1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * derived from drivers/kvm/kvm_main.c
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Amit Shah <amit.shah@qumranet.com>
15 * Ben-Ami Yassour <benami@il.ibm.com>
16 *
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
19 *
20 */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "pmu.h"
31 #include "hyperv.h"
32
33 #include <linux/clocksource.h>
34 #include <linux/interrupt.h>
35 #include <linux/kvm.h>
36 #include <linux/fs.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <linux/moduleparam.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
57 #include <linux/mem_encrypt.h>
58
59 #include <trace/events/kvm.h>
60
61 #include <asm/debugreg.h>
62 #include <asm/msr.h>
63 #include <asm/desc.h>
64 #include <asm/mce.h>
65 #include <linux/kernel_stat.h>
66 #include <asm/fpu/internal.h> /* Ugh! */
67 #include <asm/pvclock.h>
68 #include <asm/div64.h>
69 #include <asm/irq_remapping.h>
70 #include <asm/mshyperv.h>
71 #include <asm/hypervisor.h>
72
73 #define CREATE_TRACE_POINTS
74 #include "trace.h"
75
76 #define MAX_IO_MSRS 256
77 #define KVM_MAX_MCE_BANKS 32
78 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
79 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
80
81 #define emul_to_vcpu(ctxt) \
82 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
83
84 /* EFER defaults:
85 * - enable syscall per default because its emulated by KVM
86 * - enable LME and LMA per default on 64 bit KVM
87 */
88 #ifdef CONFIG_X86_64
89 static
90 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
91 #else
92 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
93 #endif
94
95 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
96 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
97
98 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
99 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
100
101 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
102 static void process_nmi(struct kvm_vcpu *vcpu);
103 static void enter_smm(struct kvm_vcpu *vcpu);
104 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
105 static void store_regs(struct kvm_vcpu *vcpu);
106 static int sync_regs(struct kvm_vcpu *vcpu);
107
108 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
109 EXPORT_SYMBOL_GPL(kvm_x86_ops);
110
111 static bool __read_mostly ignore_msrs = 0;
112 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
113
114 static bool __read_mostly report_ignored_msrs = true;
115 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
116
117 unsigned int min_timer_period_us = 200;
118 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
119
120 static bool __read_mostly kvmclock_periodic_sync = true;
121 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
122
123 bool __read_mostly kvm_has_tsc_control;
124 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
125 u32 __read_mostly kvm_max_guest_tsc_khz;
126 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
127 u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits;
128 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
129 u64 __read_mostly kvm_max_tsc_scaling_ratio;
130 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
131 u64 __read_mostly kvm_default_tsc_scaling_ratio;
132 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
133
134 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
135 static u32 __read_mostly tsc_tolerance_ppm = 250;
136 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
137
138 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
139 unsigned int __read_mostly lapic_timer_advance_ns = 0;
140 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
141 EXPORT_SYMBOL_GPL(lapic_timer_advance_ns);
142
143 static bool __read_mostly vector_hashing = true;
144 module_param(vector_hashing, bool, S_IRUGO);
145
146 bool __read_mostly enable_vmware_backdoor = false;
147 module_param(enable_vmware_backdoor, bool, S_IRUGO);
148 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
149
150 static bool __read_mostly force_emulation_prefix = false;
151 module_param(force_emulation_prefix, bool, S_IRUGO);
152
153 #define KVM_NR_SHARED_MSRS 16
154
155 struct kvm_shared_msrs_global {
156 int nr;
157 u32 msrs[KVM_NR_SHARED_MSRS];
158 };
159
160 struct kvm_shared_msrs {
161 struct user_return_notifier urn;
162 bool registered;
163 struct kvm_shared_msr_values {
164 u64 host;
165 u64 curr;
166 } values[KVM_NR_SHARED_MSRS];
167 };
168
169 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
170 static struct kvm_shared_msrs __percpu *shared_msrs;
171
172 struct kvm_stats_debugfs_item debugfs_entries[] = {
173 { "pf_fixed", VCPU_STAT(pf_fixed) },
174 { "pf_guest", VCPU_STAT(pf_guest) },
175 { "tlb_flush", VCPU_STAT(tlb_flush) },
176 { "invlpg", VCPU_STAT(invlpg) },
177 { "exits", VCPU_STAT(exits) },
178 { "io_exits", VCPU_STAT(io_exits) },
179 { "mmio_exits", VCPU_STAT(mmio_exits) },
180 { "signal_exits", VCPU_STAT(signal_exits) },
181 { "irq_window", VCPU_STAT(irq_window_exits) },
182 { "nmi_window", VCPU_STAT(nmi_window_exits) },
183 { "halt_exits", VCPU_STAT(halt_exits) },
184 { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
185 { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
186 { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
187 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
188 { "hypercalls", VCPU_STAT(hypercalls) },
189 { "request_irq", VCPU_STAT(request_irq_exits) },
190 { "irq_exits", VCPU_STAT(irq_exits) },
191 { "host_state_reload", VCPU_STAT(host_state_reload) },
192 { "fpu_reload", VCPU_STAT(fpu_reload) },
193 { "insn_emulation", VCPU_STAT(insn_emulation) },
194 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
195 { "irq_injections", VCPU_STAT(irq_injections) },
196 { "nmi_injections", VCPU_STAT(nmi_injections) },
197 { "req_event", VCPU_STAT(req_event) },
198 { "l1d_flush", VCPU_STAT(l1d_flush) },
199 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
200 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
201 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
202 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
203 { "mmu_flooded", VM_STAT(mmu_flooded) },
204 { "mmu_recycled", VM_STAT(mmu_recycled) },
205 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
206 { "mmu_unsync", VM_STAT(mmu_unsync) },
207 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
208 { "largepages", VM_STAT(lpages) },
209 { "max_mmu_page_hash_collisions",
210 VM_STAT(max_mmu_page_hash_collisions) },
211 { NULL }
212 };
213
214 u64 __read_mostly host_xcr0;
215
216 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
217
kvm_async_pf_hash_reset(struct kvm_vcpu * vcpu)218 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
219 {
220 int i;
221 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
222 vcpu->arch.apf.gfns[i] = ~0;
223 }
224
kvm_on_user_return(struct user_return_notifier * urn)225 static void kvm_on_user_return(struct user_return_notifier *urn)
226 {
227 unsigned slot;
228 struct kvm_shared_msrs *locals
229 = container_of(urn, struct kvm_shared_msrs, urn);
230 struct kvm_shared_msr_values *values;
231 unsigned long flags;
232
233 /*
234 * Disabling irqs at this point since the following code could be
235 * interrupted and executed through kvm_arch_hardware_disable()
236 */
237 local_irq_save(flags);
238 if (locals->registered) {
239 locals->registered = false;
240 user_return_notifier_unregister(urn);
241 }
242 local_irq_restore(flags);
243 for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
244 values = &locals->values[slot];
245 if (values->host != values->curr) {
246 wrmsrl(shared_msrs_global.msrs[slot], values->host);
247 values->curr = values->host;
248 }
249 }
250 }
251
shared_msr_update(unsigned slot,u32 msr)252 static void shared_msr_update(unsigned slot, u32 msr)
253 {
254 u64 value;
255 unsigned int cpu = smp_processor_id();
256 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
257
258 /* only read, and nobody should modify it at this time,
259 * so don't need lock */
260 if (slot >= shared_msrs_global.nr) {
261 printk(KERN_ERR "kvm: invalid MSR slot!");
262 return;
263 }
264 rdmsrl_safe(msr, &value);
265 smsr->values[slot].host = value;
266 smsr->values[slot].curr = value;
267 }
268
kvm_define_shared_msr(unsigned slot,u32 msr)269 void kvm_define_shared_msr(unsigned slot, u32 msr)
270 {
271 BUG_ON(slot >= KVM_NR_SHARED_MSRS);
272 shared_msrs_global.msrs[slot] = msr;
273 if (slot >= shared_msrs_global.nr)
274 shared_msrs_global.nr = slot + 1;
275 }
276 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
277
kvm_shared_msr_cpu_online(void)278 static void kvm_shared_msr_cpu_online(void)
279 {
280 unsigned i;
281
282 for (i = 0; i < shared_msrs_global.nr; ++i)
283 shared_msr_update(i, shared_msrs_global.msrs[i]);
284 }
285
kvm_set_shared_msr(unsigned slot,u64 value,u64 mask)286 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
287 {
288 unsigned int cpu = smp_processor_id();
289 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
290 int err;
291
292 if (((value ^ smsr->values[slot].curr) & mask) == 0)
293 return 0;
294 smsr->values[slot].curr = value;
295 err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
296 if (err)
297 return 1;
298
299 if (!smsr->registered) {
300 smsr->urn.on_user_return = kvm_on_user_return;
301 user_return_notifier_register(&smsr->urn);
302 smsr->registered = true;
303 }
304 return 0;
305 }
306 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
307
drop_user_return_notifiers(void)308 static void drop_user_return_notifiers(void)
309 {
310 unsigned int cpu = smp_processor_id();
311 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
312
313 if (smsr->registered)
314 kvm_on_user_return(&smsr->urn);
315 }
316
kvm_get_apic_base(struct kvm_vcpu * vcpu)317 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
318 {
319 return vcpu->arch.apic_base;
320 }
321 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
322
kvm_get_apic_mode(struct kvm_vcpu * vcpu)323 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
324 {
325 return kvm_apic_mode(kvm_get_apic_base(vcpu));
326 }
327 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
328
kvm_set_apic_base(struct kvm_vcpu * vcpu,struct msr_data * msr_info)329 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
330 {
331 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
332 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
333 u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
334 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
335
336 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
337 return 1;
338 if (!msr_info->host_initiated) {
339 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
340 return 1;
341 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
342 return 1;
343 }
344
345 kvm_lapic_set_base(vcpu, msr_info->data);
346 return 0;
347 }
348 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
349
kvm_spurious_fault(void)350 asmlinkage __visible void kvm_spurious_fault(void)
351 {
352 /* Fault while not rebooting. We want the trace. */
353 BUG();
354 }
355 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
356
357 #define EXCPT_BENIGN 0
358 #define EXCPT_CONTRIBUTORY 1
359 #define EXCPT_PF 2
360
exception_class(int vector)361 static int exception_class(int vector)
362 {
363 switch (vector) {
364 case PF_VECTOR:
365 return EXCPT_PF;
366 case DE_VECTOR:
367 case TS_VECTOR:
368 case NP_VECTOR:
369 case SS_VECTOR:
370 case GP_VECTOR:
371 return EXCPT_CONTRIBUTORY;
372 default:
373 break;
374 }
375 return EXCPT_BENIGN;
376 }
377
378 #define EXCPT_FAULT 0
379 #define EXCPT_TRAP 1
380 #define EXCPT_ABORT 2
381 #define EXCPT_INTERRUPT 3
382
exception_type(int vector)383 static int exception_type(int vector)
384 {
385 unsigned int mask;
386
387 if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
388 return EXCPT_INTERRUPT;
389
390 mask = 1 << vector;
391
392 /* #DB is trap, as instruction watchpoints are handled elsewhere */
393 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
394 return EXCPT_TRAP;
395
396 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
397 return EXCPT_ABORT;
398
399 /* Reserved exceptions will result in fault */
400 return EXCPT_FAULT;
401 }
402
kvm_multiple_exception(struct kvm_vcpu * vcpu,unsigned nr,bool has_error,u32 error_code,bool reinject)403 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
404 unsigned nr, bool has_error, u32 error_code,
405 bool reinject)
406 {
407 u32 prev_nr;
408 int class1, class2;
409
410 kvm_make_request(KVM_REQ_EVENT, vcpu);
411
412 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
413 queue:
414 if (has_error && !is_protmode(vcpu))
415 has_error = false;
416 if (reinject) {
417 /*
418 * On vmentry, vcpu->arch.exception.pending is only
419 * true if an event injection was blocked by
420 * nested_run_pending. In that case, however,
421 * vcpu_enter_guest requests an immediate exit,
422 * and the guest shouldn't proceed far enough to
423 * need reinjection.
424 */
425 WARN_ON_ONCE(vcpu->arch.exception.pending);
426 vcpu->arch.exception.injected = true;
427 } else {
428 vcpu->arch.exception.pending = true;
429 vcpu->arch.exception.injected = false;
430 }
431 vcpu->arch.exception.has_error_code = has_error;
432 vcpu->arch.exception.nr = nr;
433 vcpu->arch.exception.error_code = error_code;
434 return;
435 }
436
437 /* to check exception */
438 prev_nr = vcpu->arch.exception.nr;
439 if (prev_nr == DF_VECTOR) {
440 /* triple fault -> shutdown */
441 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
442 return;
443 }
444 class1 = exception_class(prev_nr);
445 class2 = exception_class(nr);
446 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
447 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
448 /*
449 * Generate double fault per SDM Table 5-5. Set
450 * exception.pending = true so that the double fault
451 * can trigger a nested vmexit.
452 */
453 vcpu->arch.exception.pending = true;
454 vcpu->arch.exception.injected = false;
455 vcpu->arch.exception.has_error_code = true;
456 vcpu->arch.exception.nr = DF_VECTOR;
457 vcpu->arch.exception.error_code = 0;
458 } else
459 /* replace previous exception with a new one in a hope
460 that instruction re-execution will regenerate lost
461 exception */
462 goto queue;
463 }
464
kvm_queue_exception(struct kvm_vcpu * vcpu,unsigned nr)465 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
466 {
467 kvm_multiple_exception(vcpu, nr, false, 0, false);
468 }
469 EXPORT_SYMBOL_GPL(kvm_queue_exception);
470
kvm_requeue_exception(struct kvm_vcpu * vcpu,unsigned nr)471 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
472 {
473 kvm_multiple_exception(vcpu, nr, false, 0, true);
474 }
475 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
476
kvm_complete_insn_gp(struct kvm_vcpu * vcpu,int err)477 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
478 {
479 if (err)
480 kvm_inject_gp(vcpu, 0);
481 else
482 return kvm_skip_emulated_instruction(vcpu);
483
484 return 1;
485 }
486 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
487
kvm_inject_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)488 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
489 {
490 ++vcpu->stat.pf_guest;
491 vcpu->arch.exception.nested_apf =
492 is_guest_mode(vcpu) && fault->async_page_fault;
493 if (vcpu->arch.exception.nested_apf)
494 vcpu->arch.apf.nested_apf_token = fault->address;
495 else
496 vcpu->arch.cr2 = fault->address;
497 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
498 }
499 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
500
kvm_propagate_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)501 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
502 {
503 if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
504 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
505 else
506 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
507
508 return fault->nested_page_fault;
509 }
510
kvm_inject_nmi(struct kvm_vcpu * vcpu)511 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
512 {
513 atomic_inc(&vcpu->arch.nmi_queued);
514 kvm_make_request(KVM_REQ_NMI, vcpu);
515 }
516 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
517
kvm_queue_exception_e(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code)518 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
519 {
520 kvm_multiple_exception(vcpu, nr, true, error_code, false);
521 }
522 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
523
kvm_requeue_exception_e(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code)524 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
525 {
526 kvm_multiple_exception(vcpu, nr, true, error_code, true);
527 }
528 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
529
530 /*
531 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
532 * a #GP and return false.
533 */
kvm_require_cpl(struct kvm_vcpu * vcpu,int required_cpl)534 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
535 {
536 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
537 return true;
538 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
539 return false;
540 }
541 EXPORT_SYMBOL_GPL(kvm_require_cpl);
542
kvm_require_dr(struct kvm_vcpu * vcpu,int dr)543 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
544 {
545 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
546 return true;
547
548 kvm_queue_exception(vcpu, UD_VECTOR);
549 return false;
550 }
551 EXPORT_SYMBOL_GPL(kvm_require_dr);
552
553 /*
554 * This function will be used to read from the physical memory of the currently
555 * running guest. The difference to kvm_vcpu_read_guest_page is that this function
556 * can read from guest physical or from the guest's guest physical memory.
557 */
kvm_read_guest_page_mmu(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu,gfn_t ngfn,void * data,int offset,int len,u32 access)558 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
559 gfn_t ngfn, void *data, int offset, int len,
560 u32 access)
561 {
562 struct x86_exception exception;
563 gfn_t real_gfn;
564 gpa_t ngpa;
565
566 ngpa = gfn_to_gpa(ngfn);
567 real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
568 if (real_gfn == UNMAPPED_GVA)
569 return -EFAULT;
570
571 real_gfn = gpa_to_gfn(real_gfn);
572
573 return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
574 }
575 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
576
kvm_read_nested_guest_page(struct kvm_vcpu * vcpu,gfn_t gfn,void * data,int offset,int len,u32 access)577 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
578 void *data, int offset, int len, u32 access)
579 {
580 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
581 data, offset, len, access);
582 }
583
584 /*
585 * Load the pae pdptrs. Return true is they are all valid.
586 */
load_pdptrs(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu,unsigned long cr3)587 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
588 {
589 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
590 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
591 int i;
592 int ret;
593 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
594
595 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
596 offset * sizeof(u64), sizeof(pdpte),
597 PFERR_USER_MASK|PFERR_WRITE_MASK);
598 if (ret < 0) {
599 ret = 0;
600 goto out;
601 }
602 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
603 if ((pdpte[i] & PT_PRESENT_MASK) &&
604 (pdpte[i] &
605 vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) {
606 ret = 0;
607 goto out;
608 }
609 }
610 ret = 1;
611
612 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
613 __set_bit(VCPU_EXREG_PDPTR,
614 (unsigned long *)&vcpu->arch.regs_avail);
615 __set_bit(VCPU_EXREG_PDPTR,
616 (unsigned long *)&vcpu->arch.regs_dirty);
617 out:
618
619 return ret;
620 }
621 EXPORT_SYMBOL_GPL(load_pdptrs);
622
pdptrs_changed(struct kvm_vcpu * vcpu)623 bool pdptrs_changed(struct kvm_vcpu *vcpu)
624 {
625 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
626 bool changed = true;
627 int offset;
628 gfn_t gfn;
629 int r;
630
631 if (is_long_mode(vcpu) || !is_pae(vcpu) || !is_paging(vcpu))
632 return false;
633
634 if (!test_bit(VCPU_EXREG_PDPTR,
635 (unsigned long *)&vcpu->arch.regs_avail))
636 return true;
637
638 gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
639 offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
640 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
641 PFERR_USER_MASK | PFERR_WRITE_MASK);
642 if (r < 0)
643 goto out;
644 changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
645 out:
646
647 return changed;
648 }
649 EXPORT_SYMBOL_GPL(pdptrs_changed);
650
kvm_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)651 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
652 {
653 unsigned long old_cr0 = kvm_read_cr0(vcpu);
654 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
655
656 cr0 |= X86_CR0_ET;
657
658 #ifdef CONFIG_X86_64
659 if (cr0 & 0xffffffff00000000UL)
660 return 1;
661 #endif
662
663 cr0 &= ~CR0_RESERVED_BITS;
664
665 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
666 return 1;
667
668 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
669 return 1;
670
671 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
672 #ifdef CONFIG_X86_64
673 if ((vcpu->arch.efer & EFER_LME)) {
674 int cs_db, cs_l;
675
676 if (!is_pae(vcpu))
677 return 1;
678 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
679 if (cs_l)
680 return 1;
681 } else
682 #endif
683 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
684 kvm_read_cr3(vcpu)))
685 return 1;
686 }
687
688 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
689 return 1;
690
691 kvm_x86_ops->set_cr0(vcpu, cr0);
692
693 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
694 kvm_clear_async_pf_completion_queue(vcpu);
695 kvm_async_pf_hash_reset(vcpu);
696 }
697
698 if ((cr0 ^ old_cr0) & update_bits)
699 kvm_mmu_reset_context(vcpu);
700
701 if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
702 kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
703 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
704 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
705
706 return 0;
707 }
708 EXPORT_SYMBOL_GPL(kvm_set_cr0);
709
kvm_lmsw(struct kvm_vcpu * vcpu,unsigned long msw)710 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
711 {
712 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
713 }
714 EXPORT_SYMBOL_GPL(kvm_lmsw);
715
kvm_load_guest_xcr0(struct kvm_vcpu * vcpu)716 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
717 {
718 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
719 !vcpu->guest_xcr0_loaded) {
720 /* kvm_set_xcr() also depends on this */
721 if (vcpu->arch.xcr0 != host_xcr0)
722 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
723 vcpu->guest_xcr0_loaded = 1;
724 }
725 }
726
kvm_put_guest_xcr0(struct kvm_vcpu * vcpu)727 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
728 {
729 if (vcpu->guest_xcr0_loaded) {
730 if (vcpu->arch.xcr0 != host_xcr0)
731 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
732 vcpu->guest_xcr0_loaded = 0;
733 }
734 }
735
__kvm_set_xcr(struct kvm_vcpu * vcpu,u32 index,u64 xcr)736 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
737 {
738 u64 xcr0 = xcr;
739 u64 old_xcr0 = vcpu->arch.xcr0;
740 u64 valid_bits;
741
742 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
743 if (index != XCR_XFEATURE_ENABLED_MASK)
744 return 1;
745 if (!(xcr0 & XFEATURE_MASK_FP))
746 return 1;
747 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
748 return 1;
749
750 /*
751 * Do not allow the guest to set bits that we do not support
752 * saving. However, xcr0 bit 0 is always set, even if the
753 * emulated CPU does not support XSAVE (see fx_init).
754 */
755 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
756 if (xcr0 & ~valid_bits)
757 return 1;
758
759 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
760 (!(xcr0 & XFEATURE_MASK_BNDCSR)))
761 return 1;
762
763 if (xcr0 & XFEATURE_MASK_AVX512) {
764 if (!(xcr0 & XFEATURE_MASK_YMM))
765 return 1;
766 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
767 return 1;
768 }
769 vcpu->arch.xcr0 = xcr0;
770
771 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
772 kvm_update_cpuid(vcpu);
773 return 0;
774 }
775
kvm_set_xcr(struct kvm_vcpu * vcpu,u32 index,u64 xcr)776 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
777 {
778 if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
779 __kvm_set_xcr(vcpu, index, xcr)) {
780 kvm_inject_gp(vcpu, 0);
781 return 1;
782 }
783 return 0;
784 }
785 EXPORT_SYMBOL_GPL(kvm_set_xcr);
786
kvm_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)787 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
788 {
789 unsigned long old_cr4 = kvm_read_cr4(vcpu);
790 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
791 X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
792
793 if (cr4 & CR4_RESERVED_BITS)
794 return 1;
795
796 if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && (cr4 & X86_CR4_OSXSAVE))
797 return 1;
798
799 if (!guest_cpuid_has(vcpu, X86_FEATURE_SMEP) && (cr4 & X86_CR4_SMEP))
800 return 1;
801
802 if (!guest_cpuid_has(vcpu, X86_FEATURE_SMAP) && (cr4 & X86_CR4_SMAP))
803 return 1;
804
805 if (!guest_cpuid_has(vcpu, X86_FEATURE_FSGSBASE) && (cr4 & X86_CR4_FSGSBASE))
806 return 1;
807
808 if (!guest_cpuid_has(vcpu, X86_FEATURE_PKU) && (cr4 & X86_CR4_PKE))
809 return 1;
810
811 if (!guest_cpuid_has(vcpu, X86_FEATURE_LA57) && (cr4 & X86_CR4_LA57))
812 return 1;
813
814 if (!guest_cpuid_has(vcpu, X86_FEATURE_UMIP) && (cr4 & X86_CR4_UMIP))
815 return 1;
816
817 if (is_long_mode(vcpu)) {
818 if (!(cr4 & X86_CR4_PAE))
819 return 1;
820 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
821 && ((cr4 ^ old_cr4) & pdptr_bits)
822 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
823 kvm_read_cr3(vcpu)))
824 return 1;
825
826 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
827 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
828 return 1;
829
830 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
831 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
832 return 1;
833 }
834
835 if (kvm_x86_ops->set_cr4(vcpu, cr4))
836 return 1;
837
838 if (((cr4 ^ old_cr4) & pdptr_bits) ||
839 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
840 kvm_mmu_reset_context(vcpu);
841
842 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
843 kvm_update_cpuid(vcpu);
844
845 return 0;
846 }
847 EXPORT_SYMBOL_GPL(kvm_set_cr4);
848
kvm_set_cr3(struct kvm_vcpu * vcpu,unsigned long cr3)849 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
850 {
851 bool skip_tlb_flush = false;
852 #ifdef CONFIG_X86_64
853 bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
854
855 if (pcid_enabled) {
856 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
857 cr3 &= ~X86_CR3_PCID_NOFLUSH;
858 }
859 #endif
860
861 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
862 if (!skip_tlb_flush) {
863 kvm_mmu_sync_roots(vcpu);
864 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
865 }
866 return 0;
867 }
868
869 if (is_long_mode(vcpu) &&
870 (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 63)))
871 return 1;
872 else if (is_pae(vcpu) && is_paging(vcpu) &&
873 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
874 return 1;
875
876 kvm_mmu_new_cr3(vcpu, cr3, skip_tlb_flush);
877 vcpu->arch.cr3 = cr3;
878 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
879
880 return 0;
881 }
882 EXPORT_SYMBOL_GPL(kvm_set_cr3);
883
kvm_set_cr8(struct kvm_vcpu * vcpu,unsigned long cr8)884 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
885 {
886 if (cr8 & CR8_RESERVED_BITS)
887 return 1;
888 if (lapic_in_kernel(vcpu))
889 kvm_lapic_set_tpr(vcpu, cr8);
890 else
891 vcpu->arch.cr8 = cr8;
892 return 0;
893 }
894 EXPORT_SYMBOL_GPL(kvm_set_cr8);
895
kvm_get_cr8(struct kvm_vcpu * vcpu)896 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
897 {
898 if (lapic_in_kernel(vcpu))
899 return kvm_lapic_get_cr8(vcpu);
900 else
901 return vcpu->arch.cr8;
902 }
903 EXPORT_SYMBOL_GPL(kvm_get_cr8);
904
kvm_update_dr0123(struct kvm_vcpu * vcpu)905 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
906 {
907 int i;
908
909 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
910 for (i = 0; i < KVM_NR_DB_REGS; i++)
911 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
912 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
913 }
914 }
915
kvm_update_dr6(struct kvm_vcpu * vcpu)916 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
917 {
918 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
919 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
920 }
921
kvm_update_dr7(struct kvm_vcpu * vcpu)922 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
923 {
924 unsigned long dr7;
925
926 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
927 dr7 = vcpu->arch.guest_debug_dr7;
928 else
929 dr7 = vcpu->arch.dr7;
930 kvm_x86_ops->set_dr7(vcpu, dr7);
931 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
932 if (dr7 & DR7_BP_EN_MASK)
933 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
934 }
935
kvm_dr6_fixed(struct kvm_vcpu * vcpu)936 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
937 {
938 u64 fixed = DR6_FIXED_1;
939
940 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
941 fixed |= DR6_RTM;
942 return fixed;
943 }
944
__kvm_set_dr(struct kvm_vcpu * vcpu,int dr,unsigned long val)945 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
946 {
947 switch (dr) {
948 case 0 ... 3:
949 vcpu->arch.db[dr] = val;
950 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
951 vcpu->arch.eff_db[dr] = val;
952 break;
953 case 4:
954 /* fall through */
955 case 6:
956 if (val & 0xffffffff00000000ULL)
957 return -1; /* #GP */
958 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
959 kvm_update_dr6(vcpu);
960 break;
961 case 5:
962 /* fall through */
963 default: /* 7 */
964 if (val & 0xffffffff00000000ULL)
965 return -1; /* #GP */
966 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
967 kvm_update_dr7(vcpu);
968 break;
969 }
970
971 return 0;
972 }
973
kvm_set_dr(struct kvm_vcpu * vcpu,int dr,unsigned long val)974 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
975 {
976 if (__kvm_set_dr(vcpu, dr, val)) {
977 kvm_inject_gp(vcpu, 0);
978 return 1;
979 }
980 return 0;
981 }
982 EXPORT_SYMBOL_GPL(kvm_set_dr);
983
kvm_get_dr(struct kvm_vcpu * vcpu,int dr,unsigned long * val)984 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
985 {
986 switch (dr) {
987 case 0 ... 3:
988 *val = vcpu->arch.db[dr];
989 break;
990 case 4:
991 /* fall through */
992 case 6:
993 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
994 *val = vcpu->arch.dr6;
995 else
996 *val = kvm_x86_ops->get_dr6(vcpu);
997 break;
998 case 5:
999 /* fall through */
1000 default: /* 7 */
1001 *val = vcpu->arch.dr7;
1002 break;
1003 }
1004 return 0;
1005 }
1006 EXPORT_SYMBOL_GPL(kvm_get_dr);
1007
kvm_rdpmc(struct kvm_vcpu * vcpu)1008 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
1009 {
1010 u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
1011 u64 data;
1012 int err;
1013
1014 err = kvm_pmu_rdpmc(vcpu, ecx, &data);
1015 if (err)
1016 return err;
1017 kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
1018 kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
1019 return err;
1020 }
1021 EXPORT_SYMBOL_GPL(kvm_rdpmc);
1022
1023 /*
1024 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1025 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1026 *
1027 * This list is modified at module load time to reflect the
1028 * capabilities of the host cpu. This capabilities test skips MSRs that are
1029 * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
1030 * may depend on host virtualization features rather than host cpu features.
1031 */
1032
1033 static u32 msrs_to_save[] = {
1034 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1035 MSR_STAR,
1036 #ifdef CONFIG_X86_64
1037 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1038 #endif
1039 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1040 MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1041 MSR_IA32_SPEC_CTRL, MSR_IA32_ARCH_CAPABILITIES
1042 };
1043
1044 static unsigned num_msrs_to_save;
1045
1046 static u32 emulated_msrs[] = {
1047 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1048 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1049 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1050 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1051 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1052 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1053 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1054 HV_X64_MSR_RESET,
1055 HV_X64_MSR_VP_INDEX,
1056 HV_X64_MSR_VP_RUNTIME,
1057 HV_X64_MSR_SCONTROL,
1058 HV_X64_MSR_STIMER0_CONFIG,
1059 HV_X64_MSR_VP_ASSIST_PAGE,
1060 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1061 HV_X64_MSR_TSC_EMULATION_STATUS,
1062
1063 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1064 MSR_KVM_PV_EOI_EN,
1065
1066 MSR_IA32_TSC_ADJUST,
1067 MSR_IA32_TSCDEADLINE,
1068 MSR_IA32_MISC_ENABLE,
1069 MSR_IA32_MCG_STATUS,
1070 MSR_IA32_MCG_CTL,
1071 MSR_IA32_MCG_EXT_CTL,
1072 MSR_IA32_SMBASE,
1073 MSR_SMI_COUNT,
1074 MSR_PLATFORM_INFO,
1075 MSR_MISC_FEATURES_ENABLES,
1076 MSR_AMD64_VIRT_SPEC_CTRL,
1077 };
1078
1079 static unsigned num_emulated_msrs;
1080
1081 /*
1082 * List of msr numbers which are used to expose MSR-based features that
1083 * can be used by a hypervisor to validate requested CPU features.
1084 */
1085 static u32 msr_based_features[] = {
1086 MSR_IA32_VMX_BASIC,
1087 MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1088 MSR_IA32_VMX_PINBASED_CTLS,
1089 MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1090 MSR_IA32_VMX_PROCBASED_CTLS,
1091 MSR_IA32_VMX_TRUE_EXIT_CTLS,
1092 MSR_IA32_VMX_EXIT_CTLS,
1093 MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1094 MSR_IA32_VMX_ENTRY_CTLS,
1095 MSR_IA32_VMX_MISC,
1096 MSR_IA32_VMX_CR0_FIXED0,
1097 MSR_IA32_VMX_CR0_FIXED1,
1098 MSR_IA32_VMX_CR4_FIXED0,
1099 MSR_IA32_VMX_CR4_FIXED1,
1100 MSR_IA32_VMX_VMCS_ENUM,
1101 MSR_IA32_VMX_PROCBASED_CTLS2,
1102 MSR_IA32_VMX_EPT_VPID_CAP,
1103 MSR_IA32_VMX_VMFUNC,
1104
1105 MSR_F10H_DECFG,
1106 MSR_IA32_UCODE_REV,
1107 MSR_IA32_ARCH_CAPABILITIES,
1108 };
1109
1110 static unsigned int num_msr_based_features;
1111
kvm_get_arch_capabilities(void)1112 u64 kvm_get_arch_capabilities(void)
1113 {
1114 u64 data;
1115
1116 rdmsrl_safe(MSR_IA32_ARCH_CAPABILITIES, &data);
1117
1118 /*
1119 * If we're doing cache flushes (either "always" or "cond")
1120 * we will do one whenever the guest does a vmlaunch/vmresume.
1121 * If an outer hypervisor is doing the cache flush for us
1122 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1123 * capability to the guest too, and if EPT is disabled we're not
1124 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will
1125 * require a nested hypervisor to do a flush of its own.
1126 */
1127 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1128 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1129
1130 return data;
1131 }
1132 EXPORT_SYMBOL_GPL(kvm_get_arch_capabilities);
1133
kvm_get_msr_feature(struct kvm_msr_entry * msr)1134 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1135 {
1136 switch (msr->index) {
1137 case MSR_IA32_ARCH_CAPABILITIES:
1138 msr->data = kvm_get_arch_capabilities();
1139 break;
1140 case MSR_IA32_UCODE_REV:
1141 rdmsrl_safe(msr->index, &msr->data);
1142 break;
1143 default:
1144 if (kvm_x86_ops->get_msr_feature(msr))
1145 return 1;
1146 }
1147 return 0;
1148 }
1149
do_get_msr_feature(struct kvm_vcpu * vcpu,unsigned index,u64 * data)1150 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1151 {
1152 struct kvm_msr_entry msr;
1153 int r;
1154
1155 msr.index = index;
1156 r = kvm_get_msr_feature(&msr);
1157 if (r)
1158 return r;
1159
1160 *data = msr.data;
1161
1162 return 0;
1163 }
1164
kvm_valid_efer(struct kvm_vcpu * vcpu,u64 efer)1165 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1166 {
1167 if (efer & efer_reserved_bits)
1168 return false;
1169
1170 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1171 return false;
1172
1173 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1174 return false;
1175
1176 return true;
1177 }
1178 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1179
set_efer(struct kvm_vcpu * vcpu,u64 efer)1180 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
1181 {
1182 u64 old_efer = vcpu->arch.efer;
1183
1184 if (!kvm_valid_efer(vcpu, efer))
1185 return 1;
1186
1187 if (is_paging(vcpu)
1188 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1189 return 1;
1190
1191 efer &= ~EFER_LMA;
1192 efer |= vcpu->arch.efer & EFER_LMA;
1193
1194 kvm_x86_ops->set_efer(vcpu, efer);
1195
1196 /* Update reserved bits */
1197 if ((efer ^ old_efer) & EFER_NX)
1198 kvm_mmu_reset_context(vcpu);
1199
1200 return 0;
1201 }
1202
kvm_enable_efer_bits(u64 mask)1203 void kvm_enable_efer_bits(u64 mask)
1204 {
1205 efer_reserved_bits &= ~mask;
1206 }
1207 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1208
1209 /*
1210 * Writes msr value into into the appropriate "register".
1211 * Returns 0 on success, non-0 otherwise.
1212 * Assumes vcpu_load() was already called.
1213 */
kvm_set_msr(struct kvm_vcpu * vcpu,struct msr_data * msr)1214 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1215 {
1216 switch (msr->index) {
1217 case MSR_FS_BASE:
1218 case MSR_GS_BASE:
1219 case MSR_KERNEL_GS_BASE:
1220 case MSR_CSTAR:
1221 case MSR_LSTAR:
1222 if (is_noncanonical_address(msr->data, vcpu))
1223 return 1;
1224 break;
1225 case MSR_IA32_SYSENTER_EIP:
1226 case MSR_IA32_SYSENTER_ESP:
1227 /*
1228 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1229 * non-canonical address is written on Intel but not on
1230 * AMD (which ignores the top 32-bits, because it does
1231 * not implement 64-bit SYSENTER).
1232 *
1233 * 64-bit code should hence be able to write a non-canonical
1234 * value on AMD. Making the address canonical ensures that
1235 * vmentry does not fail on Intel after writing a non-canonical
1236 * value, and that something deterministic happens if the guest
1237 * invokes 64-bit SYSENTER.
1238 */
1239 msr->data = get_canonical(msr->data, vcpu_virt_addr_bits(vcpu));
1240 }
1241 return kvm_x86_ops->set_msr(vcpu, msr);
1242 }
1243 EXPORT_SYMBOL_GPL(kvm_set_msr);
1244
1245 /*
1246 * Adapt set_msr() to msr_io()'s calling convention
1247 */
do_get_msr(struct kvm_vcpu * vcpu,unsigned index,u64 * data)1248 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1249 {
1250 struct msr_data msr;
1251 int r;
1252
1253 msr.index = index;
1254 msr.host_initiated = true;
1255 r = kvm_get_msr(vcpu, &msr);
1256 if (r)
1257 return r;
1258
1259 *data = msr.data;
1260 return 0;
1261 }
1262
do_set_msr(struct kvm_vcpu * vcpu,unsigned index,u64 * data)1263 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1264 {
1265 struct msr_data msr;
1266
1267 msr.data = *data;
1268 msr.index = index;
1269 msr.host_initiated = true;
1270 return kvm_set_msr(vcpu, &msr);
1271 }
1272
1273 #ifdef CONFIG_X86_64
1274 struct pvclock_gtod_data {
1275 seqcount_t seq;
1276
1277 struct { /* extract of a clocksource struct */
1278 int vclock_mode;
1279 u64 cycle_last;
1280 u64 mask;
1281 u32 mult;
1282 u32 shift;
1283 } clock;
1284
1285 u64 boot_ns;
1286 u64 nsec_base;
1287 u64 wall_time_sec;
1288 };
1289
1290 static struct pvclock_gtod_data pvclock_gtod_data;
1291
update_pvclock_gtod(struct timekeeper * tk)1292 static void update_pvclock_gtod(struct timekeeper *tk)
1293 {
1294 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1295 u64 boot_ns;
1296
1297 boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1298
1299 write_seqcount_begin(&vdata->seq);
1300
1301 /* copy pvclock gtod data */
1302 vdata->clock.vclock_mode = tk->tkr_mono.clock->archdata.vclock_mode;
1303 vdata->clock.cycle_last = tk->tkr_mono.cycle_last;
1304 vdata->clock.mask = tk->tkr_mono.mask;
1305 vdata->clock.mult = tk->tkr_mono.mult;
1306 vdata->clock.shift = tk->tkr_mono.shift;
1307
1308 vdata->boot_ns = boot_ns;
1309 vdata->nsec_base = tk->tkr_mono.xtime_nsec;
1310
1311 vdata->wall_time_sec = tk->xtime_sec;
1312
1313 write_seqcount_end(&vdata->seq);
1314 }
1315 #endif
1316
kvm_set_pending_timer(struct kvm_vcpu * vcpu)1317 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1318 {
1319 /*
1320 * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1321 * vcpu_enter_guest. This function is only called from
1322 * the physical CPU that is running vcpu.
1323 */
1324 kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1325 }
1326
kvm_write_wall_clock(struct kvm * kvm,gpa_t wall_clock)1327 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1328 {
1329 int version;
1330 int r;
1331 struct pvclock_wall_clock wc;
1332 struct timespec64 boot;
1333
1334 if (!wall_clock)
1335 return;
1336
1337 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1338 if (r)
1339 return;
1340
1341 if (version & 1)
1342 ++version; /* first time write, random junk */
1343
1344 ++version;
1345
1346 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1347 return;
1348
1349 /*
1350 * The guest calculates current wall clock time by adding
1351 * system time (updated by kvm_guest_time_update below) to the
1352 * wall clock specified here. guest system time equals host
1353 * system time for us, thus we must fill in host boot time here.
1354 */
1355 getboottime64(&boot);
1356
1357 if (kvm->arch.kvmclock_offset) {
1358 struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1359 boot = timespec64_sub(boot, ts);
1360 }
1361 wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1362 wc.nsec = boot.tv_nsec;
1363 wc.version = version;
1364
1365 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1366
1367 version++;
1368 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1369 }
1370
div_frac(uint32_t dividend,uint32_t divisor)1371 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1372 {
1373 do_shl32_div32(dividend, divisor);
1374 return dividend;
1375 }
1376
kvm_get_time_scale(uint64_t scaled_hz,uint64_t base_hz,s8 * pshift,u32 * pmultiplier)1377 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1378 s8 *pshift, u32 *pmultiplier)
1379 {
1380 uint64_t scaled64;
1381 int32_t shift = 0;
1382 uint64_t tps64;
1383 uint32_t tps32;
1384
1385 tps64 = base_hz;
1386 scaled64 = scaled_hz;
1387 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1388 tps64 >>= 1;
1389 shift--;
1390 }
1391
1392 tps32 = (uint32_t)tps64;
1393 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1394 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1395 scaled64 >>= 1;
1396 else
1397 tps32 <<= 1;
1398 shift++;
1399 }
1400
1401 *pshift = shift;
1402 *pmultiplier = div_frac(scaled64, tps32);
1403
1404 pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1405 __func__, base_hz, scaled_hz, shift, *pmultiplier);
1406 }
1407
1408 #ifdef CONFIG_X86_64
1409 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1410 #endif
1411
1412 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1413 static unsigned long max_tsc_khz;
1414
adjust_tsc_khz(u32 khz,s32 ppm)1415 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1416 {
1417 u64 v = (u64)khz * (1000000 + ppm);
1418 do_div(v, 1000000);
1419 return v;
1420 }
1421
set_tsc_khz(struct kvm_vcpu * vcpu,u32 user_tsc_khz,bool scale)1422 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1423 {
1424 u64 ratio;
1425
1426 /* Guest TSC same frequency as host TSC? */
1427 if (!scale) {
1428 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1429 return 0;
1430 }
1431
1432 /* TSC scaling supported? */
1433 if (!kvm_has_tsc_control) {
1434 if (user_tsc_khz > tsc_khz) {
1435 vcpu->arch.tsc_catchup = 1;
1436 vcpu->arch.tsc_always_catchup = 1;
1437 return 0;
1438 } else {
1439 WARN(1, "user requested TSC rate below hardware speed\n");
1440 return -1;
1441 }
1442 }
1443
1444 /* TSC scaling required - calculate ratio */
1445 ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1446 user_tsc_khz, tsc_khz);
1447
1448 if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1449 WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1450 user_tsc_khz);
1451 return -1;
1452 }
1453
1454 vcpu->arch.tsc_scaling_ratio = ratio;
1455 return 0;
1456 }
1457
kvm_set_tsc_khz(struct kvm_vcpu * vcpu,u32 user_tsc_khz)1458 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1459 {
1460 u32 thresh_lo, thresh_hi;
1461 int use_scaling = 0;
1462
1463 /* tsc_khz can be zero if TSC calibration fails */
1464 if (user_tsc_khz == 0) {
1465 /* set tsc_scaling_ratio to a safe value */
1466 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1467 return -1;
1468 }
1469
1470 /* Compute a scale to convert nanoseconds in TSC cycles */
1471 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1472 &vcpu->arch.virtual_tsc_shift,
1473 &vcpu->arch.virtual_tsc_mult);
1474 vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1475
1476 /*
1477 * Compute the variation in TSC rate which is acceptable
1478 * within the range of tolerance and decide if the
1479 * rate being applied is within that bounds of the hardware
1480 * rate. If so, no scaling or compensation need be done.
1481 */
1482 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1483 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1484 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1485 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1486 use_scaling = 1;
1487 }
1488 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1489 }
1490
compute_guest_tsc(struct kvm_vcpu * vcpu,s64 kernel_ns)1491 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1492 {
1493 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1494 vcpu->arch.virtual_tsc_mult,
1495 vcpu->arch.virtual_tsc_shift);
1496 tsc += vcpu->arch.this_tsc_write;
1497 return tsc;
1498 }
1499
gtod_is_based_on_tsc(int mode)1500 static inline int gtod_is_based_on_tsc(int mode)
1501 {
1502 return mode == VCLOCK_TSC || mode == VCLOCK_HVCLOCK;
1503 }
1504
kvm_track_tsc_matching(struct kvm_vcpu * vcpu)1505 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1506 {
1507 #ifdef CONFIG_X86_64
1508 bool vcpus_matched;
1509 struct kvm_arch *ka = &vcpu->kvm->arch;
1510 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1511
1512 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1513 atomic_read(&vcpu->kvm->online_vcpus));
1514
1515 /*
1516 * Once the masterclock is enabled, always perform request in
1517 * order to update it.
1518 *
1519 * In order to enable masterclock, the host clocksource must be TSC
1520 * and the vcpus need to have matched TSCs. When that happens,
1521 * perform request to enable masterclock.
1522 */
1523 if (ka->use_master_clock ||
1524 (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
1525 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1526
1527 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1528 atomic_read(&vcpu->kvm->online_vcpus),
1529 ka->use_master_clock, gtod->clock.vclock_mode);
1530 #endif
1531 }
1532
update_ia32_tsc_adjust_msr(struct kvm_vcpu * vcpu,s64 offset)1533 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1534 {
1535 u64 curr_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1536 vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1537 }
1538
1539 /*
1540 * Multiply tsc by a fixed point number represented by ratio.
1541 *
1542 * The most significant 64-N bits (mult) of ratio represent the
1543 * integral part of the fixed point number; the remaining N bits
1544 * (frac) represent the fractional part, ie. ratio represents a fixed
1545 * point number (mult + frac * 2^(-N)).
1546 *
1547 * N equals to kvm_tsc_scaling_ratio_frac_bits.
1548 */
__scale_tsc(u64 ratio,u64 tsc)1549 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1550 {
1551 return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1552 }
1553
kvm_scale_tsc(struct kvm_vcpu * vcpu,u64 tsc)1554 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1555 {
1556 u64 _tsc = tsc;
1557 u64 ratio = vcpu->arch.tsc_scaling_ratio;
1558
1559 if (ratio != kvm_default_tsc_scaling_ratio)
1560 _tsc = __scale_tsc(ratio, tsc);
1561
1562 return _tsc;
1563 }
1564 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1565
kvm_compute_tsc_offset(struct kvm_vcpu * vcpu,u64 target_tsc)1566 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1567 {
1568 u64 tsc;
1569
1570 tsc = kvm_scale_tsc(vcpu, rdtsc());
1571
1572 return target_tsc - tsc;
1573 }
1574
kvm_read_l1_tsc(struct kvm_vcpu * vcpu,u64 host_tsc)1575 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1576 {
1577 u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1578
1579 return tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1580 }
1581 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1582
kvm_vcpu_write_tsc_offset(struct kvm_vcpu * vcpu,u64 offset)1583 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1584 {
1585 kvm_x86_ops->write_tsc_offset(vcpu, offset);
1586 vcpu->arch.tsc_offset = offset;
1587 }
1588
kvm_check_tsc_unstable(void)1589 static inline bool kvm_check_tsc_unstable(void)
1590 {
1591 #ifdef CONFIG_X86_64
1592 /*
1593 * TSC is marked unstable when we're running on Hyper-V,
1594 * 'TSC page' clocksource is good.
1595 */
1596 if (pvclock_gtod_data.clock.vclock_mode == VCLOCK_HVCLOCK)
1597 return false;
1598 #endif
1599 return check_tsc_unstable();
1600 }
1601
kvm_write_tsc(struct kvm_vcpu * vcpu,struct msr_data * msr)1602 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1603 {
1604 struct kvm *kvm = vcpu->kvm;
1605 u64 offset, ns, elapsed;
1606 unsigned long flags;
1607 bool matched;
1608 bool already_matched;
1609 u64 data = msr->data;
1610 bool synchronizing = false;
1611
1612 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1613 offset = kvm_compute_tsc_offset(vcpu, data);
1614 ns = ktime_get_boot_ns();
1615 elapsed = ns - kvm->arch.last_tsc_nsec;
1616
1617 if (vcpu->arch.virtual_tsc_khz) {
1618 if (data == 0 && msr->host_initiated) {
1619 /*
1620 * detection of vcpu initialization -- need to sync
1621 * with other vCPUs. This particularly helps to keep
1622 * kvm_clock stable after CPU hotplug
1623 */
1624 synchronizing = true;
1625 } else {
1626 u64 tsc_exp = kvm->arch.last_tsc_write +
1627 nsec_to_cycles(vcpu, elapsed);
1628 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
1629 /*
1630 * Special case: TSC write with a small delta (1 second)
1631 * of virtual cycle time against real time is
1632 * interpreted as an attempt to synchronize the CPU.
1633 */
1634 synchronizing = data < tsc_exp + tsc_hz &&
1635 data + tsc_hz > tsc_exp;
1636 }
1637 }
1638
1639 /*
1640 * For a reliable TSC, we can match TSC offsets, and for an unstable
1641 * TSC, we add elapsed time in this computation. We could let the
1642 * compensation code attempt to catch up if we fall behind, but
1643 * it's better to try to match offsets from the beginning.
1644 */
1645 if (synchronizing &&
1646 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1647 if (!kvm_check_tsc_unstable()) {
1648 offset = kvm->arch.cur_tsc_offset;
1649 pr_debug("kvm: matched tsc offset for %llu\n", data);
1650 } else {
1651 u64 delta = nsec_to_cycles(vcpu, elapsed);
1652 data += delta;
1653 offset = kvm_compute_tsc_offset(vcpu, data);
1654 pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1655 }
1656 matched = true;
1657 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1658 } else {
1659 /*
1660 * We split periods of matched TSC writes into generations.
1661 * For each generation, we track the original measured
1662 * nanosecond time, offset, and write, so if TSCs are in
1663 * sync, we can match exact offset, and if not, we can match
1664 * exact software computation in compute_guest_tsc()
1665 *
1666 * These values are tracked in kvm->arch.cur_xxx variables.
1667 */
1668 kvm->arch.cur_tsc_generation++;
1669 kvm->arch.cur_tsc_nsec = ns;
1670 kvm->arch.cur_tsc_write = data;
1671 kvm->arch.cur_tsc_offset = offset;
1672 matched = false;
1673 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1674 kvm->arch.cur_tsc_generation, data);
1675 }
1676
1677 /*
1678 * We also track th most recent recorded KHZ, write and time to
1679 * allow the matching interval to be extended at each write.
1680 */
1681 kvm->arch.last_tsc_nsec = ns;
1682 kvm->arch.last_tsc_write = data;
1683 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1684
1685 vcpu->arch.last_guest_tsc = data;
1686
1687 /* Keep track of which generation this VCPU has synchronized to */
1688 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1689 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1690 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1691
1692 if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST))
1693 update_ia32_tsc_adjust_msr(vcpu, offset);
1694
1695 kvm_vcpu_write_tsc_offset(vcpu, offset);
1696 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1697
1698 spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1699 if (!matched) {
1700 kvm->arch.nr_vcpus_matched_tsc = 0;
1701 } else if (!already_matched) {
1702 kvm->arch.nr_vcpus_matched_tsc++;
1703 }
1704
1705 kvm_track_tsc_matching(vcpu);
1706 spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1707 }
1708
1709 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1710
adjust_tsc_offset_guest(struct kvm_vcpu * vcpu,s64 adjustment)1711 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1712 s64 adjustment)
1713 {
1714 kvm_vcpu_write_tsc_offset(vcpu, vcpu->arch.tsc_offset + adjustment);
1715 }
1716
adjust_tsc_offset_host(struct kvm_vcpu * vcpu,s64 adjustment)1717 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1718 {
1719 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1720 WARN_ON(adjustment < 0);
1721 adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1722 adjust_tsc_offset_guest(vcpu, adjustment);
1723 }
1724
1725 #ifdef CONFIG_X86_64
1726
read_tsc(void)1727 static u64 read_tsc(void)
1728 {
1729 u64 ret = (u64)rdtsc_ordered();
1730 u64 last = pvclock_gtod_data.clock.cycle_last;
1731
1732 if (likely(ret >= last))
1733 return ret;
1734
1735 /*
1736 * GCC likes to generate cmov here, but this branch is extremely
1737 * predictable (it's just a function of time and the likely is
1738 * very likely) and there's a data dependence, so force GCC
1739 * to generate a branch instead. I don't barrier() because
1740 * we don't actually need a barrier, and if this function
1741 * ever gets inlined it will generate worse code.
1742 */
1743 asm volatile ("");
1744 return last;
1745 }
1746
vgettsc(u64 * tsc_timestamp,int * mode)1747 static inline u64 vgettsc(u64 *tsc_timestamp, int *mode)
1748 {
1749 long v;
1750 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1751 u64 tsc_pg_val;
1752
1753 switch (gtod->clock.vclock_mode) {
1754 case VCLOCK_HVCLOCK:
1755 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
1756 tsc_timestamp);
1757 if (tsc_pg_val != U64_MAX) {
1758 /* TSC page valid */
1759 *mode = VCLOCK_HVCLOCK;
1760 v = (tsc_pg_val - gtod->clock.cycle_last) &
1761 gtod->clock.mask;
1762 } else {
1763 /* TSC page invalid */
1764 *mode = VCLOCK_NONE;
1765 }
1766 break;
1767 case VCLOCK_TSC:
1768 *mode = VCLOCK_TSC;
1769 *tsc_timestamp = read_tsc();
1770 v = (*tsc_timestamp - gtod->clock.cycle_last) &
1771 gtod->clock.mask;
1772 break;
1773 default:
1774 *mode = VCLOCK_NONE;
1775 }
1776
1777 if (*mode == VCLOCK_NONE)
1778 *tsc_timestamp = v = 0;
1779
1780 return v * gtod->clock.mult;
1781 }
1782
do_monotonic_boot(s64 * t,u64 * tsc_timestamp)1783 static int do_monotonic_boot(s64 *t, u64 *tsc_timestamp)
1784 {
1785 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1786 unsigned long seq;
1787 int mode;
1788 u64 ns;
1789
1790 do {
1791 seq = read_seqcount_begin(>od->seq);
1792 ns = gtod->nsec_base;
1793 ns += vgettsc(tsc_timestamp, &mode);
1794 ns >>= gtod->clock.shift;
1795 ns += gtod->boot_ns;
1796 } while (unlikely(read_seqcount_retry(>od->seq, seq)));
1797 *t = ns;
1798
1799 return mode;
1800 }
1801
do_realtime(struct timespec64 * ts,u64 * tsc_timestamp)1802 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
1803 {
1804 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1805 unsigned long seq;
1806 int mode;
1807 u64 ns;
1808
1809 do {
1810 seq = read_seqcount_begin(>od->seq);
1811 ts->tv_sec = gtod->wall_time_sec;
1812 ns = gtod->nsec_base;
1813 ns += vgettsc(tsc_timestamp, &mode);
1814 ns >>= gtod->clock.shift;
1815 } while (unlikely(read_seqcount_retry(>od->seq, seq)));
1816
1817 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
1818 ts->tv_nsec = ns;
1819
1820 return mode;
1821 }
1822
1823 /* returns true if host is using TSC based clocksource */
kvm_get_time_and_clockread(s64 * kernel_ns,u64 * tsc_timestamp)1824 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
1825 {
1826 /* checked again under seqlock below */
1827 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
1828 return false;
1829
1830 return gtod_is_based_on_tsc(do_monotonic_boot(kernel_ns,
1831 tsc_timestamp));
1832 }
1833
1834 /* returns true if host is using TSC based clocksource */
kvm_get_walltime_and_clockread(struct timespec64 * ts,u64 * tsc_timestamp)1835 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
1836 u64 *tsc_timestamp)
1837 {
1838 /* checked again under seqlock below */
1839 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
1840 return false;
1841
1842 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
1843 }
1844 #endif
1845
1846 /*
1847 *
1848 * Assuming a stable TSC across physical CPUS, and a stable TSC
1849 * across virtual CPUs, the following condition is possible.
1850 * Each numbered line represents an event visible to both
1851 * CPUs at the next numbered event.
1852 *
1853 * "timespecX" represents host monotonic time. "tscX" represents
1854 * RDTSC value.
1855 *
1856 * VCPU0 on CPU0 | VCPU1 on CPU1
1857 *
1858 * 1. read timespec0,tsc0
1859 * 2. | timespec1 = timespec0 + N
1860 * | tsc1 = tsc0 + M
1861 * 3. transition to guest | transition to guest
1862 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1863 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
1864 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1865 *
1866 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1867 *
1868 * - ret0 < ret1
1869 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1870 * ...
1871 * - 0 < N - M => M < N
1872 *
1873 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1874 * always the case (the difference between two distinct xtime instances
1875 * might be smaller then the difference between corresponding TSC reads,
1876 * when updating guest vcpus pvclock areas).
1877 *
1878 * To avoid that problem, do not allow visibility of distinct
1879 * system_timestamp/tsc_timestamp values simultaneously: use a master
1880 * copy of host monotonic time values. Update that master copy
1881 * in lockstep.
1882 *
1883 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1884 *
1885 */
1886
pvclock_update_vm_gtod_copy(struct kvm * kvm)1887 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1888 {
1889 #ifdef CONFIG_X86_64
1890 struct kvm_arch *ka = &kvm->arch;
1891 int vclock_mode;
1892 bool host_tsc_clocksource, vcpus_matched;
1893
1894 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1895 atomic_read(&kvm->online_vcpus));
1896
1897 /*
1898 * If the host uses TSC clock, then passthrough TSC as stable
1899 * to the guest.
1900 */
1901 host_tsc_clocksource = kvm_get_time_and_clockread(
1902 &ka->master_kernel_ns,
1903 &ka->master_cycle_now);
1904
1905 ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1906 && !ka->backwards_tsc_observed
1907 && !ka->boot_vcpu_runs_old_kvmclock;
1908
1909 if (ka->use_master_clock)
1910 atomic_set(&kvm_guest_has_master_clock, 1);
1911
1912 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1913 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1914 vcpus_matched);
1915 #endif
1916 }
1917
kvm_make_mclock_inprogress_request(struct kvm * kvm)1918 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
1919 {
1920 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
1921 }
1922
kvm_gen_update_masterclock(struct kvm * kvm)1923 static void kvm_gen_update_masterclock(struct kvm *kvm)
1924 {
1925 #ifdef CONFIG_X86_64
1926 int i;
1927 struct kvm_vcpu *vcpu;
1928 struct kvm_arch *ka = &kvm->arch;
1929
1930 spin_lock(&ka->pvclock_gtod_sync_lock);
1931 kvm_make_mclock_inprogress_request(kvm);
1932 /* no guest entries from this point */
1933 pvclock_update_vm_gtod_copy(kvm);
1934
1935 kvm_for_each_vcpu(i, vcpu, kvm)
1936 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1937
1938 /* guest entries allowed */
1939 kvm_for_each_vcpu(i, vcpu, kvm)
1940 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
1941
1942 spin_unlock(&ka->pvclock_gtod_sync_lock);
1943 #endif
1944 }
1945
get_kvmclock_ns(struct kvm * kvm)1946 u64 get_kvmclock_ns(struct kvm *kvm)
1947 {
1948 struct kvm_arch *ka = &kvm->arch;
1949 struct pvclock_vcpu_time_info hv_clock;
1950 u64 ret;
1951
1952 spin_lock(&ka->pvclock_gtod_sync_lock);
1953 if (!ka->use_master_clock) {
1954 spin_unlock(&ka->pvclock_gtod_sync_lock);
1955 return ktime_get_boot_ns() + ka->kvmclock_offset;
1956 }
1957
1958 hv_clock.tsc_timestamp = ka->master_cycle_now;
1959 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
1960 spin_unlock(&ka->pvclock_gtod_sync_lock);
1961
1962 /* both __this_cpu_read() and rdtsc() should be on the same cpu */
1963 get_cpu();
1964
1965 if (__this_cpu_read(cpu_tsc_khz)) {
1966 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
1967 &hv_clock.tsc_shift,
1968 &hv_clock.tsc_to_system_mul);
1969 ret = __pvclock_read_cycles(&hv_clock, rdtsc());
1970 } else
1971 ret = ktime_get_boot_ns() + ka->kvmclock_offset;
1972
1973 put_cpu();
1974
1975 return ret;
1976 }
1977
kvm_setup_pvclock_page(struct kvm_vcpu * v)1978 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
1979 {
1980 struct kvm_vcpu_arch *vcpu = &v->arch;
1981 struct pvclock_vcpu_time_info guest_hv_clock;
1982
1983 if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1984 &guest_hv_clock, sizeof(guest_hv_clock))))
1985 return;
1986
1987 /* This VCPU is paused, but it's legal for a guest to read another
1988 * VCPU's kvmclock, so we really have to follow the specification where
1989 * it says that version is odd if data is being modified, and even after
1990 * it is consistent.
1991 *
1992 * Version field updates must be kept separate. This is because
1993 * kvm_write_guest_cached might use a "rep movs" instruction, and
1994 * writes within a string instruction are weakly ordered. So there
1995 * are three writes overall.
1996 *
1997 * As a small optimization, only write the version field in the first
1998 * and third write. The vcpu->pv_time cache is still valid, because the
1999 * version field is the first in the struct.
2000 */
2001 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2002
2003 if (guest_hv_clock.version & 1)
2004 ++guest_hv_clock.version; /* first time write, random junk */
2005
2006 vcpu->hv_clock.version = guest_hv_clock.version + 1;
2007 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2008 &vcpu->hv_clock,
2009 sizeof(vcpu->hv_clock.version));
2010
2011 smp_wmb();
2012
2013 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2014 vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2015
2016 if (vcpu->pvclock_set_guest_stopped_request) {
2017 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2018 vcpu->pvclock_set_guest_stopped_request = false;
2019 }
2020
2021 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2022
2023 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2024 &vcpu->hv_clock,
2025 sizeof(vcpu->hv_clock));
2026
2027 smp_wmb();
2028
2029 vcpu->hv_clock.version++;
2030 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2031 &vcpu->hv_clock,
2032 sizeof(vcpu->hv_clock.version));
2033 }
2034
kvm_guest_time_update(struct kvm_vcpu * v)2035 static int kvm_guest_time_update(struct kvm_vcpu *v)
2036 {
2037 unsigned long flags, tgt_tsc_khz;
2038 struct kvm_vcpu_arch *vcpu = &v->arch;
2039 struct kvm_arch *ka = &v->kvm->arch;
2040 s64 kernel_ns;
2041 u64 tsc_timestamp, host_tsc;
2042 u8 pvclock_flags;
2043 bool use_master_clock;
2044
2045 kernel_ns = 0;
2046 host_tsc = 0;
2047
2048 /*
2049 * If the host uses TSC clock, then passthrough TSC as stable
2050 * to the guest.
2051 */
2052 spin_lock(&ka->pvclock_gtod_sync_lock);
2053 use_master_clock = ka->use_master_clock;
2054 if (use_master_clock) {
2055 host_tsc = ka->master_cycle_now;
2056 kernel_ns = ka->master_kernel_ns;
2057 }
2058 spin_unlock(&ka->pvclock_gtod_sync_lock);
2059
2060 /* Keep irq disabled to prevent changes to the clock */
2061 local_irq_save(flags);
2062 tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2063 if (unlikely(tgt_tsc_khz == 0)) {
2064 local_irq_restore(flags);
2065 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2066 return 1;
2067 }
2068 if (!use_master_clock) {
2069 host_tsc = rdtsc();
2070 kernel_ns = ktime_get_boot_ns();
2071 }
2072
2073 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2074
2075 /*
2076 * We may have to catch up the TSC to match elapsed wall clock
2077 * time for two reasons, even if kvmclock is used.
2078 * 1) CPU could have been running below the maximum TSC rate
2079 * 2) Broken TSC compensation resets the base at each VCPU
2080 * entry to avoid unknown leaps of TSC even when running
2081 * again on the same CPU. This may cause apparent elapsed
2082 * time to disappear, and the guest to stand still or run
2083 * very slowly.
2084 */
2085 if (vcpu->tsc_catchup) {
2086 u64 tsc = compute_guest_tsc(v, kernel_ns);
2087 if (tsc > tsc_timestamp) {
2088 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2089 tsc_timestamp = tsc;
2090 }
2091 }
2092
2093 local_irq_restore(flags);
2094
2095 /* With all the info we got, fill in the values */
2096
2097 if (kvm_has_tsc_control)
2098 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2099
2100 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2101 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2102 &vcpu->hv_clock.tsc_shift,
2103 &vcpu->hv_clock.tsc_to_system_mul);
2104 vcpu->hw_tsc_khz = tgt_tsc_khz;
2105 }
2106
2107 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2108 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2109 vcpu->last_guest_tsc = tsc_timestamp;
2110
2111 /* If the host uses TSC clocksource, then it is stable */
2112 pvclock_flags = 0;
2113 if (use_master_clock)
2114 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2115
2116 vcpu->hv_clock.flags = pvclock_flags;
2117
2118 if (vcpu->pv_time_enabled)
2119 kvm_setup_pvclock_page(v);
2120 if (v == kvm_get_vcpu(v->kvm, 0))
2121 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2122 return 0;
2123 }
2124
2125 /*
2126 * kvmclock updates which are isolated to a given vcpu, such as
2127 * vcpu->cpu migration, should not allow system_timestamp from
2128 * the rest of the vcpus to remain static. Otherwise ntp frequency
2129 * correction applies to one vcpu's system_timestamp but not
2130 * the others.
2131 *
2132 * So in those cases, request a kvmclock update for all vcpus.
2133 * We need to rate-limit these requests though, as they can
2134 * considerably slow guests that have a large number of vcpus.
2135 * The time for a remote vcpu to update its kvmclock is bound
2136 * by the delay we use to rate-limit the updates.
2137 */
2138
2139 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2140
kvmclock_update_fn(struct work_struct * work)2141 static void kvmclock_update_fn(struct work_struct *work)
2142 {
2143 int i;
2144 struct delayed_work *dwork = to_delayed_work(work);
2145 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2146 kvmclock_update_work);
2147 struct kvm *kvm = container_of(ka, struct kvm, arch);
2148 struct kvm_vcpu *vcpu;
2149
2150 kvm_for_each_vcpu(i, vcpu, kvm) {
2151 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2152 kvm_vcpu_kick(vcpu);
2153 }
2154 }
2155
kvm_gen_kvmclock_update(struct kvm_vcpu * v)2156 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2157 {
2158 struct kvm *kvm = v->kvm;
2159
2160 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2161 schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2162 KVMCLOCK_UPDATE_DELAY);
2163 }
2164
2165 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2166
kvmclock_sync_fn(struct work_struct * work)2167 static void kvmclock_sync_fn(struct work_struct *work)
2168 {
2169 struct delayed_work *dwork = to_delayed_work(work);
2170 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2171 kvmclock_sync_work);
2172 struct kvm *kvm = container_of(ka, struct kvm, arch);
2173
2174 if (!kvmclock_periodic_sync)
2175 return;
2176
2177 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2178 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2179 KVMCLOCK_SYNC_PERIOD);
2180 }
2181
set_msr_mce(struct kvm_vcpu * vcpu,struct msr_data * msr_info)2182 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2183 {
2184 u64 mcg_cap = vcpu->arch.mcg_cap;
2185 unsigned bank_num = mcg_cap & 0xff;
2186 u32 msr = msr_info->index;
2187 u64 data = msr_info->data;
2188
2189 switch (msr) {
2190 case MSR_IA32_MCG_STATUS:
2191 vcpu->arch.mcg_status = data;
2192 break;
2193 case MSR_IA32_MCG_CTL:
2194 if (!(mcg_cap & MCG_CTL_P) &&
2195 (data || !msr_info->host_initiated))
2196 return 1;
2197 if (data != 0 && data != ~(u64)0)
2198 return 1;
2199 vcpu->arch.mcg_ctl = data;
2200 break;
2201 default:
2202 if (msr >= MSR_IA32_MC0_CTL &&
2203 msr < MSR_IA32_MCx_CTL(bank_num)) {
2204 u32 offset = msr - MSR_IA32_MC0_CTL;
2205 /* only 0 or all 1s can be written to IA32_MCi_CTL
2206 * some Linux kernels though clear bit 10 in bank 4 to
2207 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2208 * this to avoid an uncatched #GP in the guest
2209 */
2210 if ((offset & 0x3) == 0 &&
2211 data != 0 && (data | (1 << 10)) != ~(u64)0)
2212 return -1;
2213 if (!msr_info->host_initiated &&
2214 (offset & 0x3) == 1 && data != 0)
2215 return -1;
2216 vcpu->arch.mce_banks[offset] = data;
2217 break;
2218 }
2219 return 1;
2220 }
2221 return 0;
2222 }
2223
xen_hvm_config(struct kvm_vcpu * vcpu,u64 data)2224 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2225 {
2226 struct kvm *kvm = vcpu->kvm;
2227 int lm = is_long_mode(vcpu);
2228 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2229 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2230 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2231 : kvm->arch.xen_hvm_config.blob_size_32;
2232 u32 page_num = data & ~PAGE_MASK;
2233 u64 page_addr = data & PAGE_MASK;
2234 u8 *page;
2235 int r;
2236
2237 r = -E2BIG;
2238 if (page_num >= blob_size)
2239 goto out;
2240 r = -ENOMEM;
2241 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2242 if (IS_ERR(page)) {
2243 r = PTR_ERR(page);
2244 goto out;
2245 }
2246 if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2247 goto out_free;
2248 r = 0;
2249 out_free:
2250 kfree(page);
2251 out:
2252 return r;
2253 }
2254
kvm_pv_enable_async_pf(struct kvm_vcpu * vcpu,u64 data)2255 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2256 {
2257 gpa_t gpa = data & ~0x3f;
2258
2259 /* Bits 3:5 are reserved, Should be zero */
2260 if (data & 0x38)
2261 return 1;
2262
2263 vcpu->arch.apf.msr_val = data;
2264
2265 if (!(data & KVM_ASYNC_PF_ENABLED)) {
2266 kvm_clear_async_pf_completion_queue(vcpu);
2267 kvm_async_pf_hash_reset(vcpu);
2268 return 0;
2269 }
2270
2271 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2272 sizeof(u32)))
2273 return 1;
2274
2275 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2276 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2277 kvm_async_pf_wakeup_all(vcpu);
2278 return 0;
2279 }
2280
kvmclock_reset(struct kvm_vcpu * vcpu)2281 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2282 {
2283 vcpu->arch.pv_time_enabled = false;
2284 }
2285
kvm_vcpu_flush_tlb(struct kvm_vcpu * vcpu,bool invalidate_gpa)2286 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
2287 {
2288 ++vcpu->stat.tlb_flush;
2289 kvm_x86_ops->tlb_flush(vcpu, invalidate_gpa);
2290 }
2291
record_steal_time(struct kvm_vcpu * vcpu)2292 static void record_steal_time(struct kvm_vcpu *vcpu)
2293 {
2294 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2295 return;
2296
2297 if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2298 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2299 return;
2300
2301 /*
2302 * Doing a TLB flush here, on the guest's behalf, can avoid
2303 * expensive IPIs.
2304 */
2305 if (xchg(&vcpu->arch.st.steal.preempted, 0) & KVM_VCPU_FLUSH_TLB)
2306 kvm_vcpu_flush_tlb(vcpu, false);
2307
2308 if (vcpu->arch.st.steal.version & 1)
2309 vcpu->arch.st.steal.version += 1; /* first time write, random junk */
2310
2311 vcpu->arch.st.steal.version += 1;
2312
2313 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2314 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2315
2316 smp_wmb();
2317
2318 vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2319 vcpu->arch.st.last_steal;
2320 vcpu->arch.st.last_steal = current->sched_info.run_delay;
2321
2322 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2323 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2324
2325 smp_wmb();
2326
2327 vcpu->arch.st.steal.version += 1;
2328
2329 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2330 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2331 }
2332
kvm_set_msr_common(struct kvm_vcpu * vcpu,struct msr_data * msr_info)2333 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2334 {
2335 bool pr = false;
2336 u32 msr = msr_info->index;
2337 u64 data = msr_info->data;
2338
2339 switch (msr) {
2340 case MSR_AMD64_NB_CFG:
2341 case MSR_IA32_UCODE_WRITE:
2342 case MSR_VM_HSAVE_PA:
2343 case MSR_AMD64_PATCH_LOADER:
2344 case MSR_AMD64_BU_CFG2:
2345 case MSR_AMD64_DC_CFG:
2346 break;
2347
2348 case MSR_IA32_UCODE_REV:
2349 if (msr_info->host_initiated)
2350 vcpu->arch.microcode_version = data;
2351 break;
2352 case MSR_EFER:
2353 return set_efer(vcpu, data);
2354 case MSR_K7_HWCR:
2355 data &= ~(u64)0x40; /* ignore flush filter disable */
2356 data &= ~(u64)0x100; /* ignore ignne emulation enable */
2357 data &= ~(u64)0x8; /* ignore TLB cache disable */
2358 data &= ~(u64)0x40000; /* ignore Mc status write enable */
2359 if (data != 0) {
2360 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2361 data);
2362 return 1;
2363 }
2364 break;
2365 case MSR_FAM10H_MMIO_CONF_BASE:
2366 if (data != 0) {
2367 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2368 "0x%llx\n", data);
2369 return 1;
2370 }
2371 break;
2372 case MSR_IA32_DEBUGCTLMSR:
2373 if (!data) {
2374 /* We support the non-activated case already */
2375 break;
2376 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2377 /* Values other than LBR and BTF are vendor-specific,
2378 thus reserved and should throw a #GP */
2379 return 1;
2380 }
2381 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2382 __func__, data);
2383 break;
2384 case 0x200 ... 0x2ff:
2385 return kvm_mtrr_set_msr(vcpu, msr, data);
2386 case MSR_IA32_APICBASE:
2387 return kvm_set_apic_base(vcpu, msr_info);
2388 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2389 return kvm_x2apic_msr_write(vcpu, msr, data);
2390 case MSR_IA32_TSCDEADLINE:
2391 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2392 break;
2393 case MSR_IA32_TSC_ADJUST:
2394 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
2395 if (!msr_info->host_initiated) {
2396 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2397 adjust_tsc_offset_guest(vcpu, adj);
2398 }
2399 vcpu->arch.ia32_tsc_adjust_msr = data;
2400 }
2401 break;
2402 case MSR_IA32_MISC_ENABLE:
2403 vcpu->arch.ia32_misc_enable_msr = data;
2404 break;
2405 case MSR_IA32_SMBASE:
2406 if (!msr_info->host_initiated)
2407 return 1;
2408 vcpu->arch.smbase = data;
2409 break;
2410 case MSR_IA32_TSC:
2411 kvm_write_tsc(vcpu, msr_info);
2412 break;
2413 case MSR_SMI_COUNT:
2414 if (!msr_info->host_initiated)
2415 return 1;
2416 vcpu->arch.smi_count = data;
2417 break;
2418 case MSR_KVM_WALL_CLOCK_NEW:
2419 case MSR_KVM_WALL_CLOCK:
2420 vcpu->kvm->arch.wall_clock = data;
2421 kvm_write_wall_clock(vcpu->kvm, data);
2422 break;
2423 case MSR_KVM_SYSTEM_TIME_NEW:
2424 case MSR_KVM_SYSTEM_TIME: {
2425 struct kvm_arch *ka = &vcpu->kvm->arch;
2426
2427 kvmclock_reset(vcpu);
2428
2429 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2430 bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2431
2432 if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2433 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2434
2435 ka->boot_vcpu_runs_old_kvmclock = tmp;
2436 }
2437
2438 vcpu->arch.time = data;
2439 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2440
2441 /* we verify if the enable bit is set... */
2442 if (!(data & 1))
2443 break;
2444
2445 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2446 &vcpu->arch.pv_time, data & ~1ULL,
2447 sizeof(struct pvclock_vcpu_time_info)))
2448 vcpu->arch.pv_time_enabled = false;
2449 else
2450 vcpu->arch.pv_time_enabled = true;
2451
2452 break;
2453 }
2454 case MSR_KVM_ASYNC_PF_EN:
2455 if (kvm_pv_enable_async_pf(vcpu, data))
2456 return 1;
2457 break;
2458 case MSR_KVM_STEAL_TIME:
2459
2460 if (unlikely(!sched_info_on()))
2461 return 1;
2462
2463 if (data & KVM_STEAL_RESERVED_MASK)
2464 return 1;
2465
2466 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2467 data & KVM_STEAL_VALID_BITS,
2468 sizeof(struct kvm_steal_time)))
2469 return 1;
2470
2471 vcpu->arch.st.msr_val = data;
2472
2473 if (!(data & KVM_MSR_ENABLED))
2474 break;
2475
2476 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2477
2478 break;
2479 case MSR_KVM_PV_EOI_EN:
2480 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2481 return 1;
2482 break;
2483
2484 case MSR_IA32_MCG_CTL:
2485 case MSR_IA32_MCG_STATUS:
2486 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2487 return set_msr_mce(vcpu, msr_info);
2488
2489 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2490 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2491 pr = true; /* fall through */
2492 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2493 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2494 if (kvm_pmu_is_valid_msr(vcpu, msr))
2495 return kvm_pmu_set_msr(vcpu, msr_info);
2496
2497 if (pr || data != 0)
2498 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2499 "0x%x data 0x%llx\n", msr, data);
2500 break;
2501 case MSR_K7_CLK_CTL:
2502 /*
2503 * Ignore all writes to this no longer documented MSR.
2504 * Writes are only relevant for old K7 processors,
2505 * all pre-dating SVM, but a recommended workaround from
2506 * AMD for these chips. It is possible to specify the
2507 * affected processor models on the command line, hence
2508 * the need to ignore the workaround.
2509 */
2510 break;
2511 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2512 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2513 case HV_X64_MSR_CRASH_CTL:
2514 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2515 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2516 case HV_X64_MSR_TSC_EMULATION_CONTROL:
2517 case HV_X64_MSR_TSC_EMULATION_STATUS:
2518 return kvm_hv_set_msr_common(vcpu, msr, data,
2519 msr_info->host_initiated);
2520 case MSR_IA32_BBL_CR_CTL3:
2521 /* Drop writes to this legacy MSR -- see rdmsr
2522 * counterpart for further detail.
2523 */
2524 if (report_ignored_msrs)
2525 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2526 msr, data);
2527 break;
2528 case MSR_AMD64_OSVW_ID_LENGTH:
2529 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2530 return 1;
2531 vcpu->arch.osvw.length = data;
2532 break;
2533 case MSR_AMD64_OSVW_STATUS:
2534 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2535 return 1;
2536 vcpu->arch.osvw.status = data;
2537 break;
2538 case MSR_PLATFORM_INFO:
2539 if (!msr_info->host_initiated ||
2540 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
2541 cpuid_fault_enabled(vcpu)))
2542 return 1;
2543 vcpu->arch.msr_platform_info = data;
2544 break;
2545 case MSR_MISC_FEATURES_ENABLES:
2546 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
2547 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
2548 !supports_cpuid_fault(vcpu)))
2549 return 1;
2550 vcpu->arch.msr_misc_features_enables = data;
2551 break;
2552 default:
2553 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2554 return xen_hvm_config(vcpu, data);
2555 if (kvm_pmu_is_valid_msr(vcpu, msr))
2556 return kvm_pmu_set_msr(vcpu, msr_info);
2557 if (!ignore_msrs) {
2558 vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2559 msr, data);
2560 return 1;
2561 } else {
2562 if (report_ignored_msrs)
2563 vcpu_unimpl(vcpu,
2564 "ignored wrmsr: 0x%x data 0x%llx\n",
2565 msr, data);
2566 break;
2567 }
2568 }
2569 return 0;
2570 }
2571 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2572
2573
2574 /*
2575 * Reads an msr value (of 'msr_index') into 'pdata'.
2576 * Returns 0 on success, non-0 otherwise.
2577 * Assumes vcpu_load() was already called.
2578 */
kvm_get_msr(struct kvm_vcpu * vcpu,struct msr_data * msr)2579 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2580 {
2581 return kvm_x86_ops->get_msr(vcpu, msr);
2582 }
2583 EXPORT_SYMBOL_GPL(kvm_get_msr);
2584
get_msr_mce(struct kvm_vcpu * vcpu,u32 msr,u64 * pdata,bool host)2585 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
2586 {
2587 u64 data;
2588 u64 mcg_cap = vcpu->arch.mcg_cap;
2589 unsigned bank_num = mcg_cap & 0xff;
2590
2591 switch (msr) {
2592 case MSR_IA32_P5_MC_ADDR:
2593 case MSR_IA32_P5_MC_TYPE:
2594 data = 0;
2595 break;
2596 case MSR_IA32_MCG_CAP:
2597 data = vcpu->arch.mcg_cap;
2598 break;
2599 case MSR_IA32_MCG_CTL:
2600 if (!(mcg_cap & MCG_CTL_P) && !host)
2601 return 1;
2602 data = vcpu->arch.mcg_ctl;
2603 break;
2604 case MSR_IA32_MCG_STATUS:
2605 data = vcpu->arch.mcg_status;
2606 break;
2607 default:
2608 if (msr >= MSR_IA32_MC0_CTL &&
2609 msr < MSR_IA32_MCx_CTL(bank_num)) {
2610 u32 offset = msr - MSR_IA32_MC0_CTL;
2611 data = vcpu->arch.mce_banks[offset];
2612 break;
2613 }
2614 return 1;
2615 }
2616 *pdata = data;
2617 return 0;
2618 }
2619
kvm_get_msr_common(struct kvm_vcpu * vcpu,struct msr_data * msr_info)2620 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2621 {
2622 switch (msr_info->index) {
2623 case MSR_IA32_PLATFORM_ID:
2624 case MSR_IA32_EBL_CR_POWERON:
2625 case MSR_IA32_DEBUGCTLMSR:
2626 case MSR_IA32_LASTBRANCHFROMIP:
2627 case MSR_IA32_LASTBRANCHTOIP:
2628 case MSR_IA32_LASTINTFROMIP:
2629 case MSR_IA32_LASTINTTOIP:
2630 case MSR_K8_SYSCFG:
2631 case MSR_K8_TSEG_ADDR:
2632 case MSR_K8_TSEG_MASK:
2633 case MSR_K7_HWCR:
2634 case MSR_VM_HSAVE_PA:
2635 case MSR_K8_INT_PENDING_MSG:
2636 case MSR_AMD64_NB_CFG:
2637 case MSR_FAM10H_MMIO_CONF_BASE:
2638 case MSR_AMD64_BU_CFG2:
2639 case MSR_IA32_PERF_CTL:
2640 case MSR_AMD64_DC_CFG:
2641 msr_info->data = 0;
2642 break;
2643 case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
2644 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2645 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2646 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2647 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2648 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2649 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2650 msr_info->data = 0;
2651 break;
2652 case MSR_IA32_UCODE_REV:
2653 msr_info->data = vcpu->arch.microcode_version;
2654 break;
2655 case MSR_IA32_TSC:
2656 msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + vcpu->arch.tsc_offset;
2657 break;
2658 case MSR_MTRRcap:
2659 case 0x200 ... 0x2ff:
2660 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2661 case 0xcd: /* fsb frequency */
2662 msr_info->data = 3;
2663 break;
2664 /*
2665 * MSR_EBC_FREQUENCY_ID
2666 * Conservative value valid for even the basic CPU models.
2667 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2668 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2669 * and 266MHz for model 3, or 4. Set Core Clock
2670 * Frequency to System Bus Frequency Ratio to 1 (bits
2671 * 31:24) even though these are only valid for CPU
2672 * models > 2, however guests may end up dividing or
2673 * multiplying by zero otherwise.
2674 */
2675 case MSR_EBC_FREQUENCY_ID:
2676 msr_info->data = 1 << 24;
2677 break;
2678 case MSR_IA32_APICBASE:
2679 msr_info->data = kvm_get_apic_base(vcpu);
2680 break;
2681 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2682 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2683 break;
2684 case MSR_IA32_TSCDEADLINE:
2685 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2686 break;
2687 case MSR_IA32_TSC_ADJUST:
2688 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2689 break;
2690 case MSR_IA32_MISC_ENABLE:
2691 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2692 break;
2693 case MSR_IA32_SMBASE:
2694 if (!msr_info->host_initiated)
2695 return 1;
2696 msr_info->data = vcpu->arch.smbase;
2697 break;
2698 case MSR_SMI_COUNT:
2699 msr_info->data = vcpu->arch.smi_count;
2700 break;
2701 case MSR_IA32_PERF_STATUS:
2702 /* TSC increment by tick */
2703 msr_info->data = 1000ULL;
2704 /* CPU multiplier */
2705 msr_info->data |= (((uint64_t)4ULL) << 40);
2706 break;
2707 case MSR_EFER:
2708 msr_info->data = vcpu->arch.efer;
2709 break;
2710 case MSR_KVM_WALL_CLOCK:
2711 case MSR_KVM_WALL_CLOCK_NEW:
2712 msr_info->data = vcpu->kvm->arch.wall_clock;
2713 break;
2714 case MSR_KVM_SYSTEM_TIME:
2715 case MSR_KVM_SYSTEM_TIME_NEW:
2716 msr_info->data = vcpu->arch.time;
2717 break;
2718 case MSR_KVM_ASYNC_PF_EN:
2719 msr_info->data = vcpu->arch.apf.msr_val;
2720 break;
2721 case MSR_KVM_STEAL_TIME:
2722 msr_info->data = vcpu->arch.st.msr_val;
2723 break;
2724 case MSR_KVM_PV_EOI_EN:
2725 msr_info->data = vcpu->arch.pv_eoi.msr_val;
2726 break;
2727 case MSR_IA32_P5_MC_ADDR:
2728 case MSR_IA32_P5_MC_TYPE:
2729 case MSR_IA32_MCG_CAP:
2730 case MSR_IA32_MCG_CTL:
2731 case MSR_IA32_MCG_STATUS:
2732 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2733 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
2734 msr_info->host_initiated);
2735 case MSR_K7_CLK_CTL:
2736 /*
2737 * Provide expected ramp-up count for K7. All other
2738 * are set to zero, indicating minimum divisors for
2739 * every field.
2740 *
2741 * This prevents guest kernels on AMD host with CPU
2742 * type 6, model 8 and higher from exploding due to
2743 * the rdmsr failing.
2744 */
2745 msr_info->data = 0x20000000;
2746 break;
2747 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2748 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2749 case HV_X64_MSR_CRASH_CTL:
2750 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2751 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2752 case HV_X64_MSR_TSC_EMULATION_CONTROL:
2753 case HV_X64_MSR_TSC_EMULATION_STATUS:
2754 return kvm_hv_get_msr_common(vcpu,
2755 msr_info->index, &msr_info->data,
2756 msr_info->host_initiated);
2757 break;
2758 case MSR_IA32_BBL_CR_CTL3:
2759 /* This legacy MSR exists but isn't fully documented in current
2760 * silicon. It is however accessed by winxp in very narrow
2761 * scenarios where it sets bit #19, itself documented as
2762 * a "reserved" bit. Best effort attempt to source coherent
2763 * read data here should the balance of the register be
2764 * interpreted by the guest:
2765 *
2766 * L2 cache control register 3: 64GB range, 256KB size,
2767 * enabled, latency 0x1, configured
2768 */
2769 msr_info->data = 0xbe702111;
2770 break;
2771 case MSR_AMD64_OSVW_ID_LENGTH:
2772 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2773 return 1;
2774 msr_info->data = vcpu->arch.osvw.length;
2775 break;
2776 case MSR_AMD64_OSVW_STATUS:
2777 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2778 return 1;
2779 msr_info->data = vcpu->arch.osvw.status;
2780 break;
2781 case MSR_PLATFORM_INFO:
2782 if (!msr_info->host_initiated &&
2783 !vcpu->kvm->arch.guest_can_read_msr_platform_info)
2784 return 1;
2785 msr_info->data = vcpu->arch.msr_platform_info;
2786 break;
2787 case MSR_MISC_FEATURES_ENABLES:
2788 msr_info->data = vcpu->arch.msr_misc_features_enables;
2789 break;
2790 default:
2791 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2792 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2793 if (!ignore_msrs) {
2794 vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
2795 msr_info->index);
2796 return 1;
2797 } else {
2798 if (report_ignored_msrs)
2799 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n",
2800 msr_info->index);
2801 msr_info->data = 0;
2802 }
2803 break;
2804 }
2805 return 0;
2806 }
2807 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2808
2809 /*
2810 * Read or write a bunch of msrs. All parameters are kernel addresses.
2811 *
2812 * @return number of msrs set successfully.
2813 */
__msr_io(struct kvm_vcpu * vcpu,struct kvm_msrs * msrs,struct kvm_msr_entry * entries,int (* do_msr)(struct kvm_vcpu * vcpu,unsigned index,u64 * data))2814 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2815 struct kvm_msr_entry *entries,
2816 int (*do_msr)(struct kvm_vcpu *vcpu,
2817 unsigned index, u64 *data))
2818 {
2819 int i;
2820
2821 for (i = 0; i < msrs->nmsrs; ++i)
2822 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2823 break;
2824
2825 return i;
2826 }
2827
2828 /*
2829 * Read or write a bunch of msrs. Parameters are user addresses.
2830 *
2831 * @return number of msrs set successfully.
2832 */
msr_io(struct kvm_vcpu * vcpu,struct kvm_msrs __user * user_msrs,int (* do_msr)(struct kvm_vcpu * vcpu,unsigned index,u64 * data),int writeback)2833 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2834 int (*do_msr)(struct kvm_vcpu *vcpu,
2835 unsigned index, u64 *data),
2836 int writeback)
2837 {
2838 struct kvm_msrs msrs;
2839 struct kvm_msr_entry *entries;
2840 int r, n;
2841 unsigned size;
2842
2843 r = -EFAULT;
2844 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2845 goto out;
2846
2847 r = -E2BIG;
2848 if (msrs.nmsrs >= MAX_IO_MSRS)
2849 goto out;
2850
2851 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2852 entries = memdup_user(user_msrs->entries, size);
2853 if (IS_ERR(entries)) {
2854 r = PTR_ERR(entries);
2855 goto out;
2856 }
2857
2858 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2859 if (r < 0)
2860 goto out_free;
2861
2862 r = -EFAULT;
2863 if (writeback && copy_to_user(user_msrs->entries, entries, size))
2864 goto out_free;
2865
2866 r = n;
2867
2868 out_free:
2869 kfree(entries);
2870 out:
2871 return r;
2872 }
2873
kvm_can_mwait_in_guest(void)2874 static inline bool kvm_can_mwait_in_guest(void)
2875 {
2876 return boot_cpu_has(X86_FEATURE_MWAIT) &&
2877 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
2878 boot_cpu_has(X86_FEATURE_ARAT);
2879 }
2880
kvm_vm_ioctl_check_extension(struct kvm * kvm,long ext)2881 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2882 {
2883 int r = 0;
2884
2885 switch (ext) {
2886 case KVM_CAP_IRQCHIP:
2887 case KVM_CAP_HLT:
2888 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2889 case KVM_CAP_SET_TSS_ADDR:
2890 case KVM_CAP_EXT_CPUID:
2891 case KVM_CAP_EXT_EMUL_CPUID:
2892 case KVM_CAP_CLOCKSOURCE:
2893 case KVM_CAP_PIT:
2894 case KVM_CAP_NOP_IO_DELAY:
2895 case KVM_CAP_MP_STATE:
2896 case KVM_CAP_SYNC_MMU:
2897 case KVM_CAP_USER_NMI:
2898 case KVM_CAP_REINJECT_CONTROL:
2899 case KVM_CAP_IRQ_INJECT_STATUS:
2900 case KVM_CAP_IOEVENTFD:
2901 case KVM_CAP_IOEVENTFD_NO_LENGTH:
2902 case KVM_CAP_PIT2:
2903 case KVM_CAP_PIT_STATE2:
2904 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2905 case KVM_CAP_XEN_HVM:
2906 case KVM_CAP_VCPU_EVENTS:
2907 case KVM_CAP_HYPERV:
2908 case KVM_CAP_HYPERV_VAPIC:
2909 case KVM_CAP_HYPERV_SPIN:
2910 case KVM_CAP_HYPERV_SYNIC:
2911 case KVM_CAP_HYPERV_SYNIC2:
2912 case KVM_CAP_HYPERV_VP_INDEX:
2913 case KVM_CAP_HYPERV_EVENTFD:
2914 case KVM_CAP_HYPERV_TLBFLUSH:
2915 case KVM_CAP_PCI_SEGMENT:
2916 case KVM_CAP_DEBUGREGS:
2917 case KVM_CAP_X86_ROBUST_SINGLESTEP:
2918 case KVM_CAP_XSAVE:
2919 case KVM_CAP_ASYNC_PF:
2920 case KVM_CAP_GET_TSC_KHZ:
2921 case KVM_CAP_KVMCLOCK_CTRL:
2922 case KVM_CAP_READONLY_MEM:
2923 case KVM_CAP_HYPERV_TIME:
2924 case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2925 case KVM_CAP_TSC_DEADLINE_TIMER:
2926 case KVM_CAP_ENABLE_CAP_VM:
2927 case KVM_CAP_DISABLE_QUIRKS:
2928 case KVM_CAP_SET_BOOT_CPU_ID:
2929 case KVM_CAP_SPLIT_IRQCHIP:
2930 case KVM_CAP_IMMEDIATE_EXIT:
2931 case KVM_CAP_GET_MSR_FEATURES:
2932 case KVM_CAP_MSR_PLATFORM_INFO:
2933 r = 1;
2934 break;
2935 case KVM_CAP_SYNC_REGS:
2936 r = KVM_SYNC_X86_VALID_FIELDS;
2937 break;
2938 case KVM_CAP_ADJUST_CLOCK:
2939 r = KVM_CLOCK_TSC_STABLE;
2940 break;
2941 case KVM_CAP_X86_DISABLE_EXITS:
2942 r |= KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE;
2943 if(kvm_can_mwait_in_guest())
2944 r |= KVM_X86_DISABLE_EXITS_MWAIT;
2945 break;
2946 case KVM_CAP_X86_SMM:
2947 /* SMBASE is usually relocated above 1M on modern chipsets,
2948 * and SMM handlers might indeed rely on 4G segment limits,
2949 * so do not report SMM to be available if real mode is
2950 * emulated via vm86 mode. Still, do not go to great lengths
2951 * to avoid userspace's usage of the feature, because it is a
2952 * fringe case that is not enabled except via specific settings
2953 * of the module parameters.
2954 */
2955 r = kvm_x86_ops->has_emulated_msr(MSR_IA32_SMBASE);
2956 break;
2957 case KVM_CAP_VAPIC:
2958 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2959 break;
2960 case KVM_CAP_NR_VCPUS:
2961 r = KVM_SOFT_MAX_VCPUS;
2962 break;
2963 case KVM_CAP_MAX_VCPUS:
2964 r = KVM_MAX_VCPUS;
2965 break;
2966 case KVM_CAP_NR_MEMSLOTS:
2967 r = KVM_USER_MEM_SLOTS;
2968 break;
2969 case KVM_CAP_PV_MMU: /* obsolete */
2970 r = 0;
2971 break;
2972 case KVM_CAP_MCE:
2973 r = KVM_MAX_MCE_BANKS;
2974 break;
2975 case KVM_CAP_XCRS:
2976 r = boot_cpu_has(X86_FEATURE_XSAVE);
2977 break;
2978 case KVM_CAP_TSC_CONTROL:
2979 r = kvm_has_tsc_control;
2980 break;
2981 case KVM_CAP_X2APIC_API:
2982 r = KVM_X2APIC_API_VALID_FLAGS;
2983 break;
2984 case KVM_CAP_NESTED_STATE:
2985 r = kvm_x86_ops->get_nested_state ?
2986 kvm_x86_ops->get_nested_state(NULL, 0, 0) : 0;
2987 break;
2988 default:
2989 break;
2990 }
2991 return r;
2992
2993 }
2994
kvm_arch_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)2995 long kvm_arch_dev_ioctl(struct file *filp,
2996 unsigned int ioctl, unsigned long arg)
2997 {
2998 void __user *argp = (void __user *)arg;
2999 long r;
3000
3001 switch (ioctl) {
3002 case KVM_GET_MSR_INDEX_LIST: {
3003 struct kvm_msr_list __user *user_msr_list = argp;
3004 struct kvm_msr_list msr_list;
3005 unsigned n;
3006
3007 r = -EFAULT;
3008 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
3009 goto out;
3010 n = msr_list.nmsrs;
3011 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
3012 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
3013 goto out;
3014 r = -E2BIG;
3015 if (n < msr_list.nmsrs)
3016 goto out;
3017 r = -EFAULT;
3018 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
3019 num_msrs_to_save * sizeof(u32)))
3020 goto out;
3021 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
3022 &emulated_msrs,
3023 num_emulated_msrs * sizeof(u32)))
3024 goto out;
3025 r = 0;
3026 break;
3027 }
3028 case KVM_GET_SUPPORTED_CPUID:
3029 case KVM_GET_EMULATED_CPUID: {
3030 struct kvm_cpuid2 __user *cpuid_arg = argp;
3031 struct kvm_cpuid2 cpuid;
3032
3033 r = -EFAULT;
3034 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3035 goto out;
3036
3037 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
3038 ioctl);
3039 if (r)
3040 goto out;
3041
3042 r = -EFAULT;
3043 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3044 goto out;
3045 r = 0;
3046 break;
3047 }
3048 case KVM_X86_GET_MCE_CAP_SUPPORTED: {
3049 r = -EFAULT;
3050 if (copy_to_user(argp, &kvm_mce_cap_supported,
3051 sizeof(kvm_mce_cap_supported)))
3052 goto out;
3053 r = 0;
3054 break;
3055 case KVM_GET_MSR_FEATURE_INDEX_LIST: {
3056 struct kvm_msr_list __user *user_msr_list = argp;
3057 struct kvm_msr_list msr_list;
3058 unsigned int n;
3059
3060 r = -EFAULT;
3061 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3062 goto out;
3063 n = msr_list.nmsrs;
3064 msr_list.nmsrs = num_msr_based_features;
3065 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3066 goto out;
3067 r = -E2BIG;
3068 if (n < msr_list.nmsrs)
3069 goto out;
3070 r = -EFAULT;
3071 if (copy_to_user(user_msr_list->indices, &msr_based_features,
3072 num_msr_based_features * sizeof(u32)))
3073 goto out;
3074 r = 0;
3075 break;
3076 }
3077 case KVM_GET_MSRS:
3078 r = msr_io(NULL, argp, do_get_msr_feature, 1);
3079 break;
3080 }
3081 default:
3082 r = -EINVAL;
3083 }
3084 out:
3085 return r;
3086 }
3087
wbinvd_ipi(void * garbage)3088 static void wbinvd_ipi(void *garbage)
3089 {
3090 wbinvd();
3091 }
3092
need_emulate_wbinvd(struct kvm_vcpu * vcpu)3093 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
3094 {
3095 return kvm_arch_has_noncoherent_dma(vcpu->kvm);
3096 }
3097
kvm_arch_vcpu_load(struct kvm_vcpu * vcpu,int cpu)3098 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
3099 {
3100 /* Address WBINVD may be executed by guest */
3101 if (need_emulate_wbinvd(vcpu)) {
3102 if (kvm_x86_ops->has_wbinvd_exit())
3103 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
3104 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
3105 smp_call_function_single(vcpu->cpu,
3106 wbinvd_ipi, NULL, 1);
3107 }
3108
3109 kvm_x86_ops->vcpu_load(vcpu, cpu);
3110
3111 /* Apply any externally detected TSC adjustments (due to suspend) */
3112 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
3113 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
3114 vcpu->arch.tsc_offset_adjustment = 0;
3115 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3116 }
3117
3118 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
3119 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
3120 rdtsc() - vcpu->arch.last_host_tsc;
3121 if (tsc_delta < 0)
3122 mark_tsc_unstable("KVM discovered backwards TSC");
3123
3124 if (kvm_check_tsc_unstable()) {
3125 u64 offset = kvm_compute_tsc_offset(vcpu,
3126 vcpu->arch.last_guest_tsc);
3127 kvm_vcpu_write_tsc_offset(vcpu, offset);
3128 vcpu->arch.tsc_catchup = 1;
3129 }
3130
3131 if (kvm_lapic_hv_timer_in_use(vcpu))
3132 kvm_lapic_restart_hv_timer(vcpu);
3133
3134 /*
3135 * On a host with synchronized TSC, there is no need to update
3136 * kvmclock on vcpu->cpu migration
3137 */
3138 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
3139 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
3140 if (vcpu->cpu != cpu)
3141 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
3142 vcpu->cpu = cpu;
3143 }
3144
3145 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3146 }
3147
kvm_steal_time_set_preempted(struct kvm_vcpu * vcpu)3148 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
3149 {
3150 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3151 return;
3152
3153 vcpu->arch.st.steal.preempted = KVM_VCPU_PREEMPTED;
3154
3155 kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime,
3156 &vcpu->arch.st.steal.preempted,
3157 offsetof(struct kvm_steal_time, preempted),
3158 sizeof(vcpu->arch.st.steal.preempted));
3159 }
3160
kvm_arch_vcpu_put(struct kvm_vcpu * vcpu)3161 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
3162 {
3163 int idx;
3164
3165 if (vcpu->preempted)
3166 vcpu->arch.preempted_in_kernel = !kvm_x86_ops->get_cpl(vcpu);
3167
3168 /*
3169 * Disable page faults because we're in atomic context here.
3170 * kvm_write_guest_offset_cached() would call might_fault()
3171 * that relies on pagefault_disable() to tell if there's a
3172 * bug. NOTE: the write to guest memory may not go through if
3173 * during postcopy live migration or if there's heavy guest
3174 * paging.
3175 */
3176 pagefault_disable();
3177 /*
3178 * kvm_memslots() will be called by
3179 * kvm_write_guest_offset_cached() so take the srcu lock.
3180 */
3181 idx = srcu_read_lock(&vcpu->kvm->srcu);
3182 kvm_steal_time_set_preempted(vcpu);
3183 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3184 pagefault_enable();
3185 kvm_x86_ops->vcpu_put(vcpu);
3186 vcpu->arch.last_host_tsc = rdtsc();
3187 /*
3188 * If userspace has set any breakpoints or watchpoints, dr6 is restored
3189 * on every vmexit, but if not, we might have a stale dr6 from the
3190 * guest. do_debug expects dr6 to be cleared after it runs, do the same.
3191 */
3192 set_debugreg(0, 6);
3193 }
3194
kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s)3195 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
3196 struct kvm_lapic_state *s)
3197 {
3198 if (vcpu->arch.apicv_active)
3199 kvm_x86_ops->sync_pir_to_irr(vcpu);
3200
3201 return kvm_apic_get_state(vcpu, s);
3202 }
3203
kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s)3204 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
3205 struct kvm_lapic_state *s)
3206 {
3207 int r;
3208
3209 r = kvm_apic_set_state(vcpu, s);
3210 if (r)
3211 return r;
3212 update_cr8_intercept(vcpu);
3213
3214 return 0;
3215 }
3216
kvm_cpu_accept_dm_intr(struct kvm_vcpu * vcpu)3217 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
3218 {
3219 return (!lapic_in_kernel(vcpu) ||
3220 kvm_apic_accept_pic_intr(vcpu));
3221 }
3222
3223 /*
3224 * if userspace requested an interrupt window, check that the
3225 * interrupt window is open.
3226 *
3227 * No need to exit to userspace if we already have an interrupt queued.
3228 */
kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu * vcpu)3229 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
3230 {
3231 return kvm_arch_interrupt_allowed(vcpu) &&
3232 !kvm_cpu_has_interrupt(vcpu) &&
3233 !kvm_event_needs_reinjection(vcpu) &&
3234 kvm_cpu_accept_dm_intr(vcpu);
3235 }
3236
kvm_vcpu_ioctl_interrupt(struct kvm_vcpu * vcpu,struct kvm_interrupt * irq)3237 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
3238 struct kvm_interrupt *irq)
3239 {
3240 if (irq->irq >= KVM_NR_INTERRUPTS)
3241 return -EINVAL;
3242
3243 if (!irqchip_in_kernel(vcpu->kvm)) {
3244 kvm_queue_interrupt(vcpu, irq->irq, false);
3245 kvm_make_request(KVM_REQ_EVENT, vcpu);
3246 return 0;
3247 }
3248
3249 /*
3250 * With in-kernel LAPIC, we only use this to inject EXTINT, so
3251 * fail for in-kernel 8259.
3252 */
3253 if (pic_in_kernel(vcpu->kvm))
3254 return -ENXIO;
3255
3256 if (vcpu->arch.pending_external_vector != -1)
3257 return -EEXIST;
3258
3259 vcpu->arch.pending_external_vector = irq->irq;
3260 kvm_make_request(KVM_REQ_EVENT, vcpu);
3261 return 0;
3262 }
3263
kvm_vcpu_ioctl_nmi(struct kvm_vcpu * vcpu)3264 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
3265 {
3266 kvm_inject_nmi(vcpu);
3267
3268 return 0;
3269 }
3270
kvm_vcpu_ioctl_smi(struct kvm_vcpu * vcpu)3271 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
3272 {
3273 kvm_make_request(KVM_REQ_SMI, vcpu);
3274
3275 return 0;
3276 }
3277
vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu * vcpu,struct kvm_tpr_access_ctl * tac)3278 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
3279 struct kvm_tpr_access_ctl *tac)
3280 {
3281 if (tac->flags)
3282 return -EINVAL;
3283 vcpu->arch.tpr_access_reporting = !!tac->enabled;
3284 return 0;
3285 }
3286
kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu * vcpu,u64 mcg_cap)3287 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3288 u64 mcg_cap)
3289 {
3290 int r;
3291 unsigned bank_num = mcg_cap & 0xff, bank;
3292
3293 r = -EINVAL;
3294 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3295 goto out;
3296 if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3297 goto out;
3298 r = 0;
3299 vcpu->arch.mcg_cap = mcg_cap;
3300 /* Init IA32_MCG_CTL to all 1s */
3301 if (mcg_cap & MCG_CTL_P)
3302 vcpu->arch.mcg_ctl = ~(u64)0;
3303 /* Init IA32_MCi_CTL to all 1s */
3304 for (bank = 0; bank < bank_num; bank++)
3305 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3306
3307 if (kvm_x86_ops->setup_mce)
3308 kvm_x86_ops->setup_mce(vcpu);
3309 out:
3310 return r;
3311 }
3312
kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu * vcpu,struct kvm_x86_mce * mce)3313 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3314 struct kvm_x86_mce *mce)
3315 {
3316 u64 mcg_cap = vcpu->arch.mcg_cap;
3317 unsigned bank_num = mcg_cap & 0xff;
3318 u64 *banks = vcpu->arch.mce_banks;
3319
3320 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3321 return -EINVAL;
3322 /*
3323 * if IA32_MCG_CTL is not all 1s, the uncorrected error
3324 * reporting is disabled
3325 */
3326 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3327 vcpu->arch.mcg_ctl != ~(u64)0)
3328 return 0;
3329 banks += 4 * mce->bank;
3330 /*
3331 * if IA32_MCi_CTL is not all 1s, the uncorrected error
3332 * reporting is disabled for the bank
3333 */
3334 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3335 return 0;
3336 if (mce->status & MCI_STATUS_UC) {
3337 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3338 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3339 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3340 return 0;
3341 }
3342 if (banks[1] & MCI_STATUS_VAL)
3343 mce->status |= MCI_STATUS_OVER;
3344 banks[2] = mce->addr;
3345 banks[3] = mce->misc;
3346 vcpu->arch.mcg_status = mce->mcg_status;
3347 banks[1] = mce->status;
3348 kvm_queue_exception(vcpu, MC_VECTOR);
3349 } else if (!(banks[1] & MCI_STATUS_VAL)
3350 || !(banks[1] & MCI_STATUS_UC)) {
3351 if (banks[1] & MCI_STATUS_VAL)
3352 mce->status |= MCI_STATUS_OVER;
3353 banks[2] = mce->addr;
3354 banks[3] = mce->misc;
3355 banks[1] = mce->status;
3356 } else
3357 banks[1] |= MCI_STATUS_OVER;
3358 return 0;
3359 }
3360
kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)3361 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3362 struct kvm_vcpu_events *events)
3363 {
3364 process_nmi(vcpu);
3365 /*
3366 * FIXME: pass injected and pending separately. This is only
3367 * needed for nested virtualization, whose state cannot be
3368 * migrated yet. For now we can combine them.
3369 */
3370 events->exception.injected =
3371 (vcpu->arch.exception.pending ||
3372 vcpu->arch.exception.injected) &&
3373 !kvm_exception_is_soft(vcpu->arch.exception.nr);
3374 events->exception.nr = vcpu->arch.exception.nr;
3375 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3376 events->exception.pad = 0;
3377 events->exception.error_code = vcpu->arch.exception.error_code;
3378
3379 events->interrupt.injected =
3380 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
3381 events->interrupt.nr = vcpu->arch.interrupt.nr;
3382 events->interrupt.soft = 0;
3383 events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3384
3385 events->nmi.injected = vcpu->arch.nmi_injected;
3386 events->nmi.pending = vcpu->arch.nmi_pending != 0;
3387 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3388 events->nmi.pad = 0;
3389
3390 events->sipi_vector = 0; /* never valid when reporting to user space */
3391
3392 events->smi.smm = is_smm(vcpu);
3393 events->smi.pending = vcpu->arch.smi_pending;
3394 events->smi.smm_inside_nmi =
3395 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3396 events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3397
3398 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3399 | KVM_VCPUEVENT_VALID_SHADOW
3400 | KVM_VCPUEVENT_VALID_SMM);
3401 memset(&events->reserved, 0, sizeof(events->reserved));
3402 }
3403
3404 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags);
3405
kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)3406 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3407 struct kvm_vcpu_events *events)
3408 {
3409 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3410 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3411 | KVM_VCPUEVENT_VALID_SHADOW
3412 | KVM_VCPUEVENT_VALID_SMM))
3413 return -EINVAL;
3414
3415 if (events->exception.injected &&
3416 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR ||
3417 is_guest_mode(vcpu)))
3418 return -EINVAL;
3419
3420 /* INITs are latched while in SMM */
3421 if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
3422 (events->smi.smm || events->smi.pending) &&
3423 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3424 return -EINVAL;
3425
3426 process_nmi(vcpu);
3427 vcpu->arch.exception.injected = false;
3428 vcpu->arch.exception.pending = events->exception.injected;
3429 vcpu->arch.exception.nr = events->exception.nr;
3430 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3431 vcpu->arch.exception.error_code = events->exception.error_code;
3432
3433 vcpu->arch.interrupt.injected = events->interrupt.injected;
3434 vcpu->arch.interrupt.nr = events->interrupt.nr;
3435 vcpu->arch.interrupt.soft = events->interrupt.soft;
3436 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3437 kvm_x86_ops->set_interrupt_shadow(vcpu,
3438 events->interrupt.shadow);
3439
3440 vcpu->arch.nmi_injected = events->nmi.injected;
3441 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3442 vcpu->arch.nmi_pending = events->nmi.pending;
3443 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3444
3445 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3446 lapic_in_kernel(vcpu))
3447 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3448
3449 if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3450 u32 hflags = vcpu->arch.hflags;
3451 if (events->smi.smm)
3452 hflags |= HF_SMM_MASK;
3453 else
3454 hflags &= ~HF_SMM_MASK;
3455 kvm_set_hflags(vcpu, hflags);
3456
3457 vcpu->arch.smi_pending = events->smi.pending;
3458
3459 if (events->smi.smm) {
3460 if (events->smi.smm_inside_nmi)
3461 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3462 else
3463 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3464 if (lapic_in_kernel(vcpu)) {
3465 if (events->smi.latched_init)
3466 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3467 else
3468 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3469 }
3470 }
3471 }
3472
3473 kvm_make_request(KVM_REQ_EVENT, vcpu);
3474
3475 return 0;
3476 }
3477
kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu * vcpu,struct kvm_debugregs * dbgregs)3478 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3479 struct kvm_debugregs *dbgregs)
3480 {
3481 unsigned long val;
3482
3483 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3484 kvm_get_dr(vcpu, 6, &val);
3485 dbgregs->dr6 = val;
3486 dbgregs->dr7 = vcpu->arch.dr7;
3487 dbgregs->flags = 0;
3488 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3489 }
3490
kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu * vcpu,struct kvm_debugregs * dbgregs)3491 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3492 struct kvm_debugregs *dbgregs)
3493 {
3494 if (dbgregs->flags)
3495 return -EINVAL;
3496
3497 if (dbgregs->dr6 & ~0xffffffffull)
3498 return -EINVAL;
3499 if (dbgregs->dr7 & ~0xffffffffull)
3500 return -EINVAL;
3501
3502 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3503 kvm_update_dr0123(vcpu);
3504 vcpu->arch.dr6 = dbgregs->dr6;
3505 kvm_update_dr6(vcpu);
3506 vcpu->arch.dr7 = dbgregs->dr7;
3507 kvm_update_dr7(vcpu);
3508
3509 return 0;
3510 }
3511
3512 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3513
fill_xsave(u8 * dest,struct kvm_vcpu * vcpu)3514 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3515 {
3516 struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3517 u64 xstate_bv = xsave->header.xfeatures;
3518 u64 valid;
3519
3520 /*
3521 * Copy legacy XSAVE area, to avoid complications with CPUID
3522 * leaves 0 and 1 in the loop below.
3523 */
3524 memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3525
3526 /* Set XSTATE_BV */
3527 xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
3528 *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3529
3530 /*
3531 * Copy each region from the possibly compacted offset to the
3532 * non-compacted offset.
3533 */
3534 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3535 while (valid) {
3536 u64 feature = valid & -valid;
3537 int index = fls64(feature) - 1;
3538 void *src = get_xsave_addr(xsave, feature);
3539
3540 if (src) {
3541 u32 size, offset, ecx, edx;
3542 cpuid_count(XSTATE_CPUID, index,
3543 &size, &offset, &ecx, &edx);
3544 if (feature == XFEATURE_MASK_PKRU)
3545 memcpy(dest + offset, &vcpu->arch.pkru,
3546 sizeof(vcpu->arch.pkru));
3547 else
3548 memcpy(dest + offset, src, size);
3549
3550 }
3551
3552 valid -= feature;
3553 }
3554 }
3555
load_xsave(struct kvm_vcpu * vcpu,u8 * src)3556 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3557 {
3558 struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3559 u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3560 u64 valid;
3561
3562 /*
3563 * Copy legacy XSAVE area, to avoid complications with CPUID
3564 * leaves 0 and 1 in the loop below.
3565 */
3566 memcpy(xsave, src, XSAVE_HDR_OFFSET);
3567
3568 /* Set XSTATE_BV and possibly XCOMP_BV. */
3569 xsave->header.xfeatures = xstate_bv;
3570 if (boot_cpu_has(X86_FEATURE_XSAVES))
3571 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3572
3573 /*
3574 * Copy each region from the non-compacted offset to the
3575 * possibly compacted offset.
3576 */
3577 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3578 while (valid) {
3579 u64 feature = valid & -valid;
3580 int index = fls64(feature) - 1;
3581 void *dest = get_xsave_addr(xsave, feature);
3582
3583 if (dest) {
3584 u32 size, offset, ecx, edx;
3585 cpuid_count(XSTATE_CPUID, index,
3586 &size, &offset, &ecx, &edx);
3587 if (feature == XFEATURE_MASK_PKRU)
3588 memcpy(&vcpu->arch.pkru, src + offset,
3589 sizeof(vcpu->arch.pkru));
3590 else
3591 memcpy(dest, src + offset, size);
3592 }
3593
3594 valid -= feature;
3595 }
3596 }
3597
kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu * vcpu,struct kvm_xsave * guest_xsave)3598 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3599 struct kvm_xsave *guest_xsave)
3600 {
3601 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3602 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3603 fill_xsave((u8 *) guest_xsave->region, vcpu);
3604 } else {
3605 memcpy(guest_xsave->region,
3606 &vcpu->arch.guest_fpu.state.fxsave,
3607 sizeof(struct fxregs_state));
3608 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3609 XFEATURE_MASK_FPSSE;
3610 }
3611 }
3612
3613 #define XSAVE_MXCSR_OFFSET 24
3614
kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu * vcpu,struct kvm_xsave * guest_xsave)3615 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3616 struct kvm_xsave *guest_xsave)
3617 {
3618 u64 xstate_bv =
3619 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3620 u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
3621
3622 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3623 /*
3624 * Here we allow setting states that are not present in
3625 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility
3626 * with old userspace.
3627 */
3628 if (xstate_bv & ~kvm_supported_xcr0() ||
3629 mxcsr & ~mxcsr_feature_mask)
3630 return -EINVAL;
3631 load_xsave(vcpu, (u8 *)guest_xsave->region);
3632 } else {
3633 if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
3634 mxcsr & ~mxcsr_feature_mask)
3635 return -EINVAL;
3636 memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3637 guest_xsave->region, sizeof(struct fxregs_state));
3638 }
3639 return 0;
3640 }
3641
kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu * vcpu,struct kvm_xcrs * guest_xcrs)3642 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3643 struct kvm_xcrs *guest_xcrs)
3644 {
3645 if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3646 guest_xcrs->nr_xcrs = 0;
3647 return;
3648 }
3649
3650 guest_xcrs->nr_xcrs = 1;
3651 guest_xcrs->flags = 0;
3652 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3653 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3654 }
3655
kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu * vcpu,struct kvm_xcrs * guest_xcrs)3656 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3657 struct kvm_xcrs *guest_xcrs)
3658 {
3659 int i, r = 0;
3660
3661 if (!boot_cpu_has(X86_FEATURE_XSAVE))
3662 return -EINVAL;
3663
3664 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3665 return -EINVAL;
3666
3667 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3668 /* Only support XCR0 currently */
3669 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3670 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3671 guest_xcrs->xcrs[i].value);
3672 break;
3673 }
3674 if (r)
3675 r = -EINVAL;
3676 return r;
3677 }
3678
3679 /*
3680 * kvm_set_guest_paused() indicates to the guest kernel that it has been
3681 * stopped by the hypervisor. This function will be called from the host only.
3682 * EINVAL is returned when the host attempts to set the flag for a guest that
3683 * does not support pv clocks.
3684 */
kvm_set_guest_paused(struct kvm_vcpu * vcpu)3685 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3686 {
3687 if (!vcpu->arch.pv_time_enabled)
3688 return -EINVAL;
3689 vcpu->arch.pvclock_set_guest_stopped_request = true;
3690 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3691 return 0;
3692 }
3693
kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu * vcpu,struct kvm_enable_cap * cap)3694 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3695 struct kvm_enable_cap *cap)
3696 {
3697 if (cap->flags)
3698 return -EINVAL;
3699
3700 switch (cap->cap) {
3701 case KVM_CAP_HYPERV_SYNIC2:
3702 if (cap->args[0])
3703 return -EINVAL;
3704 case KVM_CAP_HYPERV_SYNIC:
3705 if (!irqchip_in_kernel(vcpu->kvm))
3706 return -EINVAL;
3707 return kvm_hv_activate_synic(vcpu, cap->cap ==
3708 KVM_CAP_HYPERV_SYNIC2);
3709 default:
3710 return -EINVAL;
3711 }
3712 }
3713
kvm_arch_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)3714 long kvm_arch_vcpu_ioctl(struct file *filp,
3715 unsigned int ioctl, unsigned long arg)
3716 {
3717 struct kvm_vcpu *vcpu = filp->private_data;
3718 void __user *argp = (void __user *)arg;
3719 int r;
3720 union {
3721 struct kvm_lapic_state *lapic;
3722 struct kvm_xsave *xsave;
3723 struct kvm_xcrs *xcrs;
3724 void *buffer;
3725 } u;
3726
3727 vcpu_load(vcpu);
3728
3729 u.buffer = NULL;
3730 switch (ioctl) {
3731 case KVM_GET_LAPIC: {
3732 r = -EINVAL;
3733 if (!lapic_in_kernel(vcpu))
3734 goto out;
3735 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3736
3737 r = -ENOMEM;
3738 if (!u.lapic)
3739 goto out;
3740 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3741 if (r)
3742 goto out;
3743 r = -EFAULT;
3744 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3745 goto out;
3746 r = 0;
3747 break;
3748 }
3749 case KVM_SET_LAPIC: {
3750 r = -EINVAL;
3751 if (!lapic_in_kernel(vcpu))
3752 goto out;
3753 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3754 if (IS_ERR(u.lapic)) {
3755 r = PTR_ERR(u.lapic);
3756 goto out_nofree;
3757 }
3758
3759 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3760 break;
3761 }
3762 case KVM_INTERRUPT: {
3763 struct kvm_interrupt irq;
3764
3765 r = -EFAULT;
3766 if (copy_from_user(&irq, argp, sizeof irq))
3767 goto out;
3768 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3769 break;
3770 }
3771 case KVM_NMI: {
3772 r = kvm_vcpu_ioctl_nmi(vcpu);
3773 break;
3774 }
3775 case KVM_SMI: {
3776 r = kvm_vcpu_ioctl_smi(vcpu);
3777 break;
3778 }
3779 case KVM_SET_CPUID: {
3780 struct kvm_cpuid __user *cpuid_arg = argp;
3781 struct kvm_cpuid cpuid;
3782
3783 r = -EFAULT;
3784 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3785 goto out;
3786 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3787 break;
3788 }
3789 case KVM_SET_CPUID2: {
3790 struct kvm_cpuid2 __user *cpuid_arg = argp;
3791 struct kvm_cpuid2 cpuid;
3792
3793 r = -EFAULT;
3794 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3795 goto out;
3796 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3797 cpuid_arg->entries);
3798 break;
3799 }
3800 case KVM_GET_CPUID2: {
3801 struct kvm_cpuid2 __user *cpuid_arg = argp;
3802 struct kvm_cpuid2 cpuid;
3803
3804 r = -EFAULT;
3805 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3806 goto out;
3807 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3808 cpuid_arg->entries);
3809 if (r)
3810 goto out;
3811 r = -EFAULT;
3812 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3813 goto out;
3814 r = 0;
3815 break;
3816 }
3817 case KVM_GET_MSRS: {
3818 int idx = srcu_read_lock(&vcpu->kvm->srcu);
3819 r = msr_io(vcpu, argp, do_get_msr, 1);
3820 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3821 break;
3822 }
3823 case KVM_SET_MSRS: {
3824 int idx = srcu_read_lock(&vcpu->kvm->srcu);
3825 r = msr_io(vcpu, argp, do_set_msr, 0);
3826 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3827 break;
3828 }
3829 case KVM_TPR_ACCESS_REPORTING: {
3830 struct kvm_tpr_access_ctl tac;
3831
3832 r = -EFAULT;
3833 if (copy_from_user(&tac, argp, sizeof tac))
3834 goto out;
3835 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3836 if (r)
3837 goto out;
3838 r = -EFAULT;
3839 if (copy_to_user(argp, &tac, sizeof tac))
3840 goto out;
3841 r = 0;
3842 break;
3843 };
3844 case KVM_SET_VAPIC_ADDR: {
3845 struct kvm_vapic_addr va;
3846 int idx;
3847
3848 r = -EINVAL;
3849 if (!lapic_in_kernel(vcpu))
3850 goto out;
3851 r = -EFAULT;
3852 if (copy_from_user(&va, argp, sizeof va))
3853 goto out;
3854 idx = srcu_read_lock(&vcpu->kvm->srcu);
3855 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3856 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3857 break;
3858 }
3859 case KVM_X86_SETUP_MCE: {
3860 u64 mcg_cap;
3861
3862 r = -EFAULT;
3863 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3864 goto out;
3865 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3866 break;
3867 }
3868 case KVM_X86_SET_MCE: {
3869 struct kvm_x86_mce mce;
3870
3871 r = -EFAULT;
3872 if (copy_from_user(&mce, argp, sizeof mce))
3873 goto out;
3874 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3875 break;
3876 }
3877 case KVM_GET_VCPU_EVENTS: {
3878 struct kvm_vcpu_events events;
3879
3880 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3881
3882 r = -EFAULT;
3883 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3884 break;
3885 r = 0;
3886 break;
3887 }
3888 case KVM_SET_VCPU_EVENTS: {
3889 struct kvm_vcpu_events events;
3890
3891 r = -EFAULT;
3892 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3893 break;
3894
3895 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3896 break;
3897 }
3898 case KVM_GET_DEBUGREGS: {
3899 struct kvm_debugregs dbgregs;
3900
3901 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3902
3903 r = -EFAULT;
3904 if (copy_to_user(argp, &dbgregs,
3905 sizeof(struct kvm_debugregs)))
3906 break;
3907 r = 0;
3908 break;
3909 }
3910 case KVM_SET_DEBUGREGS: {
3911 struct kvm_debugregs dbgregs;
3912
3913 r = -EFAULT;
3914 if (copy_from_user(&dbgregs, argp,
3915 sizeof(struct kvm_debugregs)))
3916 break;
3917
3918 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3919 break;
3920 }
3921 case KVM_GET_XSAVE: {
3922 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3923 r = -ENOMEM;
3924 if (!u.xsave)
3925 break;
3926
3927 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3928
3929 r = -EFAULT;
3930 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3931 break;
3932 r = 0;
3933 break;
3934 }
3935 case KVM_SET_XSAVE: {
3936 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3937 if (IS_ERR(u.xsave)) {
3938 r = PTR_ERR(u.xsave);
3939 goto out_nofree;
3940 }
3941
3942 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3943 break;
3944 }
3945 case KVM_GET_XCRS: {
3946 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3947 r = -ENOMEM;
3948 if (!u.xcrs)
3949 break;
3950
3951 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3952
3953 r = -EFAULT;
3954 if (copy_to_user(argp, u.xcrs,
3955 sizeof(struct kvm_xcrs)))
3956 break;
3957 r = 0;
3958 break;
3959 }
3960 case KVM_SET_XCRS: {
3961 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3962 if (IS_ERR(u.xcrs)) {
3963 r = PTR_ERR(u.xcrs);
3964 goto out_nofree;
3965 }
3966
3967 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3968 break;
3969 }
3970 case KVM_SET_TSC_KHZ: {
3971 u32 user_tsc_khz;
3972
3973 r = -EINVAL;
3974 user_tsc_khz = (u32)arg;
3975
3976 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3977 goto out;
3978
3979 if (user_tsc_khz == 0)
3980 user_tsc_khz = tsc_khz;
3981
3982 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
3983 r = 0;
3984
3985 goto out;
3986 }
3987 case KVM_GET_TSC_KHZ: {
3988 r = vcpu->arch.virtual_tsc_khz;
3989 goto out;
3990 }
3991 case KVM_KVMCLOCK_CTRL: {
3992 r = kvm_set_guest_paused(vcpu);
3993 goto out;
3994 }
3995 case KVM_ENABLE_CAP: {
3996 struct kvm_enable_cap cap;
3997
3998 r = -EFAULT;
3999 if (copy_from_user(&cap, argp, sizeof(cap)))
4000 goto out;
4001 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
4002 break;
4003 }
4004 case KVM_GET_NESTED_STATE: {
4005 struct kvm_nested_state __user *user_kvm_nested_state = argp;
4006 u32 user_data_size;
4007
4008 r = -EINVAL;
4009 if (!kvm_x86_ops->get_nested_state)
4010 break;
4011
4012 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
4013 r = -EFAULT;
4014 if (get_user(user_data_size, &user_kvm_nested_state->size))
4015 break;
4016
4017 r = kvm_x86_ops->get_nested_state(vcpu, user_kvm_nested_state,
4018 user_data_size);
4019 if (r < 0)
4020 break;
4021
4022 if (r > user_data_size) {
4023 if (put_user(r, &user_kvm_nested_state->size))
4024 r = -EFAULT;
4025 else
4026 r = -E2BIG;
4027 break;
4028 }
4029
4030 r = 0;
4031 break;
4032 }
4033 case KVM_SET_NESTED_STATE: {
4034 struct kvm_nested_state __user *user_kvm_nested_state = argp;
4035 struct kvm_nested_state kvm_state;
4036
4037 r = -EINVAL;
4038 if (!kvm_x86_ops->set_nested_state)
4039 break;
4040
4041 r = -EFAULT;
4042 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
4043 break;
4044
4045 r = -EINVAL;
4046 if (kvm_state.size < sizeof(kvm_state))
4047 break;
4048
4049 if (kvm_state.flags &
4050 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE))
4051 break;
4052
4053 /* nested_run_pending implies guest_mode. */
4054 if (kvm_state.flags == KVM_STATE_NESTED_RUN_PENDING)
4055 break;
4056
4057 r = kvm_x86_ops->set_nested_state(vcpu, user_kvm_nested_state, &kvm_state);
4058 break;
4059 }
4060 default:
4061 r = -EINVAL;
4062 }
4063 out:
4064 kfree(u.buffer);
4065 out_nofree:
4066 vcpu_put(vcpu);
4067 return r;
4068 }
4069
kvm_arch_vcpu_fault(struct kvm_vcpu * vcpu,struct vm_fault * vmf)4070 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
4071 {
4072 return VM_FAULT_SIGBUS;
4073 }
4074
kvm_vm_ioctl_set_tss_addr(struct kvm * kvm,unsigned long addr)4075 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
4076 {
4077 int ret;
4078
4079 if (addr > (unsigned int)(-3 * PAGE_SIZE))
4080 return -EINVAL;
4081 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
4082 return ret;
4083 }
4084
kvm_vm_ioctl_set_identity_map_addr(struct kvm * kvm,u64 ident_addr)4085 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
4086 u64 ident_addr)
4087 {
4088 return kvm_x86_ops->set_identity_map_addr(kvm, ident_addr);
4089 }
4090
kvm_vm_ioctl_set_nr_mmu_pages(struct kvm * kvm,u32 kvm_nr_mmu_pages)4091 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
4092 u32 kvm_nr_mmu_pages)
4093 {
4094 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
4095 return -EINVAL;
4096
4097 mutex_lock(&kvm->slots_lock);
4098
4099 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
4100 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
4101
4102 mutex_unlock(&kvm->slots_lock);
4103 return 0;
4104 }
4105
kvm_vm_ioctl_get_nr_mmu_pages(struct kvm * kvm)4106 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
4107 {
4108 return kvm->arch.n_max_mmu_pages;
4109 }
4110
kvm_vm_ioctl_get_irqchip(struct kvm * kvm,struct kvm_irqchip * chip)4111 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4112 {
4113 struct kvm_pic *pic = kvm->arch.vpic;
4114 int r;
4115
4116 r = 0;
4117 switch (chip->chip_id) {
4118 case KVM_IRQCHIP_PIC_MASTER:
4119 memcpy(&chip->chip.pic, &pic->pics[0],
4120 sizeof(struct kvm_pic_state));
4121 break;
4122 case KVM_IRQCHIP_PIC_SLAVE:
4123 memcpy(&chip->chip.pic, &pic->pics[1],
4124 sizeof(struct kvm_pic_state));
4125 break;
4126 case KVM_IRQCHIP_IOAPIC:
4127 kvm_get_ioapic(kvm, &chip->chip.ioapic);
4128 break;
4129 default:
4130 r = -EINVAL;
4131 break;
4132 }
4133 return r;
4134 }
4135
kvm_vm_ioctl_set_irqchip(struct kvm * kvm,struct kvm_irqchip * chip)4136 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4137 {
4138 struct kvm_pic *pic = kvm->arch.vpic;
4139 int r;
4140
4141 r = 0;
4142 switch (chip->chip_id) {
4143 case KVM_IRQCHIP_PIC_MASTER:
4144 spin_lock(&pic->lock);
4145 memcpy(&pic->pics[0], &chip->chip.pic,
4146 sizeof(struct kvm_pic_state));
4147 spin_unlock(&pic->lock);
4148 break;
4149 case KVM_IRQCHIP_PIC_SLAVE:
4150 spin_lock(&pic->lock);
4151 memcpy(&pic->pics[1], &chip->chip.pic,
4152 sizeof(struct kvm_pic_state));
4153 spin_unlock(&pic->lock);
4154 break;
4155 case KVM_IRQCHIP_IOAPIC:
4156 kvm_set_ioapic(kvm, &chip->chip.ioapic);
4157 break;
4158 default:
4159 r = -EINVAL;
4160 break;
4161 }
4162 kvm_pic_update_irq(pic);
4163 return r;
4164 }
4165
kvm_vm_ioctl_get_pit(struct kvm * kvm,struct kvm_pit_state * ps)4166 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4167 {
4168 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
4169
4170 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
4171
4172 mutex_lock(&kps->lock);
4173 memcpy(ps, &kps->channels, sizeof(*ps));
4174 mutex_unlock(&kps->lock);
4175 return 0;
4176 }
4177
kvm_vm_ioctl_set_pit(struct kvm * kvm,struct kvm_pit_state * ps)4178 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4179 {
4180 int i;
4181 struct kvm_pit *pit = kvm->arch.vpit;
4182
4183 mutex_lock(&pit->pit_state.lock);
4184 memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
4185 for (i = 0; i < 3; i++)
4186 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
4187 mutex_unlock(&pit->pit_state.lock);
4188 return 0;
4189 }
4190
kvm_vm_ioctl_get_pit2(struct kvm * kvm,struct kvm_pit_state2 * ps)4191 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4192 {
4193 mutex_lock(&kvm->arch.vpit->pit_state.lock);
4194 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
4195 sizeof(ps->channels));
4196 ps->flags = kvm->arch.vpit->pit_state.flags;
4197 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
4198 memset(&ps->reserved, 0, sizeof(ps->reserved));
4199 return 0;
4200 }
4201
kvm_vm_ioctl_set_pit2(struct kvm * kvm,struct kvm_pit_state2 * ps)4202 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4203 {
4204 int start = 0;
4205 int i;
4206 u32 prev_legacy, cur_legacy;
4207 struct kvm_pit *pit = kvm->arch.vpit;
4208
4209 mutex_lock(&pit->pit_state.lock);
4210 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
4211 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
4212 if (!prev_legacy && cur_legacy)
4213 start = 1;
4214 memcpy(&pit->pit_state.channels, &ps->channels,
4215 sizeof(pit->pit_state.channels));
4216 pit->pit_state.flags = ps->flags;
4217 for (i = 0; i < 3; i++)
4218 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
4219 start && i == 0);
4220 mutex_unlock(&pit->pit_state.lock);
4221 return 0;
4222 }
4223
kvm_vm_ioctl_reinject(struct kvm * kvm,struct kvm_reinject_control * control)4224 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
4225 struct kvm_reinject_control *control)
4226 {
4227 struct kvm_pit *pit = kvm->arch.vpit;
4228
4229 if (!pit)
4230 return -ENXIO;
4231
4232 /* pit->pit_state.lock was overloaded to prevent userspace from getting
4233 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
4234 * ioctls in parallel. Use a separate lock if that ioctl isn't rare.
4235 */
4236 mutex_lock(&pit->pit_state.lock);
4237 kvm_pit_set_reinject(pit, control->pit_reinject);
4238 mutex_unlock(&pit->pit_state.lock);
4239
4240 return 0;
4241 }
4242
4243 /**
4244 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
4245 * @kvm: kvm instance
4246 * @log: slot id and address to which we copy the log
4247 *
4248 * Steps 1-4 below provide general overview of dirty page logging. See
4249 * kvm_get_dirty_log_protect() function description for additional details.
4250 *
4251 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
4252 * always flush the TLB (step 4) even if previous step failed and the dirty
4253 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
4254 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
4255 * writes will be marked dirty for next log read.
4256 *
4257 * 1. Take a snapshot of the bit and clear it if needed.
4258 * 2. Write protect the corresponding page.
4259 * 3. Copy the snapshot to the userspace.
4260 * 4. Flush TLB's if needed.
4261 */
kvm_vm_ioctl_get_dirty_log(struct kvm * kvm,struct kvm_dirty_log * log)4262 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
4263 {
4264 bool is_dirty = false;
4265 int r;
4266
4267 mutex_lock(&kvm->slots_lock);
4268
4269 /*
4270 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4271 */
4272 if (kvm_x86_ops->flush_log_dirty)
4273 kvm_x86_ops->flush_log_dirty(kvm);
4274
4275 r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
4276
4277 /*
4278 * All the TLBs can be flushed out of mmu lock, see the comments in
4279 * kvm_mmu_slot_remove_write_access().
4280 */
4281 lockdep_assert_held(&kvm->slots_lock);
4282 if (is_dirty)
4283 kvm_flush_remote_tlbs(kvm);
4284
4285 mutex_unlock(&kvm->slots_lock);
4286 return r;
4287 }
4288
kvm_vm_ioctl_irq_line(struct kvm * kvm,struct kvm_irq_level * irq_event,bool line_status)4289 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
4290 bool line_status)
4291 {
4292 if (!irqchip_in_kernel(kvm))
4293 return -ENXIO;
4294
4295 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
4296 irq_event->irq, irq_event->level,
4297 line_status);
4298 return 0;
4299 }
4300
kvm_vm_ioctl_enable_cap(struct kvm * kvm,struct kvm_enable_cap * cap)4301 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4302 struct kvm_enable_cap *cap)
4303 {
4304 int r;
4305
4306 if (cap->flags)
4307 return -EINVAL;
4308
4309 switch (cap->cap) {
4310 case KVM_CAP_DISABLE_QUIRKS:
4311 kvm->arch.disabled_quirks = cap->args[0];
4312 r = 0;
4313 break;
4314 case KVM_CAP_SPLIT_IRQCHIP: {
4315 mutex_lock(&kvm->lock);
4316 r = -EINVAL;
4317 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
4318 goto split_irqchip_unlock;
4319 r = -EEXIST;
4320 if (irqchip_in_kernel(kvm))
4321 goto split_irqchip_unlock;
4322 if (kvm->created_vcpus)
4323 goto split_irqchip_unlock;
4324 r = kvm_setup_empty_irq_routing(kvm);
4325 if (r)
4326 goto split_irqchip_unlock;
4327 /* Pairs with irqchip_in_kernel. */
4328 smp_wmb();
4329 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
4330 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
4331 r = 0;
4332 split_irqchip_unlock:
4333 mutex_unlock(&kvm->lock);
4334 break;
4335 }
4336 case KVM_CAP_X2APIC_API:
4337 r = -EINVAL;
4338 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
4339 break;
4340
4341 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
4342 kvm->arch.x2apic_format = true;
4343 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
4344 kvm->arch.x2apic_broadcast_quirk_disabled = true;
4345
4346 r = 0;
4347 break;
4348 case KVM_CAP_X86_DISABLE_EXITS:
4349 r = -EINVAL;
4350 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
4351 break;
4352
4353 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
4354 kvm_can_mwait_in_guest())
4355 kvm->arch.mwait_in_guest = true;
4356 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
4357 kvm->arch.hlt_in_guest = true;
4358 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
4359 kvm->arch.pause_in_guest = true;
4360 r = 0;
4361 break;
4362 case KVM_CAP_MSR_PLATFORM_INFO:
4363 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
4364 r = 0;
4365 break;
4366 default:
4367 r = -EINVAL;
4368 break;
4369 }
4370 return r;
4371 }
4372
kvm_arch_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)4373 long kvm_arch_vm_ioctl(struct file *filp,
4374 unsigned int ioctl, unsigned long arg)
4375 {
4376 struct kvm *kvm = filp->private_data;
4377 void __user *argp = (void __user *)arg;
4378 int r = -ENOTTY;
4379 /*
4380 * This union makes it completely explicit to gcc-3.x
4381 * that these two variables' stack usage should be
4382 * combined, not added together.
4383 */
4384 union {
4385 struct kvm_pit_state ps;
4386 struct kvm_pit_state2 ps2;
4387 struct kvm_pit_config pit_config;
4388 } u;
4389
4390 switch (ioctl) {
4391 case KVM_SET_TSS_ADDR:
4392 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
4393 break;
4394 case KVM_SET_IDENTITY_MAP_ADDR: {
4395 u64 ident_addr;
4396
4397 mutex_lock(&kvm->lock);
4398 r = -EINVAL;
4399 if (kvm->created_vcpus)
4400 goto set_identity_unlock;
4401 r = -EFAULT;
4402 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
4403 goto set_identity_unlock;
4404 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
4405 set_identity_unlock:
4406 mutex_unlock(&kvm->lock);
4407 break;
4408 }
4409 case KVM_SET_NR_MMU_PAGES:
4410 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
4411 break;
4412 case KVM_GET_NR_MMU_PAGES:
4413 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
4414 break;
4415 case KVM_CREATE_IRQCHIP: {
4416 mutex_lock(&kvm->lock);
4417
4418 r = -EEXIST;
4419 if (irqchip_in_kernel(kvm))
4420 goto create_irqchip_unlock;
4421
4422 r = -EINVAL;
4423 if (kvm->created_vcpus)
4424 goto create_irqchip_unlock;
4425
4426 r = kvm_pic_init(kvm);
4427 if (r)
4428 goto create_irqchip_unlock;
4429
4430 r = kvm_ioapic_init(kvm);
4431 if (r) {
4432 kvm_pic_destroy(kvm);
4433 goto create_irqchip_unlock;
4434 }
4435
4436 r = kvm_setup_default_irq_routing(kvm);
4437 if (r) {
4438 kvm_ioapic_destroy(kvm);
4439 kvm_pic_destroy(kvm);
4440 goto create_irqchip_unlock;
4441 }
4442 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4443 smp_wmb();
4444 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
4445 create_irqchip_unlock:
4446 mutex_unlock(&kvm->lock);
4447 break;
4448 }
4449 case KVM_CREATE_PIT:
4450 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4451 goto create_pit;
4452 case KVM_CREATE_PIT2:
4453 r = -EFAULT;
4454 if (copy_from_user(&u.pit_config, argp,
4455 sizeof(struct kvm_pit_config)))
4456 goto out;
4457 create_pit:
4458 mutex_lock(&kvm->lock);
4459 r = -EEXIST;
4460 if (kvm->arch.vpit)
4461 goto create_pit_unlock;
4462 r = -ENOMEM;
4463 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4464 if (kvm->arch.vpit)
4465 r = 0;
4466 create_pit_unlock:
4467 mutex_unlock(&kvm->lock);
4468 break;
4469 case KVM_GET_IRQCHIP: {
4470 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4471 struct kvm_irqchip *chip;
4472
4473 chip = memdup_user(argp, sizeof(*chip));
4474 if (IS_ERR(chip)) {
4475 r = PTR_ERR(chip);
4476 goto out;
4477 }
4478
4479 r = -ENXIO;
4480 if (!irqchip_kernel(kvm))
4481 goto get_irqchip_out;
4482 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
4483 if (r)
4484 goto get_irqchip_out;
4485 r = -EFAULT;
4486 if (copy_to_user(argp, chip, sizeof *chip))
4487 goto get_irqchip_out;
4488 r = 0;
4489 get_irqchip_out:
4490 kfree(chip);
4491 break;
4492 }
4493 case KVM_SET_IRQCHIP: {
4494 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4495 struct kvm_irqchip *chip;
4496
4497 chip = memdup_user(argp, sizeof(*chip));
4498 if (IS_ERR(chip)) {
4499 r = PTR_ERR(chip);
4500 goto out;
4501 }
4502
4503 r = -ENXIO;
4504 if (!irqchip_kernel(kvm))
4505 goto set_irqchip_out;
4506 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
4507 if (r)
4508 goto set_irqchip_out;
4509 r = 0;
4510 set_irqchip_out:
4511 kfree(chip);
4512 break;
4513 }
4514 case KVM_GET_PIT: {
4515 r = -EFAULT;
4516 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4517 goto out;
4518 r = -ENXIO;
4519 if (!kvm->arch.vpit)
4520 goto out;
4521 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4522 if (r)
4523 goto out;
4524 r = -EFAULT;
4525 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4526 goto out;
4527 r = 0;
4528 break;
4529 }
4530 case KVM_SET_PIT: {
4531 r = -EFAULT;
4532 if (copy_from_user(&u.ps, argp, sizeof u.ps))
4533 goto out;
4534 r = -ENXIO;
4535 if (!kvm->arch.vpit)
4536 goto out;
4537 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4538 break;
4539 }
4540 case KVM_GET_PIT2: {
4541 r = -ENXIO;
4542 if (!kvm->arch.vpit)
4543 goto out;
4544 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4545 if (r)
4546 goto out;
4547 r = -EFAULT;
4548 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4549 goto out;
4550 r = 0;
4551 break;
4552 }
4553 case KVM_SET_PIT2: {
4554 r = -EFAULT;
4555 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4556 goto out;
4557 r = -ENXIO;
4558 if (!kvm->arch.vpit)
4559 goto out;
4560 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4561 break;
4562 }
4563 case KVM_REINJECT_CONTROL: {
4564 struct kvm_reinject_control control;
4565 r = -EFAULT;
4566 if (copy_from_user(&control, argp, sizeof(control)))
4567 goto out;
4568 r = kvm_vm_ioctl_reinject(kvm, &control);
4569 break;
4570 }
4571 case KVM_SET_BOOT_CPU_ID:
4572 r = 0;
4573 mutex_lock(&kvm->lock);
4574 if (kvm->created_vcpus)
4575 r = -EBUSY;
4576 else
4577 kvm->arch.bsp_vcpu_id = arg;
4578 mutex_unlock(&kvm->lock);
4579 break;
4580 case KVM_XEN_HVM_CONFIG: {
4581 struct kvm_xen_hvm_config xhc;
4582 r = -EFAULT;
4583 if (copy_from_user(&xhc, argp, sizeof(xhc)))
4584 goto out;
4585 r = -EINVAL;
4586 if (xhc.flags)
4587 goto out;
4588 memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
4589 r = 0;
4590 break;
4591 }
4592 case KVM_SET_CLOCK: {
4593 struct kvm_clock_data user_ns;
4594 u64 now_ns;
4595
4596 r = -EFAULT;
4597 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4598 goto out;
4599
4600 r = -EINVAL;
4601 if (user_ns.flags)
4602 goto out;
4603
4604 r = 0;
4605 /*
4606 * TODO: userspace has to take care of races with VCPU_RUN, so
4607 * kvm_gen_update_masterclock() can be cut down to locked
4608 * pvclock_update_vm_gtod_copy().
4609 */
4610 kvm_gen_update_masterclock(kvm);
4611 now_ns = get_kvmclock_ns(kvm);
4612 kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
4613 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
4614 break;
4615 }
4616 case KVM_GET_CLOCK: {
4617 struct kvm_clock_data user_ns;
4618 u64 now_ns;
4619
4620 now_ns = get_kvmclock_ns(kvm);
4621 user_ns.clock = now_ns;
4622 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
4623 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4624
4625 r = -EFAULT;
4626 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4627 goto out;
4628 r = 0;
4629 break;
4630 }
4631 case KVM_ENABLE_CAP: {
4632 struct kvm_enable_cap cap;
4633
4634 r = -EFAULT;
4635 if (copy_from_user(&cap, argp, sizeof(cap)))
4636 goto out;
4637 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4638 break;
4639 }
4640 case KVM_MEMORY_ENCRYPT_OP: {
4641 r = -ENOTTY;
4642 if (kvm_x86_ops->mem_enc_op)
4643 r = kvm_x86_ops->mem_enc_op(kvm, argp);
4644 break;
4645 }
4646 case KVM_MEMORY_ENCRYPT_REG_REGION: {
4647 struct kvm_enc_region region;
4648
4649 r = -EFAULT;
4650 if (copy_from_user(®ion, argp, sizeof(region)))
4651 goto out;
4652
4653 r = -ENOTTY;
4654 if (kvm_x86_ops->mem_enc_reg_region)
4655 r = kvm_x86_ops->mem_enc_reg_region(kvm, ®ion);
4656 break;
4657 }
4658 case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
4659 struct kvm_enc_region region;
4660
4661 r = -EFAULT;
4662 if (copy_from_user(®ion, argp, sizeof(region)))
4663 goto out;
4664
4665 r = -ENOTTY;
4666 if (kvm_x86_ops->mem_enc_unreg_region)
4667 r = kvm_x86_ops->mem_enc_unreg_region(kvm, ®ion);
4668 break;
4669 }
4670 case KVM_HYPERV_EVENTFD: {
4671 struct kvm_hyperv_eventfd hvevfd;
4672
4673 r = -EFAULT;
4674 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
4675 goto out;
4676 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
4677 break;
4678 }
4679 default:
4680 r = -ENOTTY;
4681 }
4682 out:
4683 return r;
4684 }
4685
kvm_init_msr_list(void)4686 static void kvm_init_msr_list(void)
4687 {
4688 u32 dummy[2];
4689 unsigned i, j;
4690
4691 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4692 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4693 continue;
4694
4695 /*
4696 * Even MSRs that are valid in the host may not be exposed
4697 * to the guests in some cases.
4698 */
4699 switch (msrs_to_save[i]) {
4700 case MSR_IA32_BNDCFGS:
4701 if (!kvm_mpx_supported())
4702 continue;
4703 break;
4704 case MSR_TSC_AUX:
4705 if (!kvm_x86_ops->rdtscp_supported())
4706 continue;
4707 break;
4708 default:
4709 break;
4710 }
4711
4712 if (j < i)
4713 msrs_to_save[j] = msrs_to_save[i];
4714 j++;
4715 }
4716 num_msrs_to_save = j;
4717
4718 for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4719 if (!kvm_x86_ops->has_emulated_msr(emulated_msrs[i]))
4720 continue;
4721
4722 if (j < i)
4723 emulated_msrs[j] = emulated_msrs[i];
4724 j++;
4725 }
4726 num_emulated_msrs = j;
4727
4728 for (i = j = 0; i < ARRAY_SIZE(msr_based_features); i++) {
4729 struct kvm_msr_entry msr;
4730
4731 msr.index = msr_based_features[i];
4732 if (kvm_get_msr_feature(&msr))
4733 continue;
4734
4735 if (j < i)
4736 msr_based_features[j] = msr_based_features[i];
4737 j++;
4738 }
4739 num_msr_based_features = j;
4740 }
4741
vcpu_mmio_write(struct kvm_vcpu * vcpu,gpa_t addr,int len,const void * v)4742 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4743 const void *v)
4744 {
4745 int handled = 0;
4746 int n;
4747
4748 do {
4749 n = min(len, 8);
4750 if (!(lapic_in_kernel(vcpu) &&
4751 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4752 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4753 break;
4754 handled += n;
4755 addr += n;
4756 len -= n;
4757 v += n;
4758 } while (len);
4759
4760 return handled;
4761 }
4762
vcpu_mmio_read(struct kvm_vcpu * vcpu,gpa_t addr,int len,void * v)4763 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4764 {
4765 int handled = 0;
4766 int n;
4767
4768 do {
4769 n = min(len, 8);
4770 if (!(lapic_in_kernel(vcpu) &&
4771 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4772 addr, n, v))
4773 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4774 break;
4775 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
4776 handled += n;
4777 addr += n;
4778 len -= n;
4779 v += n;
4780 } while (len);
4781
4782 return handled;
4783 }
4784
kvm_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)4785 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4786 struct kvm_segment *var, int seg)
4787 {
4788 kvm_x86_ops->set_segment(vcpu, var, seg);
4789 }
4790
kvm_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)4791 void kvm_get_segment(struct kvm_vcpu *vcpu,
4792 struct kvm_segment *var, int seg)
4793 {
4794 kvm_x86_ops->get_segment(vcpu, var, seg);
4795 }
4796
translate_nested_gpa(struct kvm_vcpu * vcpu,gpa_t gpa,u32 access,struct x86_exception * exception)4797 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4798 struct x86_exception *exception)
4799 {
4800 gpa_t t_gpa;
4801
4802 BUG_ON(!mmu_is_nested(vcpu));
4803
4804 /* NPT walks are always user-walks */
4805 access |= PFERR_USER_MASK;
4806 t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4807
4808 return t_gpa;
4809 }
4810
kvm_mmu_gva_to_gpa_read(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)4811 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4812 struct x86_exception *exception)
4813 {
4814 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4815 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4816 }
4817
kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)4818 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4819 struct x86_exception *exception)
4820 {
4821 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4822 access |= PFERR_FETCH_MASK;
4823 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4824 }
4825
kvm_mmu_gva_to_gpa_write(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)4826 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4827 struct x86_exception *exception)
4828 {
4829 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4830 access |= PFERR_WRITE_MASK;
4831 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4832 }
4833
4834 /* uses this to access any guest's mapped memory without checking CPL */
kvm_mmu_gva_to_gpa_system(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)4835 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4836 struct x86_exception *exception)
4837 {
4838 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4839 }
4840
kvm_read_guest_virt_helper(gva_t addr,void * val,unsigned int bytes,struct kvm_vcpu * vcpu,u32 access,struct x86_exception * exception)4841 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4842 struct kvm_vcpu *vcpu, u32 access,
4843 struct x86_exception *exception)
4844 {
4845 void *data = val;
4846 int r = X86EMUL_CONTINUE;
4847
4848 while (bytes) {
4849 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4850 exception);
4851 unsigned offset = addr & (PAGE_SIZE-1);
4852 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4853 int ret;
4854
4855 if (gpa == UNMAPPED_GVA)
4856 return X86EMUL_PROPAGATE_FAULT;
4857 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4858 offset, toread);
4859 if (ret < 0) {
4860 r = X86EMUL_IO_NEEDED;
4861 goto out;
4862 }
4863
4864 bytes -= toread;
4865 data += toread;
4866 addr += toread;
4867 }
4868 out:
4869 return r;
4870 }
4871
4872 /* used for instruction fetching */
kvm_fetch_guest_virt(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)4873 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4874 gva_t addr, void *val, unsigned int bytes,
4875 struct x86_exception *exception)
4876 {
4877 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4878 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4879 unsigned offset;
4880 int ret;
4881
4882 /* Inline kvm_read_guest_virt_helper for speed. */
4883 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4884 exception);
4885 if (unlikely(gpa == UNMAPPED_GVA))
4886 return X86EMUL_PROPAGATE_FAULT;
4887
4888 offset = addr & (PAGE_SIZE-1);
4889 if (WARN_ON(offset + bytes > PAGE_SIZE))
4890 bytes = (unsigned)PAGE_SIZE - offset;
4891 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4892 offset, bytes);
4893 if (unlikely(ret < 0))
4894 return X86EMUL_IO_NEEDED;
4895
4896 return X86EMUL_CONTINUE;
4897 }
4898
kvm_read_guest_virt(struct kvm_vcpu * vcpu,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)4899 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
4900 gva_t addr, void *val, unsigned int bytes,
4901 struct x86_exception *exception)
4902 {
4903 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4904
4905 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4906 exception);
4907 }
4908 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4909
emulator_read_std(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception,bool system)4910 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
4911 gva_t addr, void *val, unsigned int bytes,
4912 struct x86_exception *exception, bool system)
4913 {
4914 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4915 u32 access = 0;
4916
4917 if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
4918 access |= PFERR_USER_MASK;
4919
4920 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
4921 }
4922
kvm_read_guest_phys_system(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes)4923 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
4924 unsigned long addr, void *val, unsigned int bytes)
4925 {
4926 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4927 int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
4928
4929 return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
4930 }
4931
kvm_write_guest_virt_helper(gva_t addr,void * val,unsigned int bytes,struct kvm_vcpu * vcpu,u32 access,struct x86_exception * exception)4932 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4933 struct kvm_vcpu *vcpu, u32 access,
4934 struct x86_exception *exception)
4935 {
4936 void *data = val;
4937 int r = X86EMUL_CONTINUE;
4938
4939 while (bytes) {
4940 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4941 access,
4942 exception);
4943 unsigned offset = addr & (PAGE_SIZE-1);
4944 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4945 int ret;
4946
4947 if (gpa == UNMAPPED_GVA)
4948 return X86EMUL_PROPAGATE_FAULT;
4949 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4950 if (ret < 0) {
4951 r = X86EMUL_IO_NEEDED;
4952 goto out;
4953 }
4954
4955 bytes -= towrite;
4956 data += towrite;
4957 addr += towrite;
4958 }
4959 out:
4960 return r;
4961 }
4962
emulator_write_std(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception,bool system)4963 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
4964 unsigned int bytes, struct x86_exception *exception,
4965 bool system)
4966 {
4967 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4968 u32 access = PFERR_WRITE_MASK;
4969
4970 if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
4971 access |= PFERR_USER_MASK;
4972
4973 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
4974 access, exception);
4975 }
4976
kvm_write_guest_virt_system(struct kvm_vcpu * vcpu,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)4977 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
4978 unsigned int bytes, struct x86_exception *exception)
4979 {
4980 /* kvm_write_guest_virt_system can pull in tons of pages. */
4981 vcpu->arch.l1tf_flush_l1d = true;
4982
4983 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
4984 PFERR_WRITE_MASK, exception);
4985 }
4986 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4987
handle_ud(struct kvm_vcpu * vcpu)4988 int handle_ud(struct kvm_vcpu *vcpu)
4989 {
4990 int emul_type = EMULTYPE_TRAP_UD;
4991 enum emulation_result er;
4992 char sig[5]; /* ud2; .ascii "kvm" */
4993 struct x86_exception e;
4994
4995 if (force_emulation_prefix &&
4996 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
4997 sig, sizeof(sig), &e) == 0 &&
4998 memcmp(sig, "\xf\xbkvm", sizeof(sig)) == 0) {
4999 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
5000 emul_type = 0;
5001 }
5002
5003 er = kvm_emulate_instruction(vcpu, emul_type);
5004 if (er == EMULATE_USER_EXIT)
5005 return 0;
5006 if (er != EMULATE_DONE)
5007 kvm_queue_exception(vcpu, UD_VECTOR);
5008 return 1;
5009 }
5010 EXPORT_SYMBOL_GPL(handle_ud);
5011
vcpu_is_mmio_gpa(struct kvm_vcpu * vcpu,unsigned long gva,gpa_t gpa,bool write)5012 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5013 gpa_t gpa, bool write)
5014 {
5015 /* For APIC access vmexit */
5016 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5017 return 1;
5018
5019 if (vcpu_match_mmio_gpa(vcpu, gpa)) {
5020 trace_vcpu_match_mmio(gva, gpa, write, true);
5021 return 1;
5022 }
5023
5024 return 0;
5025 }
5026
vcpu_mmio_gva_to_gpa(struct kvm_vcpu * vcpu,unsigned long gva,gpa_t * gpa,struct x86_exception * exception,bool write)5027 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5028 gpa_t *gpa, struct x86_exception *exception,
5029 bool write)
5030 {
5031 u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
5032 | (write ? PFERR_WRITE_MASK : 0);
5033
5034 /*
5035 * currently PKRU is only applied to ept enabled guest so
5036 * there is no pkey in EPT page table for L1 guest or EPT
5037 * shadow page table for L2 guest.
5038 */
5039 if (vcpu_match_mmio_gva(vcpu, gva)
5040 && !permission_fault(vcpu, vcpu->arch.walk_mmu,
5041 vcpu->arch.access, 0, access)) {
5042 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
5043 (gva & (PAGE_SIZE - 1));
5044 trace_vcpu_match_mmio(gva, *gpa, write, false);
5045 return 1;
5046 }
5047
5048 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5049
5050 if (*gpa == UNMAPPED_GVA)
5051 return -1;
5052
5053 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
5054 }
5055
emulator_write_phys(struct kvm_vcpu * vcpu,gpa_t gpa,const void * val,int bytes)5056 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
5057 const void *val, int bytes)
5058 {
5059 int ret;
5060
5061 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
5062 if (ret < 0)
5063 return 0;
5064 kvm_page_track_write(vcpu, gpa, val, bytes);
5065 return 1;
5066 }
5067
5068 struct read_write_emulator_ops {
5069 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
5070 int bytes);
5071 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
5072 void *val, int bytes);
5073 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5074 int bytes, void *val);
5075 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5076 void *val, int bytes);
5077 bool write;
5078 };
5079
read_prepare(struct kvm_vcpu * vcpu,void * val,int bytes)5080 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
5081 {
5082 if (vcpu->mmio_read_completed) {
5083 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
5084 vcpu->mmio_fragments[0].gpa, val);
5085 vcpu->mmio_read_completed = 0;
5086 return 1;
5087 }
5088
5089 return 0;
5090 }
5091
read_emulate(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)5092 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5093 void *val, int bytes)
5094 {
5095 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
5096 }
5097
write_emulate(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)5098 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5099 void *val, int bytes)
5100 {
5101 return emulator_write_phys(vcpu, gpa, val, bytes);
5102 }
5103
write_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,int bytes,void * val)5104 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
5105 {
5106 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
5107 return vcpu_mmio_write(vcpu, gpa, bytes, val);
5108 }
5109
read_exit_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)5110 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5111 void *val, int bytes)
5112 {
5113 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
5114 return X86EMUL_IO_NEEDED;
5115 }
5116
write_exit_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)5117 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5118 void *val, int bytes)
5119 {
5120 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
5121
5122 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
5123 return X86EMUL_CONTINUE;
5124 }
5125
5126 static const struct read_write_emulator_ops read_emultor = {
5127 .read_write_prepare = read_prepare,
5128 .read_write_emulate = read_emulate,
5129 .read_write_mmio = vcpu_mmio_read,
5130 .read_write_exit_mmio = read_exit_mmio,
5131 };
5132
5133 static const struct read_write_emulator_ops write_emultor = {
5134 .read_write_emulate = write_emulate,
5135 .read_write_mmio = write_mmio,
5136 .read_write_exit_mmio = write_exit_mmio,
5137 .write = true,
5138 };
5139
emulator_read_write_onepage(unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception,struct kvm_vcpu * vcpu,const struct read_write_emulator_ops * ops)5140 static int emulator_read_write_onepage(unsigned long addr, void *val,
5141 unsigned int bytes,
5142 struct x86_exception *exception,
5143 struct kvm_vcpu *vcpu,
5144 const struct read_write_emulator_ops *ops)
5145 {
5146 gpa_t gpa;
5147 int handled, ret;
5148 bool write = ops->write;
5149 struct kvm_mmio_fragment *frag;
5150 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5151
5152 /*
5153 * If the exit was due to a NPF we may already have a GPA.
5154 * If the GPA is present, use it to avoid the GVA to GPA table walk.
5155 * Note, this cannot be used on string operations since string
5156 * operation using rep will only have the initial GPA from the NPF
5157 * occurred.
5158 */
5159 if (vcpu->arch.gpa_available &&
5160 emulator_can_use_gpa(ctxt) &&
5161 (addr & ~PAGE_MASK) == (vcpu->arch.gpa_val & ~PAGE_MASK)) {
5162 gpa = vcpu->arch.gpa_val;
5163 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
5164 } else {
5165 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
5166 if (ret < 0)
5167 return X86EMUL_PROPAGATE_FAULT;
5168 }
5169
5170 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
5171 return X86EMUL_CONTINUE;
5172
5173 /*
5174 * Is this MMIO handled locally?
5175 */
5176 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
5177 if (handled == bytes)
5178 return X86EMUL_CONTINUE;
5179
5180 gpa += handled;
5181 bytes -= handled;
5182 val += handled;
5183
5184 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
5185 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
5186 frag->gpa = gpa;
5187 frag->data = val;
5188 frag->len = bytes;
5189 return X86EMUL_CONTINUE;
5190 }
5191
emulator_read_write(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception,const struct read_write_emulator_ops * ops)5192 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
5193 unsigned long addr,
5194 void *val, unsigned int bytes,
5195 struct x86_exception *exception,
5196 const struct read_write_emulator_ops *ops)
5197 {
5198 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5199 gpa_t gpa;
5200 int rc;
5201
5202 if (ops->read_write_prepare &&
5203 ops->read_write_prepare(vcpu, val, bytes))
5204 return X86EMUL_CONTINUE;
5205
5206 vcpu->mmio_nr_fragments = 0;
5207
5208 /* Crossing a page boundary? */
5209 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
5210 int now;
5211
5212 now = -addr & ~PAGE_MASK;
5213 rc = emulator_read_write_onepage(addr, val, now, exception,
5214 vcpu, ops);
5215
5216 if (rc != X86EMUL_CONTINUE)
5217 return rc;
5218 addr += now;
5219 if (ctxt->mode != X86EMUL_MODE_PROT64)
5220 addr = (u32)addr;
5221 val += now;
5222 bytes -= now;
5223 }
5224
5225 rc = emulator_read_write_onepage(addr, val, bytes, exception,
5226 vcpu, ops);
5227 if (rc != X86EMUL_CONTINUE)
5228 return rc;
5229
5230 if (!vcpu->mmio_nr_fragments)
5231 return rc;
5232
5233 gpa = vcpu->mmio_fragments[0].gpa;
5234
5235 vcpu->mmio_needed = 1;
5236 vcpu->mmio_cur_fragment = 0;
5237
5238 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
5239 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
5240 vcpu->run->exit_reason = KVM_EXIT_MMIO;
5241 vcpu->run->mmio.phys_addr = gpa;
5242
5243 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
5244 }
5245
emulator_read_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception)5246 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
5247 unsigned long addr,
5248 void *val,
5249 unsigned int bytes,
5250 struct x86_exception *exception)
5251 {
5252 return emulator_read_write(ctxt, addr, val, bytes,
5253 exception, &read_emultor);
5254 }
5255
emulator_write_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,const void * val,unsigned int bytes,struct x86_exception * exception)5256 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
5257 unsigned long addr,
5258 const void *val,
5259 unsigned int bytes,
5260 struct x86_exception *exception)
5261 {
5262 return emulator_read_write(ctxt, addr, (void *)val, bytes,
5263 exception, &write_emultor);
5264 }
5265
5266 #define CMPXCHG_TYPE(t, ptr, old, new) \
5267 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
5268
5269 #ifdef CONFIG_X86_64
5270 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
5271 #else
5272 # define CMPXCHG64(ptr, old, new) \
5273 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
5274 #endif
5275
emulator_cmpxchg_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,const void * old,const void * new,unsigned int bytes,struct x86_exception * exception)5276 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
5277 unsigned long addr,
5278 const void *old,
5279 const void *new,
5280 unsigned int bytes,
5281 struct x86_exception *exception)
5282 {
5283 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5284 gpa_t gpa;
5285 struct page *page;
5286 char *kaddr;
5287 bool exchanged;
5288
5289 /* guests cmpxchg8b have to be emulated atomically */
5290 if (bytes > 8 || (bytes & (bytes - 1)))
5291 goto emul_write;
5292
5293 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
5294
5295 if (gpa == UNMAPPED_GVA ||
5296 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5297 goto emul_write;
5298
5299 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
5300 goto emul_write;
5301
5302 page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
5303 if (is_error_page(page))
5304 goto emul_write;
5305
5306 kaddr = kmap_atomic(page);
5307 kaddr += offset_in_page(gpa);
5308 switch (bytes) {
5309 case 1:
5310 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
5311 break;
5312 case 2:
5313 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
5314 break;
5315 case 4:
5316 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
5317 break;
5318 case 8:
5319 exchanged = CMPXCHG64(kaddr, old, new);
5320 break;
5321 default:
5322 BUG();
5323 }
5324 kunmap_atomic(kaddr);
5325 kvm_release_page_dirty(page);
5326
5327 if (!exchanged)
5328 return X86EMUL_CMPXCHG_FAILED;
5329
5330 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5331 kvm_page_track_write(vcpu, gpa, new, bytes);
5332
5333 return X86EMUL_CONTINUE;
5334
5335 emul_write:
5336 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
5337
5338 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
5339 }
5340
kernel_pio(struct kvm_vcpu * vcpu,void * pd)5341 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
5342 {
5343 int r = 0, i;
5344
5345 for (i = 0; i < vcpu->arch.pio.count; i++) {
5346 if (vcpu->arch.pio.in)
5347 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
5348 vcpu->arch.pio.size, pd);
5349 else
5350 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
5351 vcpu->arch.pio.port, vcpu->arch.pio.size,
5352 pd);
5353 if (r)
5354 break;
5355 pd += vcpu->arch.pio.size;
5356 }
5357 return r;
5358 }
5359
emulator_pio_in_out(struct kvm_vcpu * vcpu,int size,unsigned short port,void * val,unsigned int count,bool in)5360 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
5361 unsigned short port, void *val,
5362 unsigned int count, bool in)
5363 {
5364 vcpu->arch.pio.port = port;
5365 vcpu->arch.pio.in = in;
5366 vcpu->arch.pio.count = count;
5367 vcpu->arch.pio.size = size;
5368
5369 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
5370 vcpu->arch.pio.count = 0;
5371 return 1;
5372 }
5373
5374 vcpu->run->exit_reason = KVM_EXIT_IO;
5375 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
5376 vcpu->run->io.size = size;
5377 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
5378 vcpu->run->io.count = count;
5379 vcpu->run->io.port = port;
5380
5381 return 0;
5382 }
5383
emulator_pio_in_emulated(struct x86_emulate_ctxt * ctxt,int size,unsigned short port,void * val,unsigned int count)5384 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
5385 int size, unsigned short port, void *val,
5386 unsigned int count)
5387 {
5388 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5389 int ret;
5390
5391 if (vcpu->arch.pio.count)
5392 goto data_avail;
5393
5394 memset(vcpu->arch.pio_data, 0, size * count);
5395
5396 ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
5397 if (ret) {
5398 data_avail:
5399 memcpy(val, vcpu->arch.pio_data, size * count);
5400 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
5401 vcpu->arch.pio.count = 0;
5402 return 1;
5403 }
5404
5405 return 0;
5406 }
5407
emulator_pio_out_emulated(struct x86_emulate_ctxt * ctxt,int size,unsigned short port,const void * val,unsigned int count)5408 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
5409 int size, unsigned short port,
5410 const void *val, unsigned int count)
5411 {
5412 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5413
5414 memcpy(vcpu->arch.pio_data, val, size * count);
5415 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
5416 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
5417 }
5418
get_segment_base(struct kvm_vcpu * vcpu,int seg)5419 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
5420 {
5421 return kvm_x86_ops->get_segment_base(vcpu, seg);
5422 }
5423
emulator_invlpg(struct x86_emulate_ctxt * ctxt,ulong address)5424 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
5425 {
5426 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
5427 }
5428
kvm_emulate_wbinvd_noskip(struct kvm_vcpu * vcpu)5429 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
5430 {
5431 if (!need_emulate_wbinvd(vcpu))
5432 return X86EMUL_CONTINUE;
5433
5434 if (kvm_x86_ops->has_wbinvd_exit()) {
5435 int cpu = get_cpu();
5436
5437 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
5438 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
5439 wbinvd_ipi, NULL, 1);
5440 put_cpu();
5441 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
5442 } else
5443 wbinvd();
5444 return X86EMUL_CONTINUE;
5445 }
5446
kvm_emulate_wbinvd(struct kvm_vcpu * vcpu)5447 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
5448 {
5449 kvm_emulate_wbinvd_noskip(vcpu);
5450 return kvm_skip_emulated_instruction(vcpu);
5451 }
5452 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
5453
5454
5455
emulator_wbinvd(struct x86_emulate_ctxt * ctxt)5456 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
5457 {
5458 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
5459 }
5460
emulator_get_dr(struct x86_emulate_ctxt * ctxt,int dr,unsigned long * dest)5461 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
5462 unsigned long *dest)
5463 {
5464 return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
5465 }
5466
emulator_set_dr(struct x86_emulate_ctxt * ctxt,int dr,unsigned long value)5467 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
5468 unsigned long value)
5469 {
5470
5471 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
5472 }
5473
mk_cr_64(u64 curr_cr,u32 new_val)5474 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
5475 {
5476 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
5477 }
5478
emulator_get_cr(struct x86_emulate_ctxt * ctxt,int cr)5479 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
5480 {
5481 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5482 unsigned long value;
5483
5484 switch (cr) {
5485 case 0:
5486 value = kvm_read_cr0(vcpu);
5487 break;
5488 case 2:
5489 value = vcpu->arch.cr2;
5490 break;
5491 case 3:
5492 value = kvm_read_cr3(vcpu);
5493 break;
5494 case 4:
5495 value = kvm_read_cr4(vcpu);
5496 break;
5497 case 8:
5498 value = kvm_get_cr8(vcpu);
5499 break;
5500 default:
5501 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5502 return 0;
5503 }
5504
5505 return value;
5506 }
5507
emulator_set_cr(struct x86_emulate_ctxt * ctxt,int cr,ulong val)5508 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
5509 {
5510 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5511 int res = 0;
5512
5513 switch (cr) {
5514 case 0:
5515 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
5516 break;
5517 case 2:
5518 vcpu->arch.cr2 = val;
5519 break;
5520 case 3:
5521 res = kvm_set_cr3(vcpu, val);
5522 break;
5523 case 4:
5524 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
5525 break;
5526 case 8:
5527 res = kvm_set_cr8(vcpu, val);
5528 break;
5529 default:
5530 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5531 res = -1;
5532 }
5533
5534 return res;
5535 }
5536
emulator_get_cpl(struct x86_emulate_ctxt * ctxt)5537 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
5538 {
5539 return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
5540 }
5541
emulator_get_gdt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)5542 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5543 {
5544 kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
5545 }
5546
emulator_get_idt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)5547 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5548 {
5549 kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
5550 }
5551
emulator_set_gdt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)5552 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5553 {
5554 kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
5555 }
5556
emulator_set_idt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)5557 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5558 {
5559 kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
5560 }
5561
emulator_get_cached_segment_base(struct x86_emulate_ctxt * ctxt,int seg)5562 static unsigned long emulator_get_cached_segment_base(
5563 struct x86_emulate_ctxt *ctxt, int seg)
5564 {
5565 return get_segment_base(emul_to_vcpu(ctxt), seg);
5566 }
5567
emulator_get_segment(struct x86_emulate_ctxt * ctxt,u16 * selector,struct desc_struct * desc,u32 * base3,int seg)5568 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
5569 struct desc_struct *desc, u32 *base3,
5570 int seg)
5571 {
5572 struct kvm_segment var;
5573
5574 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
5575 *selector = var.selector;
5576
5577 if (var.unusable) {
5578 memset(desc, 0, sizeof(*desc));
5579 if (base3)
5580 *base3 = 0;
5581 return false;
5582 }
5583
5584 if (var.g)
5585 var.limit >>= 12;
5586 set_desc_limit(desc, var.limit);
5587 set_desc_base(desc, (unsigned long)var.base);
5588 #ifdef CONFIG_X86_64
5589 if (base3)
5590 *base3 = var.base >> 32;
5591 #endif
5592 desc->type = var.type;
5593 desc->s = var.s;
5594 desc->dpl = var.dpl;
5595 desc->p = var.present;
5596 desc->avl = var.avl;
5597 desc->l = var.l;
5598 desc->d = var.db;
5599 desc->g = var.g;
5600
5601 return true;
5602 }
5603
emulator_set_segment(struct x86_emulate_ctxt * ctxt,u16 selector,struct desc_struct * desc,u32 base3,int seg)5604 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
5605 struct desc_struct *desc, u32 base3,
5606 int seg)
5607 {
5608 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5609 struct kvm_segment var;
5610
5611 var.selector = selector;
5612 var.base = get_desc_base(desc);
5613 #ifdef CONFIG_X86_64
5614 var.base |= ((u64)base3) << 32;
5615 #endif
5616 var.limit = get_desc_limit(desc);
5617 if (desc->g)
5618 var.limit = (var.limit << 12) | 0xfff;
5619 var.type = desc->type;
5620 var.dpl = desc->dpl;
5621 var.db = desc->d;
5622 var.s = desc->s;
5623 var.l = desc->l;
5624 var.g = desc->g;
5625 var.avl = desc->avl;
5626 var.present = desc->p;
5627 var.unusable = !var.present;
5628 var.padding = 0;
5629
5630 kvm_set_segment(vcpu, &var, seg);
5631 return;
5632 }
5633
emulator_get_msr(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 * pdata)5634 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
5635 u32 msr_index, u64 *pdata)
5636 {
5637 struct msr_data msr;
5638 int r;
5639
5640 msr.index = msr_index;
5641 msr.host_initiated = false;
5642 r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
5643 if (r)
5644 return r;
5645
5646 *pdata = msr.data;
5647 return 0;
5648 }
5649
emulator_set_msr(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 data)5650 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
5651 u32 msr_index, u64 data)
5652 {
5653 struct msr_data msr;
5654
5655 msr.data = data;
5656 msr.index = msr_index;
5657 msr.host_initiated = false;
5658 return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
5659 }
5660
emulator_get_smbase(struct x86_emulate_ctxt * ctxt)5661 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
5662 {
5663 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5664
5665 return vcpu->arch.smbase;
5666 }
5667
emulator_set_smbase(struct x86_emulate_ctxt * ctxt,u64 smbase)5668 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
5669 {
5670 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5671
5672 vcpu->arch.smbase = smbase;
5673 }
5674
emulator_check_pmc(struct x86_emulate_ctxt * ctxt,u32 pmc)5675 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
5676 u32 pmc)
5677 {
5678 return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
5679 }
5680
emulator_read_pmc(struct x86_emulate_ctxt * ctxt,u32 pmc,u64 * pdata)5681 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
5682 u32 pmc, u64 *pdata)
5683 {
5684 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
5685 }
5686
emulator_halt(struct x86_emulate_ctxt * ctxt)5687 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
5688 {
5689 emul_to_vcpu(ctxt)->arch.halt_request = 1;
5690 }
5691
emulator_intercept(struct x86_emulate_ctxt * ctxt,struct x86_instruction_info * info,enum x86_intercept_stage stage)5692 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5693 struct x86_instruction_info *info,
5694 enum x86_intercept_stage stage)
5695 {
5696 return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5697 }
5698
emulator_get_cpuid(struct x86_emulate_ctxt * ctxt,u32 * eax,u32 * ebx,u32 * ecx,u32 * edx,bool check_limit)5699 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5700 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, bool check_limit)
5701 {
5702 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, check_limit);
5703 }
5704
emulator_read_gpr(struct x86_emulate_ctxt * ctxt,unsigned reg)5705 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5706 {
5707 return kvm_register_read(emul_to_vcpu(ctxt), reg);
5708 }
5709
emulator_write_gpr(struct x86_emulate_ctxt * ctxt,unsigned reg,ulong val)5710 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5711 {
5712 kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5713 }
5714
emulator_set_nmi_mask(struct x86_emulate_ctxt * ctxt,bool masked)5715 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5716 {
5717 kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5718 }
5719
emulator_get_hflags(struct x86_emulate_ctxt * ctxt)5720 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
5721 {
5722 return emul_to_vcpu(ctxt)->arch.hflags;
5723 }
5724
emulator_set_hflags(struct x86_emulate_ctxt * ctxt,unsigned emul_flags)5725 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
5726 {
5727 kvm_set_hflags(emul_to_vcpu(ctxt), emul_flags);
5728 }
5729
emulator_pre_leave_smm(struct x86_emulate_ctxt * ctxt,u64 smbase)5730 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt, u64 smbase)
5731 {
5732 return kvm_x86_ops->pre_leave_smm(emul_to_vcpu(ctxt), smbase);
5733 }
5734
5735 static const struct x86_emulate_ops emulate_ops = {
5736 .read_gpr = emulator_read_gpr,
5737 .write_gpr = emulator_write_gpr,
5738 .read_std = emulator_read_std,
5739 .write_std = emulator_write_std,
5740 .read_phys = kvm_read_guest_phys_system,
5741 .fetch = kvm_fetch_guest_virt,
5742 .read_emulated = emulator_read_emulated,
5743 .write_emulated = emulator_write_emulated,
5744 .cmpxchg_emulated = emulator_cmpxchg_emulated,
5745 .invlpg = emulator_invlpg,
5746 .pio_in_emulated = emulator_pio_in_emulated,
5747 .pio_out_emulated = emulator_pio_out_emulated,
5748 .get_segment = emulator_get_segment,
5749 .set_segment = emulator_set_segment,
5750 .get_cached_segment_base = emulator_get_cached_segment_base,
5751 .get_gdt = emulator_get_gdt,
5752 .get_idt = emulator_get_idt,
5753 .set_gdt = emulator_set_gdt,
5754 .set_idt = emulator_set_idt,
5755 .get_cr = emulator_get_cr,
5756 .set_cr = emulator_set_cr,
5757 .cpl = emulator_get_cpl,
5758 .get_dr = emulator_get_dr,
5759 .set_dr = emulator_set_dr,
5760 .get_smbase = emulator_get_smbase,
5761 .set_smbase = emulator_set_smbase,
5762 .set_msr = emulator_set_msr,
5763 .get_msr = emulator_get_msr,
5764 .check_pmc = emulator_check_pmc,
5765 .read_pmc = emulator_read_pmc,
5766 .halt = emulator_halt,
5767 .wbinvd = emulator_wbinvd,
5768 .fix_hypercall = emulator_fix_hypercall,
5769 .intercept = emulator_intercept,
5770 .get_cpuid = emulator_get_cpuid,
5771 .set_nmi_mask = emulator_set_nmi_mask,
5772 .get_hflags = emulator_get_hflags,
5773 .set_hflags = emulator_set_hflags,
5774 .pre_leave_smm = emulator_pre_leave_smm,
5775 };
5776
toggle_interruptibility(struct kvm_vcpu * vcpu,u32 mask)5777 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5778 {
5779 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5780 /*
5781 * an sti; sti; sequence only disable interrupts for the first
5782 * instruction. So, if the last instruction, be it emulated or
5783 * not, left the system with the INT_STI flag enabled, it
5784 * means that the last instruction is an sti. We should not
5785 * leave the flag on in this case. The same goes for mov ss
5786 */
5787 if (int_shadow & mask)
5788 mask = 0;
5789 if (unlikely(int_shadow || mask)) {
5790 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5791 if (!mask)
5792 kvm_make_request(KVM_REQ_EVENT, vcpu);
5793 }
5794 }
5795
inject_emulated_exception(struct kvm_vcpu * vcpu)5796 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5797 {
5798 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5799 if (ctxt->exception.vector == PF_VECTOR)
5800 return kvm_propagate_fault(vcpu, &ctxt->exception);
5801
5802 if (ctxt->exception.error_code_valid)
5803 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5804 ctxt->exception.error_code);
5805 else
5806 kvm_queue_exception(vcpu, ctxt->exception.vector);
5807 return false;
5808 }
5809
init_emulate_ctxt(struct kvm_vcpu * vcpu)5810 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5811 {
5812 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5813 int cs_db, cs_l;
5814
5815 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5816
5817 ctxt->eflags = kvm_get_rflags(vcpu);
5818 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
5819
5820 ctxt->eip = kvm_rip_read(vcpu);
5821 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
5822 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
5823 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
5824 cs_db ? X86EMUL_MODE_PROT32 :
5825 X86EMUL_MODE_PROT16;
5826 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5827 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5828 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5829
5830 init_decode_cache(ctxt);
5831 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5832 }
5833
kvm_inject_realmode_interrupt(struct kvm_vcpu * vcpu,int irq,int inc_eip)5834 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5835 {
5836 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5837 int ret;
5838
5839 init_emulate_ctxt(vcpu);
5840
5841 ctxt->op_bytes = 2;
5842 ctxt->ad_bytes = 2;
5843 ctxt->_eip = ctxt->eip + inc_eip;
5844 ret = emulate_int_real(ctxt, irq);
5845
5846 if (ret != X86EMUL_CONTINUE)
5847 return EMULATE_FAIL;
5848
5849 ctxt->eip = ctxt->_eip;
5850 kvm_rip_write(vcpu, ctxt->eip);
5851 kvm_set_rflags(vcpu, ctxt->eflags);
5852
5853 return EMULATE_DONE;
5854 }
5855 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5856
handle_emulation_failure(struct kvm_vcpu * vcpu,int emulation_type)5857 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
5858 {
5859 int r = EMULATE_DONE;
5860
5861 ++vcpu->stat.insn_emulation_fail;
5862 trace_kvm_emulate_insn_failed(vcpu);
5863
5864 if (emulation_type & EMULTYPE_NO_UD_ON_FAIL)
5865 return EMULATE_FAIL;
5866
5867 if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5868 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5869 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5870 vcpu->run->internal.ndata = 0;
5871 r = EMULATE_USER_EXIT;
5872 }
5873
5874 kvm_queue_exception(vcpu, UD_VECTOR);
5875
5876 return r;
5877 }
5878
reexecute_instruction(struct kvm_vcpu * vcpu,gva_t cr2,bool write_fault_to_shadow_pgtable,int emulation_type)5879 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5880 bool write_fault_to_shadow_pgtable,
5881 int emulation_type)
5882 {
5883 gpa_t gpa = cr2;
5884 kvm_pfn_t pfn;
5885
5886 if (!(emulation_type & EMULTYPE_ALLOW_RETRY))
5887 return false;
5888
5889 if (WARN_ON_ONCE(is_guest_mode(vcpu)))
5890 return false;
5891
5892 if (!vcpu->arch.mmu.direct_map) {
5893 /*
5894 * Write permission should be allowed since only
5895 * write access need to be emulated.
5896 */
5897 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5898
5899 /*
5900 * If the mapping is invalid in guest, let cpu retry
5901 * it to generate fault.
5902 */
5903 if (gpa == UNMAPPED_GVA)
5904 return true;
5905 }
5906
5907 /*
5908 * Do not retry the unhandleable instruction if it faults on the
5909 * readonly host memory, otherwise it will goto a infinite loop:
5910 * retry instruction -> write #PF -> emulation fail -> retry
5911 * instruction -> ...
5912 */
5913 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5914
5915 /*
5916 * If the instruction failed on the error pfn, it can not be fixed,
5917 * report the error to userspace.
5918 */
5919 if (is_error_noslot_pfn(pfn))
5920 return false;
5921
5922 kvm_release_pfn_clean(pfn);
5923
5924 /* The instructions are well-emulated on direct mmu. */
5925 if (vcpu->arch.mmu.direct_map) {
5926 unsigned int indirect_shadow_pages;
5927
5928 spin_lock(&vcpu->kvm->mmu_lock);
5929 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5930 spin_unlock(&vcpu->kvm->mmu_lock);
5931
5932 if (indirect_shadow_pages)
5933 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5934
5935 return true;
5936 }
5937
5938 /*
5939 * if emulation was due to access to shadowed page table
5940 * and it failed try to unshadow page and re-enter the
5941 * guest to let CPU execute the instruction.
5942 */
5943 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5944
5945 /*
5946 * If the access faults on its page table, it can not
5947 * be fixed by unprotecting shadow page and it should
5948 * be reported to userspace.
5949 */
5950 return !write_fault_to_shadow_pgtable;
5951 }
5952
retry_instruction(struct x86_emulate_ctxt * ctxt,unsigned long cr2,int emulation_type)5953 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5954 unsigned long cr2, int emulation_type)
5955 {
5956 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5957 unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5958
5959 last_retry_eip = vcpu->arch.last_retry_eip;
5960 last_retry_addr = vcpu->arch.last_retry_addr;
5961
5962 /*
5963 * If the emulation is caused by #PF and it is non-page_table
5964 * writing instruction, it means the VM-EXIT is caused by shadow
5965 * page protected, we can zap the shadow page and retry this
5966 * instruction directly.
5967 *
5968 * Note: if the guest uses a non-page-table modifying instruction
5969 * on the PDE that points to the instruction, then we will unmap
5970 * the instruction and go to an infinite loop. So, we cache the
5971 * last retried eip and the last fault address, if we meet the eip
5972 * and the address again, we can break out of the potential infinite
5973 * loop.
5974 */
5975 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5976
5977 if (!(emulation_type & EMULTYPE_ALLOW_RETRY))
5978 return false;
5979
5980 if (WARN_ON_ONCE(is_guest_mode(vcpu)))
5981 return false;
5982
5983 if (x86_page_table_writing_insn(ctxt))
5984 return false;
5985
5986 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5987 return false;
5988
5989 vcpu->arch.last_retry_eip = ctxt->eip;
5990 vcpu->arch.last_retry_addr = cr2;
5991
5992 if (!vcpu->arch.mmu.direct_map)
5993 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5994
5995 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5996
5997 return true;
5998 }
5999
6000 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
6001 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
6002
kvm_smm_changed(struct kvm_vcpu * vcpu)6003 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
6004 {
6005 if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
6006 /* This is a good place to trace that we are exiting SMM. */
6007 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
6008
6009 /* Process a latched INIT or SMI, if any. */
6010 kvm_make_request(KVM_REQ_EVENT, vcpu);
6011 }
6012
6013 kvm_mmu_reset_context(vcpu);
6014 }
6015
kvm_set_hflags(struct kvm_vcpu * vcpu,unsigned emul_flags)6016 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
6017 {
6018 unsigned changed = vcpu->arch.hflags ^ emul_flags;
6019
6020 vcpu->arch.hflags = emul_flags;
6021
6022 if (changed & HF_SMM_MASK)
6023 kvm_smm_changed(vcpu);
6024 }
6025
kvm_vcpu_check_hw_bp(unsigned long addr,u32 type,u32 dr7,unsigned long * db)6026 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
6027 unsigned long *db)
6028 {
6029 u32 dr6 = 0;
6030 int i;
6031 u32 enable, rwlen;
6032
6033 enable = dr7;
6034 rwlen = dr7 >> 16;
6035 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
6036 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
6037 dr6 |= (1 << i);
6038 return dr6;
6039 }
6040
kvm_vcpu_do_singlestep(struct kvm_vcpu * vcpu,int * r)6041 static void kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu, int *r)
6042 {
6043 struct kvm_run *kvm_run = vcpu->run;
6044
6045 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
6046 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
6047 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
6048 kvm_run->debug.arch.exception = DB_VECTOR;
6049 kvm_run->exit_reason = KVM_EXIT_DEBUG;
6050 *r = EMULATE_USER_EXIT;
6051 } else {
6052 /*
6053 * "Certain debug exceptions may clear bit 0-3. The
6054 * remaining contents of the DR6 register are never
6055 * cleared by the processor".
6056 */
6057 vcpu->arch.dr6 &= ~15;
6058 vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
6059 kvm_queue_exception(vcpu, DB_VECTOR);
6060 }
6061 }
6062
kvm_skip_emulated_instruction(struct kvm_vcpu * vcpu)6063 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
6064 {
6065 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
6066 int r = EMULATE_DONE;
6067
6068 kvm_x86_ops->skip_emulated_instruction(vcpu);
6069
6070 /*
6071 * rflags is the old, "raw" value of the flags. The new value has
6072 * not been saved yet.
6073 *
6074 * This is correct even for TF set by the guest, because "the
6075 * processor will not generate this exception after the instruction
6076 * that sets the TF flag".
6077 */
6078 if (unlikely(rflags & X86_EFLAGS_TF))
6079 kvm_vcpu_do_singlestep(vcpu, &r);
6080 return r == EMULATE_DONE;
6081 }
6082 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
6083
kvm_vcpu_check_breakpoint(struct kvm_vcpu * vcpu,int * r)6084 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
6085 {
6086 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
6087 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
6088 struct kvm_run *kvm_run = vcpu->run;
6089 unsigned long eip = kvm_get_linear_rip(vcpu);
6090 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6091 vcpu->arch.guest_debug_dr7,
6092 vcpu->arch.eff_db);
6093
6094 if (dr6 != 0) {
6095 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
6096 kvm_run->debug.arch.pc = eip;
6097 kvm_run->debug.arch.exception = DB_VECTOR;
6098 kvm_run->exit_reason = KVM_EXIT_DEBUG;
6099 *r = EMULATE_USER_EXIT;
6100 return true;
6101 }
6102 }
6103
6104 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
6105 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
6106 unsigned long eip = kvm_get_linear_rip(vcpu);
6107 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6108 vcpu->arch.dr7,
6109 vcpu->arch.db);
6110
6111 if (dr6 != 0) {
6112 vcpu->arch.dr6 &= ~15;
6113 vcpu->arch.dr6 |= dr6 | DR6_RTM;
6114 kvm_queue_exception(vcpu, DB_VECTOR);
6115 *r = EMULATE_DONE;
6116 return true;
6117 }
6118 }
6119
6120 return false;
6121 }
6122
is_vmware_backdoor_opcode(struct x86_emulate_ctxt * ctxt)6123 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
6124 {
6125 switch (ctxt->opcode_len) {
6126 case 1:
6127 switch (ctxt->b) {
6128 case 0xe4: /* IN */
6129 case 0xe5:
6130 case 0xec:
6131 case 0xed:
6132 case 0xe6: /* OUT */
6133 case 0xe7:
6134 case 0xee:
6135 case 0xef:
6136 case 0x6c: /* INS */
6137 case 0x6d:
6138 case 0x6e: /* OUTS */
6139 case 0x6f:
6140 return true;
6141 }
6142 break;
6143 case 2:
6144 switch (ctxt->b) {
6145 case 0x33: /* RDPMC */
6146 return true;
6147 }
6148 break;
6149 }
6150
6151 return false;
6152 }
6153
x86_emulate_instruction(struct kvm_vcpu * vcpu,unsigned long cr2,int emulation_type,void * insn,int insn_len)6154 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
6155 unsigned long cr2,
6156 int emulation_type,
6157 void *insn,
6158 int insn_len)
6159 {
6160 int r;
6161 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6162 bool writeback = true;
6163 bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
6164
6165 vcpu->arch.l1tf_flush_l1d = true;
6166
6167 /*
6168 * Clear write_fault_to_shadow_pgtable here to ensure it is
6169 * never reused.
6170 */
6171 vcpu->arch.write_fault_to_shadow_pgtable = false;
6172 kvm_clear_exception_queue(vcpu);
6173
6174 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
6175 init_emulate_ctxt(vcpu);
6176
6177 /*
6178 * We will reenter on the same instruction since
6179 * we do not set complete_userspace_io. This does not
6180 * handle watchpoints yet, those would be handled in
6181 * the emulate_ops.
6182 */
6183 if (!(emulation_type & EMULTYPE_SKIP) &&
6184 kvm_vcpu_check_breakpoint(vcpu, &r))
6185 return r;
6186
6187 ctxt->interruptibility = 0;
6188 ctxt->have_exception = false;
6189 ctxt->exception.vector = -1;
6190 ctxt->perm_ok = false;
6191
6192 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
6193
6194 r = x86_decode_insn(ctxt, insn, insn_len);
6195
6196 trace_kvm_emulate_insn_start(vcpu);
6197 ++vcpu->stat.insn_emulation;
6198 if (r != EMULATION_OK) {
6199 if (emulation_type & EMULTYPE_TRAP_UD)
6200 return EMULATE_FAIL;
6201 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
6202 emulation_type))
6203 return EMULATE_DONE;
6204 if (ctxt->have_exception && inject_emulated_exception(vcpu))
6205 return EMULATE_DONE;
6206 if (emulation_type & EMULTYPE_SKIP)
6207 return EMULATE_FAIL;
6208 return handle_emulation_failure(vcpu, emulation_type);
6209 }
6210 }
6211
6212 if ((emulation_type & EMULTYPE_VMWARE) &&
6213 !is_vmware_backdoor_opcode(ctxt))
6214 return EMULATE_FAIL;
6215
6216 if (emulation_type & EMULTYPE_SKIP) {
6217 kvm_rip_write(vcpu, ctxt->_eip);
6218 if (ctxt->eflags & X86_EFLAGS_RF)
6219 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
6220 return EMULATE_DONE;
6221 }
6222
6223 if (retry_instruction(ctxt, cr2, emulation_type))
6224 return EMULATE_DONE;
6225
6226 /* this is needed for vmware backdoor interface to work since it
6227 changes registers values during IO operation */
6228 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
6229 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6230 emulator_invalidate_register_cache(ctxt);
6231 }
6232
6233 restart:
6234 /* Save the faulting GPA (cr2) in the address field */
6235 ctxt->exception.address = cr2;
6236
6237 r = x86_emulate_insn(ctxt);
6238
6239 if (r == EMULATION_INTERCEPTED)
6240 return EMULATE_DONE;
6241
6242 if (r == EMULATION_FAILED) {
6243 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
6244 emulation_type))
6245 return EMULATE_DONE;
6246
6247 return handle_emulation_failure(vcpu, emulation_type);
6248 }
6249
6250 if (ctxt->have_exception) {
6251 r = EMULATE_DONE;
6252 if (inject_emulated_exception(vcpu))
6253 return r;
6254 } else if (vcpu->arch.pio.count) {
6255 if (!vcpu->arch.pio.in) {
6256 /* FIXME: return into emulator if single-stepping. */
6257 vcpu->arch.pio.count = 0;
6258 } else {
6259 writeback = false;
6260 vcpu->arch.complete_userspace_io = complete_emulated_pio;
6261 }
6262 r = EMULATE_USER_EXIT;
6263 } else if (vcpu->mmio_needed) {
6264 if (!vcpu->mmio_is_write)
6265 writeback = false;
6266 r = EMULATE_USER_EXIT;
6267 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6268 } else if (r == EMULATION_RESTART)
6269 goto restart;
6270 else
6271 r = EMULATE_DONE;
6272
6273 if (writeback) {
6274 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
6275 toggle_interruptibility(vcpu, ctxt->interruptibility);
6276 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6277 kvm_rip_write(vcpu, ctxt->eip);
6278 if (r == EMULATE_DONE &&
6279 (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
6280 kvm_vcpu_do_singlestep(vcpu, &r);
6281 if (!ctxt->have_exception ||
6282 exception_type(ctxt->exception.vector) == EXCPT_TRAP)
6283 __kvm_set_rflags(vcpu, ctxt->eflags);
6284
6285 /*
6286 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
6287 * do nothing, and it will be requested again as soon as
6288 * the shadow expires. But we still need to check here,
6289 * because POPF has no interrupt shadow.
6290 */
6291 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
6292 kvm_make_request(KVM_REQ_EVENT, vcpu);
6293 } else
6294 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
6295
6296 return r;
6297 }
6298
kvm_emulate_instruction(struct kvm_vcpu * vcpu,int emulation_type)6299 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
6300 {
6301 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
6302 }
6303 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
6304
kvm_emulate_instruction_from_buffer(struct kvm_vcpu * vcpu,void * insn,int insn_len)6305 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
6306 void *insn, int insn_len)
6307 {
6308 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
6309 }
6310 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
6311
kvm_fast_pio_out(struct kvm_vcpu * vcpu,int size,unsigned short port)6312 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
6313 unsigned short port)
6314 {
6315 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
6316 int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
6317 size, port, &val, 1);
6318 /* do not return to emulator after return from userspace */
6319 vcpu->arch.pio.count = 0;
6320 return ret;
6321 }
6322
complete_fast_pio_in(struct kvm_vcpu * vcpu)6323 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
6324 {
6325 unsigned long val;
6326
6327 /* We should only ever be called with arch.pio.count equal to 1 */
6328 BUG_ON(vcpu->arch.pio.count != 1);
6329
6330 /* For size less than 4 we merge, else we zero extend */
6331 val = (vcpu->arch.pio.size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX)
6332 : 0;
6333
6334 /*
6335 * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
6336 * the copy and tracing
6337 */
6338 emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
6339 vcpu->arch.pio.port, &val, 1);
6340 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
6341
6342 return 1;
6343 }
6344
kvm_fast_pio_in(struct kvm_vcpu * vcpu,int size,unsigned short port)6345 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
6346 unsigned short port)
6347 {
6348 unsigned long val;
6349 int ret;
6350
6351 /* For size less than 4 we merge, else we zero extend */
6352 val = (size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX) : 0;
6353
6354 ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
6355 &val, 1);
6356 if (ret) {
6357 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
6358 return ret;
6359 }
6360
6361 vcpu->arch.complete_userspace_io = complete_fast_pio_in;
6362
6363 return 0;
6364 }
6365
kvm_fast_pio(struct kvm_vcpu * vcpu,int size,unsigned short port,int in)6366 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
6367 {
6368 int ret = kvm_skip_emulated_instruction(vcpu);
6369
6370 /*
6371 * TODO: we might be squashing a KVM_GUESTDBG_SINGLESTEP-triggered
6372 * KVM_EXIT_DEBUG here.
6373 */
6374 if (in)
6375 return kvm_fast_pio_in(vcpu, size, port) && ret;
6376 else
6377 return kvm_fast_pio_out(vcpu, size, port) && ret;
6378 }
6379 EXPORT_SYMBOL_GPL(kvm_fast_pio);
6380
kvmclock_cpu_down_prep(unsigned int cpu)6381 static int kvmclock_cpu_down_prep(unsigned int cpu)
6382 {
6383 __this_cpu_write(cpu_tsc_khz, 0);
6384 return 0;
6385 }
6386
tsc_khz_changed(void * data)6387 static void tsc_khz_changed(void *data)
6388 {
6389 struct cpufreq_freqs *freq = data;
6390 unsigned long khz = 0;
6391
6392 if (data)
6393 khz = freq->new;
6394 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6395 khz = cpufreq_quick_get(raw_smp_processor_id());
6396 if (!khz)
6397 khz = tsc_khz;
6398 __this_cpu_write(cpu_tsc_khz, khz);
6399 }
6400
6401 #ifdef CONFIG_X86_64
kvm_hyperv_tsc_notifier(void)6402 static void kvm_hyperv_tsc_notifier(void)
6403 {
6404 struct kvm *kvm;
6405 struct kvm_vcpu *vcpu;
6406 int cpu;
6407
6408 spin_lock(&kvm_lock);
6409 list_for_each_entry(kvm, &vm_list, vm_list)
6410 kvm_make_mclock_inprogress_request(kvm);
6411
6412 hyperv_stop_tsc_emulation();
6413
6414 /* TSC frequency always matches when on Hyper-V */
6415 for_each_present_cpu(cpu)
6416 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
6417 kvm_max_guest_tsc_khz = tsc_khz;
6418
6419 list_for_each_entry(kvm, &vm_list, vm_list) {
6420 struct kvm_arch *ka = &kvm->arch;
6421
6422 spin_lock(&ka->pvclock_gtod_sync_lock);
6423
6424 pvclock_update_vm_gtod_copy(kvm);
6425
6426 kvm_for_each_vcpu(cpu, vcpu, kvm)
6427 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6428
6429 kvm_for_each_vcpu(cpu, vcpu, kvm)
6430 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
6431
6432 spin_unlock(&ka->pvclock_gtod_sync_lock);
6433 }
6434 spin_unlock(&kvm_lock);
6435 }
6436 #endif
6437
kvmclock_cpufreq_notifier(struct notifier_block * nb,unsigned long val,void * data)6438 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
6439 void *data)
6440 {
6441 struct cpufreq_freqs *freq = data;
6442 struct kvm *kvm;
6443 struct kvm_vcpu *vcpu;
6444 int i, send_ipi = 0;
6445
6446 /*
6447 * We allow guests to temporarily run on slowing clocks,
6448 * provided we notify them after, or to run on accelerating
6449 * clocks, provided we notify them before. Thus time never
6450 * goes backwards.
6451 *
6452 * However, we have a problem. We can't atomically update
6453 * the frequency of a given CPU from this function; it is
6454 * merely a notifier, which can be called from any CPU.
6455 * Changing the TSC frequency at arbitrary points in time
6456 * requires a recomputation of local variables related to
6457 * the TSC for each VCPU. We must flag these local variables
6458 * to be updated and be sure the update takes place with the
6459 * new frequency before any guests proceed.
6460 *
6461 * Unfortunately, the combination of hotplug CPU and frequency
6462 * change creates an intractable locking scenario; the order
6463 * of when these callouts happen is undefined with respect to
6464 * CPU hotplug, and they can race with each other. As such,
6465 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
6466 * undefined; you can actually have a CPU frequency change take
6467 * place in between the computation of X and the setting of the
6468 * variable. To protect against this problem, all updates of
6469 * the per_cpu tsc_khz variable are done in an interrupt
6470 * protected IPI, and all callers wishing to update the value
6471 * must wait for a synchronous IPI to complete (which is trivial
6472 * if the caller is on the CPU already). This establishes the
6473 * necessary total order on variable updates.
6474 *
6475 * Note that because a guest time update may take place
6476 * anytime after the setting of the VCPU's request bit, the
6477 * correct TSC value must be set before the request. However,
6478 * to ensure the update actually makes it to any guest which
6479 * starts running in hardware virtualization between the set
6480 * and the acquisition of the spinlock, we must also ping the
6481 * CPU after setting the request bit.
6482 *
6483 */
6484
6485 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
6486 return 0;
6487 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
6488 return 0;
6489
6490 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
6491
6492 spin_lock(&kvm_lock);
6493 list_for_each_entry(kvm, &vm_list, vm_list) {
6494 kvm_for_each_vcpu(i, vcpu, kvm) {
6495 if (vcpu->cpu != freq->cpu)
6496 continue;
6497 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6498 if (vcpu->cpu != smp_processor_id())
6499 send_ipi = 1;
6500 }
6501 }
6502 spin_unlock(&kvm_lock);
6503
6504 if (freq->old < freq->new && send_ipi) {
6505 /*
6506 * We upscale the frequency. Must make the guest
6507 * doesn't see old kvmclock values while running with
6508 * the new frequency, otherwise we risk the guest sees
6509 * time go backwards.
6510 *
6511 * In case we update the frequency for another cpu
6512 * (which might be in guest context) send an interrupt
6513 * to kick the cpu out of guest context. Next time
6514 * guest context is entered kvmclock will be updated,
6515 * so the guest will not see stale values.
6516 */
6517 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
6518 }
6519 return 0;
6520 }
6521
6522 static struct notifier_block kvmclock_cpufreq_notifier_block = {
6523 .notifier_call = kvmclock_cpufreq_notifier
6524 };
6525
kvmclock_cpu_online(unsigned int cpu)6526 static int kvmclock_cpu_online(unsigned int cpu)
6527 {
6528 tsc_khz_changed(NULL);
6529 return 0;
6530 }
6531
kvm_timer_init(void)6532 static void kvm_timer_init(void)
6533 {
6534 max_tsc_khz = tsc_khz;
6535
6536 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
6537 #ifdef CONFIG_CPU_FREQ
6538 struct cpufreq_policy policy;
6539 int cpu;
6540
6541 memset(&policy, 0, sizeof(policy));
6542 cpu = get_cpu();
6543 cpufreq_get_policy(&policy, cpu);
6544 if (policy.cpuinfo.max_freq)
6545 max_tsc_khz = policy.cpuinfo.max_freq;
6546 put_cpu();
6547 #endif
6548 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
6549 CPUFREQ_TRANSITION_NOTIFIER);
6550 }
6551 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
6552
6553 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
6554 kvmclock_cpu_online, kvmclock_cpu_down_prep);
6555 }
6556
6557 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
6558 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
6559
kvm_is_in_guest(void)6560 int kvm_is_in_guest(void)
6561 {
6562 return __this_cpu_read(current_vcpu) != NULL;
6563 }
6564
kvm_is_user_mode(void)6565 static int kvm_is_user_mode(void)
6566 {
6567 int user_mode = 3;
6568
6569 if (__this_cpu_read(current_vcpu))
6570 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
6571
6572 return user_mode != 0;
6573 }
6574
kvm_get_guest_ip(void)6575 static unsigned long kvm_get_guest_ip(void)
6576 {
6577 unsigned long ip = 0;
6578
6579 if (__this_cpu_read(current_vcpu))
6580 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
6581
6582 return ip;
6583 }
6584
6585 static struct perf_guest_info_callbacks kvm_guest_cbs = {
6586 .is_in_guest = kvm_is_in_guest,
6587 .is_user_mode = kvm_is_user_mode,
6588 .get_guest_ip = kvm_get_guest_ip,
6589 };
6590
kvm_set_mmio_spte_mask(void)6591 static void kvm_set_mmio_spte_mask(void)
6592 {
6593 u64 mask;
6594 int maxphyaddr = boot_cpu_data.x86_phys_bits;
6595
6596 /*
6597 * Set the reserved bits and the present bit of an paging-structure
6598 * entry to generate page fault with PFER.RSV = 1.
6599 */
6600
6601 /*
6602 * Mask the uppermost physical address bit, which would be reserved as
6603 * long as the supported physical address width is less than 52.
6604 */
6605 mask = 1ull << 51;
6606
6607 /* Set the present bit. */
6608 mask |= 1ull;
6609
6610 /*
6611 * If reserved bit is not supported, clear the present bit to disable
6612 * mmio page fault.
6613 */
6614 if (IS_ENABLED(CONFIG_X86_64) && maxphyaddr == 52)
6615 mask &= ~1ull;
6616
6617 kvm_mmu_set_mmio_spte_mask(mask, mask);
6618 }
6619
6620 #ifdef CONFIG_X86_64
pvclock_gtod_update_fn(struct work_struct * work)6621 static void pvclock_gtod_update_fn(struct work_struct *work)
6622 {
6623 struct kvm *kvm;
6624
6625 struct kvm_vcpu *vcpu;
6626 int i;
6627
6628 spin_lock(&kvm_lock);
6629 list_for_each_entry(kvm, &vm_list, vm_list)
6630 kvm_for_each_vcpu(i, vcpu, kvm)
6631 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
6632 atomic_set(&kvm_guest_has_master_clock, 0);
6633 spin_unlock(&kvm_lock);
6634 }
6635
6636 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
6637
6638 /*
6639 * Notification about pvclock gtod data update.
6640 */
pvclock_gtod_notify(struct notifier_block * nb,unsigned long unused,void * priv)6641 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
6642 void *priv)
6643 {
6644 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
6645 struct timekeeper *tk = priv;
6646
6647 update_pvclock_gtod(tk);
6648
6649 /* disable master clock if host does not trust, or does not
6650 * use, TSC based clocksource.
6651 */
6652 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
6653 atomic_read(&kvm_guest_has_master_clock) != 0)
6654 queue_work(system_long_wq, &pvclock_gtod_work);
6655
6656 return 0;
6657 }
6658
6659 static struct notifier_block pvclock_gtod_notifier = {
6660 .notifier_call = pvclock_gtod_notify,
6661 };
6662 #endif
6663
kvm_arch_init(void * opaque)6664 int kvm_arch_init(void *opaque)
6665 {
6666 int r;
6667 struct kvm_x86_ops *ops = opaque;
6668
6669 if (kvm_x86_ops) {
6670 printk(KERN_ERR "kvm: already loaded the other module\n");
6671 r = -EEXIST;
6672 goto out;
6673 }
6674
6675 if (!ops->cpu_has_kvm_support()) {
6676 printk(KERN_ERR "kvm: no hardware support\n");
6677 r = -EOPNOTSUPP;
6678 goto out;
6679 }
6680 if (ops->disabled_by_bios()) {
6681 printk(KERN_ERR "kvm: disabled by bios\n");
6682 r = -EOPNOTSUPP;
6683 goto out;
6684 }
6685
6686 r = -ENOMEM;
6687 shared_msrs = alloc_percpu(struct kvm_shared_msrs);
6688 if (!shared_msrs) {
6689 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
6690 goto out;
6691 }
6692
6693 r = kvm_mmu_module_init();
6694 if (r)
6695 goto out_free_percpu;
6696
6697 kvm_set_mmio_spte_mask();
6698
6699 kvm_x86_ops = ops;
6700
6701 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
6702 PT_DIRTY_MASK, PT64_NX_MASK, 0,
6703 PT_PRESENT_MASK, 0, sme_me_mask);
6704 kvm_timer_init();
6705
6706 perf_register_guest_info_callbacks(&kvm_guest_cbs);
6707
6708 if (boot_cpu_has(X86_FEATURE_XSAVE))
6709 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
6710
6711 kvm_lapic_init();
6712 #ifdef CONFIG_X86_64
6713 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
6714
6715 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
6716 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
6717 #endif
6718
6719 return 0;
6720
6721 out_free_percpu:
6722 free_percpu(shared_msrs);
6723 out:
6724 return r;
6725 }
6726
kvm_arch_exit(void)6727 void kvm_arch_exit(void)
6728 {
6729 #ifdef CONFIG_X86_64
6730 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
6731 clear_hv_tscchange_cb();
6732 #endif
6733 kvm_lapic_exit();
6734 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6735
6736 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6737 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
6738 CPUFREQ_TRANSITION_NOTIFIER);
6739 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
6740 #ifdef CONFIG_X86_64
6741 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
6742 #endif
6743 kvm_x86_ops = NULL;
6744 kvm_mmu_module_exit();
6745 free_percpu(shared_msrs);
6746 }
6747
kvm_vcpu_halt(struct kvm_vcpu * vcpu)6748 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
6749 {
6750 ++vcpu->stat.halt_exits;
6751 if (lapic_in_kernel(vcpu)) {
6752 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
6753 return 1;
6754 } else {
6755 vcpu->run->exit_reason = KVM_EXIT_HLT;
6756 return 0;
6757 }
6758 }
6759 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
6760
kvm_emulate_halt(struct kvm_vcpu * vcpu)6761 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
6762 {
6763 int ret = kvm_skip_emulated_instruction(vcpu);
6764 /*
6765 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
6766 * KVM_EXIT_DEBUG here.
6767 */
6768 return kvm_vcpu_halt(vcpu) && ret;
6769 }
6770 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
6771
6772 #ifdef CONFIG_X86_64
kvm_pv_clock_pairing(struct kvm_vcpu * vcpu,gpa_t paddr,unsigned long clock_type)6773 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
6774 unsigned long clock_type)
6775 {
6776 struct kvm_clock_pairing clock_pairing;
6777 struct timespec64 ts;
6778 u64 cycle;
6779 int ret;
6780
6781 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
6782 return -KVM_EOPNOTSUPP;
6783
6784 if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
6785 return -KVM_EOPNOTSUPP;
6786
6787 clock_pairing.sec = ts.tv_sec;
6788 clock_pairing.nsec = ts.tv_nsec;
6789 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
6790 clock_pairing.flags = 0;
6791
6792 ret = 0;
6793 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
6794 sizeof(struct kvm_clock_pairing)))
6795 ret = -KVM_EFAULT;
6796
6797 return ret;
6798 }
6799 #endif
6800
6801 /*
6802 * kvm_pv_kick_cpu_op: Kick a vcpu.
6803 *
6804 * @apicid - apicid of vcpu to be kicked.
6805 */
kvm_pv_kick_cpu_op(struct kvm * kvm,unsigned long flags,int apicid)6806 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
6807 {
6808 struct kvm_lapic_irq lapic_irq;
6809
6810 lapic_irq.shorthand = 0;
6811 lapic_irq.dest_mode = 0;
6812 lapic_irq.level = 0;
6813 lapic_irq.dest_id = apicid;
6814 lapic_irq.msi_redir_hint = false;
6815
6816 lapic_irq.delivery_mode = APIC_DM_REMRD;
6817 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
6818 }
6819
kvm_vcpu_deactivate_apicv(struct kvm_vcpu * vcpu)6820 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
6821 {
6822 vcpu->arch.apicv_active = false;
6823 kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
6824 }
6825
kvm_emulate_hypercall(struct kvm_vcpu * vcpu)6826 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
6827 {
6828 unsigned long nr, a0, a1, a2, a3, ret;
6829 int op_64_bit;
6830
6831 if (kvm_hv_hypercall_enabled(vcpu->kvm))
6832 return kvm_hv_hypercall(vcpu);
6833
6834 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
6835 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
6836 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
6837 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
6838 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
6839
6840 trace_kvm_hypercall(nr, a0, a1, a2, a3);
6841
6842 op_64_bit = is_64_bit_mode(vcpu);
6843 if (!op_64_bit) {
6844 nr &= 0xFFFFFFFF;
6845 a0 &= 0xFFFFFFFF;
6846 a1 &= 0xFFFFFFFF;
6847 a2 &= 0xFFFFFFFF;
6848 a3 &= 0xFFFFFFFF;
6849 }
6850
6851 if (kvm_x86_ops->get_cpl(vcpu) != 0) {
6852 ret = -KVM_EPERM;
6853 goto out;
6854 }
6855
6856 switch (nr) {
6857 case KVM_HC_VAPIC_POLL_IRQ:
6858 ret = 0;
6859 break;
6860 case KVM_HC_KICK_CPU:
6861 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
6862 ret = 0;
6863 break;
6864 #ifdef CONFIG_X86_64
6865 case KVM_HC_CLOCK_PAIRING:
6866 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
6867 break;
6868 case KVM_HC_SEND_IPI:
6869 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
6870 break;
6871 #endif
6872 default:
6873 ret = -KVM_ENOSYS;
6874 break;
6875 }
6876 out:
6877 if (!op_64_bit)
6878 ret = (u32)ret;
6879 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
6880
6881 ++vcpu->stat.hypercalls;
6882 return kvm_skip_emulated_instruction(vcpu);
6883 }
6884 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
6885
emulator_fix_hypercall(struct x86_emulate_ctxt * ctxt)6886 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
6887 {
6888 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6889 char instruction[3];
6890 unsigned long rip = kvm_rip_read(vcpu);
6891
6892 kvm_x86_ops->patch_hypercall(vcpu, instruction);
6893
6894 return emulator_write_emulated(ctxt, rip, instruction, 3,
6895 &ctxt->exception);
6896 }
6897
dm_request_for_irq_injection(struct kvm_vcpu * vcpu)6898 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6899 {
6900 return vcpu->run->request_interrupt_window &&
6901 likely(!pic_in_kernel(vcpu->kvm));
6902 }
6903
post_kvm_run_save(struct kvm_vcpu * vcpu)6904 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6905 {
6906 struct kvm_run *kvm_run = vcpu->run;
6907
6908 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6909 kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
6910 kvm_run->cr8 = kvm_get_cr8(vcpu);
6911 kvm_run->apic_base = kvm_get_apic_base(vcpu);
6912 kvm_run->ready_for_interrupt_injection =
6913 pic_in_kernel(vcpu->kvm) ||
6914 kvm_vcpu_ready_for_interrupt_injection(vcpu);
6915 }
6916
update_cr8_intercept(struct kvm_vcpu * vcpu)6917 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6918 {
6919 int max_irr, tpr;
6920
6921 if (!kvm_x86_ops->update_cr8_intercept)
6922 return;
6923
6924 if (!lapic_in_kernel(vcpu))
6925 return;
6926
6927 if (vcpu->arch.apicv_active)
6928 return;
6929
6930 if (!vcpu->arch.apic->vapic_addr)
6931 max_irr = kvm_lapic_find_highest_irr(vcpu);
6932 else
6933 max_irr = -1;
6934
6935 if (max_irr != -1)
6936 max_irr >>= 4;
6937
6938 tpr = kvm_lapic_get_cr8(vcpu);
6939
6940 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6941 }
6942
inject_pending_event(struct kvm_vcpu * vcpu,bool req_int_win)6943 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6944 {
6945 int r;
6946
6947 /* try to reinject previous events if any */
6948
6949 if (vcpu->arch.exception.injected)
6950 kvm_x86_ops->queue_exception(vcpu);
6951 /*
6952 * Do not inject an NMI or interrupt if there is a pending
6953 * exception. Exceptions and interrupts are recognized at
6954 * instruction boundaries, i.e. the start of an instruction.
6955 * Trap-like exceptions, e.g. #DB, have higher priority than
6956 * NMIs and interrupts, i.e. traps are recognized before an
6957 * NMI/interrupt that's pending on the same instruction.
6958 * Fault-like exceptions, e.g. #GP and #PF, are the lowest
6959 * priority, but are only generated (pended) during instruction
6960 * execution, i.e. a pending fault-like exception means the
6961 * fault occurred on the *previous* instruction and must be
6962 * serviced prior to recognizing any new events in order to
6963 * fully complete the previous instruction.
6964 */
6965 else if (!vcpu->arch.exception.pending) {
6966 if (vcpu->arch.nmi_injected)
6967 kvm_x86_ops->set_nmi(vcpu);
6968 else if (vcpu->arch.interrupt.injected)
6969 kvm_x86_ops->set_irq(vcpu);
6970 }
6971
6972 /*
6973 * Call check_nested_events() even if we reinjected a previous event
6974 * in order for caller to determine if it should require immediate-exit
6975 * from L2 to L1 due to pending L1 events which require exit
6976 * from L2 to L1.
6977 */
6978 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6979 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6980 if (r != 0)
6981 return r;
6982 }
6983
6984 /* try to inject new event if pending */
6985 if (vcpu->arch.exception.pending) {
6986 trace_kvm_inj_exception(vcpu->arch.exception.nr,
6987 vcpu->arch.exception.has_error_code,
6988 vcpu->arch.exception.error_code);
6989
6990 WARN_ON_ONCE(vcpu->arch.exception.injected);
6991 vcpu->arch.exception.pending = false;
6992 vcpu->arch.exception.injected = true;
6993
6994 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6995 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6996 X86_EFLAGS_RF);
6997
6998 if (vcpu->arch.exception.nr == DB_VECTOR &&
6999 (vcpu->arch.dr7 & DR7_GD)) {
7000 vcpu->arch.dr7 &= ~DR7_GD;
7001 kvm_update_dr7(vcpu);
7002 }
7003
7004 kvm_x86_ops->queue_exception(vcpu);
7005 }
7006
7007 /* Don't consider new event if we re-injected an event */
7008 if (kvm_event_needs_reinjection(vcpu))
7009 return 0;
7010
7011 if (vcpu->arch.smi_pending && !is_smm(vcpu) &&
7012 kvm_x86_ops->smi_allowed(vcpu)) {
7013 vcpu->arch.smi_pending = false;
7014 ++vcpu->arch.smi_count;
7015 enter_smm(vcpu);
7016 } else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
7017 --vcpu->arch.nmi_pending;
7018 vcpu->arch.nmi_injected = true;
7019 kvm_x86_ops->set_nmi(vcpu);
7020 } else if (kvm_cpu_has_injectable_intr(vcpu)) {
7021 /*
7022 * Because interrupts can be injected asynchronously, we are
7023 * calling check_nested_events again here to avoid a race condition.
7024 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
7025 * proposal and current concerns. Perhaps we should be setting
7026 * KVM_REQ_EVENT only on certain events and not unconditionally?
7027 */
7028 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
7029 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
7030 if (r != 0)
7031 return r;
7032 }
7033 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
7034 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
7035 false);
7036 kvm_x86_ops->set_irq(vcpu);
7037 }
7038 }
7039
7040 return 0;
7041 }
7042
process_nmi(struct kvm_vcpu * vcpu)7043 static void process_nmi(struct kvm_vcpu *vcpu)
7044 {
7045 unsigned limit = 2;
7046
7047 /*
7048 * x86 is limited to one NMI running, and one NMI pending after it.
7049 * If an NMI is already in progress, limit further NMIs to just one.
7050 * Otherwise, allow two (and we'll inject the first one immediately).
7051 */
7052 if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
7053 limit = 1;
7054
7055 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
7056 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
7057 kvm_make_request(KVM_REQ_EVENT, vcpu);
7058 }
7059
enter_smm_get_segment_flags(struct kvm_segment * seg)7060 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
7061 {
7062 u32 flags = 0;
7063 flags |= seg->g << 23;
7064 flags |= seg->db << 22;
7065 flags |= seg->l << 21;
7066 flags |= seg->avl << 20;
7067 flags |= seg->present << 15;
7068 flags |= seg->dpl << 13;
7069 flags |= seg->s << 12;
7070 flags |= seg->type << 8;
7071 return flags;
7072 }
7073
enter_smm_save_seg_32(struct kvm_vcpu * vcpu,char * buf,int n)7074 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
7075 {
7076 struct kvm_segment seg;
7077 int offset;
7078
7079 kvm_get_segment(vcpu, &seg, n);
7080 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
7081
7082 if (n < 3)
7083 offset = 0x7f84 + n * 12;
7084 else
7085 offset = 0x7f2c + (n - 3) * 12;
7086
7087 put_smstate(u32, buf, offset + 8, seg.base);
7088 put_smstate(u32, buf, offset + 4, seg.limit);
7089 put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
7090 }
7091
7092 #ifdef CONFIG_X86_64
enter_smm_save_seg_64(struct kvm_vcpu * vcpu,char * buf,int n)7093 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
7094 {
7095 struct kvm_segment seg;
7096 int offset;
7097 u16 flags;
7098
7099 kvm_get_segment(vcpu, &seg, n);
7100 offset = 0x7e00 + n * 16;
7101
7102 flags = enter_smm_get_segment_flags(&seg) >> 8;
7103 put_smstate(u16, buf, offset, seg.selector);
7104 put_smstate(u16, buf, offset + 2, flags);
7105 put_smstate(u32, buf, offset + 4, seg.limit);
7106 put_smstate(u64, buf, offset + 8, seg.base);
7107 }
7108 #endif
7109
enter_smm_save_state_32(struct kvm_vcpu * vcpu,char * buf)7110 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
7111 {
7112 struct desc_ptr dt;
7113 struct kvm_segment seg;
7114 unsigned long val;
7115 int i;
7116
7117 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
7118 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
7119 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
7120 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
7121
7122 for (i = 0; i < 8; i++)
7123 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
7124
7125 kvm_get_dr(vcpu, 6, &val);
7126 put_smstate(u32, buf, 0x7fcc, (u32)val);
7127 kvm_get_dr(vcpu, 7, &val);
7128 put_smstate(u32, buf, 0x7fc8, (u32)val);
7129
7130 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7131 put_smstate(u32, buf, 0x7fc4, seg.selector);
7132 put_smstate(u32, buf, 0x7f64, seg.base);
7133 put_smstate(u32, buf, 0x7f60, seg.limit);
7134 put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
7135
7136 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7137 put_smstate(u32, buf, 0x7fc0, seg.selector);
7138 put_smstate(u32, buf, 0x7f80, seg.base);
7139 put_smstate(u32, buf, 0x7f7c, seg.limit);
7140 put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
7141
7142 kvm_x86_ops->get_gdt(vcpu, &dt);
7143 put_smstate(u32, buf, 0x7f74, dt.address);
7144 put_smstate(u32, buf, 0x7f70, dt.size);
7145
7146 kvm_x86_ops->get_idt(vcpu, &dt);
7147 put_smstate(u32, buf, 0x7f58, dt.address);
7148 put_smstate(u32, buf, 0x7f54, dt.size);
7149
7150 for (i = 0; i < 6; i++)
7151 enter_smm_save_seg_32(vcpu, buf, i);
7152
7153 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
7154
7155 /* revision id */
7156 put_smstate(u32, buf, 0x7efc, 0x00020000);
7157 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
7158 }
7159
enter_smm_save_state_64(struct kvm_vcpu * vcpu,char * buf)7160 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
7161 {
7162 #ifdef CONFIG_X86_64
7163 struct desc_ptr dt;
7164 struct kvm_segment seg;
7165 unsigned long val;
7166 int i;
7167
7168 for (i = 0; i < 16; i++)
7169 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
7170
7171 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
7172 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
7173
7174 kvm_get_dr(vcpu, 6, &val);
7175 put_smstate(u64, buf, 0x7f68, val);
7176 kvm_get_dr(vcpu, 7, &val);
7177 put_smstate(u64, buf, 0x7f60, val);
7178
7179 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
7180 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
7181 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
7182
7183 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
7184
7185 /* revision id */
7186 put_smstate(u32, buf, 0x7efc, 0x00020064);
7187
7188 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
7189
7190 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7191 put_smstate(u16, buf, 0x7e90, seg.selector);
7192 put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
7193 put_smstate(u32, buf, 0x7e94, seg.limit);
7194 put_smstate(u64, buf, 0x7e98, seg.base);
7195
7196 kvm_x86_ops->get_idt(vcpu, &dt);
7197 put_smstate(u32, buf, 0x7e84, dt.size);
7198 put_smstate(u64, buf, 0x7e88, dt.address);
7199
7200 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7201 put_smstate(u16, buf, 0x7e70, seg.selector);
7202 put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
7203 put_smstate(u32, buf, 0x7e74, seg.limit);
7204 put_smstate(u64, buf, 0x7e78, seg.base);
7205
7206 kvm_x86_ops->get_gdt(vcpu, &dt);
7207 put_smstate(u32, buf, 0x7e64, dt.size);
7208 put_smstate(u64, buf, 0x7e68, dt.address);
7209
7210 for (i = 0; i < 6; i++)
7211 enter_smm_save_seg_64(vcpu, buf, i);
7212 #else
7213 WARN_ON_ONCE(1);
7214 #endif
7215 }
7216
enter_smm(struct kvm_vcpu * vcpu)7217 static void enter_smm(struct kvm_vcpu *vcpu)
7218 {
7219 struct kvm_segment cs, ds;
7220 struct desc_ptr dt;
7221 char buf[512];
7222 u32 cr0;
7223
7224 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
7225 memset(buf, 0, 512);
7226 if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7227 enter_smm_save_state_64(vcpu, buf);
7228 else
7229 enter_smm_save_state_32(vcpu, buf);
7230
7231 /*
7232 * Give pre_enter_smm() a chance to make ISA-specific changes to the
7233 * vCPU state (e.g. leave guest mode) after we've saved the state into
7234 * the SMM state-save area.
7235 */
7236 kvm_x86_ops->pre_enter_smm(vcpu, buf);
7237
7238 vcpu->arch.hflags |= HF_SMM_MASK;
7239 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
7240
7241 if (kvm_x86_ops->get_nmi_mask(vcpu))
7242 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
7243 else
7244 kvm_x86_ops->set_nmi_mask(vcpu, true);
7245
7246 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
7247 kvm_rip_write(vcpu, 0x8000);
7248
7249 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
7250 kvm_x86_ops->set_cr0(vcpu, cr0);
7251 vcpu->arch.cr0 = cr0;
7252
7253 kvm_x86_ops->set_cr4(vcpu, 0);
7254
7255 /* Undocumented: IDT limit is set to zero on entry to SMM. */
7256 dt.address = dt.size = 0;
7257 kvm_x86_ops->set_idt(vcpu, &dt);
7258
7259 __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
7260
7261 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
7262 cs.base = vcpu->arch.smbase;
7263
7264 ds.selector = 0;
7265 ds.base = 0;
7266
7267 cs.limit = ds.limit = 0xffffffff;
7268 cs.type = ds.type = 0x3;
7269 cs.dpl = ds.dpl = 0;
7270 cs.db = ds.db = 0;
7271 cs.s = ds.s = 1;
7272 cs.l = ds.l = 0;
7273 cs.g = ds.g = 1;
7274 cs.avl = ds.avl = 0;
7275 cs.present = ds.present = 1;
7276 cs.unusable = ds.unusable = 0;
7277 cs.padding = ds.padding = 0;
7278
7279 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7280 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
7281 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
7282 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
7283 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
7284 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
7285
7286 if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7287 kvm_x86_ops->set_efer(vcpu, 0);
7288
7289 kvm_update_cpuid(vcpu);
7290 kvm_mmu_reset_context(vcpu);
7291 }
7292
process_smi(struct kvm_vcpu * vcpu)7293 static void process_smi(struct kvm_vcpu *vcpu)
7294 {
7295 vcpu->arch.smi_pending = true;
7296 kvm_make_request(KVM_REQ_EVENT, vcpu);
7297 }
7298
kvm_make_scan_ioapic_request(struct kvm * kvm)7299 void kvm_make_scan_ioapic_request(struct kvm *kvm)
7300 {
7301 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
7302 }
7303
vcpu_scan_ioapic(struct kvm_vcpu * vcpu)7304 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
7305 {
7306 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
7307 return;
7308
7309 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
7310
7311 if (irqchip_split(vcpu->kvm))
7312 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
7313 else {
7314 if (vcpu->arch.apicv_active)
7315 kvm_x86_ops->sync_pir_to_irr(vcpu);
7316 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
7317 }
7318
7319 if (is_guest_mode(vcpu))
7320 vcpu->arch.load_eoi_exitmap_pending = true;
7321 else
7322 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
7323 }
7324
vcpu_load_eoi_exitmap(struct kvm_vcpu * vcpu)7325 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
7326 {
7327 u64 eoi_exit_bitmap[4];
7328
7329 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
7330 return;
7331
7332 bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
7333 vcpu_to_synic(vcpu)->vec_bitmap, 256);
7334 kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
7335 }
7336
kvm_arch_mmu_notifier_invalidate_range(struct kvm * kvm,unsigned long start,unsigned long end,bool blockable)7337 int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
7338 unsigned long start, unsigned long end,
7339 bool blockable)
7340 {
7341 unsigned long apic_address;
7342
7343 /*
7344 * The physical address of apic access page is stored in the VMCS.
7345 * Update it when it becomes invalid.
7346 */
7347 apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7348 if (start <= apic_address && apic_address < end)
7349 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
7350
7351 return 0;
7352 }
7353
kvm_vcpu_reload_apic_access_page(struct kvm_vcpu * vcpu)7354 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
7355 {
7356 struct page *page = NULL;
7357
7358 if (!lapic_in_kernel(vcpu))
7359 return;
7360
7361 if (!kvm_x86_ops->set_apic_access_page_addr)
7362 return;
7363
7364 page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7365 if (is_error_page(page))
7366 return;
7367 kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
7368
7369 /*
7370 * Do not pin apic access page in memory, the MMU notifier
7371 * will call us again if it is migrated or swapped out.
7372 */
7373 put_page(page);
7374 }
7375 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
7376
__kvm_request_immediate_exit(struct kvm_vcpu * vcpu)7377 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
7378 {
7379 smp_send_reschedule(vcpu->cpu);
7380 }
7381 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
7382
7383 /*
7384 * Returns 1 to let vcpu_run() continue the guest execution loop without
7385 * exiting to the userspace. Otherwise, the value will be returned to the
7386 * userspace.
7387 */
vcpu_enter_guest(struct kvm_vcpu * vcpu)7388 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
7389 {
7390 int r;
7391 bool req_int_win =
7392 dm_request_for_irq_injection(vcpu) &&
7393 kvm_cpu_accept_dm_intr(vcpu);
7394
7395 bool req_immediate_exit = false;
7396
7397 if (kvm_request_pending(vcpu)) {
7398 if (kvm_check_request(KVM_REQ_GET_VMCS12_PAGES, vcpu))
7399 kvm_x86_ops->get_vmcs12_pages(vcpu);
7400 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
7401 kvm_mmu_unload(vcpu);
7402 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
7403 __kvm_migrate_timers(vcpu);
7404 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
7405 kvm_gen_update_masterclock(vcpu->kvm);
7406 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
7407 kvm_gen_kvmclock_update(vcpu);
7408 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
7409 r = kvm_guest_time_update(vcpu);
7410 if (unlikely(r))
7411 goto out;
7412 }
7413 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
7414 kvm_mmu_sync_roots(vcpu);
7415 if (kvm_check_request(KVM_REQ_LOAD_CR3, vcpu))
7416 kvm_mmu_load_cr3(vcpu);
7417 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
7418 kvm_vcpu_flush_tlb(vcpu, true);
7419 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
7420 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
7421 r = 0;
7422 goto out;
7423 }
7424 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
7425 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
7426 vcpu->mmio_needed = 0;
7427 r = 0;
7428 goto out;
7429 }
7430 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
7431 /* Page is swapped out. Do synthetic halt */
7432 vcpu->arch.apf.halted = true;
7433 r = 1;
7434 goto out;
7435 }
7436 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
7437 record_steal_time(vcpu);
7438 if (kvm_check_request(KVM_REQ_SMI, vcpu))
7439 process_smi(vcpu);
7440 if (kvm_check_request(KVM_REQ_NMI, vcpu))
7441 process_nmi(vcpu);
7442 if (kvm_check_request(KVM_REQ_PMU, vcpu))
7443 kvm_pmu_handle_event(vcpu);
7444 if (kvm_check_request(KVM_REQ_PMI, vcpu))
7445 kvm_pmu_deliver_pmi(vcpu);
7446 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
7447 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
7448 if (test_bit(vcpu->arch.pending_ioapic_eoi,
7449 vcpu->arch.ioapic_handled_vectors)) {
7450 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
7451 vcpu->run->eoi.vector =
7452 vcpu->arch.pending_ioapic_eoi;
7453 r = 0;
7454 goto out;
7455 }
7456 }
7457 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
7458 vcpu_scan_ioapic(vcpu);
7459 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
7460 vcpu_load_eoi_exitmap(vcpu);
7461 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
7462 kvm_vcpu_reload_apic_access_page(vcpu);
7463 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
7464 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
7465 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
7466 r = 0;
7467 goto out;
7468 }
7469 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
7470 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
7471 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
7472 r = 0;
7473 goto out;
7474 }
7475 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
7476 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
7477 vcpu->run->hyperv = vcpu->arch.hyperv.exit;
7478 r = 0;
7479 goto out;
7480 }
7481
7482 /*
7483 * KVM_REQ_HV_STIMER has to be processed after
7484 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
7485 * depend on the guest clock being up-to-date
7486 */
7487 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
7488 kvm_hv_process_stimers(vcpu);
7489 }
7490
7491 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
7492 ++vcpu->stat.req_event;
7493 kvm_apic_accept_events(vcpu);
7494 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
7495 r = 1;
7496 goto out;
7497 }
7498
7499 if (inject_pending_event(vcpu, req_int_win) != 0)
7500 req_immediate_exit = true;
7501 else {
7502 /* Enable SMI/NMI/IRQ window open exits if needed.
7503 *
7504 * SMIs have three cases:
7505 * 1) They can be nested, and then there is nothing to
7506 * do here because RSM will cause a vmexit anyway.
7507 * 2) There is an ISA-specific reason why SMI cannot be
7508 * injected, and the moment when this changes can be
7509 * intercepted.
7510 * 3) Or the SMI can be pending because
7511 * inject_pending_event has completed the injection
7512 * of an IRQ or NMI from the previous vmexit, and
7513 * then we request an immediate exit to inject the
7514 * SMI.
7515 */
7516 if (vcpu->arch.smi_pending && !is_smm(vcpu))
7517 if (!kvm_x86_ops->enable_smi_window(vcpu))
7518 req_immediate_exit = true;
7519 if (vcpu->arch.nmi_pending)
7520 kvm_x86_ops->enable_nmi_window(vcpu);
7521 if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
7522 kvm_x86_ops->enable_irq_window(vcpu);
7523 WARN_ON(vcpu->arch.exception.pending);
7524 }
7525
7526 if (kvm_lapic_enabled(vcpu)) {
7527 update_cr8_intercept(vcpu);
7528 kvm_lapic_sync_to_vapic(vcpu);
7529 }
7530 }
7531
7532 r = kvm_mmu_reload(vcpu);
7533 if (unlikely(r)) {
7534 goto cancel_injection;
7535 }
7536
7537 preempt_disable();
7538
7539 kvm_x86_ops->prepare_guest_switch(vcpu);
7540
7541 /*
7542 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt
7543 * IPI are then delayed after guest entry, which ensures that they
7544 * result in virtual interrupt delivery.
7545 */
7546 local_irq_disable();
7547 vcpu->mode = IN_GUEST_MODE;
7548
7549 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7550
7551 /*
7552 * 1) We should set ->mode before checking ->requests. Please see
7553 * the comment in kvm_vcpu_exiting_guest_mode().
7554 *
7555 * 2) For APICv, we should set ->mode before checking PIR.ON. This
7556 * pairs with the memory barrier implicit in pi_test_and_set_on
7557 * (see vmx_deliver_posted_interrupt).
7558 *
7559 * 3) This also orders the write to mode from any reads to the page
7560 * tables done while the VCPU is running. Please see the comment
7561 * in kvm_flush_remote_tlbs.
7562 */
7563 smp_mb__after_srcu_read_unlock();
7564
7565 /*
7566 * This handles the case where a posted interrupt was
7567 * notified with kvm_vcpu_kick.
7568 */
7569 if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
7570 kvm_x86_ops->sync_pir_to_irr(vcpu);
7571
7572 if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu)
7573 || need_resched() || signal_pending(current)) {
7574 vcpu->mode = OUTSIDE_GUEST_MODE;
7575 smp_wmb();
7576 local_irq_enable();
7577 preempt_enable();
7578 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7579 r = 1;
7580 goto cancel_injection;
7581 }
7582
7583 kvm_load_guest_xcr0(vcpu);
7584
7585 if (req_immediate_exit) {
7586 kvm_make_request(KVM_REQ_EVENT, vcpu);
7587 kvm_x86_ops->request_immediate_exit(vcpu);
7588 }
7589
7590 trace_kvm_entry(vcpu->vcpu_id);
7591 if (lapic_timer_advance_ns)
7592 wait_lapic_expire(vcpu);
7593 guest_enter_irqoff();
7594
7595 if (unlikely(vcpu->arch.switch_db_regs)) {
7596 set_debugreg(0, 7);
7597 set_debugreg(vcpu->arch.eff_db[0], 0);
7598 set_debugreg(vcpu->arch.eff_db[1], 1);
7599 set_debugreg(vcpu->arch.eff_db[2], 2);
7600 set_debugreg(vcpu->arch.eff_db[3], 3);
7601 set_debugreg(vcpu->arch.dr6, 6);
7602 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7603 }
7604
7605 kvm_x86_ops->run(vcpu);
7606
7607 /*
7608 * Do this here before restoring debug registers on the host. And
7609 * since we do this before handling the vmexit, a DR access vmexit
7610 * can (a) read the correct value of the debug registers, (b) set
7611 * KVM_DEBUGREG_WONT_EXIT again.
7612 */
7613 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
7614 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
7615 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
7616 kvm_update_dr0123(vcpu);
7617 kvm_update_dr6(vcpu);
7618 kvm_update_dr7(vcpu);
7619 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7620 }
7621
7622 /*
7623 * If the guest has used debug registers, at least dr7
7624 * will be disabled while returning to the host.
7625 * If we don't have active breakpoints in the host, we don't
7626 * care about the messed up debug address registers. But if
7627 * we have some of them active, restore the old state.
7628 */
7629 if (hw_breakpoint_active())
7630 hw_breakpoint_restore();
7631
7632 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
7633
7634 vcpu->mode = OUTSIDE_GUEST_MODE;
7635 smp_wmb();
7636
7637 kvm_put_guest_xcr0(vcpu);
7638
7639 kvm_before_interrupt(vcpu);
7640 kvm_x86_ops->handle_external_intr(vcpu);
7641 kvm_after_interrupt(vcpu);
7642
7643 ++vcpu->stat.exits;
7644
7645 guest_exit_irqoff();
7646
7647 local_irq_enable();
7648 preempt_enable();
7649
7650 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7651
7652 /*
7653 * Profile KVM exit RIPs:
7654 */
7655 if (unlikely(prof_on == KVM_PROFILING)) {
7656 unsigned long rip = kvm_rip_read(vcpu);
7657 profile_hit(KVM_PROFILING, (void *)rip);
7658 }
7659
7660 if (unlikely(vcpu->arch.tsc_always_catchup))
7661 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7662
7663 if (vcpu->arch.apic_attention)
7664 kvm_lapic_sync_from_vapic(vcpu);
7665
7666 vcpu->arch.gpa_available = false;
7667 r = kvm_x86_ops->handle_exit(vcpu);
7668 return r;
7669
7670 cancel_injection:
7671 kvm_x86_ops->cancel_injection(vcpu);
7672 if (unlikely(vcpu->arch.apic_attention))
7673 kvm_lapic_sync_from_vapic(vcpu);
7674 out:
7675 return r;
7676 }
7677
vcpu_block(struct kvm * kvm,struct kvm_vcpu * vcpu)7678 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
7679 {
7680 if (!kvm_arch_vcpu_runnable(vcpu) &&
7681 (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
7682 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7683 kvm_vcpu_block(vcpu);
7684 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7685
7686 if (kvm_x86_ops->post_block)
7687 kvm_x86_ops->post_block(vcpu);
7688
7689 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
7690 return 1;
7691 }
7692
7693 kvm_apic_accept_events(vcpu);
7694 switch(vcpu->arch.mp_state) {
7695 case KVM_MP_STATE_HALTED:
7696 vcpu->arch.pv.pv_unhalted = false;
7697 vcpu->arch.mp_state =
7698 KVM_MP_STATE_RUNNABLE;
7699 case KVM_MP_STATE_RUNNABLE:
7700 vcpu->arch.apf.halted = false;
7701 break;
7702 case KVM_MP_STATE_INIT_RECEIVED:
7703 break;
7704 default:
7705 return -EINTR;
7706 break;
7707 }
7708 return 1;
7709 }
7710
kvm_vcpu_running(struct kvm_vcpu * vcpu)7711 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
7712 {
7713 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
7714 kvm_x86_ops->check_nested_events(vcpu, false);
7715
7716 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7717 !vcpu->arch.apf.halted);
7718 }
7719
vcpu_run(struct kvm_vcpu * vcpu)7720 static int vcpu_run(struct kvm_vcpu *vcpu)
7721 {
7722 int r;
7723 struct kvm *kvm = vcpu->kvm;
7724
7725 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7726 vcpu->arch.l1tf_flush_l1d = true;
7727
7728 for (;;) {
7729 if (kvm_vcpu_running(vcpu)) {
7730 r = vcpu_enter_guest(vcpu);
7731 } else {
7732 r = vcpu_block(kvm, vcpu);
7733 }
7734
7735 if (r <= 0)
7736 break;
7737
7738 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
7739 if (kvm_cpu_has_pending_timer(vcpu))
7740 kvm_inject_pending_timer_irqs(vcpu);
7741
7742 if (dm_request_for_irq_injection(vcpu) &&
7743 kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
7744 r = 0;
7745 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
7746 ++vcpu->stat.request_irq_exits;
7747 break;
7748 }
7749
7750 kvm_check_async_pf_completion(vcpu);
7751
7752 if (signal_pending(current)) {
7753 r = -EINTR;
7754 vcpu->run->exit_reason = KVM_EXIT_INTR;
7755 ++vcpu->stat.signal_exits;
7756 break;
7757 }
7758 if (need_resched()) {
7759 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7760 cond_resched();
7761 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7762 }
7763 }
7764
7765 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7766
7767 return r;
7768 }
7769
complete_emulated_io(struct kvm_vcpu * vcpu)7770 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
7771 {
7772 int r;
7773 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7774 r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
7775 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7776 if (r != EMULATE_DONE)
7777 return 0;
7778 return 1;
7779 }
7780
complete_emulated_pio(struct kvm_vcpu * vcpu)7781 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
7782 {
7783 BUG_ON(!vcpu->arch.pio.count);
7784
7785 return complete_emulated_io(vcpu);
7786 }
7787
7788 /*
7789 * Implements the following, as a state machine:
7790 *
7791 * read:
7792 * for each fragment
7793 * for each mmio piece in the fragment
7794 * write gpa, len
7795 * exit
7796 * copy data
7797 * execute insn
7798 *
7799 * write:
7800 * for each fragment
7801 * for each mmio piece in the fragment
7802 * write gpa, len
7803 * copy data
7804 * exit
7805 */
complete_emulated_mmio(struct kvm_vcpu * vcpu)7806 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
7807 {
7808 struct kvm_run *run = vcpu->run;
7809 struct kvm_mmio_fragment *frag;
7810 unsigned len;
7811
7812 BUG_ON(!vcpu->mmio_needed);
7813
7814 /* Complete previous fragment */
7815 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
7816 len = min(8u, frag->len);
7817 if (!vcpu->mmio_is_write)
7818 memcpy(frag->data, run->mmio.data, len);
7819
7820 if (frag->len <= 8) {
7821 /* Switch to the next fragment. */
7822 frag++;
7823 vcpu->mmio_cur_fragment++;
7824 } else {
7825 /* Go forward to the next mmio piece. */
7826 frag->data += len;
7827 frag->gpa += len;
7828 frag->len -= len;
7829 }
7830
7831 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
7832 vcpu->mmio_needed = 0;
7833
7834 /* FIXME: return into emulator if single-stepping. */
7835 if (vcpu->mmio_is_write)
7836 return 1;
7837 vcpu->mmio_read_completed = 1;
7838 return complete_emulated_io(vcpu);
7839 }
7840
7841 run->exit_reason = KVM_EXIT_MMIO;
7842 run->mmio.phys_addr = frag->gpa;
7843 if (vcpu->mmio_is_write)
7844 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
7845 run->mmio.len = min(8u, frag->len);
7846 run->mmio.is_write = vcpu->mmio_is_write;
7847 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7848 return 0;
7849 }
7850
7851 /* Swap (qemu) user FPU context for the guest FPU context. */
kvm_load_guest_fpu(struct kvm_vcpu * vcpu)7852 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7853 {
7854 preempt_disable();
7855 copy_fpregs_to_fpstate(&vcpu->arch.user_fpu);
7856 /* PKRU is separately restored in kvm_x86_ops->run. */
7857 __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state,
7858 ~XFEATURE_MASK_PKRU);
7859 preempt_enable();
7860 trace_kvm_fpu(1);
7861 }
7862
7863 /* When vcpu_run ends, restore user space FPU context. */
kvm_put_guest_fpu(struct kvm_vcpu * vcpu)7864 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7865 {
7866 preempt_disable();
7867 copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
7868 copy_kernel_to_fpregs(&vcpu->arch.user_fpu.state);
7869 preempt_enable();
7870 ++vcpu->stat.fpu_reload;
7871 trace_kvm_fpu(0);
7872 }
7873
kvm_arch_vcpu_ioctl_run(struct kvm_vcpu * vcpu,struct kvm_run * kvm_run)7874 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
7875 {
7876 int r;
7877
7878 vcpu_load(vcpu);
7879 kvm_sigset_activate(vcpu);
7880 kvm_load_guest_fpu(vcpu);
7881
7882 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
7883 if (kvm_run->immediate_exit) {
7884 r = -EINTR;
7885 goto out;
7886 }
7887 kvm_vcpu_block(vcpu);
7888 kvm_apic_accept_events(vcpu);
7889 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
7890 r = -EAGAIN;
7891 if (signal_pending(current)) {
7892 r = -EINTR;
7893 vcpu->run->exit_reason = KVM_EXIT_INTR;
7894 ++vcpu->stat.signal_exits;
7895 }
7896 goto out;
7897 }
7898
7899 if (vcpu->run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) {
7900 r = -EINVAL;
7901 goto out;
7902 }
7903
7904 if (vcpu->run->kvm_dirty_regs) {
7905 r = sync_regs(vcpu);
7906 if (r != 0)
7907 goto out;
7908 }
7909
7910 /* re-sync apic's tpr */
7911 if (!lapic_in_kernel(vcpu)) {
7912 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
7913 r = -EINVAL;
7914 goto out;
7915 }
7916 }
7917
7918 if (unlikely(vcpu->arch.complete_userspace_io)) {
7919 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
7920 vcpu->arch.complete_userspace_io = NULL;
7921 r = cui(vcpu);
7922 if (r <= 0)
7923 goto out;
7924 } else
7925 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
7926
7927 if (kvm_run->immediate_exit)
7928 r = -EINTR;
7929 else
7930 r = vcpu_run(vcpu);
7931
7932 out:
7933 kvm_put_guest_fpu(vcpu);
7934 if (vcpu->run->kvm_valid_regs)
7935 store_regs(vcpu);
7936 post_kvm_run_save(vcpu);
7937 kvm_sigset_deactivate(vcpu);
7938
7939 vcpu_put(vcpu);
7940 return r;
7941 }
7942
__get_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)7943 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7944 {
7945 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
7946 /*
7947 * We are here if userspace calls get_regs() in the middle of
7948 * instruction emulation. Registers state needs to be copied
7949 * back from emulation context to vcpu. Userspace shouldn't do
7950 * that usually, but some bad designed PV devices (vmware
7951 * backdoor interface) need this to work
7952 */
7953 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
7954 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7955 }
7956 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
7957 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
7958 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
7959 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
7960 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
7961 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
7962 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
7963 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
7964 #ifdef CONFIG_X86_64
7965 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
7966 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
7967 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
7968 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
7969 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
7970 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
7971 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
7972 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
7973 #endif
7974
7975 regs->rip = kvm_rip_read(vcpu);
7976 regs->rflags = kvm_get_rflags(vcpu);
7977 }
7978
kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)7979 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7980 {
7981 vcpu_load(vcpu);
7982 __get_regs(vcpu, regs);
7983 vcpu_put(vcpu);
7984 return 0;
7985 }
7986
__set_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)7987 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7988 {
7989 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
7990 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7991
7992 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
7993 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
7994 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
7995 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
7996 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
7997 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
7998 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
7999 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
8000 #ifdef CONFIG_X86_64
8001 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
8002 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
8003 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
8004 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
8005 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
8006 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
8007 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
8008 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
8009 #endif
8010
8011 kvm_rip_write(vcpu, regs->rip);
8012 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
8013
8014 vcpu->arch.exception.pending = false;
8015
8016 kvm_make_request(KVM_REQ_EVENT, vcpu);
8017 }
8018
kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)8019 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8020 {
8021 vcpu_load(vcpu);
8022 __set_regs(vcpu, regs);
8023 vcpu_put(vcpu);
8024 return 0;
8025 }
8026
kvm_get_cs_db_l_bits(struct kvm_vcpu * vcpu,int * db,int * l)8027 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
8028 {
8029 struct kvm_segment cs;
8030
8031 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
8032 *db = cs.db;
8033 *l = cs.l;
8034 }
8035 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
8036
__get_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)8037 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8038 {
8039 struct desc_ptr dt;
8040
8041 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
8042 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
8043 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
8044 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
8045 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
8046 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
8047
8048 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
8049 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
8050
8051 kvm_x86_ops->get_idt(vcpu, &dt);
8052 sregs->idt.limit = dt.size;
8053 sregs->idt.base = dt.address;
8054 kvm_x86_ops->get_gdt(vcpu, &dt);
8055 sregs->gdt.limit = dt.size;
8056 sregs->gdt.base = dt.address;
8057
8058 sregs->cr0 = kvm_read_cr0(vcpu);
8059 sregs->cr2 = vcpu->arch.cr2;
8060 sregs->cr3 = kvm_read_cr3(vcpu);
8061 sregs->cr4 = kvm_read_cr4(vcpu);
8062 sregs->cr8 = kvm_get_cr8(vcpu);
8063 sregs->efer = vcpu->arch.efer;
8064 sregs->apic_base = kvm_get_apic_base(vcpu);
8065
8066 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
8067
8068 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
8069 set_bit(vcpu->arch.interrupt.nr,
8070 (unsigned long *)sregs->interrupt_bitmap);
8071 }
8072
kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)8073 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
8074 struct kvm_sregs *sregs)
8075 {
8076 vcpu_load(vcpu);
8077 __get_sregs(vcpu, sregs);
8078 vcpu_put(vcpu);
8079 return 0;
8080 }
8081
kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)8082 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
8083 struct kvm_mp_state *mp_state)
8084 {
8085 vcpu_load(vcpu);
8086
8087 kvm_apic_accept_events(vcpu);
8088 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
8089 vcpu->arch.pv.pv_unhalted)
8090 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
8091 else
8092 mp_state->mp_state = vcpu->arch.mp_state;
8093
8094 vcpu_put(vcpu);
8095 return 0;
8096 }
8097
kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)8098 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
8099 struct kvm_mp_state *mp_state)
8100 {
8101 int ret = -EINVAL;
8102
8103 vcpu_load(vcpu);
8104
8105 if (!lapic_in_kernel(vcpu) &&
8106 mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
8107 goto out;
8108
8109 /* INITs are latched while in SMM */
8110 if ((is_smm(vcpu) || vcpu->arch.smi_pending) &&
8111 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
8112 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
8113 goto out;
8114
8115 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
8116 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
8117 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
8118 } else
8119 vcpu->arch.mp_state = mp_state->mp_state;
8120 kvm_make_request(KVM_REQ_EVENT, vcpu);
8121
8122 ret = 0;
8123 out:
8124 vcpu_put(vcpu);
8125 return ret;
8126 }
8127
kvm_task_switch(struct kvm_vcpu * vcpu,u16 tss_selector,int idt_index,int reason,bool has_error_code,u32 error_code)8128 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
8129 int reason, bool has_error_code, u32 error_code)
8130 {
8131 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
8132 int ret;
8133
8134 init_emulate_ctxt(vcpu);
8135
8136 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
8137 has_error_code, error_code);
8138
8139 if (ret)
8140 return EMULATE_FAIL;
8141
8142 kvm_rip_write(vcpu, ctxt->eip);
8143 kvm_set_rflags(vcpu, ctxt->eflags);
8144 kvm_make_request(KVM_REQ_EVENT, vcpu);
8145 return EMULATE_DONE;
8146 }
8147 EXPORT_SYMBOL_GPL(kvm_task_switch);
8148
kvm_valid_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)8149 static int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8150 {
8151 if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
8152 (sregs->cr4 & X86_CR4_OSXSAVE))
8153 return -EINVAL;
8154
8155 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
8156 /*
8157 * When EFER.LME and CR0.PG are set, the processor is in
8158 * 64-bit mode (though maybe in a 32-bit code segment).
8159 * CR4.PAE and EFER.LMA must be set.
8160 */
8161 if (!(sregs->cr4 & X86_CR4_PAE)
8162 || !(sregs->efer & EFER_LMA))
8163 return -EINVAL;
8164 } else {
8165 /*
8166 * Not in 64-bit mode: EFER.LMA is clear and the code
8167 * segment cannot be 64-bit.
8168 */
8169 if (sregs->efer & EFER_LMA || sregs->cs.l)
8170 return -EINVAL;
8171 }
8172
8173 return 0;
8174 }
8175
__set_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)8176 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8177 {
8178 struct msr_data apic_base_msr;
8179 int mmu_reset_needed = 0;
8180 int cpuid_update_needed = 0;
8181 int pending_vec, max_bits, idx;
8182 struct desc_ptr dt;
8183 int ret = -EINVAL;
8184
8185 if (kvm_valid_sregs(vcpu, sregs))
8186 goto out;
8187
8188 apic_base_msr.data = sregs->apic_base;
8189 apic_base_msr.host_initiated = true;
8190 if (kvm_set_apic_base(vcpu, &apic_base_msr))
8191 goto out;
8192
8193 dt.size = sregs->idt.limit;
8194 dt.address = sregs->idt.base;
8195 kvm_x86_ops->set_idt(vcpu, &dt);
8196 dt.size = sregs->gdt.limit;
8197 dt.address = sregs->gdt.base;
8198 kvm_x86_ops->set_gdt(vcpu, &dt);
8199
8200 vcpu->arch.cr2 = sregs->cr2;
8201 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
8202 vcpu->arch.cr3 = sregs->cr3;
8203 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
8204
8205 kvm_set_cr8(vcpu, sregs->cr8);
8206
8207 mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
8208 kvm_x86_ops->set_efer(vcpu, sregs->efer);
8209
8210 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
8211 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
8212 vcpu->arch.cr0 = sregs->cr0;
8213
8214 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
8215 cpuid_update_needed |= ((kvm_read_cr4(vcpu) ^ sregs->cr4) &
8216 (X86_CR4_OSXSAVE | X86_CR4_PKE));
8217 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
8218 if (cpuid_update_needed)
8219 kvm_update_cpuid(vcpu);
8220
8221 idx = srcu_read_lock(&vcpu->kvm->srcu);
8222 if (!is_long_mode(vcpu) && is_pae(vcpu) && is_paging(vcpu)) {
8223 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
8224 mmu_reset_needed = 1;
8225 }
8226 srcu_read_unlock(&vcpu->kvm->srcu, idx);
8227
8228 if (mmu_reset_needed)
8229 kvm_mmu_reset_context(vcpu);
8230
8231 max_bits = KVM_NR_INTERRUPTS;
8232 pending_vec = find_first_bit(
8233 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
8234 if (pending_vec < max_bits) {
8235 kvm_queue_interrupt(vcpu, pending_vec, false);
8236 pr_debug("Set back pending irq %d\n", pending_vec);
8237 }
8238
8239 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
8240 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
8241 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
8242 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
8243 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
8244 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
8245
8246 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
8247 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
8248
8249 update_cr8_intercept(vcpu);
8250
8251 /* Older userspace won't unhalt the vcpu on reset. */
8252 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
8253 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
8254 !is_protmode(vcpu))
8255 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8256
8257 kvm_make_request(KVM_REQ_EVENT, vcpu);
8258
8259 ret = 0;
8260 out:
8261 return ret;
8262 }
8263
kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)8264 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
8265 struct kvm_sregs *sregs)
8266 {
8267 int ret;
8268
8269 vcpu_load(vcpu);
8270 ret = __set_sregs(vcpu, sregs);
8271 vcpu_put(vcpu);
8272 return ret;
8273 }
8274
kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu * vcpu,struct kvm_guest_debug * dbg)8275 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
8276 struct kvm_guest_debug *dbg)
8277 {
8278 unsigned long rflags;
8279 int i, r;
8280
8281 vcpu_load(vcpu);
8282
8283 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
8284 r = -EBUSY;
8285 if (vcpu->arch.exception.pending)
8286 goto out;
8287 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
8288 kvm_queue_exception(vcpu, DB_VECTOR);
8289 else
8290 kvm_queue_exception(vcpu, BP_VECTOR);
8291 }
8292
8293 /*
8294 * Read rflags as long as potentially injected trace flags are still
8295 * filtered out.
8296 */
8297 rflags = kvm_get_rflags(vcpu);
8298
8299 vcpu->guest_debug = dbg->control;
8300 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
8301 vcpu->guest_debug = 0;
8302
8303 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
8304 for (i = 0; i < KVM_NR_DB_REGS; ++i)
8305 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
8306 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
8307 } else {
8308 for (i = 0; i < KVM_NR_DB_REGS; i++)
8309 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
8310 }
8311 kvm_update_dr7(vcpu);
8312
8313 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8314 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
8315 get_segment_base(vcpu, VCPU_SREG_CS);
8316
8317 /*
8318 * Trigger an rflags update that will inject or remove the trace
8319 * flags.
8320 */
8321 kvm_set_rflags(vcpu, rflags);
8322
8323 kvm_x86_ops->update_bp_intercept(vcpu);
8324
8325 r = 0;
8326
8327 out:
8328 vcpu_put(vcpu);
8329 return r;
8330 }
8331
8332 /*
8333 * Translate a guest virtual address to a guest physical address.
8334 */
kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu * vcpu,struct kvm_translation * tr)8335 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
8336 struct kvm_translation *tr)
8337 {
8338 unsigned long vaddr = tr->linear_address;
8339 gpa_t gpa;
8340 int idx;
8341
8342 vcpu_load(vcpu);
8343
8344 idx = srcu_read_lock(&vcpu->kvm->srcu);
8345 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
8346 srcu_read_unlock(&vcpu->kvm->srcu, idx);
8347 tr->physical_address = gpa;
8348 tr->valid = gpa != UNMAPPED_GVA;
8349 tr->writeable = 1;
8350 tr->usermode = 0;
8351
8352 vcpu_put(vcpu);
8353 return 0;
8354 }
8355
kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)8356 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
8357 {
8358 struct fxregs_state *fxsave;
8359
8360 vcpu_load(vcpu);
8361
8362 fxsave = &vcpu->arch.guest_fpu.state.fxsave;
8363 memcpy(fpu->fpr, fxsave->st_space, 128);
8364 fpu->fcw = fxsave->cwd;
8365 fpu->fsw = fxsave->swd;
8366 fpu->ftwx = fxsave->twd;
8367 fpu->last_opcode = fxsave->fop;
8368 fpu->last_ip = fxsave->rip;
8369 fpu->last_dp = fxsave->rdp;
8370 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
8371
8372 vcpu_put(vcpu);
8373 return 0;
8374 }
8375
kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)8376 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
8377 {
8378 struct fxregs_state *fxsave;
8379
8380 vcpu_load(vcpu);
8381
8382 fxsave = &vcpu->arch.guest_fpu.state.fxsave;
8383
8384 memcpy(fxsave->st_space, fpu->fpr, 128);
8385 fxsave->cwd = fpu->fcw;
8386 fxsave->swd = fpu->fsw;
8387 fxsave->twd = fpu->ftwx;
8388 fxsave->fop = fpu->last_opcode;
8389 fxsave->rip = fpu->last_ip;
8390 fxsave->rdp = fpu->last_dp;
8391 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
8392
8393 vcpu_put(vcpu);
8394 return 0;
8395 }
8396
store_regs(struct kvm_vcpu * vcpu)8397 static void store_regs(struct kvm_vcpu *vcpu)
8398 {
8399 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
8400
8401 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
8402 __get_regs(vcpu, &vcpu->run->s.regs.regs);
8403
8404 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
8405 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
8406
8407 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
8408 kvm_vcpu_ioctl_x86_get_vcpu_events(
8409 vcpu, &vcpu->run->s.regs.events);
8410 }
8411
sync_regs(struct kvm_vcpu * vcpu)8412 static int sync_regs(struct kvm_vcpu *vcpu)
8413 {
8414 if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)
8415 return -EINVAL;
8416
8417 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
8418 __set_regs(vcpu, &vcpu->run->s.regs.regs);
8419 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
8420 }
8421 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
8422 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
8423 return -EINVAL;
8424 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
8425 }
8426 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
8427 if (kvm_vcpu_ioctl_x86_set_vcpu_events(
8428 vcpu, &vcpu->run->s.regs.events))
8429 return -EINVAL;
8430 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
8431 }
8432
8433 return 0;
8434 }
8435
fx_init(struct kvm_vcpu * vcpu)8436 static void fx_init(struct kvm_vcpu *vcpu)
8437 {
8438 fpstate_init(&vcpu->arch.guest_fpu.state);
8439 if (boot_cpu_has(X86_FEATURE_XSAVES))
8440 vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
8441 host_xcr0 | XSTATE_COMPACTION_ENABLED;
8442
8443 /*
8444 * Ensure guest xcr0 is valid for loading
8445 */
8446 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
8447
8448 vcpu->arch.cr0 |= X86_CR0_ET;
8449 }
8450
kvm_arch_vcpu_free(struct kvm_vcpu * vcpu)8451 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
8452 {
8453 void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
8454
8455 kvmclock_reset(vcpu);
8456
8457 kvm_x86_ops->vcpu_free(vcpu);
8458 free_cpumask_var(wbinvd_dirty_mask);
8459 }
8460
kvm_arch_vcpu_create(struct kvm * kvm,unsigned int id)8461 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
8462 unsigned int id)
8463 {
8464 struct kvm_vcpu *vcpu;
8465
8466 if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
8467 printk_once(KERN_WARNING
8468 "kvm: SMP vm created on host with unstable TSC; "
8469 "guest TSC will not be reliable\n");
8470
8471 vcpu = kvm_x86_ops->vcpu_create(kvm, id);
8472
8473 return vcpu;
8474 }
8475
kvm_arch_vcpu_setup(struct kvm_vcpu * vcpu)8476 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
8477 {
8478 kvm_vcpu_mtrr_init(vcpu);
8479 vcpu_load(vcpu);
8480 kvm_vcpu_reset(vcpu, false);
8481 kvm_mmu_setup(vcpu);
8482 vcpu_put(vcpu);
8483 return 0;
8484 }
8485
kvm_arch_vcpu_postcreate(struct kvm_vcpu * vcpu)8486 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
8487 {
8488 struct msr_data msr;
8489 struct kvm *kvm = vcpu->kvm;
8490
8491 kvm_hv_vcpu_postcreate(vcpu);
8492
8493 if (mutex_lock_killable(&vcpu->mutex))
8494 return;
8495 vcpu_load(vcpu);
8496 msr.data = 0x0;
8497 msr.index = MSR_IA32_TSC;
8498 msr.host_initiated = true;
8499 kvm_write_tsc(vcpu, &msr);
8500 vcpu_put(vcpu);
8501 mutex_unlock(&vcpu->mutex);
8502
8503 if (!kvmclock_periodic_sync)
8504 return;
8505
8506 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
8507 KVMCLOCK_SYNC_PERIOD);
8508 }
8509
kvm_arch_vcpu_destroy(struct kvm_vcpu * vcpu)8510 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
8511 {
8512 vcpu->arch.apf.msr_val = 0;
8513
8514 vcpu_load(vcpu);
8515 kvm_mmu_unload(vcpu);
8516 vcpu_put(vcpu);
8517
8518 kvm_x86_ops->vcpu_free(vcpu);
8519 }
8520
kvm_vcpu_reset(struct kvm_vcpu * vcpu,bool init_event)8521 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
8522 {
8523 kvm_lapic_reset(vcpu, init_event);
8524
8525 vcpu->arch.hflags = 0;
8526
8527 vcpu->arch.smi_pending = 0;
8528 vcpu->arch.smi_count = 0;
8529 atomic_set(&vcpu->arch.nmi_queued, 0);
8530 vcpu->arch.nmi_pending = 0;
8531 vcpu->arch.nmi_injected = false;
8532 kvm_clear_interrupt_queue(vcpu);
8533 kvm_clear_exception_queue(vcpu);
8534 vcpu->arch.exception.pending = false;
8535
8536 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
8537 kvm_update_dr0123(vcpu);
8538 vcpu->arch.dr6 = DR6_INIT;
8539 kvm_update_dr6(vcpu);
8540 vcpu->arch.dr7 = DR7_FIXED_1;
8541 kvm_update_dr7(vcpu);
8542
8543 vcpu->arch.cr2 = 0;
8544
8545 kvm_make_request(KVM_REQ_EVENT, vcpu);
8546 vcpu->arch.apf.msr_val = 0;
8547 vcpu->arch.st.msr_val = 0;
8548
8549 kvmclock_reset(vcpu);
8550
8551 kvm_clear_async_pf_completion_queue(vcpu);
8552 kvm_async_pf_hash_reset(vcpu);
8553 vcpu->arch.apf.halted = false;
8554
8555 if (kvm_mpx_supported()) {
8556 void *mpx_state_buffer;
8557
8558 /*
8559 * To avoid have the INIT path from kvm_apic_has_events() that be
8560 * called with loaded FPU and does not let userspace fix the state.
8561 */
8562 if (init_event)
8563 kvm_put_guest_fpu(vcpu);
8564 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu.state.xsave,
8565 XFEATURE_MASK_BNDREGS);
8566 if (mpx_state_buffer)
8567 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
8568 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu.state.xsave,
8569 XFEATURE_MASK_BNDCSR);
8570 if (mpx_state_buffer)
8571 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
8572 if (init_event)
8573 kvm_load_guest_fpu(vcpu);
8574 }
8575
8576 if (!init_event) {
8577 kvm_pmu_reset(vcpu);
8578 vcpu->arch.smbase = 0x30000;
8579
8580 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
8581 vcpu->arch.msr_misc_features_enables = 0;
8582
8583 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
8584 }
8585
8586 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
8587 vcpu->arch.regs_avail = ~0;
8588 vcpu->arch.regs_dirty = ~0;
8589
8590 vcpu->arch.ia32_xss = 0;
8591
8592 kvm_x86_ops->vcpu_reset(vcpu, init_event);
8593 }
8594
kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu * vcpu,u8 vector)8595 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
8596 {
8597 struct kvm_segment cs;
8598
8599 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
8600 cs.selector = vector << 8;
8601 cs.base = vector << 12;
8602 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
8603 kvm_rip_write(vcpu, 0);
8604 }
8605
kvm_arch_hardware_enable(void)8606 int kvm_arch_hardware_enable(void)
8607 {
8608 struct kvm *kvm;
8609 struct kvm_vcpu *vcpu;
8610 int i;
8611 int ret;
8612 u64 local_tsc;
8613 u64 max_tsc = 0;
8614 bool stable, backwards_tsc = false;
8615
8616 kvm_shared_msr_cpu_online();
8617 ret = kvm_x86_ops->hardware_enable();
8618 if (ret != 0)
8619 return ret;
8620
8621 local_tsc = rdtsc();
8622 stable = !kvm_check_tsc_unstable();
8623 list_for_each_entry(kvm, &vm_list, vm_list) {
8624 kvm_for_each_vcpu(i, vcpu, kvm) {
8625 if (!stable && vcpu->cpu == smp_processor_id())
8626 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8627 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
8628 backwards_tsc = true;
8629 if (vcpu->arch.last_host_tsc > max_tsc)
8630 max_tsc = vcpu->arch.last_host_tsc;
8631 }
8632 }
8633 }
8634
8635 /*
8636 * Sometimes, even reliable TSCs go backwards. This happens on
8637 * platforms that reset TSC during suspend or hibernate actions, but
8638 * maintain synchronization. We must compensate. Fortunately, we can
8639 * detect that condition here, which happens early in CPU bringup,
8640 * before any KVM threads can be running. Unfortunately, we can't
8641 * bring the TSCs fully up to date with real time, as we aren't yet far
8642 * enough into CPU bringup that we know how much real time has actually
8643 * elapsed; our helper function, ktime_get_boot_ns() will be using boot
8644 * variables that haven't been updated yet.
8645 *
8646 * So we simply find the maximum observed TSC above, then record the
8647 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
8648 * the adjustment will be applied. Note that we accumulate
8649 * adjustments, in case multiple suspend cycles happen before some VCPU
8650 * gets a chance to run again. In the event that no KVM threads get a
8651 * chance to run, we will miss the entire elapsed period, as we'll have
8652 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
8653 * loose cycle time. This isn't too big a deal, since the loss will be
8654 * uniform across all VCPUs (not to mention the scenario is extremely
8655 * unlikely). It is possible that a second hibernate recovery happens
8656 * much faster than a first, causing the observed TSC here to be
8657 * smaller; this would require additional padding adjustment, which is
8658 * why we set last_host_tsc to the local tsc observed here.
8659 *
8660 * N.B. - this code below runs only on platforms with reliable TSC,
8661 * as that is the only way backwards_tsc is set above. Also note
8662 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
8663 * have the same delta_cyc adjustment applied if backwards_tsc
8664 * is detected. Note further, this adjustment is only done once,
8665 * as we reset last_host_tsc on all VCPUs to stop this from being
8666 * called multiple times (one for each physical CPU bringup).
8667 *
8668 * Platforms with unreliable TSCs don't have to deal with this, they
8669 * will be compensated by the logic in vcpu_load, which sets the TSC to
8670 * catchup mode. This will catchup all VCPUs to real time, but cannot
8671 * guarantee that they stay in perfect synchronization.
8672 */
8673 if (backwards_tsc) {
8674 u64 delta_cyc = max_tsc - local_tsc;
8675 list_for_each_entry(kvm, &vm_list, vm_list) {
8676 kvm->arch.backwards_tsc_observed = true;
8677 kvm_for_each_vcpu(i, vcpu, kvm) {
8678 vcpu->arch.tsc_offset_adjustment += delta_cyc;
8679 vcpu->arch.last_host_tsc = local_tsc;
8680 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
8681 }
8682
8683 /*
8684 * We have to disable TSC offset matching.. if you were
8685 * booting a VM while issuing an S4 host suspend....
8686 * you may have some problem. Solving this issue is
8687 * left as an exercise to the reader.
8688 */
8689 kvm->arch.last_tsc_nsec = 0;
8690 kvm->arch.last_tsc_write = 0;
8691 }
8692
8693 }
8694 return 0;
8695 }
8696
kvm_arch_hardware_disable(void)8697 void kvm_arch_hardware_disable(void)
8698 {
8699 kvm_x86_ops->hardware_disable();
8700 drop_user_return_notifiers();
8701 }
8702
kvm_arch_hardware_setup(void)8703 int kvm_arch_hardware_setup(void)
8704 {
8705 int r;
8706
8707 r = kvm_x86_ops->hardware_setup();
8708 if (r != 0)
8709 return r;
8710
8711 if (kvm_has_tsc_control) {
8712 /*
8713 * Make sure the user can only configure tsc_khz values that
8714 * fit into a signed integer.
8715 * A min value is not calculated because it will always
8716 * be 1 on all machines.
8717 */
8718 u64 max = min(0x7fffffffULL,
8719 __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
8720 kvm_max_guest_tsc_khz = max;
8721
8722 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
8723 }
8724
8725 kvm_init_msr_list();
8726 return 0;
8727 }
8728
kvm_arch_hardware_unsetup(void)8729 void kvm_arch_hardware_unsetup(void)
8730 {
8731 kvm_x86_ops->hardware_unsetup();
8732 }
8733
kvm_arch_check_processor_compat(void * rtn)8734 void kvm_arch_check_processor_compat(void *rtn)
8735 {
8736 kvm_x86_ops->check_processor_compatibility(rtn);
8737 }
8738
kvm_vcpu_is_reset_bsp(struct kvm_vcpu * vcpu)8739 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
8740 {
8741 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
8742 }
8743 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
8744
kvm_vcpu_is_bsp(struct kvm_vcpu * vcpu)8745 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
8746 {
8747 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
8748 }
8749
8750 struct static_key kvm_no_apic_vcpu __read_mostly;
8751 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
8752
kvm_arch_vcpu_init(struct kvm_vcpu * vcpu)8753 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
8754 {
8755 struct page *page;
8756 int r;
8757
8758 vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv(vcpu);
8759 vcpu->arch.emulate_ctxt.ops = &emulate_ops;
8760 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
8761 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8762 else
8763 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
8764
8765 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
8766 if (!page) {
8767 r = -ENOMEM;
8768 goto fail;
8769 }
8770 vcpu->arch.pio_data = page_address(page);
8771
8772 kvm_set_tsc_khz(vcpu, max_tsc_khz);
8773
8774 r = kvm_mmu_create(vcpu);
8775 if (r < 0)
8776 goto fail_free_pio_data;
8777
8778 if (irqchip_in_kernel(vcpu->kvm)) {
8779 r = kvm_create_lapic(vcpu);
8780 if (r < 0)
8781 goto fail_mmu_destroy;
8782 } else
8783 static_key_slow_inc(&kvm_no_apic_vcpu);
8784
8785 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
8786 GFP_KERNEL);
8787 if (!vcpu->arch.mce_banks) {
8788 r = -ENOMEM;
8789 goto fail_free_lapic;
8790 }
8791 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
8792
8793 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
8794 r = -ENOMEM;
8795 goto fail_free_mce_banks;
8796 }
8797
8798 fx_init(vcpu);
8799
8800 vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
8801
8802 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
8803
8804 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
8805
8806 kvm_async_pf_hash_reset(vcpu);
8807 kvm_pmu_init(vcpu);
8808
8809 vcpu->arch.pending_external_vector = -1;
8810 vcpu->arch.preempted_in_kernel = false;
8811
8812 kvm_hv_vcpu_init(vcpu);
8813
8814 return 0;
8815
8816 fail_free_mce_banks:
8817 kfree(vcpu->arch.mce_banks);
8818 fail_free_lapic:
8819 kvm_free_lapic(vcpu);
8820 fail_mmu_destroy:
8821 kvm_mmu_destroy(vcpu);
8822 fail_free_pio_data:
8823 free_page((unsigned long)vcpu->arch.pio_data);
8824 fail:
8825 return r;
8826 }
8827
kvm_arch_vcpu_uninit(struct kvm_vcpu * vcpu)8828 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
8829 {
8830 int idx;
8831
8832 kvm_hv_vcpu_uninit(vcpu);
8833 kvm_pmu_destroy(vcpu);
8834 kfree(vcpu->arch.mce_banks);
8835 kvm_free_lapic(vcpu);
8836 idx = srcu_read_lock(&vcpu->kvm->srcu);
8837 kvm_mmu_destroy(vcpu);
8838 srcu_read_unlock(&vcpu->kvm->srcu, idx);
8839 free_page((unsigned long)vcpu->arch.pio_data);
8840 if (!lapic_in_kernel(vcpu))
8841 static_key_slow_dec(&kvm_no_apic_vcpu);
8842 }
8843
kvm_arch_sched_in(struct kvm_vcpu * vcpu,int cpu)8844 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
8845 {
8846 vcpu->arch.l1tf_flush_l1d = true;
8847 kvm_x86_ops->sched_in(vcpu, cpu);
8848 }
8849
kvm_arch_init_vm(struct kvm * kvm,unsigned long type)8850 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
8851 {
8852 if (type)
8853 return -EINVAL;
8854
8855 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
8856 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
8857 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
8858 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
8859 atomic_set(&kvm->arch.noncoherent_dma_count, 0);
8860
8861 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
8862 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
8863 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
8864 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
8865 &kvm->arch.irq_sources_bitmap);
8866
8867 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
8868 mutex_init(&kvm->arch.apic_map_lock);
8869 spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
8870
8871 kvm->arch.kvmclock_offset = -ktime_get_boot_ns();
8872 pvclock_update_vm_gtod_copy(kvm);
8873
8874 kvm->arch.guest_can_read_msr_platform_info = true;
8875
8876 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
8877 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
8878
8879 kvm_hv_init_vm(kvm);
8880 kvm_page_track_init(kvm);
8881 kvm_mmu_init_vm(kvm);
8882
8883 if (kvm_x86_ops->vm_init)
8884 return kvm_x86_ops->vm_init(kvm);
8885
8886 return 0;
8887 }
8888
kvm_unload_vcpu_mmu(struct kvm_vcpu * vcpu)8889 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
8890 {
8891 vcpu_load(vcpu);
8892 kvm_mmu_unload(vcpu);
8893 vcpu_put(vcpu);
8894 }
8895
kvm_free_vcpus(struct kvm * kvm)8896 static void kvm_free_vcpus(struct kvm *kvm)
8897 {
8898 unsigned int i;
8899 struct kvm_vcpu *vcpu;
8900
8901 /*
8902 * Unpin any mmu pages first.
8903 */
8904 kvm_for_each_vcpu(i, vcpu, kvm) {
8905 kvm_clear_async_pf_completion_queue(vcpu);
8906 kvm_unload_vcpu_mmu(vcpu);
8907 }
8908 kvm_for_each_vcpu(i, vcpu, kvm)
8909 kvm_arch_vcpu_free(vcpu);
8910
8911 mutex_lock(&kvm->lock);
8912 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
8913 kvm->vcpus[i] = NULL;
8914
8915 atomic_set(&kvm->online_vcpus, 0);
8916 mutex_unlock(&kvm->lock);
8917 }
8918
kvm_arch_sync_events(struct kvm * kvm)8919 void kvm_arch_sync_events(struct kvm *kvm)
8920 {
8921 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
8922 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
8923 kvm_free_pit(kvm);
8924 }
8925
__x86_set_memory_region(struct kvm * kvm,int id,gpa_t gpa,u32 size)8926 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8927 {
8928 int i, r;
8929 unsigned long hva;
8930 struct kvm_memslots *slots = kvm_memslots(kvm);
8931 struct kvm_memory_slot *slot, old;
8932
8933 /* Called with kvm->slots_lock held. */
8934 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
8935 return -EINVAL;
8936
8937 slot = id_to_memslot(slots, id);
8938 if (size) {
8939 if (slot->npages)
8940 return -EEXIST;
8941
8942 /*
8943 * MAP_SHARED to prevent internal slot pages from being moved
8944 * by fork()/COW.
8945 */
8946 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
8947 MAP_SHARED | MAP_ANONYMOUS, 0);
8948 if (IS_ERR((void *)hva))
8949 return PTR_ERR((void *)hva);
8950 } else {
8951 if (!slot->npages)
8952 return 0;
8953
8954 hva = 0;
8955 }
8956
8957 old = *slot;
8958 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
8959 struct kvm_userspace_memory_region m;
8960
8961 m.slot = id | (i << 16);
8962 m.flags = 0;
8963 m.guest_phys_addr = gpa;
8964 m.userspace_addr = hva;
8965 m.memory_size = size;
8966 r = __kvm_set_memory_region(kvm, &m);
8967 if (r < 0)
8968 return r;
8969 }
8970
8971 if (!size)
8972 vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
8973
8974 return 0;
8975 }
8976 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
8977
x86_set_memory_region(struct kvm * kvm,int id,gpa_t gpa,u32 size)8978 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8979 {
8980 int r;
8981
8982 mutex_lock(&kvm->slots_lock);
8983 r = __x86_set_memory_region(kvm, id, gpa, size);
8984 mutex_unlock(&kvm->slots_lock);
8985
8986 return r;
8987 }
8988 EXPORT_SYMBOL_GPL(x86_set_memory_region);
8989
kvm_arch_destroy_vm(struct kvm * kvm)8990 void kvm_arch_destroy_vm(struct kvm *kvm)
8991 {
8992 if (current->mm == kvm->mm) {
8993 /*
8994 * Free memory regions allocated on behalf of userspace,
8995 * unless the the memory map has changed due to process exit
8996 * or fd copying.
8997 */
8998 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
8999 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
9000 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
9001 }
9002 if (kvm_x86_ops->vm_destroy)
9003 kvm_x86_ops->vm_destroy(kvm);
9004 kvm_pic_destroy(kvm);
9005 kvm_ioapic_destroy(kvm);
9006 kvm_free_vcpus(kvm);
9007 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
9008 kvm_mmu_uninit_vm(kvm);
9009 kvm_page_track_cleanup(kvm);
9010 kvm_hv_destroy_vm(kvm);
9011 }
9012
kvm_arch_free_memslot(struct kvm * kvm,struct kvm_memory_slot * free,struct kvm_memory_slot * dont)9013 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
9014 struct kvm_memory_slot *dont)
9015 {
9016 int i;
9017
9018 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9019 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
9020 kvfree(free->arch.rmap[i]);
9021 free->arch.rmap[i] = NULL;
9022 }
9023 if (i == 0)
9024 continue;
9025
9026 if (!dont || free->arch.lpage_info[i - 1] !=
9027 dont->arch.lpage_info[i - 1]) {
9028 kvfree(free->arch.lpage_info[i - 1]);
9029 free->arch.lpage_info[i - 1] = NULL;
9030 }
9031 }
9032
9033 kvm_page_track_free_memslot(free, dont);
9034 }
9035
kvm_arch_create_memslot(struct kvm * kvm,struct kvm_memory_slot * slot,unsigned long npages)9036 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
9037 unsigned long npages)
9038 {
9039 int i;
9040
9041 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9042 struct kvm_lpage_info *linfo;
9043 unsigned long ugfn;
9044 int lpages;
9045 int level = i + 1;
9046
9047 lpages = gfn_to_index(slot->base_gfn + npages - 1,
9048 slot->base_gfn, level) + 1;
9049
9050 slot->arch.rmap[i] =
9051 kvcalloc(lpages, sizeof(*slot->arch.rmap[i]),
9052 GFP_KERNEL);
9053 if (!slot->arch.rmap[i])
9054 goto out_free;
9055 if (i == 0)
9056 continue;
9057
9058 linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL);
9059 if (!linfo)
9060 goto out_free;
9061
9062 slot->arch.lpage_info[i - 1] = linfo;
9063
9064 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
9065 linfo[0].disallow_lpage = 1;
9066 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
9067 linfo[lpages - 1].disallow_lpage = 1;
9068 ugfn = slot->userspace_addr >> PAGE_SHIFT;
9069 /*
9070 * If the gfn and userspace address are not aligned wrt each
9071 * other, or if explicitly asked to, disable large page
9072 * support for this slot
9073 */
9074 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
9075 !kvm_largepages_enabled()) {
9076 unsigned long j;
9077
9078 for (j = 0; j < lpages; ++j)
9079 linfo[j].disallow_lpage = 1;
9080 }
9081 }
9082
9083 if (kvm_page_track_create_memslot(slot, npages))
9084 goto out_free;
9085
9086 return 0;
9087
9088 out_free:
9089 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9090 kvfree(slot->arch.rmap[i]);
9091 slot->arch.rmap[i] = NULL;
9092 if (i == 0)
9093 continue;
9094
9095 kvfree(slot->arch.lpage_info[i - 1]);
9096 slot->arch.lpage_info[i - 1] = NULL;
9097 }
9098 return -ENOMEM;
9099 }
9100
kvm_arch_memslots_updated(struct kvm * kvm,struct kvm_memslots * slots)9101 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
9102 {
9103 /*
9104 * memslots->generation has been incremented.
9105 * mmio generation may have reached its maximum value.
9106 */
9107 kvm_mmu_invalidate_mmio_sptes(kvm, slots);
9108 }
9109
kvm_arch_prepare_memory_region(struct kvm * kvm,struct kvm_memory_slot * memslot,const struct kvm_userspace_memory_region * mem,enum kvm_mr_change change)9110 int kvm_arch_prepare_memory_region(struct kvm *kvm,
9111 struct kvm_memory_slot *memslot,
9112 const struct kvm_userspace_memory_region *mem,
9113 enum kvm_mr_change change)
9114 {
9115 return 0;
9116 }
9117
kvm_mmu_slot_apply_flags(struct kvm * kvm,struct kvm_memory_slot * new)9118 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
9119 struct kvm_memory_slot *new)
9120 {
9121 /* Still write protect RO slot */
9122 if (new->flags & KVM_MEM_READONLY) {
9123 kvm_mmu_slot_remove_write_access(kvm, new);
9124 return;
9125 }
9126
9127 /*
9128 * Call kvm_x86_ops dirty logging hooks when they are valid.
9129 *
9130 * kvm_x86_ops->slot_disable_log_dirty is called when:
9131 *
9132 * - KVM_MR_CREATE with dirty logging is disabled
9133 * - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
9134 *
9135 * The reason is, in case of PML, we need to set D-bit for any slots
9136 * with dirty logging disabled in order to eliminate unnecessary GPA
9137 * logging in PML buffer (and potential PML buffer full VMEXT). This
9138 * guarantees leaving PML enabled during guest's lifetime won't have
9139 * any additonal overhead from PML when guest is running with dirty
9140 * logging disabled for memory slots.
9141 *
9142 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
9143 * to dirty logging mode.
9144 *
9145 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
9146 *
9147 * In case of write protect:
9148 *
9149 * Write protect all pages for dirty logging.
9150 *
9151 * All the sptes including the large sptes which point to this
9152 * slot are set to readonly. We can not create any new large
9153 * spte on this slot until the end of the logging.
9154 *
9155 * See the comments in fast_page_fault().
9156 */
9157 if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
9158 if (kvm_x86_ops->slot_enable_log_dirty)
9159 kvm_x86_ops->slot_enable_log_dirty(kvm, new);
9160 else
9161 kvm_mmu_slot_remove_write_access(kvm, new);
9162 } else {
9163 if (kvm_x86_ops->slot_disable_log_dirty)
9164 kvm_x86_ops->slot_disable_log_dirty(kvm, new);
9165 }
9166 }
9167
kvm_arch_commit_memory_region(struct kvm * kvm,const struct kvm_userspace_memory_region * mem,const struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)9168 void kvm_arch_commit_memory_region(struct kvm *kvm,
9169 const struct kvm_userspace_memory_region *mem,
9170 const struct kvm_memory_slot *old,
9171 const struct kvm_memory_slot *new,
9172 enum kvm_mr_change change)
9173 {
9174 int nr_mmu_pages = 0;
9175
9176 if (!kvm->arch.n_requested_mmu_pages)
9177 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
9178
9179 if (nr_mmu_pages)
9180 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
9181
9182 /*
9183 * Dirty logging tracks sptes in 4k granularity, meaning that large
9184 * sptes have to be split. If live migration is successful, the guest
9185 * in the source machine will be destroyed and large sptes will be
9186 * created in the destination. However, if the guest continues to run
9187 * in the source machine (for example if live migration fails), small
9188 * sptes will remain around and cause bad performance.
9189 *
9190 * Scan sptes if dirty logging has been stopped, dropping those
9191 * which can be collapsed into a single large-page spte. Later
9192 * page faults will create the large-page sptes.
9193 */
9194 if ((change != KVM_MR_DELETE) &&
9195 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
9196 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
9197 kvm_mmu_zap_collapsible_sptes(kvm, new);
9198
9199 /*
9200 * Set up write protection and/or dirty logging for the new slot.
9201 *
9202 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
9203 * been zapped so no dirty logging staff is needed for old slot. For
9204 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
9205 * new and it's also covered when dealing with the new slot.
9206 *
9207 * FIXME: const-ify all uses of struct kvm_memory_slot.
9208 */
9209 if (change != KVM_MR_DELETE)
9210 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
9211 }
9212
kvm_arch_flush_shadow_all(struct kvm * kvm)9213 void kvm_arch_flush_shadow_all(struct kvm *kvm)
9214 {
9215 kvm_mmu_invalidate_zap_all_pages(kvm);
9216 }
9217
kvm_arch_flush_shadow_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)9218 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
9219 struct kvm_memory_slot *slot)
9220 {
9221 kvm_page_track_flush_slot(kvm, slot);
9222 }
9223
kvm_guest_apic_has_interrupt(struct kvm_vcpu * vcpu)9224 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
9225 {
9226 return (is_guest_mode(vcpu) &&
9227 kvm_x86_ops->guest_apic_has_interrupt &&
9228 kvm_x86_ops->guest_apic_has_interrupt(vcpu));
9229 }
9230
kvm_vcpu_has_events(struct kvm_vcpu * vcpu)9231 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
9232 {
9233 if (!list_empty_careful(&vcpu->async_pf.done))
9234 return true;
9235
9236 if (kvm_apic_has_events(vcpu))
9237 return true;
9238
9239 if (vcpu->arch.pv.pv_unhalted)
9240 return true;
9241
9242 if (vcpu->arch.exception.pending)
9243 return true;
9244
9245 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
9246 (vcpu->arch.nmi_pending &&
9247 kvm_x86_ops->nmi_allowed(vcpu)))
9248 return true;
9249
9250 if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
9251 (vcpu->arch.smi_pending && !is_smm(vcpu)))
9252 return true;
9253
9254 if (kvm_arch_interrupt_allowed(vcpu) &&
9255 (kvm_cpu_has_interrupt(vcpu) ||
9256 kvm_guest_apic_has_interrupt(vcpu)))
9257 return true;
9258
9259 if (kvm_hv_has_stimer_pending(vcpu))
9260 return true;
9261
9262 return false;
9263 }
9264
kvm_arch_vcpu_runnable(struct kvm_vcpu * vcpu)9265 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
9266 {
9267 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
9268 }
9269
kvm_arch_vcpu_in_kernel(struct kvm_vcpu * vcpu)9270 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
9271 {
9272 return vcpu->arch.preempted_in_kernel;
9273 }
9274
kvm_arch_vcpu_should_kick(struct kvm_vcpu * vcpu)9275 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
9276 {
9277 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
9278 }
9279
kvm_arch_interrupt_allowed(struct kvm_vcpu * vcpu)9280 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
9281 {
9282 return kvm_x86_ops->interrupt_allowed(vcpu);
9283 }
9284
kvm_get_linear_rip(struct kvm_vcpu * vcpu)9285 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
9286 {
9287 if (is_64_bit_mode(vcpu))
9288 return kvm_rip_read(vcpu);
9289 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
9290 kvm_rip_read(vcpu));
9291 }
9292 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
9293
kvm_is_linear_rip(struct kvm_vcpu * vcpu,unsigned long linear_rip)9294 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
9295 {
9296 return kvm_get_linear_rip(vcpu) == linear_rip;
9297 }
9298 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
9299
kvm_get_rflags(struct kvm_vcpu * vcpu)9300 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
9301 {
9302 unsigned long rflags;
9303
9304 rflags = kvm_x86_ops->get_rflags(vcpu);
9305 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9306 rflags &= ~X86_EFLAGS_TF;
9307 return rflags;
9308 }
9309 EXPORT_SYMBOL_GPL(kvm_get_rflags);
9310
__kvm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)9311 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
9312 {
9313 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
9314 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
9315 rflags |= X86_EFLAGS_TF;
9316 kvm_x86_ops->set_rflags(vcpu, rflags);
9317 }
9318
kvm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)9319 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
9320 {
9321 __kvm_set_rflags(vcpu, rflags);
9322 kvm_make_request(KVM_REQ_EVENT, vcpu);
9323 }
9324 EXPORT_SYMBOL_GPL(kvm_set_rflags);
9325
kvm_arch_async_page_ready(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)9326 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
9327 {
9328 int r;
9329
9330 if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
9331 work->wakeup_all)
9332 return;
9333
9334 r = kvm_mmu_reload(vcpu);
9335 if (unlikely(r))
9336 return;
9337
9338 if (!vcpu->arch.mmu.direct_map &&
9339 work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
9340 return;
9341
9342 vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
9343 }
9344
kvm_async_pf_hash_fn(gfn_t gfn)9345 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
9346 {
9347 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
9348 }
9349
kvm_async_pf_next_probe(u32 key)9350 static inline u32 kvm_async_pf_next_probe(u32 key)
9351 {
9352 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
9353 }
9354
kvm_add_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)9355 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9356 {
9357 u32 key = kvm_async_pf_hash_fn(gfn);
9358
9359 while (vcpu->arch.apf.gfns[key] != ~0)
9360 key = kvm_async_pf_next_probe(key);
9361
9362 vcpu->arch.apf.gfns[key] = gfn;
9363 }
9364
kvm_async_pf_gfn_slot(struct kvm_vcpu * vcpu,gfn_t gfn)9365 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
9366 {
9367 int i;
9368 u32 key = kvm_async_pf_hash_fn(gfn);
9369
9370 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
9371 (vcpu->arch.apf.gfns[key] != gfn &&
9372 vcpu->arch.apf.gfns[key] != ~0); i++)
9373 key = kvm_async_pf_next_probe(key);
9374
9375 return key;
9376 }
9377
kvm_find_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)9378 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9379 {
9380 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
9381 }
9382
kvm_del_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)9383 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9384 {
9385 u32 i, j, k;
9386
9387 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
9388 while (true) {
9389 vcpu->arch.apf.gfns[i] = ~0;
9390 do {
9391 j = kvm_async_pf_next_probe(j);
9392 if (vcpu->arch.apf.gfns[j] == ~0)
9393 return;
9394 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
9395 /*
9396 * k lies cyclically in ]i,j]
9397 * | i.k.j |
9398 * |....j i.k.| or |.k..j i...|
9399 */
9400 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
9401 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
9402 i = j;
9403 }
9404 }
9405
apf_put_user(struct kvm_vcpu * vcpu,u32 val)9406 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
9407 {
9408
9409 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
9410 sizeof(val));
9411 }
9412
apf_get_user(struct kvm_vcpu * vcpu,u32 * val)9413 static int apf_get_user(struct kvm_vcpu *vcpu, u32 *val)
9414 {
9415
9416 return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, val,
9417 sizeof(u32));
9418 }
9419
kvm_arch_async_page_not_present(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)9420 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
9421 struct kvm_async_pf *work)
9422 {
9423 struct x86_exception fault;
9424
9425 trace_kvm_async_pf_not_present(work->arch.token, work->gva);
9426 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
9427
9428 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
9429 (vcpu->arch.apf.send_user_only &&
9430 kvm_x86_ops->get_cpl(vcpu) == 0))
9431 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
9432 else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
9433 fault.vector = PF_VECTOR;
9434 fault.error_code_valid = true;
9435 fault.error_code = 0;
9436 fault.nested_page_fault = false;
9437 fault.address = work->arch.token;
9438 fault.async_page_fault = true;
9439 kvm_inject_page_fault(vcpu, &fault);
9440 }
9441 }
9442
kvm_arch_async_page_present(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)9443 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
9444 struct kvm_async_pf *work)
9445 {
9446 struct x86_exception fault;
9447 u32 val;
9448
9449 if (work->wakeup_all)
9450 work->arch.token = ~0; /* broadcast wakeup */
9451 else
9452 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
9453 trace_kvm_async_pf_ready(work->arch.token, work->gva);
9454
9455 if (vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED &&
9456 !apf_get_user(vcpu, &val)) {
9457 if (val == KVM_PV_REASON_PAGE_NOT_PRESENT &&
9458 vcpu->arch.exception.pending &&
9459 vcpu->arch.exception.nr == PF_VECTOR &&
9460 !apf_put_user(vcpu, 0)) {
9461 vcpu->arch.exception.injected = false;
9462 vcpu->arch.exception.pending = false;
9463 vcpu->arch.exception.nr = 0;
9464 vcpu->arch.exception.has_error_code = false;
9465 vcpu->arch.exception.error_code = 0;
9466 } else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
9467 fault.vector = PF_VECTOR;
9468 fault.error_code_valid = true;
9469 fault.error_code = 0;
9470 fault.nested_page_fault = false;
9471 fault.address = work->arch.token;
9472 fault.async_page_fault = true;
9473 kvm_inject_page_fault(vcpu, &fault);
9474 }
9475 }
9476 vcpu->arch.apf.halted = false;
9477 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9478 }
9479
kvm_arch_can_inject_async_page_present(struct kvm_vcpu * vcpu)9480 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
9481 {
9482 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
9483 return true;
9484 else
9485 return kvm_can_do_async_pf(vcpu);
9486 }
9487
kvm_arch_start_assignment(struct kvm * kvm)9488 void kvm_arch_start_assignment(struct kvm *kvm)
9489 {
9490 atomic_inc(&kvm->arch.assigned_device_count);
9491 }
9492 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
9493
kvm_arch_end_assignment(struct kvm * kvm)9494 void kvm_arch_end_assignment(struct kvm *kvm)
9495 {
9496 atomic_dec(&kvm->arch.assigned_device_count);
9497 }
9498 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
9499
kvm_arch_has_assigned_device(struct kvm * kvm)9500 bool kvm_arch_has_assigned_device(struct kvm *kvm)
9501 {
9502 return atomic_read(&kvm->arch.assigned_device_count);
9503 }
9504 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
9505
kvm_arch_register_noncoherent_dma(struct kvm * kvm)9506 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
9507 {
9508 atomic_inc(&kvm->arch.noncoherent_dma_count);
9509 }
9510 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
9511
kvm_arch_unregister_noncoherent_dma(struct kvm * kvm)9512 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
9513 {
9514 atomic_dec(&kvm->arch.noncoherent_dma_count);
9515 }
9516 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
9517
kvm_arch_has_noncoherent_dma(struct kvm * kvm)9518 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
9519 {
9520 return atomic_read(&kvm->arch.noncoherent_dma_count);
9521 }
9522 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
9523
kvm_arch_has_irq_bypass(void)9524 bool kvm_arch_has_irq_bypass(void)
9525 {
9526 return kvm_x86_ops->update_pi_irte != NULL;
9527 }
9528
kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)9529 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
9530 struct irq_bypass_producer *prod)
9531 {
9532 struct kvm_kernel_irqfd *irqfd =
9533 container_of(cons, struct kvm_kernel_irqfd, consumer);
9534
9535 irqfd->producer = prod;
9536
9537 return kvm_x86_ops->update_pi_irte(irqfd->kvm,
9538 prod->irq, irqfd->gsi, 1);
9539 }
9540
kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)9541 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
9542 struct irq_bypass_producer *prod)
9543 {
9544 int ret;
9545 struct kvm_kernel_irqfd *irqfd =
9546 container_of(cons, struct kvm_kernel_irqfd, consumer);
9547
9548 WARN_ON(irqfd->producer != prod);
9549 irqfd->producer = NULL;
9550
9551 /*
9552 * When producer of consumer is unregistered, we change back to
9553 * remapped mode, so we can re-use the current implementation
9554 * when the irq is masked/disabled or the consumer side (KVM
9555 * int this case doesn't want to receive the interrupts.
9556 */
9557 ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
9558 if (ret)
9559 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
9560 " fails: %d\n", irqfd->consumer.token, ret);
9561 }
9562
kvm_arch_update_irqfd_routing(struct kvm * kvm,unsigned int host_irq,uint32_t guest_irq,bool set)9563 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
9564 uint32_t guest_irq, bool set)
9565 {
9566 if (!kvm_x86_ops->update_pi_irte)
9567 return -EINVAL;
9568
9569 return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
9570 }
9571
kvm_vector_hashing_enabled(void)9572 bool kvm_vector_hashing_enabled(void)
9573 {
9574 return vector_hashing;
9575 }
9576 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
9577
9578 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
9579 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
9580 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
9581 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
9582 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
9583 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
9584 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
9585 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
9586 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
9587 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
9588 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
9589 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
9590 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
9591 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
9592 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
9593 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
9594 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
9595 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
9596 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
9597