1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2019 Western Digital Corporation or its affiliates.
4  *
5  * Authors:
6  *     Atish Patra <atish.patra@wdc.com>
7  */
8 
9 #include <linux/errno.h>
10 #include <linux/err.h>
11 #include <linux/kvm_host.h>
12 #include <linux/uaccess.h>
13 #include <clocksource/timer-riscv.h>
14 #include <asm/csr.h>
15 #include <asm/delay.h>
16 #include <asm/kvm_vcpu_timer.h>
17 
kvm_riscv_current_cycles(struct kvm_guest_timer * gt)18 static u64 kvm_riscv_current_cycles(struct kvm_guest_timer *gt)
19 {
20 	return get_cycles64() + gt->time_delta;
21 }
22 
kvm_riscv_delta_cycles2ns(u64 cycles,struct kvm_guest_timer * gt,struct kvm_vcpu_timer * t)23 static u64 kvm_riscv_delta_cycles2ns(u64 cycles,
24 				     struct kvm_guest_timer *gt,
25 				     struct kvm_vcpu_timer *t)
26 {
27 	unsigned long flags;
28 	u64 cycles_now, cycles_delta, delta_ns;
29 
30 	local_irq_save(flags);
31 	cycles_now = kvm_riscv_current_cycles(gt);
32 	if (cycles_now < cycles)
33 		cycles_delta = cycles - cycles_now;
34 	else
35 		cycles_delta = 0;
36 	delta_ns = (cycles_delta * gt->nsec_mult) >> gt->nsec_shift;
37 	local_irq_restore(flags);
38 
39 	return delta_ns;
40 }
41 
kvm_riscv_vcpu_hrtimer_expired(struct hrtimer * h)42 static enum hrtimer_restart kvm_riscv_vcpu_hrtimer_expired(struct hrtimer *h)
43 {
44 	u64 delta_ns;
45 	struct kvm_vcpu_timer *t = container_of(h, struct kvm_vcpu_timer, hrt);
46 	struct kvm_vcpu *vcpu = container_of(t, struct kvm_vcpu, arch.timer);
47 	struct kvm_guest_timer *gt = &vcpu->kvm->arch.timer;
48 
49 	if (kvm_riscv_current_cycles(gt) < t->next_cycles) {
50 		delta_ns = kvm_riscv_delta_cycles2ns(t->next_cycles, gt, t);
51 		hrtimer_forward_now(&t->hrt, ktime_set(0, delta_ns));
52 		return HRTIMER_RESTART;
53 	}
54 
55 	t->next_set = false;
56 	kvm_riscv_vcpu_set_interrupt(vcpu, IRQ_VS_TIMER);
57 
58 	return HRTIMER_NORESTART;
59 }
60 
kvm_riscv_vcpu_timer_cancel(struct kvm_vcpu_timer * t)61 static int kvm_riscv_vcpu_timer_cancel(struct kvm_vcpu_timer *t)
62 {
63 	if (!t->init_done || !t->next_set)
64 		return -EINVAL;
65 
66 	hrtimer_cancel(&t->hrt);
67 	t->next_set = false;
68 
69 	return 0;
70 }
71 
kvm_riscv_vcpu_update_vstimecmp(struct kvm_vcpu * vcpu,u64 ncycles)72 static int kvm_riscv_vcpu_update_vstimecmp(struct kvm_vcpu *vcpu, u64 ncycles)
73 {
74 #if defined(CONFIG_32BIT)
75 		csr_write(CSR_VSTIMECMP, ncycles & 0xFFFFFFFF);
76 		csr_write(CSR_VSTIMECMPH, ncycles >> 32);
77 #else
78 		csr_write(CSR_VSTIMECMP, ncycles);
79 #endif
80 		return 0;
81 }
82 
kvm_riscv_vcpu_update_hrtimer(struct kvm_vcpu * vcpu,u64 ncycles)83 static int kvm_riscv_vcpu_update_hrtimer(struct kvm_vcpu *vcpu, u64 ncycles)
84 {
85 	struct kvm_vcpu_timer *t = &vcpu->arch.timer;
86 	struct kvm_guest_timer *gt = &vcpu->kvm->arch.timer;
87 	u64 delta_ns;
88 
89 	if (!t->init_done)
90 		return -EINVAL;
91 
92 	kvm_riscv_vcpu_unset_interrupt(vcpu, IRQ_VS_TIMER);
93 
94 	delta_ns = kvm_riscv_delta_cycles2ns(ncycles, gt, t);
95 	t->next_cycles = ncycles;
96 	hrtimer_start(&t->hrt, ktime_set(0, delta_ns), HRTIMER_MODE_REL);
97 	t->next_set = true;
98 
99 	return 0;
100 }
101 
kvm_riscv_vcpu_timer_next_event(struct kvm_vcpu * vcpu,u64 ncycles)102 int kvm_riscv_vcpu_timer_next_event(struct kvm_vcpu *vcpu, u64 ncycles)
103 {
104 	struct kvm_vcpu_timer *t = &vcpu->arch.timer;
105 
106 	return t->timer_next_event(vcpu, ncycles);
107 }
108 
kvm_riscv_vcpu_vstimer_expired(struct hrtimer * h)109 static enum hrtimer_restart kvm_riscv_vcpu_vstimer_expired(struct hrtimer *h)
110 {
111 	u64 delta_ns;
112 	struct kvm_vcpu_timer *t = container_of(h, struct kvm_vcpu_timer, hrt);
113 	struct kvm_vcpu *vcpu = container_of(t, struct kvm_vcpu, arch.timer);
114 	struct kvm_guest_timer *gt = &vcpu->kvm->arch.timer;
115 
116 	if (kvm_riscv_current_cycles(gt) < t->next_cycles) {
117 		delta_ns = kvm_riscv_delta_cycles2ns(t->next_cycles, gt, t);
118 		hrtimer_forward_now(&t->hrt, ktime_set(0, delta_ns));
119 		return HRTIMER_RESTART;
120 	}
121 
122 	t->next_set = false;
123 	kvm_vcpu_kick(vcpu);
124 
125 	return HRTIMER_NORESTART;
126 }
127 
kvm_riscv_vcpu_timer_pending(struct kvm_vcpu * vcpu)128 bool kvm_riscv_vcpu_timer_pending(struct kvm_vcpu *vcpu)
129 {
130 	struct kvm_vcpu_timer *t = &vcpu->arch.timer;
131 	struct kvm_guest_timer *gt = &vcpu->kvm->arch.timer;
132 
133 	if (!kvm_riscv_delta_cycles2ns(t->next_cycles, gt, t) ||
134 	    kvm_riscv_vcpu_has_interrupts(vcpu, 1UL << IRQ_VS_TIMER))
135 		return true;
136 	else
137 		return false;
138 }
139 
kvm_riscv_vcpu_timer_blocking(struct kvm_vcpu * vcpu)140 static void kvm_riscv_vcpu_timer_blocking(struct kvm_vcpu *vcpu)
141 {
142 	struct kvm_vcpu_timer *t = &vcpu->arch.timer;
143 	struct kvm_guest_timer *gt = &vcpu->kvm->arch.timer;
144 	u64 delta_ns;
145 
146 	if (!t->init_done)
147 		return;
148 
149 	delta_ns = kvm_riscv_delta_cycles2ns(t->next_cycles, gt, t);
150 	if (delta_ns) {
151 		hrtimer_start(&t->hrt, ktime_set(0, delta_ns), HRTIMER_MODE_REL);
152 		t->next_set = true;
153 	}
154 }
155 
kvm_riscv_vcpu_timer_unblocking(struct kvm_vcpu * vcpu)156 static void kvm_riscv_vcpu_timer_unblocking(struct kvm_vcpu *vcpu)
157 {
158 	kvm_riscv_vcpu_timer_cancel(&vcpu->arch.timer);
159 }
160 
kvm_riscv_vcpu_get_reg_timer(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)161 int kvm_riscv_vcpu_get_reg_timer(struct kvm_vcpu *vcpu,
162 				 const struct kvm_one_reg *reg)
163 {
164 	struct kvm_vcpu_timer *t = &vcpu->arch.timer;
165 	struct kvm_guest_timer *gt = &vcpu->kvm->arch.timer;
166 	u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr;
167 	unsigned long reg_num = reg->id & ~(KVM_REG_ARCH_MASK |
168 					    KVM_REG_SIZE_MASK |
169 					    KVM_REG_RISCV_TIMER);
170 	u64 reg_val;
171 
172 	if (KVM_REG_SIZE(reg->id) != sizeof(u64))
173 		return -EINVAL;
174 	if (reg_num >= sizeof(struct kvm_riscv_timer) / sizeof(u64))
175 		return -EINVAL;
176 
177 	switch (reg_num) {
178 	case KVM_REG_RISCV_TIMER_REG(frequency):
179 		reg_val = riscv_timebase;
180 		break;
181 	case KVM_REG_RISCV_TIMER_REG(time):
182 		reg_val = kvm_riscv_current_cycles(gt);
183 		break;
184 	case KVM_REG_RISCV_TIMER_REG(compare):
185 		reg_val = t->next_cycles;
186 		break;
187 	case KVM_REG_RISCV_TIMER_REG(state):
188 		reg_val = (t->next_set) ? KVM_RISCV_TIMER_STATE_ON :
189 					  KVM_RISCV_TIMER_STATE_OFF;
190 		break;
191 	default:
192 		return -EINVAL;
193 	}
194 
195 	if (copy_to_user(uaddr, &reg_val, KVM_REG_SIZE(reg->id)))
196 		return -EFAULT;
197 
198 	return 0;
199 }
200 
kvm_riscv_vcpu_set_reg_timer(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)201 int kvm_riscv_vcpu_set_reg_timer(struct kvm_vcpu *vcpu,
202 				 const struct kvm_one_reg *reg)
203 {
204 	struct kvm_vcpu_timer *t = &vcpu->arch.timer;
205 	struct kvm_guest_timer *gt = &vcpu->kvm->arch.timer;
206 	u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr;
207 	unsigned long reg_num = reg->id & ~(KVM_REG_ARCH_MASK |
208 					    KVM_REG_SIZE_MASK |
209 					    KVM_REG_RISCV_TIMER);
210 	u64 reg_val;
211 	int ret = 0;
212 
213 	if (KVM_REG_SIZE(reg->id) != sizeof(u64))
214 		return -EINVAL;
215 	if (reg_num >= sizeof(struct kvm_riscv_timer) / sizeof(u64))
216 		return -EINVAL;
217 
218 	if (copy_from_user(&reg_val, uaddr, KVM_REG_SIZE(reg->id)))
219 		return -EFAULT;
220 
221 	switch (reg_num) {
222 	case KVM_REG_RISCV_TIMER_REG(frequency):
223 		ret = -EOPNOTSUPP;
224 		break;
225 	case KVM_REG_RISCV_TIMER_REG(time):
226 		gt->time_delta = reg_val - get_cycles64();
227 		break;
228 	case KVM_REG_RISCV_TIMER_REG(compare):
229 		t->next_cycles = reg_val;
230 		break;
231 	case KVM_REG_RISCV_TIMER_REG(state):
232 		if (reg_val == KVM_RISCV_TIMER_STATE_ON)
233 			ret = kvm_riscv_vcpu_timer_next_event(vcpu, reg_val);
234 		else
235 			ret = kvm_riscv_vcpu_timer_cancel(t);
236 		break;
237 	default:
238 		ret = -EINVAL;
239 		break;
240 	}
241 
242 	return ret;
243 }
244 
kvm_riscv_vcpu_timer_init(struct kvm_vcpu * vcpu)245 int kvm_riscv_vcpu_timer_init(struct kvm_vcpu *vcpu)
246 {
247 	struct kvm_vcpu_timer *t = &vcpu->arch.timer;
248 
249 	if (t->init_done)
250 		return -EINVAL;
251 
252 	hrtimer_init(&t->hrt, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
253 	t->init_done = true;
254 	t->next_set = false;
255 
256 	/* Enable sstc for every vcpu if available in hardware */
257 	if (riscv_isa_extension_available(NULL, SSTC)) {
258 		t->sstc_enabled = true;
259 		t->hrt.function = kvm_riscv_vcpu_vstimer_expired;
260 		t->timer_next_event = kvm_riscv_vcpu_update_vstimecmp;
261 	} else {
262 		t->sstc_enabled = false;
263 		t->hrt.function = kvm_riscv_vcpu_hrtimer_expired;
264 		t->timer_next_event = kvm_riscv_vcpu_update_hrtimer;
265 	}
266 
267 	return 0;
268 }
269 
kvm_riscv_vcpu_timer_deinit(struct kvm_vcpu * vcpu)270 int kvm_riscv_vcpu_timer_deinit(struct kvm_vcpu *vcpu)
271 {
272 	int ret;
273 
274 	ret = kvm_riscv_vcpu_timer_cancel(&vcpu->arch.timer);
275 	vcpu->arch.timer.init_done = false;
276 
277 	return ret;
278 }
279 
kvm_riscv_vcpu_timer_reset(struct kvm_vcpu * vcpu)280 int kvm_riscv_vcpu_timer_reset(struct kvm_vcpu *vcpu)
281 {
282 	struct kvm_vcpu_timer *t = &vcpu->arch.timer;
283 
284 	t->next_cycles = -1ULL;
285 	return kvm_riscv_vcpu_timer_cancel(&vcpu->arch.timer);
286 }
287 
kvm_riscv_vcpu_update_timedelta(struct kvm_vcpu * vcpu)288 static void kvm_riscv_vcpu_update_timedelta(struct kvm_vcpu *vcpu)
289 {
290 	struct kvm_guest_timer *gt = &vcpu->kvm->arch.timer;
291 
292 #if defined(CONFIG_32BIT)
293 	csr_write(CSR_HTIMEDELTA, (u32)(gt->time_delta));
294 	csr_write(CSR_HTIMEDELTAH, (u32)(gt->time_delta >> 32));
295 #else
296 	csr_write(CSR_HTIMEDELTA, gt->time_delta);
297 #endif
298 }
299 
kvm_riscv_vcpu_timer_restore(struct kvm_vcpu * vcpu)300 void kvm_riscv_vcpu_timer_restore(struct kvm_vcpu *vcpu)
301 {
302 	struct kvm_vcpu_timer *t = &vcpu->arch.timer;
303 
304 	kvm_riscv_vcpu_update_timedelta(vcpu);
305 
306 	if (!t->sstc_enabled)
307 		return;
308 
309 #if defined(CONFIG_32BIT)
310 	csr_write(CSR_VSTIMECMP, (u32)t->next_cycles);
311 	csr_write(CSR_VSTIMECMPH, (u32)(t->next_cycles >> 32));
312 #else
313 	csr_write(CSR_VSTIMECMP, t->next_cycles);
314 #endif
315 
316 	/* timer should be enabled for the remaining operations */
317 	if (unlikely(!t->init_done))
318 		return;
319 
320 	kvm_riscv_vcpu_timer_unblocking(vcpu);
321 }
322 
kvm_riscv_vcpu_timer_sync(struct kvm_vcpu * vcpu)323 void kvm_riscv_vcpu_timer_sync(struct kvm_vcpu *vcpu)
324 {
325 	struct kvm_vcpu_timer *t = &vcpu->arch.timer;
326 
327 	if (!t->sstc_enabled)
328 		return;
329 
330 #if defined(CONFIG_32BIT)
331 	t->next_cycles = csr_read(CSR_VSTIMECMP);
332 	t->next_cycles |= (u64)csr_read(CSR_VSTIMECMPH) << 32;
333 #else
334 	t->next_cycles = csr_read(CSR_VSTIMECMP);
335 #endif
336 }
337 
kvm_riscv_vcpu_timer_save(struct kvm_vcpu * vcpu)338 void kvm_riscv_vcpu_timer_save(struct kvm_vcpu *vcpu)
339 {
340 	struct kvm_vcpu_timer *t = &vcpu->arch.timer;
341 
342 	if (!t->sstc_enabled)
343 		return;
344 
345 	/*
346 	 * The vstimecmp CSRs are saved by kvm_riscv_vcpu_timer_sync()
347 	 * upon every VM exit so no need to save here.
348 	 */
349 
350 	/* timer should be enabled for the remaining operations */
351 	if (unlikely(!t->init_done))
352 		return;
353 
354 	if (kvm_vcpu_is_blocking(vcpu))
355 		kvm_riscv_vcpu_timer_blocking(vcpu);
356 }
357 
kvm_riscv_guest_timer_init(struct kvm * kvm)358 void kvm_riscv_guest_timer_init(struct kvm *kvm)
359 {
360 	struct kvm_guest_timer *gt = &kvm->arch.timer;
361 
362 	riscv_cs_get_mult_shift(&gt->nsec_mult, &gt->nsec_shift);
363 	gt->time_delta = -get_cycles64();
364 }
365