1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * handling kvm guest interrupts
4 *
5 * Copyright IBM Corp. 2008, 2020
6 *
7 * Author(s): Carsten Otte <cotte@de.ibm.com>
8 */
9
10 #define KMSG_COMPONENT "kvm-s390"
11 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
12
13 #include <linux/interrupt.h>
14 #include <linux/kvm_host.h>
15 #include <linux/hrtimer.h>
16 #include <linux/mmu_context.h>
17 #include <linux/nospec.h>
18 #include <linux/signal.h>
19 #include <linux/slab.h>
20 #include <linux/bitmap.h>
21 #include <linux/vmalloc.h>
22 #include <asm/asm-offsets.h>
23 #include <asm/dis.h>
24 #include <linux/uaccess.h>
25 #include <asm/sclp.h>
26 #include <asm/isc.h>
27 #include <asm/gmap.h>
28 #include <asm/switch_to.h>
29 #include <asm/nmi.h>
30 #include <asm/airq.h>
31 #include <asm/tpi.h>
32 #include "kvm-s390.h"
33 #include "gaccess.h"
34 #include "trace-s390.h"
35 #include "pci.h"
36
37 #define PFAULT_INIT 0x0600
38 #define PFAULT_DONE 0x0680
39 #define VIRTIO_PARAM 0x0d00
40
41 static struct kvm_s390_gib *gib;
42
43 /* handle external calls via sigp interpretation facility */
sca_ext_call_pending(struct kvm_vcpu * vcpu,int * src_id)44 static int sca_ext_call_pending(struct kvm_vcpu *vcpu, int *src_id)
45 {
46 int c, scn;
47
48 if (!kvm_s390_test_cpuflags(vcpu, CPUSTAT_ECALL_PEND))
49 return 0;
50
51 BUG_ON(!kvm_s390_use_sca_entries());
52 read_lock(&vcpu->kvm->arch.sca_lock);
53 if (vcpu->kvm->arch.use_esca) {
54 struct esca_block *sca = vcpu->kvm->arch.sca;
55 union esca_sigp_ctrl sigp_ctrl =
56 sca->cpu[vcpu->vcpu_id].sigp_ctrl;
57
58 c = sigp_ctrl.c;
59 scn = sigp_ctrl.scn;
60 } else {
61 struct bsca_block *sca = vcpu->kvm->arch.sca;
62 union bsca_sigp_ctrl sigp_ctrl =
63 sca->cpu[vcpu->vcpu_id].sigp_ctrl;
64
65 c = sigp_ctrl.c;
66 scn = sigp_ctrl.scn;
67 }
68 read_unlock(&vcpu->kvm->arch.sca_lock);
69
70 if (src_id)
71 *src_id = scn;
72
73 return c;
74 }
75
sca_inject_ext_call(struct kvm_vcpu * vcpu,int src_id)76 static int sca_inject_ext_call(struct kvm_vcpu *vcpu, int src_id)
77 {
78 int expect, rc;
79
80 BUG_ON(!kvm_s390_use_sca_entries());
81 read_lock(&vcpu->kvm->arch.sca_lock);
82 if (vcpu->kvm->arch.use_esca) {
83 struct esca_block *sca = vcpu->kvm->arch.sca;
84 union esca_sigp_ctrl *sigp_ctrl =
85 &(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
86 union esca_sigp_ctrl new_val = {0}, old_val = *sigp_ctrl;
87
88 new_val.scn = src_id;
89 new_val.c = 1;
90 old_val.c = 0;
91
92 expect = old_val.value;
93 rc = cmpxchg(&sigp_ctrl->value, old_val.value, new_val.value);
94 } else {
95 struct bsca_block *sca = vcpu->kvm->arch.sca;
96 union bsca_sigp_ctrl *sigp_ctrl =
97 &(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
98 union bsca_sigp_ctrl new_val = {0}, old_val = *sigp_ctrl;
99
100 new_val.scn = src_id;
101 new_val.c = 1;
102 old_val.c = 0;
103
104 expect = old_val.value;
105 rc = cmpxchg(&sigp_ctrl->value, old_val.value, new_val.value);
106 }
107 read_unlock(&vcpu->kvm->arch.sca_lock);
108
109 if (rc != expect) {
110 /* another external call is pending */
111 return -EBUSY;
112 }
113 kvm_s390_set_cpuflags(vcpu, CPUSTAT_ECALL_PEND);
114 return 0;
115 }
116
sca_clear_ext_call(struct kvm_vcpu * vcpu)117 static void sca_clear_ext_call(struct kvm_vcpu *vcpu)
118 {
119 int rc, expect;
120
121 if (!kvm_s390_use_sca_entries())
122 return;
123 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_ECALL_PEND);
124 read_lock(&vcpu->kvm->arch.sca_lock);
125 if (vcpu->kvm->arch.use_esca) {
126 struct esca_block *sca = vcpu->kvm->arch.sca;
127 union esca_sigp_ctrl *sigp_ctrl =
128 &(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
129 union esca_sigp_ctrl old = *sigp_ctrl;
130
131 expect = old.value;
132 rc = cmpxchg(&sigp_ctrl->value, old.value, 0);
133 } else {
134 struct bsca_block *sca = vcpu->kvm->arch.sca;
135 union bsca_sigp_ctrl *sigp_ctrl =
136 &(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
137 union bsca_sigp_ctrl old = *sigp_ctrl;
138
139 expect = old.value;
140 rc = cmpxchg(&sigp_ctrl->value, old.value, 0);
141 }
142 read_unlock(&vcpu->kvm->arch.sca_lock);
143 WARN_ON(rc != expect); /* cannot clear? */
144 }
145
psw_extint_disabled(struct kvm_vcpu * vcpu)146 int psw_extint_disabled(struct kvm_vcpu *vcpu)
147 {
148 return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_EXT);
149 }
150
psw_ioint_disabled(struct kvm_vcpu * vcpu)151 static int psw_ioint_disabled(struct kvm_vcpu *vcpu)
152 {
153 return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_IO);
154 }
155
psw_mchk_disabled(struct kvm_vcpu * vcpu)156 static int psw_mchk_disabled(struct kvm_vcpu *vcpu)
157 {
158 return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_MCHECK);
159 }
160
psw_interrupts_disabled(struct kvm_vcpu * vcpu)161 static int psw_interrupts_disabled(struct kvm_vcpu *vcpu)
162 {
163 return psw_extint_disabled(vcpu) &&
164 psw_ioint_disabled(vcpu) &&
165 psw_mchk_disabled(vcpu);
166 }
167
ckc_interrupts_enabled(struct kvm_vcpu * vcpu)168 static int ckc_interrupts_enabled(struct kvm_vcpu *vcpu)
169 {
170 if (psw_extint_disabled(vcpu) ||
171 !(vcpu->arch.sie_block->gcr[0] & CR0_CLOCK_COMPARATOR_SUBMASK))
172 return 0;
173 if (guestdbg_enabled(vcpu) && guestdbg_sstep_enabled(vcpu))
174 /* No timer interrupts when single stepping */
175 return 0;
176 return 1;
177 }
178
ckc_irq_pending(struct kvm_vcpu * vcpu)179 static int ckc_irq_pending(struct kvm_vcpu *vcpu)
180 {
181 const u64 now = kvm_s390_get_tod_clock_fast(vcpu->kvm);
182 const u64 ckc = vcpu->arch.sie_block->ckc;
183
184 if (vcpu->arch.sie_block->gcr[0] & CR0_CLOCK_COMPARATOR_SIGN) {
185 if ((s64)ckc >= (s64)now)
186 return 0;
187 } else if (ckc >= now) {
188 return 0;
189 }
190 return ckc_interrupts_enabled(vcpu);
191 }
192
cpu_timer_interrupts_enabled(struct kvm_vcpu * vcpu)193 static int cpu_timer_interrupts_enabled(struct kvm_vcpu *vcpu)
194 {
195 return !psw_extint_disabled(vcpu) &&
196 (vcpu->arch.sie_block->gcr[0] & CR0_CPU_TIMER_SUBMASK);
197 }
198
cpu_timer_irq_pending(struct kvm_vcpu * vcpu)199 static int cpu_timer_irq_pending(struct kvm_vcpu *vcpu)
200 {
201 if (!cpu_timer_interrupts_enabled(vcpu))
202 return 0;
203 return kvm_s390_get_cpu_timer(vcpu) >> 63;
204 }
205
isc_to_isc_bits(int isc)206 static uint64_t isc_to_isc_bits(int isc)
207 {
208 return (0x80 >> isc) << 24;
209 }
210
isc_to_int_word(u8 isc)211 static inline u32 isc_to_int_word(u8 isc)
212 {
213 return ((u32)isc << 27) | 0x80000000;
214 }
215
int_word_to_isc(u32 int_word)216 static inline u8 int_word_to_isc(u32 int_word)
217 {
218 return (int_word & 0x38000000) >> 27;
219 }
220
221 /*
222 * To use atomic bitmap functions, we have to provide a bitmap address
223 * that is u64 aligned. However, the ipm might be u32 aligned.
224 * Therefore, we logically start the bitmap at the very beginning of the
225 * struct and fixup the bit number.
226 */
227 #define IPM_BIT_OFFSET (offsetof(struct kvm_s390_gisa, ipm) * BITS_PER_BYTE)
228
229 /**
230 * gisa_set_iam - change the GISA interruption alert mask
231 *
232 * @gisa: gisa to operate on
233 * @iam: new IAM value to use
234 *
235 * Change the IAM atomically with the next alert address and the IPM
236 * of the GISA if the GISA is not part of the GIB alert list. All three
237 * fields are located in the first long word of the GISA.
238 *
239 * Returns: 0 on success
240 * -EBUSY in case the gisa is part of the alert list
241 */
gisa_set_iam(struct kvm_s390_gisa * gisa,u8 iam)242 static inline int gisa_set_iam(struct kvm_s390_gisa *gisa, u8 iam)
243 {
244 u64 word, _word;
245
246 do {
247 word = READ_ONCE(gisa->u64.word[0]);
248 if ((u64)gisa != word >> 32)
249 return -EBUSY;
250 _word = (word & ~0xffUL) | iam;
251 } while (cmpxchg(&gisa->u64.word[0], word, _word) != word);
252
253 return 0;
254 }
255
256 /**
257 * gisa_clear_ipm - clear the GISA interruption pending mask
258 *
259 * @gisa: gisa to operate on
260 *
261 * Clear the IPM atomically with the next alert address and the IAM
262 * of the GISA unconditionally. All three fields are located in the
263 * first long word of the GISA.
264 */
gisa_clear_ipm(struct kvm_s390_gisa * gisa)265 static inline void gisa_clear_ipm(struct kvm_s390_gisa *gisa)
266 {
267 u64 word, _word;
268
269 do {
270 word = READ_ONCE(gisa->u64.word[0]);
271 _word = word & ~(0xffUL << 24);
272 } while (cmpxchg(&gisa->u64.word[0], word, _word) != word);
273 }
274
275 /**
276 * gisa_get_ipm_or_restore_iam - return IPM or restore GISA IAM
277 *
278 * @gi: gisa interrupt struct to work on
279 *
280 * Atomically restores the interruption alert mask if none of the
281 * relevant ISCs are pending and return the IPM.
282 *
283 * Returns: the relevant pending ISCs
284 */
gisa_get_ipm_or_restore_iam(struct kvm_s390_gisa_interrupt * gi)285 static inline u8 gisa_get_ipm_or_restore_iam(struct kvm_s390_gisa_interrupt *gi)
286 {
287 u8 pending_mask, alert_mask;
288 u64 word, _word;
289
290 do {
291 word = READ_ONCE(gi->origin->u64.word[0]);
292 alert_mask = READ_ONCE(gi->alert.mask);
293 pending_mask = (u8)(word >> 24) & alert_mask;
294 if (pending_mask)
295 return pending_mask;
296 _word = (word & ~0xffUL) | alert_mask;
297 } while (cmpxchg(&gi->origin->u64.word[0], word, _word) != word);
298
299 return 0;
300 }
301
gisa_in_alert_list(struct kvm_s390_gisa * gisa)302 static inline int gisa_in_alert_list(struct kvm_s390_gisa *gisa)
303 {
304 return READ_ONCE(gisa->next_alert) != (u32)(u64)gisa;
305 }
306
gisa_set_ipm_gisc(struct kvm_s390_gisa * gisa,u32 gisc)307 static inline void gisa_set_ipm_gisc(struct kvm_s390_gisa *gisa, u32 gisc)
308 {
309 set_bit_inv(IPM_BIT_OFFSET + gisc, (unsigned long *) gisa);
310 }
311
gisa_get_ipm(struct kvm_s390_gisa * gisa)312 static inline u8 gisa_get_ipm(struct kvm_s390_gisa *gisa)
313 {
314 return READ_ONCE(gisa->ipm);
315 }
316
gisa_clear_ipm_gisc(struct kvm_s390_gisa * gisa,u32 gisc)317 static inline void gisa_clear_ipm_gisc(struct kvm_s390_gisa *gisa, u32 gisc)
318 {
319 clear_bit_inv(IPM_BIT_OFFSET + gisc, (unsigned long *) gisa);
320 }
321
gisa_tac_ipm_gisc(struct kvm_s390_gisa * gisa,u32 gisc)322 static inline int gisa_tac_ipm_gisc(struct kvm_s390_gisa *gisa, u32 gisc)
323 {
324 return test_and_clear_bit_inv(IPM_BIT_OFFSET + gisc, (unsigned long *) gisa);
325 }
326
pending_irqs_no_gisa(struct kvm_vcpu * vcpu)327 static inline unsigned long pending_irqs_no_gisa(struct kvm_vcpu *vcpu)
328 {
329 unsigned long pending = vcpu->kvm->arch.float_int.pending_irqs |
330 vcpu->arch.local_int.pending_irqs;
331
332 pending &= ~vcpu->kvm->arch.float_int.masked_irqs;
333 return pending;
334 }
335
pending_irqs(struct kvm_vcpu * vcpu)336 static inline unsigned long pending_irqs(struct kvm_vcpu *vcpu)
337 {
338 struct kvm_s390_gisa_interrupt *gi = &vcpu->kvm->arch.gisa_int;
339 unsigned long pending_mask;
340
341 pending_mask = pending_irqs_no_gisa(vcpu);
342 if (gi->origin)
343 pending_mask |= gisa_get_ipm(gi->origin) << IRQ_PEND_IO_ISC_7;
344 return pending_mask;
345 }
346
isc_to_irq_type(unsigned long isc)347 static inline int isc_to_irq_type(unsigned long isc)
348 {
349 return IRQ_PEND_IO_ISC_0 - isc;
350 }
351
irq_type_to_isc(unsigned long irq_type)352 static inline int irq_type_to_isc(unsigned long irq_type)
353 {
354 return IRQ_PEND_IO_ISC_0 - irq_type;
355 }
356
disable_iscs(struct kvm_vcpu * vcpu,unsigned long active_mask)357 static unsigned long disable_iscs(struct kvm_vcpu *vcpu,
358 unsigned long active_mask)
359 {
360 int i;
361
362 for (i = 0; i <= MAX_ISC; i++)
363 if (!(vcpu->arch.sie_block->gcr[6] & isc_to_isc_bits(i)))
364 active_mask &= ~(1UL << (isc_to_irq_type(i)));
365
366 return active_mask;
367 }
368
deliverable_irqs(struct kvm_vcpu * vcpu)369 static unsigned long deliverable_irqs(struct kvm_vcpu *vcpu)
370 {
371 unsigned long active_mask;
372
373 active_mask = pending_irqs(vcpu);
374 if (!active_mask)
375 return 0;
376
377 if (psw_extint_disabled(vcpu))
378 active_mask &= ~IRQ_PEND_EXT_MASK;
379 if (psw_ioint_disabled(vcpu))
380 active_mask &= ~IRQ_PEND_IO_MASK;
381 else
382 active_mask = disable_iscs(vcpu, active_mask);
383 if (!(vcpu->arch.sie_block->gcr[0] & CR0_EXTERNAL_CALL_SUBMASK))
384 __clear_bit(IRQ_PEND_EXT_EXTERNAL, &active_mask);
385 if (!(vcpu->arch.sie_block->gcr[0] & CR0_EMERGENCY_SIGNAL_SUBMASK))
386 __clear_bit(IRQ_PEND_EXT_EMERGENCY, &active_mask);
387 if (!(vcpu->arch.sie_block->gcr[0] & CR0_CLOCK_COMPARATOR_SUBMASK))
388 __clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &active_mask);
389 if (!(vcpu->arch.sie_block->gcr[0] & CR0_CPU_TIMER_SUBMASK))
390 __clear_bit(IRQ_PEND_EXT_CPU_TIMER, &active_mask);
391 if (!(vcpu->arch.sie_block->gcr[0] & CR0_SERVICE_SIGNAL_SUBMASK)) {
392 __clear_bit(IRQ_PEND_EXT_SERVICE, &active_mask);
393 __clear_bit(IRQ_PEND_EXT_SERVICE_EV, &active_mask);
394 }
395 if (psw_mchk_disabled(vcpu))
396 active_mask &= ~IRQ_PEND_MCHK_MASK;
397 /* PV guest cpus can have a single interruption injected at a time. */
398 if (kvm_s390_pv_cpu_get_handle(vcpu) &&
399 vcpu->arch.sie_block->iictl != IICTL_CODE_NONE)
400 active_mask &= ~(IRQ_PEND_EXT_II_MASK |
401 IRQ_PEND_IO_MASK |
402 IRQ_PEND_MCHK_MASK);
403 /*
404 * Check both floating and local interrupt's cr14 because
405 * bit IRQ_PEND_MCHK_REP could be set in both cases.
406 */
407 if (!(vcpu->arch.sie_block->gcr[14] &
408 (vcpu->kvm->arch.float_int.mchk.cr14 |
409 vcpu->arch.local_int.irq.mchk.cr14)))
410 __clear_bit(IRQ_PEND_MCHK_REP, &active_mask);
411
412 /*
413 * STOP irqs will never be actively delivered. They are triggered via
414 * intercept requests and cleared when the stop intercept is performed.
415 */
416 __clear_bit(IRQ_PEND_SIGP_STOP, &active_mask);
417
418 return active_mask;
419 }
420
__set_cpu_idle(struct kvm_vcpu * vcpu)421 static void __set_cpu_idle(struct kvm_vcpu *vcpu)
422 {
423 kvm_s390_set_cpuflags(vcpu, CPUSTAT_WAIT);
424 set_bit(vcpu->vcpu_idx, vcpu->kvm->arch.idle_mask);
425 }
426
__unset_cpu_idle(struct kvm_vcpu * vcpu)427 static void __unset_cpu_idle(struct kvm_vcpu *vcpu)
428 {
429 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_WAIT);
430 clear_bit(vcpu->vcpu_idx, vcpu->kvm->arch.idle_mask);
431 }
432
__reset_intercept_indicators(struct kvm_vcpu * vcpu)433 static void __reset_intercept_indicators(struct kvm_vcpu *vcpu)
434 {
435 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_IO_INT | CPUSTAT_EXT_INT |
436 CPUSTAT_STOP_INT);
437 vcpu->arch.sie_block->lctl = 0x0000;
438 vcpu->arch.sie_block->ictl &= ~(ICTL_LPSW | ICTL_STCTL | ICTL_PINT);
439
440 if (guestdbg_enabled(vcpu)) {
441 vcpu->arch.sie_block->lctl |= (LCTL_CR0 | LCTL_CR9 |
442 LCTL_CR10 | LCTL_CR11);
443 vcpu->arch.sie_block->ictl |= (ICTL_STCTL | ICTL_PINT);
444 }
445 }
446
set_intercept_indicators_io(struct kvm_vcpu * vcpu)447 static void set_intercept_indicators_io(struct kvm_vcpu *vcpu)
448 {
449 if (!(pending_irqs_no_gisa(vcpu) & IRQ_PEND_IO_MASK))
450 return;
451 if (psw_ioint_disabled(vcpu))
452 kvm_s390_set_cpuflags(vcpu, CPUSTAT_IO_INT);
453 else
454 vcpu->arch.sie_block->lctl |= LCTL_CR6;
455 }
456
set_intercept_indicators_ext(struct kvm_vcpu * vcpu)457 static void set_intercept_indicators_ext(struct kvm_vcpu *vcpu)
458 {
459 if (!(pending_irqs_no_gisa(vcpu) & IRQ_PEND_EXT_MASK))
460 return;
461 if (psw_extint_disabled(vcpu))
462 kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT);
463 else
464 vcpu->arch.sie_block->lctl |= LCTL_CR0;
465 }
466
set_intercept_indicators_mchk(struct kvm_vcpu * vcpu)467 static void set_intercept_indicators_mchk(struct kvm_vcpu *vcpu)
468 {
469 if (!(pending_irqs_no_gisa(vcpu) & IRQ_PEND_MCHK_MASK))
470 return;
471 if (psw_mchk_disabled(vcpu))
472 vcpu->arch.sie_block->ictl |= ICTL_LPSW;
473 else
474 vcpu->arch.sie_block->lctl |= LCTL_CR14;
475 }
476
set_intercept_indicators_stop(struct kvm_vcpu * vcpu)477 static void set_intercept_indicators_stop(struct kvm_vcpu *vcpu)
478 {
479 if (kvm_s390_is_stop_irq_pending(vcpu))
480 kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOP_INT);
481 }
482
483 /* Set interception request for non-deliverable interrupts */
set_intercept_indicators(struct kvm_vcpu * vcpu)484 static void set_intercept_indicators(struct kvm_vcpu *vcpu)
485 {
486 set_intercept_indicators_io(vcpu);
487 set_intercept_indicators_ext(vcpu);
488 set_intercept_indicators_mchk(vcpu);
489 set_intercept_indicators_stop(vcpu);
490 }
491
__deliver_cpu_timer(struct kvm_vcpu * vcpu)492 static int __must_check __deliver_cpu_timer(struct kvm_vcpu *vcpu)
493 {
494 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
495 int rc = 0;
496
497 vcpu->stat.deliver_cputm++;
498 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_CPU_TIMER,
499 0, 0);
500 if (kvm_s390_pv_cpu_is_protected(vcpu)) {
501 vcpu->arch.sie_block->iictl = IICTL_CODE_EXT;
502 vcpu->arch.sie_block->eic = EXT_IRQ_CPU_TIMER;
503 } else {
504 rc = put_guest_lc(vcpu, EXT_IRQ_CPU_TIMER,
505 (u16 *)__LC_EXT_INT_CODE);
506 rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR);
507 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
508 &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
509 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
510 &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
511 }
512 clear_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
513 return rc ? -EFAULT : 0;
514 }
515
__deliver_ckc(struct kvm_vcpu * vcpu)516 static int __must_check __deliver_ckc(struct kvm_vcpu *vcpu)
517 {
518 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
519 int rc = 0;
520
521 vcpu->stat.deliver_ckc++;
522 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_CLOCK_COMP,
523 0, 0);
524 if (kvm_s390_pv_cpu_is_protected(vcpu)) {
525 vcpu->arch.sie_block->iictl = IICTL_CODE_EXT;
526 vcpu->arch.sie_block->eic = EXT_IRQ_CLK_COMP;
527 } else {
528 rc = put_guest_lc(vcpu, EXT_IRQ_CLK_COMP,
529 (u16 __user *)__LC_EXT_INT_CODE);
530 rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR);
531 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
532 &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
533 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
534 &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
535 }
536 clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
537 return rc ? -EFAULT : 0;
538 }
539
__deliver_pfault_init(struct kvm_vcpu * vcpu)540 static int __must_check __deliver_pfault_init(struct kvm_vcpu *vcpu)
541 {
542 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
543 struct kvm_s390_ext_info ext;
544 int rc;
545
546 spin_lock(&li->lock);
547 ext = li->irq.ext;
548 clear_bit(IRQ_PEND_PFAULT_INIT, &li->pending_irqs);
549 li->irq.ext.ext_params2 = 0;
550 spin_unlock(&li->lock);
551
552 VCPU_EVENT(vcpu, 4, "deliver: pfault init token 0x%llx",
553 ext.ext_params2);
554 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
555 KVM_S390_INT_PFAULT_INIT,
556 0, ext.ext_params2);
557
558 rc = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE, (u16 *) __LC_EXT_INT_CODE);
559 rc |= put_guest_lc(vcpu, PFAULT_INIT, (u16 *) __LC_EXT_CPU_ADDR);
560 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
561 &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
562 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
563 &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
564 rc |= put_guest_lc(vcpu, ext.ext_params2, (u64 *) __LC_EXT_PARAMS2);
565 return rc ? -EFAULT : 0;
566 }
567
__write_machine_check(struct kvm_vcpu * vcpu,struct kvm_s390_mchk_info * mchk)568 static int __write_machine_check(struct kvm_vcpu *vcpu,
569 struct kvm_s390_mchk_info *mchk)
570 {
571 unsigned long ext_sa_addr;
572 unsigned long lc;
573 freg_t fprs[NUM_FPRS];
574 union mci mci;
575 int rc;
576
577 /*
578 * All other possible payload for a machine check (e.g. the register
579 * contents in the save area) will be handled by the ultravisor, as
580 * the hypervisor does not not have the needed information for
581 * protected guests.
582 */
583 if (kvm_s390_pv_cpu_is_protected(vcpu)) {
584 vcpu->arch.sie_block->iictl = IICTL_CODE_MCHK;
585 vcpu->arch.sie_block->mcic = mchk->mcic;
586 vcpu->arch.sie_block->faddr = mchk->failing_storage_address;
587 vcpu->arch.sie_block->edc = mchk->ext_damage_code;
588 return 0;
589 }
590
591 mci.val = mchk->mcic;
592 /* take care of lazy register loading */
593 save_fpu_regs();
594 save_access_regs(vcpu->run->s.regs.acrs);
595 if (MACHINE_HAS_GS && vcpu->arch.gs_enabled)
596 save_gs_cb(current->thread.gs_cb);
597
598 /* Extended save area */
599 rc = read_guest_lc(vcpu, __LC_MCESAD, &ext_sa_addr,
600 sizeof(unsigned long));
601 /* Only bits 0 through 63-LC are used for address formation */
602 lc = ext_sa_addr & MCESA_LC_MASK;
603 if (test_kvm_facility(vcpu->kvm, 133)) {
604 switch (lc) {
605 case 0:
606 case 10:
607 ext_sa_addr &= ~0x3ffUL;
608 break;
609 case 11:
610 ext_sa_addr &= ~0x7ffUL;
611 break;
612 case 12:
613 ext_sa_addr &= ~0xfffUL;
614 break;
615 default:
616 ext_sa_addr = 0;
617 break;
618 }
619 } else {
620 ext_sa_addr &= ~0x3ffUL;
621 }
622
623 if (!rc && mci.vr && ext_sa_addr && test_kvm_facility(vcpu->kvm, 129)) {
624 if (write_guest_abs(vcpu, ext_sa_addr, vcpu->run->s.regs.vrs,
625 512))
626 mci.vr = 0;
627 } else {
628 mci.vr = 0;
629 }
630 if (!rc && mci.gs && ext_sa_addr && test_kvm_facility(vcpu->kvm, 133)
631 && (lc == 11 || lc == 12)) {
632 if (write_guest_abs(vcpu, ext_sa_addr + 1024,
633 &vcpu->run->s.regs.gscb, 32))
634 mci.gs = 0;
635 } else {
636 mci.gs = 0;
637 }
638
639 /* General interruption information */
640 rc |= put_guest_lc(vcpu, 1, (u8 __user *) __LC_AR_MODE_ID);
641 rc |= write_guest_lc(vcpu, __LC_MCK_OLD_PSW,
642 &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
643 rc |= read_guest_lc(vcpu, __LC_MCK_NEW_PSW,
644 &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
645 rc |= put_guest_lc(vcpu, mci.val, (u64 __user *) __LC_MCCK_CODE);
646
647 /* Register-save areas */
648 if (MACHINE_HAS_VX) {
649 convert_vx_to_fp(fprs, (__vector128 *) vcpu->run->s.regs.vrs);
650 rc |= write_guest_lc(vcpu, __LC_FPREGS_SAVE_AREA, fprs, 128);
651 } else {
652 rc |= write_guest_lc(vcpu, __LC_FPREGS_SAVE_AREA,
653 vcpu->run->s.regs.fprs, 128);
654 }
655 rc |= write_guest_lc(vcpu, __LC_GPREGS_SAVE_AREA,
656 vcpu->run->s.regs.gprs, 128);
657 rc |= put_guest_lc(vcpu, current->thread.fpu.fpc,
658 (u32 __user *) __LC_FP_CREG_SAVE_AREA);
659 rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->todpr,
660 (u32 __user *) __LC_TOD_PROGREG_SAVE_AREA);
661 rc |= put_guest_lc(vcpu, kvm_s390_get_cpu_timer(vcpu),
662 (u64 __user *) __LC_CPU_TIMER_SAVE_AREA);
663 rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->ckc >> 8,
664 (u64 __user *) __LC_CLOCK_COMP_SAVE_AREA);
665 rc |= write_guest_lc(vcpu, __LC_AREGS_SAVE_AREA,
666 &vcpu->run->s.regs.acrs, 64);
667 rc |= write_guest_lc(vcpu, __LC_CREGS_SAVE_AREA,
668 &vcpu->arch.sie_block->gcr, 128);
669
670 /* Extended interruption information */
671 rc |= put_guest_lc(vcpu, mchk->ext_damage_code,
672 (u32 __user *) __LC_EXT_DAMAGE_CODE);
673 rc |= put_guest_lc(vcpu, mchk->failing_storage_address,
674 (u64 __user *) __LC_MCCK_FAIL_STOR_ADDR);
675 rc |= write_guest_lc(vcpu, __LC_PSW_SAVE_AREA, &mchk->fixed_logout,
676 sizeof(mchk->fixed_logout));
677 return rc ? -EFAULT : 0;
678 }
679
__deliver_machine_check(struct kvm_vcpu * vcpu)680 static int __must_check __deliver_machine_check(struct kvm_vcpu *vcpu)
681 {
682 struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
683 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
684 struct kvm_s390_mchk_info mchk = {};
685 int deliver = 0;
686 int rc = 0;
687
688 spin_lock(&fi->lock);
689 spin_lock(&li->lock);
690 if (test_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs) ||
691 test_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs)) {
692 /*
693 * If there was an exigent machine check pending, then any
694 * repressible machine checks that might have been pending
695 * are indicated along with it, so always clear bits for
696 * repressible and exigent interrupts
697 */
698 mchk = li->irq.mchk;
699 clear_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs);
700 clear_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs);
701 memset(&li->irq.mchk, 0, sizeof(mchk));
702 deliver = 1;
703 }
704 /*
705 * We indicate floating repressible conditions along with
706 * other pending conditions. Channel Report Pending and Channel
707 * Subsystem damage are the only two and are indicated by
708 * bits in mcic and masked in cr14.
709 */
710 if (test_and_clear_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs)) {
711 mchk.mcic |= fi->mchk.mcic;
712 mchk.cr14 |= fi->mchk.cr14;
713 memset(&fi->mchk, 0, sizeof(mchk));
714 deliver = 1;
715 }
716 spin_unlock(&li->lock);
717 spin_unlock(&fi->lock);
718
719 if (deliver) {
720 VCPU_EVENT(vcpu, 3, "deliver: machine check mcic 0x%llx",
721 mchk.mcic);
722 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
723 KVM_S390_MCHK,
724 mchk.cr14, mchk.mcic);
725 vcpu->stat.deliver_machine_check++;
726 rc = __write_machine_check(vcpu, &mchk);
727 }
728 return rc;
729 }
730
__deliver_restart(struct kvm_vcpu * vcpu)731 static int __must_check __deliver_restart(struct kvm_vcpu *vcpu)
732 {
733 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
734 int rc = 0;
735
736 VCPU_EVENT(vcpu, 3, "%s", "deliver: cpu restart");
737 vcpu->stat.deliver_restart_signal++;
738 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_RESTART, 0, 0);
739
740 if (kvm_s390_pv_cpu_is_protected(vcpu)) {
741 vcpu->arch.sie_block->iictl = IICTL_CODE_RESTART;
742 } else {
743 rc = write_guest_lc(vcpu,
744 offsetof(struct lowcore, restart_old_psw),
745 &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
746 rc |= read_guest_lc(vcpu, offsetof(struct lowcore, restart_psw),
747 &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
748 }
749 clear_bit(IRQ_PEND_RESTART, &li->pending_irqs);
750 return rc ? -EFAULT : 0;
751 }
752
__deliver_set_prefix(struct kvm_vcpu * vcpu)753 static int __must_check __deliver_set_prefix(struct kvm_vcpu *vcpu)
754 {
755 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
756 struct kvm_s390_prefix_info prefix;
757
758 spin_lock(&li->lock);
759 prefix = li->irq.prefix;
760 li->irq.prefix.address = 0;
761 clear_bit(IRQ_PEND_SET_PREFIX, &li->pending_irqs);
762 spin_unlock(&li->lock);
763
764 vcpu->stat.deliver_prefix_signal++;
765 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
766 KVM_S390_SIGP_SET_PREFIX,
767 prefix.address, 0);
768
769 kvm_s390_set_prefix(vcpu, prefix.address);
770 return 0;
771 }
772
__deliver_emergency_signal(struct kvm_vcpu * vcpu)773 static int __must_check __deliver_emergency_signal(struct kvm_vcpu *vcpu)
774 {
775 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
776 int rc;
777 int cpu_addr;
778
779 spin_lock(&li->lock);
780 cpu_addr = find_first_bit(li->sigp_emerg_pending, KVM_MAX_VCPUS);
781 clear_bit(cpu_addr, li->sigp_emerg_pending);
782 if (bitmap_empty(li->sigp_emerg_pending, KVM_MAX_VCPUS))
783 clear_bit(IRQ_PEND_EXT_EMERGENCY, &li->pending_irqs);
784 spin_unlock(&li->lock);
785
786 VCPU_EVENT(vcpu, 4, "%s", "deliver: sigp emerg");
787 vcpu->stat.deliver_emergency_signal++;
788 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_EMERGENCY,
789 cpu_addr, 0);
790 if (kvm_s390_pv_cpu_is_protected(vcpu)) {
791 vcpu->arch.sie_block->iictl = IICTL_CODE_EXT;
792 vcpu->arch.sie_block->eic = EXT_IRQ_EMERGENCY_SIG;
793 vcpu->arch.sie_block->extcpuaddr = cpu_addr;
794 return 0;
795 }
796
797 rc = put_guest_lc(vcpu, EXT_IRQ_EMERGENCY_SIG,
798 (u16 *)__LC_EXT_INT_CODE);
799 rc |= put_guest_lc(vcpu, cpu_addr, (u16 *)__LC_EXT_CPU_ADDR);
800 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
801 &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
802 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
803 &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
804 return rc ? -EFAULT : 0;
805 }
806
__deliver_external_call(struct kvm_vcpu * vcpu)807 static int __must_check __deliver_external_call(struct kvm_vcpu *vcpu)
808 {
809 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
810 struct kvm_s390_extcall_info extcall;
811 int rc;
812
813 spin_lock(&li->lock);
814 extcall = li->irq.extcall;
815 li->irq.extcall.code = 0;
816 clear_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs);
817 spin_unlock(&li->lock);
818
819 VCPU_EVENT(vcpu, 4, "%s", "deliver: sigp ext call");
820 vcpu->stat.deliver_external_call++;
821 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
822 KVM_S390_INT_EXTERNAL_CALL,
823 extcall.code, 0);
824 if (kvm_s390_pv_cpu_is_protected(vcpu)) {
825 vcpu->arch.sie_block->iictl = IICTL_CODE_EXT;
826 vcpu->arch.sie_block->eic = EXT_IRQ_EXTERNAL_CALL;
827 vcpu->arch.sie_block->extcpuaddr = extcall.code;
828 return 0;
829 }
830
831 rc = put_guest_lc(vcpu, EXT_IRQ_EXTERNAL_CALL,
832 (u16 *)__LC_EXT_INT_CODE);
833 rc |= put_guest_lc(vcpu, extcall.code, (u16 *)__LC_EXT_CPU_ADDR);
834 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
835 &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
836 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, &vcpu->arch.sie_block->gpsw,
837 sizeof(psw_t));
838 return rc ? -EFAULT : 0;
839 }
840
__deliver_prog_pv(struct kvm_vcpu * vcpu,u16 code)841 static int __deliver_prog_pv(struct kvm_vcpu *vcpu, u16 code)
842 {
843 switch (code) {
844 case PGM_SPECIFICATION:
845 vcpu->arch.sie_block->iictl = IICTL_CODE_SPECIFICATION;
846 break;
847 case PGM_OPERAND:
848 vcpu->arch.sie_block->iictl = IICTL_CODE_OPERAND;
849 break;
850 default:
851 return -EINVAL;
852 }
853 return 0;
854 }
855
__deliver_prog(struct kvm_vcpu * vcpu)856 static int __must_check __deliver_prog(struct kvm_vcpu *vcpu)
857 {
858 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
859 struct kvm_s390_pgm_info pgm_info;
860 int rc = 0, nullifying = false;
861 u16 ilen;
862
863 spin_lock(&li->lock);
864 pgm_info = li->irq.pgm;
865 clear_bit(IRQ_PEND_PROG, &li->pending_irqs);
866 memset(&li->irq.pgm, 0, sizeof(pgm_info));
867 spin_unlock(&li->lock);
868
869 ilen = pgm_info.flags & KVM_S390_PGM_FLAGS_ILC_MASK;
870 VCPU_EVENT(vcpu, 3, "deliver: program irq code 0x%x, ilen:%d",
871 pgm_info.code, ilen);
872 vcpu->stat.deliver_program++;
873 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_PROGRAM_INT,
874 pgm_info.code, 0);
875
876 /* PER is handled by the ultravisor */
877 if (kvm_s390_pv_cpu_is_protected(vcpu))
878 return __deliver_prog_pv(vcpu, pgm_info.code & ~PGM_PER);
879
880 switch (pgm_info.code & ~PGM_PER) {
881 case PGM_AFX_TRANSLATION:
882 case PGM_ASX_TRANSLATION:
883 case PGM_EX_TRANSLATION:
884 case PGM_LFX_TRANSLATION:
885 case PGM_LSTE_SEQUENCE:
886 case PGM_LSX_TRANSLATION:
887 case PGM_LX_TRANSLATION:
888 case PGM_PRIMARY_AUTHORITY:
889 case PGM_SECONDARY_AUTHORITY:
890 nullifying = true;
891 fallthrough;
892 case PGM_SPACE_SWITCH:
893 rc = put_guest_lc(vcpu, pgm_info.trans_exc_code,
894 (u64 *)__LC_TRANS_EXC_CODE);
895 break;
896 case PGM_ALEN_TRANSLATION:
897 case PGM_ALE_SEQUENCE:
898 case PGM_ASTE_INSTANCE:
899 case PGM_ASTE_SEQUENCE:
900 case PGM_ASTE_VALIDITY:
901 case PGM_EXTENDED_AUTHORITY:
902 rc = put_guest_lc(vcpu, pgm_info.exc_access_id,
903 (u8 *)__LC_EXC_ACCESS_ID);
904 nullifying = true;
905 break;
906 case PGM_ASCE_TYPE:
907 case PGM_PAGE_TRANSLATION:
908 case PGM_REGION_FIRST_TRANS:
909 case PGM_REGION_SECOND_TRANS:
910 case PGM_REGION_THIRD_TRANS:
911 case PGM_SEGMENT_TRANSLATION:
912 rc = put_guest_lc(vcpu, pgm_info.trans_exc_code,
913 (u64 *)__LC_TRANS_EXC_CODE);
914 rc |= put_guest_lc(vcpu, pgm_info.exc_access_id,
915 (u8 *)__LC_EXC_ACCESS_ID);
916 rc |= put_guest_lc(vcpu, pgm_info.op_access_id,
917 (u8 *)__LC_OP_ACCESS_ID);
918 nullifying = true;
919 break;
920 case PGM_MONITOR:
921 rc = put_guest_lc(vcpu, pgm_info.mon_class_nr,
922 (u16 *)__LC_MON_CLASS_NR);
923 rc |= put_guest_lc(vcpu, pgm_info.mon_code,
924 (u64 *)__LC_MON_CODE);
925 break;
926 case PGM_VECTOR_PROCESSING:
927 case PGM_DATA:
928 rc = put_guest_lc(vcpu, pgm_info.data_exc_code,
929 (u32 *)__LC_DATA_EXC_CODE);
930 break;
931 case PGM_PROTECTION:
932 rc = put_guest_lc(vcpu, pgm_info.trans_exc_code,
933 (u64 *)__LC_TRANS_EXC_CODE);
934 rc |= put_guest_lc(vcpu, pgm_info.exc_access_id,
935 (u8 *)__LC_EXC_ACCESS_ID);
936 break;
937 case PGM_STACK_FULL:
938 case PGM_STACK_EMPTY:
939 case PGM_STACK_SPECIFICATION:
940 case PGM_STACK_TYPE:
941 case PGM_STACK_OPERATION:
942 case PGM_TRACE_TABEL:
943 case PGM_CRYPTO_OPERATION:
944 nullifying = true;
945 break;
946 }
947
948 if (pgm_info.code & PGM_PER) {
949 rc |= put_guest_lc(vcpu, pgm_info.per_code,
950 (u8 *) __LC_PER_CODE);
951 rc |= put_guest_lc(vcpu, pgm_info.per_atmid,
952 (u8 *)__LC_PER_ATMID);
953 rc |= put_guest_lc(vcpu, pgm_info.per_address,
954 (u64 *) __LC_PER_ADDRESS);
955 rc |= put_guest_lc(vcpu, pgm_info.per_access_id,
956 (u8 *) __LC_PER_ACCESS_ID);
957 }
958
959 if (nullifying && !(pgm_info.flags & KVM_S390_PGM_FLAGS_NO_REWIND))
960 kvm_s390_rewind_psw(vcpu, ilen);
961
962 /* bit 1+2 of the target are the ilc, so we can directly use ilen */
963 rc |= put_guest_lc(vcpu, ilen, (u16 *) __LC_PGM_ILC);
964 rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->gbea,
965 (u64 *) __LC_PGM_LAST_BREAK);
966 rc |= put_guest_lc(vcpu, pgm_info.code,
967 (u16 *)__LC_PGM_INT_CODE);
968 rc |= write_guest_lc(vcpu, __LC_PGM_OLD_PSW,
969 &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
970 rc |= read_guest_lc(vcpu, __LC_PGM_NEW_PSW,
971 &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
972 return rc ? -EFAULT : 0;
973 }
974
975 #define SCCB_MASK 0xFFFFFFF8
976 #define SCCB_EVENT_PENDING 0x3
977
write_sclp(struct kvm_vcpu * vcpu,u32 parm)978 static int write_sclp(struct kvm_vcpu *vcpu, u32 parm)
979 {
980 int rc;
981
982 if (kvm_s390_pv_cpu_get_handle(vcpu)) {
983 vcpu->arch.sie_block->iictl = IICTL_CODE_EXT;
984 vcpu->arch.sie_block->eic = EXT_IRQ_SERVICE_SIG;
985 vcpu->arch.sie_block->eiparams = parm;
986 return 0;
987 }
988
989 rc = put_guest_lc(vcpu, EXT_IRQ_SERVICE_SIG, (u16 *)__LC_EXT_INT_CODE);
990 rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR);
991 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
992 &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
993 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
994 &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
995 rc |= put_guest_lc(vcpu, parm,
996 (u32 *)__LC_EXT_PARAMS);
997
998 return rc ? -EFAULT : 0;
999 }
1000
__deliver_service(struct kvm_vcpu * vcpu)1001 static int __must_check __deliver_service(struct kvm_vcpu *vcpu)
1002 {
1003 struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
1004 struct kvm_s390_ext_info ext;
1005
1006 spin_lock(&fi->lock);
1007 if (test_bit(IRQ_PEND_EXT_SERVICE, &fi->masked_irqs) ||
1008 !(test_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs))) {
1009 spin_unlock(&fi->lock);
1010 return 0;
1011 }
1012 ext = fi->srv_signal;
1013 memset(&fi->srv_signal, 0, sizeof(ext));
1014 clear_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs);
1015 clear_bit(IRQ_PEND_EXT_SERVICE_EV, &fi->pending_irqs);
1016 if (kvm_s390_pv_cpu_is_protected(vcpu))
1017 set_bit(IRQ_PEND_EXT_SERVICE, &fi->masked_irqs);
1018 spin_unlock(&fi->lock);
1019
1020 VCPU_EVENT(vcpu, 4, "deliver: sclp parameter 0x%x",
1021 ext.ext_params);
1022 vcpu->stat.deliver_service_signal++;
1023 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_SERVICE,
1024 ext.ext_params, 0);
1025
1026 return write_sclp(vcpu, ext.ext_params);
1027 }
1028
__deliver_service_ev(struct kvm_vcpu * vcpu)1029 static int __must_check __deliver_service_ev(struct kvm_vcpu *vcpu)
1030 {
1031 struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
1032 struct kvm_s390_ext_info ext;
1033
1034 spin_lock(&fi->lock);
1035 if (!(test_bit(IRQ_PEND_EXT_SERVICE_EV, &fi->pending_irqs))) {
1036 spin_unlock(&fi->lock);
1037 return 0;
1038 }
1039 ext = fi->srv_signal;
1040 /* only clear the event bit */
1041 fi->srv_signal.ext_params &= ~SCCB_EVENT_PENDING;
1042 clear_bit(IRQ_PEND_EXT_SERVICE_EV, &fi->pending_irqs);
1043 spin_unlock(&fi->lock);
1044
1045 VCPU_EVENT(vcpu, 4, "%s", "deliver: sclp parameter event");
1046 vcpu->stat.deliver_service_signal++;
1047 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_SERVICE,
1048 ext.ext_params, 0);
1049
1050 return write_sclp(vcpu, SCCB_EVENT_PENDING);
1051 }
1052
__deliver_pfault_done(struct kvm_vcpu * vcpu)1053 static int __must_check __deliver_pfault_done(struct kvm_vcpu *vcpu)
1054 {
1055 struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
1056 struct kvm_s390_interrupt_info *inti;
1057 int rc = 0;
1058
1059 spin_lock(&fi->lock);
1060 inti = list_first_entry_or_null(&fi->lists[FIRQ_LIST_PFAULT],
1061 struct kvm_s390_interrupt_info,
1062 list);
1063 if (inti) {
1064 list_del(&inti->list);
1065 fi->counters[FIRQ_CNTR_PFAULT] -= 1;
1066 }
1067 if (list_empty(&fi->lists[FIRQ_LIST_PFAULT]))
1068 clear_bit(IRQ_PEND_PFAULT_DONE, &fi->pending_irqs);
1069 spin_unlock(&fi->lock);
1070
1071 if (inti) {
1072 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
1073 KVM_S390_INT_PFAULT_DONE, 0,
1074 inti->ext.ext_params2);
1075 VCPU_EVENT(vcpu, 4, "deliver: pfault done token 0x%llx",
1076 inti->ext.ext_params2);
1077
1078 rc = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE,
1079 (u16 *)__LC_EXT_INT_CODE);
1080 rc |= put_guest_lc(vcpu, PFAULT_DONE,
1081 (u16 *)__LC_EXT_CPU_ADDR);
1082 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
1083 &vcpu->arch.sie_block->gpsw,
1084 sizeof(psw_t));
1085 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
1086 &vcpu->arch.sie_block->gpsw,
1087 sizeof(psw_t));
1088 rc |= put_guest_lc(vcpu, inti->ext.ext_params2,
1089 (u64 *)__LC_EXT_PARAMS2);
1090 kfree(inti);
1091 }
1092 return rc ? -EFAULT : 0;
1093 }
1094
__deliver_virtio(struct kvm_vcpu * vcpu)1095 static int __must_check __deliver_virtio(struct kvm_vcpu *vcpu)
1096 {
1097 struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
1098 struct kvm_s390_interrupt_info *inti;
1099 int rc = 0;
1100
1101 spin_lock(&fi->lock);
1102 inti = list_first_entry_or_null(&fi->lists[FIRQ_LIST_VIRTIO],
1103 struct kvm_s390_interrupt_info,
1104 list);
1105 if (inti) {
1106 VCPU_EVENT(vcpu, 4,
1107 "deliver: virtio parm: 0x%x,parm64: 0x%llx",
1108 inti->ext.ext_params, inti->ext.ext_params2);
1109 vcpu->stat.deliver_virtio++;
1110 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
1111 inti->type,
1112 inti->ext.ext_params,
1113 inti->ext.ext_params2);
1114 list_del(&inti->list);
1115 fi->counters[FIRQ_CNTR_VIRTIO] -= 1;
1116 }
1117 if (list_empty(&fi->lists[FIRQ_LIST_VIRTIO]))
1118 clear_bit(IRQ_PEND_VIRTIO, &fi->pending_irqs);
1119 spin_unlock(&fi->lock);
1120
1121 if (inti) {
1122 rc = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE,
1123 (u16 *)__LC_EXT_INT_CODE);
1124 rc |= put_guest_lc(vcpu, VIRTIO_PARAM,
1125 (u16 *)__LC_EXT_CPU_ADDR);
1126 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
1127 &vcpu->arch.sie_block->gpsw,
1128 sizeof(psw_t));
1129 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
1130 &vcpu->arch.sie_block->gpsw,
1131 sizeof(psw_t));
1132 rc |= put_guest_lc(vcpu, inti->ext.ext_params,
1133 (u32 *)__LC_EXT_PARAMS);
1134 rc |= put_guest_lc(vcpu, inti->ext.ext_params2,
1135 (u64 *)__LC_EXT_PARAMS2);
1136 kfree(inti);
1137 }
1138 return rc ? -EFAULT : 0;
1139 }
1140
__do_deliver_io(struct kvm_vcpu * vcpu,struct kvm_s390_io_info * io)1141 static int __do_deliver_io(struct kvm_vcpu *vcpu, struct kvm_s390_io_info *io)
1142 {
1143 int rc;
1144
1145 if (kvm_s390_pv_cpu_is_protected(vcpu)) {
1146 vcpu->arch.sie_block->iictl = IICTL_CODE_IO;
1147 vcpu->arch.sie_block->subchannel_id = io->subchannel_id;
1148 vcpu->arch.sie_block->subchannel_nr = io->subchannel_nr;
1149 vcpu->arch.sie_block->io_int_parm = io->io_int_parm;
1150 vcpu->arch.sie_block->io_int_word = io->io_int_word;
1151 return 0;
1152 }
1153
1154 rc = put_guest_lc(vcpu, io->subchannel_id, (u16 *)__LC_SUBCHANNEL_ID);
1155 rc |= put_guest_lc(vcpu, io->subchannel_nr, (u16 *)__LC_SUBCHANNEL_NR);
1156 rc |= put_guest_lc(vcpu, io->io_int_parm, (u32 *)__LC_IO_INT_PARM);
1157 rc |= put_guest_lc(vcpu, io->io_int_word, (u32 *)__LC_IO_INT_WORD);
1158 rc |= write_guest_lc(vcpu, __LC_IO_OLD_PSW,
1159 &vcpu->arch.sie_block->gpsw,
1160 sizeof(psw_t));
1161 rc |= read_guest_lc(vcpu, __LC_IO_NEW_PSW,
1162 &vcpu->arch.sie_block->gpsw,
1163 sizeof(psw_t));
1164 return rc ? -EFAULT : 0;
1165 }
1166
__deliver_io(struct kvm_vcpu * vcpu,unsigned long irq_type)1167 static int __must_check __deliver_io(struct kvm_vcpu *vcpu,
1168 unsigned long irq_type)
1169 {
1170 struct list_head *isc_list;
1171 struct kvm_s390_float_interrupt *fi;
1172 struct kvm_s390_gisa_interrupt *gi = &vcpu->kvm->arch.gisa_int;
1173 struct kvm_s390_interrupt_info *inti = NULL;
1174 struct kvm_s390_io_info io;
1175 u32 isc;
1176 int rc = 0;
1177
1178 fi = &vcpu->kvm->arch.float_int;
1179
1180 spin_lock(&fi->lock);
1181 isc = irq_type_to_isc(irq_type);
1182 isc_list = &fi->lists[isc];
1183 inti = list_first_entry_or_null(isc_list,
1184 struct kvm_s390_interrupt_info,
1185 list);
1186 if (inti) {
1187 if (inti->type & KVM_S390_INT_IO_AI_MASK)
1188 VCPU_EVENT(vcpu, 4, "%s", "deliver: I/O (AI)");
1189 else
1190 VCPU_EVENT(vcpu, 4, "deliver: I/O %x ss %x schid %04x",
1191 inti->io.subchannel_id >> 8,
1192 inti->io.subchannel_id >> 1 & 0x3,
1193 inti->io.subchannel_nr);
1194
1195 vcpu->stat.deliver_io++;
1196 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
1197 inti->type,
1198 ((__u32)inti->io.subchannel_id << 16) |
1199 inti->io.subchannel_nr,
1200 ((__u64)inti->io.io_int_parm << 32) |
1201 inti->io.io_int_word);
1202 list_del(&inti->list);
1203 fi->counters[FIRQ_CNTR_IO] -= 1;
1204 }
1205 if (list_empty(isc_list))
1206 clear_bit(irq_type, &fi->pending_irqs);
1207 spin_unlock(&fi->lock);
1208
1209 if (inti) {
1210 rc = __do_deliver_io(vcpu, &(inti->io));
1211 kfree(inti);
1212 goto out;
1213 }
1214
1215 if (gi->origin && gisa_tac_ipm_gisc(gi->origin, isc)) {
1216 /*
1217 * in case an adapter interrupt was not delivered
1218 * in SIE context KVM will handle the delivery
1219 */
1220 VCPU_EVENT(vcpu, 4, "%s isc %u", "deliver: I/O (AI/gisa)", isc);
1221 memset(&io, 0, sizeof(io));
1222 io.io_int_word = isc_to_int_word(isc);
1223 vcpu->stat.deliver_io++;
1224 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
1225 KVM_S390_INT_IO(1, 0, 0, 0),
1226 ((__u32)io.subchannel_id << 16) |
1227 io.subchannel_nr,
1228 ((__u64)io.io_int_parm << 32) |
1229 io.io_int_word);
1230 rc = __do_deliver_io(vcpu, &io);
1231 }
1232 out:
1233 return rc;
1234 }
1235
1236 /* Check whether an external call is pending (deliverable or not) */
kvm_s390_ext_call_pending(struct kvm_vcpu * vcpu)1237 int kvm_s390_ext_call_pending(struct kvm_vcpu *vcpu)
1238 {
1239 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1240
1241 if (!sclp.has_sigpif)
1242 return test_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs);
1243
1244 return sca_ext_call_pending(vcpu, NULL);
1245 }
1246
kvm_s390_vcpu_has_irq(struct kvm_vcpu * vcpu,int exclude_stop)1247 int kvm_s390_vcpu_has_irq(struct kvm_vcpu *vcpu, int exclude_stop)
1248 {
1249 if (deliverable_irqs(vcpu))
1250 return 1;
1251
1252 if (kvm_cpu_has_pending_timer(vcpu))
1253 return 1;
1254
1255 /* external call pending and deliverable */
1256 if (kvm_s390_ext_call_pending(vcpu) &&
1257 !psw_extint_disabled(vcpu) &&
1258 (vcpu->arch.sie_block->gcr[0] & CR0_EXTERNAL_CALL_SUBMASK))
1259 return 1;
1260
1261 if (!exclude_stop && kvm_s390_is_stop_irq_pending(vcpu))
1262 return 1;
1263 return 0;
1264 }
1265
kvm_cpu_has_pending_timer(struct kvm_vcpu * vcpu)1266 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1267 {
1268 return ckc_irq_pending(vcpu) || cpu_timer_irq_pending(vcpu);
1269 }
1270
__calculate_sltime(struct kvm_vcpu * vcpu)1271 static u64 __calculate_sltime(struct kvm_vcpu *vcpu)
1272 {
1273 const u64 now = kvm_s390_get_tod_clock_fast(vcpu->kvm);
1274 const u64 ckc = vcpu->arch.sie_block->ckc;
1275 u64 cputm, sltime = 0;
1276
1277 if (ckc_interrupts_enabled(vcpu)) {
1278 if (vcpu->arch.sie_block->gcr[0] & CR0_CLOCK_COMPARATOR_SIGN) {
1279 if ((s64)now < (s64)ckc)
1280 sltime = tod_to_ns((s64)ckc - (s64)now);
1281 } else if (now < ckc) {
1282 sltime = tod_to_ns(ckc - now);
1283 }
1284 /* already expired */
1285 if (!sltime)
1286 return 0;
1287 if (cpu_timer_interrupts_enabled(vcpu)) {
1288 cputm = kvm_s390_get_cpu_timer(vcpu);
1289 /* already expired? */
1290 if (cputm >> 63)
1291 return 0;
1292 return min_t(u64, sltime, tod_to_ns(cputm));
1293 }
1294 } else if (cpu_timer_interrupts_enabled(vcpu)) {
1295 sltime = kvm_s390_get_cpu_timer(vcpu);
1296 /* already expired? */
1297 if (sltime >> 63)
1298 return 0;
1299 }
1300 return sltime;
1301 }
1302
kvm_s390_handle_wait(struct kvm_vcpu * vcpu)1303 int kvm_s390_handle_wait(struct kvm_vcpu *vcpu)
1304 {
1305 struct kvm_s390_gisa_interrupt *gi = &vcpu->kvm->arch.gisa_int;
1306 u64 sltime;
1307
1308 vcpu->stat.exit_wait_state++;
1309
1310 /* fast path */
1311 if (kvm_arch_vcpu_runnable(vcpu))
1312 return 0;
1313
1314 if (psw_interrupts_disabled(vcpu)) {
1315 VCPU_EVENT(vcpu, 3, "%s", "disabled wait");
1316 return -EOPNOTSUPP; /* disabled wait */
1317 }
1318
1319 if (gi->origin &&
1320 (gisa_get_ipm_or_restore_iam(gi) &
1321 vcpu->arch.sie_block->gcr[6] >> 24))
1322 return 0;
1323
1324 if (!ckc_interrupts_enabled(vcpu) &&
1325 !cpu_timer_interrupts_enabled(vcpu)) {
1326 VCPU_EVENT(vcpu, 3, "%s", "enabled wait w/o timer");
1327 __set_cpu_idle(vcpu);
1328 goto no_timer;
1329 }
1330
1331 sltime = __calculate_sltime(vcpu);
1332 if (!sltime)
1333 return 0;
1334
1335 __set_cpu_idle(vcpu);
1336 hrtimer_start(&vcpu->arch.ckc_timer, sltime, HRTIMER_MODE_REL);
1337 VCPU_EVENT(vcpu, 4, "enabled wait: %llu ns", sltime);
1338 no_timer:
1339 kvm_vcpu_srcu_read_unlock(vcpu);
1340 kvm_vcpu_halt(vcpu);
1341 vcpu->valid_wakeup = false;
1342 __unset_cpu_idle(vcpu);
1343 kvm_vcpu_srcu_read_lock(vcpu);
1344
1345 hrtimer_cancel(&vcpu->arch.ckc_timer);
1346 return 0;
1347 }
1348
kvm_s390_vcpu_wakeup(struct kvm_vcpu * vcpu)1349 void kvm_s390_vcpu_wakeup(struct kvm_vcpu *vcpu)
1350 {
1351 vcpu->valid_wakeup = true;
1352 kvm_vcpu_wake_up(vcpu);
1353
1354 /*
1355 * The VCPU might not be sleeping but rather executing VSIE. Let's
1356 * kick it, so it leaves the SIE to process the request.
1357 */
1358 kvm_s390_vsie_kick(vcpu);
1359 }
1360
kvm_s390_idle_wakeup(struct hrtimer * timer)1361 enum hrtimer_restart kvm_s390_idle_wakeup(struct hrtimer *timer)
1362 {
1363 struct kvm_vcpu *vcpu;
1364 u64 sltime;
1365
1366 vcpu = container_of(timer, struct kvm_vcpu, arch.ckc_timer);
1367 sltime = __calculate_sltime(vcpu);
1368
1369 /*
1370 * If the monotonic clock runs faster than the tod clock we might be
1371 * woken up too early and have to go back to sleep to avoid deadlocks.
1372 */
1373 if (sltime && hrtimer_forward_now(timer, ns_to_ktime(sltime)))
1374 return HRTIMER_RESTART;
1375 kvm_s390_vcpu_wakeup(vcpu);
1376 return HRTIMER_NORESTART;
1377 }
1378
kvm_s390_clear_local_irqs(struct kvm_vcpu * vcpu)1379 void kvm_s390_clear_local_irqs(struct kvm_vcpu *vcpu)
1380 {
1381 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1382
1383 spin_lock(&li->lock);
1384 li->pending_irqs = 0;
1385 bitmap_zero(li->sigp_emerg_pending, KVM_MAX_VCPUS);
1386 memset(&li->irq, 0, sizeof(li->irq));
1387 spin_unlock(&li->lock);
1388
1389 sca_clear_ext_call(vcpu);
1390 }
1391
kvm_s390_deliver_pending_interrupts(struct kvm_vcpu * vcpu)1392 int __must_check kvm_s390_deliver_pending_interrupts(struct kvm_vcpu *vcpu)
1393 {
1394 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1395 int rc = 0;
1396 unsigned long irq_type;
1397 unsigned long irqs;
1398
1399 __reset_intercept_indicators(vcpu);
1400
1401 /* pending ckc conditions might have been invalidated */
1402 clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
1403 if (ckc_irq_pending(vcpu))
1404 set_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
1405
1406 /* pending cpu timer conditions might have been invalidated */
1407 clear_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
1408 if (cpu_timer_irq_pending(vcpu))
1409 set_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
1410
1411 while ((irqs = deliverable_irqs(vcpu)) && !rc) {
1412 /* bits are in the reverse order of interrupt priority */
1413 irq_type = find_last_bit(&irqs, IRQ_PEND_COUNT);
1414 switch (irq_type) {
1415 case IRQ_PEND_IO_ISC_0:
1416 case IRQ_PEND_IO_ISC_1:
1417 case IRQ_PEND_IO_ISC_2:
1418 case IRQ_PEND_IO_ISC_3:
1419 case IRQ_PEND_IO_ISC_4:
1420 case IRQ_PEND_IO_ISC_5:
1421 case IRQ_PEND_IO_ISC_6:
1422 case IRQ_PEND_IO_ISC_7:
1423 rc = __deliver_io(vcpu, irq_type);
1424 break;
1425 case IRQ_PEND_MCHK_EX:
1426 case IRQ_PEND_MCHK_REP:
1427 rc = __deliver_machine_check(vcpu);
1428 break;
1429 case IRQ_PEND_PROG:
1430 rc = __deliver_prog(vcpu);
1431 break;
1432 case IRQ_PEND_EXT_EMERGENCY:
1433 rc = __deliver_emergency_signal(vcpu);
1434 break;
1435 case IRQ_PEND_EXT_EXTERNAL:
1436 rc = __deliver_external_call(vcpu);
1437 break;
1438 case IRQ_PEND_EXT_CLOCK_COMP:
1439 rc = __deliver_ckc(vcpu);
1440 break;
1441 case IRQ_PEND_EXT_CPU_TIMER:
1442 rc = __deliver_cpu_timer(vcpu);
1443 break;
1444 case IRQ_PEND_RESTART:
1445 rc = __deliver_restart(vcpu);
1446 break;
1447 case IRQ_PEND_SET_PREFIX:
1448 rc = __deliver_set_prefix(vcpu);
1449 break;
1450 case IRQ_PEND_PFAULT_INIT:
1451 rc = __deliver_pfault_init(vcpu);
1452 break;
1453 case IRQ_PEND_EXT_SERVICE:
1454 rc = __deliver_service(vcpu);
1455 break;
1456 case IRQ_PEND_EXT_SERVICE_EV:
1457 rc = __deliver_service_ev(vcpu);
1458 break;
1459 case IRQ_PEND_PFAULT_DONE:
1460 rc = __deliver_pfault_done(vcpu);
1461 break;
1462 case IRQ_PEND_VIRTIO:
1463 rc = __deliver_virtio(vcpu);
1464 break;
1465 default:
1466 WARN_ONCE(1, "Unknown pending irq type %ld", irq_type);
1467 clear_bit(irq_type, &li->pending_irqs);
1468 }
1469 }
1470
1471 set_intercept_indicators(vcpu);
1472
1473 return rc;
1474 }
1475
__inject_prog(struct kvm_vcpu * vcpu,struct kvm_s390_irq * irq)1476 static int __inject_prog(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1477 {
1478 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1479
1480 vcpu->stat.inject_program++;
1481 VCPU_EVENT(vcpu, 3, "inject: program irq code 0x%x", irq->u.pgm.code);
1482 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_PROGRAM_INT,
1483 irq->u.pgm.code, 0);
1484
1485 if (!(irq->u.pgm.flags & KVM_S390_PGM_FLAGS_ILC_VALID)) {
1486 /* auto detection if no valid ILC was given */
1487 irq->u.pgm.flags &= ~KVM_S390_PGM_FLAGS_ILC_MASK;
1488 irq->u.pgm.flags |= kvm_s390_get_ilen(vcpu);
1489 irq->u.pgm.flags |= KVM_S390_PGM_FLAGS_ILC_VALID;
1490 }
1491
1492 if (irq->u.pgm.code == PGM_PER) {
1493 li->irq.pgm.code |= PGM_PER;
1494 li->irq.pgm.flags = irq->u.pgm.flags;
1495 /* only modify PER related information */
1496 li->irq.pgm.per_address = irq->u.pgm.per_address;
1497 li->irq.pgm.per_code = irq->u.pgm.per_code;
1498 li->irq.pgm.per_atmid = irq->u.pgm.per_atmid;
1499 li->irq.pgm.per_access_id = irq->u.pgm.per_access_id;
1500 } else if (!(irq->u.pgm.code & PGM_PER)) {
1501 li->irq.pgm.code = (li->irq.pgm.code & PGM_PER) |
1502 irq->u.pgm.code;
1503 li->irq.pgm.flags = irq->u.pgm.flags;
1504 /* only modify non-PER information */
1505 li->irq.pgm.trans_exc_code = irq->u.pgm.trans_exc_code;
1506 li->irq.pgm.mon_code = irq->u.pgm.mon_code;
1507 li->irq.pgm.data_exc_code = irq->u.pgm.data_exc_code;
1508 li->irq.pgm.mon_class_nr = irq->u.pgm.mon_class_nr;
1509 li->irq.pgm.exc_access_id = irq->u.pgm.exc_access_id;
1510 li->irq.pgm.op_access_id = irq->u.pgm.op_access_id;
1511 } else {
1512 li->irq.pgm = irq->u.pgm;
1513 }
1514 set_bit(IRQ_PEND_PROG, &li->pending_irqs);
1515 return 0;
1516 }
1517
__inject_pfault_init(struct kvm_vcpu * vcpu,struct kvm_s390_irq * irq)1518 static int __inject_pfault_init(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1519 {
1520 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1521
1522 vcpu->stat.inject_pfault_init++;
1523 VCPU_EVENT(vcpu, 4, "inject: pfault init parameter block at 0x%llx",
1524 irq->u.ext.ext_params2);
1525 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_PFAULT_INIT,
1526 irq->u.ext.ext_params,
1527 irq->u.ext.ext_params2);
1528
1529 li->irq.ext = irq->u.ext;
1530 set_bit(IRQ_PEND_PFAULT_INIT, &li->pending_irqs);
1531 kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT);
1532 return 0;
1533 }
1534
__inject_extcall(struct kvm_vcpu * vcpu,struct kvm_s390_irq * irq)1535 static int __inject_extcall(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1536 {
1537 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1538 struct kvm_s390_extcall_info *extcall = &li->irq.extcall;
1539 uint16_t src_id = irq->u.extcall.code;
1540
1541 vcpu->stat.inject_external_call++;
1542 VCPU_EVENT(vcpu, 4, "inject: external call source-cpu:%u",
1543 src_id);
1544 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_EXTERNAL_CALL,
1545 src_id, 0);
1546
1547 /* sending vcpu invalid */
1548 if (kvm_get_vcpu_by_id(vcpu->kvm, src_id) == NULL)
1549 return -EINVAL;
1550
1551 if (sclp.has_sigpif && !kvm_s390_pv_cpu_get_handle(vcpu))
1552 return sca_inject_ext_call(vcpu, src_id);
1553
1554 if (test_and_set_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs))
1555 return -EBUSY;
1556 *extcall = irq->u.extcall;
1557 kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT);
1558 return 0;
1559 }
1560
__inject_set_prefix(struct kvm_vcpu * vcpu,struct kvm_s390_irq * irq)1561 static int __inject_set_prefix(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1562 {
1563 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1564 struct kvm_s390_prefix_info *prefix = &li->irq.prefix;
1565
1566 vcpu->stat.inject_set_prefix++;
1567 VCPU_EVENT(vcpu, 3, "inject: set prefix to %x",
1568 irq->u.prefix.address);
1569 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_SIGP_SET_PREFIX,
1570 irq->u.prefix.address, 0);
1571
1572 if (!is_vcpu_stopped(vcpu))
1573 return -EBUSY;
1574
1575 *prefix = irq->u.prefix;
1576 set_bit(IRQ_PEND_SET_PREFIX, &li->pending_irqs);
1577 return 0;
1578 }
1579
1580 #define KVM_S390_STOP_SUPP_FLAGS (KVM_S390_STOP_FLAG_STORE_STATUS)
__inject_sigp_stop(struct kvm_vcpu * vcpu,struct kvm_s390_irq * irq)1581 static int __inject_sigp_stop(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1582 {
1583 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1584 struct kvm_s390_stop_info *stop = &li->irq.stop;
1585 int rc = 0;
1586
1587 vcpu->stat.inject_stop_signal++;
1588 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_SIGP_STOP, 0, 0);
1589
1590 if (irq->u.stop.flags & ~KVM_S390_STOP_SUPP_FLAGS)
1591 return -EINVAL;
1592
1593 if (is_vcpu_stopped(vcpu)) {
1594 if (irq->u.stop.flags & KVM_S390_STOP_FLAG_STORE_STATUS)
1595 rc = kvm_s390_store_status_unloaded(vcpu,
1596 KVM_S390_STORE_STATUS_NOADDR);
1597 return rc;
1598 }
1599
1600 if (test_and_set_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs))
1601 return -EBUSY;
1602 stop->flags = irq->u.stop.flags;
1603 kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOP_INT);
1604 return 0;
1605 }
1606
__inject_sigp_restart(struct kvm_vcpu * vcpu)1607 static int __inject_sigp_restart(struct kvm_vcpu *vcpu)
1608 {
1609 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1610
1611 vcpu->stat.inject_restart++;
1612 VCPU_EVENT(vcpu, 3, "%s", "inject: restart int");
1613 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_RESTART, 0, 0);
1614
1615 set_bit(IRQ_PEND_RESTART, &li->pending_irqs);
1616 return 0;
1617 }
1618
__inject_sigp_emergency(struct kvm_vcpu * vcpu,struct kvm_s390_irq * irq)1619 static int __inject_sigp_emergency(struct kvm_vcpu *vcpu,
1620 struct kvm_s390_irq *irq)
1621 {
1622 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1623
1624 vcpu->stat.inject_emergency_signal++;
1625 VCPU_EVENT(vcpu, 4, "inject: emergency from cpu %u",
1626 irq->u.emerg.code);
1627 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_EMERGENCY,
1628 irq->u.emerg.code, 0);
1629
1630 /* sending vcpu invalid */
1631 if (kvm_get_vcpu_by_id(vcpu->kvm, irq->u.emerg.code) == NULL)
1632 return -EINVAL;
1633
1634 set_bit(irq->u.emerg.code, li->sigp_emerg_pending);
1635 set_bit(IRQ_PEND_EXT_EMERGENCY, &li->pending_irqs);
1636 kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT);
1637 return 0;
1638 }
1639
__inject_mchk(struct kvm_vcpu * vcpu,struct kvm_s390_irq * irq)1640 static int __inject_mchk(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1641 {
1642 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1643 struct kvm_s390_mchk_info *mchk = &li->irq.mchk;
1644
1645 vcpu->stat.inject_mchk++;
1646 VCPU_EVENT(vcpu, 3, "inject: machine check mcic 0x%llx",
1647 irq->u.mchk.mcic);
1648 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_MCHK, 0,
1649 irq->u.mchk.mcic);
1650
1651 /*
1652 * Because repressible machine checks can be indicated along with
1653 * exigent machine checks (PoP, Chapter 11, Interruption action)
1654 * we need to combine cr14, mcic and external damage code.
1655 * Failing storage address and the logout area should not be or'ed
1656 * together, we just indicate the last occurrence of the corresponding
1657 * machine check
1658 */
1659 mchk->cr14 |= irq->u.mchk.cr14;
1660 mchk->mcic |= irq->u.mchk.mcic;
1661 mchk->ext_damage_code |= irq->u.mchk.ext_damage_code;
1662 mchk->failing_storage_address = irq->u.mchk.failing_storage_address;
1663 memcpy(&mchk->fixed_logout, &irq->u.mchk.fixed_logout,
1664 sizeof(mchk->fixed_logout));
1665 if (mchk->mcic & MCHK_EX_MASK)
1666 set_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs);
1667 else if (mchk->mcic & MCHK_REP_MASK)
1668 set_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs);
1669 return 0;
1670 }
1671
__inject_ckc(struct kvm_vcpu * vcpu)1672 static int __inject_ckc(struct kvm_vcpu *vcpu)
1673 {
1674 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1675
1676 vcpu->stat.inject_ckc++;
1677 VCPU_EVENT(vcpu, 3, "%s", "inject: clock comparator external");
1678 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_CLOCK_COMP,
1679 0, 0);
1680
1681 set_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
1682 kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT);
1683 return 0;
1684 }
1685
__inject_cpu_timer(struct kvm_vcpu * vcpu)1686 static int __inject_cpu_timer(struct kvm_vcpu *vcpu)
1687 {
1688 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1689
1690 vcpu->stat.inject_cputm++;
1691 VCPU_EVENT(vcpu, 3, "%s", "inject: cpu timer external");
1692 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_CPU_TIMER,
1693 0, 0);
1694
1695 set_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
1696 kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT);
1697 return 0;
1698 }
1699
get_io_int(struct kvm * kvm,int isc,u32 schid)1700 static struct kvm_s390_interrupt_info *get_io_int(struct kvm *kvm,
1701 int isc, u32 schid)
1702 {
1703 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
1704 struct list_head *isc_list = &fi->lists[FIRQ_LIST_IO_ISC_0 + isc];
1705 struct kvm_s390_interrupt_info *iter;
1706 u16 id = (schid & 0xffff0000U) >> 16;
1707 u16 nr = schid & 0x0000ffffU;
1708
1709 spin_lock(&fi->lock);
1710 list_for_each_entry(iter, isc_list, list) {
1711 if (schid && (id != iter->io.subchannel_id ||
1712 nr != iter->io.subchannel_nr))
1713 continue;
1714 /* found an appropriate entry */
1715 list_del_init(&iter->list);
1716 fi->counters[FIRQ_CNTR_IO] -= 1;
1717 if (list_empty(isc_list))
1718 clear_bit(isc_to_irq_type(isc), &fi->pending_irqs);
1719 spin_unlock(&fi->lock);
1720 return iter;
1721 }
1722 spin_unlock(&fi->lock);
1723 return NULL;
1724 }
1725
get_top_io_int(struct kvm * kvm,u64 isc_mask,u32 schid)1726 static struct kvm_s390_interrupt_info *get_top_io_int(struct kvm *kvm,
1727 u64 isc_mask, u32 schid)
1728 {
1729 struct kvm_s390_interrupt_info *inti = NULL;
1730 int isc;
1731
1732 for (isc = 0; isc <= MAX_ISC && !inti; isc++) {
1733 if (isc_mask & isc_to_isc_bits(isc))
1734 inti = get_io_int(kvm, isc, schid);
1735 }
1736 return inti;
1737 }
1738
get_top_gisa_isc(struct kvm * kvm,u64 isc_mask,u32 schid)1739 static int get_top_gisa_isc(struct kvm *kvm, u64 isc_mask, u32 schid)
1740 {
1741 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
1742 unsigned long active_mask;
1743 int isc;
1744
1745 if (schid)
1746 goto out;
1747 if (!gi->origin)
1748 goto out;
1749
1750 active_mask = (isc_mask & gisa_get_ipm(gi->origin) << 24) << 32;
1751 while (active_mask) {
1752 isc = __fls(active_mask) ^ (BITS_PER_LONG - 1);
1753 if (gisa_tac_ipm_gisc(gi->origin, isc))
1754 return isc;
1755 clear_bit_inv(isc, &active_mask);
1756 }
1757 out:
1758 return -EINVAL;
1759 }
1760
1761 /*
1762 * Dequeue and return an I/O interrupt matching any of the interruption
1763 * subclasses as designated by the isc mask in cr6 and the schid (if != 0).
1764 * Take into account the interrupts pending in the interrupt list and in GISA.
1765 *
1766 * Note that for a guest that does not enable I/O interrupts
1767 * but relies on TPI, a flood of classic interrupts may starve
1768 * out adapter interrupts on the same isc. Linux does not do
1769 * that, and it is possible to work around the issue by configuring
1770 * different iscs for classic and adapter interrupts in the guest,
1771 * but we may want to revisit this in the future.
1772 */
kvm_s390_get_io_int(struct kvm * kvm,u64 isc_mask,u32 schid)1773 struct kvm_s390_interrupt_info *kvm_s390_get_io_int(struct kvm *kvm,
1774 u64 isc_mask, u32 schid)
1775 {
1776 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
1777 struct kvm_s390_interrupt_info *inti, *tmp_inti;
1778 int isc;
1779
1780 inti = get_top_io_int(kvm, isc_mask, schid);
1781
1782 isc = get_top_gisa_isc(kvm, isc_mask, schid);
1783 if (isc < 0)
1784 /* no AI in GISA */
1785 goto out;
1786
1787 if (!inti)
1788 /* AI in GISA but no classical IO int */
1789 goto gisa_out;
1790
1791 /* both types of interrupts present */
1792 if (int_word_to_isc(inti->io.io_int_word) <= isc) {
1793 /* classical IO int with higher priority */
1794 gisa_set_ipm_gisc(gi->origin, isc);
1795 goto out;
1796 }
1797 gisa_out:
1798 tmp_inti = kzalloc(sizeof(*inti), GFP_KERNEL_ACCOUNT);
1799 if (tmp_inti) {
1800 tmp_inti->type = KVM_S390_INT_IO(1, 0, 0, 0);
1801 tmp_inti->io.io_int_word = isc_to_int_word(isc);
1802 if (inti)
1803 kvm_s390_reinject_io_int(kvm, inti);
1804 inti = tmp_inti;
1805 } else
1806 gisa_set_ipm_gisc(gi->origin, isc);
1807 out:
1808 return inti;
1809 }
1810
__inject_service(struct kvm * kvm,struct kvm_s390_interrupt_info * inti)1811 static int __inject_service(struct kvm *kvm,
1812 struct kvm_s390_interrupt_info *inti)
1813 {
1814 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
1815
1816 kvm->stat.inject_service_signal++;
1817 spin_lock(&fi->lock);
1818 fi->srv_signal.ext_params |= inti->ext.ext_params & SCCB_EVENT_PENDING;
1819
1820 /* We always allow events, track them separately from the sccb ints */
1821 if (fi->srv_signal.ext_params & SCCB_EVENT_PENDING)
1822 set_bit(IRQ_PEND_EXT_SERVICE_EV, &fi->pending_irqs);
1823
1824 /*
1825 * Early versions of the QEMU s390 bios will inject several
1826 * service interrupts after another without handling a
1827 * condition code indicating busy.
1828 * We will silently ignore those superfluous sccb values.
1829 * A future version of QEMU will take care of serialization
1830 * of servc requests
1831 */
1832 if (fi->srv_signal.ext_params & SCCB_MASK)
1833 goto out;
1834 fi->srv_signal.ext_params |= inti->ext.ext_params & SCCB_MASK;
1835 set_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs);
1836 out:
1837 spin_unlock(&fi->lock);
1838 kfree(inti);
1839 return 0;
1840 }
1841
__inject_virtio(struct kvm * kvm,struct kvm_s390_interrupt_info * inti)1842 static int __inject_virtio(struct kvm *kvm,
1843 struct kvm_s390_interrupt_info *inti)
1844 {
1845 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
1846
1847 kvm->stat.inject_virtio++;
1848 spin_lock(&fi->lock);
1849 if (fi->counters[FIRQ_CNTR_VIRTIO] >= KVM_S390_MAX_VIRTIO_IRQS) {
1850 spin_unlock(&fi->lock);
1851 return -EBUSY;
1852 }
1853 fi->counters[FIRQ_CNTR_VIRTIO] += 1;
1854 list_add_tail(&inti->list, &fi->lists[FIRQ_LIST_VIRTIO]);
1855 set_bit(IRQ_PEND_VIRTIO, &fi->pending_irqs);
1856 spin_unlock(&fi->lock);
1857 return 0;
1858 }
1859
__inject_pfault_done(struct kvm * kvm,struct kvm_s390_interrupt_info * inti)1860 static int __inject_pfault_done(struct kvm *kvm,
1861 struct kvm_s390_interrupt_info *inti)
1862 {
1863 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
1864
1865 kvm->stat.inject_pfault_done++;
1866 spin_lock(&fi->lock);
1867 if (fi->counters[FIRQ_CNTR_PFAULT] >=
1868 (ASYNC_PF_PER_VCPU * KVM_MAX_VCPUS)) {
1869 spin_unlock(&fi->lock);
1870 return -EBUSY;
1871 }
1872 fi->counters[FIRQ_CNTR_PFAULT] += 1;
1873 list_add_tail(&inti->list, &fi->lists[FIRQ_LIST_PFAULT]);
1874 set_bit(IRQ_PEND_PFAULT_DONE, &fi->pending_irqs);
1875 spin_unlock(&fi->lock);
1876 return 0;
1877 }
1878
1879 #define CR_PENDING_SUBCLASS 28
__inject_float_mchk(struct kvm * kvm,struct kvm_s390_interrupt_info * inti)1880 static int __inject_float_mchk(struct kvm *kvm,
1881 struct kvm_s390_interrupt_info *inti)
1882 {
1883 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
1884
1885 kvm->stat.inject_float_mchk++;
1886 spin_lock(&fi->lock);
1887 fi->mchk.cr14 |= inti->mchk.cr14 & (1UL << CR_PENDING_SUBCLASS);
1888 fi->mchk.mcic |= inti->mchk.mcic;
1889 set_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs);
1890 spin_unlock(&fi->lock);
1891 kfree(inti);
1892 return 0;
1893 }
1894
__inject_io(struct kvm * kvm,struct kvm_s390_interrupt_info * inti)1895 static int __inject_io(struct kvm *kvm, struct kvm_s390_interrupt_info *inti)
1896 {
1897 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
1898 struct kvm_s390_float_interrupt *fi;
1899 struct list_head *list;
1900 int isc;
1901
1902 kvm->stat.inject_io++;
1903 isc = int_word_to_isc(inti->io.io_int_word);
1904
1905 /*
1906 * We do not use the lock checking variant as this is just a
1907 * performance optimization and we do not hold the lock here.
1908 * This is ok as the code will pick interrupts from both "lists"
1909 * for delivery.
1910 */
1911 if (gi->origin && inti->type & KVM_S390_INT_IO_AI_MASK) {
1912 VM_EVENT(kvm, 4, "%s isc %1u", "inject: I/O (AI/gisa)", isc);
1913 gisa_set_ipm_gisc(gi->origin, isc);
1914 kfree(inti);
1915 return 0;
1916 }
1917
1918 fi = &kvm->arch.float_int;
1919 spin_lock(&fi->lock);
1920 if (fi->counters[FIRQ_CNTR_IO] >= KVM_S390_MAX_FLOAT_IRQS) {
1921 spin_unlock(&fi->lock);
1922 return -EBUSY;
1923 }
1924 fi->counters[FIRQ_CNTR_IO] += 1;
1925
1926 if (inti->type & KVM_S390_INT_IO_AI_MASK)
1927 VM_EVENT(kvm, 4, "%s", "inject: I/O (AI)");
1928 else
1929 VM_EVENT(kvm, 4, "inject: I/O %x ss %x schid %04x",
1930 inti->io.subchannel_id >> 8,
1931 inti->io.subchannel_id >> 1 & 0x3,
1932 inti->io.subchannel_nr);
1933 list = &fi->lists[FIRQ_LIST_IO_ISC_0 + isc];
1934 list_add_tail(&inti->list, list);
1935 set_bit(isc_to_irq_type(isc), &fi->pending_irqs);
1936 spin_unlock(&fi->lock);
1937 return 0;
1938 }
1939
1940 /*
1941 * Find a destination VCPU for a floating irq and kick it.
1942 */
__floating_irq_kick(struct kvm * kvm,u64 type)1943 static void __floating_irq_kick(struct kvm *kvm, u64 type)
1944 {
1945 struct kvm_vcpu *dst_vcpu;
1946 int sigcpu, online_vcpus, nr_tries = 0;
1947
1948 online_vcpus = atomic_read(&kvm->online_vcpus);
1949 if (!online_vcpus)
1950 return;
1951
1952 /* find idle VCPUs first, then round robin */
1953 sigcpu = find_first_bit(kvm->arch.idle_mask, online_vcpus);
1954 if (sigcpu == online_vcpus) {
1955 do {
1956 sigcpu = kvm->arch.float_int.next_rr_cpu++;
1957 kvm->arch.float_int.next_rr_cpu %= online_vcpus;
1958 /* avoid endless loops if all vcpus are stopped */
1959 if (nr_tries++ >= online_vcpus)
1960 return;
1961 } while (is_vcpu_stopped(kvm_get_vcpu(kvm, sigcpu)));
1962 }
1963 dst_vcpu = kvm_get_vcpu(kvm, sigcpu);
1964
1965 /* make the VCPU drop out of the SIE, or wake it up if sleeping */
1966 switch (type) {
1967 case KVM_S390_MCHK:
1968 kvm_s390_set_cpuflags(dst_vcpu, CPUSTAT_STOP_INT);
1969 break;
1970 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
1971 if (!(type & KVM_S390_INT_IO_AI_MASK &&
1972 kvm->arch.gisa_int.origin) ||
1973 kvm_s390_pv_cpu_get_handle(dst_vcpu))
1974 kvm_s390_set_cpuflags(dst_vcpu, CPUSTAT_IO_INT);
1975 break;
1976 default:
1977 kvm_s390_set_cpuflags(dst_vcpu, CPUSTAT_EXT_INT);
1978 break;
1979 }
1980 kvm_s390_vcpu_wakeup(dst_vcpu);
1981 }
1982
__inject_vm(struct kvm * kvm,struct kvm_s390_interrupt_info * inti)1983 static int __inject_vm(struct kvm *kvm, struct kvm_s390_interrupt_info *inti)
1984 {
1985 u64 type = READ_ONCE(inti->type);
1986 int rc;
1987
1988 switch (type) {
1989 case KVM_S390_MCHK:
1990 rc = __inject_float_mchk(kvm, inti);
1991 break;
1992 case KVM_S390_INT_VIRTIO:
1993 rc = __inject_virtio(kvm, inti);
1994 break;
1995 case KVM_S390_INT_SERVICE:
1996 rc = __inject_service(kvm, inti);
1997 break;
1998 case KVM_S390_INT_PFAULT_DONE:
1999 rc = __inject_pfault_done(kvm, inti);
2000 break;
2001 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
2002 rc = __inject_io(kvm, inti);
2003 break;
2004 default:
2005 rc = -EINVAL;
2006 }
2007 if (rc)
2008 return rc;
2009
2010 __floating_irq_kick(kvm, type);
2011 return 0;
2012 }
2013
kvm_s390_inject_vm(struct kvm * kvm,struct kvm_s390_interrupt * s390int)2014 int kvm_s390_inject_vm(struct kvm *kvm,
2015 struct kvm_s390_interrupt *s390int)
2016 {
2017 struct kvm_s390_interrupt_info *inti;
2018 int rc;
2019
2020 inti = kzalloc(sizeof(*inti), GFP_KERNEL_ACCOUNT);
2021 if (!inti)
2022 return -ENOMEM;
2023
2024 inti->type = s390int->type;
2025 switch (inti->type) {
2026 case KVM_S390_INT_VIRTIO:
2027 VM_EVENT(kvm, 5, "inject: virtio parm:%x,parm64:%llx",
2028 s390int->parm, s390int->parm64);
2029 inti->ext.ext_params = s390int->parm;
2030 inti->ext.ext_params2 = s390int->parm64;
2031 break;
2032 case KVM_S390_INT_SERVICE:
2033 VM_EVENT(kvm, 4, "inject: sclp parm:%x", s390int->parm);
2034 inti->ext.ext_params = s390int->parm;
2035 break;
2036 case KVM_S390_INT_PFAULT_DONE:
2037 inti->ext.ext_params2 = s390int->parm64;
2038 break;
2039 case KVM_S390_MCHK:
2040 VM_EVENT(kvm, 3, "inject: machine check mcic 0x%llx",
2041 s390int->parm64);
2042 inti->mchk.cr14 = s390int->parm; /* upper bits are not used */
2043 inti->mchk.mcic = s390int->parm64;
2044 break;
2045 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
2046 inti->io.subchannel_id = s390int->parm >> 16;
2047 inti->io.subchannel_nr = s390int->parm & 0x0000ffffu;
2048 inti->io.io_int_parm = s390int->parm64 >> 32;
2049 inti->io.io_int_word = s390int->parm64 & 0x00000000ffffffffull;
2050 break;
2051 default:
2052 kfree(inti);
2053 return -EINVAL;
2054 }
2055 trace_kvm_s390_inject_vm(s390int->type, s390int->parm, s390int->parm64,
2056 2);
2057
2058 rc = __inject_vm(kvm, inti);
2059 if (rc)
2060 kfree(inti);
2061 return rc;
2062 }
2063
kvm_s390_reinject_io_int(struct kvm * kvm,struct kvm_s390_interrupt_info * inti)2064 int kvm_s390_reinject_io_int(struct kvm *kvm,
2065 struct kvm_s390_interrupt_info *inti)
2066 {
2067 return __inject_vm(kvm, inti);
2068 }
2069
s390int_to_s390irq(struct kvm_s390_interrupt * s390int,struct kvm_s390_irq * irq)2070 int s390int_to_s390irq(struct kvm_s390_interrupt *s390int,
2071 struct kvm_s390_irq *irq)
2072 {
2073 irq->type = s390int->type;
2074 switch (irq->type) {
2075 case KVM_S390_PROGRAM_INT:
2076 if (s390int->parm & 0xffff0000)
2077 return -EINVAL;
2078 irq->u.pgm.code = s390int->parm;
2079 break;
2080 case KVM_S390_SIGP_SET_PREFIX:
2081 irq->u.prefix.address = s390int->parm;
2082 break;
2083 case KVM_S390_SIGP_STOP:
2084 irq->u.stop.flags = s390int->parm;
2085 break;
2086 case KVM_S390_INT_EXTERNAL_CALL:
2087 if (s390int->parm & 0xffff0000)
2088 return -EINVAL;
2089 irq->u.extcall.code = s390int->parm;
2090 break;
2091 case KVM_S390_INT_EMERGENCY:
2092 if (s390int->parm & 0xffff0000)
2093 return -EINVAL;
2094 irq->u.emerg.code = s390int->parm;
2095 break;
2096 case KVM_S390_MCHK:
2097 irq->u.mchk.mcic = s390int->parm64;
2098 break;
2099 case KVM_S390_INT_PFAULT_INIT:
2100 irq->u.ext.ext_params = s390int->parm;
2101 irq->u.ext.ext_params2 = s390int->parm64;
2102 break;
2103 case KVM_S390_RESTART:
2104 case KVM_S390_INT_CLOCK_COMP:
2105 case KVM_S390_INT_CPU_TIMER:
2106 break;
2107 default:
2108 return -EINVAL;
2109 }
2110 return 0;
2111 }
2112
kvm_s390_is_stop_irq_pending(struct kvm_vcpu * vcpu)2113 int kvm_s390_is_stop_irq_pending(struct kvm_vcpu *vcpu)
2114 {
2115 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
2116
2117 return test_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs);
2118 }
2119
kvm_s390_is_restart_irq_pending(struct kvm_vcpu * vcpu)2120 int kvm_s390_is_restart_irq_pending(struct kvm_vcpu *vcpu)
2121 {
2122 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
2123
2124 return test_bit(IRQ_PEND_RESTART, &li->pending_irqs);
2125 }
2126
kvm_s390_clear_stop_irq(struct kvm_vcpu * vcpu)2127 void kvm_s390_clear_stop_irq(struct kvm_vcpu *vcpu)
2128 {
2129 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
2130
2131 spin_lock(&li->lock);
2132 li->irq.stop.flags = 0;
2133 clear_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs);
2134 spin_unlock(&li->lock);
2135 }
2136
do_inject_vcpu(struct kvm_vcpu * vcpu,struct kvm_s390_irq * irq)2137 static int do_inject_vcpu(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
2138 {
2139 int rc;
2140
2141 switch (irq->type) {
2142 case KVM_S390_PROGRAM_INT:
2143 rc = __inject_prog(vcpu, irq);
2144 break;
2145 case KVM_S390_SIGP_SET_PREFIX:
2146 rc = __inject_set_prefix(vcpu, irq);
2147 break;
2148 case KVM_S390_SIGP_STOP:
2149 rc = __inject_sigp_stop(vcpu, irq);
2150 break;
2151 case KVM_S390_RESTART:
2152 rc = __inject_sigp_restart(vcpu);
2153 break;
2154 case KVM_S390_INT_CLOCK_COMP:
2155 rc = __inject_ckc(vcpu);
2156 break;
2157 case KVM_S390_INT_CPU_TIMER:
2158 rc = __inject_cpu_timer(vcpu);
2159 break;
2160 case KVM_S390_INT_EXTERNAL_CALL:
2161 rc = __inject_extcall(vcpu, irq);
2162 break;
2163 case KVM_S390_INT_EMERGENCY:
2164 rc = __inject_sigp_emergency(vcpu, irq);
2165 break;
2166 case KVM_S390_MCHK:
2167 rc = __inject_mchk(vcpu, irq);
2168 break;
2169 case KVM_S390_INT_PFAULT_INIT:
2170 rc = __inject_pfault_init(vcpu, irq);
2171 break;
2172 case KVM_S390_INT_VIRTIO:
2173 case KVM_S390_INT_SERVICE:
2174 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
2175 default:
2176 rc = -EINVAL;
2177 }
2178
2179 return rc;
2180 }
2181
kvm_s390_inject_vcpu(struct kvm_vcpu * vcpu,struct kvm_s390_irq * irq)2182 int kvm_s390_inject_vcpu(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
2183 {
2184 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
2185 int rc;
2186
2187 spin_lock(&li->lock);
2188 rc = do_inject_vcpu(vcpu, irq);
2189 spin_unlock(&li->lock);
2190 if (!rc)
2191 kvm_s390_vcpu_wakeup(vcpu);
2192 return rc;
2193 }
2194
clear_irq_list(struct list_head * _list)2195 static inline void clear_irq_list(struct list_head *_list)
2196 {
2197 struct kvm_s390_interrupt_info *inti, *n;
2198
2199 list_for_each_entry_safe(inti, n, _list, list) {
2200 list_del(&inti->list);
2201 kfree(inti);
2202 }
2203 }
2204
inti_to_irq(struct kvm_s390_interrupt_info * inti,struct kvm_s390_irq * irq)2205 static void inti_to_irq(struct kvm_s390_interrupt_info *inti,
2206 struct kvm_s390_irq *irq)
2207 {
2208 irq->type = inti->type;
2209 switch (inti->type) {
2210 case KVM_S390_INT_PFAULT_INIT:
2211 case KVM_S390_INT_PFAULT_DONE:
2212 case KVM_S390_INT_VIRTIO:
2213 irq->u.ext = inti->ext;
2214 break;
2215 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
2216 irq->u.io = inti->io;
2217 break;
2218 }
2219 }
2220
kvm_s390_clear_float_irqs(struct kvm * kvm)2221 void kvm_s390_clear_float_irqs(struct kvm *kvm)
2222 {
2223 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
2224 int i;
2225
2226 mutex_lock(&kvm->lock);
2227 if (!kvm_s390_pv_is_protected(kvm))
2228 fi->masked_irqs = 0;
2229 mutex_unlock(&kvm->lock);
2230 spin_lock(&fi->lock);
2231 fi->pending_irqs = 0;
2232 memset(&fi->srv_signal, 0, sizeof(fi->srv_signal));
2233 memset(&fi->mchk, 0, sizeof(fi->mchk));
2234 for (i = 0; i < FIRQ_LIST_COUNT; i++)
2235 clear_irq_list(&fi->lists[i]);
2236 for (i = 0; i < FIRQ_MAX_COUNT; i++)
2237 fi->counters[i] = 0;
2238 spin_unlock(&fi->lock);
2239 kvm_s390_gisa_clear(kvm);
2240 };
2241
get_all_floating_irqs(struct kvm * kvm,u8 __user * usrbuf,u64 len)2242 static int get_all_floating_irqs(struct kvm *kvm, u8 __user *usrbuf, u64 len)
2243 {
2244 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
2245 struct kvm_s390_interrupt_info *inti;
2246 struct kvm_s390_float_interrupt *fi;
2247 struct kvm_s390_irq *buf;
2248 struct kvm_s390_irq *irq;
2249 int max_irqs;
2250 int ret = 0;
2251 int n = 0;
2252 int i;
2253
2254 if (len > KVM_S390_FLIC_MAX_BUFFER || len == 0)
2255 return -EINVAL;
2256
2257 /*
2258 * We are already using -ENOMEM to signal
2259 * userspace it may retry with a bigger buffer,
2260 * so we need to use something else for this case
2261 */
2262 buf = vzalloc(len);
2263 if (!buf)
2264 return -ENOBUFS;
2265
2266 max_irqs = len / sizeof(struct kvm_s390_irq);
2267
2268 if (gi->origin && gisa_get_ipm(gi->origin)) {
2269 for (i = 0; i <= MAX_ISC; i++) {
2270 if (n == max_irqs) {
2271 /* signal userspace to try again */
2272 ret = -ENOMEM;
2273 goto out_nolock;
2274 }
2275 if (gisa_tac_ipm_gisc(gi->origin, i)) {
2276 irq = (struct kvm_s390_irq *) &buf[n];
2277 irq->type = KVM_S390_INT_IO(1, 0, 0, 0);
2278 irq->u.io.io_int_word = isc_to_int_word(i);
2279 n++;
2280 }
2281 }
2282 }
2283 fi = &kvm->arch.float_int;
2284 spin_lock(&fi->lock);
2285 for (i = 0; i < FIRQ_LIST_COUNT; i++) {
2286 list_for_each_entry(inti, &fi->lists[i], list) {
2287 if (n == max_irqs) {
2288 /* signal userspace to try again */
2289 ret = -ENOMEM;
2290 goto out;
2291 }
2292 inti_to_irq(inti, &buf[n]);
2293 n++;
2294 }
2295 }
2296 if (test_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs) ||
2297 test_bit(IRQ_PEND_EXT_SERVICE_EV, &fi->pending_irqs)) {
2298 if (n == max_irqs) {
2299 /* signal userspace to try again */
2300 ret = -ENOMEM;
2301 goto out;
2302 }
2303 irq = (struct kvm_s390_irq *) &buf[n];
2304 irq->type = KVM_S390_INT_SERVICE;
2305 irq->u.ext = fi->srv_signal;
2306 n++;
2307 }
2308 if (test_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs)) {
2309 if (n == max_irqs) {
2310 /* signal userspace to try again */
2311 ret = -ENOMEM;
2312 goto out;
2313 }
2314 irq = (struct kvm_s390_irq *) &buf[n];
2315 irq->type = KVM_S390_MCHK;
2316 irq->u.mchk = fi->mchk;
2317 n++;
2318 }
2319
2320 out:
2321 spin_unlock(&fi->lock);
2322 out_nolock:
2323 if (!ret && n > 0) {
2324 if (copy_to_user(usrbuf, buf, sizeof(struct kvm_s390_irq) * n))
2325 ret = -EFAULT;
2326 }
2327 vfree(buf);
2328
2329 return ret < 0 ? ret : n;
2330 }
2331
flic_ais_mode_get_all(struct kvm * kvm,struct kvm_device_attr * attr)2332 static int flic_ais_mode_get_all(struct kvm *kvm, struct kvm_device_attr *attr)
2333 {
2334 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
2335 struct kvm_s390_ais_all ais;
2336
2337 if (attr->attr < sizeof(ais))
2338 return -EINVAL;
2339
2340 if (!test_kvm_facility(kvm, 72))
2341 return -EOPNOTSUPP;
2342
2343 mutex_lock(&fi->ais_lock);
2344 ais.simm = fi->simm;
2345 ais.nimm = fi->nimm;
2346 mutex_unlock(&fi->ais_lock);
2347
2348 if (copy_to_user((void __user *)attr->addr, &ais, sizeof(ais)))
2349 return -EFAULT;
2350
2351 return 0;
2352 }
2353
flic_get_attr(struct kvm_device * dev,struct kvm_device_attr * attr)2354 static int flic_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
2355 {
2356 int r;
2357
2358 switch (attr->group) {
2359 case KVM_DEV_FLIC_GET_ALL_IRQS:
2360 r = get_all_floating_irqs(dev->kvm, (u8 __user *) attr->addr,
2361 attr->attr);
2362 break;
2363 case KVM_DEV_FLIC_AISM_ALL:
2364 r = flic_ais_mode_get_all(dev->kvm, attr);
2365 break;
2366 default:
2367 r = -EINVAL;
2368 }
2369
2370 return r;
2371 }
2372
copy_irq_from_user(struct kvm_s390_interrupt_info * inti,u64 addr)2373 static inline int copy_irq_from_user(struct kvm_s390_interrupt_info *inti,
2374 u64 addr)
2375 {
2376 struct kvm_s390_irq __user *uptr = (struct kvm_s390_irq __user *) addr;
2377 void *target = NULL;
2378 void __user *source;
2379 u64 size;
2380
2381 if (get_user(inti->type, (u64 __user *)addr))
2382 return -EFAULT;
2383
2384 switch (inti->type) {
2385 case KVM_S390_INT_PFAULT_INIT:
2386 case KVM_S390_INT_PFAULT_DONE:
2387 case KVM_S390_INT_VIRTIO:
2388 case KVM_S390_INT_SERVICE:
2389 target = (void *) &inti->ext;
2390 source = &uptr->u.ext;
2391 size = sizeof(inti->ext);
2392 break;
2393 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
2394 target = (void *) &inti->io;
2395 source = &uptr->u.io;
2396 size = sizeof(inti->io);
2397 break;
2398 case KVM_S390_MCHK:
2399 target = (void *) &inti->mchk;
2400 source = &uptr->u.mchk;
2401 size = sizeof(inti->mchk);
2402 break;
2403 default:
2404 return -EINVAL;
2405 }
2406
2407 if (copy_from_user(target, source, size))
2408 return -EFAULT;
2409
2410 return 0;
2411 }
2412
enqueue_floating_irq(struct kvm_device * dev,struct kvm_device_attr * attr)2413 static int enqueue_floating_irq(struct kvm_device *dev,
2414 struct kvm_device_attr *attr)
2415 {
2416 struct kvm_s390_interrupt_info *inti = NULL;
2417 int r = 0;
2418 int len = attr->attr;
2419
2420 if (len % sizeof(struct kvm_s390_irq) != 0)
2421 return -EINVAL;
2422 else if (len > KVM_S390_FLIC_MAX_BUFFER)
2423 return -EINVAL;
2424
2425 while (len >= sizeof(struct kvm_s390_irq)) {
2426 inti = kzalloc(sizeof(*inti), GFP_KERNEL_ACCOUNT);
2427 if (!inti)
2428 return -ENOMEM;
2429
2430 r = copy_irq_from_user(inti, attr->addr);
2431 if (r) {
2432 kfree(inti);
2433 return r;
2434 }
2435 r = __inject_vm(dev->kvm, inti);
2436 if (r) {
2437 kfree(inti);
2438 return r;
2439 }
2440 len -= sizeof(struct kvm_s390_irq);
2441 attr->addr += sizeof(struct kvm_s390_irq);
2442 }
2443
2444 return r;
2445 }
2446
get_io_adapter(struct kvm * kvm,unsigned int id)2447 static struct s390_io_adapter *get_io_adapter(struct kvm *kvm, unsigned int id)
2448 {
2449 if (id >= MAX_S390_IO_ADAPTERS)
2450 return NULL;
2451 id = array_index_nospec(id, MAX_S390_IO_ADAPTERS);
2452 return kvm->arch.adapters[id];
2453 }
2454
register_io_adapter(struct kvm_device * dev,struct kvm_device_attr * attr)2455 static int register_io_adapter(struct kvm_device *dev,
2456 struct kvm_device_attr *attr)
2457 {
2458 struct s390_io_adapter *adapter;
2459 struct kvm_s390_io_adapter adapter_info;
2460
2461 if (copy_from_user(&adapter_info,
2462 (void __user *)attr->addr, sizeof(adapter_info)))
2463 return -EFAULT;
2464
2465 if (adapter_info.id >= MAX_S390_IO_ADAPTERS)
2466 return -EINVAL;
2467
2468 adapter_info.id = array_index_nospec(adapter_info.id,
2469 MAX_S390_IO_ADAPTERS);
2470
2471 if (dev->kvm->arch.adapters[adapter_info.id] != NULL)
2472 return -EINVAL;
2473
2474 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL_ACCOUNT);
2475 if (!adapter)
2476 return -ENOMEM;
2477
2478 adapter->id = adapter_info.id;
2479 adapter->isc = adapter_info.isc;
2480 adapter->maskable = adapter_info.maskable;
2481 adapter->masked = false;
2482 adapter->swap = adapter_info.swap;
2483 adapter->suppressible = (adapter_info.flags) &
2484 KVM_S390_ADAPTER_SUPPRESSIBLE;
2485 dev->kvm->arch.adapters[adapter->id] = adapter;
2486
2487 return 0;
2488 }
2489
kvm_s390_mask_adapter(struct kvm * kvm,unsigned int id,bool masked)2490 int kvm_s390_mask_adapter(struct kvm *kvm, unsigned int id, bool masked)
2491 {
2492 int ret;
2493 struct s390_io_adapter *adapter = get_io_adapter(kvm, id);
2494
2495 if (!adapter || !adapter->maskable)
2496 return -EINVAL;
2497 ret = adapter->masked;
2498 adapter->masked = masked;
2499 return ret;
2500 }
2501
kvm_s390_destroy_adapters(struct kvm * kvm)2502 void kvm_s390_destroy_adapters(struct kvm *kvm)
2503 {
2504 int i;
2505
2506 for (i = 0; i < MAX_S390_IO_ADAPTERS; i++)
2507 kfree(kvm->arch.adapters[i]);
2508 }
2509
modify_io_adapter(struct kvm_device * dev,struct kvm_device_attr * attr)2510 static int modify_io_adapter(struct kvm_device *dev,
2511 struct kvm_device_attr *attr)
2512 {
2513 struct kvm_s390_io_adapter_req req;
2514 struct s390_io_adapter *adapter;
2515 int ret;
2516
2517 if (copy_from_user(&req, (void __user *)attr->addr, sizeof(req)))
2518 return -EFAULT;
2519
2520 adapter = get_io_adapter(dev->kvm, req.id);
2521 if (!adapter)
2522 return -EINVAL;
2523 switch (req.type) {
2524 case KVM_S390_IO_ADAPTER_MASK:
2525 ret = kvm_s390_mask_adapter(dev->kvm, req.id, req.mask);
2526 if (ret > 0)
2527 ret = 0;
2528 break;
2529 /*
2530 * The following operations are no longer needed and therefore no-ops.
2531 * The gpa to hva translation is done when an IRQ route is set up. The
2532 * set_irq code uses get_user_pages_remote() to do the actual write.
2533 */
2534 case KVM_S390_IO_ADAPTER_MAP:
2535 case KVM_S390_IO_ADAPTER_UNMAP:
2536 ret = 0;
2537 break;
2538 default:
2539 ret = -EINVAL;
2540 }
2541
2542 return ret;
2543 }
2544
clear_io_irq(struct kvm * kvm,struct kvm_device_attr * attr)2545 static int clear_io_irq(struct kvm *kvm, struct kvm_device_attr *attr)
2546
2547 {
2548 const u64 isc_mask = 0xffUL << 24; /* all iscs set */
2549 u32 schid;
2550
2551 if (attr->flags)
2552 return -EINVAL;
2553 if (attr->attr != sizeof(schid))
2554 return -EINVAL;
2555 if (copy_from_user(&schid, (void __user *) attr->addr, sizeof(schid)))
2556 return -EFAULT;
2557 if (!schid)
2558 return -EINVAL;
2559 kfree(kvm_s390_get_io_int(kvm, isc_mask, schid));
2560 /*
2561 * If userspace is conforming to the architecture, we can have at most
2562 * one pending I/O interrupt per subchannel, so this is effectively a
2563 * clear all.
2564 */
2565 return 0;
2566 }
2567
modify_ais_mode(struct kvm * kvm,struct kvm_device_attr * attr)2568 static int modify_ais_mode(struct kvm *kvm, struct kvm_device_attr *attr)
2569 {
2570 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
2571 struct kvm_s390_ais_req req;
2572 int ret = 0;
2573
2574 if (!test_kvm_facility(kvm, 72))
2575 return -EOPNOTSUPP;
2576
2577 if (copy_from_user(&req, (void __user *)attr->addr, sizeof(req)))
2578 return -EFAULT;
2579
2580 if (req.isc > MAX_ISC)
2581 return -EINVAL;
2582
2583 trace_kvm_s390_modify_ais_mode(req.isc,
2584 (fi->simm & AIS_MODE_MASK(req.isc)) ?
2585 (fi->nimm & AIS_MODE_MASK(req.isc)) ?
2586 2 : KVM_S390_AIS_MODE_SINGLE :
2587 KVM_S390_AIS_MODE_ALL, req.mode);
2588
2589 mutex_lock(&fi->ais_lock);
2590 switch (req.mode) {
2591 case KVM_S390_AIS_MODE_ALL:
2592 fi->simm &= ~AIS_MODE_MASK(req.isc);
2593 fi->nimm &= ~AIS_MODE_MASK(req.isc);
2594 break;
2595 case KVM_S390_AIS_MODE_SINGLE:
2596 fi->simm |= AIS_MODE_MASK(req.isc);
2597 fi->nimm &= ~AIS_MODE_MASK(req.isc);
2598 break;
2599 default:
2600 ret = -EINVAL;
2601 }
2602 mutex_unlock(&fi->ais_lock);
2603
2604 return ret;
2605 }
2606
kvm_s390_inject_airq(struct kvm * kvm,struct s390_io_adapter * adapter)2607 static int kvm_s390_inject_airq(struct kvm *kvm,
2608 struct s390_io_adapter *adapter)
2609 {
2610 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
2611 struct kvm_s390_interrupt s390int = {
2612 .type = KVM_S390_INT_IO(1, 0, 0, 0),
2613 .parm = 0,
2614 .parm64 = isc_to_int_word(adapter->isc),
2615 };
2616 int ret = 0;
2617
2618 if (!test_kvm_facility(kvm, 72) || !adapter->suppressible)
2619 return kvm_s390_inject_vm(kvm, &s390int);
2620
2621 mutex_lock(&fi->ais_lock);
2622 if (fi->nimm & AIS_MODE_MASK(adapter->isc)) {
2623 trace_kvm_s390_airq_suppressed(adapter->id, adapter->isc);
2624 goto out;
2625 }
2626
2627 ret = kvm_s390_inject_vm(kvm, &s390int);
2628 if (!ret && (fi->simm & AIS_MODE_MASK(adapter->isc))) {
2629 fi->nimm |= AIS_MODE_MASK(adapter->isc);
2630 trace_kvm_s390_modify_ais_mode(adapter->isc,
2631 KVM_S390_AIS_MODE_SINGLE, 2);
2632 }
2633 out:
2634 mutex_unlock(&fi->ais_lock);
2635 return ret;
2636 }
2637
flic_inject_airq(struct kvm * kvm,struct kvm_device_attr * attr)2638 static int flic_inject_airq(struct kvm *kvm, struct kvm_device_attr *attr)
2639 {
2640 unsigned int id = attr->attr;
2641 struct s390_io_adapter *adapter = get_io_adapter(kvm, id);
2642
2643 if (!adapter)
2644 return -EINVAL;
2645
2646 return kvm_s390_inject_airq(kvm, adapter);
2647 }
2648
flic_ais_mode_set_all(struct kvm * kvm,struct kvm_device_attr * attr)2649 static int flic_ais_mode_set_all(struct kvm *kvm, struct kvm_device_attr *attr)
2650 {
2651 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
2652 struct kvm_s390_ais_all ais;
2653
2654 if (!test_kvm_facility(kvm, 72))
2655 return -EOPNOTSUPP;
2656
2657 if (copy_from_user(&ais, (void __user *)attr->addr, sizeof(ais)))
2658 return -EFAULT;
2659
2660 mutex_lock(&fi->ais_lock);
2661 fi->simm = ais.simm;
2662 fi->nimm = ais.nimm;
2663 mutex_unlock(&fi->ais_lock);
2664
2665 return 0;
2666 }
2667
flic_set_attr(struct kvm_device * dev,struct kvm_device_attr * attr)2668 static int flic_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
2669 {
2670 int r = 0;
2671 unsigned long i;
2672 struct kvm_vcpu *vcpu;
2673
2674 switch (attr->group) {
2675 case KVM_DEV_FLIC_ENQUEUE:
2676 r = enqueue_floating_irq(dev, attr);
2677 break;
2678 case KVM_DEV_FLIC_CLEAR_IRQS:
2679 kvm_s390_clear_float_irqs(dev->kvm);
2680 break;
2681 case KVM_DEV_FLIC_APF_ENABLE:
2682 dev->kvm->arch.gmap->pfault_enabled = 1;
2683 break;
2684 case KVM_DEV_FLIC_APF_DISABLE_WAIT:
2685 dev->kvm->arch.gmap->pfault_enabled = 0;
2686 /*
2687 * Make sure no async faults are in transition when
2688 * clearing the queues. So we don't need to worry
2689 * about late coming workers.
2690 */
2691 synchronize_srcu(&dev->kvm->srcu);
2692 kvm_for_each_vcpu(i, vcpu, dev->kvm)
2693 kvm_clear_async_pf_completion_queue(vcpu);
2694 break;
2695 case KVM_DEV_FLIC_ADAPTER_REGISTER:
2696 r = register_io_adapter(dev, attr);
2697 break;
2698 case KVM_DEV_FLIC_ADAPTER_MODIFY:
2699 r = modify_io_adapter(dev, attr);
2700 break;
2701 case KVM_DEV_FLIC_CLEAR_IO_IRQ:
2702 r = clear_io_irq(dev->kvm, attr);
2703 break;
2704 case KVM_DEV_FLIC_AISM:
2705 r = modify_ais_mode(dev->kvm, attr);
2706 break;
2707 case KVM_DEV_FLIC_AIRQ_INJECT:
2708 r = flic_inject_airq(dev->kvm, attr);
2709 break;
2710 case KVM_DEV_FLIC_AISM_ALL:
2711 r = flic_ais_mode_set_all(dev->kvm, attr);
2712 break;
2713 default:
2714 r = -EINVAL;
2715 }
2716
2717 return r;
2718 }
2719
flic_has_attr(struct kvm_device * dev,struct kvm_device_attr * attr)2720 static int flic_has_attr(struct kvm_device *dev,
2721 struct kvm_device_attr *attr)
2722 {
2723 switch (attr->group) {
2724 case KVM_DEV_FLIC_GET_ALL_IRQS:
2725 case KVM_DEV_FLIC_ENQUEUE:
2726 case KVM_DEV_FLIC_CLEAR_IRQS:
2727 case KVM_DEV_FLIC_APF_ENABLE:
2728 case KVM_DEV_FLIC_APF_DISABLE_WAIT:
2729 case KVM_DEV_FLIC_ADAPTER_REGISTER:
2730 case KVM_DEV_FLIC_ADAPTER_MODIFY:
2731 case KVM_DEV_FLIC_CLEAR_IO_IRQ:
2732 case KVM_DEV_FLIC_AISM:
2733 case KVM_DEV_FLIC_AIRQ_INJECT:
2734 case KVM_DEV_FLIC_AISM_ALL:
2735 return 0;
2736 }
2737 return -ENXIO;
2738 }
2739
flic_create(struct kvm_device * dev,u32 type)2740 static int flic_create(struct kvm_device *dev, u32 type)
2741 {
2742 if (!dev)
2743 return -EINVAL;
2744 if (dev->kvm->arch.flic)
2745 return -EINVAL;
2746 dev->kvm->arch.flic = dev;
2747 return 0;
2748 }
2749
flic_destroy(struct kvm_device * dev)2750 static void flic_destroy(struct kvm_device *dev)
2751 {
2752 dev->kvm->arch.flic = NULL;
2753 kfree(dev);
2754 }
2755
2756 /* s390 floating irq controller (flic) */
2757 struct kvm_device_ops kvm_flic_ops = {
2758 .name = "kvm-flic",
2759 .get_attr = flic_get_attr,
2760 .set_attr = flic_set_attr,
2761 .has_attr = flic_has_attr,
2762 .create = flic_create,
2763 .destroy = flic_destroy,
2764 };
2765
get_ind_bit(__u64 addr,unsigned long bit_nr,bool swap)2766 static unsigned long get_ind_bit(__u64 addr, unsigned long bit_nr, bool swap)
2767 {
2768 unsigned long bit;
2769
2770 bit = bit_nr + (addr % PAGE_SIZE) * 8;
2771
2772 return swap ? (bit ^ (BITS_PER_LONG - 1)) : bit;
2773 }
2774
get_map_page(struct kvm * kvm,u64 uaddr)2775 static struct page *get_map_page(struct kvm *kvm, u64 uaddr)
2776 {
2777 struct page *page = NULL;
2778
2779 mmap_read_lock(kvm->mm);
2780 get_user_pages_remote(kvm->mm, uaddr, 1, FOLL_WRITE,
2781 &page, NULL, NULL);
2782 mmap_read_unlock(kvm->mm);
2783 return page;
2784 }
2785
adapter_indicators_set(struct kvm * kvm,struct s390_io_adapter * adapter,struct kvm_s390_adapter_int * adapter_int)2786 static int adapter_indicators_set(struct kvm *kvm,
2787 struct s390_io_adapter *adapter,
2788 struct kvm_s390_adapter_int *adapter_int)
2789 {
2790 unsigned long bit;
2791 int summary_set, idx;
2792 struct page *ind_page, *summary_page;
2793 void *map;
2794
2795 ind_page = get_map_page(kvm, adapter_int->ind_addr);
2796 if (!ind_page)
2797 return -1;
2798 summary_page = get_map_page(kvm, adapter_int->summary_addr);
2799 if (!summary_page) {
2800 put_page(ind_page);
2801 return -1;
2802 }
2803
2804 idx = srcu_read_lock(&kvm->srcu);
2805 map = page_address(ind_page);
2806 bit = get_ind_bit(adapter_int->ind_addr,
2807 adapter_int->ind_offset, adapter->swap);
2808 set_bit(bit, map);
2809 mark_page_dirty(kvm, adapter_int->ind_addr >> PAGE_SHIFT);
2810 set_page_dirty_lock(ind_page);
2811 map = page_address(summary_page);
2812 bit = get_ind_bit(adapter_int->summary_addr,
2813 adapter_int->summary_offset, adapter->swap);
2814 summary_set = test_and_set_bit(bit, map);
2815 mark_page_dirty(kvm, adapter_int->summary_addr >> PAGE_SHIFT);
2816 set_page_dirty_lock(summary_page);
2817 srcu_read_unlock(&kvm->srcu, idx);
2818
2819 put_page(ind_page);
2820 put_page(summary_page);
2821 return summary_set ? 0 : 1;
2822 }
2823
2824 /*
2825 * < 0 - not injected due to error
2826 * = 0 - coalesced, summary indicator already active
2827 * > 0 - injected interrupt
2828 */
set_adapter_int(struct kvm_kernel_irq_routing_entry * e,struct kvm * kvm,int irq_source_id,int level,bool line_status)2829 static int set_adapter_int(struct kvm_kernel_irq_routing_entry *e,
2830 struct kvm *kvm, int irq_source_id, int level,
2831 bool line_status)
2832 {
2833 int ret;
2834 struct s390_io_adapter *adapter;
2835
2836 /* We're only interested in the 0->1 transition. */
2837 if (!level)
2838 return 0;
2839 adapter = get_io_adapter(kvm, e->adapter.adapter_id);
2840 if (!adapter)
2841 return -1;
2842 ret = adapter_indicators_set(kvm, adapter, &e->adapter);
2843 if ((ret > 0) && !adapter->masked) {
2844 ret = kvm_s390_inject_airq(kvm, adapter);
2845 if (ret == 0)
2846 ret = 1;
2847 }
2848 return ret;
2849 }
2850
2851 /*
2852 * Inject the machine check to the guest.
2853 */
kvm_s390_reinject_machine_check(struct kvm_vcpu * vcpu,struct mcck_volatile_info * mcck_info)2854 void kvm_s390_reinject_machine_check(struct kvm_vcpu *vcpu,
2855 struct mcck_volatile_info *mcck_info)
2856 {
2857 struct kvm_s390_interrupt_info inti;
2858 struct kvm_s390_irq irq;
2859 struct kvm_s390_mchk_info *mchk;
2860 union mci mci;
2861 __u64 cr14 = 0; /* upper bits are not used */
2862 int rc;
2863
2864 mci.val = mcck_info->mcic;
2865 if (mci.sr)
2866 cr14 |= CR14_RECOVERY_SUBMASK;
2867 if (mci.dg)
2868 cr14 |= CR14_DEGRADATION_SUBMASK;
2869 if (mci.w)
2870 cr14 |= CR14_WARNING_SUBMASK;
2871
2872 mchk = mci.ck ? &inti.mchk : &irq.u.mchk;
2873 mchk->cr14 = cr14;
2874 mchk->mcic = mcck_info->mcic;
2875 mchk->ext_damage_code = mcck_info->ext_damage_code;
2876 mchk->failing_storage_address = mcck_info->failing_storage_address;
2877 if (mci.ck) {
2878 /* Inject the floating machine check */
2879 inti.type = KVM_S390_MCHK;
2880 rc = __inject_vm(vcpu->kvm, &inti);
2881 } else {
2882 /* Inject the machine check to specified vcpu */
2883 irq.type = KVM_S390_MCHK;
2884 rc = kvm_s390_inject_vcpu(vcpu, &irq);
2885 }
2886 WARN_ON_ONCE(rc);
2887 }
2888
kvm_set_routing_entry(struct kvm * kvm,struct kvm_kernel_irq_routing_entry * e,const struct kvm_irq_routing_entry * ue)2889 int kvm_set_routing_entry(struct kvm *kvm,
2890 struct kvm_kernel_irq_routing_entry *e,
2891 const struct kvm_irq_routing_entry *ue)
2892 {
2893 u64 uaddr;
2894
2895 switch (ue->type) {
2896 /* we store the userspace addresses instead of the guest addresses */
2897 case KVM_IRQ_ROUTING_S390_ADAPTER:
2898 e->set = set_adapter_int;
2899 uaddr = gmap_translate(kvm->arch.gmap, ue->u.adapter.summary_addr);
2900 if (uaddr == -EFAULT)
2901 return -EFAULT;
2902 e->adapter.summary_addr = uaddr;
2903 uaddr = gmap_translate(kvm->arch.gmap, ue->u.adapter.ind_addr);
2904 if (uaddr == -EFAULT)
2905 return -EFAULT;
2906 e->adapter.ind_addr = uaddr;
2907 e->adapter.summary_offset = ue->u.adapter.summary_offset;
2908 e->adapter.ind_offset = ue->u.adapter.ind_offset;
2909 e->adapter.adapter_id = ue->u.adapter.adapter_id;
2910 return 0;
2911 default:
2912 return -EINVAL;
2913 }
2914 }
2915
kvm_set_msi(struct kvm_kernel_irq_routing_entry * e,struct kvm * kvm,int irq_source_id,int level,bool line_status)2916 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *e, struct kvm *kvm,
2917 int irq_source_id, int level, bool line_status)
2918 {
2919 return -EINVAL;
2920 }
2921
kvm_s390_set_irq_state(struct kvm_vcpu * vcpu,void __user * irqstate,int len)2922 int kvm_s390_set_irq_state(struct kvm_vcpu *vcpu, void __user *irqstate, int len)
2923 {
2924 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
2925 struct kvm_s390_irq *buf;
2926 int r = 0;
2927 int n;
2928
2929 buf = vmalloc(len);
2930 if (!buf)
2931 return -ENOMEM;
2932
2933 if (copy_from_user((void *) buf, irqstate, len)) {
2934 r = -EFAULT;
2935 goto out_free;
2936 }
2937
2938 /*
2939 * Don't allow setting the interrupt state
2940 * when there are already interrupts pending
2941 */
2942 spin_lock(&li->lock);
2943 if (li->pending_irqs) {
2944 r = -EBUSY;
2945 goto out_unlock;
2946 }
2947
2948 for (n = 0; n < len / sizeof(*buf); n++) {
2949 r = do_inject_vcpu(vcpu, &buf[n]);
2950 if (r)
2951 break;
2952 }
2953
2954 out_unlock:
2955 spin_unlock(&li->lock);
2956 out_free:
2957 vfree(buf);
2958
2959 return r;
2960 }
2961
store_local_irq(struct kvm_s390_local_interrupt * li,struct kvm_s390_irq * irq,unsigned long irq_type)2962 static void store_local_irq(struct kvm_s390_local_interrupt *li,
2963 struct kvm_s390_irq *irq,
2964 unsigned long irq_type)
2965 {
2966 switch (irq_type) {
2967 case IRQ_PEND_MCHK_EX:
2968 case IRQ_PEND_MCHK_REP:
2969 irq->type = KVM_S390_MCHK;
2970 irq->u.mchk = li->irq.mchk;
2971 break;
2972 case IRQ_PEND_PROG:
2973 irq->type = KVM_S390_PROGRAM_INT;
2974 irq->u.pgm = li->irq.pgm;
2975 break;
2976 case IRQ_PEND_PFAULT_INIT:
2977 irq->type = KVM_S390_INT_PFAULT_INIT;
2978 irq->u.ext = li->irq.ext;
2979 break;
2980 case IRQ_PEND_EXT_EXTERNAL:
2981 irq->type = KVM_S390_INT_EXTERNAL_CALL;
2982 irq->u.extcall = li->irq.extcall;
2983 break;
2984 case IRQ_PEND_EXT_CLOCK_COMP:
2985 irq->type = KVM_S390_INT_CLOCK_COMP;
2986 break;
2987 case IRQ_PEND_EXT_CPU_TIMER:
2988 irq->type = KVM_S390_INT_CPU_TIMER;
2989 break;
2990 case IRQ_PEND_SIGP_STOP:
2991 irq->type = KVM_S390_SIGP_STOP;
2992 irq->u.stop = li->irq.stop;
2993 break;
2994 case IRQ_PEND_RESTART:
2995 irq->type = KVM_S390_RESTART;
2996 break;
2997 case IRQ_PEND_SET_PREFIX:
2998 irq->type = KVM_S390_SIGP_SET_PREFIX;
2999 irq->u.prefix = li->irq.prefix;
3000 break;
3001 }
3002 }
3003
kvm_s390_get_irq_state(struct kvm_vcpu * vcpu,__u8 __user * buf,int len)3004 int kvm_s390_get_irq_state(struct kvm_vcpu *vcpu, __u8 __user *buf, int len)
3005 {
3006 int scn;
3007 DECLARE_BITMAP(sigp_emerg_pending, KVM_MAX_VCPUS);
3008 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
3009 unsigned long pending_irqs;
3010 struct kvm_s390_irq irq;
3011 unsigned long irq_type;
3012 int cpuaddr;
3013 int n = 0;
3014
3015 spin_lock(&li->lock);
3016 pending_irqs = li->pending_irqs;
3017 memcpy(&sigp_emerg_pending, &li->sigp_emerg_pending,
3018 sizeof(sigp_emerg_pending));
3019 spin_unlock(&li->lock);
3020
3021 for_each_set_bit(irq_type, &pending_irqs, IRQ_PEND_COUNT) {
3022 memset(&irq, 0, sizeof(irq));
3023 if (irq_type == IRQ_PEND_EXT_EMERGENCY)
3024 continue;
3025 if (n + sizeof(irq) > len)
3026 return -ENOBUFS;
3027 store_local_irq(&vcpu->arch.local_int, &irq, irq_type);
3028 if (copy_to_user(&buf[n], &irq, sizeof(irq)))
3029 return -EFAULT;
3030 n += sizeof(irq);
3031 }
3032
3033 if (test_bit(IRQ_PEND_EXT_EMERGENCY, &pending_irqs)) {
3034 for_each_set_bit(cpuaddr, sigp_emerg_pending, KVM_MAX_VCPUS) {
3035 memset(&irq, 0, sizeof(irq));
3036 if (n + sizeof(irq) > len)
3037 return -ENOBUFS;
3038 irq.type = KVM_S390_INT_EMERGENCY;
3039 irq.u.emerg.code = cpuaddr;
3040 if (copy_to_user(&buf[n], &irq, sizeof(irq)))
3041 return -EFAULT;
3042 n += sizeof(irq);
3043 }
3044 }
3045
3046 if (sca_ext_call_pending(vcpu, &scn)) {
3047 if (n + sizeof(irq) > len)
3048 return -ENOBUFS;
3049 memset(&irq, 0, sizeof(irq));
3050 irq.type = KVM_S390_INT_EXTERNAL_CALL;
3051 irq.u.extcall.code = scn;
3052 if (copy_to_user(&buf[n], &irq, sizeof(irq)))
3053 return -EFAULT;
3054 n += sizeof(irq);
3055 }
3056
3057 return n;
3058 }
3059
__airqs_kick_single_vcpu(struct kvm * kvm,u8 deliverable_mask)3060 static void __airqs_kick_single_vcpu(struct kvm *kvm, u8 deliverable_mask)
3061 {
3062 int vcpu_idx, online_vcpus = atomic_read(&kvm->online_vcpus);
3063 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
3064 struct kvm_vcpu *vcpu;
3065 u8 vcpu_isc_mask;
3066
3067 for_each_set_bit(vcpu_idx, kvm->arch.idle_mask, online_vcpus) {
3068 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
3069 if (psw_ioint_disabled(vcpu))
3070 continue;
3071 vcpu_isc_mask = (u8)(vcpu->arch.sie_block->gcr[6] >> 24);
3072 if (deliverable_mask & vcpu_isc_mask) {
3073 /* lately kicked but not yet running */
3074 if (test_and_set_bit(vcpu_idx, gi->kicked_mask))
3075 return;
3076 kvm_s390_vcpu_wakeup(vcpu);
3077 return;
3078 }
3079 }
3080 }
3081
gisa_vcpu_kicker(struct hrtimer * timer)3082 static enum hrtimer_restart gisa_vcpu_kicker(struct hrtimer *timer)
3083 {
3084 struct kvm_s390_gisa_interrupt *gi =
3085 container_of(timer, struct kvm_s390_gisa_interrupt, timer);
3086 struct kvm *kvm =
3087 container_of(gi->origin, struct sie_page2, gisa)->kvm;
3088 u8 pending_mask;
3089
3090 pending_mask = gisa_get_ipm_or_restore_iam(gi);
3091 if (pending_mask) {
3092 __airqs_kick_single_vcpu(kvm, pending_mask);
3093 hrtimer_forward_now(timer, ns_to_ktime(gi->expires));
3094 return HRTIMER_RESTART;
3095 }
3096
3097 return HRTIMER_NORESTART;
3098 }
3099
3100 #define NULL_GISA_ADDR 0x00000000UL
3101 #define NONE_GISA_ADDR 0x00000001UL
3102 #define GISA_ADDR_MASK 0xfffff000UL
3103
process_gib_alert_list(void)3104 static void process_gib_alert_list(void)
3105 {
3106 struct kvm_s390_gisa_interrupt *gi;
3107 struct kvm_s390_gisa *gisa;
3108 struct kvm *kvm;
3109 u32 final, origin = 0UL;
3110
3111 do {
3112 /*
3113 * If the NONE_GISA_ADDR is still stored in the alert list
3114 * origin, we will leave the outer loop. No further GISA has
3115 * been added to the alert list by millicode while processing
3116 * the current alert list.
3117 */
3118 final = (origin & NONE_GISA_ADDR);
3119 /*
3120 * Cut off the alert list and store the NONE_GISA_ADDR in the
3121 * alert list origin to avoid further GAL interruptions.
3122 * A new alert list can be build up by millicode in parallel
3123 * for guests not in the yet cut-off alert list. When in the
3124 * final loop, store the NULL_GISA_ADDR instead. This will re-
3125 * enable GAL interruptions on the host again.
3126 */
3127 origin = xchg(&gib->alert_list_origin,
3128 (!final) ? NONE_GISA_ADDR : NULL_GISA_ADDR);
3129 /*
3130 * Loop through the just cut-off alert list and start the
3131 * gisa timers to kick idle vcpus to consume the pending
3132 * interruptions asap.
3133 */
3134 while (origin & GISA_ADDR_MASK) {
3135 gisa = (struct kvm_s390_gisa *)(u64)origin;
3136 origin = gisa->next_alert;
3137 gisa->next_alert = (u32)(u64)gisa;
3138 kvm = container_of(gisa, struct sie_page2, gisa)->kvm;
3139 gi = &kvm->arch.gisa_int;
3140 if (hrtimer_active(&gi->timer))
3141 hrtimer_cancel(&gi->timer);
3142 hrtimer_start(&gi->timer, 0, HRTIMER_MODE_REL);
3143 }
3144 } while (!final);
3145
3146 }
3147
kvm_s390_gisa_clear(struct kvm * kvm)3148 void kvm_s390_gisa_clear(struct kvm *kvm)
3149 {
3150 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
3151
3152 if (!gi->origin)
3153 return;
3154 gisa_clear_ipm(gi->origin);
3155 VM_EVENT(kvm, 3, "gisa 0x%pK cleared", gi->origin);
3156 }
3157
kvm_s390_gisa_init(struct kvm * kvm)3158 void kvm_s390_gisa_init(struct kvm *kvm)
3159 {
3160 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
3161
3162 if (!css_general_characteristics.aiv)
3163 return;
3164 gi->origin = &kvm->arch.sie_page2->gisa;
3165 gi->alert.mask = 0;
3166 spin_lock_init(&gi->alert.ref_lock);
3167 gi->expires = 50 * 1000; /* 50 usec */
3168 hrtimer_init(&gi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3169 gi->timer.function = gisa_vcpu_kicker;
3170 memset(gi->origin, 0, sizeof(struct kvm_s390_gisa));
3171 gi->origin->next_alert = (u32)(u64)gi->origin;
3172 VM_EVENT(kvm, 3, "gisa 0x%pK initialized", gi->origin);
3173 }
3174
kvm_s390_gisa_enable(struct kvm * kvm)3175 void kvm_s390_gisa_enable(struct kvm *kvm)
3176 {
3177 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
3178 struct kvm_vcpu *vcpu;
3179 unsigned long i;
3180 u32 gisa_desc;
3181
3182 if (gi->origin)
3183 return;
3184 kvm_s390_gisa_init(kvm);
3185 gisa_desc = kvm_s390_get_gisa_desc(kvm);
3186 if (!gisa_desc)
3187 return;
3188 kvm_for_each_vcpu(i, vcpu, kvm) {
3189 mutex_lock(&vcpu->mutex);
3190 vcpu->arch.sie_block->gd = gisa_desc;
3191 vcpu->arch.sie_block->eca |= ECA_AIV;
3192 VCPU_EVENT(vcpu, 3, "AIV gisa format-%u enabled for cpu %03u",
3193 vcpu->arch.sie_block->gd & 0x3, vcpu->vcpu_id);
3194 mutex_unlock(&vcpu->mutex);
3195 }
3196 }
3197
kvm_s390_gisa_destroy(struct kvm * kvm)3198 void kvm_s390_gisa_destroy(struct kvm *kvm)
3199 {
3200 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
3201 struct kvm_s390_gisa *gisa = gi->origin;
3202
3203 if (!gi->origin)
3204 return;
3205 if (gi->alert.mask)
3206 KVM_EVENT(3, "vm 0x%pK has unexpected iam 0x%02x",
3207 kvm, gi->alert.mask);
3208 while (gisa_in_alert_list(gi->origin))
3209 cpu_relax();
3210 hrtimer_cancel(&gi->timer);
3211 gi->origin = NULL;
3212 VM_EVENT(kvm, 3, "gisa 0x%pK destroyed", gisa);
3213 }
3214
kvm_s390_gisa_disable(struct kvm * kvm)3215 void kvm_s390_gisa_disable(struct kvm *kvm)
3216 {
3217 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
3218 struct kvm_vcpu *vcpu;
3219 unsigned long i;
3220
3221 if (!gi->origin)
3222 return;
3223 kvm_for_each_vcpu(i, vcpu, kvm) {
3224 mutex_lock(&vcpu->mutex);
3225 vcpu->arch.sie_block->eca &= ~ECA_AIV;
3226 vcpu->arch.sie_block->gd = 0U;
3227 mutex_unlock(&vcpu->mutex);
3228 VCPU_EVENT(vcpu, 3, "AIV disabled for cpu %03u", vcpu->vcpu_id);
3229 }
3230 kvm_s390_gisa_destroy(kvm);
3231 }
3232
3233 /**
3234 * kvm_s390_gisc_register - register a guest ISC
3235 *
3236 * @kvm: the kernel vm to work with
3237 * @gisc: the guest interruption sub class to register
3238 *
3239 * The function extends the vm specific alert mask to use.
3240 * The effective IAM mask in the GISA is updated as well
3241 * in case the GISA is not part of the GIB alert list.
3242 * It will be updated latest when the IAM gets restored
3243 * by gisa_get_ipm_or_restore_iam().
3244 *
3245 * Returns: the nonspecific ISC (NISC) the gib alert mechanism
3246 * has registered with the channel subsystem.
3247 * -ENODEV in case the vm uses no GISA
3248 * -ERANGE in case the guest ISC is invalid
3249 */
kvm_s390_gisc_register(struct kvm * kvm,u32 gisc)3250 int kvm_s390_gisc_register(struct kvm *kvm, u32 gisc)
3251 {
3252 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
3253
3254 if (!gi->origin)
3255 return -ENODEV;
3256 if (gisc > MAX_ISC)
3257 return -ERANGE;
3258
3259 spin_lock(&gi->alert.ref_lock);
3260 gi->alert.ref_count[gisc]++;
3261 if (gi->alert.ref_count[gisc] == 1) {
3262 gi->alert.mask |= 0x80 >> gisc;
3263 gisa_set_iam(gi->origin, gi->alert.mask);
3264 }
3265 spin_unlock(&gi->alert.ref_lock);
3266
3267 return gib->nisc;
3268 }
3269 EXPORT_SYMBOL_GPL(kvm_s390_gisc_register);
3270
3271 /**
3272 * kvm_s390_gisc_unregister - unregister a guest ISC
3273 *
3274 * @kvm: the kernel vm to work with
3275 * @gisc: the guest interruption sub class to register
3276 *
3277 * The function reduces the vm specific alert mask to use.
3278 * The effective IAM mask in the GISA is updated as well
3279 * in case the GISA is not part of the GIB alert list.
3280 * It will be updated latest when the IAM gets restored
3281 * by gisa_get_ipm_or_restore_iam().
3282 *
3283 * Returns: the nonspecific ISC (NISC) the gib alert mechanism
3284 * has registered with the channel subsystem.
3285 * -ENODEV in case the vm uses no GISA
3286 * -ERANGE in case the guest ISC is invalid
3287 * -EINVAL in case the guest ISC is not registered
3288 */
kvm_s390_gisc_unregister(struct kvm * kvm,u32 gisc)3289 int kvm_s390_gisc_unregister(struct kvm *kvm, u32 gisc)
3290 {
3291 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
3292 int rc = 0;
3293
3294 if (!gi->origin)
3295 return -ENODEV;
3296 if (gisc > MAX_ISC)
3297 return -ERANGE;
3298
3299 spin_lock(&gi->alert.ref_lock);
3300 if (gi->alert.ref_count[gisc] == 0) {
3301 rc = -EINVAL;
3302 goto out;
3303 }
3304 gi->alert.ref_count[gisc]--;
3305 if (gi->alert.ref_count[gisc] == 0) {
3306 gi->alert.mask &= ~(0x80 >> gisc);
3307 gisa_set_iam(gi->origin, gi->alert.mask);
3308 }
3309 out:
3310 spin_unlock(&gi->alert.ref_lock);
3311
3312 return rc;
3313 }
3314 EXPORT_SYMBOL_GPL(kvm_s390_gisc_unregister);
3315
aen_host_forward(unsigned long si)3316 static void aen_host_forward(unsigned long si)
3317 {
3318 struct kvm_s390_gisa_interrupt *gi;
3319 struct zpci_gaite *gaite;
3320 struct kvm *kvm;
3321
3322 gaite = (struct zpci_gaite *)aift->gait +
3323 (si * sizeof(struct zpci_gaite));
3324 if (gaite->count == 0)
3325 return;
3326 if (gaite->aisb != 0)
3327 set_bit_inv(gaite->aisbo, phys_to_virt(gaite->aisb));
3328
3329 kvm = kvm_s390_pci_si_to_kvm(aift, si);
3330 if (!kvm)
3331 return;
3332 gi = &kvm->arch.gisa_int;
3333
3334 if (!(gi->origin->g1.simm & AIS_MODE_MASK(gaite->gisc)) ||
3335 !(gi->origin->g1.nimm & AIS_MODE_MASK(gaite->gisc))) {
3336 gisa_set_ipm_gisc(gi->origin, gaite->gisc);
3337 if (hrtimer_active(&gi->timer))
3338 hrtimer_cancel(&gi->timer);
3339 hrtimer_start(&gi->timer, 0, HRTIMER_MODE_REL);
3340 kvm->stat.aen_forward++;
3341 }
3342 }
3343
aen_process_gait(u8 isc)3344 static void aen_process_gait(u8 isc)
3345 {
3346 bool found = false, first = true;
3347 union zpci_sic_iib iib = {{0}};
3348 unsigned long si, flags;
3349
3350 spin_lock_irqsave(&aift->gait_lock, flags);
3351
3352 if (!aift->gait) {
3353 spin_unlock_irqrestore(&aift->gait_lock, flags);
3354 return;
3355 }
3356
3357 for (si = 0;;) {
3358 /* Scan adapter summary indicator bit vector */
3359 si = airq_iv_scan(aift->sbv, si, airq_iv_end(aift->sbv));
3360 if (si == -1UL) {
3361 if (first || found) {
3362 /* Re-enable interrupts. */
3363 zpci_set_irq_ctrl(SIC_IRQ_MODE_SINGLE, isc,
3364 &iib);
3365 first = found = false;
3366 } else {
3367 /* Interrupts on and all bits processed */
3368 break;
3369 }
3370 found = false;
3371 si = 0;
3372 /* Scan again after re-enabling interrupts */
3373 continue;
3374 }
3375 found = true;
3376 aen_host_forward(si);
3377 }
3378
3379 spin_unlock_irqrestore(&aift->gait_lock, flags);
3380 }
3381
gib_alert_irq_handler(struct airq_struct * airq,struct tpi_info * tpi_info)3382 static void gib_alert_irq_handler(struct airq_struct *airq,
3383 struct tpi_info *tpi_info)
3384 {
3385 struct tpi_adapter_info *info = (struct tpi_adapter_info *)tpi_info;
3386
3387 inc_irq_stat(IRQIO_GAL);
3388
3389 if ((info->forward || info->error) &&
3390 IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM)) {
3391 aen_process_gait(info->isc);
3392 if (info->aism != 0)
3393 process_gib_alert_list();
3394 } else {
3395 process_gib_alert_list();
3396 }
3397 }
3398
3399 static struct airq_struct gib_alert_irq = {
3400 .handler = gib_alert_irq_handler,
3401 .lsi_ptr = &gib_alert_irq.lsi_mask,
3402 };
3403
kvm_s390_gib_destroy(void)3404 void kvm_s390_gib_destroy(void)
3405 {
3406 if (!gib)
3407 return;
3408 if (kvm_s390_pci_interp_allowed() && aift) {
3409 mutex_lock(&aift->aift_lock);
3410 kvm_s390_pci_aen_exit();
3411 mutex_unlock(&aift->aift_lock);
3412 }
3413 chsc_sgib(0);
3414 unregister_adapter_interrupt(&gib_alert_irq);
3415 free_page((unsigned long)gib);
3416 gib = NULL;
3417 }
3418
kvm_s390_gib_init(u8 nisc)3419 int kvm_s390_gib_init(u8 nisc)
3420 {
3421 int rc = 0;
3422
3423 if (!css_general_characteristics.aiv) {
3424 KVM_EVENT(3, "%s", "gib not initialized, no AIV facility");
3425 goto out;
3426 }
3427
3428 gib = (struct kvm_s390_gib *)get_zeroed_page(GFP_KERNEL_ACCOUNT | GFP_DMA);
3429 if (!gib) {
3430 rc = -ENOMEM;
3431 goto out;
3432 }
3433
3434 gib_alert_irq.isc = nisc;
3435 if (register_adapter_interrupt(&gib_alert_irq)) {
3436 pr_err("Registering the GIB alert interruption handler failed\n");
3437 rc = -EIO;
3438 goto out_free_gib;
3439 }
3440
3441 gib->nisc = nisc;
3442 if (chsc_sgib((u32)(u64)gib)) {
3443 pr_err("Associating the GIB with the AIV facility failed\n");
3444 free_page((unsigned long)gib);
3445 gib = NULL;
3446 rc = -EIO;
3447 goto out_unreg_gal;
3448 }
3449
3450 if (kvm_s390_pci_interp_allowed()) {
3451 if (kvm_s390_pci_aen_init(nisc)) {
3452 pr_err("Initializing AEN for PCI failed\n");
3453 rc = -EIO;
3454 goto out_unreg_gal;
3455 }
3456 }
3457
3458 KVM_EVENT(3, "gib 0x%pK (nisc=%d) initialized", gib, gib->nisc);
3459 goto out;
3460
3461 out_unreg_gal:
3462 unregister_adapter_interrupt(&gib_alert_irq);
3463 out_free_gib:
3464 free_page((unsigned long)gib);
3465 gib = NULL;
3466 out:
3467 return rc;
3468 }
3469