120 				  int min, int max)
121 {
122 	void *page;
123 
124 	BUG_ON(max > KVM_NR_MEM_OBJS);
125 	if (cache->nobjs >= min)
126 		return 0;
127 	while (cache->nobjs < max) {
128 		page = (void *)__get_free_page(PGALLOC_GFP);
129 		if (!page)
130 			return -ENOMEM;
131 		cache->objects[cache->nobjs++] = page;
132 	}
133 	return 0;
134 }
135 
mmu_free_memory_cache(struct kvm_mmu_memory_cache * mc)136 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
137 {
138 	while (mc->nobjs)
139 		free_page((unsigned long)mc->objects[--mc->nobjs]);
140 }
141 
mmu_memory_cache_alloc(struct kvm_mmu_memory_cache * mc)142 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
143 {
144 	void *p;
145 
146 	BUG_ON(!mc || !mc->nobjs);
147 	p = mc->objects[--mc->nobjs];
148 	return p;
149 }
150 
clear_stage2_pgd_entry(struct kvm * kvm,pgd_t * pgd,phys_addr_t addr)151 static void clear_stage2_pgd_entry(struct kvm *kvm, pgd_t *pgd, phys_addr_t addr)
152 {
153 	pud_t *pud_table __maybe_unused = stage2_pud_offset(pgd, 0UL);
154 	stage2_pgd_clear(pgd);
155 	kvm_tlb_flush_vmid_ipa(kvm, addr);
156 	stage2_pud_free(pud_table);
157 	put_page(virt_to_page(pgd));
158 }
159 
clear_stage2_pud_entry(struct kvm * kvm,pud_t * pud,phys_addr_t addr)160 static void clear_stage2_pud_entry(struct kvm *kvm, pud_t *pud, phys_addr_t addr)
161 {
162 	pmd_t *pmd_table __maybe_unused = stage2_pmd_offset(pud, 0);
163 	VM_BUG_ON(stage2_pud_huge(*pud));
164 	stage2_pud_clear(pud);
165 	kvm_tlb_flush_vmid_ipa(kvm, addr);
166 	stage2_pmd_free(pmd_table);
167 	put_page(virt_to_page(pud));
168 }
169 
clear_stage2_pmd_entry(struct kvm * kvm,pmd_t * pmd,phys_addr_t addr)170 static void clear_stage2_pmd_entry(struct kvm *kvm, pmd_t *pmd, phys_addr_t addr)
171 {
172 	pte_t *pte_table = pte_offset_kernel(pmd, 0);
173 	VM_BUG_ON(pmd_thp_or_huge(*pmd));
174 	pmd_clear(pmd);
175 	kvm_tlb_flush_vmid_ipa(kvm, addr);
176 	pte_free_kernel(NULL, pte_table);
177 	put_page(virt_to_page(pmd));
178 }
179 
kvm_set_pte(pte_t * ptep,pte_t new_pte)180 static inline void kvm_set_pte(pte_t *ptep, pte_t new_pte)
181 {
182 	WRITE_ONCE(*ptep, new_pte);
183 	dsb(ishst);
184 }
185 
kvm_set_pmd(pmd_t * pmdp,pmd_t new_pmd)186 static inline void kvm_set_pmd(pmd_t *pmdp, pmd_t new_pmd)
187 {
188 	WRITE_ONCE(*pmdp, new_pmd);
189 	dsb(ishst);
190 }
191 
kvm_pmd_populate(pmd_t * pmdp,pte_t * ptep)192 static inline void kvm_pmd_populate(pmd_t *pmdp, pte_t *ptep)
193 {
194 	kvm_set_pmd(pmdp, kvm_mk_pmd(ptep));
195 }
196 
kvm_pud_populate(pud_t * pudp,pmd_t * pmdp)197 static inline void kvm_pud_populate(pud_t *pudp, pmd_t *pmdp)
198 {
199 	WRITE_ONCE(*pudp, kvm_mk_pud(pmdp));
200 	dsb(ishst);
201 }
202 
kvm_pgd_populate(pgd_t * pgdp,pud_t * pudp)203 static inline void kvm_pgd_populate(pgd_t *pgdp, pud_t *pudp)
204 {
205 	WRITE_ONCE(*pgdp, kvm_mk_pgd(pudp));
206 	dsb(ishst);
207 }
208 
209 /*
210  * Unmapping vs dcache management:
211  *
212  * If a guest maps certain memory pages as uncached, all writes will
213  * bypass the data cache and go directly to RAM.  However, the CPUs
214  * can still speculate reads (not writes) and fill cache lines with
215  * data.
216  *
217  * Those cache lines will be *clean* cache lines though, so a
218  * clean+invalidate operation is equivalent to an invalidate
219  * operation, because no cache lines are marked dirty.
220  *
221  * Those clean cache lines could be filled prior to an uncached write
222  * by the guest, and the cache coherent IO subsystem would therefore
223  * end up writing old data to disk.
224  *
225  * This is why right after unmapping a page/section and invalidating
226  * the corresponding TLBs, we call kvm_flush_dcache_p*() to make sure
227  * the IO subsystem will never hit in the cache.
228  *
229  * This is all avoided on systems that have ARM64_HAS_STAGE2_FWB, as
230  * we then fully enforce cacheability of RAM, no matter what the guest
231  * does.
232  */
unmap_stage2_ptes(struct kvm * kvm,pmd_t * pmd,phys_addr_t addr,phys_addr_t end)233 static void unmap_stage2_ptes(struct kvm *kvm, pmd_t *pmd,
234 		       phys_addr_t addr, phys_addr_t end)
235 {
236 	phys_addr_t start_addr = addr;
237 	pte_t *pte, *start_pte;
238 
239 	start_pte = pte = pte_offset_kernel(pmd, addr);
240 	do {
241 		if (!pte_none(*pte)) {
242 			pte_t old_pte = *pte;
243 
244 			kvm_set_pte(pte, __pte(0));
245 			kvm_tlb_flush_vmid_ipa(kvm, addr);
246 
247 			/* No need to invalidate the cache for device mappings */
248 			if (!kvm_is_device_pfn(pte_pfn(old_pte)))
249 				kvm_flush_dcache_pte(old_pte);
250 
251 			put_page(virt_to_page(pte));
252 		}
253 	} while (pte++, addr += PAGE_SIZE, addr != end);
254 
255 	if (stage2_pte_table_empty(start_pte))
256 		clear_stage2_pmd_entry(kvm, pmd, start_addr);
257 }
258 
unmap_stage2_pmds(struct kvm * kvm,pud_t * pud,phys_addr_t addr,phys_addr_t end)259 static void unmap_stage2_pmds(struct kvm *kvm, pud_t *pud,
260 		       phys_addr_t addr, phys_addr_t end)
261 {
262 	phys_addr_t next, start_addr = addr;
263 	pmd_t *pmd, *start_pmd;
264 
265 	start_pmd = pmd = stage2_pmd_offset(pud, addr);
266 	do {
267 		next = stage2_pmd_addr_end(addr, end);
268 		if (!pmd_none(*pmd)) {
269 			if (pmd_thp_or_huge(*pmd)) {
270 				pmd_t old_pmd = *pmd;
271 
272 				pmd_clear(pmd);
273 				kvm_tlb_flush_vmid_ipa(kvm, addr);
274 
275 				kvm_flush_dcache_pmd(old_pmd);
276 
277 				put_page(virt_to_page(pmd));
278 			} else {
279 				unmap_stage2_ptes(kvm, pmd, addr, next);
280 			}
281 		}
282 	} while (pmd++, addr = next, addr != end);
283 
284 	if (stage2_pmd_table_empty(start_pmd))
285 		clear_stage2_pud_entry(kvm, pud, start_addr);
286 }
287 
unmap_stage2_puds(struct kvm * kvm,pgd_t * pgd,phys_addr_t addr,phys_addr_t end)288 static void unmap_stage2_puds(struct kvm *kvm, pgd_t *pgd,
289 		       phys_addr_t addr, phys_addr_t end)
290 {
291 	phys_addr_t next, start_addr = addr;
292 	pud_t *pud, *start_pud;
293 
294 	start_pud = pud = stage2_pud_offset(pgd, addr);
295 	do {
296 		next = stage2_pud_addr_end(addr, end);
297 		if (!stage2_pud_none(*pud)) {
298 			if (stage2_pud_huge(*pud)) {
299 				pud_t old_pud = *pud;
300 
301 				stage2_pud_clear(pud);
302 				kvm_tlb_flush_vmid_ipa(kvm, addr);
303 				kvm_flush_dcache_pud(old_pud);
304 				put_page(virt_to_page(pud));
305 			} else {
306 				unmap_stage2_pmds(kvm, pud, addr, next);
307 			}
308 		}
309 	} while (pud++, addr = next, addr != end);
310 
311 	if (stage2_pud_table_empty(start_pud))
312 		clear_stage2_pgd_entry(kvm, pgd, start_addr);
313 }
314 
315 /**
316  * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
317  * @kvm:   The VM pointer
318  * @start: The intermediate physical base address of the range to unmap
319  * @size:  The size of the area to unmap
320  *
321  * Clear a range of stage-2 mappings, lowering the various ref-counts.  Must
322  * be called while holding mmu_lock (unless for freeing the stage2 pgd before
323  * destroying the VM), otherwise another faulting VCPU may come in and mess
324  * with things behind our backs.
325  */
unmap_stage2_range(struct kvm * kvm,phys_addr_t start,u64 size)326 static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size)
327 {
328 	pgd_t *pgd;
329 	phys_addr_t addr = start, end = start + size;
330 	phys_addr_t next;
331 
332 	assert_spin_locked(&kvm->mmu_lock);
333 	WARN_ON(size & ~PAGE_MASK);
334 
335 	pgd = kvm->arch.pgd + stage2_pgd_index(addr);
336 	do {
337 		/*
338 		 * Make sure the page table is still active, as another thread
339 		 * could have possibly freed the page table, while we released
340 		 * the lock.
341 		 */
342 		if (!READ_ONCE(kvm->arch.pgd))
343 			break;
344 		next = stage2_pgd_addr_end(addr, end);
345 		if (!stage2_pgd_none(*pgd))
346 			unmap_stage2_puds(kvm, pgd, addr, next);
347 		/*
348 		 * If the range is too large, release the kvm->mmu_lock
349 		 * to prevent starvation and lockup detector warnings.
350 		 */
351 		if (next != end)
352 			cond_resched_lock(&kvm->mmu_lock);
353 	} while (pgd++, addr = next, addr != end);
354 }
355 
stage2_flush_ptes(struct kvm * kvm,pmd_t * pmd,phys_addr_t addr,phys_addr_t end)356 static void stage2_flush_ptes(struct kvm *kvm, pmd_t *pmd,
357 			      phys_addr_t addr, phys_addr_t end)
358 {
359 	pte_t *pte;
360 
361 	pte = pte_offset_kernel(pmd, addr);
362 	do {
363 		if (!pte_none(*pte) && !kvm_is_device_pfn(pte_pfn(*pte)))
364 			kvm_flush_dcache_pte(*pte);
365 	} while (pte++, addr += PAGE_SIZE, addr != end);
366 }
367 
stage2_flush_pmds(struct kvm * kvm,pud_t * pud,phys_addr_t addr,phys_addr_t end)368 static void stage2_flush_pmds(struct kvm *kvm, pud_t *pud,
369 			      phys_addr_t addr, phys_addr_t end)
370 {
371 	pmd_t *pmd;
372 	phys_addr_t next;
373 
374 	pmd = stage2_pmd_offset(pud, addr);
375 	do {
376 		next = stage2_pmd_addr_end(addr, end);
377 		if (!pmd_none(*pmd)) {
378 			if (pmd_thp_or_huge(*pmd))
379 				kvm_flush_dcache_pmd(*pmd);
380 			else
381 				stage2_flush_ptes(kvm, pmd, addr, next);
382 		}
383 	} while (pmd++, addr = next, addr != end);
384 }
385 
stage2_flush_puds(struct kvm * kvm,pgd_t * pgd,phys_addr_t addr,phys_addr_t end)386 static void stage2_flush_puds(struct kvm *kvm, pgd_t *pgd,
387 			      phys_addr_t addr, phys_addr_t end)
388 {
389 	pud_t *pud;
390 	phys_addr_t next;
391 
392 	pud = stage2_pud_offset(pgd, addr);
393 	do {
394 		next = stage2_pud_addr_end(addr, end);
395 		if (!stage2_pud_none(*pud)) {
396 			if (stage2_pud_huge(*pud))
397 				kvm_flush_dcache_pud(*pud);
398 			else
399 				stage2_flush_pmds(kvm, pud, addr, next);
400 		}
401 	} while (pud++, addr = next, addr != end);
402 }
403 
stage2_flush_memslot(struct kvm * kvm,struct kvm_memory_slot * memslot)404 static void stage2_flush_memslot(struct kvm *kvm,
405 				 struct kvm_memory_slot *memslot)
406 {
407 	phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
408 	phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
409 	phys_addr_t next;
410 	pgd_t *pgd;
411 
412 	pgd = kvm->arch.pgd + stage2_pgd_index(addr);
413 	do {
414 		next = stage2_pgd_addr_end(addr, end);
415 		stage2_flush_puds(kvm, pgd, addr, next);
416 	} while (pgd++, addr = next, addr != end);
417 }
418 
419 /**
420  * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
421  * @kvm: The struct kvm pointer
422  *
423  * Go through the stage 2 page tables and invalidate any cache lines
424  * backing memory already mapped to the VM.
425  */
stage2_flush_vm(struct kvm * kvm)426 static void stage2_flush_vm(struct kvm *kvm)
427 {
428 	struct kvm_memslots *slots;
429 	struct kvm_memory_slot *memslot;
430 	int idx;
431 
432 	idx = srcu_read_lock(&kvm->srcu);
433 	spin_lock(&kvm->mmu_lock);
434 
435 	slots = kvm_memslots(kvm);
436 	kvm_for_each_memslot(memslot, slots)
437 		stage2_flush_memslot(kvm, memslot);
438 
439 	spin_unlock(&kvm->mmu_lock);
440 	srcu_read_unlock(&kvm->srcu, idx);
441 }
442 
clear_hyp_pgd_entry(pgd_t * pgd)443 static void clear_hyp_pgd_entry(pgd_t *pgd)
444 {
445 	pud_t *pud_table __maybe_unused = pud_offset(pgd, 0UL);
446 	pgd_clear(pgd);
447 	pud_free(NULL, pud_table);
448 	put_page(virt_to_page(pgd));
449 }
450 
clear_hyp_pud_entry(pud_t * pud)451 static void clear_hyp_pud_entry(pud_t *pud)
452 {
453 	pmd_t *pmd_table __maybe_unused = pmd_offset(pud, 0);
454 	VM_BUG_ON(pud_huge(*pud));
455 	pud_clear(pud);
456 	pmd_free(NULL, pmd_table);
457 	put_page(virt_to_page(pud));
458 }
459 
clear_hyp_pmd_entry(pmd_t * pmd)460 static void clear_hyp_pmd_entry(pmd_t *pmd)
461 {
462 	pte_t *pte_table = pte_offset_kernel(pmd, 0);
463 	VM_BUG_ON(pmd_thp_or_huge(*pmd));
464 	pmd_clear(pmd);
465 	pte_free_kernel(NULL, pte_table);
466 	put_page(virt_to_page(pmd));
467 }
468 
unmap_hyp_ptes(pmd_t * pmd,phys_addr_t addr,phys_addr_t end)469 static void unmap_hyp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
470 {
471 	pte_t *pte, *start_pte;
472 
473 	start_pte = pte = pte_offset_kernel(pmd, addr);
474 	do {
475 		if (!pte_none(*pte)) {
476 			kvm_set_pte(pte, __pte(0));
477 			put_page(virt_to_page(pte));
478 		}
479 	} while (pte++, addr += PAGE_SIZE, addr != end);
480 
481 	if (hyp_pte_table_empty(start_pte))
482 		clear_hyp_pmd_entry(pmd);
483 }
484 
unmap_hyp_pmds(pud_t * pud,phys_addr_t addr,phys_addr_t end)485 static void unmap_hyp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
486 {
487 	phys_addr_t next;
488 	pmd_t *pmd, *start_pmd;
489 
490 	start_pmd = pmd = pmd_offset(pud, addr);
491 	do {
492 		next = pmd_addr_end(addr, end);
493 		/* Hyp doesn't use huge pmds */
494 		if (!pmd_none(*pmd))
495 			unmap_hyp_ptes(pmd, addr, next);
496 	} while (pmd++, addr = next, addr != end);
497 
498 	if (hyp_pmd_table_empty(start_pmd))
499 		clear_hyp_pud_entry(pud);
500 }
501 
unmap_hyp_puds(pgd_t * pgd,phys_addr_t addr,phys_addr_t end)502 static void unmap_hyp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
503 {
504 	phys_addr_t next;
505 	pud_t *pud, *start_pud;
506 
507 	start_pud = pud = pud_offset(pgd, addr);
508 	do {
509 		next = pud_addr_end(addr, end);
510 		/* Hyp doesn't use huge puds */
511 		if (!pud_none(*pud))
512 			unmap_hyp_pmds(pud, addr, next);
513 	} while (pud++, addr = next, addr != end);
514 
515 	if (hyp_pud_table_empty(start_pud))
516 		clear_hyp_pgd_entry(pgd);
517 }
518 
kvm_pgd_index(unsigned long addr,unsigned int ptrs_per_pgd)519 static unsigned int kvm_pgd_index(unsigned long addr, unsigned int ptrs_per_pgd)
520 {
521 	return (addr >> PGDIR_SHIFT) & (ptrs_per_pgd - 1);
522 }
523 
__unmap_hyp_range(pgd_t * pgdp,unsigned long ptrs_per_pgd,phys_addr_t start,u64 size)524 static void __unmap_hyp_range(pgd_t *pgdp, unsigned long ptrs_per_pgd,
525 			      phys_addr_t start, u64 size)
526 {
527 	pgd_t *pgd;
528 	phys_addr_t addr = start, end = start + size;
529 	phys_addr_t next;
530 
531 	/*
532 	 * We don't unmap anything from HYP, except at the hyp tear down.
533 	 * Hence, we don't have to invalidate the TLBs here.
534 	 */
535 	pgd = pgdp + kvm_pgd_index(addr, ptrs_per_pgd);
536 	do {
537 		next = pgd_addr_end(addr, end);
538 		if (!pgd_none(*pgd))
539 			unmap_hyp_puds(pgd, addr, next);
540 	} while (pgd++, addr = next, addr != end);
541 }
542 
unmap_hyp_range(pgd_t * pgdp,phys_addr_t start,u64 size)543 static void unmap_hyp_range(pgd_t *pgdp, phys_addr_t start, u64 size)
544 {
545 	__unmap_hyp_range(pgdp, PTRS_PER_PGD, start, size);
546 }
547 
unmap_hyp_idmap_range(pgd_t * pgdp,phys_addr_t start,u64 size)548 static void unmap_hyp_idmap_range(pgd_t *pgdp, phys_addr_t start, u64 size)
549 {
550 	__unmap_hyp_range(pgdp, __kvm_idmap_ptrs_per_pgd(), start, size);
551 }
552 
553 /**
554  * free_hyp_pgds - free Hyp-mode page tables
555  *
556  * Assumes hyp_pgd is a page table used strictly in Hyp-mode and
557  * therefore contains either mappings in the kernel memory area (above
558  * PAGE_OFFSET), or device mappings in the idmap range.
559  *
560  * boot_hyp_pgd should only map the idmap range, and is only used in
561  * the extended idmap case.
562  */
free_hyp_pgds(void)563 void free_hyp_pgds(void)
564 {
565 	pgd_t *id_pgd;
566 
567 	mutex_lock(&kvm_hyp_pgd_mutex);
568 
569 	id_pgd = boot_hyp_pgd ? boot_hyp_pgd : hyp_pgd;
570 
571 	if (id_pgd) {
572 		/* In case we never called hyp_mmu_init() */
573 		if (!io_map_base)
574 			io_map_base = hyp_idmap_start;
575 		unmap_hyp_idmap_range(id_pgd, io_map_base,
576 				      hyp_idmap_start + PAGE_SIZE - io_map_base);
577 	}
578 
579 	if (boot_hyp_pgd) {
580 		free_pages((unsigned long)boot_hyp_pgd, hyp_pgd_order);
581 		boot_hyp_pgd = NULL;
582 	}
583 
584 	if (hyp_pgd) {
585 		unmap_hyp_range(hyp_pgd, kern_hyp_va(PAGE_OFFSET),
586 				(uintptr_t)high_memory - PAGE_OFFSET);
587 
588 		free_pages((unsigned long)hyp_pgd, hyp_pgd_order);
589 		hyp_pgd = NULL;
590 	}
591 	if (merged_hyp_pgd) {
592 		clear_page(merged_hyp_pgd);
593 		free_page((unsigned long)merged_hyp_pgd);
594 		merged_hyp_pgd = NULL;
595 	}
596 
597 	mutex_unlock(&kvm_hyp_pgd_mutex);
598 }
599 
create_hyp_pte_mappings(pmd_t * pmd,unsigned long start,unsigned long end,unsigned long pfn,pgprot_t prot)600 static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start,
601 				    unsigned long end, unsigned long pfn,
602 				    pgprot_t prot)
603 {
604 	pte_t *pte;
605 	unsigned long addr;
606 
607 	addr = start;
608 	do {
609 		pte = pte_offset_kernel(pmd, addr);
610 		kvm_set_pte(pte, pfn_pte(pfn, prot));
611 		get_page(virt_to_page(pte));
612 		pfn++;
613 	} while (addr += PAGE_SIZE, addr != end);
614 }
615 
create_hyp_pmd_mappings(pud_t * pud,unsigned long start,unsigned long end,unsigned long pfn,pgprot_t prot)616 static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start,
617 				   unsigned long end, unsigned long pfn,
618 				   pgprot_t prot)
619 {
620 	pmd_t *pmd;
621 	pte_t *pte;
622 	unsigned long addr, next;
623 
624 	addr = start;
625 	do {
626 		pmd = pmd_offset(pud, addr);
627 
628 		BUG_ON(pmd_sect(*pmd));
629 
630 		if (pmd_none(*pmd)) {
631 			pte = pte_alloc_one_kernel(NULL, addr);
632 			if (!pte) {
633 				kvm_err("Cannot allocate Hyp pte\n");
634 				return -ENOMEM;
635 			}
636 			kvm_pmd_populate(pmd, pte);
637 			get_page(virt_to_page(pmd));
638 		}
639 
640 		next = pmd_addr_end(addr, end);
641 
642 		create_hyp_pte_mappings(pmd, addr, next, pfn, prot);
643 		pfn += (next - addr) >> PAGE_SHIFT;
644 	} while (addr = next, addr != end);
645 
646 	return 0;
647 }
648 
create_hyp_pud_mappings(pgd_t * pgd,unsigned long start,unsigned long end,unsigned long pfn,pgprot_t prot)649 static int create_hyp_pud_mappings(pgd_t *pgd, unsigned long start,
650 				   unsigned long end, unsigned long pfn,
651 				   pgprot_t prot)
652 {
653 	pud_t *pud;
654 	pmd_t *pmd;
655 	unsigned long addr, next;
656 	int ret;
657 
658 	addr = start;
659 	do {
660 		pud = pud_offset(pgd, addr);
661 
662 		if (pud_none_or_clear_bad(pud)) {
663 			pmd = pmd_alloc_one(NULL, addr);
664 			if (!pmd) {
665 				kvm_err("Cannot allocate Hyp pmd\n");
666 				return -ENOMEM;
667 			}
668 			kvm_pud_populate(pud, pmd);
669 			get_page(virt_to_page(pud));
670 		}
671 
672 		next = pud_addr_end(addr, end);
673 		ret = create_hyp_pmd_mappings(pud, addr, next, pfn, prot);
674 		if (ret)
675 			return ret;
676 		pfn += (next - addr) >> PAGE_SHIFT;
677 	} while (addr = next, addr != end);
678 
679 	return 0;
680 }
681 
__create_hyp_mappings(pgd_t * pgdp,unsigned long ptrs_per_pgd,unsigned long start,unsigned long end,unsigned long pfn,pgprot_t prot)682 static int __create_hyp_mappings(pgd_t *pgdp, unsigned long ptrs_per_pgd,
683 				 unsigned long start, unsigned long end,
684 				 unsigned long pfn, pgprot_t prot)
685 {
686 	pgd_t *pgd;
687 	pud_t *pud;
688 	unsigned long addr, next;
689 	int err = 0;
690 
691 	mutex_lock(&kvm_hyp_pgd_mutex);
692 	addr = start & PAGE_MASK;
693 	end = PAGE_ALIGN(end);
694 	do {
695 		pgd = pgdp + kvm_pgd_index(addr, ptrs_per_pgd);
696 
697 		if (pgd_none(*pgd)) {
698 			pud = pud_alloc_one(NULL, addr);
699 			if (!pud) {
700 				kvm_err("Cannot allocate Hyp pud\n");
701 				err = -ENOMEM;
702 				goto out;
703 			}
704 			kvm_pgd_populate(pgd, pud);
705 			get_page(virt_to_page(pgd));
706 		}
707 
708 		next = pgd_addr_end(addr, end);
709 		err = create_hyp_pud_mappings(pgd, addr, next, pfn, prot);
710 		if (err)
711 			goto out;
712 		pfn += (next - addr) >> PAGE_SHIFT;
713 	} while (addr = next, addr != end);
714 out:
715 	mutex_unlock(&kvm_hyp_pgd_mutex);
716 	return err;
717 }
718 
kvm_kaddr_to_phys(void * kaddr)719 static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
720 {
721 	if (!is_vmalloc_addr(kaddr)) {
722 		BUG_ON(!virt_addr_valid(kaddr));
723 		return __pa(kaddr);
724 	} else {
725 		return page_to_phys(vmalloc_to_page(kaddr)) +
726 		       offset_in_page(kaddr);
727 	}
728 }
729 
730 /**
731  * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
732  * @from:	The virtual kernel start address of the range
733  * @to:		The virtual kernel end address of the range (exclusive)
734  * @prot:	The protection to be applied to this range
735  *
736  * The same virtual address as the kernel virtual address is also used
737  * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
738  * physical pages.
739  */
create_hyp_mappings(void * from,void * to,pgprot_t prot)740 int create_hyp_mappings(void *from, void *to, pgprot_t prot)
741 {
742 	phys_addr_t phys_addr;
743 	unsigned long virt_addr;
744 	unsigned long start = kern_hyp_va((unsigned long)from);
745 	unsigned long end = kern_hyp_va((unsigned long)to);
746 
747 	if (is_kernel_in_hyp_mode())
748 		return 0;
749 
750 	start = start & PAGE_MASK;
751 	end = PAGE_ALIGN(end);
752 
753 	for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
754 		int err;
755 
756 		phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
757 		err = __create_hyp_mappings(hyp_pgd, PTRS_PER_PGD,
758 					    virt_addr, virt_addr + PAGE_SIZE,
759 					    __phys_to_pfn(phys_addr),
760 					    prot);
761 		if (err)
762 			return err;
763 	}
764 
765 	return 0;
766 }
767 
__create_hyp_private_mapping(phys_addr_t phys_addr,size_t size,unsigned long * haddr,pgprot_t prot)768 static int __create_hyp_private_mapping(phys_addr_t phys_addr, size_t size,
769 					unsigned long *haddr, pgprot_t prot)
770 {
771 	pgd_t *pgd = hyp_pgd;
772 	unsigned long base;
773 	int ret = 0;
774 
775 	mutex_lock(&kvm_hyp_pgd_mutex);
776 
777 	/*
778 	 * This assumes that we we have enough space below the idmap
779 	 * page to allocate our VAs. If not, the check below will
780 	 * kick. A potential alternative would be to detect that
781 	 * overflow and switch to an allocation above the idmap.
782 	 *
783 	 * The allocated size is always a multiple of PAGE_SIZE.
784 	 */
785 	size = PAGE_ALIGN(size + offset_in_page(phys_addr));
786 	base = io_map_base - size;
787 
788 	/*
789 	 * Verify that BIT(VA_BITS - 1) hasn't been flipped by
790 	 * allocating the new area, as it would indicate we've
791 	 * overflowed the idmap/IO address range.
792 	 */
793 	if ((base ^ io_map_base) & BIT(VA_BITS - 1))
794 		ret = -ENOMEM;
795 	else
796 		io_map_base = base;
797 
798 	mutex_unlock(&kvm_hyp_pgd_mutex);
799 
800 	if (ret)
801 		goto out;
802 
803 	if (__kvm_cpu_uses_extended_idmap())
804 		pgd = boot_hyp_pgd;
805 
806 	ret = __create_hyp_mappings(pgd, __kvm_idmap_ptrs_per_pgd(),
807 				    base, base + size,
808 				    __phys_to_pfn(phys_addr), prot);
809 	if (ret)
810 		goto out;
811 
812 	*haddr = base + offset_in_page(phys_addr);
813 
814 out:
815 	return ret;
816 }
817 
818 /**
819  * create_hyp_io_mappings - Map IO into both kernel and HYP
820  * @phys_addr:	The physical start address which gets mapped
821  * @size:	Size of the region being mapped
822  * @kaddr:	Kernel VA for this mapping
823  * @haddr:	HYP VA for this mapping
824  */
create_hyp_io_mappings(phys_addr_t phys_addr,size_t size,void __iomem ** kaddr,void __iomem ** haddr)825 int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
826 			   void __iomem **kaddr,
827 			   void __iomem **haddr)
828 {
829 	unsigned long addr;
830 	int ret;
831 
832 	*kaddr = ioremap(phys_addr, size);
833 	if (!*kaddr)
834 		return -ENOMEM;
835 
836 	if (is_kernel_in_hyp_mode()) {
837 		*haddr = *kaddr;
838 		return 0;
839 	}
840 
841 	ret = __create_hyp_private_mapping(phys_addr, size,
842 					   &addr, PAGE_HYP_DEVICE);
843 	if (ret) {
844 		iounmap(*kaddr);
845 		*kaddr = NULL;
846 		*haddr = NULL;
847 		return ret;
848 	}
849 
850 	*haddr = (void __iomem *)addr;
851 	return 0;
852 }
853 
854 /**
855  * create_hyp_exec_mappings - Map an executable range into HYP
856  * @phys_addr:	The physical start address which gets mapped
857  * @size:	Size of the region being mapped
858  * @haddr:	HYP VA for this mapping
859  */
create_hyp_exec_mappings(phys_addr_t phys_addr,size_t size,void ** haddr)860 int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
861 			     void **haddr)
862 {
863 	unsigned long addr;
864 	int ret;
865 
866 	BUG_ON(is_kernel_in_hyp_mode());
867 
868 	ret = __create_hyp_private_mapping(phys_addr, size,
869 					   &addr, PAGE_HYP_EXEC);
870 	if (ret) {
871 		*haddr = NULL;
872 		return ret;
873 	}
874 
875 	*haddr = (void *)addr;
876 	return 0;
877 }
878 
879 /**
880  * kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation.
881  * @kvm:	The KVM struct pointer for the VM.
882  *
883  * Allocates only the stage-2 HW PGD level table(s) (can support either full
884  * 40-bit input addresses or limited to 32-bit input addresses). Clears the
885  * allocated pages.
886  *
887  * Note we don't need locking here as this is only called when the VM is
888  * created, which can only be done once.
889  */
kvm_alloc_stage2_pgd(struct kvm * kvm)890 int kvm_alloc_stage2_pgd(struct kvm *kvm)
891 {
892 	pgd_t *pgd;
893 
894 	if (kvm->arch.pgd != NULL) {
895 		kvm_err("kvm_arch already initialized?\n");
896 		return -EINVAL;
897 	}
898 
899 	/* Allocate the HW PGD, making sure that each page gets its own refcount */
900 	pgd = alloc_pages_exact(S2_PGD_SIZE, GFP_KERNEL | __GFP_ZERO);
901 	if (!pgd)
902 		return -ENOMEM;
903 
904 	kvm->arch.pgd = pgd;
905 	return 0;
906 }
907 
stage2_unmap_memslot(struct kvm * kvm,struct kvm_memory_slot * memslot)908 static void stage2_unmap_memslot(struct kvm *kvm,
909 				 struct kvm_memory_slot *memslot)
910 {
911 	hva_t hva = memslot->userspace_addr;
912 	phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
913 	phys_addr_t size = PAGE_SIZE * memslot->npages;
914 	hva_t reg_end = hva + size;
915 
916 	/*
917 	 * A memory region could potentially cover multiple VMAs, and any holes
918 	 * between them, so iterate over all of them to find out if we should
919 	 * unmap any of them.
920 	 *
921 	 *     +--------------------------------------------+
922 	 * +---------------+----------------+   +----------------+
923 	 * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
924 	 * +---------------+----------------+   +----------------+
925 	 *     |               memory region                |
926 	 *     +--------------------------------------------+
927 	 */
928 	do {
929 		struct vm_area_struct *vma = find_vma(current->mm, hva);
930 		hva_t vm_start, vm_end;
931 
932 		if (!vma || vma->vm_start >= reg_end)
933 			break;
934 
935 		/*
936 		 * Take the intersection of this VMA with the memory region
937 		 */
938 		vm_start = max(hva, vma->vm_start);
939 		vm_end = min(reg_end, vma->vm_end);
940 
941 		if (!(vma->vm_flags & VM_PFNMAP)) {
942 			gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
943 			unmap_stage2_range(kvm, gpa, vm_end - vm_start);
944 		}
945 		hva = vm_end;
946 	} while (hva < reg_end);
947 }
948 
949 /**
950  * stage2_unmap_vm - Unmap Stage-2 RAM mappings
951  * @kvm: The struct kvm pointer
952  *
953  * Go through the memregions and unmap any reguler RAM
954  * backing memory already mapped to the VM.
955  */
stage2_unmap_vm(struct kvm * kvm)956 void stage2_unmap_vm(struct kvm *kvm)
957 {
958 	struct kvm_memslots *slots;
959 	struct kvm_memory_slot *memslot;
960 	int idx;
961 
962 	idx = srcu_read_lock(&kvm->srcu);
963 	down_read(&current->mm->mmap_sem);
964 	spin_lock(&kvm->mmu_lock);
965 
966 	slots = kvm_memslots(kvm);
967 	kvm_for_each_memslot(memslot, slots)
968 		stage2_unmap_memslot(kvm, memslot);
969 
970 	spin_unlock(&kvm->mmu_lock);
971 	up_read(&current->mm->mmap_sem);
972 	srcu_read_unlock(&kvm->srcu, idx);
973 }
974 
975 /**
976  * kvm_free_stage2_pgd - free all stage-2 tables
977  * @kvm:	The KVM struct pointer for the VM.
978  *
979  * Walks the level-1 page table pointed to by kvm->arch.pgd and frees all
980  * underlying level-2 and level-3 tables before freeing the actual level-1 table
981  * and setting the struct pointer to NULL.
982  */
kvm_free_stage2_pgd(struct kvm * kvm)983 void kvm_free_stage2_pgd(struct kvm *kvm)
984 {
985 	void *pgd = NULL;
986 
987 	spin_lock(&kvm->mmu_lock);
988 	if (kvm->arch.pgd) {
989 		unmap_stage2_range(kvm, 0, KVM_PHYS_SIZE);
990 		pgd = READ_ONCE(kvm->arch.pgd);
991 		kvm->arch.pgd = NULL;
992 	}
993 	spin_unlock(&kvm->mmu_lock);
994 
995 	/* Free the HW pgd, one page at a time */
996 	if (pgd)
997 		free_pages_exact(pgd, S2_PGD_SIZE);
998 }
999 
stage2_get_pud(struct kvm * kvm,struct kvm_mmu_memory_cache * cache,phys_addr_t addr)1000 static pud_t *stage2_get_pud(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
1001 			     phys_addr_t addr)
1002 {
1003 	pgd_t *pgd;
1004 	pud_t *pud;
1005 
1006 	pgd = kvm->arch.pgd + stage2_pgd_index(addr);
1007 	if (WARN_ON(stage2_pgd_none(*pgd))) {
1008 		if (!cache)
1009 			return NULL;
1010 		pud = mmu_memory_cache_alloc(cache);
1011 		stage2_pgd_populate(pgd, pud);
1012 		get_page(virt_to_page(pgd));
1013 	}
1014 
1015 	return stage2_pud_offset(pgd, addr);
1016 }
1017 
stage2_get_pmd(struct kvm * kvm,struct kvm_mmu_memory_cache * cache,phys_addr_t addr)1018 static pmd_t *stage2_get_pmd(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
1019 			     phys_addr_t addr)
1020 {
1021 	pud_t *pud;
1022 	pmd_t *pmd;
1023 
1024 	pud = stage2_get_pud(kvm, cache, addr);
1025 	if (!pud)
1026 		return NULL;
1027 
1028 	if (stage2_pud_none(*pud)) {
1029 		if (!cache)
1030 			return NULL;
1031 		pmd = mmu_memory_cache_alloc(cache);
1032 		stage2_pud_populate(pud, pmd);
1033 		get_page(virt_to_page(pud));
1034 	}
1035 
1036 	return stage2_pmd_offset(pud, addr);
1037 }
1038 
stage2_set_pmd_huge(struct kvm * kvm,struct kvm_mmu_memory_cache * cache,phys_addr_t addr,const pmd_t * new_pmd)1039 static int stage2_set_pmd_huge(struct kvm *kvm, struct kvm_mmu_memory_cache
1040 			       *cache, phys_addr_t addr, const pmd_t *new_pmd)
1041 {
1042 	pmd_t *pmd, old_pmd;
1043 
1044 	pmd = stage2_get_pmd(kvm, cache, addr);
1045 	VM_BUG_ON(!pmd);
1046 
1047 	old_pmd = *pmd;
1048 	if (pmd_present(old_pmd)) {
1049 		/*
1050 		 * Multiple vcpus faulting on the same PMD entry, can
1051 		 * lead to them sequentially updating the PMD with the
1052 		 * same value. Following the break-before-make
1053 		 * (pmd_clear() followed by tlb_flush()) process can
1054 		 * hinder forward progress due to refaults generated
1055 		 * on missing translations.
1056 		 *
1057 		 * Skip updating the page table if the entry is
1058 		 * unchanged.
1059 		 */
1060 		if (pmd_val(old_pmd) == pmd_val(*new_pmd))
1061 			return 0;
1062 
1063 		/*
1064 		 * Mapping in huge pages should only happen through a
1065 		 * fault.  If a page is merged into a transparent huge
1066 		 * page, the individual subpages of that huge page
1067 		 * should be unmapped through MMU notifiers before we
1068 		 * get here.
1069 		 *
1070 		 * Merging of CompoundPages is not supported; they
1071 		 * should become splitting first, unmapped, merged,
1072 		 * and mapped back in on-demand.
1073 		 */
1074 		VM_BUG_ON(pmd_pfn(old_pmd) != pmd_pfn(*new_pmd));
1075 
1076 		pmd_clear(pmd);
1077 		kvm_tlb_flush_vmid_ipa(kvm, addr);
1078 	} else {
1079 		get_page(virt_to_page(pmd));
1080 	}
1081 
1082 	kvm_set_pmd(pmd, *new_pmd);
1083 	return 0;
1084 }
1085 
stage2_is_exec(struct kvm * kvm,phys_addr_t addr)1086 static bool stage2_is_exec(struct kvm *kvm, phys_addr_t addr)
1087 {
1088 	pmd_t *pmdp;
1089 	pte_t *ptep;
1090 
1091 	pmdp = stage2_get_pmd(kvm, NULL, addr);
1092 	if (!pmdp || pmd_none(*pmdp) || !pmd_present(*pmdp))
1093 		return false;
1094 
1095 	if (pmd_thp_or_huge(*pmdp))
1096 		return kvm_s2pmd_exec(pmdp);
1097 
1098 	ptep = pte_offset_kernel(pmdp, addr);
1099 	if (!ptep || pte_none(*ptep) || !pte_present(*ptep))
1100 		return false;
1101 
1102 	return kvm_s2pte_exec(ptep);
1103 }
1104 
stage2_set_pte(struct kvm * kvm,struct kvm_mmu_memory_cache * cache,phys_addr_t addr,const pte_t * new_pte,unsigned long flags)1105 static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
1106 			  phys_addr_t addr, const pte_t *new_pte,
1107 			  unsigned long flags)
1108 {
1109 	pmd_t *pmd;
1110 	pte_t *pte, old_pte;
1111 	bool iomap = flags & KVM_S2PTE_FLAG_IS_IOMAP;
1112 	bool logging_active = flags & KVM_S2_FLAG_LOGGING_ACTIVE;
1113 
1114 	VM_BUG_ON(logging_active && !cache);
1115 
1116 	/* Create stage-2 page table mapping - Levels 0 and 1 */
1117 	pmd = stage2_get_pmd(kvm, cache, addr);
1118 	if (!pmd) {
1119 		/*
1120 		 * Ignore calls from kvm_set_spte_hva for unallocated
1121 		 * address ranges.
1122 		 */
1123 		return 0;
1124 	}
1125 
1126 	/*
1127 	 * While dirty page logging - dissolve huge PMD, then continue on to
1128 	 * allocate page.
1129 	 */
1130 	if (logging_active)
1131 		stage2_dissolve_pmd(kvm, addr, pmd);
1132 
1133 	/* Create stage-2 page mappings - Level 2 */
1134 	if (pmd_none(*pmd)) {
1135 		if (!cache)
1136 			return 0; /* ignore calls from kvm_set_spte_hva */
1137 		pte = mmu_memory_cache_alloc(cache);
1138 		kvm_pmd_populate(pmd, pte);
1139 		get_page(virt_to_page(pmd));
1140 	}
1141 
1142 	pte = pte_offset_kernel(pmd, addr);
1143 
1144 	if (iomap && pte_present(*pte))
1145 		return -EFAULT;
1146 
1147 	/* Create 2nd stage page table mapping - Level 3 */
1148 	old_pte = *pte;
1149 	if (pte_present(old_pte)) {
1150 		/* Skip page table update if there is no change */
1151 		if (pte_val(old_pte) == pte_val(*new_pte))
1152 			return 0;
1153 
1154 		kvm_set_pte(pte, __pte(0));
1155 		kvm_tlb_flush_vmid_ipa(kvm, addr);
1156 	} else {
1157 		get_page(virt_to_page(pte));
1158 	}
1159 
1160 	kvm_set_pte(pte, *new_pte);
1161 	return 0;
1162 }
1163 
1164 #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
stage2_ptep_test_and_clear_young(pte_t * pte)1165 static int stage2_ptep_test_and_clear_young(pte_t *pte)
1166 {
1167 	if (pte_young(*pte)) {
1168 		*pte = pte_mkold(*pte);
1169 		return 1;
1170 	}
1171 	return 0;
1172 }
1173 #else
stage2_ptep_test_and_clear_young(pte_t * pte)1174 static int stage2_ptep_test_and_clear_young(pte_t *pte)
1175 {
1176 	return __ptep_test_and_clear_young(pte);
1177 }
1178 #endif
1179 
stage2_pmdp_test_and_clear_young(pmd_t * pmd)1180 static int stage2_pmdp_test_and_clear_young(pmd_t *pmd)
1181 {
1182 	return stage2_ptep_test_and_clear_young((pte_t *)pmd);
1183 }
1184 
1185 /**
1186  * kvm_phys_addr_ioremap - map a device range to guest IPA
1187  *
1188  * @kvm:	The KVM pointer
1189  * @guest_ipa:	The IPA at which to insert the mapping
1190  * @pa:		The physical address of the device
1191  * @size:	The size of the mapping
1192  */
kvm_phys_addr_ioremap(struct kvm * kvm,phys_addr_t guest_ipa,phys_addr_t pa,unsigned long size,bool writable)1193 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
1194 			  phys_addr_t pa, unsigned long size, bool writable)
1195 {
1196 	phys_addr_t addr, end;
1197 	int ret = 0;
1198 	unsigned long pfn;
1199 	struct kvm_mmu_memory_cache cache = { 0, };
1200 
1201 	end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK;
1202 	pfn = __phys_to_pfn(pa);
1203 
1204 	for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) {
1205 		pte_t pte = pfn_pte(pfn, PAGE_S2_DEVICE);
1206 
1207 		if (writable)
1208 			pte = kvm_s2pte_mkwrite(pte);
1209 
1210 		ret = mmu_topup_memory_cache(&cache, KVM_MMU_CACHE_MIN_PAGES,
1211 						KVM_NR_MEM_OBJS);
1212 		if (ret)
1213 			goto out;
1214 		spin_lock(&kvm->mmu_lock);
1215 		ret = stage2_set_pte(kvm, &cache, addr, &pte,
1216 						KVM_S2PTE_FLAG_IS_IOMAP);
1217 		spin_unlock(&kvm->mmu_lock);
1218 		if (ret)
1219 			goto out;
1220 
1221 		pfn++;
1222 	}
1223 
1224 out:
1225 	mmu_free_memory_cache(&cache);
1226 	return ret;
1227 }
1228 
transparent_hugepage_adjust(kvm_pfn_t * pfnp,phys_addr_t * ipap)1229 static bool transparent_hugepage_adjust(kvm_pfn_t *pfnp, phys_addr_t *ipap)
1230 {
1231 	kvm_pfn_t pfn = *pfnp;
1232 	gfn_t gfn = *ipap >> PAGE_SHIFT;
1233 
1234 	if (PageTransCompoundMap(pfn_to_page(pfn))) {
1235 		unsigned long mask;
1236 		/*
1237 		 * The address we faulted on is backed by a transparent huge
1238 		 * page.  However, because we map the compound huge page and
1239 		 * not the individual tail page, we need to transfer the
1240 		 * refcount to the head page.  We have to be careful that the
1241 		 * THP doesn't start to split while we are adjusting the
1242 		 * refcounts.
1243 		 *
1244 		 * We are sure this doesn't happen, because mmu_notifier_retry
1245 		 * was successful and we are holding the mmu_lock, so if this
1246 		 * THP is trying to split, it will be blocked in the mmu
1247 		 * notifier before touching any of the pages, specifically
1248 		 * before being able to call __split_huge_page_refcount().
1249 		 *
1250 		 * We can therefore safely transfer the refcount from PG_tail
1251 		 * to PG_head and switch the pfn from a tail page to the head
1252 		 * page accordingly.
1253 		 */
1254 		mask = PTRS_PER_PMD - 1;
1255 		VM_BUG_ON((gfn & mask) != (pfn & mask));
1256 		if (pfn & mask) {
1257 			*ipap &= PMD_MASK;
1258 			kvm_release_pfn_clean(pfn);
1259 			pfn &= ~mask;
1260 			kvm_get_pfn(pfn);
1261 			*pfnp = pfn;
1262 		}
1263 
1264 		return true;
1265 	}
1266 
1267 	return false;
1268 }
1269 
kvm_is_write_fault(struct kvm_vcpu * vcpu)1270 static bool kvm_is_write_fault(struct kvm_vcpu *vcpu)
1271 {
1272 	if (kvm_vcpu_trap_is_iabt(vcpu))
1273 		return false;
1274 
1275 	return kvm_vcpu_dabt_iswrite(vcpu);
1276 }
1277 
1278 /**
1279  * stage2_wp_ptes - write protect PMD range
1280  * @pmd:	pointer to pmd entry
1281  * @addr:	range start address
1282  * @end:	range end address
1283  */
stage2_wp_ptes(pmd_t * pmd,phys_addr_t addr,phys_addr_t end)1284 static void stage2_wp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
1285 {
1286 	pte_t *pte;
1287 
1288 	pte = pte_offset_kernel(pmd, addr);
1289 	do {
1290 		if (!pte_none(*pte)) {
1291 			if (!kvm_s2pte_readonly(pte))
1292 				kvm_set_s2pte_readonly(pte);
1293 		}
1294 	} while (pte++, addr += PAGE_SIZE, addr != end);
1295 }
1296 
1297 /**
1298  * stage2_wp_pmds - write protect PUD range
1299  * @pud:	pointer to pud entry
1300  * @addr:	range start address
1301  * @end:	range end address
1302  */
stage2_wp_pmds(pud_t * pud,phys_addr_t addr,phys_addr_t end)1303 static void stage2_wp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
1304 {
1305 	pmd_t *pmd;
1306 	phys_addr_t next;
1307 
1308 	pmd = stage2_pmd_offset(pud, addr);
1309 
1310 	do {
1311 		next = stage2_pmd_addr_end(addr, end);
1312 		if (!pmd_none(*pmd)) {
1313 			if (pmd_thp_or_huge(*pmd)) {
1314 				if (!kvm_s2pmd_readonly(pmd))
1315 					kvm_set_s2pmd_readonly(pmd);
1316 			} else {
1317 				stage2_wp_ptes(pmd, addr, next);
1318 			}
1319 		}
1320 	} while (pmd++, addr = next, addr != end);
1321 }
1322 
1323 /**
1324   * stage2_wp_puds - write protect PGD range
1325   * @pgd:	pointer to pgd entry
1326   * @addr:	range start address
1327   * @end:	range end address
1328   *
1329   * Process PUD entries, for a huge PUD we cause a panic.
1330   */
stage2_wp_puds(pgd_t * pgd,phys_addr_t addr,phys_addr_t end)1331 static void  stage2_wp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
1332 {
1333 	pud_t *pud;
1334 	phys_addr_t next;
1335 
1336 	pud = stage2_pud_offset(pgd, addr);
1337 	do {
1338 		next = stage2_pud_addr_end(addr, end);
1339 		if (!stage2_pud_none(*pud)) {
1340 			/* TODO:PUD not supported, revisit later if supported */
1341 			BUG_ON(stage2_pud_huge(*pud));
1342 			stage2_wp_pmds(pud, addr, next);
1343 		}
1344 	} while (pud++, addr = next, addr != end);
1345 }
1346 
1347 /**
1348  * stage2_wp_range() - write protect stage2 memory region range
1349  * @kvm:	The KVM pointer
1350  * @addr:	Start address of range
1351  * @end:	End address of range
1352  */
stage2_wp_range(struct kvm * kvm,phys_addr_t addr,phys_addr_t end)1353 static void stage2_wp_range(struct kvm *kvm, phys_addr_t addr, phys_addr_t end)
1354 {
1355 	pgd_t *pgd;
1356 	phys_addr_t next;
1357 
1358 	pgd = kvm->arch.pgd + stage2_pgd_index(addr);
1359 	do {
1360 		/*
1361 		 * Release kvm_mmu_lock periodically if the memory region is
1362 		 * large. Otherwise, we may see kernel panics with
1363 		 * CONFIG_DETECT_HUNG_TASK, CONFIG_LOCKUP_DETECTOR,
1364 		 * CONFIG_LOCKDEP. Additionally, holding the lock too long
1365 		 * will also starve other vCPUs. We have to also make sure
1366 		 * that the page tables are not freed while we released
1367 		 * the lock.
1368 		 */
1369 		cond_resched_lock(&kvm->mmu_lock);
1370 		if (!READ_ONCE(kvm->arch.pgd))
1371 			break;
1372 		next = stage2_pgd_addr_end(addr, end);
1373 		if (stage2_pgd_present(*pgd))
1374 			stage2_wp_puds(pgd, addr, next);
1375 	} while (pgd++, addr = next, addr != end);
1376 }
1377 
1378 /**
1379  * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
1380  * @kvm:	The KVM pointer
1381  * @slot:	The memory slot to write protect
1382  *
1383  * Called to start logging dirty pages after memory region
1384  * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
1385  * all present PMD and PTEs are write protected in the memory region.
1386  * Afterwards read of dirty page log can be called.
1387  *
1388  * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
1389  * serializing operations for VM memory regions.
1390  */
kvm_mmu_wp_memory_region(struct kvm * kvm,int slot)1391 void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
1392 {
1393 	struct kvm_memslots *slots = kvm_memslots(kvm);
1394 	struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
1395 	phys_addr_t start = memslot->base_gfn << PAGE_SHIFT;
1396 	phys_addr_t end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
1397 
1398 	spin_lock(&kvm->mmu_lock);
1399 	stage2_wp_range(kvm, start, end);
1400 	spin_unlock(&kvm->mmu_lock);
1401 	kvm_flush_remote_tlbs(kvm);
1402 }
1403 
1404 /**
1405  * kvm_mmu_write_protect_pt_masked() - write protect dirty pages
1406  * @kvm:	The KVM pointer
1407  * @slot:	The memory slot associated with mask
1408  * @gfn_offset:	The gfn offset in memory slot
1409  * @mask:	The mask of dirty pages at offset 'gfn_offset' in this memory
1410  *		slot to be write protected
1411  *
1412  * Walks bits set in mask write protects the associated pte's. Caller must
1413  * acquire kvm_mmu_lock.
1414  */
kvm_mmu_write_protect_pt_masked(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn_offset,unsigned long mask)1415 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1416 		struct kvm_memory_slot *slot,
1417 		gfn_t gfn_offset, unsigned long mask)
1418 {
1419 	phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
1420 	phys_addr_t start = (base_gfn +  __ffs(mask)) << PAGE_SHIFT;
1421 	phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
1422 
1423 	stage2_wp_range(kvm, start, end);
1424 }
1425 
1426 /*
1427  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1428  * dirty pages.
1429  *
1430  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1431  * enable dirty logging for them.
1432  */
kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn_offset,unsigned long mask)1433 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1434 		struct kvm_memory_slot *slot,
1435 		gfn_t gfn_offset, unsigned long mask)
1436 {
1437 	kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1438 }
1439 
clean_dcache_guest_page(kvm_pfn_t pfn,unsigned long size)1440 static void clean_dcache_guest_page(kvm_pfn_t pfn, unsigned long size)
1441 {
1442 	__clean_dcache_guest_page(pfn, size);
1443 }
1444 
invalidate_icache_guest_page(kvm_pfn_t pfn,unsigned long size)1445 static void invalidate_icache_guest_page(kvm_pfn_t pfn, unsigned long size)
1446 {
1447 	__invalidate_icache_guest_page(pfn, size);
1448 }
1449 
kvm_send_hwpoison_signal(unsigned long address,struct vm_area_struct * vma)1450 static void kvm_send_hwpoison_signal(unsigned long address,
1451 				     struct vm_area_struct *vma)
1452 {
1453 	siginfo_t info;
1454 
1455 	clear_siginfo(&info);
1456 	info.si_signo   = SIGBUS;
1457 	info.si_errno   = 0;
1458 	info.si_code    = BUS_MCEERR_AR;
1459 	info.si_addr    = (void __user *)address;
1460 
1461 	if (is_vm_hugetlb_page(vma))
1462 		info.si_addr_lsb = huge_page_shift(hstate_vma(vma));
1463 	else
1464 		info.si_addr_lsb = PAGE_SHIFT;
1465 
1466 	send_sig_info(SIGBUS, &info, current);
1467 }
1468 
user_mem_abort(struct kvm_vcpu * vcpu,phys_addr_t fault_ipa,struct kvm_memory_slot * memslot,unsigned long hva,unsigned long fault_status)1469 static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
1470 			  struct kvm_memory_slot *memslot, unsigned long hva,
1471 			  unsigned long fault_status)
1472 {
1473 	int ret;
1474 	bool write_fault, exec_fault, writable, hugetlb = false, force_pte = false;
1475 	unsigned long mmu_seq;
1476 	gfn_t gfn = fault_ipa >> PAGE_SHIFT;
1477 	struct kvm *kvm = vcpu->kvm;
1478 	struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
1479 	struct vm_area_struct *vma;
1480 	kvm_pfn_t pfn;
1481 	pgprot_t mem_type = PAGE_S2;
1482 	bool logging_active = memslot_is_logging(memslot);
1483 	unsigned long flags = 0;
1484 
1485 	write_fault = kvm_is_write_fault(vcpu);
1486 	exec_fault = kvm_vcpu_trap_is_iabt(vcpu);
1487 	VM_BUG_ON(write_fault && exec_fault);
1488 
1489 	if (fault_status == FSC_PERM && !write_fault && !exec_fault) {
1490 		kvm_err("Unexpected L2 read permission error\n");
1491 		return -EFAULT;
1492 	}
1493 
1494 	/* Let's check if we will get back a huge page backed by hugetlbfs */
1495 	down_read(&current->mm->mmap_sem);
1496 	vma = find_vma_intersection(current->mm, hva, hva + 1);
1497 	if (unlikely(!vma)) {
1498 		kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
1499 		up_read(&current->mm->mmap_sem);
1500 		return -EFAULT;
1501 	}
1502 
1503 	if (vma_kernel_pagesize(vma) == PMD_SIZE && !logging_active) {
1504 		hugetlb = true;
1505 		gfn = (fault_ipa & PMD_MASK) >> PAGE_SHIFT;
1506 	} else {
1507 		/*
1508 		 * Pages belonging to memslots that don't have the same
1509 		 * alignment for userspace and IPA cannot be mapped using
1510 		 * block descriptors even if the pages belong to a THP for
1511 		 * the process, because the stage-2 block descriptor will
1512 		 * cover more than a single THP and we loose atomicity for
1513 		 * unmapping, updates, and splits of the THP or other pages
1514 		 * in the stage-2 block range.
1515 		 */
1516 		if ((memslot->userspace_addr & ~PMD_MASK) !=
1517 		    ((memslot->base_gfn << PAGE_SHIFT) & ~PMD_MASK))
1518 			force_pte = true;
1519 	}
1520 	up_read(&current->mm->mmap_sem);
1521 
1522 	/* We need minimum second+third level pages */
1523 	ret = mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES,
1524 				     KVM_NR_MEM_OBJS);
1525 	if (ret)
1526 		return ret;
1527 
1528 	mmu_seq = vcpu->kvm->mmu_notifier_seq;
1529 	/*
1530 	 * Ensure the read of mmu_notifier_seq happens before we call
1531 	 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
1532 	 * the page we just got a reference to gets unmapped before we have a
1533 	 * chance to grab the mmu_lock, which ensure that if the page gets
1534 	 * unmapped afterwards, the call to kvm_unmap_hva will take it away
1535 	 * from us again properly. This smp_rmb() interacts with the smp_wmb()
1536 	 * in kvm_mmu_notifier_invalidate_<page|range_end>.
1537 	 */
1538 	smp_rmb();
1539 
1540 	pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable);
1541 	if (pfn == KVM_PFN_ERR_HWPOISON) {
1542 		kvm_send_hwpoison_signal(hva, vma);
1543 		return 0;
1544 	}
1545 	if (is_error_noslot_pfn(pfn))
1546 		return -EFAULT;
1547 
1548 	if (kvm_is_device_pfn(pfn)) {
1549 		mem_type = PAGE_S2_DEVICE;
1550 		flags |= KVM_S2PTE_FLAG_IS_IOMAP;
1551 	} else if (logging_active) {
1552 		/*
1553 		 * Faults on pages in a memslot with logging enabled
1554 		 * should not be mapped with huge pages (it introduces churn
1555 		 * and performance degradation), so force a pte mapping.
1556 		 */
1557 		force_pte = true;
1558 		flags |= KVM_S2_FLAG_LOGGING_ACTIVE;
1559 
1560 		/*
1561 		 * Only actually map the page as writable if this was a write
1562 		 * fault.
1563 		 */
1564 		if (!write_fault)
1565 			writable = false;
1566 	}
1567 
1568 	spin_lock(&kvm->mmu_lock);
1569 	if (mmu_notifier_retry(kvm, mmu_seq))
1570 		goto out_unlock;
1571 
1572 	if (!hugetlb && !force_pte)
1573 		hugetlb = transparent_hugepage_adjust(&pfn, &fault_ipa);
1574 
1575 	if (hugetlb) {
1576 		pmd_t new_pmd = pfn_pmd(pfn, mem_type);
1577 		new_pmd = pmd_mkhuge(new_pmd);
1578 		if (writable) {
1579 			new_pmd = kvm_s2pmd_mkwrite(new_pmd);
1580 			kvm_set_pfn_dirty(pfn);
1581 		}
1582 
1583 		if (fault_status != FSC_PERM)
1584 			clean_dcache_guest_page(pfn, PMD_SIZE);
1585 
1586 		if (exec_fault) {
1587 			new_pmd = kvm_s2pmd_mkexec(new_pmd);
1588 			invalidate_icache_guest_page(pfn, PMD_SIZE);
1589 		} else if (fault_status == FSC_PERM) {
1590 			/* Preserve execute if XN was already cleared */
1591 			if (stage2_is_exec(kvm, fault_ipa))
1592 				new_pmd = kvm_s2pmd_mkexec(new_pmd);
1593 		}
1594 
1595 		ret = stage2_set_pmd_huge(kvm, memcache, fault_ipa, &new_pmd);
1596 	} else {
1597 		pte_t new_pte = pfn_pte(pfn, mem_type);
1598 
1599 		if (writable) {
1600 			new_pte = kvm_s2pte_mkwrite(new_pte);
1601 			kvm_set_pfn_dirty(pfn);
1602 			mark_page_dirty(kvm, gfn);
1603 		}
1604 
1605 		if (fault_status != FSC_PERM)
1606 			clean_dcache_guest_page(pfn, PAGE_SIZE);
1607 
1608 		if (exec_fault) {
1609 			new_pte = kvm_s2pte_mkexec(new_pte);
1610 			invalidate_icache_guest_page(pfn, PAGE_SIZE);
1611 		} else if (fault_status == FSC_PERM) {
1612 			/* Preserve execute if XN was already cleared */
1613 			if (stage2_is_exec(kvm, fault_ipa))
1614 				new_pte = kvm_s2pte_mkexec(new_pte);
1615 		}
1616 
1617 		ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte, flags);
1618 	}
1619 
1620 out_unlock:
1621 	spin_unlock(&kvm->mmu_lock);
1622 	kvm_set_pfn_accessed(pfn);
1623 	kvm_release_pfn_clean(pfn);
1624 	return ret;
1625 }
1626 
1627 /*
1628  * Resolve the access fault by making the page young again.
1629  * Note that because the faulting entry is guaranteed not to be
1630  * cached in the TLB, we don't need to invalidate anything.
1631  * Only the HW Access Flag updates are supported for Stage 2 (no DBM),
1632  * so there is no need for atomic (pte|pmd)_mkyoung operations.
1633  */
handle_access_fault(struct kvm_vcpu * vcpu,phys_addr_t fault_ipa)1634 static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
1635 {
1636 	pmd_t *pmd;
1637 	pte_t *pte;
1638 	kvm_pfn_t pfn;
1639 	bool pfn_valid = false;
1640 
1641 	trace_kvm_access_fault(fault_ipa);
1642 
1643 	spin_lock(&vcpu->kvm->mmu_lock);
1644 
1645 	pmd = stage2_get_pmd(vcpu->kvm, NULL, fault_ipa);
1646 	if (!pmd || pmd_none(*pmd))	/* Nothing there */
1647 		goto out;
1648 
1649 	if (pmd_thp_or_huge(*pmd)) {	/* THP, HugeTLB */
1650 		*pmd = pmd_mkyoung(*pmd);
1651 		pfn = pmd_pfn(*pmd);
1652 		pfn_valid = true;
1653 		goto out;
1654 	}
1655 
1656 	pte = pte_offset_kernel(pmd, fault_ipa);
1657 	if (pte_none(*pte))		/* Nothing there either */
1658 		goto out;
1659 
1660 	*pte = pte_mkyoung(*pte);	/* Just a page... */
1661 	pfn = pte_pfn(*pte);
1662 	pfn_valid = true;
1663 out:
1664 	spin_unlock(&vcpu->kvm->mmu_lock);
1665 	if (pfn_valid)
1666 		kvm_set_pfn_accessed(pfn);
1667 }
1668 
1669 /**
1670  * kvm_handle_guest_abort - handles all 2nd stage aborts
1671  * @vcpu:	the VCPU pointer
1672  * @run:	the kvm_run structure
1673  *
1674  * Any abort that gets to the host is almost guaranteed to be caused by a
1675  * missing second stage translation table entry, which can mean that either the
1676  * guest simply needs more memory and we must allocate an appropriate page or it
1677  * can mean that the guest tried to access I/O memory, which is emulated by user
1678  * space. The distinction is based on the IPA causing the fault and whether this
1679  * memory region has been registered as standard RAM by user space.
1680  */
kvm_handle_guest_abort(struct kvm_vcpu * vcpu,struct kvm_run * run)1681 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run)
1682 {
1683 	unsigned long fault_status;
1684 	phys_addr_t fault_ipa;
1685 	struct kvm_memory_slot *memslot;
1686 	unsigned long hva;
1687 	bool is_iabt, write_fault, writable;
1688 	gfn_t gfn;
1689 	int ret, idx;
1690 
1691 	fault_status = kvm_vcpu_trap_get_fault_type(vcpu);
1692 
1693 	fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
1694 	is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
1695 
1696 	/* Synchronous External Abort? */
1697 	if (kvm_vcpu_dabt_isextabt(vcpu)) {
1698 		/*
1699 		 * For RAS the host kernel may handle this abort.
1700 		 * There is no need to pass the error into the guest.
1701 		 */
1702 		if (!handle_guest_sea(fault_ipa, kvm_vcpu_get_hsr(vcpu)))
1703 			return 1;
1704 
1705 		if (unlikely(!is_iabt)) {
1706 			kvm_inject_vabt(vcpu);
1707 			return 1;
1708 		}
1709 	}
1710 
1711 	trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_hsr(vcpu),
1712 			      kvm_vcpu_get_hfar(vcpu), fault_ipa);
1713 
1714 	/* Check the stage-2 fault is trans. fault or write fault */
1715 	if (fault_status != FSC_FAULT && fault_status != FSC_PERM &&
1716 	    fault_status != FSC_ACCESS) {
1717 		kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
1718 			kvm_vcpu_trap_get_class(vcpu),
1719 			(unsigned long)kvm_vcpu_trap_get_fault(vcpu),
1720 			(unsigned long)kvm_vcpu_get_hsr(vcpu));
1721 		return -EFAULT;
1722 	}
1723 
1724 	idx = srcu_read_lock(&vcpu->kvm->srcu);
1725 
1726 	gfn = fault_ipa >> PAGE_SHIFT;
1727 	memslot = gfn_to_memslot(vcpu->kvm, gfn);
1728 	hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
1729 	write_fault = kvm_is_write_fault(vcpu);
1730 	if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
1731 		if (is_iabt) {
1732 			/* Prefetch Abort on I/O address */
1733 			kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1734 			ret = 1;
1735 			goto out_unlock;
1736 		}
1737 
1738 		/*
1739 		 * Check for a cache maintenance operation. Since we
1740 		 * ended-up here, we know it is outside of any memory
1741 		 * slot. But we can't find out if that is for a device,
1742 		 * or if the guest is just being stupid. The only thing
1743 		 * we know for sure is that this range cannot be cached.
1744 		 *
1745 		 * So let's assume that the guest is just being
1746 		 * cautious, and skip the instruction.
1747 		 */
1748 		if (kvm_vcpu_dabt_is_cm(vcpu)) {
1749 			kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
1750 			ret = 1;
1751 			goto out_unlock;
1752 		}
1753 
1754 		/*
1755 		 * The IPA is reported as [MAX:12], so we need to
1756 		 * complement it with the bottom 12 bits from the
1757 		 * faulting VA. This is always 12 bits, irrespective
1758 		 * of the page size.
1759 		 */
1760 		fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
1761 		ret = io_mem_abort(vcpu, run, fault_ipa);
1762 		goto out_unlock;
1763 	}
1764 
1765 	/* Userspace should not be able to register out-of-bounds IPAs */
1766 	VM_BUG_ON(fault_ipa >= KVM_PHYS_SIZE);
1767 
1768 	if (fault_status == FSC_ACCESS) {
1769 		handle_access_fault(vcpu, fault_ipa);
1770 		ret = 1;
1771 		goto out_unlock;
1772 	}
1773 
1774 	ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
1775 	if (ret == 0)
1776 		ret = 1;
1777 out_unlock:
1778 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
1779 	return ret;
1780 }
1781 
handle_hva_to_gpa(struct kvm * kvm,unsigned long start,unsigned long end,int (* handler)(struct kvm * kvm,gpa_t gpa,u64 size,void * data),void * data)1782 static int handle_hva_to_gpa(struct kvm *kvm,
1783 			     unsigned long start,
1784 			     unsigned long end,
1785 			     int (*handler)(struct kvm *kvm,
1786 					    gpa_t gpa, u64 size,
1787 					    void *data),
1788 			     void *data)
1789 {
1790 	struct kvm_memslots *slots;
1791 	struct kvm_memory_slot *memslot;
1792 	int ret = 0;
1793 
1794 	slots = kvm_memslots(kvm);
1795 
1796 	/* we only care about the pages that the guest sees */
1797 	kvm_for_each_memslot(memslot, slots) {
1798 		unsigned long hva_start, hva_end;
1799 		gfn_t gpa;
1800 
1801 		hva_start = max(start, memslot->userspace_addr);
1802 		hva_end = min(end, memslot->userspace_addr +
1803 					(memslot->npages << PAGE_SHIFT));
1804 		if (hva_start >= hva_end)
1805 			continue;
1806 
1807 		gpa = hva_to_gfn_memslot(hva_start, memslot) << PAGE_SHIFT;
1808 		ret |= handler(kvm, gpa, (u64)(hva_end - hva_start), data);
1809 	}
1810 
1811 	return ret;
1812 }
1813 
kvm_unmap_hva_handler(struct kvm * kvm,gpa_t gpa,u64 size,void * data)1814 static int kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1815 {
1816 	unmap_stage2_range(kvm, gpa, size);
1817 	return 0;
1818 }
1819 
kvm_unmap_hva_range(struct kvm * kvm,unsigned long start,unsigned long end)1820 int kvm_unmap_hva_range(struct kvm *kvm,
1821 			unsigned long start, unsigned long end)
1822 {
1823 	if (!kvm->arch.pgd)
1824 		return 0;
1825 
1826 	trace_kvm_unmap_hva_range(start, end);
1827 	handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
1828 	return 0;
1829 }
1830 
kvm_set_spte_handler(struct kvm * kvm,gpa_t gpa,u64 size,void * data)1831 static int kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1832 {
1833 	pte_t *pte = (pte_t *)data;
1834 
1835 	WARN_ON(size != PAGE_SIZE);
1836 	/*
1837 	 * We can always call stage2_set_pte with KVM_S2PTE_FLAG_LOGGING_ACTIVE
1838 	 * flag clear because MMU notifiers will have unmapped a huge PMD before
1839 	 * calling ->change_pte() (which in turn calls kvm_set_spte_hva()) and
1840 	 * therefore stage2_set_pte() never needs to clear out a huge PMD
1841 	 * through this calling path.
1842 	 */
1843 	stage2_set_pte(kvm, NULL, gpa, pte, 0);
1844 	return 0;
1845 }
1846 
1847 
kvm_set_spte_hva(struct kvm * kvm,unsigned long hva,pte_t pte)1848 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1849 {
1850 	unsigned long end = hva + PAGE_SIZE;
1851 	kvm_pfn_t pfn = pte_pfn(pte);
1852 	pte_t stage2_pte;
1853 
1854 	if (!kvm->arch.pgd)
1855 		return;
1856 
1857 	trace_kvm_set_spte_hva(hva);
1858 
1859 	/*
1860 	 * We've moved a page around, probably through CoW, so let's treat it
1861 	 * just like a translation fault and clean the cache to the PoC.
1862 	 */
1863 	clean_dcache_guest_page(pfn, PAGE_SIZE);
1864 	stage2_pte = pfn_pte(pfn, PAGE_S2);
1865 	handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte);
1866 }
1867 
kvm_age_hva_handler(struct kvm * kvm,gpa_t gpa,u64 size,void * data)1868 static int kvm_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1869 {
1870 	pmd_t *pmd;
1871 	pte_t *pte;
1872 
1873 	WARN_ON(size != PAGE_SIZE && size != PMD_SIZE);
1874 	pmd = stage2_get_pmd(kvm, NULL, gpa);
1875 	if (!pmd || pmd_none(*pmd))	/* Nothing there */
1876 		return 0;
1877 
1878 	if (pmd_thp_or_huge(*pmd))	/* THP, HugeTLB */
1879 		return stage2_pmdp_test_and_clear_young(pmd);
1880 
1881 	pte = pte_offset_kernel(pmd, gpa);
1882 	if (pte_none(*pte))
1883 		return 0;
1884 
1885 	return stage2_ptep_test_and_clear_young(pte);
1886 }
1887 
kvm_test_age_hva_handler(struct kvm * kvm,gpa_t gpa,u64 size,void * data)1888 static int kvm_test_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1889 {
1890 	pmd_t *pmd;
1891 	pte_t *pte;
1892 
1893 	WARN_ON(size != PAGE_SIZE && size != PMD_SIZE);
1894 	pmd = stage2_get_pmd(kvm, NULL, gpa);
1895 	if (!pmd || pmd_none(*pmd))	/* Nothing there */
1896 		return 0;
1897 
1898 	if (pmd_thp_or_huge(*pmd))		/* THP, HugeTLB */
1899 		return pmd_young(*pmd);
1900 
1901 	pte = pte_offset_kernel(pmd, gpa);
1902 	if (!pte_none(*pte))		/* Just a page... */
1903 		return pte_young(*pte);
1904 
1905 	return 0;
1906 }
1907 
kvm_age_hva(struct kvm * kvm,unsigned long start,unsigned long end)1908 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1909 {
1910 	if (!kvm->arch.pgd)
1911 		return 0;
1912 	trace_kvm_age_hva(start, end);
1913 	return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL);
1914 }
1915 
kvm_test_age_hva(struct kvm * kvm,unsigned long hva)1916 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1917 {
1918 	if (!kvm->arch.pgd)
1919 		return 0;
1920 	trace_kvm_test_age_hva(hva);
1921 	return handle_hva_to_gpa(kvm, hva, hva, kvm_test_age_hva_handler, NULL);
1922 }
1923 
kvm_mmu_free_memory_caches(struct kvm_vcpu * vcpu)1924 void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
1925 {
1926 	mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
1927 }
1928 
kvm_mmu_get_httbr(void)1929 phys_addr_t kvm_mmu_get_httbr(void)
1930 {
1931 	if (__kvm_cpu_uses_extended_idmap())
1932 		return virt_to_phys(merged_hyp_pgd);
1933 	else
1934 		return virt_to_phys(hyp_pgd);
1935 }
1936 
kvm_get_idmap_vector(void)1937 phys_addr_t kvm_get_idmap_vector(void)
1938 {
1939 	return hyp_idmap_vector;
1940 }
1941 
kvm_map_idmap_text(pgd_t * pgd)1942 static int kvm_map_idmap_text(pgd_t *pgd)
1943 {
1944 	int err;
1945 
1946 	/* Create the idmap in the boot page tables */
1947 	err = 	__create_hyp_mappings(pgd, __kvm_idmap_ptrs_per_pgd(),
1948 				      hyp_idmap_start, hyp_idmap_end,
1949 				      __phys_to_pfn(hyp_idmap_start),
1950 				      PAGE_HYP_EXEC);
1951 	if (err)
1952 		kvm_err("Failed to idmap %lx-%lx\n",
1953 			hyp_idmap_start, hyp_idmap_end);
1954 
1955 	return err;
1956 }
1957 
kvm_mmu_init(void)1958 int kvm_mmu_init(void)
1959 {
1960 	int err;
1961 
1962 	hyp_idmap_start = kvm_virt_to_phys(__hyp_idmap_text_start);
1963 	hyp_idmap_start = ALIGN_DOWN(hyp_idmap_start, PAGE_SIZE);
1964 	hyp_idmap_end = kvm_virt_to_phys(__hyp_idmap_text_end);
1965 	hyp_idmap_end = ALIGN(hyp_idmap_end, PAGE_SIZE);
1966 	hyp_idmap_vector = kvm_virt_to_phys(__kvm_hyp_init);
1967 
1968 	/*
1969 	 * We rely on the linker script to ensure at build time that the HYP
1970 	 * init code does not cross a page boundary.
1971 	 */
1972 	BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
1973 
1974 	kvm_debug("IDMAP page: %lx\n", hyp_idmap_start);
1975 	kvm_debug("HYP VA range: %lx:%lx\n",
1976 		  kern_hyp_va(PAGE_OFFSET),
1977 		  kern_hyp_va((unsigned long)high_memory - 1));
1978 
1979 	if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) &&
1980 	    hyp_idmap_start <  kern_hyp_va((unsigned long)high_memory - 1) &&
1981 	    hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) {
1982 		/*
1983 		 * The idmap page is intersecting with the VA space,
1984 		 * it is not safe to continue further.
1985 		 */
1986 		kvm_err("IDMAP intersecting with HYP VA, unable to continue\n");
1987 		err = -EINVAL;
1988 		goto out;
1989 	}
1990 
1991 	hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order);
1992 	if (!hyp_pgd) {
1993 		kvm_err("Hyp mode PGD not allocated\n");
1994 		err = -ENOMEM;
1995 		goto out;
1996 	}
1997 
1998 	if (__kvm_cpu_uses_extended_idmap()) {
1999 		boot_hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
2000 							 hyp_pgd_order);
2001 		if (!boot_hyp_pgd) {
2002 			kvm_err("Hyp boot PGD not allocated\n");
2003 			err = -ENOMEM;
2004 			goto out;
2005 		}
2006 
2007 		err = kvm_map_idmap_text(boot_hyp_pgd);
2008 		if (err)
2009 			goto out;
2010 
2011 		merged_hyp_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
2012 		if (!merged_hyp_pgd) {
2013 			kvm_err("Failed to allocate extra HYP pgd\n");
2014 			goto out;
2015 		}
2016 		__kvm_extend_hypmap(boot_hyp_pgd, hyp_pgd, merged_hyp_pgd,
2017 				    hyp_idmap_start);
2018 	} else {
2019 		err = kvm_map_idmap_text(hyp_pgd);
2020 		if (err)
2021 			goto out;
2022 	}
2023 
2024 	io_map_base = hyp_idmap_start;
2025 	return 0;
2026 out:
2027 	free_hyp_pgds();
2028 	return err;
2029 }
2030 
kvm_arch_commit_memory_region(struct kvm * kvm,const struct kvm_userspace_memory_region * mem,const struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)2031 void kvm_arch_commit_memory_region(struct kvm *kvm,
2032 				   const struct kvm_userspace_memory_region *mem,
2033 				   const struct kvm_memory_slot *old,
2034 				   const struct kvm_memory_slot *new,
2035 				   enum kvm_mr_change change)
2036 {
2037 	/*
2038 	 * At this point memslot has been committed and there is an
2039 	 * allocated dirty_bitmap[], dirty pages will be be tracked while the
2040 	 * memory slot is write protected.
2041 	 */
2042 	if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES)
2043 		kvm_mmu_wp_memory_region(kvm, mem->slot);
2044 }
2045 
kvm_arch_prepare_memory_region(struct kvm * kvm,struct kvm_memory_slot * memslot,const struct kvm_userspace_memory_region * mem,enum kvm_mr_change change)2046 int kvm_arch_prepare_memory_region(struct kvm *kvm,
2047 				   struct kvm_memory_slot *memslot,
2048 				   const struct kvm_userspace_memory_region *mem,
2049 				   enum kvm_mr_change change)
2050 {
2051 	hva_t hva = mem->userspace_addr;
2052 	hva_t reg_end = hva + mem->memory_size;
2053 	bool writable = !(mem->flags & KVM_MEM_READONLY);
2054 	int ret = 0;
2055 
2056 	if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
2057 			change != KVM_MR_FLAGS_ONLY)
2058 		return 0;
2059 
2060 	/*
2061 	 * Prevent userspace from creating a memory region outside of the IPA
2062 	 * space addressable by the KVM guest IPA space.
2063 	 */
2064 	if (memslot->base_gfn + memslot->npages >=
2065 	    (KVM_PHYS_SIZE >> PAGE_SHIFT))
2066 		return -EFAULT;
2067 
2068 	down_read(&current->mm->mmap_sem);
2069 	/*
2070 	 * A memory region could potentially cover multiple VMAs, and any holes
2071 	 * between them, so iterate over all of them to find out if we can map
2072 	 * any of them right now.
2073 	 *
2074 	 *     +--------------------------------------------+
2075 	 * +---------------+----------------+   +----------------+
2076 	 * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
2077 	 * +---------------+----------------+   +----------------+
2078 	 *     |               memory region                |
2079 	 *     +--------------------------------------------+
2080 	 */
2081 	do {
2082 		struct vm_area_struct *vma = find_vma(current->mm, hva);
2083 		hva_t vm_start, vm_end;
2084 
2085 		if (!vma || vma->vm_start >= reg_end)
2086 			break;
2087 
2088 		/*
2089 		 * Mapping a read-only VMA is only allowed if the
2090 		 * memory region is configured as read-only.
2091 		 */
2092 		if (writable && !(vma->vm_flags & VM_WRITE)) {
2093 			ret = -EPERM;
2094 			break;
2095 		}
2096 
2097 		/*
2098 		 * Take the intersection of this VMA with the memory region
2099 		 */
2100 		vm_start = max(hva, vma->vm_start);
2101 		vm_end = min(reg_end, vma->vm_end);
2102 
2103 		if (vma->vm_flags & VM_PFNMAP) {
2104 			gpa_t gpa = mem->guest_phys_addr +
2105 				    (vm_start - mem->userspace_addr);
2106 			phys_addr_t pa;
2107 
2108 			pa = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
2109 			pa += vm_start - vma->vm_start;
2110 
2111 			/* IO region dirty page logging not allowed */
2112 			if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES) {
2113 				ret = -EINVAL;
2114 				goto out;
2115 			}
2116 
2117 			ret = kvm_phys_addr_ioremap(kvm, gpa, pa,
2118 						    vm_end - vm_start,
2119 						    writable);
2120 			if (ret)
2121 				break;
2122 		}
2123 		hva = vm_end;
2124 	} while (hva < reg_end);
2125 
2126 	if (change == KVM_MR_FLAGS_ONLY)
2127 		goto out;
2128 
2129 	spin_lock(&kvm->mmu_lock);
2130 	if (ret)
2131 		unmap_stage2_range(kvm, mem->guest_phys_addr, mem->memory_size);
2132 	else
2133 		stage2_flush_memslot(kvm, memslot);
2134 	spin_unlock(&kvm->mmu_lock);
2135 out:
2136 	up_read(&current->mm->mmap_sem);
2137 	return ret;
2138 }
2139 
kvm_arch_free_memslot(struct kvm * kvm,struct kvm_memory_slot * free,struct kvm_memory_slot * dont)2140 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
2141 			   struct kvm_memory_slot *dont)
2142 {
2143 }
2144 
kvm_arch_create_memslot(struct kvm * kvm,struct kvm_memory_slot * slot,unsigned long npages)2145 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
2146 			    unsigned long npages)
2147 {
2148 	return 0;
2149 }
2150 
kvm_arch_memslots_updated(struct kvm * kvm,struct kvm_memslots * slots)2151 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
2152 {
2153 }
2154 
kvm_arch_flush_shadow_all(struct kvm * kvm)2155 void kvm_arch_flush_shadow_all(struct kvm *kvm)
2156 {
2157 	kvm_free_stage2_pgd(kvm);
2158 }
2159 
kvm_arch_flush_shadow_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)2160 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
2161 				   struct kvm_memory_slot *slot)
2162 {
2163 	gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
2164 	phys_addr_t size = slot->npages << PAGE_SHIFT;
2165 
2166 	spin_lock(&kvm->mmu_lock);
2167 	unmap_stage2_range(kvm, gpa, size);
2168 	spin_unlock(&kvm->mmu_lock);
2169 }
2170 
2171 /*
2172  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
2173  *
2174  * Main problems:
2175  * - S/W ops are local to a CPU (not broadcast)
2176  * - We have line migration behind our back (speculation)
2177  * - System caches don't support S/W at all (damn!)
2178  *
2179  * In the face of the above, the best we can do is to try and convert
2180  * S/W ops to VA ops. Because the guest is not allowed to infer the
2181  * S/W to PA mapping, it can only use S/W to nuke the whole cache,
2182  * which is a rather good thing for us.
2183  *
2184  * Also, it is only used when turning caches on/off ("The expected
2185  * usage of the cache maintenance instructions that operate by set/way
2186  * is associated with the cache maintenance instructions associated
2187  * with the powerdown and powerup of caches, if this is required by
2188  * the implementation.").
2189  *
2190  * We use the following policy:
2191  *
2192  * - If we trap a S/W operation, we enable VM trapping to detect
2193  *   caches being turned on/off, and do a full clean.
2194  *
2195  * - We flush the caches on both caches being turned on and off.
2196  *
2197  * - Once the caches are enabled, we stop trapping VM ops.
2198  */
kvm_set_way_flush(struct kvm_vcpu * vcpu)2199 void kvm_set_way_flush(struct kvm_vcpu *vcpu)
2200 {
2201 	unsigned long hcr = *vcpu_hcr(vcpu);
2202 
2203 	/*
2204 	 * If this is the first time we do a S/W operation
2205 	 * (i.e. HCR_TVM not set) flush the whole memory, and set the
2206 	 * VM trapping.
2207 	 *
2208 	 * Otherwise, rely on the VM trapping to wait for the MMU +
2209 	 * Caches to be turned off. At that point, we'll be able to
2210 	 * clean the caches again.
2211 	 */
2212 	if (!(hcr & HCR_TVM)) {
2213 		trace_kvm_set_way_flush(*vcpu_pc(vcpu),
2214 					vcpu_has_cache_enabled(vcpu));
2215 		stage2_flush_vm(vcpu->kvm);
2216 		*vcpu_hcr(vcpu) = hcr | HCR_TVM;
2217 	}
2218 }
2219 
kvm_toggle_cache(struct kvm_vcpu * vcpu,bool was_enabled)2220 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
2221 {
2222 	bool now_enabled = vcpu_has_cache_enabled(vcpu);
2223 
2224 	/*
2225 	 * If switching the MMU+caches on, need to invalidate the caches.
2226 	 * If switching it off, need to clean the caches.
2227 	 * Clean + invalidate does the trick always.
2228 	 */
2229 	if (now_enabled != was_enabled)
2230 		stage2_flush_vm(vcpu->kvm);
2231 
2232 	/* Caches are now on, stop trapping VM ops (until a S/W op) */
2233 	if (now_enabled)
2234 		*vcpu_hcr(vcpu) &= ~HCR_TVM;
2235 
2236 	trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
2237 }
2238