1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2019 Western Digital Corporation or its affiliates.
4 *
5 * Authors:
6 * Atish Patra <atish.patra@wdc.com>
7 */
8
9 #include <linux/errno.h>
10 #include <linux/err.h>
11 #include <linux/kvm_host.h>
12 #include <linux/uaccess.h>
13 #include <clocksource/timer-riscv.h>
14 #include <asm/csr.h>
15 #include <asm/delay.h>
16 #include <asm/kvm_vcpu_timer.h>
17
kvm_riscv_current_cycles(struct kvm_guest_timer * gt)18 static u64 kvm_riscv_current_cycles(struct kvm_guest_timer *gt)
19 {
20 return get_cycles64() + gt->time_delta;
21 }
22
kvm_riscv_delta_cycles2ns(u64 cycles,struct kvm_guest_timer * gt,struct kvm_vcpu_timer * t)23 static u64 kvm_riscv_delta_cycles2ns(u64 cycles,
24 struct kvm_guest_timer *gt,
25 struct kvm_vcpu_timer *t)
26 {
27 unsigned long flags;
28 u64 cycles_now, cycles_delta, delta_ns;
29
30 local_irq_save(flags);
31 cycles_now = kvm_riscv_current_cycles(gt);
32 if (cycles_now < cycles)
33 cycles_delta = cycles - cycles_now;
34 else
35 cycles_delta = 0;
36 delta_ns = (cycles_delta * gt->nsec_mult) >> gt->nsec_shift;
37 local_irq_restore(flags);
38
39 return delta_ns;
40 }
41
kvm_riscv_vcpu_hrtimer_expired(struct hrtimer * h)42 static enum hrtimer_restart kvm_riscv_vcpu_hrtimer_expired(struct hrtimer *h)
43 {
44 u64 delta_ns;
45 struct kvm_vcpu_timer *t = container_of(h, struct kvm_vcpu_timer, hrt);
46 struct kvm_vcpu *vcpu = container_of(t, struct kvm_vcpu, arch.timer);
47 struct kvm_guest_timer *gt = &vcpu->kvm->arch.timer;
48
49 if (kvm_riscv_current_cycles(gt) < t->next_cycles) {
50 delta_ns = kvm_riscv_delta_cycles2ns(t->next_cycles, gt, t);
51 hrtimer_forward_now(&t->hrt, ktime_set(0, delta_ns));
52 return HRTIMER_RESTART;
53 }
54
55 t->next_set = false;
56 kvm_riscv_vcpu_set_interrupt(vcpu, IRQ_VS_TIMER);
57
58 return HRTIMER_NORESTART;
59 }
60
kvm_riscv_vcpu_timer_cancel(struct kvm_vcpu_timer * t)61 static int kvm_riscv_vcpu_timer_cancel(struct kvm_vcpu_timer *t)
62 {
63 if (!t->init_done || !t->next_set)
64 return -EINVAL;
65
66 hrtimer_cancel(&t->hrt);
67 t->next_set = false;
68
69 return 0;
70 }
71
kvm_riscv_vcpu_update_vstimecmp(struct kvm_vcpu * vcpu,u64 ncycles)72 static int kvm_riscv_vcpu_update_vstimecmp(struct kvm_vcpu *vcpu, u64 ncycles)
73 {
74 #if defined(CONFIG_32BIT)
75 csr_write(CSR_VSTIMECMP, ncycles & 0xFFFFFFFF);
76 csr_write(CSR_VSTIMECMPH, ncycles >> 32);
77 #else
78 csr_write(CSR_VSTIMECMP, ncycles);
79 #endif
80 return 0;
81 }
82
kvm_riscv_vcpu_update_hrtimer(struct kvm_vcpu * vcpu,u64 ncycles)83 static int kvm_riscv_vcpu_update_hrtimer(struct kvm_vcpu *vcpu, u64 ncycles)
84 {
85 struct kvm_vcpu_timer *t = &vcpu->arch.timer;
86 struct kvm_guest_timer *gt = &vcpu->kvm->arch.timer;
87 u64 delta_ns;
88
89 if (!t->init_done)
90 return -EINVAL;
91
92 kvm_riscv_vcpu_unset_interrupt(vcpu, IRQ_VS_TIMER);
93
94 delta_ns = kvm_riscv_delta_cycles2ns(ncycles, gt, t);
95 t->next_cycles = ncycles;
96 hrtimer_start(&t->hrt, ktime_set(0, delta_ns), HRTIMER_MODE_REL);
97 t->next_set = true;
98
99 return 0;
100 }
101
kvm_riscv_vcpu_timer_next_event(struct kvm_vcpu * vcpu,u64 ncycles)102 int kvm_riscv_vcpu_timer_next_event(struct kvm_vcpu *vcpu, u64 ncycles)
103 {
104 struct kvm_vcpu_timer *t = &vcpu->arch.timer;
105
106 return t->timer_next_event(vcpu, ncycles);
107 }
108
kvm_riscv_vcpu_vstimer_expired(struct hrtimer * h)109 static enum hrtimer_restart kvm_riscv_vcpu_vstimer_expired(struct hrtimer *h)
110 {
111 u64 delta_ns;
112 struct kvm_vcpu_timer *t = container_of(h, struct kvm_vcpu_timer, hrt);
113 struct kvm_vcpu *vcpu = container_of(t, struct kvm_vcpu, arch.timer);
114 struct kvm_guest_timer *gt = &vcpu->kvm->arch.timer;
115
116 if (kvm_riscv_current_cycles(gt) < t->next_cycles) {
117 delta_ns = kvm_riscv_delta_cycles2ns(t->next_cycles, gt, t);
118 hrtimer_forward_now(&t->hrt, ktime_set(0, delta_ns));
119 return HRTIMER_RESTART;
120 }
121
122 t->next_set = false;
123 kvm_vcpu_kick(vcpu);
124
125 return HRTIMER_NORESTART;
126 }
127
kvm_riscv_vcpu_timer_pending(struct kvm_vcpu * vcpu)128 bool kvm_riscv_vcpu_timer_pending(struct kvm_vcpu *vcpu)
129 {
130 struct kvm_vcpu_timer *t = &vcpu->arch.timer;
131 struct kvm_guest_timer *gt = &vcpu->kvm->arch.timer;
132
133 if (!kvm_riscv_delta_cycles2ns(t->next_cycles, gt, t) ||
134 kvm_riscv_vcpu_has_interrupts(vcpu, 1UL << IRQ_VS_TIMER))
135 return true;
136 else
137 return false;
138 }
139
kvm_riscv_vcpu_timer_blocking(struct kvm_vcpu * vcpu)140 static void kvm_riscv_vcpu_timer_blocking(struct kvm_vcpu *vcpu)
141 {
142 struct kvm_vcpu_timer *t = &vcpu->arch.timer;
143 struct kvm_guest_timer *gt = &vcpu->kvm->arch.timer;
144 u64 delta_ns;
145
146 if (!t->init_done)
147 return;
148
149 delta_ns = kvm_riscv_delta_cycles2ns(t->next_cycles, gt, t);
150 if (delta_ns) {
151 hrtimer_start(&t->hrt, ktime_set(0, delta_ns), HRTIMER_MODE_REL);
152 t->next_set = true;
153 }
154 }
155
kvm_riscv_vcpu_timer_unblocking(struct kvm_vcpu * vcpu)156 static void kvm_riscv_vcpu_timer_unblocking(struct kvm_vcpu *vcpu)
157 {
158 kvm_riscv_vcpu_timer_cancel(&vcpu->arch.timer);
159 }
160
kvm_riscv_vcpu_get_reg_timer(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)161 int kvm_riscv_vcpu_get_reg_timer(struct kvm_vcpu *vcpu,
162 const struct kvm_one_reg *reg)
163 {
164 struct kvm_vcpu_timer *t = &vcpu->arch.timer;
165 struct kvm_guest_timer *gt = &vcpu->kvm->arch.timer;
166 u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr;
167 unsigned long reg_num = reg->id & ~(KVM_REG_ARCH_MASK |
168 KVM_REG_SIZE_MASK |
169 KVM_REG_RISCV_TIMER);
170 u64 reg_val;
171
172 if (KVM_REG_SIZE(reg->id) != sizeof(u64))
173 return -EINVAL;
174 if (reg_num >= sizeof(struct kvm_riscv_timer) / sizeof(u64))
175 return -EINVAL;
176
177 switch (reg_num) {
178 case KVM_REG_RISCV_TIMER_REG(frequency):
179 reg_val = riscv_timebase;
180 break;
181 case KVM_REG_RISCV_TIMER_REG(time):
182 reg_val = kvm_riscv_current_cycles(gt);
183 break;
184 case KVM_REG_RISCV_TIMER_REG(compare):
185 reg_val = t->next_cycles;
186 break;
187 case KVM_REG_RISCV_TIMER_REG(state):
188 reg_val = (t->next_set) ? KVM_RISCV_TIMER_STATE_ON :
189 KVM_RISCV_TIMER_STATE_OFF;
190 break;
191 default:
192 return -EINVAL;
193 }
194
195 if (copy_to_user(uaddr, ®_val, KVM_REG_SIZE(reg->id)))
196 return -EFAULT;
197
198 return 0;
199 }
200
kvm_riscv_vcpu_set_reg_timer(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)201 int kvm_riscv_vcpu_set_reg_timer(struct kvm_vcpu *vcpu,
202 const struct kvm_one_reg *reg)
203 {
204 struct kvm_vcpu_timer *t = &vcpu->arch.timer;
205 struct kvm_guest_timer *gt = &vcpu->kvm->arch.timer;
206 u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr;
207 unsigned long reg_num = reg->id & ~(KVM_REG_ARCH_MASK |
208 KVM_REG_SIZE_MASK |
209 KVM_REG_RISCV_TIMER);
210 u64 reg_val;
211 int ret = 0;
212
213 if (KVM_REG_SIZE(reg->id) != sizeof(u64))
214 return -EINVAL;
215 if (reg_num >= sizeof(struct kvm_riscv_timer) / sizeof(u64))
216 return -EINVAL;
217
218 if (copy_from_user(®_val, uaddr, KVM_REG_SIZE(reg->id)))
219 return -EFAULT;
220
221 switch (reg_num) {
222 case KVM_REG_RISCV_TIMER_REG(frequency):
223 ret = -EOPNOTSUPP;
224 break;
225 case KVM_REG_RISCV_TIMER_REG(time):
226 gt->time_delta = reg_val - get_cycles64();
227 break;
228 case KVM_REG_RISCV_TIMER_REG(compare):
229 t->next_cycles = reg_val;
230 break;
231 case KVM_REG_RISCV_TIMER_REG(state):
232 if (reg_val == KVM_RISCV_TIMER_STATE_ON)
233 ret = kvm_riscv_vcpu_timer_next_event(vcpu, reg_val);
234 else
235 ret = kvm_riscv_vcpu_timer_cancel(t);
236 break;
237 default:
238 ret = -EINVAL;
239 break;
240 }
241
242 return ret;
243 }
244
kvm_riscv_vcpu_timer_init(struct kvm_vcpu * vcpu)245 int kvm_riscv_vcpu_timer_init(struct kvm_vcpu *vcpu)
246 {
247 struct kvm_vcpu_timer *t = &vcpu->arch.timer;
248
249 if (t->init_done)
250 return -EINVAL;
251
252 hrtimer_init(&t->hrt, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
253 t->init_done = true;
254 t->next_set = false;
255
256 /* Enable sstc for every vcpu if available in hardware */
257 if (riscv_isa_extension_available(NULL, SSTC)) {
258 t->sstc_enabled = true;
259 t->hrt.function = kvm_riscv_vcpu_vstimer_expired;
260 t->timer_next_event = kvm_riscv_vcpu_update_vstimecmp;
261 } else {
262 t->sstc_enabled = false;
263 t->hrt.function = kvm_riscv_vcpu_hrtimer_expired;
264 t->timer_next_event = kvm_riscv_vcpu_update_hrtimer;
265 }
266
267 return 0;
268 }
269
kvm_riscv_vcpu_timer_deinit(struct kvm_vcpu * vcpu)270 int kvm_riscv_vcpu_timer_deinit(struct kvm_vcpu *vcpu)
271 {
272 int ret;
273
274 ret = kvm_riscv_vcpu_timer_cancel(&vcpu->arch.timer);
275 vcpu->arch.timer.init_done = false;
276
277 return ret;
278 }
279
kvm_riscv_vcpu_timer_reset(struct kvm_vcpu * vcpu)280 int kvm_riscv_vcpu_timer_reset(struct kvm_vcpu *vcpu)
281 {
282 struct kvm_vcpu_timer *t = &vcpu->arch.timer;
283
284 t->next_cycles = -1ULL;
285 return kvm_riscv_vcpu_timer_cancel(&vcpu->arch.timer);
286 }
287
kvm_riscv_vcpu_update_timedelta(struct kvm_vcpu * vcpu)288 static void kvm_riscv_vcpu_update_timedelta(struct kvm_vcpu *vcpu)
289 {
290 struct kvm_guest_timer *gt = &vcpu->kvm->arch.timer;
291
292 #if defined(CONFIG_32BIT)
293 csr_write(CSR_HTIMEDELTA, (u32)(gt->time_delta));
294 csr_write(CSR_HTIMEDELTAH, (u32)(gt->time_delta >> 32));
295 #else
296 csr_write(CSR_HTIMEDELTA, gt->time_delta);
297 #endif
298 }
299
kvm_riscv_vcpu_timer_restore(struct kvm_vcpu * vcpu)300 void kvm_riscv_vcpu_timer_restore(struct kvm_vcpu *vcpu)
301 {
302 struct kvm_vcpu_timer *t = &vcpu->arch.timer;
303
304 kvm_riscv_vcpu_update_timedelta(vcpu);
305
306 if (!t->sstc_enabled)
307 return;
308
309 #if defined(CONFIG_32BIT)
310 csr_write(CSR_VSTIMECMP, (u32)t->next_cycles);
311 csr_write(CSR_VSTIMECMPH, (u32)(t->next_cycles >> 32));
312 #else
313 csr_write(CSR_VSTIMECMP, t->next_cycles);
314 #endif
315
316 /* timer should be enabled for the remaining operations */
317 if (unlikely(!t->init_done))
318 return;
319
320 kvm_riscv_vcpu_timer_unblocking(vcpu);
321 }
322
kvm_riscv_vcpu_timer_sync(struct kvm_vcpu * vcpu)323 void kvm_riscv_vcpu_timer_sync(struct kvm_vcpu *vcpu)
324 {
325 struct kvm_vcpu_timer *t = &vcpu->arch.timer;
326
327 if (!t->sstc_enabled)
328 return;
329
330 #if defined(CONFIG_32BIT)
331 t->next_cycles = csr_read(CSR_VSTIMECMP);
332 t->next_cycles |= (u64)csr_read(CSR_VSTIMECMPH) << 32;
333 #else
334 t->next_cycles = csr_read(CSR_VSTIMECMP);
335 #endif
336 }
337
kvm_riscv_vcpu_timer_save(struct kvm_vcpu * vcpu)338 void kvm_riscv_vcpu_timer_save(struct kvm_vcpu *vcpu)
339 {
340 struct kvm_vcpu_timer *t = &vcpu->arch.timer;
341
342 if (!t->sstc_enabled)
343 return;
344
345 /*
346 * The vstimecmp CSRs are saved by kvm_riscv_vcpu_timer_sync()
347 * upon every VM exit so no need to save here.
348 */
349
350 /* timer should be enabled for the remaining operations */
351 if (unlikely(!t->init_done))
352 return;
353
354 if (kvm_vcpu_is_blocking(vcpu))
355 kvm_riscv_vcpu_timer_blocking(vcpu);
356 }
357
kvm_riscv_guest_timer_init(struct kvm * kvm)358 void kvm_riscv_guest_timer_init(struct kvm *kvm)
359 {
360 struct kvm_guest_timer *gt = &kvm->arch.timer;
361
362 riscv_cs_get_mult_shift(>->nsec_mult, >->nsec_shift);
363 gt->time_delta = -get_cycles64();
364 }
365