1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * handling kvm guest interrupts
4 *
5 * Copyright IBM Corp. 2008, 2015
6 *
7 * Author(s): Carsten Otte <cotte@de.ibm.com>
8 */
9
10 #define KMSG_COMPONENT "kvm-s390"
11 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
12
13 #include <linux/interrupt.h>
14 #include <linux/kvm_host.h>
15 #include <linux/hrtimer.h>
16 #include <linux/mmu_context.h>
17 #include <linux/nospec.h>
18 #include <linux/signal.h>
19 #include <linux/slab.h>
20 #include <linux/bitmap.h>
21 #include <linux/vmalloc.h>
22 #include <asm/asm-offsets.h>
23 #include <asm/dis.h>
24 #include <linux/uaccess.h>
25 #include <asm/sclp.h>
26 #include <asm/isc.h>
27 #include <asm/gmap.h>
28 #include <asm/switch_to.h>
29 #include <asm/nmi.h>
30 #include <asm/airq.h>
31 #include "kvm-s390.h"
32 #include "gaccess.h"
33 #include "trace-s390.h"
34
35 #define PFAULT_INIT 0x0600
36 #define PFAULT_DONE 0x0680
37 #define VIRTIO_PARAM 0x0d00
38
39 static struct kvm_s390_gib *gib;
40
41 /* handle external calls via sigp interpretation facility */
sca_ext_call_pending(struct kvm_vcpu * vcpu,int * src_id)42 static int sca_ext_call_pending(struct kvm_vcpu *vcpu, int *src_id)
43 {
44 int c, scn;
45
46 if (!kvm_s390_test_cpuflags(vcpu, CPUSTAT_ECALL_PEND))
47 return 0;
48
49 BUG_ON(!kvm_s390_use_sca_entries());
50 read_lock(&vcpu->kvm->arch.sca_lock);
51 if (vcpu->kvm->arch.use_esca) {
52 struct esca_block *sca = vcpu->kvm->arch.sca;
53 union esca_sigp_ctrl sigp_ctrl =
54 sca->cpu[vcpu->vcpu_id].sigp_ctrl;
55
56 c = sigp_ctrl.c;
57 scn = sigp_ctrl.scn;
58 } else {
59 struct bsca_block *sca = vcpu->kvm->arch.sca;
60 union bsca_sigp_ctrl sigp_ctrl =
61 sca->cpu[vcpu->vcpu_id].sigp_ctrl;
62
63 c = sigp_ctrl.c;
64 scn = sigp_ctrl.scn;
65 }
66 read_unlock(&vcpu->kvm->arch.sca_lock);
67
68 if (src_id)
69 *src_id = scn;
70
71 return c;
72 }
73
sca_inject_ext_call(struct kvm_vcpu * vcpu,int src_id)74 static int sca_inject_ext_call(struct kvm_vcpu *vcpu, int src_id)
75 {
76 int expect, rc;
77
78 BUG_ON(!kvm_s390_use_sca_entries());
79 read_lock(&vcpu->kvm->arch.sca_lock);
80 if (vcpu->kvm->arch.use_esca) {
81 struct esca_block *sca = vcpu->kvm->arch.sca;
82 union esca_sigp_ctrl *sigp_ctrl =
83 &(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
84 union esca_sigp_ctrl new_val = {0}, old_val = *sigp_ctrl;
85
86 new_val.scn = src_id;
87 new_val.c = 1;
88 old_val.c = 0;
89
90 expect = old_val.value;
91 rc = cmpxchg(&sigp_ctrl->value, old_val.value, new_val.value);
92 } else {
93 struct bsca_block *sca = vcpu->kvm->arch.sca;
94 union bsca_sigp_ctrl *sigp_ctrl =
95 &(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
96 union bsca_sigp_ctrl new_val = {0}, old_val = *sigp_ctrl;
97
98 new_val.scn = src_id;
99 new_val.c = 1;
100 old_val.c = 0;
101
102 expect = old_val.value;
103 rc = cmpxchg(&sigp_ctrl->value, old_val.value, new_val.value);
104 }
105 read_unlock(&vcpu->kvm->arch.sca_lock);
106
107 if (rc != expect) {
108 /* another external call is pending */
109 return -EBUSY;
110 }
111 kvm_s390_set_cpuflags(vcpu, CPUSTAT_ECALL_PEND);
112 return 0;
113 }
114
sca_clear_ext_call(struct kvm_vcpu * vcpu)115 static void sca_clear_ext_call(struct kvm_vcpu *vcpu)
116 {
117 int rc, expect;
118
119 if (!kvm_s390_use_sca_entries())
120 return;
121 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_ECALL_PEND);
122 read_lock(&vcpu->kvm->arch.sca_lock);
123 if (vcpu->kvm->arch.use_esca) {
124 struct esca_block *sca = vcpu->kvm->arch.sca;
125 union esca_sigp_ctrl *sigp_ctrl =
126 &(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
127 union esca_sigp_ctrl old = *sigp_ctrl;
128
129 expect = old.value;
130 rc = cmpxchg(&sigp_ctrl->value, old.value, 0);
131 } else {
132 struct bsca_block *sca = vcpu->kvm->arch.sca;
133 union bsca_sigp_ctrl *sigp_ctrl =
134 &(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
135 union bsca_sigp_ctrl old = *sigp_ctrl;
136
137 expect = old.value;
138 rc = cmpxchg(&sigp_ctrl->value, old.value, 0);
139 }
140 read_unlock(&vcpu->kvm->arch.sca_lock);
141 WARN_ON(rc != expect); /* cannot clear? */
142 }
143
psw_extint_disabled(struct kvm_vcpu * vcpu)144 int psw_extint_disabled(struct kvm_vcpu *vcpu)
145 {
146 return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_EXT);
147 }
148
psw_ioint_disabled(struct kvm_vcpu * vcpu)149 static int psw_ioint_disabled(struct kvm_vcpu *vcpu)
150 {
151 return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_IO);
152 }
153
psw_mchk_disabled(struct kvm_vcpu * vcpu)154 static int psw_mchk_disabled(struct kvm_vcpu *vcpu)
155 {
156 return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_MCHECK);
157 }
158
psw_interrupts_disabled(struct kvm_vcpu * vcpu)159 static int psw_interrupts_disabled(struct kvm_vcpu *vcpu)
160 {
161 return psw_extint_disabled(vcpu) &&
162 psw_ioint_disabled(vcpu) &&
163 psw_mchk_disabled(vcpu);
164 }
165
ckc_interrupts_enabled(struct kvm_vcpu * vcpu)166 static int ckc_interrupts_enabled(struct kvm_vcpu *vcpu)
167 {
168 if (psw_extint_disabled(vcpu) ||
169 !(vcpu->arch.sie_block->gcr[0] & CR0_CLOCK_COMPARATOR_SUBMASK))
170 return 0;
171 if (guestdbg_enabled(vcpu) && guestdbg_sstep_enabled(vcpu))
172 /* No timer interrupts when single stepping */
173 return 0;
174 return 1;
175 }
176
ckc_irq_pending(struct kvm_vcpu * vcpu)177 static int ckc_irq_pending(struct kvm_vcpu *vcpu)
178 {
179 const u64 now = kvm_s390_get_tod_clock_fast(vcpu->kvm);
180 const u64 ckc = vcpu->arch.sie_block->ckc;
181
182 if (vcpu->arch.sie_block->gcr[0] & CR0_CLOCK_COMPARATOR_SIGN) {
183 if ((s64)ckc >= (s64)now)
184 return 0;
185 } else if (ckc >= now) {
186 return 0;
187 }
188 return ckc_interrupts_enabled(vcpu);
189 }
190
cpu_timer_interrupts_enabled(struct kvm_vcpu * vcpu)191 static int cpu_timer_interrupts_enabled(struct kvm_vcpu *vcpu)
192 {
193 return !psw_extint_disabled(vcpu) &&
194 (vcpu->arch.sie_block->gcr[0] & CR0_CPU_TIMER_SUBMASK);
195 }
196
cpu_timer_irq_pending(struct kvm_vcpu * vcpu)197 static int cpu_timer_irq_pending(struct kvm_vcpu *vcpu)
198 {
199 if (!cpu_timer_interrupts_enabled(vcpu))
200 return 0;
201 return kvm_s390_get_cpu_timer(vcpu) >> 63;
202 }
203
isc_to_isc_bits(int isc)204 static uint64_t isc_to_isc_bits(int isc)
205 {
206 return (0x80 >> isc) << 24;
207 }
208
isc_to_int_word(u8 isc)209 static inline u32 isc_to_int_word(u8 isc)
210 {
211 return ((u32)isc << 27) | 0x80000000;
212 }
213
int_word_to_isc(u32 int_word)214 static inline u8 int_word_to_isc(u32 int_word)
215 {
216 return (int_word & 0x38000000) >> 27;
217 }
218
219 /*
220 * To use atomic bitmap functions, we have to provide a bitmap address
221 * that is u64 aligned. However, the ipm might be u32 aligned.
222 * Therefore, we logically start the bitmap at the very beginning of the
223 * struct and fixup the bit number.
224 */
225 #define IPM_BIT_OFFSET (offsetof(struct kvm_s390_gisa, ipm) * BITS_PER_BYTE)
226
227 /**
228 * gisa_set_iam - change the GISA interruption alert mask
229 *
230 * @gisa: gisa to operate on
231 * @iam: new IAM value to use
232 *
233 * Change the IAM atomically with the next alert address and the IPM
234 * of the GISA if the GISA is not part of the GIB alert list. All three
235 * fields are located in the first long word of the GISA.
236 *
237 * Returns: 0 on success
238 * -EBUSY in case the gisa is part of the alert list
239 */
gisa_set_iam(struct kvm_s390_gisa * gisa,u8 iam)240 static inline int gisa_set_iam(struct kvm_s390_gisa *gisa, u8 iam)
241 {
242 u64 word, _word;
243
244 do {
245 word = READ_ONCE(gisa->u64.word[0]);
246 if ((u64)gisa != word >> 32)
247 return -EBUSY;
248 _word = (word & ~0xffUL) | iam;
249 } while (cmpxchg(&gisa->u64.word[0], word, _word) != word);
250
251 return 0;
252 }
253
254 /**
255 * gisa_clear_ipm - clear the GISA interruption pending mask
256 *
257 * @gisa: gisa to operate on
258 *
259 * Clear the IPM atomically with the next alert address and the IAM
260 * of the GISA unconditionally. All three fields are located in the
261 * first long word of the GISA.
262 */
gisa_clear_ipm(struct kvm_s390_gisa * gisa)263 static inline void gisa_clear_ipm(struct kvm_s390_gisa *gisa)
264 {
265 u64 word, _word;
266
267 do {
268 word = READ_ONCE(gisa->u64.word[0]);
269 _word = word & ~(0xffUL << 24);
270 } while (cmpxchg(&gisa->u64.word[0], word, _word) != word);
271 }
272
273 /**
274 * gisa_get_ipm_or_restore_iam - return IPM or restore GISA IAM
275 *
276 * @gi: gisa interrupt struct to work on
277 *
278 * Atomically restores the interruption alert mask if none of the
279 * relevant ISCs are pending and return the IPM.
280 *
281 * Returns: the relevant pending ISCs
282 */
gisa_get_ipm_or_restore_iam(struct kvm_s390_gisa_interrupt * gi)283 static inline u8 gisa_get_ipm_or_restore_iam(struct kvm_s390_gisa_interrupt *gi)
284 {
285 u8 pending_mask, alert_mask;
286 u64 word, _word;
287
288 do {
289 word = READ_ONCE(gi->origin->u64.word[0]);
290 alert_mask = READ_ONCE(gi->alert.mask);
291 pending_mask = (u8)(word >> 24) & alert_mask;
292 if (pending_mask)
293 return pending_mask;
294 _word = (word & ~0xffUL) | alert_mask;
295 } while (cmpxchg(&gi->origin->u64.word[0], word, _word) != word);
296
297 return 0;
298 }
299
gisa_in_alert_list(struct kvm_s390_gisa * gisa)300 static inline int gisa_in_alert_list(struct kvm_s390_gisa *gisa)
301 {
302 return READ_ONCE(gisa->next_alert) != (u32)(u64)gisa;
303 }
304
gisa_set_ipm_gisc(struct kvm_s390_gisa * gisa,u32 gisc)305 static inline void gisa_set_ipm_gisc(struct kvm_s390_gisa *gisa, u32 gisc)
306 {
307 set_bit_inv(IPM_BIT_OFFSET + gisc, (unsigned long *) gisa);
308 }
309
gisa_get_ipm(struct kvm_s390_gisa * gisa)310 static inline u8 gisa_get_ipm(struct kvm_s390_gisa *gisa)
311 {
312 return READ_ONCE(gisa->ipm);
313 }
314
gisa_clear_ipm_gisc(struct kvm_s390_gisa * gisa,u32 gisc)315 static inline void gisa_clear_ipm_gisc(struct kvm_s390_gisa *gisa, u32 gisc)
316 {
317 clear_bit_inv(IPM_BIT_OFFSET + gisc, (unsigned long *) gisa);
318 }
319
gisa_tac_ipm_gisc(struct kvm_s390_gisa * gisa,u32 gisc)320 static inline int gisa_tac_ipm_gisc(struct kvm_s390_gisa *gisa, u32 gisc)
321 {
322 return test_and_clear_bit_inv(IPM_BIT_OFFSET + gisc, (unsigned long *) gisa);
323 }
324
pending_irqs_no_gisa(struct kvm_vcpu * vcpu)325 static inline unsigned long pending_irqs_no_gisa(struct kvm_vcpu *vcpu)
326 {
327 return vcpu->kvm->arch.float_int.pending_irqs |
328 vcpu->arch.local_int.pending_irqs;
329 }
330
pending_irqs(struct kvm_vcpu * vcpu)331 static inline unsigned long pending_irqs(struct kvm_vcpu *vcpu)
332 {
333 struct kvm_s390_gisa_interrupt *gi = &vcpu->kvm->arch.gisa_int;
334 unsigned long pending_mask;
335
336 pending_mask = pending_irqs_no_gisa(vcpu);
337 if (gi->origin)
338 pending_mask |= gisa_get_ipm(gi->origin) << IRQ_PEND_IO_ISC_7;
339 return pending_mask;
340 }
341
isc_to_irq_type(unsigned long isc)342 static inline int isc_to_irq_type(unsigned long isc)
343 {
344 return IRQ_PEND_IO_ISC_0 - isc;
345 }
346
irq_type_to_isc(unsigned long irq_type)347 static inline int irq_type_to_isc(unsigned long irq_type)
348 {
349 return IRQ_PEND_IO_ISC_0 - irq_type;
350 }
351
disable_iscs(struct kvm_vcpu * vcpu,unsigned long active_mask)352 static unsigned long disable_iscs(struct kvm_vcpu *vcpu,
353 unsigned long active_mask)
354 {
355 int i;
356
357 for (i = 0; i <= MAX_ISC; i++)
358 if (!(vcpu->arch.sie_block->gcr[6] & isc_to_isc_bits(i)))
359 active_mask &= ~(1UL << (isc_to_irq_type(i)));
360
361 return active_mask;
362 }
363
deliverable_irqs(struct kvm_vcpu * vcpu)364 static unsigned long deliverable_irqs(struct kvm_vcpu *vcpu)
365 {
366 unsigned long active_mask;
367
368 active_mask = pending_irqs(vcpu);
369 if (!active_mask)
370 return 0;
371
372 if (psw_extint_disabled(vcpu))
373 active_mask &= ~IRQ_PEND_EXT_MASK;
374 if (psw_ioint_disabled(vcpu))
375 active_mask &= ~IRQ_PEND_IO_MASK;
376 else
377 active_mask = disable_iscs(vcpu, active_mask);
378 if (!(vcpu->arch.sie_block->gcr[0] & CR0_EXTERNAL_CALL_SUBMASK))
379 __clear_bit(IRQ_PEND_EXT_EXTERNAL, &active_mask);
380 if (!(vcpu->arch.sie_block->gcr[0] & CR0_EMERGENCY_SIGNAL_SUBMASK))
381 __clear_bit(IRQ_PEND_EXT_EMERGENCY, &active_mask);
382 if (!(vcpu->arch.sie_block->gcr[0] & CR0_CLOCK_COMPARATOR_SUBMASK))
383 __clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &active_mask);
384 if (!(vcpu->arch.sie_block->gcr[0] & CR0_CPU_TIMER_SUBMASK))
385 __clear_bit(IRQ_PEND_EXT_CPU_TIMER, &active_mask);
386 if (!(vcpu->arch.sie_block->gcr[0] & CR0_SERVICE_SIGNAL_SUBMASK))
387 __clear_bit(IRQ_PEND_EXT_SERVICE, &active_mask);
388 if (psw_mchk_disabled(vcpu))
389 active_mask &= ~IRQ_PEND_MCHK_MASK;
390 /*
391 * Check both floating and local interrupt's cr14 because
392 * bit IRQ_PEND_MCHK_REP could be set in both cases.
393 */
394 if (!(vcpu->arch.sie_block->gcr[14] &
395 (vcpu->kvm->arch.float_int.mchk.cr14 |
396 vcpu->arch.local_int.irq.mchk.cr14)))
397 __clear_bit(IRQ_PEND_MCHK_REP, &active_mask);
398
399 /*
400 * STOP irqs will never be actively delivered. They are triggered via
401 * intercept requests and cleared when the stop intercept is performed.
402 */
403 __clear_bit(IRQ_PEND_SIGP_STOP, &active_mask);
404
405 return active_mask;
406 }
407
__set_cpu_idle(struct kvm_vcpu * vcpu)408 static void __set_cpu_idle(struct kvm_vcpu *vcpu)
409 {
410 kvm_s390_set_cpuflags(vcpu, CPUSTAT_WAIT);
411 set_bit(vcpu->vcpu_id, vcpu->kvm->arch.idle_mask);
412 }
413
__unset_cpu_idle(struct kvm_vcpu * vcpu)414 static void __unset_cpu_idle(struct kvm_vcpu *vcpu)
415 {
416 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_WAIT);
417 clear_bit(vcpu->vcpu_id, vcpu->kvm->arch.idle_mask);
418 }
419
__reset_intercept_indicators(struct kvm_vcpu * vcpu)420 static void __reset_intercept_indicators(struct kvm_vcpu *vcpu)
421 {
422 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_IO_INT | CPUSTAT_EXT_INT |
423 CPUSTAT_STOP_INT);
424 vcpu->arch.sie_block->lctl = 0x0000;
425 vcpu->arch.sie_block->ictl &= ~(ICTL_LPSW | ICTL_STCTL | ICTL_PINT);
426
427 if (guestdbg_enabled(vcpu)) {
428 vcpu->arch.sie_block->lctl |= (LCTL_CR0 | LCTL_CR9 |
429 LCTL_CR10 | LCTL_CR11);
430 vcpu->arch.sie_block->ictl |= (ICTL_STCTL | ICTL_PINT);
431 }
432 }
433
set_intercept_indicators_io(struct kvm_vcpu * vcpu)434 static void set_intercept_indicators_io(struct kvm_vcpu *vcpu)
435 {
436 if (!(pending_irqs_no_gisa(vcpu) & IRQ_PEND_IO_MASK))
437 return;
438 if (psw_ioint_disabled(vcpu))
439 kvm_s390_set_cpuflags(vcpu, CPUSTAT_IO_INT);
440 else
441 vcpu->arch.sie_block->lctl |= LCTL_CR6;
442 }
443
set_intercept_indicators_ext(struct kvm_vcpu * vcpu)444 static void set_intercept_indicators_ext(struct kvm_vcpu *vcpu)
445 {
446 if (!(pending_irqs_no_gisa(vcpu) & IRQ_PEND_EXT_MASK))
447 return;
448 if (psw_extint_disabled(vcpu))
449 kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT);
450 else
451 vcpu->arch.sie_block->lctl |= LCTL_CR0;
452 }
453
set_intercept_indicators_mchk(struct kvm_vcpu * vcpu)454 static void set_intercept_indicators_mchk(struct kvm_vcpu *vcpu)
455 {
456 if (!(pending_irqs_no_gisa(vcpu) & IRQ_PEND_MCHK_MASK))
457 return;
458 if (psw_mchk_disabled(vcpu))
459 vcpu->arch.sie_block->ictl |= ICTL_LPSW;
460 else
461 vcpu->arch.sie_block->lctl |= LCTL_CR14;
462 }
463
set_intercept_indicators_stop(struct kvm_vcpu * vcpu)464 static void set_intercept_indicators_stop(struct kvm_vcpu *vcpu)
465 {
466 if (kvm_s390_is_stop_irq_pending(vcpu))
467 kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOP_INT);
468 }
469
470 /* Set interception request for non-deliverable interrupts */
set_intercept_indicators(struct kvm_vcpu * vcpu)471 static void set_intercept_indicators(struct kvm_vcpu *vcpu)
472 {
473 set_intercept_indicators_io(vcpu);
474 set_intercept_indicators_ext(vcpu);
475 set_intercept_indicators_mchk(vcpu);
476 set_intercept_indicators_stop(vcpu);
477 }
478
__deliver_cpu_timer(struct kvm_vcpu * vcpu)479 static int __must_check __deliver_cpu_timer(struct kvm_vcpu *vcpu)
480 {
481 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
482 int rc;
483
484 vcpu->stat.deliver_cputm++;
485 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_CPU_TIMER,
486 0, 0);
487
488 rc = put_guest_lc(vcpu, EXT_IRQ_CPU_TIMER,
489 (u16 *)__LC_EXT_INT_CODE);
490 rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR);
491 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
492 &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
493 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
494 &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
495 clear_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
496 return rc ? -EFAULT : 0;
497 }
498
__deliver_ckc(struct kvm_vcpu * vcpu)499 static int __must_check __deliver_ckc(struct kvm_vcpu *vcpu)
500 {
501 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
502 int rc;
503
504 vcpu->stat.deliver_ckc++;
505 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_CLOCK_COMP,
506 0, 0);
507
508 rc = put_guest_lc(vcpu, EXT_IRQ_CLK_COMP,
509 (u16 __user *)__LC_EXT_INT_CODE);
510 rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR);
511 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
512 &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
513 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
514 &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
515 clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
516 return rc ? -EFAULT : 0;
517 }
518
__deliver_pfault_init(struct kvm_vcpu * vcpu)519 static int __must_check __deliver_pfault_init(struct kvm_vcpu *vcpu)
520 {
521 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
522 struct kvm_s390_ext_info ext;
523 int rc;
524
525 spin_lock(&li->lock);
526 ext = li->irq.ext;
527 clear_bit(IRQ_PEND_PFAULT_INIT, &li->pending_irqs);
528 li->irq.ext.ext_params2 = 0;
529 spin_unlock(&li->lock);
530
531 VCPU_EVENT(vcpu, 4, "deliver: pfault init token 0x%llx",
532 ext.ext_params2);
533 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
534 KVM_S390_INT_PFAULT_INIT,
535 0, ext.ext_params2);
536
537 rc = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE, (u16 *) __LC_EXT_INT_CODE);
538 rc |= put_guest_lc(vcpu, PFAULT_INIT, (u16 *) __LC_EXT_CPU_ADDR);
539 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
540 &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
541 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
542 &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
543 rc |= put_guest_lc(vcpu, ext.ext_params2, (u64 *) __LC_EXT_PARAMS2);
544 return rc ? -EFAULT : 0;
545 }
546
__write_machine_check(struct kvm_vcpu * vcpu,struct kvm_s390_mchk_info * mchk)547 static int __write_machine_check(struct kvm_vcpu *vcpu,
548 struct kvm_s390_mchk_info *mchk)
549 {
550 unsigned long ext_sa_addr;
551 unsigned long lc;
552 freg_t fprs[NUM_FPRS];
553 union mci mci;
554 int rc;
555
556 mci.val = mchk->mcic;
557 /* take care of lazy register loading */
558 save_fpu_regs();
559 save_access_regs(vcpu->run->s.regs.acrs);
560 if (MACHINE_HAS_GS && vcpu->arch.gs_enabled)
561 save_gs_cb(current->thread.gs_cb);
562
563 /* Extended save area */
564 rc = read_guest_lc(vcpu, __LC_MCESAD, &ext_sa_addr,
565 sizeof(unsigned long));
566 /* Only bits 0 through 63-LC are used for address formation */
567 lc = ext_sa_addr & MCESA_LC_MASK;
568 if (test_kvm_facility(vcpu->kvm, 133)) {
569 switch (lc) {
570 case 0:
571 case 10:
572 ext_sa_addr &= ~0x3ffUL;
573 break;
574 case 11:
575 ext_sa_addr &= ~0x7ffUL;
576 break;
577 case 12:
578 ext_sa_addr &= ~0xfffUL;
579 break;
580 default:
581 ext_sa_addr = 0;
582 break;
583 }
584 } else {
585 ext_sa_addr &= ~0x3ffUL;
586 }
587
588 if (!rc && mci.vr && ext_sa_addr && test_kvm_facility(vcpu->kvm, 129)) {
589 if (write_guest_abs(vcpu, ext_sa_addr, vcpu->run->s.regs.vrs,
590 512))
591 mci.vr = 0;
592 } else {
593 mci.vr = 0;
594 }
595 if (!rc && mci.gs && ext_sa_addr && test_kvm_facility(vcpu->kvm, 133)
596 && (lc == 11 || lc == 12)) {
597 if (write_guest_abs(vcpu, ext_sa_addr + 1024,
598 &vcpu->run->s.regs.gscb, 32))
599 mci.gs = 0;
600 } else {
601 mci.gs = 0;
602 }
603
604 /* General interruption information */
605 rc |= put_guest_lc(vcpu, 1, (u8 __user *) __LC_AR_MODE_ID);
606 rc |= write_guest_lc(vcpu, __LC_MCK_OLD_PSW,
607 &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
608 rc |= read_guest_lc(vcpu, __LC_MCK_NEW_PSW,
609 &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
610 rc |= put_guest_lc(vcpu, mci.val, (u64 __user *) __LC_MCCK_CODE);
611
612 /* Register-save areas */
613 if (MACHINE_HAS_VX) {
614 convert_vx_to_fp(fprs, (__vector128 *) vcpu->run->s.regs.vrs);
615 rc |= write_guest_lc(vcpu, __LC_FPREGS_SAVE_AREA, fprs, 128);
616 } else {
617 rc |= write_guest_lc(vcpu, __LC_FPREGS_SAVE_AREA,
618 vcpu->run->s.regs.fprs, 128);
619 }
620 rc |= write_guest_lc(vcpu, __LC_GPREGS_SAVE_AREA,
621 vcpu->run->s.regs.gprs, 128);
622 rc |= put_guest_lc(vcpu, current->thread.fpu.fpc,
623 (u32 __user *) __LC_FP_CREG_SAVE_AREA);
624 rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->todpr,
625 (u32 __user *) __LC_TOD_PROGREG_SAVE_AREA);
626 rc |= put_guest_lc(vcpu, kvm_s390_get_cpu_timer(vcpu),
627 (u64 __user *) __LC_CPU_TIMER_SAVE_AREA);
628 rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->ckc >> 8,
629 (u64 __user *) __LC_CLOCK_COMP_SAVE_AREA);
630 rc |= write_guest_lc(vcpu, __LC_AREGS_SAVE_AREA,
631 &vcpu->run->s.regs.acrs, 64);
632 rc |= write_guest_lc(vcpu, __LC_CREGS_SAVE_AREA,
633 &vcpu->arch.sie_block->gcr, 128);
634
635 /* Extended interruption information */
636 rc |= put_guest_lc(vcpu, mchk->ext_damage_code,
637 (u32 __user *) __LC_EXT_DAMAGE_CODE);
638 rc |= put_guest_lc(vcpu, mchk->failing_storage_address,
639 (u64 __user *) __LC_MCCK_FAIL_STOR_ADDR);
640 rc |= write_guest_lc(vcpu, __LC_PSW_SAVE_AREA, &mchk->fixed_logout,
641 sizeof(mchk->fixed_logout));
642 return rc ? -EFAULT : 0;
643 }
644
__deliver_machine_check(struct kvm_vcpu * vcpu)645 static int __must_check __deliver_machine_check(struct kvm_vcpu *vcpu)
646 {
647 struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
648 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
649 struct kvm_s390_mchk_info mchk = {};
650 int deliver = 0;
651 int rc = 0;
652
653 spin_lock(&fi->lock);
654 spin_lock(&li->lock);
655 if (test_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs) ||
656 test_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs)) {
657 /*
658 * If there was an exigent machine check pending, then any
659 * repressible machine checks that might have been pending
660 * are indicated along with it, so always clear bits for
661 * repressible and exigent interrupts
662 */
663 mchk = li->irq.mchk;
664 clear_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs);
665 clear_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs);
666 memset(&li->irq.mchk, 0, sizeof(mchk));
667 deliver = 1;
668 }
669 /*
670 * We indicate floating repressible conditions along with
671 * other pending conditions. Channel Report Pending and Channel
672 * Subsystem damage are the only two and and are indicated by
673 * bits in mcic and masked in cr14.
674 */
675 if (test_and_clear_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs)) {
676 mchk.mcic |= fi->mchk.mcic;
677 mchk.cr14 |= fi->mchk.cr14;
678 memset(&fi->mchk, 0, sizeof(mchk));
679 deliver = 1;
680 }
681 spin_unlock(&li->lock);
682 spin_unlock(&fi->lock);
683
684 if (deliver) {
685 VCPU_EVENT(vcpu, 3, "deliver: machine check mcic 0x%llx",
686 mchk.mcic);
687 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
688 KVM_S390_MCHK,
689 mchk.cr14, mchk.mcic);
690 vcpu->stat.deliver_machine_check++;
691 rc = __write_machine_check(vcpu, &mchk);
692 }
693 return rc;
694 }
695
__deliver_restart(struct kvm_vcpu * vcpu)696 static int __must_check __deliver_restart(struct kvm_vcpu *vcpu)
697 {
698 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
699 int rc;
700
701 VCPU_EVENT(vcpu, 3, "%s", "deliver: cpu restart");
702 vcpu->stat.deliver_restart_signal++;
703 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_RESTART, 0, 0);
704
705 rc = write_guest_lc(vcpu,
706 offsetof(struct lowcore, restart_old_psw),
707 &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
708 rc |= read_guest_lc(vcpu, offsetof(struct lowcore, restart_psw),
709 &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
710 clear_bit(IRQ_PEND_RESTART, &li->pending_irqs);
711 return rc ? -EFAULT : 0;
712 }
713
__deliver_set_prefix(struct kvm_vcpu * vcpu)714 static int __must_check __deliver_set_prefix(struct kvm_vcpu *vcpu)
715 {
716 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
717 struct kvm_s390_prefix_info prefix;
718
719 spin_lock(&li->lock);
720 prefix = li->irq.prefix;
721 li->irq.prefix.address = 0;
722 clear_bit(IRQ_PEND_SET_PREFIX, &li->pending_irqs);
723 spin_unlock(&li->lock);
724
725 vcpu->stat.deliver_prefix_signal++;
726 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
727 KVM_S390_SIGP_SET_PREFIX,
728 prefix.address, 0);
729
730 kvm_s390_set_prefix(vcpu, prefix.address);
731 return 0;
732 }
733
__deliver_emergency_signal(struct kvm_vcpu * vcpu)734 static int __must_check __deliver_emergency_signal(struct kvm_vcpu *vcpu)
735 {
736 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
737 int rc;
738 int cpu_addr;
739
740 spin_lock(&li->lock);
741 cpu_addr = find_first_bit(li->sigp_emerg_pending, KVM_MAX_VCPUS);
742 clear_bit(cpu_addr, li->sigp_emerg_pending);
743 if (bitmap_empty(li->sigp_emerg_pending, KVM_MAX_VCPUS))
744 clear_bit(IRQ_PEND_EXT_EMERGENCY, &li->pending_irqs);
745 spin_unlock(&li->lock);
746
747 VCPU_EVENT(vcpu, 4, "%s", "deliver: sigp emerg");
748 vcpu->stat.deliver_emergency_signal++;
749 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_EMERGENCY,
750 cpu_addr, 0);
751
752 rc = put_guest_lc(vcpu, EXT_IRQ_EMERGENCY_SIG,
753 (u16 *)__LC_EXT_INT_CODE);
754 rc |= put_guest_lc(vcpu, cpu_addr, (u16 *)__LC_EXT_CPU_ADDR);
755 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
756 &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
757 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
758 &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
759 return rc ? -EFAULT : 0;
760 }
761
__deliver_external_call(struct kvm_vcpu * vcpu)762 static int __must_check __deliver_external_call(struct kvm_vcpu *vcpu)
763 {
764 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
765 struct kvm_s390_extcall_info extcall;
766 int rc;
767
768 spin_lock(&li->lock);
769 extcall = li->irq.extcall;
770 li->irq.extcall.code = 0;
771 clear_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs);
772 spin_unlock(&li->lock);
773
774 VCPU_EVENT(vcpu, 4, "%s", "deliver: sigp ext call");
775 vcpu->stat.deliver_external_call++;
776 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
777 KVM_S390_INT_EXTERNAL_CALL,
778 extcall.code, 0);
779
780 rc = put_guest_lc(vcpu, EXT_IRQ_EXTERNAL_CALL,
781 (u16 *)__LC_EXT_INT_CODE);
782 rc |= put_guest_lc(vcpu, extcall.code, (u16 *)__LC_EXT_CPU_ADDR);
783 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
784 &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
785 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, &vcpu->arch.sie_block->gpsw,
786 sizeof(psw_t));
787 return rc ? -EFAULT : 0;
788 }
789
__deliver_prog(struct kvm_vcpu * vcpu)790 static int __must_check __deliver_prog(struct kvm_vcpu *vcpu)
791 {
792 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
793 struct kvm_s390_pgm_info pgm_info;
794 int rc = 0, nullifying = false;
795 u16 ilen;
796
797 spin_lock(&li->lock);
798 pgm_info = li->irq.pgm;
799 clear_bit(IRQ_PEND_PROG, &li->pending_irqs);
800 memset(&li->irq.pgm, 0, sizeof(pgm_info));
801 spin_unlock(&li->lock);
802
803 ilen = pgm_info.flags & KVM_S390_PGM_FLAGS_ILC_MASK;
804 VCPU_EVENT(vcpu, 3, "deliver: program irq code 0x%x, ilen:%d",
805 pgm_info.code, ilen);
806 vcpu->stat.deliver_program++;
807 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_PROGRAM_INT,
808 pgm_info.code, 0);
809
810 switch (pgm_info.code & ~PGM_PER) {
811 case PGM_AFX_TRANSLATION:
812 case PGM_ASX_TRANSLATION:
813 case PGM_EX_TRANSLATION:
814 case PGM_LFX_TRANSLATION:
815 case PGM_LSTE_SEQUENCE:
816 case PGM_LSX_TRANSLATION:
817 case PGM_LX_TRANSLATION:
818 case PGM_PRIMARY_AUTHORITY:
819 case PGM_SECONDARY_AUTHORITY:
820 nullifying = true;
821 /* fall through */
822 case PGM_SPACE_SWITCH:
823 rc = put_guest_lc(vcpu, pgm_info.trans_exc_code,
824 (u64 *)__LC_TRANS_EXC_CODE);
825 break;
826 case PGM_ALEN_TRANSLATION:
827 case PGM_ALE_SEQUENCE:
828 case PGM_ASTE_INSTANCE:
829 case PGM_ASTE_SEQUENCE:
830 case PGM_ASTE_VALIDITY:
831 case PGM_EXTENDED_AUTHORITY:
832 rc = put_guest_lc(vcpu, pgm_info.exc_access_id,
833 (u8 *)__LC_EXC_ACCESS_ID);
834 nullifying = true;
835 break;
836 case PGM_ASCE_TYPE:
837 case PGM_PAGE_TRANSLATION:
838 case PGM_REGION_FIRST_TRANS:
839 case PGM_REGION_SECOND_TRANS:
840 case PGM_REGION_THIRD_TRANS:
841 case PGM_SEGMENT_TRANSLATION:
842 rc = put_guest_lc(vcpu, pgm_info.trans_exc_code,
843 (u64 *)__LC_TRANS_EXC_CODE);
844 rc |= put_guest_lc(vcpu, pgm_info.exc_access_id,
845 (u8 *)__LC_EXC_ACCESS_ID);
846 rc |= put_guest_lc(vcpu, pgm_info.op_access_id,
847 (u8 *)__LC_OP_ACCESS_ID);
848 nullifying = true;
849 break;
850 case PGM_MONITOR:
851 rc = put_guest_lc(vcpu, pgm_info.mon_class_nr,
852 (u16 *)__LC_MON_CLASS_NR);
853 rc |= put_guest_lc(vcpu, pgm_info.mon_code,
854 (u64 *)__LC_MON_CODE);
855 break;
856 case PGM_VECTOR_PROCESSING:
857 case PGM_DATA:
858 rc = put_guest_lc(vcpu, pgm_info.data_exc_code,
859 (u32 *)__LC_DATA_EXC_CODE);
860 break;
861 case PGM_PROTECTION:
862 rc = put_guest_lc(vcpu, pgm_info.trans_exc_code,
863 (u64 *)__LC_TRANS_EXC_CODE);
864 rc |= put_guest_lc(vcpu, pgm_info.exc_access_id,
865 (u8 *)__LC_EXC_ACCESS_ID);
866 break;
867 case PGM_STACK_FULL:
868 case PGM_STACK_EMPTY:
869 case PGM_STACK_SPECIFICATION:
870 case PGM_STACK_TYPE:
871 case PGM_STACK_OPERATION:
872 case PGM_TRACE_TABEL:
873 case PGM_CRYPTO_OPERATION:
874 nullifying = true;
875 break;
876 }
877
878 if (pgm_info.code & PGM_PER) {
879 rc |= put_guest_lc(vcpu, pgm_info.per_code,
880 (u8 *) __LC_PER_CODE);
881 rc |= put_guest_lc(vcpu, pgm_info.per_atmid,
882 (u8 *)__LC_PER_ATMID);
883 rc |= put_guest_lc(vcpu, pgm_info.per_address,
884 (u64 *) __LC_PER_ADDRESS);
885 rc |= put_guest_lc(vcpu, pgm_info.per_access_id,
886 (u8 *) __LC_PER_ACCESS_ID);
887 }
888
889 if (nullifying && !(pgm_info.flags & KVM_S390_PGM_FLAGS_NO_REWIND))
890 kvm_s390_rewind_psw(vcpu, ilen);
891
892 /* bit 1+2 of the target are the ilc, so we can directly use ilen */
893 rc |= put_guest_lc(vcpu, ilen, (u16 *) __LC_PGM_ILC);
894 rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->gbea,
895 (u64 *) __LC_LAST_BREAK);
896 rc |= put_guest_lc(vcpu, pgm_info.code,
897 (u16 *)__LC_PGM_INT_CODE);
898 rc |= write_guest_lc(vcpu, __LC_PGM_OLD_PSW,
899 &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
900 rc |= read_guest_lc(vcpu, __LC_PGM_NEW_PSW,
901 &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
902 return rc ? -EFAULT : 0;
903 }
904
__deliver_service(struct kvm_vcpu * vcpu)905 static int __must_check __deliver_service(struct kvm_vcpu *vcpu)
906 {
907 struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
908 struct kvm_s390_ext_info ext;
909 int rc = 0;
910
911 spin_lock(&fi->lock);
912 if (!(test_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs))) {
913 spin_unlock(&fi->lock);
914 return 0;
915 }
916 ext = fi->srv_signal;
917 memset(&fi->srv_signal, 0, sizeof(ext));
918 clear_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs);
919 spin_unlock(&fi->lock);
920
921 VCPU_EVENT(vcpu, 4, "deliver: sclp parameter 0x%x",
922 ext.ext_params);
923 vcpu->stat.deliver_service_signal++;
924 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_SERVICE,
925 ext.ext_params, 0);
926
927 rc = put_guest_lc(vcpu, EXT_IRQ_SERVICE_SIG, (u16 *)__LC_EXT_INT_CODE);
928 rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR);
929 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
930 &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
931 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
932 &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
933 rc |= put_guest_lc(vcpu, ext.ext_params,
934 (u32 *)__LC_EXT_PARAMS);
935
936 return rc ? -EFAULT : 0;
937 }
938
__deliver_pfault_done(struct kvm_vcpu * vcpu)939 static int __must_check __deliver_pfault_done(struct kvm_vcpu *vcpu)
940 {
941 struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
942 struct kvm_s390_interrupt_info *inti;
943 int rc = 0;
944
945 spin_lock(&fi->lock);
946 inti = list_first_entry_or_null(&fi->lists[FIRQ_LIST_PFAULT],
947 struct kvm_s390_interrupt_info,
948 list);
949 if (inti) {
950 list_del(&inti->list);
951 fi->counters[FIRQ_CNTR_PFAULT] -= 1;
952 }
953 if (list_empty(&fi->lists[FIRQ_LIST_PFAULT]))
954 clear_bit(IRQ_PEND_PFAULT_DONE, &fi->pending_irqs);
955 spin_unlock(&fi->lock);
956
957 if (inti) {
958 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
959 KVM_S390_INT_PFAULT_DONE, 0,
960 inti->ext.ext_params2);
961 VCPU_EVENT(vcpu, 4, "deliver: pfault done token 0x%llx",
962 inti->ext.ext_params2);
963
964 rc = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE,
965 (u16 *)__LC_EXT_INT_CODE);
966 rc |= put_guest_lc(vcpu, PFAULT_DONE,
967 (u16 *)__LC_EXT_CPU_ADDR);
968 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
969 &vcpu->arch.sie_block->gpsw,
970 sizeof(psw_t));
971 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
972 &vcpu->arch.sie_block->gpsw,
973 sizeof(psw_t));
974 rc |= put_guest_lc(vcpu, inti->ext.ext_params2,
975 (u64 *)__LC_EXT_PARAMS2);
976 kfree(inti);
977 }
978 return rc ? -EFAULT : 0;
979 }
980
__deliver_virtio(struct kvm_vcpu * vcpu)981 static int __must_check __deliver_virtio(struct kvm_vcpu *vcpu)
982 {
983 struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
984 struct kvm_s390_interrupt_info *inti;
985 int rc = 0;
986
987 spin_lock(&fi->lock);
988 inti = list_first_entry_or_null(&fi->lists[FIRQ_LIST_VIRTIO],
989 struct kvm_s390_interrupt_info,
990 list);
991 if (inti) {
992 VCPU_EVENT(vcpu, 4,
993 "deliver: virtio parm: 0x%x,parm64: 0x%llx",
994 inti->ext.ext_params, inti->ext.ext_params2);
995 vcpu->stat.deliver_virtio++;
996 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
997 inti->type,
998 inti->ext.ext_params,
999 inti->ext.ext_params2);
1000 list_del(&inti->list);
1001 fi->counters[FIRQ_CNTR_VIRTIO] -= 1;
1002 }
1003 if (list_empty(&fi->lists[FIRQ_LIST_VIRTIO]))
1004 clear_bit(IRQ_PEND_VIRTIO, &fi->pending_irqs);
1005 spin_unlock(&fi->lock);
1006
1007 if (inti) {
1008 rc = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE,
1009 (u16 *)__LC_EXT_INT_CODE);
1010 rc |= put_guest_lc(vcpu, VIRTIO_PARAM,
1011 (u16 *)__LC_EXT_CPU_ADDR);
1012 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
1013 &vcpu->arch.sie_block->gpsw,
1014 sizeof(psw_t));
1015 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
1016 &vcpu->arch.sie_block->gpsw,
1017 sizeof(psw_t));
1018 rc |= put_guest_lc(vcpu, inti->ext.ext_params,
1019 (u32 *)__LC_EXT_PARAMS);
1020 rc |= put_guest_lc(vcpu, inti->ext.ext_params2,
1021 (u64 *)__LC_EXT_PARAMS2);
1022 kfree(inti);
1023 }
1024 return rc ? -EFAULT : 0;
1025 }
1026
__do_deliver_io(struct kvm_vcpu * vcpu,struct kvm_s390_io_info * io)1027 static int __do_deliver_io(struct kvm_vcpu *vcpu, struct kvm_s390_io_info *io)
1028 {
1029 int rc;
1030
1031 rc = put_guest_lc(vcpu, io->subchannel_id, (u16 *)__LC_SUBCHANNEL_ID);
1032 rc |= put_guest_lc(vcpu, io->subchannel_nr, (u16 *)__LC_SUBCHANNEL_NR);
1033 rc |= put_guest_lc(vcpu, io->io_int_parm, (u32 *)__LC_IO_INT_PARM);
1034 rc |= put_guest_lc(vcpu, io->io_int_word, (u32 *)__LC_IO_INT_WORD);
1035 rc |= write_guest_lc(vcpu, __LC_IO_OLD_PSW,
1036 &vcpu->arch.sie_block->gpsw,
1037 sizeof(psw_t));
1038 rc |= read_guest_lc(vcpu, __LC_IO_NEW_PSW,
1039 &vcpu->arch.sie_block->gpsw,
1040 sizeof(psw_t));
1041 return rc ? -EFAULT : 0;
1042 }
1043
__deliver_io(struct kvm_vcpu * vcpu,unsigned long irq_type)1044 static int __must_check __deliver_io(struct kvm_vcpu *vcpu,
1045 unsigned long irq_type)
1046 {
1047 struct list_head *isc_list;
1048 struct kvm_s390_float_interrupt *fi;
1049 struct kvm_s390_gisa_interrupt *gi = &vcpu->kvm->arch.gisa_int;
1050 struct kvm_s390_interrupt_info *inti = NULL;
1051 struct kvm_s390_io_info io;
1052 u32 isc;
1053 int rc = 0;
1054
1055 fi = &vcpu->kvm->arch.float_int;
1056
1057 spin_lock(&fi->lock);
1058 isc = irq_type_to_isc(irq_type);
1059 isc_list = &fi->lists[isc];
1060 inti = list_first_entry_or_null(isc_list,
1061 struct kvm_s390_interrupt_info,
1062 list);
1063 if (inti) {
1064 if (inti->type & KVM_S390_INT_IO_AI_MASK)
1065 VCPU_EVENT(vcpu, 4, "%s", "deliver: I/O (AI)");
1066 else
1067 VCPU_EVENT(vcpu, 4, "deliver: I/O %x ss %x schid %04x",
1068 inti->io.subchannel_id >> 8,
1069 inti->io.subchannel_id >> 1 & 0x3,
1070 inti->io.subchannel_nr);
1071
1072 vcpu->stat.deliver_io++;
1073 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
1074 inti->type,
1075 ((__u32)inti->io.subchannel_id << 16) |
1076 inti->io.subchannel_nr,
1077 ((__u64)inti->io.io_int_parm << 32) |
1078 inti->io.io_int_word);
1079 list_del(&inti->list);
1080 fi->counters[FIRQ_CNTR_IO] -= 1;
1081 }
1082 if (list_empty(isc_list))
1083 clear_bit(irq_type, &fi->pending_irqs);
1084 spin_unlock(&fi->lock);
1085
1086 if (inti) {
1087 rc = __do_deliver_io(vcpu, &(inti->io));
1088 kfree(inti);
1089 goto out;
1090 }
1091
1092 if (gi->origin && gisa_tac_ipm_gisc(gi->origin, isc)) {
1093 /*
1094 * in case an adapter interrupt was not delivered
1095 * in SIE context KVM will handle the delivery
1096 */
1097 VCPU_EVENT(vcpu, 4, "%s isc %u", "deliver: I/O (AI/gisa)", isc);
1098 memset(&io, 0, sizeof(io));
1099 io.io_int_word = isc_to_int_word(isc);
1100 vcpu->stat.deliver_io++;
1101 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
1102 KVM_S390_INT_IO(1, 0, 0, 0),
1103 ((__u32)io.subchannel_id << 16) |
1104 io.subchannel_nr,
1105 ((__u64)io.io_int_parm << 32) |
1106 io.io_int_word);
1107 rc = __do_deliver_io(vcpu, &io);
1108 }
1109 out:
1110 return rc;
1111 }
1112
1113 /* Check whether an external call is pending (deliverable or not) */
kvm_s390_ext_call_pending(struct kvm_vcpu * vcpu)1114 int kvm_s390_ext_call_pending(struct kvm_vcpu *vcpu)
1115 {
1116 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1117
1118 if (!sclp.has_sigpif)
1119 return test_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs);
1120
1121 return sca_ext_call_pending(vcpu, NULL);
1122 }
1123
kvm_s390_vcpu_has_irq(struct kvm_vcpu * vcpu,int exclude_stop)1124 int kvm_s390_vcpu_has_irq(struct kvm_vcpu *vcpu, int exclude_stop)
1125 {
1126 if (deliverable_irqs(vcpu))
1127 return 1;
1128
1129 if (kvm_cpu_has_pending_timer(vcpu))
1130 return 1;
1131
1132 /* external call pending and deliverable */
1133 if (kvm_s390_ext_call_pending(vcpu) &&
1134 !psw_extint_disabled(vcpu) &&
1135 (vcpu->arch.sie_block->gcr[0] & CR0_EXTERNAL_CALL_SUBMASK))
1136 return 1;
1137
1138 if (!exclude_stop && kvm_s390_is_stop_irq_pending(vcpu))
1139 return 1;
1140 return 0;
1141 }
1142
kvm_cpu_has_pending_timer(struct kvm_vcpu * vcpu)1143 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1144 {
1145 return ckc_irq_pending(vcpu) || cpu_timer_irq_pending(vcpu);
1146 }
1147
__calculate_sltime(struct kvm_vcpu * vcpu)1148 static u64 __calculate_sltime(struct kvm_vcpu *vcpu)
1149 {
1150 const u64 now = kvm_s390_get_tod_clock_fast(vcpu->kvm);
1151 const u64 ckc = vcpu->arch.sie_block->ckc;
1152 u64 cputm, sltime = 0;
1153
1154 if (ckc_interrupts_enabled(vcpu)) {
1155 if (vcpu->arch.sie_block->gcr[0] & CR0_CLOCK_COMPARATOR_SIGN) {
1156 if ((s64)now < (s64)ckc)
1157 sltime = tod_to_ns((s64)ckc - (s64)now);
1158 } else if (now < ckc) {
1159 sltime = tod_to_ns(ckc - now);
1160 }
1161 /* already expired */
1162 if (!sltime)
1163 return 0;
1164 if (cpu_timer_interrupts_enabled(vcpu)) {
1165 cputm = kvm_s390_get_cpu_timer(vcpu);
1166 /* already expired? */
1167 if (cputm >> 63)
1168 return 0;
1169 return min(sltime, tod_to_ns(cputm));
1170 }
1171 } else if (cpu_timer_interrupts_enabled(vcpu)) {
1172 sltime = kvm_s390_get_cpu_timer(vcpu);
1173 /* already expired? */
1174 if (sltime >> 63)
1175 return 0;
1176 }
1177 return sltime;
1178 }
1179
kvm_s390_handle_wait(struct kvm_vcpu * vcpu)1180 int kvm_s390_handle_wait(struct kvm_vcpu *vcpu)
1181 {
1182 struct kvm_s390_gisa_interrupt *gi = &vcpu->kvm->arch.gisa_int;
1183 u64 sltime;
1184
1185 vcpu->stat.exit_wait_state++;
1186
1187 /* fast path */
1188 if (kvm_arch_vcpu_runnable(vcpu))
1189 return 0;
1190
1191 if (psw_interrupts_disabled(vcpu)) {
1192 VCPU_EVENT(vcpu, 3, "%s", "disabled wait");
1193 return -EOPNOTSUPP; /* disabled wait */
1194 }
1195
1196 if (gi->origin &&
1197 (gisa_get_ipm_or_restore_iam(gi) &
1198 vcpu->arch.sie_block->gcr[6] >> 24))
1199 return 0;
1200
1201 if (!ckc_interrupts_enabled(vcpu) &&
1202 !cpu_timer_interrupts_enabled(vcpu)) {
1203 VCPU_EVENT(vcpu, 3, "%s", "enabled wait w/o timer");
1204 __set_cpu_idle(vcpu);
1205 goto no_timer;
1206 }
1207
1208 sltime = __calculate_sltime(vcpu);
1209 if (!sltime)
1210 return 0;
1211
1212 __set_cpu_idle(vcpu);
1213 hrtimer_start(&vcpu->arch.ckc_timer, sltime, HRTIMER_MODE_REL);
1214 VCPU_EVENT(vcpu, 4, "enabled wait: %llu ns", sltime);
1215 no_timer:
1216 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
1217 kvm_vcpu_block(vcpu);
1218 __unset_cpu_idle(vcpu);
1219 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1220
1221 hrtimer_cancel(&vcpu->arch.ckc_timer);
1222 return 0;
1223 }
1224
kvm_s390_vcpu_wakeup(struct kvm_vcpu * vcpu)1225 void kvm_s390_vcpu_wakeup(struct kvm_vcpu *vcpu)
1226 {
1227 vcpu->valid_wakeup = true;
1228 kvm_vcpu_wake_up(vcpu);
1229
1230 /*
1231 * The VCPU might not be sleeping but rather executing VSIE. Let's
1232 * kick it, so it leaves the SIE to process the request.
1233 */
1234 kvm_s390_vsie_kick(vcpu);
1235 }
1236
kvm_s390_idle_wakeup(struct hrtimer * timer)1237 enum hrtimer_restart kvm_s390_idle_wakeup(struct hrtimer *timer)
1238 {
1239 struct kvm_vcpu *vcpu;
1240 u64 sltime;
1241
1242 vcpu = container_of(timer, struct kvm_vcpu, arch.ckc_timer);
1243 sltime = __calculate_sltime(vcpu);
1244
1245 /*
1246 * If the monotonic clock runs faster than the tod clock we might be
1247 * woken up too early and have to go back to sleep to avoid deadlocks.
1248 */
1249 if (sltime && hrtimer_forward_now(timer, ns_to_ktime(sltime)))
1250 return HRTIMER_RESTART;
1251 kvm_s390_vcpu_wakeup(vcpu);
1252 return HRTIMER_NORESTART;
1253 }
1254
kvm_s390_clear_local_irqs(struct kvm_vcpu * vcpu)1255 void kvm_s390_clear_local_irqs(struct kvm_vcpu *vcpu)
1256 {
1257 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1258
1259 spin_lock(&li->lock);
1260 li->pending_irqs = 0;
1261 bitmap_zero(li->sigp_emerg_pending, KVM_MAX_VCPUS);
1262 memset(&li->irq, 0, sizeof(li->irq));
1263 spin_unlock(&li->lock);
1264
1265 sca_clear_ext_call(vcpu);
1266 }
1267
kvm_s390_deliver_pending_interrupts(struct kvm_vcpu * vcpu)1268 int __must_check kvm_s390_deliver_pending_interrupts(struct kvm_vcpu *vcpu)
1269 {
1270 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1271 int rc = 0;
1272 unsigned long irq_type;
1273 unsigned long irqs;
1274
1275 __reset_intercept_indicators(vcpu);
1276
1277 /* pending ckc conditions might have been invalidated */
1278 clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
1279 if (ckc_irq_pending(vcpu))
1280 set_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
1281
1282 /* pending cpu timer conditions might have been invalidated */
1283 clear_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
1284 if (cpu_timer_irq_pending(vcpu))
1285 set_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
1286
1287 while ((irqs = deliverable_irqs(vcpu)) && !rc) {
1288 /* bits are in the reverse order of interrupt priority */
1289 irq_type = find_last_bit(&irqs, IRQ_PEND_COUNT);
1290 switch (irq_type) {
1291 case IRQ_PEND_IO_ISC_0:
1292 case IRQ_PEND_IO_ISC_1:
1293 case IRQ_PEND_IO_ISC_2:
1294 case IRQ_PEND_IO_ISC_3:
1295 case IRQ_PEND_IO_ISC_4:
1296 case IRQ_PEND_IO_ISC_5:
1297 case IRQ_PEND_IO_ISC_6:
1298 case IRQ_PEND_IO_ISC_7:
1299 rc = __deliver_io(vcpu, irq_type);
1300 break;
1301 case IRQ_PEND_MCHK_EX:
1302 case IRQ_PEND_MCHK_REP:
1303 rc = __deliver_machine_check(vcpu);
1304 break;
1305 case IRQ_PEND_PROG:
1306 rc = __deliver_prog(vcpu);
1307 break;
1308 case IRQ_PEND_EXT_EMERGENCY:
1309 rc = __deliver_emergency_signal(vcpu);
1310 break;
1311 case IRQ_PEND_EXT_EXTERNAL:
1312 rc = __deliver_external_call(vcpu);
1313 break;
1314 case IRQ_PEND_EXT_CLOCK_COMP:
1315 rc = __deliver_ckc(vcpu);
1316 break;
1317 case IRQ_PEND_EXT_CPU_TIMER:
1318 rc = __deliver_cpu_timer(vcpu);
1319 break;
1320 case IRQ_PEND_RESTART:
1321 rc = __deliver_restart(vcpu);
1322 break;
1323 case IRQ_PEND_SET_PREFIX:
1324 rc = __deliver_set_prefix(vcpu);
1325 break;
1326 case IRQ_PEND_PFAULT_INIT:
1327 rc = __deliver_pfault_init(vcpu);
1328 break;
1329 case IRQ_PEND_EXT_SERVICE:
1330 rc = __deliver_service(vcpu);
1331 break;
1332 case IRQ_PEND_PFAULT_DONE:
1333 rc = __deliver_pfault_done(vcpu);
1334 break;
1335 case IRQ_PEND_VIRTIO:
1336 rc = __deliver_virtio(vcpu);
1337 break;
1338 default:
1339 WARN_ONCE(1, "Unknown pending irq type %ld", irq_type);
1340 clear_bit(irq_type, &li->pending_irqs);
1341 }
1342 }
1343
1344 set_intercept_indicators(vcpu);
1345
1346 return rc;
1347 }
1348
__inject_prog(struct kvm_vcpu * vcpu,struct kvm_s390_irq * irq)1349 static int __inject_prog(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1350 {
1351 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1352
1353 vcpu->stat.inject_program++;
1354 VCPU_EVENT(vcpu, 3, "inject: program irq code 0x%x", irq->u.pgm.code);
1355 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_PROGRAM_INT,
1356 irq->u.pgm.code, 0);
1357
1358 if (!(irq->u.pgm.flags & KVM_S390_PGM_FLAGS_ILC_VALID)) {
1359 /* auto detection if no valid ILC was given */
1360 irq->u.pgm.flags &= ~KVM_S390_PGM_FLAGS_ILC_MASK;
1361 irq->u.pgm.flags |= kvm_s390_get_ilen(vcpu);
1362 irq->u.pgm.flags |= KVM_S390_PGM_FLAGS_ILC_VALID;
1363 }
1364
1365 if (irq->u.pgm.code == PGM_PER) {
1366 li->irq.pgm.code |= PGM_PER;
1367 li->irq.pgm.flags = irq->u.pgm.flags;
1368 /* only modify PER related information */
1369 li->irq.pgm.per_address = irq->u.pgm.per_address;
1370 li->irq.pgm.per_code = irq->u.pgm.per_code;
1371 li->irq.pgm.per_atmid = irq->u.pgm.per_atmid;
1372 li->irq.pgm.per_access_id = irq->u.pgm.per_access_id;
1373 } else if (!(irq->u.pgm.code & PGM_PER)) {
1374 li->irq.pgm.code = (li->irq.pgm.code & PGM_PER) |
1375 irq->u.pgm.code;
1376 li->irq.pgm.flags = irq->u.pgm.flags;
1377 /* only modify non-PER information */
1378 li->irq.pgm.trans_exc_code = irq->u.pgm.trans_exc_code;
1379 li->irq.pgm.mon_code = irq->u.pgm.mon_code;
1380 li->irq.pgm.data_exc_code = irq->u.pgm.data_exc_code;
1381 li->irq.pgm.mon_class_nr = irq->u.pgm.mon_class_nr;
1382 li->irq.pgm.exc_access_id = irq->u.pgm.exc_access_id;
1383 li->irq.pgm.op_access_id = irq->u.pgm.op_access_id;
1384 } else {
1385 li->irq.pgm = irq->u.pgm;
1386 }
1387 set_bit(IRQ_PEND_PROG, &li->pending_irqs);
1388 return 0;
1389 }
1390
__inject_pfault_init(struct kvm_vcpu * vcpu,struct kvm_s390_irq * irq)1391 static int __inject_pfault_init(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1392 {
1393 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1394
1395 vcpu->stat.inject_pfault_init++;
1396 VCPU_EVENT(vcpu, 4, "inject: pfault init parameter block at 0x%llx",
1397 irq->u.ext.ext_params2);
1398 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_PFAULT_INIT,
1399 irq->u.ext.ext_params,
1400 irq->u.ext.ext_params2);
1401
1402 li->irq.ext = irq->u.ext;
1403 set_bit(IRQ_PEND_PFAULT_INIT, &li->pending_irqs);
1404 kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT);
1405 return 0;
1406 }
1407
__inject_extcall(struct kvm_vcpu * vcpu,struct kvm_s390_irq * irq)1408 static int __inject_extcall(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1409 {
1410 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1411 struct kvm_s390_extcall_info *extcall = &li->irq.extcall;
1412 uint16_t src_id = irq->u.extcall.code;
1413
1414 vcpu->stat.inject_external_call++;
1415 VCPU_EVENT(vcpu, 4, "inject: external call source-cpu:%u",
1416 src_id);
1417 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_EXTERNAL_CALL,
1418 src_id, 0);
1419
1420 /* sending vcpu invalid */
1421 if (kvm_get_vcpu_by_id(vcpu->kvm, src_id) == NULL)
1422 return -EINVAL;
1423
1424 if (sclp.has_sigpif)
1425 return sca_inject_ext_call(vcpu, src_id);
1426
1427 if (test_and_set_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs))
1428 return -EBUSY;
1429 *extcall = irq->u.extcall;
1430 kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT);
1431 return 0;
1432 }
1433
__inject_set_prefix(struct kvm_vcpu * vcpu,struct kvm_s390_irq * irq)1434 static int __inject_set_prefix(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1435 {
1436 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1437 struct kvm_s390_prefix_info *prefix = &li->irq.prefix;
1438
1439 vcpu->stat.inject_set_prefix++;
1440 VCPU_EVENT(vcpu, 3, "inject: set prefix to %x",
1441 irq->u.prefix.address);
1442 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_SIGP_SET_PREFIX,
1443 irq->u.prefix.address, 0);
1444
1445 if (!is_vcpu_stopped(vcpu))
1446 return -EBUSY;
1447
1448 *prefix = irq->u.prefix;
1449 set_bit(IRQ_PEND_SET_PREFIX, &li->pending_irqs);
1450 return 0;
1451 }
1452
1453 #define KVM_S390_STOP_SUPP_FLAGS (KVM_S390_STOP_FLAG_STORE_STATUS)
__inject_sigp_stop(struct kvm_vcpu * vcpu,struct kvm_s390_irq * irq)1454 static int __inject_sigp_stop(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1455 {
1456 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1457 struct kvm_s390_stop_info *stop = &li->irq.stop;
1458 int rc = 0;
1459
1460 vcpu->stat.inject_stop_signal++;
1461 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_SIGP_STOP, 0, 0);
1462
1463 if (irq->u.stop.flags & ~KVM_S390_STOP_SUPP_FLAGS)
1464 return -EINVAL;
1465
1466 if (is_vcpu_stopped(vcpu)) {
1467 if (irq->u.stop.flags & KVM_S390_STOP_FLAG_STORE_STATUS)
1468 rc = kvm_s390_store_status_unloaded(vcpu,
1469 KVM_S390_STORE_STATUS_NOADDR);
1470 return rc;
1471 }
1472
1473 if (test_and_set_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs))
1474 return -EBUSY;
1475 stop->flags = irq->u.stop.flags;
1476 kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOP_INT);
1477 return 0;
1478 }
1479
__inject_sigp_restart(struct kvm_vcpu * vcpu,struct kvm_s390_irq * irq)1480 static int __inject_sigp_restart(struct kvm_vcpu *vcpu,
1481 struct kvm_s390_irq *irq)
1482 {
1483 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1484
1485 vcpu->stat.inject_restart++;
1486 VCPU_EVENT(vcpu, 3, "%s", "inject: restart int");
1487 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_RESTART, 0, 0);
1488
1489 set_bit(IRQ_PEND_RESTART, &li->pending_irqs);
1490 return 0;
1491 }
1492
__inject_sigp_emergency(struct kvm_vcpu * vcpu,struct kvm_s390_irq * irq)1493 static int __inject_sigp_emergency(struct kvm_vcpu *vcpu,
1494 struct kvm_s390_irq *irq)
1495 {
1496 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1497
1498 vcpu->stat.inject_emergency_signal++;
1499 VCPU_EVENT(vcpu, 4, "inject: emergency from cpu %u",
1500 irq->u.emerg.code);
1501 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_EMERGENCY,
1502 irq->u.emerg.code, 0);
1503
1504 /* sending vcpu invalid */
1505 if (kvm_get_vcpu_by_id(vcpu->kvm, irq->u.emerg.code) == NULL)
1506 return -EINVAL;
1507
1508 set_bit(irq->u.emerg.code, li->sigp_emerg_pending);
1509 set_bit(IRQ_PEND_EXT_EMERGENCY, &li->pending_irqs);
1510 kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT);
1511 return 0;
1512 }
1513
__inject_mchk(struct kvm_vcpu * vcpu,struct kvm_s390_irq * irq)1514 static int __inject_mchk(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1515 {
1516 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1517 struct kvm_s390_mchk_info *mchk = &li->irq.mchk;
1518
1519 vcpu->stat.inject_mchk++;
1520 VCPU_EVENT(vcpu, 3, "inject: machine check mcic 0x%llx",
1521 irq->u.mchk.mcic);
1522 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_MCHK, 0,
1523 irq->u.mchk.mcic);
1524
1525 /*
1526 * Because repressible machine checks can be indicated along with
1527 * exigent machine checks (PoP, Chapter 11, Interruption action)
1528 * we need to combine cr14, mcic and external damage code.
1529 * Failing storage address and the logout area should not be or'ed
1530 * together, we just indicate the last occurrence of the corresponding
1531 * machine check
1532 */
1533 mchk->cr14 |= irq->u.mchk.cr14;
1534 mchk->mcic |= irq->u.mchk.mcic;
1535 mchk->ext_damage_code |= irq->u.mchk.ext_damage_code;
1536 mchk->failing_storage_address = irq->u.mchk.failing_storage_address;
1537 memcpy(&mchk->fixed_logout, &irq->u.mchk.fixed_logout,
1538 sizeof(mchk->fixed_logout));
1539 if (mchk->mcic & MCHK_EX_MASK)
1540 set_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs);
1541 else if (mchk->mcic & MCHK_REP_MASK)
1542 set_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs);
1543 return 0;
1544 }
1545
__inject_ckc(struct kvm_vcpu * vcpu)1546 static int __inject_ckc(struct kvm_vcpu *vcpu)
1547 {
1548 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1549
1550 vcpu->stat.inject_ckc++;
1551 VCPU_EVENT(vcpu, 3, "%s", "inject: clock comparator external");
1552 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_CLOCK_COMP,
1553 0, 0);
1554
1555 set_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
1556 kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT);
1557 return 0;
1558 }
1559
__inject_cpu_timer(struct kvm_vcpu * vcpu)1560 static int __inject_cpu_timer(struct kvm_vcpu *vcpu)
1561 {
1562 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1563
1564 vcpu->stat.inject_cputm++;
1565 VCPU_EVENT(vcpu, 3, "%s", "inject: cpu timer external");
1566 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_CPU_TIMER,
1567 0, 0);
1568
1569 set_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
1570 kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT);
1571 return 0;
1572 }
1573
get_io_int(struct kvm * kvm,int isc,u32 schid)1574 static struct kvm_s390_interrupt_info *get_io_int(struct kvm *kvm,
1575 int isc, u32 schid)
1576 {
1577 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
1578 struct list_head *isc_list = &fi->lists[FIRQ_LIST_IO_ISC_0 + isc];
1579 struct kvm_s390_interrupt_info *iter;
1580 u16 id = (schid & 0xffff0000U) >> 16;
1581 u16 nr = schid & 0x0000ffffU;
1582
1583 spin_lock(&fi->lock);
1584 list_for_each_entry(iter, isc_list, list) {
1585 if (schid && (id != iter->io.subchannel_id ||
1586 nr != iter->io.subchannel_nr))
1587 continue;
1588 /* found an appropriate entry */
1589 list_del_init(&iter->list);
1590 fi->counters[FIRQ_CNTR_IO] -= 1;
1591 if (list_empty(isc_list))
1592 clear_bit(isc_to_irq_type(isc), &fi->pending_irqs);
1593 spin_unlock(&fi->lock);
1594 return iter;
1595 }
1596 spin_unlock(&fi->lock);
1597 return NULL;
1598 }
1599
get_top_io_int(struct kvm * kvm,u64 isc_mask,u32 schid)1600 static struct kvm_s390_interrupt_info *get_top_io_int(struct kvm *kvm,
1601 u64 isc_mask, u32 schid)
1602 {
1603 struct kvm_s390_interrupt_info *inti = NULL;
1604 int isc;
1605
1606 for (isc = 0; isc <= MAX_ISC && !inti; isc++) {
1607 if (isc_mask & isc_to_isc_bits(isc))
1608 inti = get_io_int(kvm, isc, schid);
1609 }
1610 return inti;
1611 }
1612
get_top_gisa_isc(struct kvm * kvm,u64 isc_mask,u32 schid)1613 static int get_top_gisa_isc(struct kvm *kvm, u64 isc_mask, u32 schid)
1614 {
1615 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
1616 unsigned long active_mask;
1617 int isc;
1618
1619 if (schid)
1620 goto out;
1621 if (!gi->origin)
1622 goto out;
1623
1624 active_mask = (isc_mask & gisa_get_ipm(gi->origin) << 24) << 32;
1625 while (active_mask) {
1626 isc = __fls(active_mask) ^ (BITS_PER_LONG - 1);
1627 if (gisa_tac_ipm_gisc(gi->origin, isc))
1628 return isc;
1629 clear_bit_inv(isc, &active_mask);
1630 }
1631 out:
1632 return -EINVAL;
1633 }
1634
1635 /*
1636 * Dequeue and return an I/O interrupt matching any of the interruption
1637 * subclasses as designated by the isc mask in cr6 and the schid (if != 0).
1638 * Take into account the interrupts pending in the interrupt list and in GISA.
1639 *
1640 * Note that for a guest that does not enable I/O interrupts
1641 * but relies on TPI, a flood of classic interrupts may starve
1642 * out adapter interrupts on the same isc. Linux does not do
1643 * that, and it is possible to work around the issue by configuring
1644 * different iscs for classic and adapter interrupts in the guest,
1645 * but we may want to revisit this in the future.
1646 */
kvm_s390_get_io_int(struct kvm * kvm,u64 isc_mask,u32 schid)1647 struct kvm_s390_interrupt_info *kvm_s390_get_io_int(struct kvm *kvm,
1648 u64 isc_mask, u32 schid)
1649 {
1650 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
1651 struct kvm_s390_interrupt_info *inti, *tmp_inti;
1652 int isc;
1653
1654 inti = get_top_io_int(kvm, isc_mask, schid);
1655
1656 isc = get_top_gisa_isc(kvm, isc_mask, schid);
1657 if (isc < 0)
1658 /* no AI in GISA */
1659 goto out;
1660
1661 if (!inti)
1662 /* AI in GISA but no classical IO int */
1663 goto gisa_out;
1664
1665 /* both types of interrupts present */
1666 if (int_word_to_isc(inti->io.io_int_word) <= isc) {
1667 /* classical IO int with higher priority */
1668 gisa_set_ipm_gisc(gi->origin, isc);
1669 goto out;
1670 }
1671 gisa_out:
1672 tmp_inti = kzalloc(sizeof(*inti), GFP_KERNEL);
1673 if (tmp_inti) {
1674 tmp_inti->type = KVM_S390_INT_IO(1, 0, 0, 0);
1675 tmp_inti->io.io_int_word = isc_to_int_word(isc);
1676 if (inti)
1677 kvm_s390_reinject_io_int(kvm, inti);
1678 inti = tmp_inti;
1679 } else
1680 gisa_set_ipm_gisc(gi->origin, isc);
1681 out:
1682 return inti;
1683 }
1684
1685 #define SCCB_MASK 0xFFFFFFF8
1686 #define SCCB_EVENT_PENDING 0x3
1687
__inject_service(struct kvm * kvm,struct kvm_s390_interrupt_info * inti)1688 static int __inject_service(struct kvm *kvm,
1689 struct kvm_s390_interrupt_info *inti)
1690 {
1691 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
1692
1693 kvm->stat.inject_service_signal++;
1694 spin_lock(&fi->lock);
1695 fi->srv_signal.ext_params |= inti->ext.ext_params & SCCB_EVENT_PENDING;
1696 /*
1697 * Early versions of the QEMU s390 bios will inject several
1698 * service interrupts after another without handling a
1699 * condition code indicating busy.
1700 * We will silently ignore those superfluous sccb values.
1701 * A future version of QEMU will take care of serialization
1702 * of servc requests
1703 */
1704 if (fi->srv_signal.ext_params & SCCB_MASK)
1705 goto out;
1706 fi->srv_signal.ext_params |= inti->ext.ext_params & SCCB_MASK;
1707 set_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs);
1708 out:
1709 spin_unlock(&fi->lock);
1710 kfree(inti);
1711 return 0;
1712 }
1713
__inject_virtio(struct kvm * kvm,struct kvm_s390_interrupt_info * inti)1714 static int __inject_virtio(struct kvm *kvm,
1715 struct kvm_s390_interrupt_info *inti)
1716 {
1717 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
1718
1719 kvm->stat.inject_virtio++;
1720 spin_lock(&fi->lock);
1721 if (fi->counters[FIRQ_CNTR_VIRTIO] >= KVM_S390_MAX_VIRTIO_IRQS) {
1722 spin_unlock(&fi->lock);
1723 return -EBUSY;
1724 }
1725 fi->counters[FIRQ_CNTR_VIRTIO] += 1;
1726 list_add_tail(&inti->list, &fi->lists[FIRQ_LIST_VIRTIO]);
1727 set_bit(IRQ_PEND_VIRTIO, &fi->pending_irqs);
1728 spin_unlock(&fi->lock);
1729 return 0;
1730 }
1731
__inject_pfault_done(struct kvm * kvm,struct kvm_s390_interrupt_info * inti)1732 static int __inject_pfault_done(struct kvm *kvm,
1733 struct kvm_s390_interrupt_info *inti)
1734 {
1735 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
1736
1737 kvm->stat.inject_pfault_done++;
1738 spin_lock(&fi->lock);
1739 if (fi->counters[FIRQ_CNTR_PFAULT] >=
1740 (ASYNC_PF_PER_VCPU * KVM_MAX_VCPUS)) {
1741 spin_unlock(&fi->lock);
1742 return -EBUSY;
1743 }
1744 fi->counters[FIRQ_CNTR_PFAULT] += 1;
1745 list_add_tail(&inti->list, &fi->lists[FIRQ_LIST_PFAULT]);
1746 set_bit(IRQ_PEND_PFAULT_DONE, &fi->pending_irqs);
1747 spin_unlock(&fi->lock);
1748 return 0;
1749 }
1750
1751 #define CR_PENDING_SUBCLASS 28
__inject_float_mchk(struct kvm * kvm,struct kvm_s390_interrupt_info * inti)1752 static int __inject_float_mchk(struct kvm *kvm,
1753 struct kvm_s390_interrupt_info *inti)
1754 {
1755 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
1756
1757 kvm->stat.inject_float_mchk++;
1758 spin_lock(&fi->lock);
1759 fi->mchk.cr14 |= inti->mchk.cr14 & (1UL << CR_PENDING_SUBCLASS);
1760 fi->mchk.mcic |= inti->mchk.mcic;
1761 set_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs);
1762 spin_unlock(&fi->lock);
1763 kfree(inti);
1764 return 0;
1765 }
1766
__inject_io(struct kvm * kvm,struct kvm_s390_interrupt_info * inti)1767 static int __inject_io(struct kvm *kvm, struct kvm_s390_interrupt_info *inti)
1768 {
1769 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
1770 struct kvm_s390_float_interrupt *fi;
1771 struct list_head *list;
1772 int isc;
1773
1774 kvm->stat.inject_io++;
1775 isc = int_word_to_isc(inti->io.io_int_word);
1776
1777 if (gi->origin && inti->type & KVM_S390_INT_IO_AI_MASK) {
1778 VM_EVENT(kvm, 4, "%s isc %1u", "inject: I/O (AI/gisa)", isc);
1779 gisa_set_ipm_gisc(gi->origin, isc);
1780 kfree(inti);
1781 return 0;
1782 }
1783
1784 fi = &kvm->arch.float_int;
1785 spin_lock(&fi->lock);
1786 if (fi->counters[FIRQ_CNTR_IO] >= KVM_S390_MAX_FLOAT_IRQS) {
1787 spin_unlock(&fi->lock);
1788 return -EBUSY;
1789 }
1790 fi->counters[FIRQ_CNTR_IO] += 1;
1791
1792 if (inti->type & KVM_S390_INT_IO_AI_MASK)
1793 VM_EVENT(kvm, 4, "%s", "inject: I/O (AI)");
1794 else
1795 VM_EVENT(kvm, 4, "inject: I/O %x ss %x schid %04x",
1796 inti->io.subchannel_id >> 8,
1797 inti->io.subchannel_id >> 1 & 0x3,
1798 inti->io.subchannel_nr);
1799 list = &fi->lists[FIRQ_LIST_IO_ISC_0 + isc];
1800 list_add_tail(&inti->list, list);
1801 set_bit(isc_to_irq_type(isc), &fi->pending_irqs);
1802 spin_unlock(&fi->lock);
1803 return 0;
1804 }
1805
1806 /*
1807 * Find a destination VCPU for a floating irq and kick it.
1808 */
__floating_irq_kick(struct kvm * kvm,u64 type)1809 static void __floating_irq_kick(struct kvm *kvm, u64 type)
1810 {
1811 struct kvm_vcpu *dst_vcpu;
1812 int sigcpu, online_vcpus, nr_tries = 0;
1813
1814 online_vcpus = atomic_read(&kvm->online_vcpus);
1815 if (!online_vcpus)
1816 return;
1817
1818 /* find idle VCPUs first, then round robin */
1819 sigcpu = find_first_bit(kvm->arch.idle_mask, online_vcpus);
1820 if (sigcpu == online_vcpus) {
1821 do {
1822 sigcpu = kvm->arch.float_int.next_rr_cpu++;
1823 kvm->arch.float_int.next_rr_cpu %= online_vcpus;
1824 /* avoid endless loops if all vcpus are stopped */
1825 if (nr_tries++ >= online_vcpus)
1826 return;
1827 } while (is_vcpu_stopped(kvm_get_vcpu(kvm, sigcpu)));
1828 }
1829 dst_vcpu = kvm_get_vcpu(kvm, sigcpu);
1830
1831 /* make the VCPU drop out of the SIE, or wake it up if sleeping */
1832 switch (type) {
1833 case KVM_S390_MCHK:
1834 kvm_s390_set_cpuflags(dst_vcpu, CPUSTAT_STOP_INT);
1835 break;
1836 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
1837 if (!(type & KVM_S390_INT_IO_AI_MASK &&
1838 kvm->arch.gisa_int.origin))
1839 kvm_s390_set_cpuflags(dst_vcpu, CPUSTAT_IO_INT);
1840 break;
1841 default:
1842 kvm_s390_set_cpuflags(dst_vcpu, CPUSTAT_EXT_INT);
1843 break;
1844 }
1845 kvm_s390_vcpu_wakeup(dst_vcpu);
1846 }
1847
__inject_vm(struct kvm * kvm,struct kvm_s390_interrupt_info * inti)1848 static int __inject_vm(struct kvm *kvm, struct kvm_s390_interrupt_info *inti)
1849 {
1850 u64 type = READ_ONCE(inti->type);
1851 int rc;
1852
1853 switch (type) {
1854 case KVM_S390_MCHK:
1855 rc = __inject_float_mchk(kvm, inti);
1856 break;
1857 case KVM_S390_INT_VIRTIO:
1858 rc = __inject_virtio(kvm, inti);
1859 break;
1860 case KVM_S390_INT_SERVICE:
1861 rc = __inject_service(kvm, inti);
1862 break;
1863 case KVM_S390_INT_PFAULT_DONE:
1864 rc = __inject_pfault_done(kvm, inti);
1865 break;
1866 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
1867 rc = __inject_io(kvm, inti);
1868 break;
1869 default:
1870 rc = -EINVAL;
1871 }
1872 if (rc)
1873 return rc;
1874
1875 __floating_irq_kick(kvm, type);
1876 return 0;
1877 }
1878
kvm_s390_inject_vm(struct kvm * kvm,struct kvm_s390_interrupt * s390int)1879 int kvm_s390_inject_vm(struct kvm *kvm,
1880 struct kvm_s390_interrupt *s390int)
1881 {
1882 struct kvm_s390_interrupt_info *inti;
1883 int rc;
1884
1885 inti = kzalloc(sizeof(*inti), GFP_KERNEL);
1886 if (!inti)
1887 return -ENOMEM;
1888
1889 inti->type = s390int->type;
1890 switch (inti->type) {
1891 case KVM_S390_INT_VIRTIO:
1892 VM_EVENT(kvm, 5, "inject: virtio parm:%x,parm64:%llx",
1893 s390int->parm, s390int->parm64);
1894 inti->ext.ext_params = s390int->parm;
1895 inti->ext.ext_params2 = s390int->parm64;
1896 break;
1897 case KVM_S390_INT_SERVICE:
1898 VM_EVENT(kvm, 4, "inject: sclp parm:%x", s390int->parm);
1899 inti->ext.ext_params = s390int->parm;
1900 break;
1901 case KVM_S390_INT_PFAULT_DONE:
1902 inti->ext.ext_params2 = s390int->parm64;
1903 break;
1904 case KVM_S390_MCHK:
1905 VM_EVENT(kvm, 3, "inject: machine check mcic 0x%llx",
1906 s390int->parm64);
1907 inti->mchk.cr14 = s390int->parm; /* upper bits are not used */
1908 inti->mchk.mcic = s390int->parm64;
1909 break;
1910 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
1911 inti->io.subchannel_id = s390int->parm >> 16;
1912 inti->io.subchannel_nr = s390int->parm & 0x0000ffffu;
1913 inti->io.io_int_parm = s390int->parm64 >> 32;
1914 inti->io.io_int_word = s390int->parm64 & 0x00000000ffffffffull;
1915 break;
1916 default:
1917 kfree(inti);
1918 return -EINVAL;
1919 }
1920 trace_kvm_s390_inject_vm(s390int->type, s390int->parm, s390int->parm64,
1921 2);
1922
1923 rc = __inject_vm(kvm, inti);
1924 if (rc)
1925 kfree(inti);
1926 return rc;
1927 }
1928
kvm_s390_reinject_io_int(struct kvm * kvm,struct kvm_s390_interrupt_info * inti)1929 int kvm_s390_reinject_io_int(struct kvm *kvm,
1930 struct kvm_s390_interrupt_info *inti)
1931 {
1932 return __inject_vm(kvm, inti);
1933 }
1934
s390int_to_s390irq(struct kvm_s390_interrupt * s390int,struct kvm_s390_irq * irq)1935 int s390int_to_s390irq(struct kvm_s390_interrupt *s390int,
1936 struct kvm_s390_irq *irq)
1937 {
1938 irq->type = s390int->type;
1939 switch (irq->type) {
1940 case KVM_S390_PROGRAM_INT:
1941 if (s390int->parm & 0xffff0000)
1942 return -EINVAL;
1943 irq->u.pgm.code = s390int->parm;
1944 break;
1945 case KVM_S390_SIGP_SET_PREFIX:
1946 irq->u.prefix.address = s390int->parm;
1947 break;
1948 case KVM_S390_SIGP_STOP:
1949 irq->u.stop.flags = s390int->parm;
1950 break;
1951 case KVM_S390_INT_EXTERNAL_CALL:
1952 if (s390int->parm & 0xffff0000)
1953 return -EINVAL;
1954 irq->u.extcall.code = s390int->parm;
1955 break;
1956 case KVM_S390_INT_EMERGENCY:
1957 if (s390int->parm & 0xffff0000)
1958 return -EINVAL;
1959 irq->u.emerg.code = s390int->parm;
1960 break;
1961 case KVM_S390_MCHK:
1962 irq->u.mchk.mcic = s390int->parm64;
1963 break;
1964 case KVM_S390_INT_PFAULT_INIT:
1965 irq->u.ext.ext_params = s390int->parm;
1966 irq->u.ext.ext_params2 = s390int->parm64;
1967 break;
1968 case KVM_S390_RESTART:
1969 case KVM_S390_INT_CLOCK_COMP:
1970 case KVM_S390_INT_CPU_TIMER:
1971 break;
1972 default:
1973 return -EINVAL;
1974 }
1975 return 0;
1976 }
1977
kvm_s390_is_stop_irq_pending(struct kvm_vcpu * vcpu)1978 int kvm_s390_is_stop_irq_pending(struct kvm_vcpu *vcpu)
1979 {
1980 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1981
1982 return test_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs);
1983 }
1984
kvm_s390_clear_stop_irq(struct kvm_vcpu * vcpu)1985 void kvm_s390_clear_stop_irq(struct kvm_vcpu *vcpu)
1986 {
1987 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1988
1989 spin_lock(&li->lock);
1990 li->irq.stop.flags = 0;
1991 clear_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs);
1992 spin_unlock(&li->lock);
1993 }
1994
do_inject_vcpu(struct kvm_vcpu * vcpu,struct kvm_s390_irq * irq)1995 static int do_inject_vcpu(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1996 {
1997 int rc;
1998
1999 switch (irq->type) {
2000 case KVM_S390_PROGRAM_INT:
2001 rc = __inject_prog(vcpu, irq);
2002 break;
2003 case KVM_S390_SIGP_SET_PREFIX:
2004 rc = __inject_set_prefix(vcpu, irq);
2005 break;
2006 case KVM_S390_SIGP_STOP:
2007 rc = __inject_sigp_stop(vcpu, irq);
2008 break;
2009 case KVM_S390_RESTART:
2010 rc = __inject_sigp_restart(vcpu, irq);
2011 break;
2012 case KVM_S390_INT_CLOCK_COMP:
2013 rc = __inject_ckc(vcpu);
2014 break;
2015 case KVM_S390_INT_CPU_TIMER:
2016 rc = __inject_cpu_timer(vcpu);
2017 break;
2018 case KVM_S390_INT_EXTERNAL_CALL:
2019 rc = __inject_extcall(vcpu, irq);
2020 break;
2021 case KVM_S390_INT_EMERGENCY:
2022 rc = __inject_sigp_emergency(vcpu, irq);
2023 break;
2024 case KVM_S390_MCHK:
2025 rc = __inject_mchk(vcpu, irq);
2026 break;
2027 case KVM_S390_INT_PFAULT_INIT:
2028 rc = __inject_pfault_init(vcpu, irq);
2029 break;
2030 case KVM_S390_INT_VIRTIO:
2031 case KVM_S390_INT_SERVICE:
2032 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
2033 default:
2034 rc = -EINVAL;
2035 }
2036
2037 return rc;
2038 }
2039
kvm_s390_inject_vcpu(struct kvm_vcpu * vcpu,struct kvm_s390_irq * irq)2040 int kvm_s390_inject_vcpu(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
2041 {
2042 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
2043 int rc;
2044
2045 spin_lock(&li->lock);
2046 rc = do_inject_vcpu(vcpu, irq);
2047 spin_unlock(&li->lock);
2048 if (!rc)
2049 kvm_s390_vcpu_wakeup(vcpu);
2050 return rc;
2051 }
2052
clear_irq_list(struct list_head * _list)2053 static inline void clear_irq_list(struct list_head *_list)
2054 {
2055 struct kvm_s390_interrupt_info *inti, *n;
2056
2057 list_for_each_entry_safe(inti, n, _list, list) {
2058 list_del(&inti->list);
2059 kfree(inti);
2060 }
2061 }
2062
inti_to_irq(struct kvm_s390_interrupt_info * inti,struct kvm_s390_irq * irq)2063 static void inti_to_irq(struct kvm_s390_interrupt_info *inti,
2064 struct kvm_s390_irq *irq)
2065 {
2066 irq->type = inti->type;
2067 switch (inti->type) {
2068 case KVM_S390_INT_PFAULT_INIT:
2069 case KVM_S390_INT_PFAULT_DONE:
2070 case KVM_S390_INT_VIRTIO:
2071 irq->u.ext = inti->ext;
2072 break;
2073 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
2074 irq->u.io = inti->io;
2075 break;
2076 }
2077 }
2078
kvm_s390_clear_float_irqs(struct kvm * kvm)2079 void kvm_s390_clear_float_irqs(struct kvm *kvm)
2080 {
2081 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
2082 int i;
2083
2084 spin_lock(&fi->lock);
2085 fi->pending_irqs = 0;
2086 memset(&fi->srv_signal, 0, sizeof(fi->srv_signal));
2087 memset(&fi->mchk, 0, sizeof(fi->mchk));
2088 for (i = 0; i < FIRQ_LIST_COUNT; i++)
2089 clear_irq_list(&fi->lists[i]);
2090 for (i = 0; i < FIRQ_MAX_COUNT; i++)
2091 fi->counters[i] = 0;
2092 spin_unlock(&fi->lock);
2093 kvm_s390_gisa_clear(kvm);
2094 };
2095
get_all_floating_irqs(struct kvm * kvm,u8 __user * usrbuf,u64 len)2096 static int get_all_floating_irqs(struct kvm *kvm, u8 __user *usrbuf, u64 len)
2097 {
2098 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
2099 struct kvm_s390_interrupt_info *inti;
2100 struct kvm_s390_float_interrupt *fi;
2101 struct kvm_s390_irq *buf;
2102 struct kvm_s390_irq *irq;
2103 int max_irqs;
2104 int ret = 0;
2105 int n = 0;
2106 int i;
2107
2108 if (len > KVM_S390_FLIC_MAX_BUFFER || len == 0)
2109 return -EINVAL;
2110
2111 /*
2112 * We are already using -ENOMEM to signal
2113 * userspace it may retry with a bigger buffer,
2114 * so we need to use something else for this case
2115 */
2116 buf = vzalloc(len);
2117 if (!buf)
2118 return -ENOBUFS;
2119
2120 max_irqs = len / sizeof(struct kvm_s390_irq);
2121
2122 if (gi->origin && gisa_get_ipm(gi->origin)) {
2123 for (i = 0; i <= MAX_ISC; i++) {
2124 if (n == max_irqs) {
2125 /* signal userspace to try again */
2126 ret = -ENOMEM;
2127 goto out_nolock;
2128 }
2129 if (gisa_tac_ipm_gisc(gi->origin, i)) {
2130 irq = (struct kvm_s390_irq *) &buf[n];
2131 irq->type = KVM_S390_INT_IO(1, 0, 0, 0);
2132 irq->u.io.io_int_word = isc_to_int_word(i);
2133 n++;
2134 }
2135 }
2136 }
2137 fi = &kvm->arch.float_int;
2138 spin_lock(&fi->lock);
2139 for (i = 0; i < FIRQ_LIST_COUNT; i++) {
2140 list_for_each_entry(inti, &fi->lists[i], list) {
2141 if (n == max_irqs) {
2142 /* signal userspace to try again */
2143 ret = -ENOMEM;
2144 goto out;
2145 }
2146 inti_to_irq(inti, &buf[n]);
2147 n++;
2148 }
2149 }
2150 if (test_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs)) {
2151 if (n == max_irqs) {
2152 /* signal userspace to try again */
2153 ret = -ENOMEM;
2154 goto out;
2155 }
2156 irq = (struct kvm_s390_irq *) &buf[n];
2157 irq->type = KVM_S390_INT_SERVICE;
2158 irq->u.ext = fi->srv_signal;
2159 n++;
2160 }
2161 if (test_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs)) {
2162 if (n == max_irqs) {
2163 /* signal userspace to try again */
2164 ret = -ENOMEM;
2165 goto out;
2166 }
2167 irq = (struct kvm_s390_irq *) &buf[n];
2168 irq->type = KVM_S390_MCHK;
2169 irq->u.mchk = fi->mchk;
2170 n++;
2171 }
2172
2173 out:
2174 spin_unlock(&fi->lock);
2175 out_nolock:
2176 if (!ret && n > 0) {
2177 if (copy_to_user(usrbuf, buf, sizeof(struct kvm_s390_irq) * n))
2178 ret = -EFAULT;
2179 }
2180 vfree(buf);
2181
2182 return ret < 0 ? ret : n;
2183 }
2184
flic_ais_mode_get_all(struct kvm * kvm,struct kvm_device_attr * attr)2185 static int flic_ais_mode_get_all(struct kvm *kvm, struct kvm_device_attr *attr)
2186 {
2187 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
2188 struct kvm_s390_ais_all ais;
2189
2190 if (attr->attr < sizeof(ais))
2191 return -EINVAL;
2192
2193 if (!test_kvm_facility(kvm, 72))
2194 return -ENOTSUPP;
2195
2196 mutex_lock(&fi->ais_lock);
2197 ais.simm = fi->simm;
2198 ais.nimm = fi->nimm;
2199 mutex_unlock(&fi->ais_lock);
2200
2201 if (copy_to_user((void __user *)attr->addr, &ais, sizeof(ais)))
2202 return -EFAULT;
2203
2204 return 0;
2205 }
2206
flic_get_attr(struct kvm_device * dev,struct kvm_device_attr * attr)2207 static int flic_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
2208 {
2209 int r;
2210
2211 switch (attr->group) {
2212 case KVM_DEV_FLIC_GET_ALL_IRQS:
2213 r = get_all_floating_irqs(dev->kvm, (u8 __user *) attr->addr,
2214 attr->attr);
2215 break;
2216 case KVM_DEV_FLIC_AISM_ALL:
2217 r = flic_ais_mode_get_all(dev->kvm, attr);
2218 break;
2219 default:
2220 r = -EINVAL;
2221 }
2222
2223 return r;
2224 }
2225
copy_irq_from_user(struct kvm_s390_interrupt_info * inti,u64 addr)2226 static inline int copy_irq_from_user(struct kvm_s390_interrupt_info *inti,
2227 u64 addr)
2228 {
2229 struct kvm_s390_irq __user *uptr = (struct kvm_s390_irq __user *) addr;
2230 void *target = NULL;
2231 void __user *source;
2232 u64 size;
2233
2234 if (get_user(inti->type, (u64 __user *)addr))
2235 return -EFAULT;
2236
2237 switch (inti->type) {
2238 case KVM_S390_INT_PFAULT_INIT:
2239 case KVM_S390_INT_PFAULT_DONE:
2240 case KVM_S390_INT_VIRTIO:
2241 case KVM_S390_INT_SERVICE:
2242 target = (void *) &inti->ext;
2243 source = &uptr->u.ext;
2244 size = sizeof(inti->ext);
2245 break;
2246 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
2247 target = (void *) &inti->io;
2248 source = &uptr->u.io;
2249 size = sizeof(inti->io);
2250 break;
2251 case KVM_S390_MCHK:
2252 target = (void *) &inti->mchk;
2253 source = &uptr->u.mchk;
2254 size = sizeof(inti->mchk);
2255 break;
2256 default:
2257 return -EINVAL;
2258 }
2259
2260 if (copy_from_user(target, source, size))
2261 return -EFAULT;
2262
2263 return 0;
2264 }
2265
enqueue_floating_irq(struct kvm_device * dev,struct kvm_device_attr * attr)2266 static int enqueue_floating_irq(struct kvm_device *dev,
2267 struct kvm_device_attr *attr)
2268 {
2269 struct kvm_s390_interrupt_info *inti = NULL;
2270 int r = 0;
2271 int len = attr->attr;
2272
2273 if (len % sizeof(struct kvm_s390_irq) != 0)
2274 return -EINVAL;
2275 else if (len > KVM_S390_FLIC_MAX_BUFFER)
2276 return -EINVAL;
2277
2278 while (len >= sizeof(struct kvm_s390_irq)) {
2279 inti = kzalloc(sizeof(*inti), GFP_KERNEL);
2280 if (!inti)
2281 return -ENOMEM;
2282
2283 r = copy_irq_from_user(inti, attr->addr);
2284 if (r) {
2285 kfree(inti);
2286 return r;
2287 }
2288 r = __inject_vm(dev->kvm, inti);
2289 if (r) {
2290 kfree(inti);
2291 return r;
2292 }
2293 len -= sizeof(struct kvm_s390_irq);
2294 attr->addr += sizeof(struct kvm_s390_irq);
2295 }
2296
2297 return r;
2298 }
2299
get_io_adapter(struct kvm * kvm,unsigned int id)2300 static struct s390_io_adapter *get_io_adapter(struct kvm *kvm, unsigned int id)
2301 {
2302 if (id >= MAX_S390_IO_ADAPTERS)
2303 return NULL;
2304 id = array_index_nospec(id, MAX_S390_IO_ADAPTERS);
2305 return kvm->arch.adapters[id];
2306 }
2307
register_io_adapter(struct kvm_device * dev,struct kvm_device_attr * attr)2308 static int register_io_adapter(struct kvm_device *dev,
2309 struct kvm_device_attr *attr)
2310 {
2311 struct s390_io_adapter *adapter;
2312 struct kvm_s390_io_adapter adapter_info;
2313
2314 if (copy_from_user(&adapter_info,
2315 (void __user *)attr->addr, sizeof(adapter_info)))
2316 return -EFAULT;
2317
2318 if (adapter_info.id >= MAX_S390_IO_ADAPTERS)
2319 return -EINVAL;
2320
2321 adapter_info.id = array_index_nospec(adapter_info.id,
2322 MAX_S390_IO_ADAPTERS);
2323
2324 if (dev->kvm->arch.adapters[adapter_info.id] != NULL)
2325 return -EINVAL;
2326
2327 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
2328 if (!adapter)
2329 return -ENOMEM;
2330
2331 INIT_LIST_HEAD(&adapter->maps);
2332 init_rwsem(&adapter->maps_lock);
2333 atomic_set(&adapter->nr_maps, 0);
2334 adapter->id = adapter_info.id;
2335 adapter->isc = adapter_info.isc;
2336 adapter->maskable = adapter_info.maskable;
2337 adapter->masked = false;
2338 adapter->swap = adapter_info.swap;
2339 adapter->suppressible = (adapter_info.flags) &
2340 KVM_S390_ADAPTER_SUPPRESSIBLE;
2341 dev->kvm->arch.adapters[adapter->id] = adapter;
2342
2343 return 0;
2344 }
2345
kvm_s390_mask_adapter(struct kvm * kvm,unsigned int id,bool masked)2346 int kvm_s390_mask_adapter(struct kvm *kvm, unsigned int id, bool masked)
2347 {
2348 int ret;
2349 struct s390_io_adapter *adapter = get_io_adapter(kvm, id);
2350
2351 if (!adapter || !adapter->maskable)
2352 return -EINVAL;
2353 ret = adapter->masked;
2354 adapter->masked = masked;
2355 return ret;
2356 }
2357
kvm_s390_adapter_map(struct kvm * kvm,unsigned int id,__u64 addr)2358 static int kvm_s390_adapter_map(struct kvm *kvm, unsigned int id, __u64 addr)
2359 {
2360 struct s390_io_adapter *adapter = get_io_adapter(kvm, id);
2361 struct s390_map_info *map;
2362 int ret;
2363
2364 if (!adapter || !addr)
2365 return -EINVAL;
2366
2367 map = kzalloc(sizeof(*map), GFP_KERNEL);
2368 if (!map) {
2369 ret = -ENOMEM;
2370 goto out;
2371 }
2372 INIT_LIST_HEAD(&map->list);
2373 map->guest_addr = addr;
2374 map->addr = gmap_translate(kvm->arch.gmap, addr);
2375 if (map->addr == -EFAULT) {
2376 ret = -EFAULT;
2377 goto out;
2378 }
2379 ret = get_user_pages_fast(map->addr, 1, FOLL_WRITE, &map->page);
2380 if (ret < 0)
2381 goto out;
2382 BUG_ON(ret != 1);
2383 down_write(&adapter->maps_lock);
2384 if (atomic_inc_return(&adapter->nr_maps) < MAX_S390_ADAPTER_MAPS) {
2385 list_add_tail(&map->list, &adapter->maps);
2386 ret = 0;
2387 } else {
2388 put_page(map->page);
2389 ret = -EINVAL;
2390 }
2391 up_write(&adapter->maps_lock);
2392 out:
2393 if (ret)
2394 kfree(map);
2395 return ret;
2396 }
2397
kvm_s390_adapter_unmap(struct kvm * kvm,unsigned int id,__u64 addr)2398 static int kvm_s390_adapter_unmap(struct kvm *kvm, unsigned int id, __u64 addr)
2399 {
2400 struct s390_io_adapter *adapter = get_io_adapter(kvm, id);
2401 struct s390_map_info *map, *tmp;
2402 int found = 0;
2403
2404 if (!adapter || !addr)
2405 return -EINVAL;
2406
2407 down_write(&adapter->maps_lock);
2408 list_for_each_entry_safe(map, tmp, &adapter->maps, list) {
2409 if (map->guest_addr == addr) {
2410 found = 1;
2411 atomic_dec(&adapter->nr_maps);
2412 list_del(&map->list);
2413 put_page(map->page);
2414 kfree(map);
2415 break;
2416 }
2417 }
2418 up_write(&adapter->maps_lock);
2419
2420 return found ? 0 : -EINVAL;
2421 }
2422
kvm_s390_destroy_adapters(struct kvm * kvm)2423 void kvm_s390_destroy_adapters(struct kvm *kvm)
2424 {
2425 int i;
2426 struct s390_map_info *map, *tmp;
2427
2428 for (i = 0; i < MAX_S390_IO_ADAPTERS; i++) {
2429 if (!kvm->arch.adapters[i])
2430 continue;
2431 list_for_each_entry_safe(map, tmp,
2432 &kvm->arch.adapters[i]->maps, list) {
2433 list_del(&map->list);
2434 put_page(map->page);
2435 kfree(map);
2436 }
2437 kfree(kvm->arch.adapters[i]);
2438 }
2439 }
2440
modify_io_adapter(struct kvm_device * dev,struct kvm_device_attr * attr)2441 static int modify_io_adapter(struct kvm_device *dev,
2442 struct kvm_device_attr *attr)
2443 {
2444 struct kvm_s390_io_adapter_req req;
2445 struct s390_io_adapter *adapter;
2446 int ret;
2447
2448 if (copy_from_user(&req, (void __user *)attr->addr, sizeof(req)))
2449 return -EFAULT;
2450
2451 adapter = get_io_adapter(dev->kvm, req.id);
2452 if (!adapter)
2453 return -EINVAL;
2454 switch (req.type) {
2455 case KVM_S390_IO_ADAPTER_MASK:
2456 ret = kvm_s390_mask_adapter(dev->kvm, req.id, req.mask);
2457 if (ret > 0)
2458 ret = 0;
2459 break;
2460 case KVM_S390_IO_ADAPTER_MAP:
2461 ret = kvm_s390_adapter_map(dev->kvm, req.id, req.addr);
2462 break;
2463 case KVM_S390_IO_ADAPTER_UNMAP:
2464 ret = kvm_s390_adapter_unmap(dev->kvm, req.id, req.addr);
2465 break;
2466 default:
2467 ret = -EINVAL;
2468 }
2469
2470 return ret;
2471 }
2472
clear_io_irq(struct kvm * kvm,struct kvm_device_attr * attr)2473 static int clear_io_irq(struct kvm *kvm, struct kvm_device_attr *attr)
2474
2475 {
2476 const u64 isc_mask = 0xffUL << 24; /* all iscs set */
2477 u32 schid;
2478
2479 if (attr->flags)
2480 return -EINVAL;
2481 if (attr->attr != sizeof(schid))
2482 return -EINVAL;
2483 if (copy_from_user(&schid, (void __user *) attr->addr, sizeof(schid)))
2484 return -EFAULT;
2485 if (!schid)
2486 return -EINVAL;
2487 kfree(kvm_s390_get_io_int(kvm, isc_mask, schid));
2488 /*
2489 * If userspace is conforming to the architecture, we can have at most
2490 * one pending I/O interrupt per subchannel, so this is effectively a
2491 * clear all.
2492 */
2493 return 0;
2494 }
2495
modify_ais_mode(struct kvm * kvm,struct kvm_device_attr * attr)2496 static int modify_ais_mode(struct kvm *kvm, struct kvm_device_attr *attr)
2497 {
2498 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
2499 struct kvm_s390_ais_req req;
2500 int ret = 0;
2501
2502 if (!test_kvm_facility(kvm, 72))
2503 return -ENOTSUPP;
2504
2505 if (copy_from_user(&req, (void __user *)attr->addr, sizeof(req)))
2506 return -EFAULT;
2507
2508 if (req.isc > MAX_ISC)
2509 return -EINVAL;
2510
2511 trace_kvm_s390_modify_ais_mode(req.isc,
2512 (fi->simm & AIS_MODE_MASK(req.isc)) ?
2513 (fi->nimm & AIS_MODE_MASK(req.isc)) ?
2514 2 : KVM_S390_AIS_MODE_SINGLE :
2515 KVM_S390_AIS_MODE_ALL, req.mode);
2516
2517 mutex_lock(&fi->ais_lock);
2518 switch (req.mode) {
2519 case KVM_S390_AIS_MODE_ALL:
2520 fi->simm &= ~AIS_MODE_MASK(req.isc);
2521 fi->nimm &= ~AIS_MODE_MASK(req.isc);
2522 break;
2523 case KVM_S390_AIS_MODE_SINGLE:
2524 fi->simm |= AIS_MODE_MASK(req.isc);
2525 fi->nimm &= ~AIS_MODE_MASK(req.isc);
2526 break;
2527 default:
2528 ret = -EINVAL;
2529 }
2530 mutex_unlock(&fi->ais_lock);
2531
2532 return ret;
2533 }
2534
kvm_s390_inject_airq(struct kvm * kvm,struct s390_io_adapter * adapter)2535 static int kvm_s390_inject_airq(struct kvm *kvm,
2536 struct s390_io_adapter *adapter)
2537 {
2538 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
2539 struct kvm_s390_interrupt s390int = {
2540 .type = KVM_S390_INT_IO(1, 0, 0, 0),
2541 .parm = 0,
2542 .parm64 = isc_to_int_word(adapter->isc),
2543 };
2544 int ret = 0;
2545
2546 if (!test_kvm_facility(kvm, 72) || !adapter->suppressible)
2547 return kvm_s390_inject_vm(kvm, &s390int);
2548
2549 mutex_lock(&fi->ais_lock);
2550 if (fi->nimm & AIS_MODE_MASK(adapter->isc)) {
2551 trace_kvm_s390_airq_suppressed(adapter->id, adapter->isc);
2552 goto out;
2553 }
2554
2555 ret = kvm_s390_inject_vm(kvm, &s390int);
2556 if (!ret && (fi->simm & AIS_MODE_MASK(adapter->isc))) {
2557 fi->nimm |= AIS_MODE_MASK(adapter->isc);
2558 trace_kvm_s390_modify_ais_mode(adapter->isc,
2559 KVM_S390_AIS_MODE_SINGLE, 2);
2560 }
2561 out:
2562 mutex_unlock(&fi->ais_lock);
2563 return ret;
2564 }
2565
flic_inject_airq(struct kvm * kvm,struct kvm_device_attr * attr)2566 static int flic_inject_airq(struct kvm *kvm, struct kvm_device_attr *attr)
2567 {
2568 unsigned int id = attr->attr;
2569 struct s390_io_adapter *adapter = get_io_adapter(kvm, id);
2570
2571 if (!adapter)
2572 return -EINVAL;
2573
2574 return kvm_s390_inject_airq(kvm, adapter);
2575 }
2576
flic_ais_mode_set_all(struct kvm * kvm,struct kvm_device_attr * attr)2577 static int flic_ais_mode_set_all(struct kvm *kvm, struct kvm_device_attr *attr)
2578 {
2579 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
2580 struct kvm_s390_ais_all ais;
2581
2582 if (!test_kvm_facility(kvm, 72))
2583 return -ENOTSUPP;
2584
2585 if (copy_from_user(&ais, (void __user *)attr->addr, sizeof(ais)))
2586 return -EFAULT;
2587
2588 mutex_lock(&fi->ais_lock);
2589 fi->simm = ais.simm;
2590 fi->nimm = ais.nimm;
2591 mutex_unlock(&fi->ais_lock);
2592
2593 return 0;
2594 }
2595
flic_set_attr(struct kvm_device * dev,struct kvm_device_attr * attr)2596 static int flic_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
2597 {
2598 int r = 0;
2599 unsigned int i;
2600 struct kvm_vcpu *vcpu;
2601
2602 switch (attr->group) {
2603 case KVM_DEV_FLIC_ENQUEUE:
2604 r = enqueue_floating_irq(dev, attr);
2605 break;
2606 case KVM_DEV_FLIC_CLEAR_IRQS:
2607 kvm_s390_clear_float_irqs(dev->kvm);
2608 break;
2609 case KVM_DEV_FLIC_APF_ENABLE:
2610 dev->kvm->arch.gmap->pfault_enabled = 1;
2611 break;
2612 case KVM_DEV_FLIC_APF_DISABLE_WAIT:
2613 dev->kvm->arch.gmap->pfault_enabled = 0;
2614 /*
2615 * Make sure no async faults are in transition when
2616 * clearing the queues. So we don't need to worry
2617 * about late coming workers.
2618 */
2619 synchronize_srcu(&dev->kvm->srcu);
2620 kvm_for_each_vcpu(i, vcpu, dev->kvm)
2621 kvm_clear_async_pf_completion_queue(vcpu);
2622 break;
2623 case KVM_DEV_FLIC_ADAPTER_REGISTER:
2624 r = register_io_adapter(dev, attr);
2625 break;
2626 case KVM_DEV_FLIC_ADAPTER_MODIFY:
2627 r = modify_io_adapter(dev, attr);
2628 break;
2629 case KVM_DEV_FLIC_CLEAR_IO_IRQ:
2630 r = clear_io_irq(dev->kvm, attr);
2631 break;
2632 case KVM_DEV_FLIC_AISM:
2633 r = modify_ais_mode(dev->kvm, attr);
2634 break;
2635 case KVM_DEV_FLIC_AIRQ_INJECT:
2636 r = flic_inject_airq(dev->kvm, attr);
2637 break;
2638 case KVM_DEV_FLIC_AISM_ALL:
2639 r = flic_ais_mode_set_all(dev->kvm, attr);
2640 break;
2641 default:
2642 r = -EINVAL;
2643 }
2644
2645 return r;
2646 }
2647
flic_has_attr(struct kvm_device * dev,struct kvm_device_attr * attr)2648 static int flic_has_attr(struct kvm_device *dev,
2649 struct kvm_device_attr *attr)
2650 {
2651 switch (attr->group) {
2652 case KVM_DEV_FLIC_GET_ALL_IRQS:
2653 case KVM_DEV_FLIC_ENQUEUE:
2654 case KVM_DEV_FLIC_CLEAR_IRQS:
2655 case KVM_DEV_FLIC_APF_ENABLE:
2656 case KVM_DEV_FLIC_APF_DISABLE_WAIT:
2657 case KVM_DEV_FLIC_ADAPTER_REGISTER:
2658 case KVM_DEV_FLIC_ADAPTER_MODIFY:
2659 case KVM_DEV_FLIC_CLEAR_IO_IRQ:
2660 case KVM_DEV_FLIC_AISM:
2661 case KVM_DEV_FLIC_AIRQ_INJECT:
2662 case KVM_DEV_FLIC_AISM_ALL:
2663 return 0;
2664 }
2665 return -ENXIO;
2666 }
2667
flic_create(struct kvm_device * dev,u32 type)2668 static int flic_create(struct kvm_device *dev, u32 type)
2669 {
2670 if (!dev)
2671 return -EINVAL;
2672 if (dev->kvm->arch.flic)
2673 return -EINVAL;
2674 dev->kvm->arch.flic = dev;
2675 return 0;
2676 }
2677
flic_destroy(struct kvm_device * dev)2678 static void flic_destroy(struct kvm_device *dev)
2679 {
2680 dev->kvm->arch.flic = NULL;
2681 kfree(dev);
2682 }
2683
2684 /* s390 floating irq controller (flic) */
2685 struct kvm_device_ops kvm_flic_ops = {
2686 .name = "kvm-flic",
2687 .get_attr = flic_get_attr,
2688 .set_attr = flic_set_attr,
2689 .has_attr = flic_has_attr,
2690 .create = flic_create,
2691 .destroy = flic_destroy,
2692 };
2693
get_ind_bit(__u64 addr,unsigned long bit_nr,bool swap)2694 static unsigned long get_ind_bit(__u64 addr, unsigned long bit_nr, bool swap)
2695 {
2696 unsigned long bit;
2697
2698 bit = bit_nr + (addr % PAGE_SIZE) * 8;
2699
2700 return swap ? (bit ^ (BITS_PER_LONG - 1)) : bit;
2701 }
2702
get_map_info(struct s390_io_adapter * adapter,u64 addr)2703 static struct s390_map_info *get_map_info(struct s390_io_adapter *adapter,
2704 u64 addr)
2705 {
2706 struct s390_map_info *map;
2707
2708 if (!adapter)
2709 return NULL;
2710
2711 list_for_each_entry(map, &adapter->maps, list) {
2712 if (map->guest_addr == addr)
2713 return map;
2714 }
2715 return NULL;
2716 }
2717
adapter_indicators_set(struct kvm * kvm,struct s390_io_adapter * adapter,struct kvm_s390_adapter_int * adapter_int)2718 static int adapter_indicators_set(struct kvm *kvm,
2719 struct s390_io_adapter *adapter,
2720 struct kvm_s390_adapter_int *adapter_int)
2721 {
2722 unsigned long bit;
2723 int summary_set, idx;
2724 struct s390_map_info *info;
2725 void *map;
2726
2727 info = get_map_info(adapter, adapter_int->ind_addr);
2728 if (!info)
2729 return -1;
2730 map = page_address(info->page);
2731 bit = get_ind_bit(info->addr, adapter_int->ind_offset, adapter->swap);
2732 set_bit(bit, map);
2733 idx = srcu_read_lock(&kvm->srcu);
2734 mark_page_dirty(kvm, info->guest_addr >> PAGE_SHIFT);
2735 set_page_dirty_lock(info->page);
2736 info = get_map_info(adapter, adapter_int->summary_addr);
2737 if (!info) {
2738 srcu_read_unlock(&kvm->srcu, idx);
2739 return -1;
2740 }
2741 map = page_address(info->page);
2742 bit = get_ind_bit(info->addr, adapter_int->summary_offset,
2743 adapter->swap);
2744 summary_set = test_and_set_bit(bit, map);
2745 mark_page_dirty(kvm, info->guest_addr >> PAGE_SHIFT);
2746 set_page_dirty_lock(info->page);
2747 srcu_read_unlock(&kvm->srcu, idx);
2748 return summary_set ? 0 : 1;
2749 }
2750
2751 /*
2752 * < 0 - not injected due to error
2753 * = 0 - coalesced, summary indicator already active
2754 * > 0 - injected interrupt
2755 */
set_adapter_int(struct kvm_kernel_irq_routing_entry * e,struct kvm * kvm,int irq_source_id,int level,bool line_status)2756 static int set_adapter_int(struct kvm_kernel_irq_routing_entry *e,
2757 struct kvm *kvm, int irq_source_id, int level,
2758 bool line_status)
2759 {
2760 int ret;
2761 struct s390_io_adapter *adapter;
2762
2763 /* We're only interested in the 0->1 transition. */
2764 if (!level)
2765 return 0;
2766 adapter = get_io_adapter(kvm, e->adapter.adapter_id);
2767 if (!adapter)
2768 return -1;
2769 down_read(&adapter->maps_lock);
2770 ret = adapter_indicators_set(kvm, adapter, &e->adapter);
2771 up_read(&adapter->maps_lock);
2772 if ((ret > 0) && !adapter->masked) {
2773 ret = kvm_s390_inject_airq(kvm, adapter);
2774 if (ret == 0)
2775 ret = 1;
2776 }
2777 return ret;
2778 }
2779
2780 /*
2781 * Inject the machine check to the guest.
2782 */
kvm_s390_reinject_machine_check(struct kvm_vcpu * vcpu,struct mcck_volatile_info * mcck_info)2783 void kvm_s390_reinject_machine_check(struct kvm_vcpu *vcpu,
2784 struct mcck_volatile_info *mcck_info)
2785 {
2786 struct kvm_s390_interrupt_info inti;
2787 struct kvm_s390_irq irq;
2788 struct kvm_s390_mchk_info *mchk;
2789 union mci mci;
2790 __u64 cr14 = 0; /* upper bits are not used */
2791 int rc;
2792
2793 mci.val = mcck_info->mcic;
2794 if (mci.sr)
2795 cr14 |= CR14_RECOVERY_SUBMASK;
2796 if (mci.dg)
2797 cr14 |= CR14_DEGRADATION_SUBMASK;
2798 if (mci.w)
2799 cr14 |= CR14_WARNING_SUBMASK;
2800
2801 mchk = mci.ck ? &inti.mchk : &irq.u.mchk;
2802 mchk->cr14 = cr14;
2803 mchk->mcic = mcck_info->mcic;
2804 mchk->ext_damage_code = mcck_info->ext_damage_code;
2805 mchk->failing_storage_address = mcck_info->failing_storage_address;
2806 if (mci.ck) {
2807 /* Inject the floating machine check */
2808 inti.type = KVM_S390_MCHK;
2809 rc = __inject_vm(vcpu->kvm, &inti);
2810 } else {
2811 /* Inject the machine check to specified vcpu */
2812 irq.type = KVM_S390_MCHK;
2813 rc = kvm_s390_inject_vcpu(vcpu, &irq);
2814 }
2815 WARN_ON_ONCE(rc);
2816 }
2817
kvm_set_routing_entry(struct kvm * kvm,struct kvm_kernel_irq_routing_entry * e,const struct kvm_irq_routing_entry * ue)2818 int kvm_set_routing_entry(struct kvm *kvm,
2819 struct kvm_kernel_irq_routing_entry *e,
2820 const struct kvm_irq_routing_entry *ue)
2821 {
2822 int ret;
2823
2824 switch (ue->type) {
2825 case KVM_IRQ_ROUTING_S390_ADAPTER:
2826 e->set = set_adapter_int;
2827 e->adapter.summary_addr = ue->u.adapter.summary_addr;
2828 e->adapter.ind_addr = ue->u.adapter.ind_addr;
2829 e->adapter.summary_offset = ue->u.adapter.summary_offset;
2830 e->adapter.ind_offset = ue->u.adapter.ind_offset;
2831 e->adapter.adapter_id = ue->u.adapter.adapter_id;
2832 ret = 0;
2833 break;
2834 default:
2835 ret = -EINVAL;
2836 }
2837
2838 return ret;
2839 }
2840
kvm_set_msi(struct kvm_kernel_irq_routing_entry * e,struct kvm * kvm,int irq_source_id,int level,bool line_status)2841 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *e, struct kvm *kvm,
2842 int irq_source_id, int level, bool line_status)
2843 {
2844 return -EINVAL;
2845 }
2846
kvm_s390_set_irq_state(struct kvm_vcpu * vcpu,void __user * irqstate,int len)2847 int kvm_s390_set_irq_state(struct kvm_vcpu *vcpu, void __user *irqstate, int len)
2848 {
2849 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
2850 struct kvm_s390_irq *buf;
2851 int r = 0;
2852 int n;
2853
2854 buf = vmalloc(len);
2855 if (!buf)
2856 return -ENOMEM;
2857
2858 if (copy_from_user((void *) buf, irqstate, len)) {
2859 r = -EFAULT;
2860 goto out_free;
2861 }
2862
2863 /*
2864 * Don't allow setting the interrupt state
2865 * when there are already interrupts pending
2866 */
2867 spin_lock(&li->lock);
2868 if (li->pending_irqs) {
2869 r = -EBUSY;
2870 goto out_unlock;
2871 }
2872
2873 for (n = 0; n < len / sizeof(*buf); n++) {
2874 r = do_inject_vcpu(vcpu, &buf[n]);
2875 if (r)
2876 break;
2877 }
2878
2879 out_unlock:
2880 spin_unlock(&li->lock);
2881 out_free:
2882 vfree(buf);
2883
2884 return r;
2885 }
2886
store_local_irq(struct kvm_s390_local_interrupt * li,struct kvm_s390_irq * irq,unsigned long irq_type)2887 static void store_local_irq(struct kvm_s390_local_interrupt *li,
2888 struct kvm_s390_irq *irq,
2889 unsigned long irq_type)
2890 {
2891 switch (irq_type) {
2892 case IRQ_PEND_MCHK_EX:
2893 case IRQ_PEND_MCHK_REP:
2894 irq->type = KVM_S390_MCHK;
2895 irq->u.mchk = li->irq.mchk;
2896 break;
2897 case IRQ_PEND_PROG:
2898 irq->type = KVM_S390_PROGRAM_INT;
2899 irq->u.pgm = li->irq.pgm;
2900 break;
2901 case IRQ_PEND_PFAULT_INIT:
2902 irq->type = KVM_S390_INT_PFAULT_INIT;
2903 irq->u.ext = li->irq.ext;
2904 break;
2905 case IRQ_PEND_EXT_EXTERNAL:
2906 irq->type = KVM_S390_INT_EXTERNAL_CALL;
2907 irq->u.extcall = li->irq.extcall;
2908 break;
2909 case IRQ_PEND_EXT_CLOCK_COMP:
2910 irq->type = KVM_S390_INT_CLOCK_COMP;
2911 break;
2912 case IRQ_PEND_EXT_CPU_TIMER:
2913 irq->type = KVM_S390_INT_CPU_TIMER;
2914 break;
2915 case IRQ_PEND_SIGP_STOP:
2916 irq->type = KVM_S390_SIGP_STOP;
2917 irq->u.stop = li->irq.stop;
2918 break;
2919 case IRQ_PEND_RESTART:
2920 irq->type = KVM_S390_RESTART;
2921 break;
2922 case IRQ_PEND_SET_PREFIX:
2923 irq->type = KVM_S390_SIGP_SET_PREFIX;
2924 irq->u.prefix = li->irq.prefix;
2925 break;
2926 }
2927 }
2928
kvm_s390_get_irq_state(struct kvm_vcpu * vcpu,__u8 __user * buf,int len)2929 int kvm_s390_get_irq_state(struct kvm_vcpu *vcpu, __u8 __user *buf, int len)
2930 {
2931 int scn;
2932 DECLARE_BITMAP(sigp_emerg_pending, KVM_MAX_VCPUS);
2933 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
2934 unsigned long pending_irqs;
2935 struct kvm_s390_irq irq;
2936 unsigned long irq_type;
2937 int cpuaddr;
2938 int n = 0;
2939
2940 spin_lock(&li->lock);
2941 pending_irqs = li->pending_irqs;
2942 memcpy(&sigp_emerg_pending, &li->sigp_emerg_pending,
2943 sizeof(sigp_emerg_pending));
2944 spin_unlock(&li->lock);
2945
2946 for_each_set_bit(irq_type, &pending_irqs, IRQ_PEND_COUNT) {
2947 memset(&irq, 0, sizeof(irq));
2948 if (irq_type == IRQ_PEND_EXT_EMERGENCY)
2949 continue;
2950 if (n + sizeof(irq) > len)
2951 return -ENOBUFS;
2952 store_local_irq(&vcpu->arch.local_int, &irq, irq_type);
2953 if (copy_to_user(&buf[n], &irq, sizeof(irq)))
2954 return -EFAULT;
2955 n += sizeof(irq);
2956 }
2957
2958 if (test_bit(IRQ_PEND_EXT_EMERGENCY, &pending_irqs)) {
2959 for_each_set_bit(cpuaddr, sigp_emerg_pending, KVM_MAX_VCPUS) {
2960 memset(&irq, 0, sizeof(irq));
2961 if (n + sizeof(irq) > len)
2962 return -ENOBUFS;
2963 irq.type = KVM_S390_INT_EMERGENCY;
2964 irq.u.emerg.code = cpuaddr;
2965 if (copy_to_user(&buf[n], &irq, sizeof(irq)))
2966 return -EFAULT;
2967 n += sizeof(irq);
2968 }
2969 }
2970
2971 if (sca_ext_call_pending(vcpu, &scn)) {
2972 if (n + sizeof(irq) > len)
2973 return -ENOBUFS;
2974 memset(&irq, 0, sizeof(irq));
2975 irq.type = KVM_S390_INT_EXTERNAL_CALL;
2976 irq.u.extcall.code = scn;
2977 if (copy_to_user(&buf[n], &irq, sizeof(irq)))
2978 return -EFAULT;
2979 n += sizeof(irq);
2980 }
2981
2982 return n;
2983 }
2984
__airqs_kick_single_vcpu(struct kvm * kvm,u8 deliverable_mask)2985 static void __airqs_kick_single_vcpu(struct kvm *kvm, u8 deliverable_mask)
2986 {
2987 int vcpu_id, online_vcpus = atomic_read(&kvm->online_vcpus);
2988 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
2989 struct kvm_vcpu *vcpu;
2990
2991 for_each_set_bit(vcpu_id, kvm->arch.idle_mask, online_vcpus) {
2992 vcpu = kvm_get_vcpu(kvm, vcpu_id);
2993 if (psw_ioint_disabled(vcpu))
2994 continue;
2995 deliverable_mask &= (u8)(vcpu->arch.sie_block->gcr[6] >> 24);
2996 if (deliverable_mask) {
2997 /* lately kicked but not yet running */
2998 if (test_and_set_bit(vcpu_id, gi->kicked_mask))
2999 return;
3000 kvm_s390_vcpu_wakeup(vcpu);
3001 return;
3002 }
3003 }
3004 }
3005
gisa_vcpu_kicker(struct hrtimer * timer)3006 static enum hrtimer_restart gisa_vcpu_kicker(struct hrtimer *timer)
3007 {
3008 struct kvm_s390_gisa_interrupt *gi =
3009 container_of(timer, struct kvm_s390_gisa_interrupt, timer);
3010 struct kvm *kvm =
3011 container_of(gi->origin, struct sie_page2, gisa)->kvm;
3012 u8 pending_mask;
3013
3014 pending_mask = gisa_get_ipm_or_restore_iam(gi);
3015 if (pending_mask) {
3016 __airqs_kick_single_vcpu(kvm, pending_mask);
3017 hrtimer_forward_now(timer, ns_to_ktime(gi->expires));
3018 return HRTIMER_RESTART;
3019 };
3020
3021 return HRTIMER_NORESTART;
3022 }
3023
3024 #define NULL_GISA_ADDR 0x00000000UL
3025 #define NONE_GISA_ADDR 0x00000001UL
3026 #define GISA_ADDR_MASK 0xfffff000UL
3027
process_gib_alert_list(void)3028 static void process_gib_alert_list(void)
3029 {
3030 struct kvm_s390_gisa_interrupt *gi;
3031 struct kvm_s390_gisa *gisa;
3032 struct kvm *kvm;
3033 u32 final, origin = 0UL;
3034
3035 do {
3036 /*
3037 * If the NONE_GISA_ADDR is still stored in the alert list
3038 * origin, we will leave the outer loop. No further GISA has
3039 * been added to the alert list by millicode while processing
3040 * the current alert list.
3041 */
3042 final = (origin & NONE_GISA_ADDR);
3043 /*
3044 * Cut off the alert list and store the NONE_GISA_ADDR in the
3045 * alert list origin to avoid further GAL interruptions.
3046 * A new alert list can be build up by millicode in parallel
3047 * for guests not in the yet cut-off alert list. When in the
3048 * final loop, store the NULL_GISA_ADDR instead. This will re-
3049 * enable GAL interruptions on the host again.
3050 */
3051 origin = xchg(&gib->alert_list_origin,
3052 (!final) ? NONE_GISA_ADDR : NULL_GISA_ADDR);
3053 /*
3054 * Loop through the just cut-off alert list and start the
3055 * gisa timers to kick idle vcpus to consume the pending
3056 * interruptions asap.
3057 */
3058 while (origin & GISA_ADDR_MASK) {
3059 gisa = (struct kvm_s390_gisa *)(u64)origin;
3060 origin = gisa->next_alert;
3061 gisa->next_alert = (u32)(u64)gisa;
3062 kvm = container_of(gisa, struct sie_page2, gisa)->kvm;
3063 gi = &kvm->arch.gisa_int;
3064 if (hrtimer_active(&gi->timer))
3065 hrtimer_cancel(&gi->timer);
3066 hrtimer_start(&gi->timer, 0, HRTIMER_MODE_REL);
3067 }
3068 } while (!final);
3069
3070 }
3071
kvm_s390_gisa_clear(struct kvm * kvm)3072 void kvm_s390_gisa_clear(struct kvm *kvm)
3073 {
3074 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
3075
3076 if (!gi->origin)
3077 return;
3078 gisa_clear_ipm(gi->origin);
3079 VM_EVENT(kvm, 3, "gisa 0x%pK cleared", gi->origin);
3080 }
3081
kvm_s390_gisa_init(struct kvm * kvm)3082 void kvm_s390_gisa_init(struct kvm *kvm)
3083 {
3084 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
3085
3086 if (!css_general_characteristics.aiv)
3087 return;
3088 gi->origin = &kvm->arch.sie_page2->gisa;
3089 gi->alert.mask = 0;
3090 spin_lock_init(&gi->alert.ref_lock);
3091 gi->expires = 50 * 1000; /* 50 usec */
3092 hrtimer_init(&gi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3093 gi->timer.function = gisa_vcpu_kicker;
3094 memset(gi->origin, 0, sizeof(struct kvm_s390_gisa));
3095 gi->origin->next_alert = (u32)(u64)gi->origin;
3096 VM_EVENT(kvm, 3, "gisa 0x%pK initialized", gi->origin);
3097 }
3098
kvm_s390_gisa_destroy(struct kvm * kvm)3099 void kvm_s390_gisa_destroy(struct kvm *kvm)
3100 {
3101 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
3102
3103 if (!gi->origin)
3104 return;
3105 if (gi->alert.mask)
3106 KVM_EVENT(3, "vm 0x%pK has unexpected iam 0x%02x",
3107 kvm, gi->alert.mask);
3108 while (gisa_in_alert_list(gi->origin))
3109 cpu_relax();
3110 hrtimer_cancel(&gi->timer);
3111 gi->origin = NULL;
3112 }
3113
3114 /**
3115 * kvm_s390_gisc_register - register a guest ISC
3116 *
3117 * @kvm: the kernel vm to work with
3118 * @gisc: the guest interruption sub class to register
3119 *
3120 * The function extends the vm specific alert mask to use.
3121 * The effective IAM mask in the GISA is updated as well
3122 * in case the GISA is not part of the GIB alert list.
3123 * It will be updated latest when the IAM gets restored
3124 * by gisa_get_ipm_or_restore_iam().
3125 *
3126 * Returns: the nonspecific ISC (NISC) the gib alert mechanism
3127 * has registered with the channel subsystem.
3128 * -ENODEV in case the vm uses no GISA
3129 * -ERANGE in case the guest ISC is invalid
3130 */
kvm_s390_gisc_register(struct kvm * kvm,u32 gisc)3131 int kvm_s390_gisc_register(struct kvm *kvm, u32 gisc)
3132 {
3133 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
3134
3135 if (!gi->origin)
3136 return -ENODEV;
3137 if (gisc > MAX_ISC)
3138 return -ERANGE;
3139
3140 spin_lock(&gi->alert.ref_lock);
3141 gi->alert.ref_count[gisc]++;
3142 if (gi->alert.ref_count[gisc] == 1) {
3143 gi->alert.mask |= 0x80 >> gisc;
3144 gisa_set_iam(gi->origin, gi->alert.mask);
3145 }
3146 spin_unlock(&gi->alert.ref_lock);
3147
3148 return gib->nisc;
3149 }
3150 EXPORT_SYMBOL_GPL(kvm_s390_gisc_register);
3151
3152 /**
3153 * kvm_s390_gisc_unregister - unregister a guest ISC
3154 *
3155 * @kvm: the kernel vm to work with
3156 * @gisc: the guest interruption sub class to register
3157 *
3158 * The function reduces the vm specific alert mask to use.
3159 * The effective IAM mask in the GISA is updated as well
3160 * in case the GISA is not part of the GIB alert list.
3161 * It will be updated latest when the IAM gets restored
3162 * by gisa_get_ipm_or_restore_iam().
3163 *
3164 * Returns: the nonspecific ISC (NISC) the gib alert mechanism
3165 * has registered with the channel subsystem.
3166 * -ENODEV in case the vm uses no GISA
3167 * -ERANGE in case the guest ISC is invalid
3168 * -EINVAL in case the guest ISC is not registered
3169 */
kvm_s390_gisc_unregister(struct kvm * kvm,u32 gisc)3170 int kvm_s390_gisc_unregister(struct kvm *kvm, u32 gisc)
3171 {
3172 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
3173 int rc = 0;
3174
3175 if (!gi->origin)
3176 return -ENODEV;
3177 if (gisc > MAX_ISC)
3178 return -ERANGE;
3179
3180 spin_lock(&gi->alert.ref_lock);
3181 if (gi->alert.ref_count[gisc] == 0) {
3182 rc = -EINVAL;
3183 goto out;
3184 }
3185 gi->alert.ref_count[gisc]--;
3186 if (gi->alert.ref_count[gisc] == 0) {
3187 gi->alert.mask &= ~(0x80 >> gisc);
3188 gisa_set_iam(gi->origin, gi->alert.mask);
3189 }
3190 out:
3191 spin_unlock(&gi->alert.ref_lock);
3192
3193 return rc;
3194 }
3195 EXPORT_SYMBOL_GPL(kvm_s390_gisc_unregister);
3196
gib_alert_irq_handler(struct airq_struct * airq,bool floating)3197 static void gib_alert_irq_handler(struct airq_struct *airq, bool floating)
3198 {
3199 inc_irq_stat(IRQIO_GAL);
3200 process_gib_alert_list();
3201 }
3202
3203 static struct airq_struct gib_alert_irq = {
3204 .handler = gib_alert_irq_handler,
3205 .lsi_ptr = &gib_alert_irq.lsi_mask,
3206 };
3207
kvm_s390_gib_destroy(void)3208 void kvm_s390_gib_destroy(void)
3209 {
3210 if (!gib)
3211 return;
3212 chsc_sgib(0);
3213 unregister_adapter_interrupt(&gib_alert_irq);
3214 free_page((unsigned long)gib);
3215 gib = NULL;
3216 }
3217
kvm_s390_gib_init(u8 nisc)3218 int kvm_s390_gib_init(u8 nisc)
3219 {
3220 int rc = 0;
3221
3222 if (!css_general_characteristics.aiv) {
3223 KVM_EVENT(3, "%s", "gib not initialized, no AIV facility");
3224 goto out;
3225 }
3226
3227 gib = (struct kvm_s390_gib *)get_zeroed_page(GFP_KERNEL | GFP_DMA);
3228 if (!gib) {
3229 rc = -ENOMEM;
3230 goto out;
3231 }
3232
3233 gib_alert_irq.isc = nisc;
3234 if (register_adapter_interrupt(&gib_alert_irq)) {
3235 pr_err("Registering the GIB alert interruption handler failed\n");
3236 rc = -EIO;
3237 goto out_free_gib;
3238 }
3239
3240 gib->nisc = nisc;
3241 if (chsc_sgib((u32)(u64)gib)) {
3242 pr_err("Associating the GIB with the AIV facility failed\n");
3243 free_page((unsigned long)gib);
3244 gib = NULL;
3245 rc = -EIO;
3246 goto out_unreg_gal;
3247 }
3248
3249 KVM_EVENT(3, "gib 0x%pK (nisc=%d) initialized", gib, gib->nisc);
3250 goto out;
3251
3252 out_unreg_gal:
3253 unregister_adapter_interrupt(&gib_alert_irq);
3254 out_free_gib:
3255 free_page((unsigned long)gib);
3256 gib = NULL;
3257 out:
3258 return rc;
3259 }
3260