1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15 
16 #include <kvm/iodev.h>
17 
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54 
55 #include <asm/processor.h>
56 #include <asm/ioctl.h>
57 #include <linux/uaccess.h>
58 #include <asm/pgtable.h>
59 
60 #include "coalesced_mmio.h"
61 #include "async_pf.h"
62 #include "vfio.h"
63 
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/kvm.h>
66 
67 /* Worst case buffer size needed for holding an integer. */
68 #define ITOA_MAX_LEN 12
69 
70 MODULE_AUTHOR("Qumranet");
71 MODULE_LICENSE("GPL");
72 
73 /* Architectures should define their poll value according to the halt latency */
74 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
75 module_param(halt_poll_ns, uint, 0644);
76 EXPORT_SYMBOL_GPL(halt_poll_ns);
77 
78 /* Default doubles per-vcpu halt_poll_ns. */
79 unsigned int halt_poll_ns_grow = 2;
80 module_param(halt_poll_ns_grow, uint, 0644);
81 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
82 
83 /* The start value to grow halt_poll_ns from */
84 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
85 module_param(halt_poll_ns_grow_start, uint, 0644);
86 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
87 
88 /* Default resets per-vcpu halt_poll_ns . */
89 unsigned int halt_poll_ns_shrink;
90 module_param(halt_poll_ns_shrink, uint, 0644);
91 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
92 
93 /*
94  * Ordering of locks:
95  *
96  *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock
97  */
98 
99 DEFINE_MUTEX(kvm_lock);
100 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
101 LIST_HEAD(vm_list);
102 
103 static cpumask_var_t cpus_hardware_enabled;
104 static int kvm_usage_count;
105 static atomic_t hardware_enable_failed;
106 
107 struct kmem_cache *kvm_vcpu_cache;
108 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
109 
110 static __read_mostly struct preempt_ops kvm_preempt_ops;
111 
112 struct dentry *kvm_debugfs_dir;
113 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
114 
115 static int kvm_debugfs_num_entries;
116 static const struct file_operations *stat_fops_per_vm[];
117 
118 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
119 			   unsigned long arg);
120 #ifdef CONFIG_KVM_COMPAT
121 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
122 				  unsigned long arg);
123 #define KVM_COMPAT(c)	.compat_ioctl	= (c)
124 #else
125 /*
126  * For architectures that don't implement a compat infrastructure,
127  * adopt a double line of defense:
128  * - Prevent a compat task from opening /dev/kvm
129  * - If the open has been done by a 64bit task, and the KVM fd
130  *   passed to a compat task, let the ioctls fail.
131  */
kvm_no_compat_ioctl(struct file * file,unsigned int ioctl,unsigned long arg)132 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
133 				unsigned long arg) { return -EINVAL; }
134 
kvm_no_compat_open(struct inode * inode,struct file * file)135 static int kvm_no_compat_open(struct inode *inode, struct file *file)
136 {
137 	return is_compat_task() ? -ENODEV : 0;
138 }
139 #define KVM_COMPAT(c)	.compat_ioctl	= kvm_no_compat_ioctl,	\
140 			.open		= kvm_no_compat_open
141 #endif
142 static int hardware_enable_all(void);
143 static void hardware_disable_all(void);
144 
145 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
146 
147 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
148 
149 __visible bool kvm_rebooting;
150 EXPORT_SYMBOL_GPL(kvm_rebooting);
151 
152 static bool largepages_enabled = true;
153 
154 #define KVM_EVENT_CREATE_VM 0
155 #define KVM_EVENT_DESTROY_VM 1
156 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
157 static unsigned long long kvm_createvm_count;
158 static unsigned long long kvm_active_vms;
159 
kvm_arch_mmu_notifier_invalidate_range(struct kvm * kvm,unsigned long start,unsigned long end,bool blockable)160 __weak int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
161 		unsigned long start, unsigned long end, bool blockable)
162 {
163 	return 0;
164 }
165 
kvm_is_zone_device_pfn(kvm_pfn_t pfn)166 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn)
167 {
168 	/*
169 	 * The metadata used by is_zone_device_page() to determine whether or
170 	 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
171 	 * the device has been pinned, e.g. by get_user_pages().  WARN if the
172 	 * page_count() is zero to help detect bad usage of this helper.
173 	 */
174 	if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn))))
175 		return false;
176 
177 	return is_zone_device_page(pfn_to_page(pfn));
178 }
179 
kvm_is_reserved_pfn(kvm_pfn_t pfn)180 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
181 {
182 	/*
183 	 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
184 	 * perspective they are "normal" pages, albeit with slightly different
185 	 * usage rules.
186 	 */
187 	if (pfn_valid(pfn))
188 		return PageReserved(pfn_to_page(pfn)) &&
189 		       !kvm_is_zone_device_pfn(pfn);
190 
191 	return true;
192 }
193 
194 /*
195  * Switches to specified vcpu, until a matching vcpu_put()
196  */
vcpu_load(struct kvm_vcpu * vcpu)197 void vcpu_load(struct kvm_vcpu *vcpu)
198 {
199 	int cpu = get_cpu();
200 	preempt_notifier_register(&vcpu->preempt_notifier);
201 	kvm_arch_vcpu_load(vcpu, cpu);
202 	put_cpu();
203 }
204 EXPORT_SYMBOL_GPL(vcpu_load);
205 
vcpu_put(struct kvm_vcpu * vcpu)206 void vcpu_put(struct kvm_vcpu *vcpu)
207 {
208 	preempt_disable();
209 	kvm_arch_vcpu_put(vcpu);
210 	preempt_notifier_unregister(&vcpu->preempt_notifier);
211 	preempt_enable();
212 }
213 EXPORT_SYMBOL_GPL(vcpu_put);
214 
215 /* TODO: merge with kvm_arch_vcpu_should_kick */
kvm_request_needs_ipi(struct kvm_vcpu * vcpu,unsigned req)216 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
217 {
218 	int mode = kvm_vcpu_exiting_guest_mode(vcpu);
219 
220 	/*
221 	 * We need to wait for the VCPU to reenable interrupts and get out of
222 	 * READING_SHADOW_PAGE_TABLES mode.
223 	 */
224 	if (req & KVM_REQUEST_WAIT)
225 		return mode != OUTSIDE_GUEST_MODE;
226 
227 	/*
228 	 * Need to kick a running VCPU, but otherwise there is nothing to do.
229 	 */
230 	return mode == IN_GUEST_MODE;
231 }
232 
ack_flush(void * _completed)233 static void ack_flush(void *_completed)
234 {
235 }
236 
kvm_kick_many_cpus(const struct cpumask * cpus,bool wait)237 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
238 {
239 	if (unlikely(!cpus))
240 		cpus = cpu_online_mask;
241 
242 	if (cpumask_empty(cpus))
243 		return false;
244 
245 	smp_call_function_many(cpus, ack_flush, NULL, wait);
246 	return true;
247 }
248 
kvm_make_vcpus_request_mask(struct kvm * kvm,unsigned int req,unsigned long * vcpu_bitmap,cpumask_var_t tmp)249 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
250 				 unsigned long *vcpu_bitmap, cpumask_var_t tmp)
251 {
252 	int i, cpu, me;
253 	struct kvm_vcpu *vcpu;
254 	bool called;
255 
256 	me = get_cpu();
257 
258 	kvm_for_each_vcpu(i, vcpu, kvm) {
259 		if (vcpu_bitmap && !test_bit(i, vcpu_bitmap))
260 			continue;
261 
262 		kvm_make_request(req, vcpu);
263 		cpu = vcpu->cpu;
264 
265 		if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
266 			continue;
267 
268 		if (tmp != NULL && cpu != -1 && cpu != me &&
269 		    kvm_request_needs_ipi(vcpu, req))
270 			__cpumask_set_cpu(cpu, tmp);
271 	}
272 
273 	called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
274 	put_cpu();
275 
276 	return called;
277 }
278 
kvm_make_all_cpus_request(struct kvm * kvm,unsigned int req)279 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
280 {
281 	cpumask_var_t cpus;
282 	bool called;
283 
284 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
285 
286 	called = kvm_make_vcpus_request_mask(kvm, req, NULL, cpus);
287 
288 	free_cpumask_var(cpus);
289 	return called;
290 }
291 
292 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
kvm_flush_remote_tlbs(struct kvm * kvm)293 void kvm_flush_remote_tlbs(struct kvm *kvm)
294 {
295 	/*
296 	 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
297 	 * kvm_make_all_cpus_request.
298 	 */
299 	long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
300 
301 	/*
302 	 * We want to publish modifications to the page tables before reading
303 	 * mode. Pairs with a memory barrier in arch-specific code.
304 	 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
305 	 * and smp_mb in walk_shadow_page_lockless_begin/end.
306 	 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
307 	 *
308 	 * There is already an smp_mb__after_atomic() before
309 	 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
310 	 * barrier here.
311 	 */
312 	if (!kvm_arch_flush_remote_tlb(kvm)
313 	    || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
314 		++kvm->stat.remote_tlb_flush;
315 	cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
316 }
317 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
318 #endif
319 
kvm_reload_remote_mmus(struct kvm * kvm)320 void kvm_reload_remote_mmus(struct kvm *kvm)
321 {
322 	kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
323 }
324 
kvm_vcpu_init(struct kvm_vcpu * vcpu,struct kvm * kvm,unsigned id)325 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
326 {
327 	struct page *page;
328 	int r;
329 
330 	mutex_init(&vcpu->mutex);
331 	vcpu->cpu = -1;
332 	vcpu->kvm = kvm;
333 	vcpu->vcpu_id = id;
334 	vcpu->pid = NULL;
335 	init_swait_queue_head(&vcpu->wq);
336 	kvm_async_pf_vcpu_init(vcpu);
337 
338 	vcpu->pre_pcpu = -1;
339 	INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
340 
341 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
342 	if (!page) {
343 		r = -ENOMEM;
344 		goto fail;
345 	}
346 	vcpu->run = page_address(page);
347 
348 	kvm_vcpu_set_in_spin_loop(vcpu, false);
349 	kvm_vcpu_set_dy_eligible(vcpu, false);
350 	vcpu->preempted = false;
351 	vcpu->ready = false;
352 
353 	r = kvm_arch_vcpu_init(vcpu);
354 	if (r < 0)
355 		goto fail_free_run;
356 	return 0;
357 
358 fail_free_run:
359 	free_page((unsigned long)vcpu->run);
360 fail:
361 	return r;
362 }
363 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
364 
kvm_vcpu_uninit(struct kvm_vcpu * vcpu)365 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
366 {
367 	/*
368 	 * no need for rcu_read_lock as VCPU_RUN is the only place that
369 	 * will change the vcpu->pid pointer and on uninit all file
370 	 * descriptors are already gone.
371 	 */
372 	put_pid(rcu_dereference_protected(vcpu->pid, 1));
373 	kvm_arch_vcpu_uninit(vcpu);
374 	free_page((unsigned long)vcpu->run);
375 }
376 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
377 
378 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
mmu_notifier_to_kvm(struct mmu_notifier * mn)379 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
380 {
381 	return container_of(mn, struct kvm, mmu_notifier);
382 }
383 
kvm_mmu_notifier_change_pte(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long address,pte_t pte)384 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
385 					struct mm_struct *mm,
386 					unsigned long address,
387 					pte_t pte)
388 {
389 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
390 	int idx;
391 
392 	idx = srcu_read_lock(&kvm->srcu);
393 	spin_lock(&kvm->mmu_lock);
394 	kvm->mmu_notifier_seq++;
395 
396 	if (kvm_set_spte_hva(kvm, address, pte))
397 		kvm_flush_remote_tlbs(kvm);
398 
399 	spin_unlock(&kvm->mmu_lock);
400 	srcu_read_unlock(&kvm->srcu, idx);
401 }
402 
kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier * mn,const struct mmu_notifier_range * range)403 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
404 					const struct mmu_notifier_range *range)
405 {
406 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
407 	int need_tlb_flush = 0, idx;
408 	int ret;
409 
410 	idx = srcu_read_lock(&kvm->srcu);
411 	spin_lock(&kvm->mmu_lock);
412 	/*
413 	 * The count increase must become visible at unlock time as no
414 	 * spte can be established without taking the mmu_lock and
415 	 * count is also read inside the mmu_lock critical section.
416 	 */
417 	kvm->mmu_notifier_count++;
418 	need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end);
419 	need_tlb_flush |= kvm->tlbs_dirty;
420 	/* we've to flush the tlb before the pages can be freed */
421 	if (need_tlb_flush)
422 		kvm_flush_remote_tlbs(kvm);
423 
424 	spin_unlock(&kvm->mmu_lock);
425 
426 	ret = kvm_arch_mmu_notifier_invalidate_range(kvm, range->start,
427 					range->end,
428 					mmu_notifier_range_blockable(range));
429 
430 	srcu_read_unlock(&kvm->srcu, idx);
431 
432 	return ret;
433 }
434 
kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier * mn,const struct mmu_notifier_range * range)435 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
436 					const struct mmu_notifier_range *range)
437 {
438 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
439 
440 	spin_lock(&kvm->mmu_lock);
441 	/*
442 	 * This sequence increase will notify the kvm page fault that
443 	 * the page that is going to be mapped in the spte could have
444 	 * been freed.
445 	 */
446 	kvm->mmu_notifier_seq++;
447 	smp_wmb();
448 	/*
449 	 * The above sequence increase must be visible before the
450 	 * below count decrease, which is ensured by the smp_wmb above
451 	 * in conjunction with the smp_rmb in mmu_notifier_retry().
452 	 */
453 	kvm->mmu_notifier_count--;
454 	spin_unlock(&kvm->mmu_lock);
455 
456 	BUG_ON(kvm->mmu_notifier_count < 0);
457 }
458 
kvm_mmu_notifier_clear_flush_young(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long start,unsigned long end)459 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
460 					      struct mm_struct *mm,
461 					      unsigned long start,
462 					      unsigned long end)
463 {
464 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
465 	int young, idx;
466 
467 	idx = srcu_read_lock(&kvm->srcu);
468 	spin_lock(&kvm->mmu_lock);
469 
470 	young = kvm_age_hva(kvm, start, end);
471 	if (young)
472 		kvm_flush_remote_tlbs(kvm);
473 
474 	spin_unlock(&kvm->mmu_lock);
475 	srcu_read_unlock(&kvm->srcu, idx);
476 
477 	return young;
478 }
479 
kvm_mmu_notifier_clear_young(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long start,unsigned long end)480 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
481 					struct mm_struct *mm,
482 					unsigned long start,
483 					unsigned long end)
484 {
485 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
486 	int young, idx;
487 
488 	idx = srcu_read_lock(&kvm->srcu);
489 	spin_lock(&kvm->mmu_lock);
490 	/*
491 	 * Even though we do not flush TLB, this will still adversely
492 	 * affect performance on pre-Haswell Intel EPT, where there is
493 	 * no EPT Access Bit to clear so that we have to tear down EPT
494 	 * tables instead. If we find this unacceptable, we can always
495 	 * add a parameter to kvm_age_hva so that it effectively doesn't
496 	 * do anything on clear_young.
497 	 *
498 	 * Also note that currently we never issue secondary TLB flushes
499 	 * from clear_young, leaving this job up to the regular system
500 	 * cadence. If we find this inaccurate, we might come up with a
501 	 * more sophisticated heuristic later.
502 	 */
503 	young = kvm_age_hva(kvm, start, end);
504 	spin_unlock(&kvm->mmu_lock);
505 	srcu_read_unlock(&kvm->srcu, idx);
506 
507 	return young;
508 }
509 
kvm_mmu_notifier_test_young(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long address)510 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
511 				       struct mm_struct *mm,
512 				       unsigned long address)
513 {
514 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
515 	int young, idx;
516 
517 	idx = srcu_read_lock(&kvm->srcu);
518 	spin_lock(&kvm->mmu_lock);
519 	young = kvm_test_age_hva(kvm, address);
520 	spin_unlock(&kvm->mmu_lock);
521 	srcu_read_unlock(&kvm->srcu, idx);
522 
523 	return young;
524 }
525 
kvm_mmu_notifier_release(struct mmu_notifier * mn,struct mm_struct * mm)526 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
527 				     struct mm_struct *mm)
528 {
529 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
530 	int idx;
531 
532 	idx = srcu_read_lock(&kvm->srcu);
533 	kvm_arch_flush_shadow_all(kvm);
534 	srcu_read_unlock(&kvm->srcu, idx);
535 }
536 
537 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
538 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
539 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
540 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
541 	.clear_young		= kvm_mmu_notifier_clear_young,
542 	.test_young		= kvm_mmu_notifier_test_young,
543 	.change_pte		= kvm_mmu_notifier_change_pte,
544 	.release		= kvm_mmu_notifier_release,
545 };
546 
kvm_init_mmu_notifier(struct kvm * kvm)547 static int kvm_init_mmu_notifier(struct kvm *kvm)
548 {
549 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
550 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
551 }
552 
553 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
554 
kvm_init_mmu_notifier(struct kvm * kvm)555 static int kvm_init_mmu_notifier(struct kvm *kvm)
556 {
557 	return 0;
558 }
559 
560 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
561 
kvm_alloc_memslots(void)562 static struct kvm_memslots *kvm_alloc_memslots(void)
563 {
564 	int i;
565 	struct kvm_memslots *slots;
566 
567 	slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
568 	if (!slots)
569 		return NULL;
570 
571 	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
572 		slots->id_to_index[i] = slots->memslots[i].id = i;
573 
574 	return slots;
575 }
576 
kvm_destroy_dirty_bitmap(struct kvm_memory_slot * memslot)577 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
578 {
579 	if (!memslot->dirty_bitmap)
580 		return;
581 
582 	kvfree(memslot->dirty_bitmap);
583 	memslot->dirty_bitmap = NULL;
584 }
585 
586 /*
587  * Free any memory in @free but not in @dont.
588  */
kvm_free_memslot(struct kvm * kvm,struct kvm_memory_slot * free,struct kvm_memory_slot * dont)589 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
590 			      struct kvm_memory_slot *dont)
591 {
592 	if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
593 		kvm_destroy_dirty_bitmap(free);
594 
595 	kvm_arch_free_memslot(kvm, free, dont);
596 
597 	free->npages = 0;
598 }
599 
kvm_free_memslots(struct kvm * kvm,struct kvm_memslots * slots)600 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
601 {
602 	struct kvm_memory_slot *memslot;
603 
604 	if (!slots)
605 		return;
606 
607 	kvm_for_each_memslot(memslot, slots)
608 		kvm_free_memslot(kvm, memslot, NULL);
609 
610 	kvfree(slots);
611 }
612 
kvm_destroy_vm_debugfs(struct kvm * kvm)613 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
614 {
615 	int i;
616 
617 	if (!kvm->debugfs_dentry)
618 		return;
619 
620 	debugfs_remove_recursive(kvm->debugfs_dentry);
621 
622 	if (kvm->debugfs_stat_data) {
623 		for (i = 0; i < kvm_debugfs_num_entries; i++)
624 			kfree(kvm->debugfs_stat_data[i]);
625 		kfree(kvm->debugfs_stat_data);
626 	}
627 }
628 
kvm_create_vm_debugfs(struct kvm * kvm,int fd)629 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
630 {
631 	char dir_name[ITOA_MAX_LEN * 2];
632 	struct kvm_stat_data *stat_data;
633 	struct kvm_stats_debugfs_item *p;
634 
635 	if (!debugfs_initialized())
636 		return 0;
637 
638 	snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
639 	kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
640 
641 	kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
642 					 sizeof(*kvm->debugfs_stat_data),
643 					 GFP_KERNEL_ACCOUNT);
644 	if (!kvm->debugfs_stat_data)
645 		return -ENOMEM;
646 
647 	for (p = debugfs_entries; p->name; p++) {
648 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
649 		if (!stat_data)
650 			return -ENOMEM;
651 
652 		stat_data->kvm = kvm;
653 		stat_data->offset = p->offset;
654 		stat_data->mode = p->mode ? p->mode : 0644;
655 		kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
656 		debugfs_create_file(p->name, stat_data->mode, kvm->debugfs_dentry,
657 				    stat_data, stat_fops_per_vm[p->kind]);
658 	}
659 	return 0;
660 }
661 
662 /*
663  * Called after the VM is otherwise initialized, but just before adding it to
664  * the vm_list.
665  */
kvm_arch_post_init_vm(struct kvm * kvm)666 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
667 {
668 	return 0;
669 }
670 
671 /*
672  * Called just after removing the VM from the vm_list, but before doing any
673  * other destruction.
674  */
kvm_arch_pre_destroy_vm(struct kvm * kvm)675 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
676 {
677 }
678 
kvm_create_vm(unsigned long type)679 static struct kvm *kvm_create_vm(unsigned long type)
680 {
681 	struct kvm *kvm = kvm_arch_alloc_vm();
682 	int r = -ENOMEM;
683 	int i;
684 
685 	if (!kvm)
686 		return ERR_PTR(-ENOMEM);
687 
688 	spin_lock_init(&kvm->mmu_lock);
689 	mmgrab(current->mm);
690 	kvm->mm = current->mm;
691 	kvm_eventfd_init(kvm);
692 	mutex_init(&kvm->lock);
693 	mutex_init(&kvm->irq_lock);
694 	mutex_init(&kvm->slots_lock);
695 	INIT_LIST_HEAD(&kvm->devices);
696 
697 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
698 
699 	if (init_srcu_struct(&kvm->srcu))
700 		goto out_err_no_srcu;
701 	if (init_srcu_struct(&kvm->irq_srcu))
702 		goto out_err_no_irq_srcu;
703 
704 	refcount_set(&kvm->users_count, 1);
705 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
706 		struct kvm_memslots *slots = kvm_alloc_memslots();
707 
708 		if (!slots)
709 			goto out_err_no_arch_destroy_vm;
710 		/* Generations must be different for each address space. */
711 		slots->generation = i;
712 		rcu_assign_pointer(kvm->memslots[i], slots);
713 	}
714 
715 	for (i = 0; i < KVM_NR_BUSES; i++) {
716 		rcu_assign_pointer(kvm->buses[i],
717 			kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
718 		if (!kvm->buses[i])
719 			goto out_err_no_arch_destroy_vm;
720 	}
721 
722 	r = kvm_arch_init_vm(kvm, type);
723 	if (r)
724 		goto out_err_no_arch_destroy_vm;
725 
726 	r = hardware_enable_all();
727 	if (r)
728 		goto out_err_no_disable;
729 
730 #ifdef CONFIG_HAVE_KVM_IRQFD
731 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
732 #endif
733 
734 	r = kvm_init_mmu_notifier(kvm);
735 	if (r)
736 		goto out_err_no_mmu_notifier;
737 
738 	r = kvm_arch_post_init_vm(kvm);
739 	if (r)
740 		goto out_err;
741 
742 	mutex_lock(&kvm_lock);
743 	list_add(&kvm->vm_list, &vm_list);
744 	mutex_unlock(&kvm_lock);
745 
746 	preempt_notifier_inc();
747 
748 	return kvm;
749 
750 out_err:
751 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
752 	if (kvm->mmu_notifier.ops)
753 		mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
754 #endif
755 out_err_no_mmu_notifier:
756 	hardware_disable_all();
757 out_err_no_disable:
758 	kvm_arch_destroy_vm(kvm);
759 out_err_no_arch_destroy_vm:
760 	WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
761 	for (i = 0; i < KVM_NR_BUSES; i++)
762 		kfree(kvm_get_bus(kvm, i));
763 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
764 		kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
765 	cleanup_srcu_struct(&kvm->irq_srcu);
766 out_err_no_irq_srcu:
767 	cleanup_srcu_struct(&kvm->srcu);
768 out_err_no_srcu:
769 	kvm_arch_free_vm(kvm);
770 	mmdrop(current->mm);
771 	return ERR_PTR(r);
772 }
773 
kvm_destroy_devices(struct kvm * kvm)774 static void kvm_destroy_devices(struct kvm *kvm)
775 {
776 	struct kvm_device *dev, *tmp;
777 
778 	/*
779 	 * We do not need to take the kvm->lock here, because nobody else
780 	 * has a reference to the struct kvm at this point and therefore
781 	 * cannot access the devices list anyhow.
782 	 */
783 	list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
784 		list_del(&dev->vm_node);
785 		dev->ops->destroy(dev);
786 	}
787 }
788 
kvm_destroy_vm(struct kvm * kvm)789 static void kvm_destroy_vm(struct kvm *kvm)
790 {
791 	int i;
792 	struct mm_struct *mm = kvm->mm;
793 
794 	kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
795 	kvm_destroy_vm_debugfs(kvm);
796 	kvm_arch_sync_events(kvm);
797 	mutex_lock(&kvm_lock);
798 	list_del(&kvm->vm_list);
799 	mutex_unlock(&kvm_lock);
800 	kvm_arch_pre_destroy_vm(kvm);
801 
802 	kvm_free_irq_routing(kvm);
803 	for (i = 0; i < KVM_NR_BUSES; i++) {
804 		struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
805 
806 		if (bus)
807 			kvm_io_bus_destroy(bus);
808 		kvm->buses[i] = NULL;
809 	}
810 	kvm_coalesced_mmio_free(kvm);
811 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
812 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
813 #else
814 	kvm_arch_flush_shadow_all(kvm);
815 #endif
816 	kvm_arch_destroy_vm(kvm);
817 	kvm_destroy_devices(kvm);
818 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
819 		kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
820 	cleanup_srcu_struct(&kvm->irq_srcu);
821 	cleanup_srcu_struct(&kvm->srcu);
822 	kvm_arch_free_vm(kvm);
823 	preempt_notifier_dec();
824 	hardware_disable_all();
825 	mmdrop(mm);
826 }
827 
kvm_get_kvm(struct kvm * kvm)828 void kvm_get_kvm(struct kvm *kvm)
829 {
830 	refcount_inc(&kvm->users_count);
831 }
832 EXPORT_SYMBOL_GPL(kvm_get_kvm);
833 
kvm_put_kvm(struct kvm * kvm)834 void kvm_put_kvm(struct kvm *kvm)
835 {
836 	if (refcount_dec_and_test(&kvm->users_count))
837 		kvm_destroy_vm(kvm);
838 }
839 EXPORT_SYMBOL_GPL(kvm_put_kvm);
840 
841 
kvm_vm_release(struct inode * inode,struct file * filp)842 static int kvm_vm_release(struct inode *inode, struct file *filp)
843 {
844 	struct kvm *kvm = filp->private_data;
845 
846 	kvm_irqfd_release(kvm);
847 
848 	kvm_put_kvm(kvm);
849 	return 0;
850 }
851 
852 /*
853  * Allocation size is twice as large as the actual dirty bitmap size.
854  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
855  */
kvm_create_dirty_bitmap(struct kvm_memory_slot * memslot)856 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
857 {
858 	unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
859 
860 	memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
861 	if (!memslot->dirty_bitmap)
862 		return -ENOMEM;
863 
864 	return 0;
865 }
866 
867 /*
868  * Insert memslot and re-sort memslots based on their GFN,
869  * so binary search could be used to lookup GFN.
870  * Sorting algorithm takes advantage of having initially
871  * sorted array and known changed memslot position.
872  */
update_memslots(struct kvm_memslots * slots,struct kvm_memory_slot * new,enum kvm_mr_change change)873 static void update_memslots(struct kvm_memslots *slots,
874 			    struct kvm_memory_slot *new,
875 			    enum kvm_mr_change change)
876 {
877 	int id = new->id;
878 	int i = slots->id_to_index[id];
879 	struct kvm_memory_slot *mslots = slots->memslots;
880 
881 	WARN_ON(mslots[i].id != id);
882 	switch (change) {
883 	case KVM_MR_CREATE:
884 		slots->used_slots++;
885 		WARN_ON(mslots[i].npages || !new->npages);
886 		break;
887 	case KVM_MR_DELETE:
888 		slots->used_slots--;
889 		WARN_ON(new->npages || !mslots[i].npages);
890 		break;
891 	default:
892 		break;
893 	}
894 
895 	while (i < KVM_MEM_SLOTS_NUM - 1 &&
896 	       new->base_gfn <= mslots[i + 1].base_gfn) {
897 		if (!mslots[i + 1].npages)
898 			break;
899 		mslots[i] = mslots[i + 1];
900 		slots->id_to_index[mslots[i].id] = i;
901 		i++;
902 	}
903 
904 	/*
905 	 * The ">=" is needed when creating a slot with base_gfn == 0,
906 	 * so that it moves before all those with base_gfn == npages == 0.
907 	 *
908 	 * On the other hand, if new->npages is zero, the above loop has
909 	 * already left i pointing to the beginning of the empty part of
910 	 * mslots, and the ">=" would move the hole backwards in this
911 	 * case---which is wrong.  So skip the loop when deleting a slot.
912 	 */
913 	if (new->npages) {
914 		while (i > 0 &&
915 		       new->base_gfn >= mslots[i - 1].base_gfn) {
916 			mslots[i] = mslots[i - 1];
917 			slots->id_to_index[mslots[i].id] = i;
918 			i--;
919 		}
920 	} else
921 		WARN_ON_ONCE(i != slots->used_slots);
922 
923 	mslots[i] = *new;
924 	slots->id_to_index[mslots[i].id] = i;
925 }
926 
check_memory_region_flags(const struct kvm_userspace_memory_region * mem)927 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
928 {
929 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
930 
931 #ifdef __KVM_HAVE_READONLY_MEM
932 	valid_flags |= KVM_MEM_READONLY;
933 #endif
934 
935 	if (mem->flags & ~valid_flags)
936 		return -EINVAL;
937 
938 	return 0;
939 }
940 
install_new_memslots(struct kvm * kvm,int as_id,struct kvm_memslots * slots)941 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
942 		int as_id, struct kvm_memslots *slots)
943 {
944 	struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
945 	u64 gen = old_memslots->generation;
946 
947 	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
948 	slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
949 
950 	rcu_assign_pointer(kvm->memslots[as_id], slots);
951 	synchronize_srcu_expedited(&kvm->srcu);
952 
953 	/*
954 	 * Increment the new memslot generation a second time, dropping the
955 	 * update in-progress flag and incrementing then generation based on
956 	 * the number of address spaces.  This provides a unique and easily
957 	 * identifiable generation number while the memslots are in flux.
958 	 */
959 	gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
960 
961 	/*
962 	 * Generations must be unique even across address spaces.  We do not need
963 	 * a global counter for that, instead the generation space is evenly split
964 	 * across address spaces.  For example, with two address spaces, address
965 	 * space 0 will use generations 0, 2, 4, ... while address space 1 will
966 	 * use generations 1, 3, 5, ...
967 	 */
968 	gen += KVM_ADDRESS_SPACE_NUM;
969 
970 	kvm_arch_memslots_updated(kvm, gen);
971 
972 	slots->generation = gen;
973 
974 	return old_memslots;
975 }
976 
977 /*
978  * Allocate some memory and give it an address in the guest physical address
979  * space.
980  *
981  * Discontiguous memory is allowed, mostly for framebuffers.
982  *
983  * Must be called holding kvm->slots_lock for write.
984  */
__kvm_set_memory_region(struct kvm * kvm,const struct kvm_userspace_memory_region * mem)985 int __kvm_set_memory_region(struct kvm *kvm,
986 			    const struct kvm_userspace_memory_region *mem)
987 {
988 	int r;
989 	gfn_t base_gfn;
990 	unsigned long npages;
991 	struct kvm_memory_slot *slot;
992 	struct kvm_memory_slot old, new;
993 	struct kvm_memslots *slots = NULL, *old_memslots;
994 	int as_id, id;
995 	enum kvm_mr_change change;
996 
997 	r = check_memory_region_flags(mem);
998 	if (r)
999 		goto out;
1000 
1001 	r = -EINVAL;
1002 	as_id = mem->slot >> 16;
1003 	id = (u16)mem->slot;
1004 
1005 	/* General sanity checks */
1006 	if (mem->memory_size & (PAGE_SIZE - 1))
1007 		goto out;
1008 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1009 		goto out;
1010 	/* We can read the guest memory with __xxx_user() later on. */
1011 	if ((id < KVM_USER_MEM_SLOTS) &&
1012 	    ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1013 	     !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1014 			mem->memory_size)))
1015 		goto out;
1016 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1017 		goto out;
1018 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1019 		goto out;
1020 
1021 	slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
1022 	base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1023 	npages = mem->memory_size >> PAGE_SHIFT;
1024 
1025 	if (npages > KVM_MEM_MAX_NR_PAGES)
1026 		goto out;
1027 
1028 	new = old = *slot;
1029 
1030 	new.id = id;
1031 	new.base_gfn = base_gfn;
1032 	new.npages = npages;
1033 	new.flags = mem->flags;
1034 
1035 	if (npages) {
1036 		if (!old.npages)
1037 			change = KVM_MR_CREATE;
1038 		else { /* Modify an existing slot. */
1039 			if ((mem->userspace_addr != old.userspace_addr) ||
1040 			    (npages != old.npages) ||
1041 			    ((new.flags ^ old.flags) & KVM_MEM_READONLY))
1042 				goto out;
1043 
1044 			if (base_gfn != old.base_gfn)
1045 				change = KVM_MR_MOVE;
1046 			else if (new.flags != old.flags)
1047 				change = KVM_MR_FLAGS_ONLY;
1048 			else { /* Nothing to change. */
1049 				r = 0;
1050 				goto out;
1051 			}
1052 		}
1053 	} else {
1054 		if (!old.npages)
1055 			goto out;
1056 
1057 		change = KVM_MR_DELETE;
1058 		new.base_gfn = 0;
1059 		new.flags = 0;
1060 	}
1061 
1062 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1063 		/* Check for overlaps */
1064 		r = -EEXIST;
1065 		kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
1066 			if (slot->id == id)
1067 				continue;
1068 			if (!((base_gfn + npages <= slot->base_gfn) ||
1069 			      (base_gfn >= slot->base_gfn + slot->npages)))
1070 				goto out;
1071 		}
1072 	}
1073 
1074 	/* Free page dirty bitmap if unneeded */
1075 	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1076 		new.dirty_bitmap = NULL;
1077 
1078 	r = -ENOMEM;
1079 	if (change == KVM_MR_CREATE) {
1080 		new.userspace_addr = mem->userspace_addr;
1081 
1082 		if (kvm_arch_create_memslot(kvm, &new, npages))
1083 			goto out_free;
1084 	}
1085 
1086 	/* Allocate page dirty bitmap if needed */
1087 	if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1088 		if (kvm_create_dirty_bitmap(&new) < 0)
1089 			goto out_free;
1090 	}
1091 
1092 	slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
1093 	if (!slots)
1094 		goto out_free;
1095 	memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1096 
1097 	if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1098 		slot = id_to_memslot(slots, id);
1099 		slot->flags |= KVM_MEMSLOT_INVALID;
1100 
1101 		old_memslots = install_new_memslots(kvm, as_id, slots);
1102 
1103 		/* From this point no new shadow pages pointing to a deleted,
1104 		 * or moved, memslot will be created.
1105 		 *
1106 		 * validation of sp->gfn happens in:
1107 		 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1108 		 *	- kvm_is_visible_gfn (mmu_check_roots)
1109 		 */
1110 		kvm_arch_flush_shadow_memslot(kvm, slot);
1111 
1112 		/*
1113 		 * We can re-use the old_memslots from above, the only difference
1114 		 * from the currently installed memslots is the invalid flag.  This
1115 		 * will get overwritten by update_memslots anyway.
1116 		 */
1117 		slots = old_memslots;
1118 	}
1119 
1120 	r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1121 	if (r)
1122 		goto out_slots;
1123 
1124 	/* actual memory is freed via old in kvm_free_memslot below */
1125 	if (change == KVM_MR_DELETE) {
1126 		new.dirty_bitmap = NULL;
1127 		memset(&new.arch, 0, sizeof(new.arch));
1128 	}
1129 
1130 	update_memslots(slots, &new, change);
1131 	old_memslots = install_new_memslots(kvm, as_id, slots);
1132 
1133 	kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1134 
1135 	kvm_free_memslot(kvm, &old, &new);
1136 	kvfree(old_memslots);
1137 	return 0;
1138 
1139 out_slots:
1140 	kvfree(slots);
1141 out_free:
1142 	kvm_free_memslot(kvm, &new, &old);
1143 out:
1144 	return r;
1145 }
1146 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1147 
kvm_set_memory_region(struct kvm * kvm,const struct kvm_userspace_memory_region * mem)1148 int kvm_set_memory_region(struct kvm *kvm,
1149 			  const struct kvm_userspace_memory_region *mem)
1150 {
1151 	int r;
1152 
1153 	mutex_lock(&kvm->slots_lock);
1154 	r = __kvm_set_memory_region(kvm, mem);
1155 	mutex_unlock(&kvm->slots_lock);
1156 	return r;
1157 }
1158 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1159 
kvm_vm_ioctl_set_memory_region(struct kvm * kvm,struct kvm_userspace_memory_region * mem)1160 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1161 					  struct kvm_userspace_memory_region *mem)
1162 {
1163 	if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1164 		return -EINVAL;
1165 
1166 	return kvm_set_memory_region(kvm, mem);
1167 }
1168 
kvm_get_dirty_log(struct kvm * kvm,struct kvm_dirty_log * log,int * is_dirty)1169 int kvm_get_dirty_log(struct kvm *kvm,
1170 			struct kvm_dirty_log *log, int *is_dirty)
1171 {
1172 	struct kvm_memslots *slots;
1173 	struct kvm_memory_slot *memslot;
1174 	int i, as_id, id;
1175 	unsigned long n;
1176 	unsigned long any = 0;
1177 
1178 	as_id = log->slot >> 16;
1179 	id = (u16)log->slot;
1180 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1181 		return -EINVAL;
1182 
1183 	slots = __kvm_memslots(kvm, as_id);
1184 	memslot = id_to_memslot(slots, id);
1185 	if (!memslot->dirty_bitmap)
1186 		return -ENOENT;
1187 
1188 	n = kvm_dirty_bitmap_bytes(memslot);
1189 
1190 	for (i = 0; !any && i < n/sizeof(long); ++i)
1191 		any = memslot->dirty_bitmap[i];
1192 
1193 	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1194 		return -EFAULT;
1195 
1196 	if (any)
1197 		*is_dirty = 1;
1198 	return 0;
1199 }
1200 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1201 
1202 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1203 /**
1204  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
1205  *	and reenable dirty page tracking for the corresponding pages.
1206  * @kvm:	pointer to kvm instance
1207  * @log:	slot id and address to which we copy the log
1208  * @flush:	true if TLB flush is needed by caller
1209  *
1210  * We need to keep it in mind that VCPU threads can write to the bitmap
1211  * concurrently. So, to avoid losing track of dirty pages we keep the
1212  * following order:
1213  *
1214  *    1. Take a snapshot of the bit and clear it if needed.
1215  *    2. Write protect the corresponding page.
1216  *    3. Copy the snapshot to the userspace.
1217  *    4. Upon return caller flushes TLB's if needed.
1218  *
1219  * Between 2 and 4, the guest may write to the page using the remaining TLB
1220  * entry.  This is not a problem because the page is reported dirty using
1221  * the snapshot taken before and step 4 ensures that writes done after
1222  * exiting to userspace will be logged for the next call.
1223  *
1224  */
kvm_get_dirty_log_protect(struct kvm * kvm,struct kvm_dirty_log * log,bool * flush)1225 int kvm_get_dirty_log_protect(struct kvm *kvm,
1226 			struct kvm_dirty_log *log, bool *flush)
1227 {
1228 	struct kvm_memslots *slots;
1229 	struct kvm_memory_slot *memslot;
1230 	int i, as_id, id;
1231 	unsigned long n;
1232 	unsigned long *dirty_bitmap;
1233 	unsigned long *dirty_bitmap_buffer;
1234 
1235 	as_id = log->slot >> 16;
1236 	id = (u16)log->slot;
1237 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1238 		return -EINVAL;
1239 
1240 	slots = __kvm_memslots(kvm, as_id);
1241 	memslot = id_to_memslot(slots, id);
1242 
1243 	dirty_bitmap = memslot->dirty_bitmap;
1244 	if (!dirty_bitmap)
1245 		return -ENOENT;
1246 
1247 	n = kvm_dirty_bitmap_bytes(memslot);
1248 	*flush = false;
1249 	if (kvm->manual_dirty_log_protect) {
1250 		/*
1251 		 * Unlike kvm_get_dirty_log, we always return false in *flush,
1252 		 * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
1253 		 * is some code duplication between this function and
1254 		 * kvm_get_dirty_log, but hopefully all architecture
1255 		 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1256 		 * can be eliminated.
1257 		 */
1258 		dirty_bitmap_buffer = dirty_bitmap;
1259 	} else {
1260 		dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1261 		memset(dirty_bitmap_buffer, 0, n);
1262 
1263 		spin_lock(&kvm->mmu_lock);
1264 		for (i = 0; i < n / sizeof(long); i++) {
1265 			unsigned long mask;
1266 			gfn_t offset;
1267 
1268 			if (!dirty_bitmap[i])
1269 				continue;
1270 
1271 			*flush = true;
1272 			mask = xchg(&dirty_bitmap[i], 0);
1273 			dirty_bitmap_buffer[i] = mask;
1274 
1275 			offset = i * BITS_PER_LONG;
1276 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1277 								offset, mask);
1278 		}
1279 		spin_unlock(&kvm->mmu_lock);
1280 	}
1281 
1282 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1283 		return -EFAULT;
1284 	return 0;
1285 }
1286 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1287 
1288 /**
1289  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1290  *	and reenable dirty page tracking for the corresponding pages.
1291  * @kvm:	pointer to kvm instance
1292  * @log:	slot id and address from which to fetch the bitmap of dirty pages
1293  * @flush:	true if TLB flush is needed by caller
1294  */
kvm_clear_dirty_log_protect(struct kvm * kvm,struct kvm_clear_dirty_log * log,bool * flush)1295 int kvm_clear_dirty_log_protect(struct kvm *kvm,
1296 				struct kvm_clear_dirty_log *log, bool *flush)
1297 {
1298 	struct kvm_memslots *slots;
1299 	struct kvm_memory_slot *memslot;
1300 	int as_id, id;
1301 	gfn_t offset;
1302 	unsigned long i, n;
1303 	unsigned long *dirty_bitmap;
1304 	unsigned long *dirty_bitmap_buffer;
1305 
1306 	as_id = log->slot >> 16;
1307 	id = (u16)log->slot;
1308 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1309 		return -EINVAL;
1310 
1311 	if (log->first_page & 63)
1312 		return -EINVAL;
1313 
1314 	slots = __kvm_memslots(kvm, as_id);
1315 	memslot = id_to_memslot(slots, id);
1316 
1317 	dirty_bitmap = memslot->dirty_bitmap;
1318 	if (!dirty_bitmap)
1319 		return -ENOENT;
1320 
1321 	n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
1322 
1323 	if (log->first_page > memslot->npages ||
1324 	    log->num_pages > memslot->npages - log->first_page ||
1325 	    (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
1326 	    return -EINVAL;
1327 
1328 	*flush = false;
1329 	dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1330 	if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
1331 		return -EFAULT;
1332 
1333 	spin_lock(&kvm->mmu_lock);
1334 	for (offset = log->first_page, i = offset / BITS_PER_LONG,
1335 		 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
1336 	     i++, offset += BITS_PER_LONG) {
1337 		unsigned long mask = *dirty_bitmap_buffer++;
1338 		atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
1339 		if (!mask)
1340 			continue;
1341 
1342 		mask &= atomic_long_fetch_andnot(mask, p);
1343 
1344 		/*
1345 		 * mask contains the bits that really have been cleared.  This
1346 		 * never includes any bits beyond the length of the memslot (if
1347 		 * the length is not aligned to 64 pages), therefore it is not
1348 		 * a problem if userspace sets them in log->dirty_bitmap.
1349 		*/
1350 		if (mask) {
1351 			*flush = true;
1352 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1353 								offset, mask);
1354 		}
1355 	}
1356 	spin_unlock(&kvm->mmu_lock);
1357 
1358 	return 0;
1359 }
1360 EXPORT_SYMBOL_GPL(kvm_clear_dirty_log_protect);
1361 #endif
1362 
kvm_largepages_enabled(void)1363 bool kvm_largepages_enabled(void)
1364 {
1365 	return largepages_enabled;
1366 }
1367 
kvm_disable_largepages(void)1368 void kvm_disable_largepages(void)
1369 {
1370 	largepages_enabled = false;
1371 }
1372 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1373 
gfn_to_memslot(struct kvm * kvm,gfn_t gfn)1374 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1375 {
1376 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1377 }
1378 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1379 
kvm_vcpu_gfn_to_memslot(struct kvm_vcpu * vcpu,gfn_t gfn)1380 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1381 {
1382 	return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1383 }
1384 
kvm_is_visible_gfn(struct kvm * kvm,gfn_t gfn)1385 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1386 {
1387 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1388 
1389 	if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1390 	      memslot->flags & KVM_MEMSLOT_INVALID)
1391 		return false;
1392 
1393 	return true;
1394 }
1395 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1396 
kvm_host_page_size(struct kvm * kvm,gfn_t gfn)1397 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1398 {
1399 	struct vm_area_struct *vma;
1400 	unsigned long addr, size;
1401 
1402 	size = PAGE_SIZE;
1403 
1404 	addr = gfn_to_hva(kvm, gfn);
1405 	if (kvm_is_error_hva(addr))
1406 		return PAGE_SIZE;
1407 
1408 	down_read(&current->mm->mmap_sem);
1409 	vma = find_vma(current->mm, addr);
1410 	if (!vma)
1411 		goto out;
1412 
1413 	size = vma_kernel_pagesize(vma);
1414 
1415 out:
1416 	up_read(&current->mm->mmap_sem);
1417 
1418 	return size;
1419 }
1420 
memslot_is_readonly(struct kvm_memory_slot * slot)1421 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1422 {
1423 	return slot->flags & KVM_MEM_READONLY;
1424 }
1425 
__gfn_to_hva_many(struct kvm_memory_slot * slot,gfn_t gfn,gfn_t * nr_pages,bool write)1426 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1427 				       gfn_t *nr_pages, bool write)
1428 {
1429 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1430 		return KVM_HVA_ERR_BAD;
1431 
1432 	if (memslot_is_readonly(slot) && write)
1433 		return KVM_HVA_ERR_RO_BAD;
1434 
1435 	if (nr_pages)
1436 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
1437 
1438 	return __gfn_to_hva_memslot(slot, gfn);
1439 }
1440 
gfn_to_hva_many(struct kvm_memory_slot * slot,gfn_t gfn,gfn_t * nr_pages)1441 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1442 				     gfn_t *nr_pages)
1443 {
1444 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1445 }
1446 
gfn_to_hva_memslot(struct kvm_memory_slot * slot,gfn_t gfn)1447 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1448 					gfn_t gfn)
1449 {
1450 	return gfn_to_hva_many(slot, gfn, NULL);
1451 }
1452 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1453 
gfn_to_hva(struct kvm * kvm,gfn_t gfn)1454 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1455 {
1456 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1457 }
1458 EXPORT_SYMBOL_GPL(gfn_to_hva);
1459 
kvm_vcpu_gfn_to_hva(struct kvm_vcpu * vcpu,gfn_t gfn)1460 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1461 {
1462 	return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1463 }
1464 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1465 
1466 /*
1467  * Return the hva of a @gfn and the R/W attribute if possible.
1468  *
1469  * @slot: the kvm_memory_slot which contains @gfn
1470  * @gfn: the gfn to be translated
1471  * @writable: used to return the read/write attribute of the @slot if the hva
1472  * is valid and @writable is not NULL
1473  */
gfn_to_hva_memslot_prot(struct kvm_memory_slot * slot,gfn_t gfn,bool * writable)1474 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1475 				      gfn_t gfn, bool *writable)
1476 {
1477 	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1478 
1479 	if (!kvm_is_error_hva(hva) && writable)
1480 		*writable = !memslot_is_readonly(slot);
1481 
1482 	return hva;
1483 }
1484 
gfn_to_hva_prot(struct kvm * kvm,gfn_t gfn,bool * writable)1485 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1486 {
1487 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1488 
1489 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1490 }
1491 
kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu * vcpu,gfn_t gfn,bool * writable)1492 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1493 {
1494 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1495 
1496 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1497 }
1498 
check_user_page_hwpoison(unsigned long addr)1499 static inline int check_user_page_hwpoison(unsigned long addr)
1500 {
1501 	int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1502 
1503 	rc = get_user_pages(addr, 1, flags, NULL, NULL);
1504 	return rc == -EHWPOISON;
1505 }
1506 
1507 /*
1508  * The fast path to get the writable pfn which will be stored in @pfn,
1509  * true indicates success, otherwise false is returned.  It's also the
1510  * only part that runs if we can are in atomic context.
1511  */
hva_to_pfn_fast(unsigned long addr,bool write_fault,bool * writable,kvm_pfn_t * pfn)1512 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
1513 			    bool *writable, kvm_pfn_t *pfn)
1514 {
1515 	struct page *page[1];
1516 	int npages;
1517 
1518 	/*
1519 	 * Fast pin a writable pfn only if it is a write fault request
1520 	 * or the caller allows to map a writable pfn for a read fault
1521 	 * request.
1522 	 */
1523 	if (!(write_fault || writable))
1524 		return false;
1525 
1526 	npages = __get_user_pages_fast(addr, 1, 1, page);
1527 	if (npages == 1) {
1528 		*pfn = page_to_pfn(page[0]);
1529 
1530 		if (writable)
1531 			*writable = true;
1532 		return true;
1533 	}
1534 
1535 	return false;
1536 }
1537 
1538 /*
1539  * The slow path to get the pfn of the specified host virtual address,
1540  * 1 indicates success, -errno is returned if error is detected.
1541  */
hva_to_pfn_slow(unsigned long addr,bool * async,bool write_fault,bool * writable,kvm_pfn_t * pfn)1542 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1543 			   bool *writable, kvm_pfn_t *pfn)
1544 {
1545 	unsigned int flags = FOLL_HWPOISON;
1546 	struct page *page;
1547 	int npages = 0;
1548 
1549 	might_sleep();
1550 
1551 	if (writable)
1552 		*writable = write_fault;
1553 
1554 	if (write_fault)
1555 		flags |= FOLL_WRITE;
1556 	if (async)
1557 		flags |= FOLL_NOWAIT;
1558 
1559 	npages = get_user_pages_unlocked(addr, 1, &page, flags);
1560 	if (npages != 1)
1561 		return npages;
1562 
1563 	/* map read fault as writable if possible */
1564 	if (unlikely(!write_fault) && writable) {
1565 		struct page *wpage;
1566 
1567 		if (__get_user_pages_fast(addr, 1, 1, &wpage) == 1) {
1568 			*writable = true;
1569 			put_page(page);
1570 			page = wpage;
1571 		}
1572 	}
1573 	*pfn = page_to_pfn(page);
1574 	return npages;
1575 }
1576 
vma_is_valid(struct vm_area_struct * vma,bool write_fault)1577 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1578 {
1579 	if (unlikely(!(vma->vm_flags & VM_READ)))
1580 		return false;
1581 
1582 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1583 		return false;
1584 
1585 	return true;
1586 }
1587 
hva_to_pfn_remapped(struct vm_area_struct * vma,unsigned long addr,bool * async,bool write_fault,bool * writable,kvm_pfn_t * p_pfn)1588 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1589 			       unsigned long addr, bool *async,
1590 			       bool write_fault, bool *writable,
1591 			       kvm_pfn_t *p_pfn)
1592 {
1593 	unsigned long pfn;
1594 	int r;
1595 
1596 	r = follow_pfn(vma, addr, &pfn);
1597 	if (r) {
1598 		/*
1599 		 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1600 		 * not call the fault handler, so do it here.
1601 		 */
1602 		bool unlocked = false;
1603 		r = fixup_user_fault(current, current->mm, addr,
1604 				     (write_fault ? FAULT_FLAG_WRITE : 0),
1605 				     &unlocked);
1606 		if (unlocked)
1607 			return -EAGAIN;
1608 		if (r)
1609 			return r;
1610 
1611 		r = follow_pfn(vma, addr, &pfn);
1612 		if (r)
1613 			return r;
1614 
1615 	}
1616 
1617 	if (writable)
1618 		*writable = true;
1619 
1620 	/*
1621 	 * Get a reference here because callers of *hva_to_pfn* and
1622 	 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1623 	 * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1624 	 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1625 	 * simply do nothing for reserved pfns.
1626 	 *
1627 	 * Whoever called remap_pfn_range is also going to call e.g.
1628 	 * unmap_mapping_range before the underlying pages are freed,
1629 	 * causing a call to our MMU notifier.
1630 	 */
1631 	kvm_get_pfn(pfn);
1632 
1633 	*p_pfn = pfn;
1634 	return 0;
1635 }
1636 
1637 /*
1638  * Pin guest page in memory and return its pfn.
1639  * @addr: host virtual address which maps memory to the guest
1640  * @atomic: whether this function can sleep
1641  * @async: whether this function need to wait IO complete if the
1642  *         host page is not in the memory
1643  * @write_fault: whether we should get a writable host page
1644  * @writable: whether it allows to map a writable host page for !@write_fault
1645  *
1646  * The function will map a writable host page for these two cases:
1647  * 1): @write_fault = true
1648  * 2): @write_fault = false && @writable, @writable will tell the caller
1649  *     whether the mapping is writable.
1650  */
hva_to_pfn(unsigned long addr,bool atomic,bool * async,bool write_fault,bool * writable)1651 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1652 			bool write_fault, bool *writable)
1653 {
1654 	struct vm_area_struct *vma;
1655 	kvm_pfn_t pfn = 0;
1656 	int npages, r;
1657 
1658 	/* we can do it either atomically or asynchronously, not both */
1659 	BUG_ON(atomic && async);
1660 
1661 	if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
1662 		return pfn;
1663 
1664 	if (atomic)
1665 		return KVM_PFN_ERR_FAULT;
1666 
1667 	npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1668 	if (npages == 1)
1669 		return pfn;
1670 
1671 	down_read(&current->mm->mmap_sem);
1672 	if (npages == -EHWPOISON ||
1673 	      (!async && check_user_page_hwpoison(addr))) {
1674 		pfn = KVM_PFN_ERR_HWPOISON;
1675 		goto exit;
1676 	}
1677 
1678 retry:
1679 	vma = find_vma_intersection(current->mm, addr, addr + 1);
1680 
1681 	if (vma == NULL)
1682 		pfn = KVM_PFN_ERR_FAULT;
1683 	else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1684 		r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
1685 		if (r == -EAGAIN)
1686 			goto retry;
1687 		if (r < 0)
1688 			pfn = KVM_PFN_ERR_FAULT;
1689 	} else {
1690 		if (async && vma_is_valid(vma, write_fault))
1691 			*async = true;
1692 		pfn = KVM_PFN_ERR_FAULT;
1693 	}
1694 exit:
1695 	up_read(&current->mm->mmap_sem);
1696 	return pfn;
1697 }
1698 
__gfn_to_pfn_memslot(struct kvm_memory_slot * slot,gfn_t gfn,bool atomic,bool * async,bool write_fault,bool * writable)1699 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1700 			       bool atomic, bool *async, bool write_fault,
1701 			       bool *writable)
1702 {
1703 	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1704 
1705 	if (addr == KVM_HVA_ERR_RO_BAD) {
1706 		if (writable)
1707 			*writable = false;
1708 		return KVM_PFN_ERR_RO_FAULT;
1709 	}
1710 
1711 	if (kvm_is_error_hva(addr)) {
1712 		if (writable)
1713 			*writable = false;
1714 		return KVM_PFN_NOSLOT;
1715 	}
1716 
1717 	/* Do not map writable pfn in the readonly memslot. */
1718 	if (writable && memslot_is_readonly(slot)) {
1719 		*writable = false;
1720 		writable = NULL;
1721 	}
1722 
1723 	return hva_to_pfn(addr, atomic, async, write_fault,
1724 			  writable);
1725 }
1726 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1727 
gfn_to_pfn_prot(struct kvm * kvm,gfn_t gfn,bool write_fault,bool * writable)1728 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1729 		      bool *writable)
1730 {
1731 	return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1732 				    write_fault, writable);
1733 }
1734 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1735 
gfn_to_pfn_memslot(struct kvm_memory_slot * slot,gfn_t gfn)1736 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1737 {
1738 	return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1739 }
1740 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1741 
gfn_to_pfn_memslot_atomic(struct kvm_memory_slot * slot,gfn_t gfn)1742 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1743 {
1744 	return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1745 }
1746 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1747 
gfn_to_pfn_atomic(struct kvm * kvm,gfn_t gfn)1748 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1749 {
1750 	return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1751 }
1752 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1753 
kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu * vcpu,gfn_t gfn)1754 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1755 {
1756 	return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1757 }
1758 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1759 
gfn_to_pfn(struct kvm * kvm,gfn_t gfn)1760 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1761 {
1762 	return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1763 }
1764 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1765 
kvm_vcpu_gfn_to_pfn(struct kvm_vcpu * vcpu,gfn_t gfn)1766 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1767 {
1768 	return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1769 }
1770 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1771 
gfn_to_page_many_atomic(struct kvm_memory_slot * slot,gfn_t gfn,struct page ** pages,int nr_pages)1772 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1773 			    struct page **pages, int nr_pages)
1774 {
1775 	unsigned long addr;
1776 	gfn_t entry = 0;
1777 
1778 	addr = gfn_to_hva_many(slot, gfn, &entry);
1779 	if (kvm_is_error_hva(addr))
1780 		return -1;
1781 
1782 	if (entry < nr_pages)
1783 		return 0;
1784 
1785 	return __get_user_pages_fast(addr, nr_pages, 1, pages);
1786 }
1787 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1788 
kvm_pfn_to_page(kvm_pfn_t pfn)1789 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1790 {
1791 	if (is_error_noslot_pfn(pfn))
1792 		return KVM_ERR_PTR_BAD_PAGE;
1793 
1794 	if (kvm_is_reserved_pfn(pfn)) {
1795 		WARN_ON(1);
1796 		return KVM_ERR_PTR_BAD_PAGE;
1797 	}
1798 
1799 	return pfn_to_page(pfn);
1800 }
1801 
gfn_to_page(struct kvm * kvm,gfn_t gfn)1802 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1803 {
1804 	kvm_pfn_t pfn;
1805 
1806 	pfn = gfn_to_pfn(kvm, gfn);
1807 
1808 	return kvm_pfn_to_page(pfn);
1809 }
1810 EXPORT_SYMBOL_GPL(gfn_to_page);
1811 
__kvm_map_gfn(struct kvm_memory_slot * slot,gfn_t gfn,struct kvm_host_map * map)1812 static int __kvm_map_gfn(struct kvm_memory_slot *slot, gfn_t gfn,
1813 			 struct kvm_host_map *map)
1814 {
1815 	kvm_pfn_t pfn;
1816 	void *hva = NULL;
1817 	struct page *page = KVM_UNMAPPED_PAGE;
1818 
1819 	if (!map)
1820 		return -EINVAL;
1821 
1822 	pfn = gfn_to_pfn_memslot(slot, gfn);
1823 	if (is_error_noslot_pfn(pfn))
1824 		return -EINVAL;
1825 
1826 	if (pfn_valid(pfn)) {
1827 		page = pfn_to_page(pfn);
1828 		hva = kmap(page);
1829 #ifdef CONFIG_HAS_IOMEM
1830 	} else {
1831 		hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
1832 #endif
1833 	}
1834 
1835 	if (!hva)
1836 		return -EFAULT;
1837 
1838 	map->page = page;
1839 	map->hva = hva;
1840 	map->pfn = pfn;
1841 	map->gfn = gfn;
1842 
1843 	return 0;
1844 }
1845 
kvm_vcpu_map(struct kvm_vcpu * vcpu,gfn_t gfn,struct kvm_host_map * map)1846 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
1847 {
1848 	return __kvm_map_gfn(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, map);
1849 }
1850 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
1851 
kvm_vcpu_unmap(struct kvm_vcpu * vcpu,struct kvm_host_map * map,bool dirty)1852 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map,
1853 		    bool dirty)
1854 {
1855 	if (!map)
1856 		return;
1857 
1858 	if (!map->hva)
1859 		return;
1860 
1861 	if (map->page != KVM_UNMAPPED_PAGE)
1862 		kunmap(map->page);
1863 #ifdef CONFIG_HAS_IOMEM
1864 	else
1865 		memunmap(map->hva);
1866 #endif
1867 
1868 	if (dirty) {
1869 		kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
1870 		kvm_release_pfn_dirty(map->pfn);
1871 	} else {
1872 		kvm_release_pfn_clean(map->pfn);
1873 	}
1874 
1875 	map->hva = NULL;
1876 	map->page = NULL;
1877 }
1878 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
1879 
kvm_vcpu_gfn_to_page(struct kvm_vcpu * vcpu,gfn_t gfn)1880 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1881 {
1882 	kvm_pfn_t pfn;
1883 
1884 	pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1885 
1886 	return kvm_pfn_to_page(pfn);
1887 }
1888 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1889 
kvm_release_page_clean(struct page * page)1890 void kvm_release_page_clean(struct page *page)
1891 {
1892 	WARN_ON(is_error_page(page));
1893 
1894 	kvm_release_pfn_clean(page_to_pfn(page));
1895 }
1896 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1897 
kvm_release_pfn_clean(kvm_pfn_t pfn)1898 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1899 {
1900 	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1901 		put_page(pfn_to_page(pfn));
1902 }
1903 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1904 
kvm_release_page_dirty(struct page * page)1905 void kvm_release_page_dirty(struct page *page)
1906 {
1907 	WARN_ON(is_error_page(page));
1908 
1909 	kvm_release_pfn_dirty(page_to_pfn(page));
1910 }
1911 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1912 
kvm_release_pfn_dirty(kvm_pfn_t pfn)1913 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1914 {
1915 	kvm_set_pfn_dirty(pfn);
1916 	kvm_release_pfn_clean(pfn);
1917 }
1918 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1919 
kvm_set_pfn_dirty(kvm_pfn_t pfn)1920 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1921 {
1922 	if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn)) {
1923 		struct page *page = pfn_to_page(pfn);
1924 
1925 		SetPageDirty(page);
1926 	}
1927 }
1928 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1929 
kvm_set_pfn_accessed(kvm_pfn_t pfn)1930 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1931 {
1932 	if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
1933 		mark_page_accessed(pfn_to_page(pfn));
1934 }
1935 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1936 
kvm_get_pfn(kvm_pfn_t pfn)1937 void kvm_get_pfn(kvm_pfn_t pfn)
1938 {
1939 	if (!kvm_is_reserved_pfn(pfn))
1940 		get_page(pfn_to_page(pfn));
1941 }
1942 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1943 
next_segment(unsigned long len,int offset)1944 static int next_segment(unsigned long len, int offset)
1945 {
1946 	if (len > PAGE_SIZE - offset)
1947 		return PAGE_SIZE - offset;
1948 	else
1949 		return len;
1950 }
1951 
__kvm_read_guest_page(struct kvm_memory_slot * slot,gfn_t gfn,void * data,int offset,int len)1952 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1953 				 void *data, int offset, int len)
1954 {
1955 	int r;
1956 	unsigned long addr;
1957 
1958 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1959 	if (kvm_is_error_hva(addr))
1960 		return -EFAULT;
1961 	r = __copy_from_user(data, (void __user *)addr + offset, len);
1962 	if (r)
1963 		return -EFAULT;
1964 	return 0;
1965 }
1966 
kvm_read_guest_page(struct kvm * kvm,gfn_t gfn,void * data,int offset,int len)1967 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1968 			int len)
1969 {
1970 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1971 
1972 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
1973 }
1974 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1975 
kvm_vcpu_read_guest_page(struct kvm_vcpu * vcpu,gfn_t gfn,void * data,int offset,int len)1976 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1977 			     int offset, int len)
1978 {
1979 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1980 
1981 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
1982 }
1983 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1984 
kvm_read_guest(struct kvm * kvm,gpa_t gpa,void * data,unsigned long len)1985 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1986 {
1987 	gfn_t gfn = gpa >> PAGE_SHIFT;
1988 	int seg;
1989 	int offset = offset_in_page(gpa);
1990 	int ret;
1991 
1992 	while ((seg = next_segment(len, offset)) != 0) {
1993 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1994 		if (ret < 0)
1995 			return ret;
1996 		offset = 0;
1997 		len -= seg;
1998 		data += seg;
1999 		++gfn;
2000 	}
2001 	return 0;
2002 }
2003 EXPORT_SYMBOL_GPL(kvm_read_guest);
2004 
kvm_vcpu_read_guest(struct kvm_vcpu * vcpu,gpa_t gpa,void * data,unsigned long len)2005 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
2006 {
2007 	gfn_t gfn = gpa >> PAGE_SHIFT;
2008 	int seg;
2009 	int offset = offset_in_page(gpa);
2010 	int ret;
2011 
2012 	while ((seg = next_segment(len, offset)) != 0) {
2013 		ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
2014 		if (ret < 0)
2015 			return ret;
2016 		offset = 0;
2017 		len -= seg;
2018 		data += seg;
2019 		++gfn;
2020 	}
2021 	return 0;
2022 }
2023 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
2024 
__kvm_read_guest_atomic(struct kvm_memory_slot * slot,gfn_t gfn,void * data,int offset,unsigned long len)2025 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2026 			           void *data, int offset, unsigned long len)
2027 {
2028 	int r;
2029 	unsigned long addr;
2030 
2031 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2032 	if (kvm_is_error_hva(addr))
2033 		return -EFAULT;
2034 	pagefault_disable();
2035 	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
2036 	pagefault_enable();
2037 	if (r)
2038 		return -EFAULT;
2039 	return 0;
2040 }
2041 
kvm_read_guest_atomic(struct kvm * kvm,gpa_t gpa,void * data,unsigned long len)2042 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
2043 			  unsigned long len)
2044 {
2045 	gfn_t gfn = gpa >> PAGE_SHIFT;
2046 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2047 	int offset = offset_in_page(gpa);
2048 
2049 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2050 }
2051 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
2052 
kvm_vcpu_read_guest_atomic(struct kvm_vcpu * vcpu,gpa_t gpa,void * data,unsigned long len)2053 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
2054 			       void *data, unsigned long len)
2055 {
2056 	gfn_t gfn = gpa >> PAGE_SHIFT;
2057 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2058 	int offset = offset_in_page(gpa);
2059 
2060 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2061 }
2062 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
2063 
__kvm_write_guest_page(struct kvm_memory_slot * memslot,gfn_t gfn,const void * data,int offset,int len)2064 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
2065 			          const void *data, int offset, int len)
2066 {
2067 	int r;
2068 	unsigned long addr;
2069 
2070 	addr = gfn_to_hva_memslot(memslot, gfn);
2071 	if (kvm_is_error_hva(addr))
2072 		return -EFAULT;
2073 	r = __copy_to_user((void __user *)addr + offset, data, len);
2074 	if (r)
2075 		return -EFAULT;
2076 	mark_page_dirty_in_slot(memslot, gfn);
2077 	return 0;
2078 }
2079 
kvm_write_guest_page(struct kvm * kvm,gfn_t gfn,const void * data,int offset,int len)2080 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2081 			 const void *data, int offset, int len)
2082 {
2083 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2084 
2085 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
2086 }
2087 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2088 
kvm_vcpu_write_guest_page(struct kvm_vcpu * vcpu,gfn_t gfn,const void * data,int offset,int len)2089 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2090 			      const void *data, int offset, int len)
2091 {
2092 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2093 
2094 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
2095 }
2096 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2097 
kvm_write_guest(struct kvm * kvm,gpa_t gpa,const void * data,unsigned long len)2098 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2099 		    unsigned long len)
2100 {
2101 	gfn_t gfn = gpa >> PAGE_SHIFT;
2102 	int seg;
2103 	int offset = offset_in_page(gpa);
2104 	int ret;
2105 
2106 	while ((seg = next_segment(len, offset)) != 0) {
2107 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2108 		if (ret < 0)
2109 			return ret;
2110 		offset = 0;
2111 		len -= seg;
2112 		data += seg;
2113 		++gfn;
2114 	}
2115 	return 0;
2116 }
2117 EXPORT_SYMBOL_GPL(kvm_write_guest);
2118 
kvm_vcpu_write_guest(struct kvm_vcpu * vcpu,gpa_t gpa,const void * data,unsigned long len)2119 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2120 		         unsigned long len)
2121 {
2122 	gfn_t gfn = gpa >> PAGE_SHIFT;
2123 	int seg;
2124 	int offset = offset_in_page(gpa);
2125 	int ret;
2126 
2127 	while ((seg = next_segment(len, offset)) != 0) {
2128 		ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
2129 		if (ret < 0)
2130 			return ret;
2131 		offset = 0;
2132 		len -= seg;
2133 		data += seg;
2134 		++gfn;
2135 	}
2136 	return 0;
2137 }
2138 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2139 
__kvm_gfn_to_hva_cache_init(struct kvm_memslots * slots,struct gfn_to_hva_cache * ghc,gpa_t gpa,unsigned long len)2140 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2141 				       struct gfn_to_hva_cache *ghc,
2142 				       gpa_t gpa, unsigned long len)
2143 {
2144 	int offset = offset_in_page(gpa);
2145 	gfn_t start_gfn = gpa >> PAGE_SHIFT;
2146 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2147 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2148 	gfn_t nr_pages_avail;
2149 	int r = start_gfn <= end_gfn ? 0 : -EINVAL;
2150 
2151 	ghc->gpa = gpa;
2152 	ghc->generation = slots->generation;
2153 	ghc->len = len;
2154 	ghc->hva = KVM_HVA_ERR_BAD;
2155 
2156 	/*
2157 	 * If the requested region crosses two memslots, we still
2158 	 * verify that the entire region is valid here.
2159 	 */
2160 	while (!r && start_gfn <= end_gfn) {
2161 		ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2162 		ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2163 					   &nr_pages_avail);
2164 		if (kvm_is_error_hva(ghc->hva))
2165 			r = -EFAULT;
2166 		start_gfn += nr_pages_avail;
2167 	}
2168 
2169 	/* Use the slow path for cross page reads and writes. */
2170 	if (!r && nr_pages_needed == 1)
2171 		ghc->hva += offset;
2172 	else
2173 		ghc->memslot = NULL;
2174 
2175 	return r;
2176 }
2177 
kvm_gfn_to_hva_cache_init(struct kvm * kvm,struct gfn_to_hva_cache * ghc,gpa_t gpa,unsigned long len)2178 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2179 			      gpa_t gpa, unsigned long len)
2180 {
2181 	struct kvm_memslots *slots = kvm_memslots(kvm);
2182 	return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2183 }
2184 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2185 
kvm_write_guest_offset_cached(struct kvm * kvm,struct gfn_to_hva_cache * ghc,void * data,unsigned int offset,unsigned long len)2186 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2187 				  void *data, unsigned int offset,
2188 				  unsigned long len)
2189 {
2190 	struct kvm_memslots *slots = kvm_memslots(kvm);
2191 	int r;
2192 	gpa_t gpa = ghc->gpa + offset;
2193 
2194 	BUG_ON(len + offset > ghc->len);
2195 
2196 	if (slots->generation != ghc->generation)
2197 		__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2198 
2199 	if (unlikely(!ghc->memslot))
2200 		return kvm_write_guest(kvm, gpa, data, len);
2201 
2202 	if (kvm_is_error_hva(ghc->hva))
2203 		return -EFAULT;
2204 
2205 	r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2206 	if (r)
2207 		return -EFAULT;
2208 	mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
2209 
2210 	return 0;
2211 }
2212 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2213 
kvm_write_guest_cached(struct kvm * kvm,struct gfn_to_hva_cache * ghc,void * data,unsigned long len)2214 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2215 			   void *data, unsigned long len)
2216 {
2217 	return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2218 }
2219 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2220 
kvm_read_guest_cached(struct kvm * kvm,struct gfn_to_hva_cache * ghc,void * data,unsigned long len)2221 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2222 			   void *data, unsigned long len)
2223 {
2224 	struct kvm_memslots *slots = kvm_memslots(kvm);
2225 	int r;
2226 
2227 	BUG_ON(len > ghc->len);
2228 
2229 	if (slots->generation != ghc->generation)
2230 		__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2231 
2232 	if (unlikely(!ghc->memslot))
2233 		return kvm_read_guest(kvm, ghc->gpa, data, len);
2234 
2235 	if (kvm_is_error_hva(ghc->hva))
2236 		return -EFAULT;
2237 
2238 	r = __copy_from_user(data, (void __user *)ghc->hva, len);
2239 	if (r)
2240 		return -EFAULT;
2241 
2242 	return 0;
2243 }
2244 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2245 
kvm_clear_guest_page(struct kvm * kvm,gfn_t gfn,int offset,int len)2246 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2247 {
2248 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2249 
2250 	return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2251 }
2252 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2253 
kvm_clear_guest(struct kvm * kvm,gpa_t gpa,unsigned long len)2254 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2255 {
2256 	gfn_t gfn = gpa >> PAGE_SHIFT;
2257 	int seg;
2258 	int offset = offset_in_page(gpa);
2259 	int ret;
2260 
2261 	while ((seg = next_segment(len, offset)) != 0) {
2262 		ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2263 		if (ret < 0)
2264 			return ret;
2265 		offset = 0;
2266 		len -= seg;
2267 		++gfn;
2268 	}
2269 	return 0;
2270 }
2271 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2272 
mark_page_dirty_in_slot(struct kvm_memory_slot * memslot,gfn_t gfn)2273 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2274 				    gfn_t gfn)
2275 {
2276 	if (memslot && memslot->dirty_bitmap) {
2277 		unsigned long rel_gfn = gfn - memslot->base_gfn;
2278 
2279 		set_bit_le(rel_gfn, memslot->dirty_bitmap);
2280 	}
2281 }
2282 
mark_page_dirty(struct kvm * kvm,gfn_t gfn)2283 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2284 {
2285 	struct kvm_memory_slot *memslot;
2286 
2287 	memslot = gfn_to_memslot(kvm, gfn);
2288 	mark_page_dirty_in_slot(memslot, gfn);
2289 }
2290 EXPORT_SYMBOL_GPL(mark_page_dirty);
2291 
kvm_vcpu_mark_page_dirty(struct kvm_vcpu * vcpu,gfn_t gfn)2292 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2293 {
2294 	struct kvm_memory_slot *memslot;
2295 
2296 	memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2297 	mark_page_dirty_in_slot(memslot, gfn);
2298 }
2299 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2300 
kvm_sigset_activate(struct kvm_vcpu * vcpu)2301 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2302 {
2303 	if (!vcpu->sigset_active)
2304 		return;
2305 
2306 	/*
2307 	 * This does a lockless modification of ->real_blocked, which is fine
2308 	 * because, only current can change ->real_blocked and all readers of
2309 	 * ->real_blocked don't care as long ->real_blocked is always a subset
2310 	 * of ->blocked.
2311 	 */
2312 	sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2313 }
2314 
kvm_sigset_deactivate(struct kvm_vcpu * vcpu)2315 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2316 {
2317 	if (!vcpu->sigset_active)
2318 		return;
2319 
2320 	sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2321 	sigemptyset(&current->real_blocked);
2322 }
2323 
grow_halt_poll_ns(struct kvm_vcpu * vcpu)2324 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2325 {
2326 	unsigned int old, val, grow, grow_start;
2327 
2328 	old = val = vcpu->halt_poll_ns;
2329 	grow_start = READ_ONCE(halt_poll_ns_grow_start);
2330 	grow = READ_ONCE(halt_poll_ns_grow);
2331 	if (!grow)
2332 		goto out;
2333 
2334 	val *= grow;
2335 	if (val < grow_start)
2336 		val = grow_start;
2337 
2338 	if (val > halt_poll_ns)
2339 		val = halt_poll_ns;
2340 
2341 	vcpu->halt_poll_ns = val;
2342 out:
2343 	trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2344 }
2345 
shrink_halt_poll_ns(struct kvm_vcpu * vcpu)2346 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2347 {
2348 	unsigned int old, val, shrink;
2349 
2350 	old = val = vcpu->halt_poll_ns;
2351 	shrink = READ_ONCE(halt_poll_ns_shrink);
2352 	if (shrink == 0)
2353 		val = 0;
2354 	else
2355 		val /= shrink;
2356 
2357 	vcpu->halt_poll_ns = val;
2358 	trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2359 }
2360 
kvm_vcpu_check_block(struct kvm_vcpu * vcpu)2361 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2362 {
2363 	int ret = -EINTR;
2364 	int idx = srcu_read_lock(&vcpu->kvm->srcu);
2365 
2366 	if (kvm_arch_vcpu_runnable(vcpu)) {
2367 		kvm_make_request(KVM_REQ_UNHALT, vcpu);
2368 		goto out;
2369 	}
2370 	if (kvm_cpu_has_pending_timer(vcpu))
2371 		goto out;
2372 	if (signal_pending(current))
2373 		goto out;
2374 
2375 	ret = 0;
2376 out:
2377 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
2378 	return ret;
2379 }
2380 
2381 /*
2382  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2383  */
kvm_vcpu_block(struct kvm_vcpu * vcpu)2384 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2385 {
2386 	ktime_t start, cur;
2387 	DECLARE_SWAITQUEUE(wait);
2388 	bool waited = false;
2389 	u64 block_ns;
2390 
2391 	kvm_arch_vcpu_blocking(vcpu);
2392 
2393 	start = cur = ktime_get();
2394 	if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) {
2395 		ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2396 
2397 		++vcpu->stat.halt_attempted_poll;
2398 		do {
2399 			/*
2400 			 * This sets KVM_REQ_UNHALT if an interrupt
2401 			 * arrives.
2402 			 */
2403 			if (kvm_vcpu_check_block(vcpu) < 0) {
2404 				++vcpu->stat.halt_successful_poll;
2405 				if (!vcpu_valid_wakeup(vcpu))
2406 					++vcpu->stat.halt_poll_invalid;
2407 				goto out;
2408 			}
2409 			cur = ktime_get();
2410 		} while (single_task_running() && ktime_before(cur, stop));
2411 	}
2412 
2413 	for (;;) {
2414 		prepare_to_swait_exclusive(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2415 
2416 		if (kvm_vcpu_check_block(vcpu) < 0)
2417 			break;
2418 
2419 		waited = true;
2420 		schedule();
2421 	}
2422 
2423 	finish_swait(&vcpu->wq, &wait);
2424 	cur = ktime_get();
2425 out:
2426 	kvm_arch_vcpu_unblocking(vcpu);
2427 	block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2428 
2429 	if (!kvm_arch_no_poll(vcpu)) {
2430 		if (!vcpu_valid_wakeup(vcpu)) {
2431 			shrink_halt_poll_ns(vcpu);
2432 		} else if (halt_poll_ns) {
2433 			if (block_ns <= vcpu->halt_poll_ns)
2434 				;
2435 			/* we had a long block, shrink polling */
2436 			else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2437 				shrink_halt_poll_ns(vcpu);
2438 			/* we had a short halt and our poll time is too small */
2439 			else if (vcpu->halt_poll_ns < halt_poll_ns &&
2440 				block_ns < halt_poll_ns)
2441 				grow_halt_poll_ns(vcpu);
2442 		} else {
2443 			vcpu->halt_poll_ns = 0;
2444 		}
2445 	}
2446 
2447 	trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2448 	kvm_arch_vcpu_block_finish(vcpu);
2449 }
2450 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2451 
kvm_vcpu_wake_up(struct kvm_vcpu * vcpu)2452 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2453 {
2454 	struct swait_queue_head *wqp;
2455 
2456 	wqp = kvm_arch_vcpu_wq(vcpu);
2457 	if (swq_has_sleeper(wqp)) {
2458 		swake_up_one(wqp);
2459 		WRITE_ONCE(vcpu->ready, true);
2460 		++vcpu->stat.halt_wakeup;
2461 		return true;
2462 	}
2463 
2464 	return false;
2465 }
2466 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2467 
2468 #ifndef CONFIG_S390
2469 /*
2470  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2471  */
kvm_vcpu_kick(struct kvm_vcpu * vcpu)2472 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2473 {
2474 	int me;
2475 	int cpu = vcpu->cpu;
2476 
2477 	if (kvm_vcpu_wake_up(vcpu))
2478 		return;
2479 
2480 	me = get_cpu();
2481 	if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2482 		if (kvm_arch_vcpu_should_kick(vcpu))
2483 			smp_send_reschedule(cpu);
2484 	put_cpu();
2485 }
2486 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2487 #endif /* !CONFIG_S390 */
2488 
kvm_vcpu_yield_to(struct kvm_vcpu * target)2489 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2490 {
2491 	struct pid *pid;
2492 	struct task_struct *task = NULL;
2493 	int ret = 0;
2494 
2495 	rcu_read_lock();
2496 	pid = rcu_dereference(target->pid);
2497 	if (pid)
2498 		task = get_pid_task(pid, PIDTYPE_PID);
2499 	rcu_read_unlock();
2500 	if (!task)
2501 		return ret;
2502 	ret = yield_to(task, 1);
2503 	put_task_struct(task);
2504 
2505 	return ret;
2506 }
2507 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2508 
2509 /*
2510  * Helper that checks whether a VCPU is eligible for directed yield.
2511  * Most eligible candidate to yield is decided by following heuristics:
2512  *
2513  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2514  *  (preempted lock holder), indicated by @in_spin_loop.
2515  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2516  *
2517  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2518  *  chance last time (mostly it has become eligible now since we have probably
2519  *  yielded to lockholder in last iteration. This is done by toggling
2520  *  @dy_eligible each time a VCPU checked for eligibility.)
2521  *
2522  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2523  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2524  *  burning. Giving priority for a potential lock-holder increases lock
2525  *  progress.
2526  *
2527  *  Since algorithm is based on heuristics, accessing another VCPU data without
2528  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2529  *  and continue with next VCPU and so on.
2530  */
kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu * vcpu)2531 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2532 {
2533 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2534 	bool eligible;
2535 
2536 	eligible = !vcpu->spin_loop.in_spin_loop ||
2537 		    vcpu->spin_loop.dy_eligible;
2538 
2539 	if (vcpu->spin_loop.in_spin_loop)
2540 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2541 
2542 	return eligible;
2543 #else
2544 	return true;
2545 #endif
2546 }
2547 
2548 /*
2549  * Unlike kvm_arch_vcpu_runnable, this function is called outside
2550  * a vcpu_load/vcpu_put pair.  However, for most architectures
2551  * kvm_arch_vcpu_runnable does not require vcpu_load.
2552  */
kvm_arch_dy_runnable(struct kvm_vcpu * vcpu)2553 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
2554 {
2555 	return kvm_arch_vcpu_runnable(vcpu);
2556 }
2557 
vcpu_dy_runnable(struct kvm_vcpu * vcpu)2558 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
2559 {
2560 	if (kvm_arch_dy_runnable(vcpu))
2561 		return true;
2562 
2563 #ifdef CONFIG_KVM_ASYNC_PF
2564 	if (!list_empty_careful(&vcpu->async_pf.done))
2565 		return true;
2566 #endif
2567 
2568 	return false;
2569 }
2570 
kvm_vcpu_on_spin(struct kvm_vcpu * me,bool yield_to_kernel_mode)2571 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2572 {
2573 	struct kvm *kvm = me->kvm;
2574 	struct kvm_vcpu *vcpu;
2575 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2576 	int yielded = 0;
2577 	int try = 3;
2578 	int pass;
2579 	int i;
2580 
2581 	kvm_vcpu_set_in_spin_loop(me, true);
2582 	/*
2583 	 * We boost the priority of a VCPU that is runnable but not
2584 	 * currently running, because it got preempted by something
2585 	 * else and called schedule in __vcpu_run.  Hopefully that
2586 	 * VCPU is holding the lock that we need and will release it.
2587 	 * We approximate round-robin by starting at the last boosted VCPU.
2588 	 */
2589 	for (pass = 0; pass < 2 && !yielded && try; pass++) {
2590 		kvm_for_each_vcpu(i, vcpu, kvm) {
2591 			if (!pass && i <= last_boosted_vcpu) {
2592 				i = last_boosted_vcpu;
2593 				continue;
2594 			} else if (pass && i > last_boosted_vcpu)
2595 				break;
2596 			if (!READ_ONCE(vcpu->ready))
2597 				continue;
2598 			if (vcpu == me)
2599 				continue;
2600 			if (swait_active(&vcpu->wq) && !vcpu_dy_runnable(vcpu))
2601 				continue;
2602 			if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
2603 				!kvm_arch_vcpu_in_kernel(vcpu))
2604 				continue;
2605 			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2606 				continue;
2607 
2608 			yielded = kvm_vcpu_yield_to(vcpu);
2609 			if (yielded > 0) {
2610 				kvm->last_boosted_vcpu = i;
2611 				break;
2612 			} else if (yielded < 0) {
2613 				try--;
2614 				if (!try)
2615 					break;
2616 			}
2617 		}
2618 	}
2619 	kvm_vcpu_set_in_spin_loop(me, false);
2620 
2621 	/* Ensure vcpu is not eligible during next spinloop */
2622 	kvm_vcpu_set_dy_eligible(me, false);
2623 }
2624 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2625 
kvm_vcpu_fault(struct vm_fault * vmf)2626 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
2627 {
2628 	struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2629 	struct page *page;
2630 
2631 	if (vmf->pgoff == 0)
2632 		page = virt_to_page(vcpu->run);
2633 #ifdef CONFIG_X86
2634 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2635 		page = virt_to_page(vcpu->arch.pio_data);
2636 #endif
2637 #ifdef CONFIG_KVM_MMIO
2638 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2639 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2640 #endif
2641 	else
2642 		return kvm_arch_vcpu_fault(vcpu, vmf);
2643 	get_page(page);
2644 	vmf->page = page;
2645 	return 0;
2646 }
2647 
2648 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2649 	.fault = kvm_vcpu_fault,
2650 };
2651 
kvm_vcpu_mmap(struct file * file,struct vm_area_struct * vma)2652 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2653 {
2654 	vma->vm_ops = &kvm_vcpu_vm_ops;
2655 	return 0;
2656 }
2657 
kvm_vcpu_release(struct inode * inode,struct file * filp)2658 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2659 {
2660 	struct kvm_vcpu *vcpu = filp->private_data;
2661 
2662 	debugfs_remove_recursive(vcpu->debugfs_dentry);
2663 	kvm_put_kvm(vcpu->kvm);
2664 	return 0;
2665 }
2666 
2667 static struct file_operations kvm_vcpu_fops = {
2668 	.release        = kvm_vcpu_release,
2669 	.unlocked_ioctl = kvm_vcpu_ioctl,
2670 	.mmap           = kvm_vcpu_mmap,
2671 	.llseek		= noop_llseek,
2672 	KVM_COMPAT(kvm_vcpu_compat_ioctl),
2673 };
2674 
2675 /*
2676  * Allocates an inode for the vcpu.
2677  */
create_vcpu_fd(struct kvm_vcpu * vcpu)2678 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2679 {
2680 	char name[8 + 1 + ITOA_MAX_LEN + 1];
2681 
2682 	snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
2683 	return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2684 }
2685 
kvm_create_vcpu_debugfs(struct kvm_vcpu * vcpu)2686 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2687 {
2688 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
2689 	char dir_name[ITOA_MAX_LEN * 2];
2690 
2691 	if (!debugfs_initialized())
2692 		return;
2693 
2694 	snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2695 	vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2696 						  vcpu->kvm->debugfs_dentry);
2697 
2698 	kvm_arch_create_vcpu_debugfs(vcpu);
2699 #endif
2700 }
2701 
2702 /*
2703  * Creates some virtual cpus.  Good luck creating more than one.
2704  */
kvm_vm_ioctl_create_vcpu(struct kvm * kvm,u32 id)2705 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2706 {
2707 	int r;
2708 	struct kvm_vcpu *vcpu;
2709 
2710 	if (id >= KVM_MAX_VCPU_ID)
2711 		return -EINVAL;
2712 
2713 	mutex_lock(&kvm->lock);
2714 	if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2715 		mutex_unlock(&kvm->lock);
2716 		return -EINVAL;
2717 	}
2718 
2719 	kvm->created_vcpus++;
2720 	mutex_unlock(&kvm->lock);
2721 
2722 	vcpu = kvm_arch_vcpu_create(kvm, id);
2723 	if (IS_ERR(vcpu)) {
2724 		r = PTR_ERR(vcpu);
2725 		goto vcpu_decrement;
2726 	}
2727 
2728 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2729 
2730 	r = kvm_arch_vcpu_setup(vcpu);
2731 	if (r)
2732 		goto vcpu_destroy;
2733 
2734 	kvm_create_vcpu_debugfs(vcpu);
2735 
2736 	mutex_lock(&kvm->lock);
2737 	if (kvm_get_vcpu_by_id(kvm, id)) {
2738 		r = -EEXIST;
2739 		goto unlock_vcpu_destroy;
2740 	}
2741 
2742 	BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2743 
2744 	/* Now it's all set up, let userspace reach it */
2745 	kvm_get_kvm(kvm);
2746 	r = create_vcpu_fd(vcpu);
2747 	if (r < 0) {
2748 		kvm_put_kvm(kvm);
2749 		goto unlock_vcpu_destroy;
2750 	}
2751 
2752 	kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2753 
2754 	/*
2755 	 * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2756 	 * before kvm->online_vcpu's incremented value.
2757 	 */
2758 	smp_wmb();
2759 	atomic_inc(&kvm->online_vcpus);
2760 
2761 	mutex_unlock(&kvm->lock);
2762 	kvm_arch_vcpu_postcreate(vcpu);
2763 	return r;
2764 
2765 unlock_vcpu_destroy:
2766 	mutex_unlock(&kvm->lock);
2767 	debugfs_remove_recursive(vcpu->debugfs_dentry);
2768 vcpu_destroy:
2769 	kvm_arch_vcpu_destroy(vcpu);
2770 vcpu_decrement:
2771 	mutex_lock(&kvm->lock);
2772 	kvm->created_vcpus--;
2773 	mutex_unlock(&kvm->lock);
2774 	return r;
2775 }
2776 
kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu * vcpu,sigset_t * sigset)2777 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2778 {
2779 	if (sigset) {
2780 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2781 		vcpu->sigset_active = 1;
2782 		vcpu->sigset = *sigset;
2783 	} else
2784 		vcpu->sigset_active = 0;
2785 	return 0;
2786 }
2787 
kvm_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)2788 static long kvm_vcpu_ioctl(struct file *filp,
2789 			   unsigned int ioctl, unsigned long arg)
2790 {
2791 	struct kvm_vcpu *vcpu = filp->private_data;
2792 	void __user *argp = (void __user *)arg;
2793 	int r;
2794 	struct kvm_fpu *fpu = NULL;
2795 	struct kvm_sregs *kvm_sregs = NULL;
2796 
2797 	if (vcpu->kvm->mm != current->mm)
2798 		return -EIO;
2799 
2800 	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2801 		return -EINVAL;
2802 
2803 	/*
2804 	 * Some architectures have vcpu ioctls that are asynchronous to vcpu
2805 	 * execution; mutex_lock() would break them.
2806 	 */
2807 	r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
2808 	if (r != -ENOIOCTLCMD)
2809 		return r;
2810 
2811 	if (mutex_lock_killable(&vcpu->mutex))
2812 		return -EINTR;
2813 	switch (ioctl) {
2814 	case KVM_RUN: {
2815 		struct pid *oldpid;
2816 		r = -EINVAL;
2817 		if (arg)
2818 			goto out;
2819 		oldpid = rcu_access_pointer(vcpu->pid);
2820 		if (unlikely(oldpid != task_pid(current))) {
2821 			/* The thread running this VCPU changed. */
2822 			struct pid *newpid;
2823 
2824 			r = kvm_arch_vcpu_run_pid_change(vcpu);
2825 			if (r)
2826 				break;
2827 
2828 			newpid = get_task_pid(current, PIDTYPE_PID);
2829 			rcu_assign_pointer(vcpu->pid, newpid);
2830 			if (oldpid)
2831 				synchronize_rcu();
2832 			put_pid(oldpid);
2833 		}
2834 		r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2835 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2836 		break;
2837 	}
2838 	case KVM_GET_REGS: {
2839 		struct kvm_regs *kvm_regs;
2840 
2841 		r = -ENOMEM;
2842 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
2843 		if (!kvm_regs)
2844 			goto out;
2845 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2846 		if (r)
2847 			goto out_free1;
2848 		r = -EFAULT;
2849 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2850 			goto out_free1;
2851 		r = 0;
2852 out_free1:
2853 		kfree(kvm_regs);
2854 		break;
2855 	}
2856 	case KVM_SET_REGS: {
2857 		struct kvm_regs *kvm_regs;
2858 
2859 		r = -ENOMEM;
2860 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2861 		if (IS_ERR(kvm_regs)) {
2862 			r = PTR_ERR(kvm_regs);
2863 			goto out;
2864 		}
2865 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2866 		kfree(kvm_regs);
2867 		break;
2868 	}
2869 	case KVM_GET_SREGS: {
2870 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
2871 				    GFP_KERNEL_ACCOUNT);
2872 		r = -ENOMEM;
2873 		if (!kvm_sregs)
2874 			goto out;
2875 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2876 		if (r)
2877 			goto out;
2878 		r = -EFAULT;
2879 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2880 			goto out;
2881 		r = 0;
2882 		break;
2883 	}
2884 	case KVM_SET_SREGS: {
2885 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2886 		if (IS_ERR(kvm_sregs)) {
2887 			r = PTR_ERR(kvm_sregs);
2888 			kvm_sregs = NULL;
2889 			goto out;
2890 		}
2891 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2892 		break;
2893 	}
2894 	case KVM_GET_MP_STATE: {
2895 		struct kvm_mp_state mp_state;
2896 
2897 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2898 		if (r)
2899 			goto out;
2900 		r = -EFAULT;
2901 		if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2902 			goto out;
2903 		r = 0;
2904 		break;
2905 	}
2906 	case KVM_SET_MP_STATE: {
2907 		struct kvm_mp_state mp_state;
2908 
2909 		r = -EFAULT;
2910 		if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2911 			goto out;
2912 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2913 		break;
2914 	}
2915 	case KVM_TRANSLATE: {
2916 		struct kvm_translation tr;
2917 
2918 		r = -EFAULT;
2919 		if (copy_from_user(&tr, argp, sizeof(tr)))
2920 			goto out;
2921 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2922 		if (r)
2923 			goto out;
2924 		r = -EFAULT;
2925 		if (copy_to_user(argp, &tr, sizeof(tr)))
2926 			goto out;
2927 		r = 0;
2928 		break;
2929 	}
2930 	case KVM_SET_GUEST_DEBUG: {
2931 		struct kvm_guest_debug dbg;
2932 
2933 		r = -EFAULT;
2934 		if (copy_from_user(&dbg, argp, sizeof(dbg)))
2935 			goto out;
2936 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2937 		break;
2938 	}
2939 	case KVM_SET_SIGNAL_MASK: {
2940 		struct kvm_signal_mask __user *sigmask_arg = argp;
2941 		struct kvm_signal_mask kvm_sigmask;
2942 		sigset_t sigset, *p;
2943 
2944 		p = NULL;
2945 		if (argp) {
2946 			r = -EFAULT;
2947 			if (copy_from_user(&kvm_sigmask, argp,
2948 					   sizeof(kvm_sigmask)))
2949 				goto out;
2950 			r = -EINVAL;
2951 			if (kvm_sigmask.len != sizeof(sigset))
2952 				goto out;
2953 			r = -EFAULT;
2954 			if (copy_from_user(&sigset, sigmask_arg->sigset,
2955 					   sizeof(sigset)))
2956 				goto out;
2957 			p = &sigset;
2958 		}
2959 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2960 		break;
2961 	}
2962 	case KVM_GET_FPU: {
2963 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
2964 		r = -ENOMEM;
2965 		if (!fpu)
2966 			goto out;
2967 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2968 		if (r)
2969 			goto out;
2970 		r = -EFAULT;
2971 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2972 			goto out;
2973 		r = 0;
2974 		break;
2975 	}
2976 	case KVM_SET_FPU: {
2977 		fpu = memdup_user(argp, sizeof(*fpu));
2978 		if (IS_ERR(fpu)) {
2979 			r = PTR_ERR(fpu);
2980 			fpu = NULL;
2981 			goto out;
2982 		}
2983 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2984 		break;
2985 	}
2986 	default:
2987 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2988 	}
2989 out:
2990 	mutex_unlock(&vcpu->mutex);
2991 	kfree(fpu);
2992 	kfree(kvm_sregs);
2993 	return r;
2994 }
2995 
2996 #ifdef CONFIG_KVM_COMPAT
kvm_vcpu_compat_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)2997 static long kvm_vcpu_compat_ioctl(struct file *filp,
2998 				  unsigned int ioctl, unsigned long arg)
2999 {
3000 	struct kvm_vcpu *vcpu = filp->private_data;
3001 	void __user *argp = compat_ptr(arg);
3002 	int r;
3003 
3004 	if (vcpu->kvm->mm != current->mm)
3005 		return -EIO;
3006 
3007 	switch (ioctl) {
3008 	case KVM_SET_SIGNAL_MASK: {
3009 		struct kvm_signal_mask __user *sigmask_arg = argp;
3010 		struct kvm_signal_mask kvm_sigmask;
3011 		sigset_t sigset;
3012 
3013 		if (argp) {
3014 			r = -EFAULT;
3015 			if (copy_from_user(&kvm_sigmask, argp,
3016 					   sizeof(kvm_sigmask)))
3017 				goto out;
3018 			r = -EINVAL;
3019 			if (kvm_sigmask.len != sizeof(compat_sigset_t))
3020 				goto out;
3021 			r = -EFAULT;
3022 			if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset))
3023 				goto out;
3024 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
3025 		} else
3026 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
3027 		break;
3028 	}
3029 	default:
3030 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
3031 	}
3032 
3033 out:
3034 	return r;
3035 }
3036 #endif
3037 
kvm_device_mmap(struct file * filp,struct vm_area_struct * vma)3038 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
3039 {
3040 	struct kvm_device *dev = filp->private_data;
3041 
3042 	if (dev->ops->mmap)
3043 		return dev->ops->mmap(dev, vma);
3044 
3045 	return -ENODEV;
3046 }
3047 
kvm_device_ioctl_attr(struct kvm_device * dev,int (* accessor)(struct kvm_device * dev,struct kvm_device_attr * attr),unsigned long arg)3048 static int kvm_device_ioctl_attr(struct kvm_device *dev,
3049 				 int (*accessor)(struct kvm_device *dev,
3050 						 struct kvm_device_attr *attr),
3051 				 unsigned long arg)
3052 {
3053 	struct kvm_device_attr attr;
3054 
3055 	if (!accessor)
3056 		return -EPERM;
3057 
3058 	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
3059 		return -EFAULT;
3060 
3061 	return accessor(dev, &attr);
3062 }
3063 
kvm_device_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)3064 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
3065 			     unsigned long arg)
3066 {
3067 	struct kvm_device *dev = filp->private_data;
3068 
3069 	if (dev->kvm->mm != current->mm)
3070 		return -EIO;
3071 
3072 	switch (ioctl) {
3073 	case KVM_SET_DEVICE_ATTR:
3074 		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
3075 	case KVM_GET_DEVICE_ATTR:
3076 		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
3077 	case KVM_HAS_DEVICE_ATTR:
3078 		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
3079 	default:
3080 		if (dev->ops->ioctl)
3081 			return dev->ops->ioctl(dev, ioctl, arg);
3082 
3083 		return -ENOTTY;
3084 	}
3085 }
3086 
kvm_device_release(struct inode * inode,struct file * filp)3087 static int kvm_device_release(struct inode *inode, struct file *filp)
3088 {
3089 	struct kvm_device *dev = filp->private_data;
3090 	struct kvm *kvm = dev->kvm;
3091 
3092 	if (dev->ops->release) {
3093 		mutex_lock(&kvm->lock);
3094 		list_del(&dev->vm_node);
3095 		dev->ops->release(dev);
3096 		mutex_unlock(&kvm->lock);
3097 	}
3098 
3099 	kvm_put_kvm(kvm);
3100 	return 0;
3101 }
3102 
3103 static const struct file_operations kvm_device_fops = {
3104 	.unlocked_ioctl = kvm_device_ioctl,
3105 	.release = kvm_device_release,
3106 	KVM_COMPAT(kvm_device_ioctl),
3107 	.mmap = kvm_device_mmap,
3108 };
3109 
kvm_device_from_filp(struct file * filp)3110 struct kvm_device *kvm_device_from_filp(struct file *filp)
3111 {
3112 	if (filp->f_op != &kvm_device_fops)
3113 		return NULL;
3114 
3115 	return filp->private_data;
3116 }
3117 
3118 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
3119 #ifdef CONFIG_KVM_MPIC
3120 	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
3121 	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
3122 #endif
3123 };
3124 
kvm_register_device_ops(struct kvm_device_ops * ops,u32 type)3125 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
3126 {
3127 	if (type >= ARRAY_SIZE(kvm_device_ops_table))
3128 		return -ENOSPC;
3129 
3130 	if (kvm_device_ops_table[type] != NULL)
3131 		return -EEXIST;
3132 
3133 	kvm_device_ops_table[type] = ops;
3134 	return 0;
3135 }
3136 
kvm_unregister_device_ops(u32 type)3137 void kvm_unregister_device_ops(u32 type)
3138 {
3139 	if (kvm_device_ops_table[type] != NULL)
3140 		kvm_device_ops_table[type] = NULL;
3141 }
3142 
kvm_ioctl_create_device(struct kvm * kvm,struct kvm_create_device * cd)3143 static int kvm_ioctl_create_device(struct kvm *kvm,
3144 				   struct kvm_create_device *cd)
3145 {
3146 	struct kvm_device_ops *ops = NULL;
3147 	struct kvm_device *dev;
3148 	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
3149 	int type;
3150 	int ret;
3151 
3152 	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
3153 		return -ENODEV;
3154 
3155 	type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
3156 	ops = kvm_device_ops_table[type];
3157 	if (ops == NULL)
3158 		return -ENODEV;
3159 
3160 	if (test)
3161 		return 0;
3162 
3163 	dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
3164 	if (!dev)
3165 		return -ENOMEM;
3166 
3167 	dev->ops = ops;
3168 	dev->kvm = kvm;
3169 
3170 	mutex_lock(&kvm->lock);
3171 	ret = ops->create(dev, type);
3172 	if (ret < 0) {
3173 		mutex_unlock(&kvm->lock);
3174 		kfree(dev);
3175 		return ret;
3176 	}
3177 	list_add(&dev->vm_node, &kvm->devices);
3178 	mutex_unlock(&kvm->lock);
3179 
3180 	if (ops->init)
3181 		ops->init(dev);
3182 
3183 	kvm_get_kvm(kvm);
3184 	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
3185 	if (ret < 0) {
3186 		kvm_put_kvm(kvm);
3187 		mutex_lock(&kvm->lock);
3188 		list_del(&dev->vm_node);
3189 		mutex_unlock(&kvm->lock);
3190 		ops->destroy(dev);
3191 		return ret;
3192 	}
3193 
3194 	cd->fd = ret;
3195 	return 0;
3196 }
3197 
kvm_vm_ioctl_check_extension_generic(struct kvm * kvm,long arg)3198 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
3199 {
3200 	switch (arg) {
3201 	case KVM_CAP_USER_MEMORY:
3202 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
3203 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
3204 	case KVM_CAP_INTERNAL_ERROR_DATA:
3205 #ifdef CONFIG_HAVE_KVM_MSI
3206 	case KVM_CAP_SIGNAL_MSI:
3207 #endif
3208 #ifdef CONFIG_HAVE_KVM_IRQFD
3209 	case KVM_CAP_IRQFD:
3210 	case KVM_CAP_IRQFD_RESAMPLE:
3211 #endif
3212 	case KVM_CAP_IOEVENTFD_ANY_LENGTH:
3213 	case KVM_CAP_CHECK_EXTENSION_VM:
3214 	case KVM_CAP_ENABLE_CAP_VM:
3215 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3216 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3217 #endif
3218 		return 1;
3219 #ifdef CONFIG_KVM_MMIO
3220 	case KVM_CAP_COALESCED_MMIO:
3221 		return KVM_COALESCED_MMIO_PAGE_OFFSET;
3222 	case KVM_CAP_COALESCED_PIO:
3223 		return 1;
3224 #endif
3225 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3226 	case KVM_CAP_IRQ_ROUTING:
3227 		return KVM_MAX_IRQ_ROUTES;
3228 #endif
3229 #if KVM_ADDRESS_SPACE_NUM > 1
3230 	case KVM_CAP_MULTI_ADDRESS_SPACE:
3231 		return KVM_ADDRESS_SPACE_NUM;
3232 #endif
3233 	case KVM_CAP_NR_MEMSLOTS:
3234 		return KVM_USER_MEM_SLOTS;
3235 	default:
3236 		break;
3237 	}
3238 	return kvm_vm_ioctl_check_extension(kvm, arg);
3239 }
3240 
kvm_vm_ioctl_enable_cap(struct kvm * kvm,struct kvm_enable_cap * cap)3241 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3242 						  struct kvm_enable_cap *cap)
3243 {
3244 	return -EINVAL;
3245 }
3246 
kvm_vm_ioctl_enable_cap_generic(struct kvm * kvm,struct kvm_enable_cap * cap)3247 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
3248 					   struct kvm_enable_cap *cap)
3249 {
3250 	switch (cap->cap) {
3251 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3252 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3253 		if (cap->flags || (cap->args[0] & ~1))
3254 			return -EINVAL;
3255 		kvm->manual_dirty_log_protect = cap->args[0];
3256 		return 0;
3257 #endif
3258 	default:
3259 		return kvm_vm_ioctl_enable_cap(kvm, cap);
3260 	}
3261 }
3262 
kvm_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)3263 static long kvm_vm_ioctl(struct file *filp,
3264 			   unsigned int ioctl, unsigned long arg)
3265 {
3266 	struct kvm *kvm = filp->private_data;
3267 	void __user *argp = (void __user *)arg;
3268 	int r;
3269 
3270 	if (kvm->mm != current->mm)
3271 		return -EIO;
3272 	switch (ioctl) {
3273 	case KVM_CREATE_VCPU:
3274 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
3275 		break;
3276 	case KVM_ENABLE_CAP: {
3277 		struct kvm_enable_cap cap;
3278 
3279 		r = -EFAULT;
3280 		if (copy_from_user(&cap, argp, sizeof(cap)))
3281 			goto out;
3282 		r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
3283 		break;
3284 	}
3285 	case KVM_SET_USER_MEMORY_REGION: {
3286 		struct kvm_userspace_memory_region kvm_userspace_mem;
3287 
3288 		r = -EFAULT;
3289 		if (copy_from_user(&kvm_userspace_mem, argp,
3290 						sizeof(kvm_userspace_mem)))
3291 			goto out;
3292 
3293 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
3294 		break;
3295 	}
3296 	case KVM_GET_DIRTY_LOG: {
3297 		struct kvm_dirty_log log;
3298 
3299 		r = -EFAULT;
3300 		if (copy_from_user(&log, argp, sizeof(log)))
3301 			goto out;
3302 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3303 		break;
3304 	}
3305 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3306 	case KVM_CLEAR_DIRTY_LOG: {
3307 		struct kvm_clear_dirty_log log;
3308 
3309 		r = -EFAULT;
3310 		if (copy_from_user(&log, argp, sizeof(log)))
3311 			goto out;
3312 		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
3313 		break;
3314 	}
3315 #endif
3316 #ifdef CONFIG_KVM_MMIO
3317 	case KVM_REGISTER_COALESCED_MMIO: {
3318 		struct kvm_coalesced_mmio_zone zone;
3319 
3320 		r = -EFAULT;
3321 		if (copy_from_user(&zone, argp, sizeof(zone)))
3322 			goto out;
3323 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3324 		break;
3325 	}
3326 	case KVM_UNREGISTER_COALESCED_MMIO: {
3327 		struct kvm_coalesced_mmio_zone zone;
3328 
3329 		r = -EFAULT;
3330 		if (copy_from_user(&zone, argp, sizeof(zone)))
3331 			goto out;
3332 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3333 		break;
3334 	}
3335 #endif
3336 	case KVM_IRQFD: {
3337 		struct kvm_irqfd data;
3338 
3339 		r = -EFAULT;
3340 		if (copy_from_user(&data, argp, sizeof(data)))
3341 			goto out;
3342 		r = kvm_irqfd(kvm, &data);
3343 		break;
3344 	}
3345 	case KVM_IOEVENTFD: {
3346 		struct kvm_ioeventfd data;
3347 
3348 		r = -EFAULT;
3349 		if (copy_from_user(&data, argp, sizeof(data)))
3350 			goto out;
3351 		r = kvm_ioeventfd(kvm, &data);
3352 		break;
3353 	}
3354 #ifdef CONFIG_HAVE_KVM_MSI
3355 	case KVM_SIGNAL_MSI: {
3356 		struct kvm_msi msi;
3357 
3358 		r = -EFAULT;
3359 		if (copy_from_user(&msi, argp, sizeof(msi)))
3360 			goto out;
3361 		r = kvm_send_userspace_msi(kvm, &msi);
3362 		break;
3363 	}
3364 #endif
3365 #ifdef __KVM_HAVE_IRQ_LINE
3366 	case KVM_IRQ_LINE_STATUS:
3367 	case KVM_IRQ_LINE: {
3368 		struct kvm_irq_level irq_event;
3369 
3370 		r = -EFAULT;
3371 		if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3372 			goto out;
3373 
3374 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3375 					ioctl == KVM_IRQ_LINE_STATUS);
3376 		if (r)
3377 			goto out;
3378 
3379 		r = -EFAULT;
3380 		if (ioctl == KVM_IRQ_LINE_STATUS) {
3381 			if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3382 				goto out;
3383 		}
3384 
3385 		r = 0;
3386 		break;
3387 	}
3388 #endif
3389 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3390 	case KVM_SET_GSI_ROUTING: {
3391 		struct kvm_irq_routing routing;
3392 		struct kvm_irq_routing __user *urouting;
3393 		struct kvm_irq_routing_entry *entries = NULL;
3394 
3395 		r = -EFAULT;
3396 		if (copy_from_user(&routing, argp, sizeof(routing)))
3397 			goto out;
3398 		r = -EINVAL;
3399 		if (!kvm_arch_can_set_irq_routing(kvm))
3400 			goto out;
3401 		if (routing.nr > KVM_MAX_IRQ_ROUTES)
3402 			goto out;
3403 		if (routing.flags)
3404 			goto out;
3405 		if (routing.nr) {
3406 			r = -ENOMEM;
3407 			entries = vmalloc(array_size(sizeof(*entries),
3408 						     routing.nr));
3409 			if (!entries)
3410 				goto out;
3411 			r = -EFAULT;
3412 			urouting = argp;
3413 			if (copy_from_user(entries, urouting->entries,
3414 					   routing.nr * sizeof(*entries)))
3415 				goto out_free_irq_routing;
3416 		}
3417 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
3418 					routing.flags);
3419 out_free_irq_routing:
3420 		vfree(entries);
3421 		break;
3422 	}
3423 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3424 	case KVM_CREATE_DEVICE: {
3425 		struct kvm_create_device cd;
3426 
3427 		r = -EFAULT;
3428 		if (copy_from_user(&cd, argp, sizeof(cd)))
3429 			goto out;
3430 
3431 		r = kvm_ioctl_create_device(kvm, &cd);
3432 		if (r)
3433 			goto out;
3434 
3435 		r = -EFAULT;
3436 		if (copy_to_user(argp, &cd, sizeof(cd)))
3437 			goto out;
3438 
3439 		r = 0;
3440 		break;
3441 	}
3442 	case KVM_CHECK_EXTENSION:
3443 		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3444 		break;
3445 	default:
3446 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3447 	}
3448 out:
3449 	return r;
3450 }
3451 
3452 #ifdef CONFIG_KVM_COMPAT
3453 struct compat_kvm_dirty_log {
3454 	__u32 slot;
3455 	__u32 padding1;
3456 	union {
3457 		compat_uptr_t dirty_bitmap; /* one bit per page */
3458 		__u64 padding2;
3459 	};
3460 };
3461 
kvm_vm_compat_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)3462 static long kvm_vm_compat_ioctl(struct file *filp,
3463 			   unsigned int ioctl, unsigned long arg)
3464 {
3465 	struct kvm *kvm = filp->private_data;
3466 	int r;
3467 
3468 	if (kvm->mm != current->mm)
3469 		return -EIO;
3470 	switch (ioctl) {
3471 	case KVM_GET_DIRTY_LOG: {
3472 		struct compat_kvm_dirty_log compat_log;
3473 		struct kvm_dirty_log log;
3474 
3475 		if (copy_from_user(&compat_log, (void __user *)arg,
3476 				   sizeof(compat_log)))
3477 			return -EFAULT;
3478 		log.slot	 = compat_log.slot;
3479 		log.padding1	 = compat_log.padding1;
3480 		log.padding2	 = compat_log.padding2;
3481 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3482 
3483 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3484 		break;
3485 	}
3486 	default:
3487 		r = kvm_vm_ioctl(filp, ioctl, arg);
3488 	}
3489 	return r;
3490 }
3491 #endif
3492 
3493 static struct file_operations kvm_vm_fops = {
3494 	.release        = kvm_vm_release,
3495 	.unlocked_ioctl = kvm_vm_ioctl,
3496 	.llseek		= noop_llseek,
3497 	KVM_COMPAT(kvm_vm_compat_ioctl),
3498 };
3499 
kvm_dev_ioctl_create_vm(unsigned long type)3500 static int kvm_dev_ioctl_create_vm(unsigned long type)
3501 {
3502 	int r;
3503 	struct kvm *kvm;
3504 	struct file *file;
3505 
3506 	kvm = kvm_create_vm(type);
3507 	if (IS_ERR(kvm))
3508 		return PTR_ERR(kvm);
3509 #ifdef CONFIG_KVM_MMIO
3510 	r = kvm_coalesced_mmio_init(kvm);
3511 	if (r < 0)
3512 		goto put_kvm;
3513 #endif
3514 	r = get_unused_fd_flags(O_CLOEXEC);
3515 	if (r < 0)
3516 		goto put_kvm;
3517 
3518 	file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3519 	if (IS_ERR(file)) {
3520 		put_unused_fd(r);
3521 		r = PTR_ERR(file);
3522 		goto put_kvm;
3523 	}
3524 
3525 	/*
3526 	 * Don't call kvm_put_kvm anymore at this point; file->f_op is
3527 	 * already set, with ->release() being kvm_vm_release().  In error
3528 	 * cases it will be called by the final fput(file) and will take
3529 	 * care of doing kvm_put_kvm(kvm).
3530 	 */
3531 	if (kvm_create_vm_debugfs(kvm, r) < 0) {
3532 		put_unused_fd(r);
3533 		fput(file);
3534 		return -ENOMEM;
3535 	}
3536 	kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3537 
3538 	fd_install(r, file);
3539 	return r;
3540 
3541 put_kvm:
3542 	kvm_put_kvm(kvm);
3543 	return r;
3544 }
3545 
kvm_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)3546 static long kvm_dev_ioctl(struct file *filp,
3547 			  unsigned int ioctl, unsigned long arg)
3548 {
3549 	long r = -EINVAL;
3550 
3551 	switch (ioctl) {
3552 	case KVM_GET_API_VERSION:
3553 		if (arg)
3554 			goto out;
3555 		r = KVM_API_VERSION;
3556 		break;
3557 	case KVM_CREATE_VM:
3558 		r = kvm_dev_ioctl_create_vm(arg);
3559 		break;
3560 	case KVM_CHECK_EXTENSION:
3561 		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3562 		break;
3563 	case KVM_GET_VCPU_MMAP_SIZE:
3564 		if (arg)
3565 			goto out;
3566 		r = PAGE_SIZE;     /* struct kvm_run */
3567 #ifdef CONFIG_X86
3568 		r += PAGE_SIZE;    /* pio data page */
3569 #endif
3570 #ifdef CONFIG_KVM_MMIO
3571 		r += PAGE_SIZE;    /* coalesced mmio ring page */
3572 #endif
3573 		break;
3574 	case KVM_TRACE_ENABLE:
3575 	case KVM_TRACE_PAUSE:
3576 	case KVM_TRACE_DISABLE:
3577 		r = -EOPNOTSUPP;
3578 		break;
3579 	default:
3580 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
3581 	}
3582 out:
3583 	return r;
3584 }
3585 
3586 static struct file_operations kvm_chardev_ops = {
3587 	.unlocked_ioctl = kvm_dev_ioctl,
3588 	.llseek		= noop_llseek,
3589 	KVM_COMPAT(kvm_dev_ioctl),
3590 };
3591 
3592 static struct miscdevice kvm_dev = {
3593 	KVM_MINOR,
3594 	"kvm",
3595 	&kvm_chardev_ops,
3596 };
3597 
hardware_enable_nolock(void * junk)3598 static void hardware_enable_nolock(void *junk)
3599 {
3600 	int cpu = raw_smp_processor_id();
3601 	int r;
3602 
3603 	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3604 		return;
3605 
3606 	cpumask_set_cpu(cpu, cpus_hardware_enabled);
3607 
3608 	r = kvm_arch_hardware_enable();
3609 
3610 	if (r) {
3611 		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3612 		atomic_inc(&hardware_enable_failed);
3613 		pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3614 	}
3615 }
3616 
kvm_starting_cpu(unsigned int cpu)3617 static int kvm_starting_cpu(unsigned int cpu)
3618 {
3619 	raw_spin_lock(&kvm_count_lock);
3620 	if (kvm_usage_count)
3621 		hardware_enable_nolock(NULL);
3622 	raw_spin_unlock(&kvm_count_lock);
3623 	return 0;
3624 }
3625 
hardware_disable_nolock(void * junk)3626 static void hardware_disable_nolock(void *junk)
3627 {
3628 	int cpu = raw_smp_processor_id();
3629 
3630 	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3631 		return;
3632 	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3633 	kvm_arch_hardware_disable();
3634 }
3635 
kvm_dying_cpu(unsigned int cpu)3636 static int kvm_dying_cpu(unsigned int cpu)
3637 {
3638 	raw_spin_lock(&kvm_count_lock);
3639 	if (kvm_usage_count)
3640 		hardware_disable_nolock(NULL);
3641 	raw_spin_unlock(&kvm_count_lock);
3642 	return 0;
3643 }
3644 
hardware_disable_all_nolock(void)3645 static void hardware_disable_all_nolock(void)
3646 {
3647 	BUG_ON(!kvm_usage_count);
3648 
3649 	kvm_usage_count--;
3650 	if (!kvm_usage_count)
3651 		on_each_cpu(hardware_disable_nolock, NULL, 1);
3652 }
3653 
hardware_disable_all(void)3654 static void hardware_disable_all(void)
3655 {
3656 	raw_spin_lock(&kvm_count_lock);
3657 	hardware_disable_all_nolock();
3658 	raw_spin_unlock(&kvm_count_lock);
3659 }
3660 
hardware_enable_all(void)3661 static int hardware_enable_all(void)
3662 {
3663 	int r = 0;
3664 
3665 	raw_spin_lock(&kvm_count_lock);
3666 
3667 	kvm_usage_count++;
3668 	if (kvm_usage_count == 1) {
3669 		atomic_set(&hardware_enable_failed, 0);
3670 		on_each_cpu(hardware_enable_nolock, NULL, 1);
3671 
3672 		if (atomic_read(&hardware_enable_failed)) {
3673 			hardware_disable_all_nolock();
3674 			r = -EBUSY;
3675 		}
3676 	}
3677 
3678 	raw_spin_unlock(&kvm_count_lock);
3679 
3680 	return r;
3681 }
3682 
kvm_reboot(struct notifier_block * notifier,unsigned long val,void * v)3683 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3684 		      void *v)
3685 {
3686 	/*
3687 	 * Some (well, at least mine) BIOSes hang on reboot if
3688 	 * in vmx root mode.
3689 	 *
3690 	 * And Intel TXT required VMX off for all cpu when system shutdown.
3691 	 */
3692 	pr_info("kvm: exiting hardware virtualization\n");
3693 	kvm_rebooting = true;
3694 	on_each_cpu(hardware_disable_nolock, NULL, 1);
3695 	return NOTIFY_OK;
3696 }
3697 
3698 static struct notifier_block kvm_reboot_notifier = {
3699 	.notifier_call = kvm_reboot,
3700 	.priority = 0,
3701 };
3702 
kvm_io_bus_destroy(struct kvm_io_bus * bus)3703 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3704 {
3705 	int i;
3706 
3707 	for (i = 0; i < bus->dev_count; i++) {
3708 		struct kvm_io_device *pos = bus->range[i].dev;
3709 
3710 		kvm_iodevice_destructor(pos);
3711 	}
3712 	kfree(bus);
3713 }
3714 
kvm_io_bus_cmp(const struct kvm_io_range * r1,const struct kvm_io_range * r2)3715 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3716 				 const struct kvm_io_range *r2)
3717 {
3718 	gpa_t addr1 = r1->addr;
3719 	gpa_t addr2 = r2->addr;
3720 
3721 	if (addr1 < addr2)
3722 		return -1;
3723 
3724 	/* If r2->len == 0, match the exact address.  If r2->len != 0,
3725 	 * accept any overlapping write.  Any order is acceptable for
3726 	 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3727 	 * we process all of them.
3728 	 */
3729 	if (r2->len) {
3730 		addr1 += r1->len;
3731 		addr2 += r2->len;
3732 	}
3733 
3734 	if (addr1 > addr2)
3735 		return 1;
3736 
3737 	return 0;
3738 }
3739 
kvm_io_bus_sort_cmp(const void * p1,const void * p2)3740 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3741 {
3742 	return kvm_io_bus_cmp(p1, p2);
3743 }
3744 
kvm_io_bus_get_first_dev(struct kvm_io_bus * bus,gpa_t addr,int len)3745 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3746 			     gpa_t addr, int len)
3747 {
3748 	struct kvm_io_range *range, key;
3749 	int off;
3750 
3751 	key = (struct kvm_io_range) {
3752 		.addr = addr,
3753 		.len = len,
3754 	};
3755 
3756 	range = bsearch(&key, bus->range, bus->dev_count,
3757 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3758 	if (range == NULL)
3759 		return -ENOENT;
3760 
3761 	off = range - bus->range;
3762 
3763 	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3764 		off--;
3765 
3766 	return off;
3767 }
3768 
__kvm_io_bus_write(struct kvm_vcpu * vcpu,struct kvm_io_bus * bus,struct kvm_io_range * range,const void * val)3769 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3770 			      struct kvm_io_range *range, const void *val)
3771 {
3772 	int idx;
3773 
3774 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3775 	if (idx < 0)
3776 		return -EOPNOTSUPP;
3777 
3778 	while (idx < bus->dev_count &&
3779 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3780 		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3781 					range->len, val))
3782 			return idx;
3783 		idx++;
3784 	}
3785 
3786 	return -EOPNOTSUPP;
3787 }
3788 
3789 /* kvm_io_bus_write - called under kvm->slots_lock */
kvm_io_bus_write(struct kvm_vcpu * vcpu,enum kvm_bus bus_idx,gpa_t addr,int len,const void * val)3790 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3791 		     int len, const void *val)
3792 {
3793 	struct kvm_io_bus *bus;
3794 	struct kvm_io_range range;
3795 	int r;
3796 
3797 	range = (struct kvm_io_range) {
3798 		.addr = addr,
3799 		.len = len,
3800 	};
3801 
3802 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3803 	if (!bus)
3804 		return -ENOMEM;
3805 	r = __kvm_io_bus_write(vcpu, bus, &range, val);
3806 	return r < 0 ? r : 0;
3807 }
3808 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3809 
3810 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
kvm_io_bus_write_cookie(struct kvm_vcpu * vcpu,enum kvm_bus bus_idx,gpa_t addr,int len,const void * val,long cookie)3811 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3812 			    gpa_t addr, int len, const void *val, long cookie)
3813 {
3814 	struct kvm_io_bus *bus;
3815 	struct kvm_io_range range;
3816 
3817 	range = (struct kvm_io_range) {
3818 		.addr = addr,
3819 		.len = len,
3820 	};
3821 
3822 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3823 	if (!bus)
3824 		return -ENOMEM;
3825 
3826 	/* First try the device referenced by cookie. */
3827 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
3828 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3829 		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3830 					val))
3831 			return cookie;
3832 
3833 	/*
3834 	 * cookie contained garbage; fall back to search and return the
3835 	 * correct cookie value.
3836 	 */
3837 	return __kvm_io_bus_write(vcpu, bus, &range, val);
3838 }
3839 
__kvm_io_bus_read(struct kvm_vcpu * vcpu,struct kvm_io_bus * bus,struct kvm_io_range * range,void * val)3840 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3841 			     struct kvm_io_range *range, void *val)
3842 {
3843 	int idx;
3844 
3845 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3846 	if (idx < 0)
3847 		return -EOPNOTSUPP;
3848 
3849 	while (idx < bus->dev_count &&
3850 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3851 		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3852 				       range->len, val))
3853 			return idx;
3854 		idx++;
3855 	}
3856 
3857 	return -EOPNOTSUPP;
3858 }
3859 
3860 /* kvm_io_bus_read - called under kvm->slots_lock */
kvm_io_bus_read(struct kvm_vcpu * vcpu,enum kvm_bus bus_idx,gpa_t addr,int len,void * val)3861 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3862 		    int len, void *val)
3863 {
3864 	struct kvm_io_bus *bus;
3865 	struct kvm_io_range range;
3866 	int r;
3867 
3868 	range = (struct kvm_io_range) {
3869 		.addr = addr,
3870 		.len = len,
3871 	};
3872 
3873 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3874 	if (!bus)
3875 		return -ENOMEM;
3876 	r = __kvm_io_bus_read(vcpu, bus, &range, val);
3877 	return r < 0 ? r : 0;
3878 }
3879 
3880 /* Caller must hold slots_lock. */
kvm_io_bus_register_dev(struct kvm * kvm,enum kvm_bus bus_idx,gpa_t addr,int len,struct kvm_io_device * dev)3881 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3882 			    int len, struct kvm_io_device *dev)
3883 {
3884 	int i;
3885 	struct kvm_io_bus *new_bus, *bus;
3886 	struct kvm_io_range range;
3887 
3888 	bus = kvm_get_bus(kvm, bus_idx);
3889 	if (!bus)
3890 		return -ENOMEM;
3891 
3892 	/* exclude ioeventfd which is limited by maximum fd */
3893 	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3894 		return -ENOSPC;
3895 
3896 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
3897 			  GFP_KERNEL_ACCOUNT);
3898 	if (!new_bus)
3899 		return -ENOMEM;
3900 
3901 	range = (struct kvm_io_range) {
3902 		.addr = addr,
3903 		.len = len,
3904 		.dev = dev,
3905 	};
3906 
3907 	for (i = 0; i < bus->dev_count; i++)
3908 		if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
3909 			break;
3910 
3911 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3912 	new_bus->dev_count++;
3913 	new_bus->range[i] = range;
3914 	memcpy(new_bus->range + i + 1, bus->range + i,
3915 		(bus->dev_count - i) * sizeof(struct kvm_io_range));
3916 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3917 	synchronize_srcu_expedited(&kvm->srcu);
3918 	kfree(bus);
3919 
3920 	return 0;
3921 }
3922 
3923 /* Caller must hold slots_lock. */
kvm_io_bus_unregister_dev(struct kvm * kvm,enum kvm_bus bus_idx,struct kvm_io_device * dev)3924 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3925 			       struct kvm_io_device *dev)
3926 {
3927 	int i;
3928 	struct kvm_io_bus *new_bus, *bus;
3929 
3930 	bus = kvm_get_bus(kvm, bus_idx);
3931 	if (!bus)
3932 		return;
3933 
3934 	for (i = 0; i < bus->dev_count; i++)
3935 		if (bus->range[i].dev == dev) {
3936 			break;
3937 		}
3938 
3939 	if (i == bus->dev_count)
3940 		return;
3941 
3942 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
3943 			  GFP_KERNEL_ACCOUNT);
3944 	if (!new_bus)  {
3945 		pr_err("kvm: failed to shrink bus, removing it completely\n");
3946 		goto broken;
3947 	}
3948 
3949 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3950 	new_bus->dev_count--;
3951 	memcpy(new_bus->range + i, bus->range + i + 1,
3952 	       (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3953 
3954 broken:
3955 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3956 	synchronize_srcu_expedited(&kvm->srcu);
3957 	kfree(bus);
3958 	return;
3959 }
3960 
kvm_io_bus_get_dev(struct kvm * kvm,enum kvm_bus bus_idx,gpa_t addr)3961 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3962 					 gpa_t addr)
3963 {
3964 	struct kvm_io_bus *bus;
3965 	int dev_idx, srcu_idx;
3966 	struct kvm_io_device *iodev = NULL;
3967 
3968 	srcu_idx = srcu_read_lock(&kvm->srcu);
3969 
3970 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3971 	if (!bus)
3972 		goto out_unlock;
3973 
3974 	dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3975 	if (dev_idx < 0)
3976 		goto out_unlock;
3977 
3978 	iodev = bus->range[dev_idx].dev;
3979 
3980 out_unlock:
3981 	srcu_read_unlock(&kvm->srcu, srcu_idx);
3982 
3983 	return iodev;
3984 }
3985 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3986 
kvm_debugfs_open(struct inode * inode,struct file * file,int (* get)(void *,u64 *),int (* set)(void *,u64),const char * fmt)3987 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3988 			   int (*get)(void *, u64 *), int (*set)(void *, u64),
3989 			   const char *fmt)
3990 {
3991 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3992 					  inode->i_private;
3993 
3994 	/* The debugfs files are a reference to the kvm struct which
3995 	 * is still valid when kvm_destroy_vm is called.
3996 	 * To avoid the race between open and the removal of the debugfs
3997 	 * directory we test against the users count.
3998 	 */
3999 	if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
4000 		return -ENOENT;
4001 
4002 	if (simple_attr_open(inode, file, get,
4003 			     stat_data->mode & S_IWUGO ? set : NULL,
4004 			     fmt)) {
4005 		kvm_put_kvm(stat_data->kvm);
4006 		return -ENOMEM;
4007 	}
4008 
4009 	return 0;
4010 }
4011 
kvm_debugfs_release(struct inode * inode,struct file * file)4012 static int kvm_debugfs_release(struct inode *inode, struct file *file)
4013 {
4014 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4015 					  inode->i_private;
4016 
4017 	simple_attr_release(inode, file);
4018 	kvm_put_kvm(stat_data->kvm);
4019 
4020 	return 0;
4021 }
4022 
vm_stat_get_per_vm(void * data,u64 * val)4023 static int vm_stat_get_per_vm(void *data, u64 *val)
4024 {
4025 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4026 
4027 	*val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
4028 
4029 	return 0;
4030 }
4031 
vm_stat_clear_per_vm(void * data,u64 val)4032 static int vm_stat_clear_per_vm(void *data, u64 val)
4033 {
4034 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4035 
4036 	if (val)
4037 		return -EINVAL;
4038 
4039 	*(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
4040 
4041 	return 0;
4042 }
4043 
vm_stat_get_per_vm_open(struct inode * inode,struct file * file)4044 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
4045 {
4046 	__simple_attr_check_format("%llu\n", 0ull);
4047 	return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
4048 				vm_stat_clear_per_vm, "%llu\n");
4049 }
4050 
4051 static const struct file_operations vm_stat_get_per_vm_fops = {
4052 	.owner   = THIS_MODULE,
4053 	.open    = vm_stat_get_per_vm_open,
4054 	.release = kvm_debugfs_release,
4055 	.read    = simple_attr_read,
4056 	.write   = simple_attr_write,
4057 	.llseek  = no_llseek,
4058 };
4059 
vcpu_stat_get_per_vm(void * data,u64 * val)4060 static int vcpu_stat_get_per_vm(void *data, u64 *val)
4061 {
4062 	int i;
4063 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4064 	struct kvm_vcpu *vcpu;
4065 
4066 	*val = 0;
4067 
4068 	kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
4069 		*val += *(u64 *)((void *)vcpu + stat_data->offset);
4070 
4071 	return 0;
4072 }
4073 
vcpu_stat_clear_per_vm(void * data,u64 val)4074 static int vcpu_stat_clear_per_vm(void *data, u64 val)
4075 {
4076 	int i;
4077 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4078 	struct kvm_vcpu *vcpu;
4079 
4080 	if (val)
4081 		return -EINVAL;
4082 
4083 	kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
4084 		*(u64 *)((void *)vcpu + stat_data->offset) = 0;
4085 
4086 	return 0;
4087 }
4088 
vcpu_stat_get_per_vm_open(struct inode * inode,struct file * file)4089 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
4090 {
4091 	__simple_attr_check_format("%llu\n", 0ull);
4092 	return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
4093 				 vcpu_stat_clear_per_vm, "%llu\n");
4094 }
4095 
4096 static const struct file_operations vcpu_stat_get_per_vm_fops = {
4097 	.owner   = THIS_MODULE,
4098 	.open    = vcpu_stat_get_per_vm_open,
4099 	.release = kvm_debugfs_release,
4100 	.read    = simple_attr_read,
4101 	.write   = simple_attr_write,
4102 	.llseek  = no_llseek,
4103 };
4104 
4105 static const struct file_operations *stat_fops_per_vm[] = {
4106 	[KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
4107 	[KVM_STAT_VM]   = &vm_stat_get_per_vm_fops,
4108 };
4109 
vm_stat_get(void * _offset,u64 * val)4110 static int vm_stat_get(void *_offset, u64 *val)
4111 {
4112 	unsigned offset = (long)_offset;
4113 	struct kvm *kvm;
4114 	struct kvm_stat_data stat_tmp = {.offset = offset};
4115 	u64 tmp_val;
4116 
4117 	*val = 0;
4118 	mutex_lock(&kvm_lock);
4119 	list_for_each_entry(kvm, &vm_list, vm_list) {
4120 		stat_tmp.kvm = kvm;
4121 		vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
4122 		*val += tmp_val;
4123 	}
4124 	mutex_unlock(&kvm_lock);
4125 	return 0;
4126 }
4127 
vm_stat_clear(void * _offset,u64 val)4128 static int vm_stat_clear(void *_offset, u64 val)
4129 {
4130 	unsigned offset = (long)_offset;
4131 	struct kvm *kvm;
4132 	struct kvm_stat_data stat_tmp = {.offset = offset};
4133 
4134 	if (val)
4135 		return -EINVAL;
4136 
4137 	mutex_lock(&kvm_lock);
4138 	list_for_each_entry(kvm, &vm_list, vm_list) {
4139 		stat_tmp.kvm = kvm;
4140 		vm_stat_clear_per_vm((void *)&stat_tmp, 0);
4141 	}
4142 	mutex_unlock(&kvm_lock);
4143 
4144 	return 0;
4145 }
4146 
4147 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
4148 
vcpu_stat_get(void * _offset,u64 * val)4149 static int vcpu_stat_get(void *_offset, u64 *val)
4150 {
4151 	unsigned offset = (long)_offset;
4152 	struct kvm *kvm;
4153 	struct kvm_stat_data stat_tmp = {.offset = offset};
4154 	u64 tmp_val;
4155 
4156 	*val = 0;
4157 	mutex_lock(&kvm_lock);
4158 	list_for_each_entry(kvm, &vm_list, vm_list) {
4159 		stat_tmp.kvm = kvm;
4160 		vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
4161 		*val += tmp_val;
4162 	}
4163 	mutex_unlock(&kvm_lock);
4164 	return 0;
4165 }
4166 
vcpu_stat_clear(void * _offset,u64 val)4167 static int vcpu_stat_clear(void *_offset, u64 val)
4168 {
4169 	unsigned offset = (long)_offset;
4170 	struct kvm *kvm;
4171 	struct kvm_stat_data stat_tmp = {.offset = offset};
4172 
4173 	if (val)
4174 		return -EINVAL;
4175 
4176 	mutex_lock(&kvm_lock);
4177 	list_for_each_entry(kvm, &vm_list, vm_list) {
4178 		stat_tmp.kvm = kvm;
4179 		vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
4180 	}
4181 	mutex_unlock(&kvm_lock);
4182 
4183 	return 0;
4184 }
4185 
4186 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
4187 			"%llu\n");
4188 
4189 static const struct file_operations *stat_fops[] = {
4190 	[KVM_STAT_VCPU] = &vcpu_stat_fops,
4191 	[KVM_STAT_VM]   = &vm_stat_fops,
4192 };
4193 
kvm_uevent_notify_change(unsigned int type,struct kvm * kvm)4194 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
4195 {
4196 	struct kobj_uevent_env *env;
4197 	unsigned long long created, active;
4198 
4199 	if (!kvm_dev.this_device || !kvm)
4200 		return;
4201 
4202 	mutex_lock(&kvm_lock);
4203 	if (type == KVM_EVENT_CREATE_VM) {
4204 		kvm_createvm_count++;
4205 		kvm_active_vms++;
4206 	} else if (type == KVM_EVENT_DESTROY_VM) {
4207 		kvm_active_vms--;
4208 	}
4209 	created = kvm_createvm_count;
4210 	active = kvm_active_vms;
4211 	mutex_unlock(&kvm_lock);
4212 
4213 	env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
4214 	if (!env)
4215 		return;
4216 
4217 	add_uevent_var(env, "CREATED=%llu", created);
4218 	add_uevent_var(env, "COUNT=%llu", active);
4219 
4220 	if (type == KVM_EVENT_CREATE_VM) {
4221 		add_uevent_var(env, "EVENT=create");
4222 		kvm->userspace_pid = task_pid_nr(current);
4223 	} else if (type == KVM_EVENT_DESTROY_VM) {
4224 		add_uevent_var(env, "EVENT=destroy");
4225 	}
4226 	add_uevent_var(env, "PID=%d", kvm->userspace_pid);
4227 
4228 	if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) {
4229 		char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
4230 
4231 		if (p) {
4232 			tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
4233 			if (!IS_ERR(tmp))
4234 				add_uevent_var(env, "STATS_PATH=%s", tmp);
4235 			kfree(p);
4236 		}
4237 	}
4238 	/* no need for checks, since we are adding at most only 5 keys */
4239 	env->envp[env->envp_idx++] = NULL;
4240 	kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
4241 	kfree(env);
4242 }
4243 
kvm_init_debug(void)4244 static void kvm_init_debug(void)
4245 {
4246 	struct kvm_stats_debugfs_item *p;
4247 
4248 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
4249 
4250 	kvm_debugfs_num_entries = 0;
4251 	for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
4252 		int mode = p->mode ? p->mode : 0644;
4253 		debugfs_create_file(p->name, mode, kvm_debugfs_dir,
4254 				    (void *)(long)p->offset,
4255 				    stat_fops[p->kind]);
4256 	}
4257 }
4258 
kvm_suspend(void)4259 static int kvm_suspend(void)
4260 {
4261 	if (kvm_usage_count)
4262 		hardware_disable_nolock(NULL);
4263 	return 0;
4264 }
4265 
kvm_resume(void)4266 static void kvm_resume(void)
4267 {
4268 	if (kvm_usage_count) {
4269 #ifdef CONFIG_LOCKDEP
4270 		WARN_ON(lockdep_is_held(&kvm_count_lock));
4271 #endif
4272 		hardware_enable_nolock(NULL);
4273 	}
4274 }
4275 
4276 static struct syscore_ops kvm_syscore_ops = {
4277 	.suspend = kvm_suspend,
4278 	.resume = kvm_resume,
4279 };
4280 
4281 static inline
preempt_notifier_to_vcpu(struct preempt_notifier * pn)4282 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
4283 {
4284 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
4285 }
4286 
kvm_sched_in(struct preempt_notifier * pn,int cpu)4287 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
4288 {
4289 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4290 
4291 	WRITE_ONCE(vcpu->preempted, false);
4292 	WRITE_ONCE(vcpu->ready, false);
4293 
4294 	kvm_arch_sched_in(vcpu, cpu);
4295 
4296 	kvm_arch_vcpu_load(vcpu, cpu);
4297 }
4298 
kvm_sched_out(struct preempt_notifier * pn,struct task_struct * next)4299 static void kvm_sched_out(struct preempt_notifier *pn,
4300 			  struct task_struct *next)
4301 {
4302 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4303 
4304 	if (current->state == TASK_RUNNING) {
4305 		WRITE_ONCE(vcpu->preempted, true);
4306 		WRITE_ONCE(vcpu->ready, true);
4307 	}
4308 	kvm_arch_vcpu_put(vcpu);
4309 }
4310 
check_processor_compat(void * rtn)4311 static void check_processor_compat(void *rtn)
4312 {
4313 	*(int *)rtn = kvm_arch_check_processor_compat();
4314 }
4315 
kvm_init(void * opaque,unsigned vcpu_size,unsigned vcpu_align,struct module * module)4316 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
4317 		  struct module *module)
4318 {
4319 	int r;
4320 	int cpu;
4321 
4322 	r = kvm_arch_init(opaque);
4323 	if (r)
4324 		goto out_fail;
4325 
4326 	/*
4327 	 * kvm_arch_init makes sure there's at most one caller
4328 	 * for architectures that support multiple implementations,
4329 	 * like intel and amd on x86.
4330 	 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4331 	 * conflicts in case kvm is already setup for another implementation.
4332 	 */
4333 	r = kvm_irqfd_init();
4334 	if (r)
4335 		goto out_irqfd;
4336 
4337 	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4338 		r = -ENOMEM;
4339 		goto out_free_0;
4340 	}
4341 
4342 	r = kvm_arch_hardware_setup();
4343 	if (r < 0)
4344 		goto out_free_0a;
4345 
4346 	for_each_online_cpu(cpu) {
4347 		smp_call_function_single(cpu, check_processor_compat, &r, 1);
4348 		if (r < 0)
4349 			goto out_free_1;
4350 	}
4351 
4352 	r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4353 				      kvm_starting_cpu, kvm_dying_cpu);
4354 	if (r)
4355 		goto out_free_2;
4356 	register_reboot_notifier(&kvm_reboot_notifier);
4357 
4358 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
4359 	if (!vcpu_align)
4360 		vcpu_align = __alignof__(struct kvm_vcpu);
4361 	kvm_vcpu_cache =
4362 		kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4363 					   SLAB_ACCOUNT,
4364 					   offsetof(struct kvm_vcpu, arch),
4365 					   sizeof_field(struct kvm_vcpu, arch),
4366 					   NULL);
4367 	if (!kvm_vcpu_cache) {
4368 		r = -ENOMEM;
4369 		goto out_free_3;
4370 	}
4371 
4372 	r = kvm_async_pf_init();
4373 	if (r)
4374 		goto out_free;
4375 
4376 	kvm_chardev_ops.owner = module;
4377 	kvm_vm_fops.owner = module;
4378 	kvm_vcpu_fops.owner = module;
4379 
4380 	r = misc_register(&kvm_dev);
4381 	if (r) {
4382 		pr_err("kvm: misc device register failed\n");
4383 		goto out_unreg;
4384 	}
4385 
4386 	register_syscore_ops(&kvm_syscore_ops);
4387 
4388 	kvm_preempt_ops.sched_in = kvm_sched_in;
4389 	kvm_preempt_ops.sched_out = kvm_sched_out;
4390 
4391 	kvm_init_debug();
4392 
4393 	r = kvm_vfio_ops_init();
4394 	WARN_ON(r);
4395 
4396 	return 0;
4397 
4398 out_unreg:
4399 	kvm_async_pf_deinit();
4400 out_free:
4401 	kmem_cache_destroy(kvm_vcpu_cache);
4402 out_free_3:
4403 	unregister_reboot_notifier(&kvm_reboot_notifier);
4404 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4405 out_free_2:
4406 out_free_1:
4407 	kvm_arch_hardware_unsetup();
4408 out_free_0a:
4409 	free_cpumask_var(cpus_hardware_enabled);
4410 out_free_0:
4411 	kvm_irqfd_exit();
4412 out_irqfd:
4413 	kvm_arch_exit();
4414 out_fail:
4415 	return r;
4416 }
4417 EXPORT_SYMBOL_GPL(kvm_init);
4418 
kvm_exit(void)4419 void kvm_exit(void)
4420 {
4421 	debugfs_remove_recursive(kvm_debugfs_dir);
4422 	misc_deregister(&kvm_dev);
4423 	kmem_cache_destroy(kvm_vcpu_cache);
4424 	kvm_async_pf_deinit();
4425 	unregister_syscore_ops(&kvm_syscore_ops);
4426 	unregister_reboot_notifier(&kvm_reboot_notifier);
4427 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4428 	on_each_cpu(hardware_disable_nolock, NULL, 1);
4429 	kvm_arch_hardware_unsetup();
4430 	kvm_arch_exit();
4431 	kvm_irqfd_exit();
4432 	free_cpumask_var(cpus_hardware_enabled);
4433 	kvm_vfio_ops_exit();
4434 }
4435 EXPORT_SYMBOL_GPL(kvm_exit);
4436 
4437 struct kvm_vm_worker_thread_context {
4438 	struct kvm *kvm;
4439 	struct task_struct *parent;
4440 	struct completion init_done;
4441 	kvm_vm_thread_fn_t thread_fn;
4442 	uintptr_t data;
4443 	int err;
4444 };
4445 
kvm_vm_worker_thread(void * context)4446 static int kvm_vm_worker_thread(void *context)
4447 {
4448 	/*
4449 	 * The init_context is allocated on the stack of the parent thread, so
4450 	 * we have to locally copy anything that is needed beyond initialization
4451 	 */
4452 	struct kvm_vm_worker_thread_context *init_context = context;
4453 	struct kvm *kvm = init_context->kvm;
4454 	kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
4455 	uintptr_t data = init_context->data;
4456 	int err;
4457 
4458 	err = kthread_park(current);
4459 	/* kthread_park(current) is never supposed to return an error */
4460 	WARN_ON(err != 0);
4461 	if (err)
4462 		goto init_complete;
4463 
4464 	err = cgroup_attach_task_all(init_context->parent, current);
4465 	if (err) {
4466 		kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
4467 			__func__, err);
4468 		goto init_complete;
4469 	}
4470 
4471 	set_user_nice(current, task_nice(init_context->parent));
4472 
4473 init_complete:
4474 	init_context->err = err;
4475 	complete(&init_context->init_done);
4476 	init_context = NULL;
4477 
4478 	if (err)
4479 		return err;
4480 
4481 	/* Wait to be woken up by the spawner before proceeding. */
4482 	kthread_parkme();
4483 
4484 	if (!kthread_should_stop())
4485 		err = thread_fn(kvm, data);
4486 
4487 	return err;
4488 }
4489 
kvm_vm_create_worker_thread(struct kvm * kvm,kvm_vm_thread_fn_t thread_fn,uintptr_t data,const char * name,struct task_struct ** thread_ptr)4490 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
4491 				uintptr_t data, const char *name,
4492 				struct task_struct **thread_ptr)
4493 {
4494 	struct kvm_vm_worker_thread_context init_context = {};
4495 	struct task_struct *thread;
4496 
4497 	*thread_ptr = NULL;
4498 	init_context.kvm = kvm;
4499 	init_context.parent = current;
4500 	init_context.thread_fn = thread_fn;
4501 	init_context.data = data;
4502 	init_completion(&init_context.init_done);
4503 
4504 	thread = kthread_run(kvm_vm_worker_thread, &init_context,
4505 			     "%s-%d", name, task_pid_nr(current));
4506 	if (IS_ERR(thread))
4507 		return PTR_ERR(thread);
4508 
4509 	/* kthread_run is never supposed to return NULL */
4510 	WARN_ON(thread == NULL);
4511 
4512 	wait_for_completion(&init_context.init_done);
4513 
4514 	if (!init_context.err)
4515 		*thread_ptr = thread;
4516 
4517 	return init_context.err;
4518 }
4519