1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2012,2013 - ARM Ltd
4 * Author: Marc Zyngier <marc.zyngier@arm.com>
5 *
6 * Derived from arch/arm/kvm/coproc.c:
7 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8 * Authors: Rusty Russell <rusty@rustcorp.com.au>
9 * Christoffer Dall <c.dall@virtualopensystems.com>
10 */
11
12 #include <linux/bsearch.h>
13 #include <linux/kvm_host.h>
14 #include <linux/mm.h>
15 #include <linux/printk.h>
16 #include <linux/uaccess.h>
17
18 #include <asm/cacheflush.h>
19 #include <asm/cputype.h>
20 #include <asm/debug-monitors.h>
21 #include <asm/esr.h>
22 #include <asm/kvm_arm.h>
23 #include <asm/kvm_coproc.h>
24 #include <asm/kvm_emulate.h>
25 #include <asm/kvm_hyp.h>
26 #include <asm/kvm_mmu.h>
27 #include <asm/perf_event.h>
28 #include <asm/sysreg.h>
29
30 #include <trace/events/kvm.h>
31
32 #include "sys_regs.h"
33
34 #include "trace.h"
35
36 /*
37 * All of this file is extremely similar to the ARM coproc.c, but the
38 * types are different. My gut feeling is that it should be pretty
39 * easy to merge, but that would be an ABI breakage -- again. VFP
40 * would also need to be abstracted.
41 *
42 * For AArch32, we only take care of what is being trapped. Anything
43 * that has to do with init and userspace access has to go via the
44 * 64bit interface.
45 */
46
read_from_write_only(struct kvm_vcpu * vcpu,struct sys_reg_params * params,const struct sys_reg_desc * r)47 static bool read_from_write_only(struct kvm_vcpu *vcpu,
48 struct sys_reg_params *params,
49 const struct sys_reg_desc *r)
50 {
51 WARN_ONCE(1, "Unexpected sys_reg read to write-only register\n");
52 print_sys_reg_instr(params);
53 kvm_inject_undefined(vcpu);
54 return false;
55 }
56
write_to_read_only(struct kvm_vcpu * vcpu,struct sys_reg_params * params,const struct sys_reg_desc * r)57 static bool write_to_read_only(struct kvm_vcpu *vcpu,
58 struct sys_reg_params *params,
59 const struct sys_reg_desc *r)
60 {
61 WARN_ONCE(1, "Unexpected sys_reg write to read-only register\n");
62 print_sys_reg_instr(params);
63 kvm_inject_undefined(vcpu);
64 return false;
65 }
66
__vcpu_read_sys_reg_from_cpu(int reg,u64 * val)67 static bool __vcpu_read_sys_reg_from_cpu(int reg, u64 *val)
68 {
69 /*
70 * System registers listed in the switch are not saved on every
71 * exit from the guest but are only saved on vcpu_put.
72 *
73 * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
74 * should never be listed below, because the guest cannot modify its
75 * own MPIDR_EL1 and MPIDR_EL1 is accessed for VCPU A from VCPU B's
76 * thread when emulating cross-VCPU communication.
77 */
78 switch (reg) {
79 case CSSELR_EL1: *val = read_sysreg_s(SYS_CSSELR_EL1); break;
80 case SCTLR_EL1: *val = read_sysreg_s(SYS_SCTLR_EL12); break;
81 case CPACR_EL1: *val = read_sysreg_s(SYS_CPACR_EL12); break;
82 case TTBR0_EL1: *val = read_sysreg_s(SYS_TTBR0_EL12); break;
83 case TTBR1_EL1: *val = read_sysreg_s(SYS_TTBR1_EL12); break;
84 case TCR_EL1: *val = read_sysreg_s(SYS_TCR_EL12); break;
85 case ESR_EL1: *val = read_sysreg_s(SYS_ESR_EL12); break;
86 case AFSR0_EL1: *val = read_sysreg_s(SYS_AFSR0_EL12); break;
87 case AFSR1_EL1: *val = read_sysreg_s(SYS_AFSR1_EL12); break;
88 case FAR_EL1: *val = read_sysreg_s(SYS_FAR_EL12); break;
89 case MAIR_EL1: *val = read_sysreg_s(SYS_MAIR_EL12); break;
90 case VBAR_EL1: *val = read_sysreg_s(SYS_VBAR_EL12); break;
91 case CONTEXTIDR_EL1: *val = read_sysreg_s(SYS_CONTEXTIDR_EL12);break;
92 case TPIDR_EL0: *val = read_sysreg_s(SYS_TPIDR_EL0); break;
93 case TPIDRRO_EL0: *val = read_sysreg_s(SYS_TPIDRRO_EL0); break;
94 case TPIDR_EL1: *val = read_sysreg_s(SYS_TPIDR_EL1); break;
95 case AMAIR_EL1: *val = read_sysreg_s(SYS_AMAIR_EL12); break;
96 case CNTKCTL_EL1: *val = read_sysreg_s(SYS_CNTKCTL_EL12); break;
97 case ELR_EL1: *val = read_sysreg_s(SYS_ELR_EL12); break;
98 case PAR_EL1: *val = read_sysreg_par(); break;
99 case DACR32_EL2: *val = read_sysreg_s(SYS_DACR32_EL2); break;
100 case IFSR32_EL2: *val = read_sysreg_s(SYS_IFSR32_EL2); break;
101 case DBGVCR32_EL2: *val = read_sysreg_s(SYS_DBGVCR32_EL2); break;
102 default: return false;
103 }
104
105 return true;
106 }
107
__vcpu_write_sys_reg_to_cpu(u64 val,int reg)108 static bool __vcpu_write_sys_reg_to_cpu(u64 val, int reg)
109 {
110 /*
111 * System registers listed in the switch are not restored on every
112 * entry to the guest but are only restored on vcpu_load.
113 *
114 * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
115 * should never be listed below, because the MPIDR should only be set
116 * once, before running the VCPU, and never changed later.
117 */
118 switch (reg) {
119 case CSSELR_EL1: write_sysreg_s(val, SYS_CSSELR_EL1); break;
120 case SCTLR_EL1: write_sysreg_s(val, SYS_SCTLR_EL12); break;
121 case CPACR_EL1: write_sysreg_s(val, SYS_CPACR_EL12); break;
122 case TTBR0_EL1: write_sysreg_s(val, SYS_TTBR0_EL12); break;
123 case TTBR1_EL1: write_sysreg_s(val, SYS_TTBR1_EL12); break;
124 case TCR_EL1: write_sysreg_s(val, SYS_TCR_EL12); break;
125 case ESR_EL1: write_sysreg_s(val, SYS_ESR_EL12); break;
126 case AFSR0_EL1: write_sysreg_s(val, SYS_AFSR0_EL12); break;
127 case AFSR1_EL1: write_sysreg_s(val, SYS_AFSR1_EL12); break;
128 case FAR_EL1: write_sysreg_s(val, SYS_FAR_EL12); break;
129 case MAIR_EL1: write_sysreg_s(val, SYS_MAIR_EL12); break;
130 case VBAR_EL1: write_sysreg_s(val, SYS_VBAR_EL12); break;
131 case CONTEXTIDR_EL1: write_sysreg_s(val, SYS_CONTEXTIDR_EL12);break;
132 case TPIDR_EL0: write_sysreg_s(val, SYS_TPIDR_EL0); break;
133 case TPIDRRO_EL0: write_sysreg_s(val, SYS_TPIDRRO_EL0); break;
134 case TPIDR_EL1: write_sysreg_s(val, SYS_TPIDR_EL1); break;
135 case AMAIR_EL1: write_sysreg_s(val, SYS_AMAIR_EL12); break;
136 case CNTKCTL_EL1: write_sysreg_s(val, SYS_CNTKCTL_EL12); break;
137 case ELR_EL1: write_sysreg_s(val, SYS_ELR_EL12); break;
138 case PAR_EL1: write_sysreg_s(val, SYS_PAR_EL1); break;
139 case DACR32_EL2: write_sysreg_s(val, SYS_DACR32_EL2); break;
140 case IFSR32_EL2: write_sysreg_s(val, SYS_IFSR32_EL2); break;
141 case DBGVCR32_EL2: write_sysreg_s(val, SYS_DBGVCR32_EL2); break;
142 default: return false;
143 }
144
145 return true;
146 }
147
vcpu_read_sys_reg(const struct kvm_vcpu * vcpu,int reg)148 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg)
149 {
150 u64 val = 0x8badf00d8badf00d;
151
152 if (vcpu->arch.sysregs_loaded_on_cpu &&
153 __vcpu_read_sys_reg_from_cpu(reg, &val))
154 return val;
155
156 return __vcpu_sys_reg(vcpu, reg);
157 }
158
vcpu_write_sys_reg(struct kvm_vcpu * vcpu,u64 val,int reg)159 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg)
160 {
161 if (vcpu->arch.sysregs_loaded_on_cpu &&
162 __vcpu_write_sys_reg_to_cpu(val, reg))
163 return;
164
165 __vcpu_sys_reg(vcpu, reg) = val;
166 }
167
168 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
169 static u32 cache_levels;
170
171 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
172 #define CSSELR_MAX 12
173
174 /* Which cache CCSIDR represents depends on CSSELR value. */
get_ccsidr(u32 csselr)175 static u32 get_ccsidr(u32 csselr)
176 {
177 u32 ccsidr;
178
179 /* Make sure noone else changes CSSELR during this! */
180 local_irq_disable();
181 write_sysreg(csselr, csselr_el1);
182 isb();
183 ccsidr = read_sysreg(ccsidr_el1);
184 local_irq_enable();
185
186 return ccsidr;
187 }
188
189 /*
190 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
191 */
access_dcsw(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)192 static bool access_dcsw(struct kvm_vcpu *vcpu,
193 struct sys_reg_params *p,
194 const struct sys_reg_desc *r)
195 {
196 if (!p->is_write)
197 return read_from_write_only(vcpu, p, r);
198
199 /*
200 * Only track S/W ops if we don't have FWB. It still indicates
201 * that the guest is a bit broken (S/W operations should only
202 * be done by firmware, knowing that there is only a single
203 * CPU left in the system, and certainly not from non-secure
204 * software).
205 */
206 if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
207 kvm_set_way_flush(vcpu);
208
209 return true;
210 }
211
212 /*
213 * Generic accessor for VM registers. Only called as long as HCR_TVM
214 * is set. If the guest enables the MMU, we stop trapping the VM
215 * sys_regs and leave it in complete control of the caches.
216 */
access_vm_reg(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)217 static bool access_vm_reg(struct kvm_vcpu *vcpu,
218 struct sys_reg_params *p,
219 const struct sys_reg_desc *r)
220 {
221 bool was_enabled = vcpu_has_cache_enabled(vcpu);
222 u64 val;
223 int reg = r->reg;
224
225 BUG_ON(!p->is_write);
226
227 /* See the 32bit mapping in kvm_host.h */
228 if (p->is_aarch32)
229 reg = r->reg / 2;
230
231 if (!p->is_aarch32 || !p->is_32bit) {
232 val = p->regval;
233 } else {
234 val = vcpu_read_sys_reg(vcpu, reg);
235 if (r->reg % 2)
236 val = (p->regval << 32) | (u64)lower_32_bits(val);
237 else
238 val = ((u64)upper_32_bits(val) << 32) |
239 lower_32_bits(p->regval);
240 }
241 vcpu_write_sys_reg(vcpu, val, reg);
242
243 kvm_toggle_cache(vcpu, was_enabled);
244 return true;
245 }
246
access_actlr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)247 static bool access_actlr(struct kvm_vcpu *vcpu,
248 struct sys_reg_params *p,
249 const struct sys_reg_desc *r)
250 {
251 if (p->is_write)
252 return ignore_write(vcpu, p);
253
254 p->regval = vcpu_read_sys_reg(vcpu, ACTLR_EL1);
255
256 if (p->is_aarch32) {
257 if (r->Op2 & 2)
258 p->regval = upper_32_bits(p->regval);
259 else
260 p->regval = lower_32_bits(p->regval);
261 }
262
263 return true;
264 }
265
266 /*
267 * Trap handler for the GICv3 SGI generation system register.
268 * Forward the request to the VGIC emulation.
269 * The cp15_64 code makes sure this automatically works
270 * for both AArch64 and AArch32 accesses.
271 */
access_gic_sgi(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)272 static bool access_gic_sgi(struct kvm_vcpu *vcpu,
273 struct sys_reg_params *p,
274 const struct sys_reg_desc *r)
275 {
276 bool g1;
277
278 if (!p->is_write)
279 return read_from_write_only(vcpu, p, r);
280
281 /*
282 * In a system where GICD_CTLR.DS=1, a ICC_SGI0R_EL1 access generates
283 * Group0 SGIs only, while ICC_SGI1R_EL1 can generate either group,
284 * depending on the SGI configuration. ICC_ASGI1R_EL1 is effectively
285 * equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure
286 * group.
287 */
288 if (p->is_aarch32) {
289 switch (p->Op1) {
290 default: /* Keep GCC quiet */
291 case 0: /* ICC_SGI1R */
292 g1 = true;
293 break;
294 case 1: /* ICC_ASGI1R */
295 case 2: /* ICC_SGI0R */
296 g1 = false;
297 break;
298 }
299 } else {
300 switch (p->Op2) {
301 default: /* Keep GCC quiet */
302 case 5: /* ICC_SGI1R_EL1 */
303 g1 = true;
304 break;
305 case 6: /* ICC_ASGI1R_EL1 */
306 case 7: /* ICC_SGI0R_EL1 */
307 g1 = false;
308 break;
309 }
310 }
311
312 vgic_v3_dispatch_sgi(vcpu, p->regval, g1);
313
314 return true;
315 }
316
access_gic_sre(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)317 static bool access_gic_sre(struct kvm_vcpu *vcpu,
318 struct sys_reg_params *p,
319 const struct sys_reg_desc *r)
320 {
321 if (p->is_write)
322 return ignore_write(vcpu, p);
323
324 p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
325 return true;
326 }
327
trap_raz_wi(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)328 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
329 struct sys_reg_params *p,
330 const struct sys_reg_desc *r)
331 {
332 if (p->is_write)
333 return ignore_write(vcpu, p);
334 else
335 return read_zero(vcpu, p);
336 }
337
338 /*
339 * ARMv8.1 mandates at least a trivial LORegion implementation, where all the
340 * RW registers are RES0 (which we can implement as RAZ/WI). On an ARMv8.0
341 * system, these registers should UNDEF. LORID_EL1 being a RO register, we
342 * treat it separately.
343 */
trap_loregion(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)344 static bool trap_loregion(struct kvm_vcpu *vcpu,
345 struct sys_reg_params *p,
346 const struct sys_reg_desc *r)
347 {
348 u64 val = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
349 u32 sr = sys_reg((u32)r->Op0, (u32)r->Op1,
350 (u32)r->CRn, (u32)r->CRm, (u32)r->Op2);
351
352 if (!(val & (0xfUL << ID_AA64MMFR1_LOR_SHIFT))) {
353 kvm_inject_undefined(vcpu);
354 return false;
355 }
356
357 if (p->is_write && sr == SYS_LORID_EL1)
358 return write_to_read_only(vcpu, p, r);
359
360 return trap_raz_wi(vcpu, p, r);
361 }
362
trap_oslsr_el1(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)363 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
364 struct sys_reg_params *p,
365 const struct sys_reg_desc *r)
366 {
367 if (p->is_write) {
368 return ignore_write(vcpu, p);
369 } else {
370 p->regval = (1 << 3);
371 return true;
372 }
373 }
374
trap_dbgauthstatus_el1(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)375 static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
376 struct sys_reg_params *p,
377 const struct sys_reg_desc *r)
378 {
379 if (p->is_write) {
380 return ignore_write(vcpu, p);
381 } else {
382 p->regval = read_sysreg(dbgauthstatus_el1);
383 return true;
384 }
385 }
386
387 /*
388 * We want to avoid world-switching all the DBG registers all the
389 * time:
390 *
391 * - If we've touched any debug register, it is likely that we're
392 * going to touch more of them. It then makes sense to disable the
393 * traps and start doing the save/restore dance
394 * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
395 * then mandatory to save/restore the registers, as the guest
396 * depends on them.
397 *
398 * For this, we use a DIRTY bit, indicating the guest has modified the
399 * debug registers, used as follow:
400 *
401 * On guest entry:
402 * - If the dirty bit is set (because we're coming back from trapping),
403 * disable the traps, save host registers, restore guest registers.
404 * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
405 * set the dirty bit, disable the traps, save host registers,
406 * restore guest registers.
407 * - Otherwise, enable the traps
408 *
409 * On guest exit:
410 * - If the dirty bit is set, save guest registers, restore host
411 * registers and clear the dirty bit. This ensure that the host can
412 * now use the debug registers.
413 */
trap_debug_regs(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)414 static bool trap_debug_regs(struct kvm_vcpu *vcpu,
415 struct sys_reg_params *p,
416 const struct sys_reg_desc *r)
417 {
418 if (p->is_write) {
419 vcpu_write_sys_reg(vcpu, p->regval, r->reg);
420 vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
421 } else {
422 p->regval = vcpu_read_sys_reg(vcpu, r->reg);
423 }
424
425 trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
426
427 return true;
428 }
429
430 /*
431 * reg_to_dbg/dbg_to_reg
432 *
433 * A 32 bit write to a debug register leave top bits alone
434 * A 32 bit read from a debug register only returns the bottom bits
435 *
436 * All writes will set the KVM_ARM64_DEBUG_DIRTY flag to ensure the
437 * hyp.S code switches between host and guest values in future.
438 */
reg_to_dbg(struct kvm_vcpu * vcpu,struct sys_reg_params * p,u64 * dbg_reg)439 static void reg_to_dbg(struct kvm_vcpu *vcpu,
440 struct sys_reg_params *p,
441 u64 *dbg_reg)
442 {
443 u64 val = p->regval;
444
445 if (p->is_32bit) {
446 val &= 0xffffffffUL;
447 val |= ((*dbg_reg >> 32) << 32);
448 }
449
450 *dbg_reg = val;
451 vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
452 }
453
dbg_to_reg(struct kvm_vcpu * vcpu,struct sys_reg_params * p,u64 * dbg_reg)454 static void dbg_to_reg(struct kvm_vcpu *vcpu,
455 struct sys_reg_params *p,
456 u64 *dbg_reg)
457 {
458 p->regval = *dbg_reg;
459 if (p->is_32bit)
460 p->regval &= 0xffffffffUL;
461 }
462
trap_bvr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * rd)463 static bool trap_bvr(struct kvm_vcpu *vcpu,
464 struct sys_reg_params *p,
465 const struct sys_reg_desc *rd)
466 {
467 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
468
469 if (p->is_write)
470 reg_to_dbg(vcpu, p, dbg_reg);
471 else
472 dbg_to_reg(vcpu, p, dbg_reg);
473
474 trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
475
476 return true;
477 }
478
set_bvr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,const struct kvm_one_reg * reg,void __user * uaddr)479 static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
480 const struct kvm_one_reg *reg, void __user *uaddr)
481 {
482 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
483
484 if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
485 return -EFAULT;
486 return 0;
487 }
488
get_bvr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,const struct kvm_one_reg * reg,void __user * uaddr)489 static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
490 const struct kvm_one_reg *reg, void __user *uaddr)
491 {
492 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
493
494 if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
495 return -EFAULT;
496 return 0;
497 }
498
reset_bvr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)499 static void reset_bvr(struct kvm_vcpu *vcpu,
500 const struct sys_reg_desc *rd)
501 {
502 vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg] = rd->val;
503 }
504
trap_bcr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * rd)505 static bool trap_bcr(struct kvm_vcpu *vcpu,
506 struct sys_reg_params *p,
507 const struct sys_reg_desc *rd)
508 {
509 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
510
511 if (p->is_write)
512 reg_to_dbg(vcpu, p, dbg_reg);
513 else
514 dbg_to_reg(vcpu, p, dbg_reg);
515
516 trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
517
518 return true;
519 }
520
set_bcr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,const struct kvm_one_reg * reg,void __user * uaddr)521 static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
522 const struct kvm_one_reg *reg, void __user *uaddr)
523 {
524 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
525
526 if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
527 return -EFAULT;
528
529 return 0;
530 }
531
get_bcr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,const struct kvm_one_reg * reg,void __user * uaddr)532 static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
533 const struct kvm_one_reg *reg, void __user *uaddr)
534 {
535 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
536
537 if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
538 return -EFAULT;
539 return 0;
540 }
541
reset_bcr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)542 static void reset_bcr(struct kvm_vcpu *vcpu,
543 const struct sys_reg_desc *rd)
544 {
545 vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg] = rd->val;
546 }
547
trap_wvr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * rd)548 static bool trap_wvr(struct kvm_vcpu *vcpu,
549 struct sys_reg_params *p,
550 const struct sys_reg_desc *rd)
551 {
552 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
553
554 if (p->is_write)
555 reg_to_dbg(vcpu, p, dbg_reg);
556 else
557 dbg_to_reg(vcpu, p, dbg_reg);
558
559 trace_trap_reg(__func__, rd->reg, p->is_write,
560 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg]);
561
562 return true;
563 }
564
set_wvr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,const struct kvm_one_reg * reg,void __user * uaddr)565 static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
566 const struct kvm_one_reg *reg, void __user *uaddr)
567 {
568 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
569
570 if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
571 return -EFAULT;
572 return 0;
573 }
574
get_wvr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,const struct kvm_one_reg * reg,void __user * uaddr)575 static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
576 const struct kvm_one_reg *reg, void __user *uaddr)
577 {
578 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
579
580 if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
581 return -EFAULT;
582 return 0;
583 }
584
reset_wvr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)585 static void reset_wvr(struct kvm_vcpu *vcpu,
586 const struct sys_reg_desc *rd)
587 {
588 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg] = rd->val;
589 }
590
trap_wcr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * rd)591 static bool trap_wcr(struct kvm_vcpu *vcpu,
592 struct sys_reg_params *p,
593 const struct sys_reg_desc *rd)
594 {
595 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
596
597 if (p->is_write)
598 reg_to_dbg(vcpu, p, dbg_reg);
599 else
600 dbg_to_reg(vcpu, p, dbg_reg);
601
602 trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
603
604 return true;
605 }
606
set_wcr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,const struct kvm_one_reg * reg,void __user * uaddr)607 static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
608 const struct kvm_one_reg *reg, void __user *uaddr)
609 {
610 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
611
612 if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
613 return -EFAULT;
614 return 0;
615 }
616
get_wcr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,const struct kvm_one_reg * reg,void __user * uaddr)617 static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
618 const struct kvm_one_reg *reg, void __user *uaddr)
619 {
620 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
621
622 if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
623 return -EFAULT;
624 return 0;
625 }
626
reset_wcr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)627 static void reset_wcr(struct kvm_vcpu *vcpu,
628 const struct sys_reg_desc *rd)
629 {
630 vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg] = rd->val;
631 }
632
reset_amair_el1(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)633 static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
634 {
635 u64 amair = read_sysreg(amair_el1);
636 vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1);
637 }
638
reset_actlr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)639 static void reset_actlr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
640 {
641 u64 actlr = read_sysreg(actlr_el1);
642 vcpu_write_sys_reg(vcpu, actlr, ACTLR_EL1);
643 }
644
reset_mpidr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)645 static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
646 {
647 u64 mpidr;
648
649 /*
650 * Map the vcpu_id into the first three affinity level fields of
651 * the MPIDR. We limit the number of VCPUs in level 0 due to a
652 * limitation to 16 CPUs in that level in the ICC_SGIxR registers
653 * of the GICv3 to be able to address each CPU directly when
654 * sending IPIs.
655 */
656 mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
657 mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
658 mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
659 vcpu_write_sys_reg(vcpu, (1ULL << 31) | mpidr, MPIDR_EL1);
660 }
661
reset_pmcr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)662 static void reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
663 {
664 u64 pmcr, val;
665
666 pmcr = read_sysreg(pmcr_el0);
667 /*
668 * Writable bits of PMCR_EL0 (ARMV8_PMU_PMCR_MASK) are reset to UNKNOWN
669 * except PMCR.E resetting to zero.
670 */
671 val = ((pmcr & ~ARMV8_PMU_PMCR_MASK)
672 | (ARMV8_PMU_PMCR_MASK & 0xdecafbad)) & (~ARMV8_PMU_PMCR_E);
673 if (!system_supports_32bit_el0())
674 val |= ARMV8_PMU_PMCR_LC;
675 __vcpu_sys_reg(vcpu, r->reg) = val;
676 }
677
check_pmu_access_disabled(struct kvm_vcpu * vcpu,u64 flags)678 static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags)
679 {
680 u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0);
681 bool enabled = (reg & flags) || vcpu_mode_priv(vcpu);
682
683 if (!enabled)
684 kvm_inject_undefined(vcpu);
685
686 return !enabled;
687 }
688
pmu_access_el0_disabled(struct kvm_vcpu * vcpu)689 static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
690 {
691 return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN);
692 }
693
pmu_write_swinc_el0_disabled(struct kvm_vcpu * vcpu)694 static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
695 {
696 return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN);
697 }
698
pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu * vcpu)699 static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
700 {
701 return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN);
702 }
703
pmu_access_event_counter_el0_disabled(struct kvm_vcpu * vcpu)704 static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
705 {
706 return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN);
707 }
708
access_pmcr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)709 static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
710 const struct sys_reg_desc *r)
711 {
712 u64 val;
713
714 if (!kvm_arm_pmu_v3_ready(vcpu))
715 return trap_raz_wi(vcpu, p, r);
716
717 if (pmu_access_el0_disabled(vcpu))
718 return false;
719
720 if (p->is_write) {
721 /* Only update writeable bits of PMCR */
722 val = __vcpu_sys_reg(vcpu, PMCR_EL0);
723 val &= ~ARMV8_PMU_PMCR_MASK;
724 val |= p->regval & ARMV8_PMU_PMCR_MASK;
725 if (!system_supports_32bit_el0())
726 val |= ARMV8_PMU_PMCR_LC;
727 __vcpu_sys_reg(vcpu, PMCR_EL0) = val;
728 kvm_pmu_handle_pmcr(vcpu, val);
729 kvm_vcpu_pmu_restore_guest(vcpu);
730 } else {
731 /* PMCR.P & PMCR.C are RAZ */
732 val = __vcpu_sys_reg(vcpu, PMCR_EL0)
733 & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
734 p->regval = val;
735 }
736
737 return true;
738 }
739
access_pmselr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)740 static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
741 const struct sys_reg_desc *r)
742 {
743 if (!kvm_arm_pmu_v3_ready(vcpu))
744 return trap_raz_wi(vcpu, p, r);
745
746 if (pmu_access_event_counter_el0_disabled(vcpu))
747 return false;
748
749 if (p->is_write)
750 __vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
751 else
752 /* return PMSELR.SEL field */
753 p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0)
754 & ARMV8_PMU_COUNTER_MASK;
755
756 return true;
757 }
758
access_pmceid(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)759 static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
760 const struct sys_reg_desc *r)
761 {
762 u64 pmceid;
763
764 if (!kvm_arm_pmu_v3_ready(vcpu))
765 return trap_raz_wi(vcpu, p, r);
766
767 BUG_ON(p->is_write);
768
769 if (pmu_access_el0_disabled(vcpu))
770 return false;
771
772 pmceid = kvm_pmu_get_pmceid(vcpu, (p->Op2 & 1));
773
774 p->regval = pmceid;
775
776 return true;
777 }
778
pmu_counter_idx_valid(struct kvm_vcpu * vcpu,u64 idx)779 static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
780 {
781 u64 pmcr, val;
782
783 pmcr = __vcpu_sys_reg(vcpu, PMCR_EL0);
784 val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK;
785 if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) {
786 kvm_inject_undefined(vcpu);
787 return false;
788 }
789
790 return true;
791 }
792
access_pmu_evcntr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)793 static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
794 struct sys_reg_params *p,
795 const struct sys_reg_desc *r)
796 {
797 u64 idx;
798
799 if (!kvm_arm_pmu_v3_ready(vcpu))
800 return trap_raz_wi(vcpu, p, r);
801
802 if (r->CRn == 9 && r->CRm == 13) {
803 if (r->Op2 == 2) {
804 /* PMXEVCNTR_EL0 */
805 if (pmu_access_event_counter_el0_disabled(vcpu))
806 return false;
807
808 idx = __vcpu_sys_reg(vcpu, PMSELR_EL0)
809 & ARMV8_PMU_COUNTER_MASK;
810 } else if (r->Op2 == 0) {
811 /* PMCCNTR_EL0 */
812 if (pmu_access_cycle_counter_el0_disabled(vcpu))
813 return false;
814
815 idx = ARMV8_PMU_CYCLE_IDX;
816 } else {
817 return false;
818 }
819 } else if (r->CRn == 0 && r->CRm == 9) {
820 /* PMCCNTR */
821 if (pmu_access_event_counter_el0_disabled(vcpu))
822 return false;
823
824 idx = ARMV8_PMU_CYCLE_IDX;
825 } else if (r->CRn == 14 && (r->CRm & 12) == 8) {
826 /* PMEVCNTRn_EL0 */
827 if (pmu_access_event_counter_el0_disabled(vcpu))
828 return false;
829
830 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
831 } else {
832 return false;
833 }
834
835 if (!pmu_counter_idx_valid(vcpu, idx))
836 return false;
837
838 if (p->is_write) {
839 if (pmu_access_el0_disabled(vcpu))
840 return false;
841
842 kvm_pmu_set_counter_value(vcpu, idx, p->regval);
843 } else {
844 p->regval = kvm_pmu_get_counter_value(vcpu, idx);
845 }
846
847 return true;
848 }
849
access_pmu_evtyper(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)850 static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
851 const struct sys_reg_desc *r)
852 {
853 u64 idx, reg;
854
855 if (!kvm_arm_pmu_v3_ready(vcpu))
856 return trap_raz_wi(vcpu, p, r);
857
858 if (pmu_access_el0_disabled(vcpu))
859 return false;
860
861 if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
862 /* PMXEVTYPER_EL0 */
863 idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
864 reg = PMEVTYPER0_EL0 + idx;
865 } else if (r->CRn == 14 && (r->CRm & 12) == 12) {
866 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
867 if (idx == ARMV8_PMU_CYCLE_IDX)
868 reg = PMCCFILTR_EL0;
869 else
870 /* PMEVTYPERn_EL0 */
871 reg = PMEVTYPER0_EL0 + idx;
872 } else {
873 BUG();
874 }
875
876 if (!pmu_counter_idx_valid(vcpu, idx))
877 return false;
878
879 if (p->is_write) {
880 kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
881 __vcpu_sys_reg(vcpu, reg) = p->regval & ARMV8_PMU_EVTYPE_MASK;
882 kvm_vcpu_pmu_restore_guest(vcpu);
883 } else {
884 p->regval = __vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK;
885 }
886
887 return true;
888 }
889
access_pmcnten(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)890 static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
891 const struct sys_reg_desc *r)
892 {
893 u64 val, mask;
894
895 if (!kvm_arm_pmu_v3_ready(vcpu))
896 return trap_raz_wi(vcpu, p, r);
897
898 if (pmu_access_el0_disabled(vcpu))
899 return false;
900
901 mask = kvm_pmu_valid_counter_mask(vcpu);
902 if (p->is_write) {
903 val = p->regval & mask;
904 if (r->Op2 & 0x1) {
905 /* accessing PMCNTENSET_EL0 */
906 __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
907 kvm_pmu_enable_counter_mask(vcpu, val);
908 kvm_vcpu_pmu_restore_guest(vcpu);
909 } else {
910 /* accessing PMCNTENCLR_EL0 */
911 __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
912 kvm_pmu_disable_counter_mask(vcpu, val);
913 }
914 } else {
915 p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & mask;
916 }
917
918 return true;
919 }
920
access_pminten(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)921 static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
922 const struct sys_reg_desc *r)
923 {
924 u64 mask = kvm_pmu_valid_counter_mask(vcpu);
925
926 if (!kvm_arm_pmu_v3_ready(vcpu))
927 return trap_raz_wi(vcpu, p, r);
928
929 if (!vcpu_mode_priv(vcpu)) {
930 kvm_inject_undefined(vcpu);
931 return false;
932 }
933
934 if (p->is_write) {
935 u64 val = p->regval & mask;
936
937 if (r->Op2 & 0x1)
938 /* accessing PMINTENSET_EL1 */
939 __vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
940 else
941 /* accessing PMINTENCLR_EL1 */
942 __vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
943 } else {
944 p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1) & mask;
945 }
946
947 return true;
948 }
949
access_pmovs(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)950 static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
951 const struct sys_reg_desc *r)
952 {
953 u64 mask = kvm_pmu_valid_counter_mask(vcpu);
954
955 if (!kvm_arm_pmu_v3_ready(vcpu))
956 return trap_raz_wi(vcpu, p, r);
957
958 if (pmu_access_el0_disabled(vcpu))
959 return false;
960
961 if (p->is_write) {
962 if (r->CRm & 0x2)
963 /* accessing PMOVSSET_EL0 */
964 __vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask);
965 else
966 /* accessing PMOVSCLR_EL0 */
967 __vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
968 } else {
969 p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0) & mask;
970 }
971
972 return true;
973 }
974
access_pmswinc(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)975 static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
976 const struct sys_reg_desc *r)
977 {
978 u64 mask;
979
980 if (!kvm_arm_pmu_v3_ready(vcpu))
981 return trap_raz_wi(vcpu, p, r);
982
983 if (!p->is_write)
984 return read_from_write_only(vcpu, p, r);
985
986 if (pmu_write_swinc_el0_disabled(vcpu))
987 return false;
988
989 mask = kvm_pmu_valid_counter_mask(vcpu);
990 kvm_pmu_software_increment(vcpu, p->regval & mask);
991 return true;
992 }
993
access_pmuserenr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)994 static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
995 const struct sys_reg_desc *r)
996 {
997 if (!kvm_arm_pmu_v3_ready(vcpu))
998 return trap_raz_wi(vcpu, p, r);
999
1000 if (p->is_write) {
1001 if (!vcpu_mode_priv(vcpu)) {
1002 kvm_inject_undefined(vcpu);
1003 return false;
1004 }
1005
1006 __vcpu_sys_reg(vcpu, PMUSERENR_EL0) =
1007 p->regval & ARMV8_PMU_USERENR_MASK;
1008 } else {
1009 p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0)
1010 & ARMV8_PMU_USERENR_MASK;
1011 }
1012
1013 return true;
1014 }
1015
1016 #define reg_to_encoding(x) \
1017 sys_reg((u32)(x)->Op0, (u32)(x)->Op1, \
1018 (u32)(x)->CRn, (u32)(x)->CRm, (u32)(x)->Op2);
1019
1020 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
1021 #define DBG_BCR_BVR_WCR_WVR_EL1(n) \
1022 { SYS_DESC(SYS_DBGBVRn_EL1(n)), \
1023 trap_bvr, reset_bvr, 0, 0, get_bvr, set_bvr }, \
1024 { SYS_DESC(SYS_DBGBCRn_EL1(n)), \
1025 trap_bcr, reset_bcr, 0, 0, get_bcr, set_bcr }, \
1026 { SYS_DESC(SYS_DBGWVRn_EL1(n)), \
1027 trap_wvr, reset_wvr, 0, 0, get_wvr, set_wvr }, \
1028 { SYS_DESC(SYS_DBGWCRn_EL1(n)), \
1029 trap_wcr, reset_wcr, 0, 0, get_wcr, set_wcr }
1030
1031 /* Macro to expand the PMEVCNTRn_EL0 register */
1032 #define PMU_PMEVCNTR_EL0(n) \
1033 { SYS_DESC(SYS_PMEVCNTRn_EL0(n)), \
1034 access_pmu_evcntr, reset_unknown, (PMEVCNTR0_EL0 + n), }
1035
1036 /* Macro to expand the PMEVTYPERn_EL0 register */
1037 #define PMU_PMEVTYPER_EL0(n) \
1038 { SYS_DESC(SYS_PMEVTYPERn_EL0(n)), \
1039 access_pmu_evtyper, reset_unknown, (PMEVTYPER0_EL0 + n), }
1040
undef_access(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1041 static bool undef_access(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1042 const struct sys_reg_desc *r)
1043 {
1044 kvm_inject_undefined(vcpu);
1045
1046 return false;
1047 }
1048
1049 /* Macro to expand the AMU counter and type registers*/
1050 #define AMU_AMEVCNTR0_EL0(n) { SYS_DESC(SYS_AMEVCNTR0_EL0(n)), undef_access }
1051 #define AMU_AMEVTYPER0_EL0(n) { SYS_DESC(SYS_AMEVTYPER0_EL0(n)), undef_access }
1052 #define AMU_AMEVCNTR1_EL0(n) { SYS_DESC(SYS_AMEVCNTR1_EL0(n)), undef_access }
1053 #define AMU_AMEVTYPER1_EL0(n) { SYS_DESC(SYS_AMEVTYPER1_EL0(n)), undef_access }
1054
ptrauth_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)1055 static unsigned int ptrauth_visibility(const struct kvm_vcpu *vcpu,
1056 const struct sys_reg_desc *rd)
1057 {
1058 return vcpu_has_ptrauth(vcpu) ? 0 : REG_HIDDEN;
1059 }
1060
1061 /*
1062 * If we land here on a PtrAuth access, that is because we didn't
1063 * fixup the access on exit by allowing the PtrAuth sysregs. The only
1064 * way this happens is when the guest does not have PtrAuth support
1065 * enabled.
1066 */
1067 #define __PTRAUTH_KEY(k) \
1068 { SYS_DESC(SYS_## k), undef_access, reset_unknown, k, \
1069 .visibility = ptrauth_visibility}
1070
1071 #define PTRAUTH_KEY(k) \
1072 __PTRAUTH_KEY(k ## KEYLO_EL1), \
1073 __PTRAUTH_KEY(k ## KEYHI_EL1)
1074
access_arch_timer(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1075 static bool access_arch_timer(struct kvm_vcpu *vcpu,
1076 struct sys_reg_params *p,
1077 const struct sys_reg_desc *r)
1078 {
1079 enum kvm_arch_timers tmr;
1080 enum kvm_arch_timer_regs treg;
1081 u64 reg = reg_to_encoding(r);
1082
1083 switch (reg) {
1084 case SYS_CNTP_TVAL_EL0:
1085 case SYS_AARCH32_CNTP_TVAL:
1086 tmr = TIMER_PTIMER;
1087 treg = TIMER_REG_TVAL;
1088 break;
1089 case SYS_CNTP_CTL_EL0:
1090 case SYS_AARCH32_CNTP_CTL:
1091 tmr = TIMER_PTIMER;
1092 treg = TIMER_REG_CTL;
1093 break;
1094 case SYS_CNTP_CVAL_EL0:
1095 case SYS_AARCH32_CNTP_CVAL:
1096 tmr = TIMER_PTIMER;
1097 treg = TIMER_REG_CVAL;
1098 break;
1099 default:
1100 BUG();
1101 }
1102
1103 if (p->is_write)
1104 kvm_arm_timer_write_sysreg(vcpu, tmr, treg, p->regval);
1105 else
1106 p->regval = kvm_arm_timer_read_sysreg(vcpu, tmr, treg);
1107
1108 return true;
1109 }
1110
1111 /* Read a sanitised cpufeature ID register by sys_reg_desc */
read_id_reg(const struct kvm_vcpu * vcpu,struct sys_reg_desc const * r,bool raz)1112 static u64 read_id_reg(const struct kvm_vcpu *vcpu,
1113 struct sys_reg_desc const *r, bool raz)
1114 {
1115 u32 id = sys_reg((u32)r->Op0, (u32)r->Op1,
1116 (u32)r->CRn, (u32)r->CRm, (u32)r->Op2);
1117 u64 val = raz ? 0 : read_sanitised_ftr_reg(id);
1118
1119 if (id == SYS_ID_AA64PFR0_EL1) {
1120 if (!vcpu_has_sve(vcpu))
1121 val &= ~(0xfUL << ID_AA64PFR0_SVE_SHIFT);
1122 val &= ~(0xfUL << ID_AA64PFR0_AMU_SHIFT);
1123 val &= ~(0xfUL << ID_AA64PFR0_CSV2_SHIFT);
1124 val |= ((u64)vcpu->kvm->arch.pfr0_csv2 << ID_AA64PFR0_CSV2_SHIFT);
1125 } else if (id == SYS_ID_AA64PFR1_EL1) {
1126 val &= ~(0xfUL << ID_AA64PFR1_MTE_SHIFT);
1127 } else if (id == SYS_ID_AA64ISAR1_EL1 && !vcpu_has_ptrauth(vcpu)) {
1128 val &= ~((0xfUL << ID_AA64ISAR1_APA_SHIFT) |
1129 (0xfUL << ID_AA64ISAR1_API_SHIFT) |
1130 (0xfUL << ID_AA64ISAR1_GPA_SHIFT) |
1131 (0xfUL << ID_AA64ISAR1_GPI_SHIFT));
1132 } else if (id == SYS_ID_AA64DFR0_EL1) {
1133 /* Limit guests to PMUv3 for ARMv8.1 */
1134 val = cpuid_feature_cap_perfmon_field(val,
1135 ID_AA64DFR0_PMUVER_SHIFT,
1136 ID_AA64DFR0_PMUVER_8_1);
1137 } else if (id == SYS_ID_DFR0_EL1) {
1138 /* Limit guests to PMUv3 for ARMv8.1 */
1139 val = cpuid_feature_cap_perfmon_field(val,
1140 ID_DFR0_PERFMON_SHIFT,
1141 ID_DFR0_PERFMON_8_1);
1142 }
1143
1144 return val;
1145 }
1146
id_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)1147 static unsigned int id_visibility(const struct kvm_vcpu *vcpu,
1148 const struct sys_reg_desc *r)
1149 {
1150 u32 id = sys_reg((u32)r->Op0, (u32)r->Op1,
1151 (u32)r->CRn, (u32)r->CRm, (u32)r->Op2);
1152
1153 switch (id) {
1154 case SYS_ID_AA64ZFR0_EL1:
1155 if (!vcpu_has_sve(vcpu))
1156 return REG_RAZ;
1157 break;
1158 }
1159
1160 return 0;
1161 }
1162
1163 /* cpufeature ID register access trap handlers */
1164
__access_id_reg(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r,bool raz)1165 static bool __access_id_reg(struct kvm_vcpu *vcpu,
1166 struct sys_reg_params *p,
1167 const struct sys_reg_desc *r,
1168 bool raz)
1169 {
1170 if (p->is_write)
1171 return write_to_read_only(vcpu, p, r);
1172
1173 p->regval = read_id_reg(vcpu, r, raz);
1174 return true;
1175 }
1176
access_id_reg(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1177 static bool access_id_reg(struct kvm_vcpu *vcpu,
1178 struct sys_reg_params *p,
1179 const struct sys_reg_desc *r)
1180 {
1181 bool raz = sysreg_visible_as_raz(vcpu, r);
1182
1183 return __access_id_reg(vcpu, p, r, raz);
1184 }
1185
access_raz_id_reg(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1186 static bool access_raz_id_reg(struct kvm_vcpu *vcpu,
1187 struct sys_reg_params *p,
1188 const struct sys_reg_desc *r)
1189 {
1190 return __access_id_reg(vcpu, p, r, true);
1191 }
1192
1193 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id);
1194 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id);
1195 static u64 sys_reg_to_index(const struct sys_reg_desc *reg);
1196
1197 /* Visibility overrides for SVE-specific control registers */
sve_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)1198 static unsigned int sve_visibility(const struct kvm_vcpu *vcpu,
1199 const struct sys_reg_desc *rd)
1200 {
1201 if (vcpu_has_sve(vcpu))
1202 return 0;
1203
1204 return REG_HIDDEN;
1205 }
1206
set_id_aa64pfr0_el1(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,const struct kvm_one_reg * reg,void __user * uaddr)1207 static int set_id_aa64pfr0_el1(struct kvm_vcpu *vcpu,
1208 const struct sys_reg_desc *rd,
1209 const struct kvm_one_reg *reg, void __user *uaddr)
1210 {
1211 const u64 id = sys_reg_to_index(rd);
1212 int err;
1213 u64 val;
1214 u8 csv2;
1215
1216 err = reg_from_user(&val, uaddr, id);
1217 if (err)
1218 return err;
1219
1220 /*
1221 * Allow AA64PFR0_EL1.CSV2 to be set from userspace as long as
1222 * it doesn't promise more than what is actually provided (the
1223 * guest could otherwise be covered in ectoplasmic residue).
1224 */
1225 csv2 = cpuid_feature_extract_unsigned_field(val, ID_AA64PFR0_CSV2_SHIFT);
1226 if (csv2 > 1 ||
1227 (csv2 && arm64_get_spectre_v2_state() != SPECTRE_UNAFFECTED))
1228 return -EINVAL;
1229
1230 /* We can only differ with CSV2, and anything else is an error */
1231 val ^= read_id_reg(vcpu, rd, false);
1232 val &= ~(0xFUL << ID_AA64PFR0_CSV2_SHIFT);
1233 if (val)
1234 return -EINVAL;
1235
1236 vcpu->kvm->arch.pfr0_csv2 = csv2;
1237
1238 return 0;
1239 }
1240
1241 /*
1242 * cpufeature ID register user accessors
1243 *
1244 * For now, these registers are immutable for userspace, so no values
1245 * are stored, and for set_id_reg() we don't allow the effective value
1246 * to be changed.
1247 */
__get_id_reg(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,void __user * uaddr,bool raz)1248 static int __get_id_reg(const struct kvm_vcpu *vcpu,
1249 const struct sys_reg_desc *rd, void __user *uaddr,
1250 bool raz)
1251 {
1252 const u64 id = sys_reg_to_index(rd);
1253 const u64 val = read_id_reg(vcpu, rd, raz);
1254
1255 return reg_to_user(uaddr, &val, id);
1256 }
1257
__set_id_reg(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,void __user * uaddr,bool raz)1258 static int __set_id_reg(const struct kvm_vcpu *vcpu,
1259 const struct sys_reg_desc *rd, void __user *uaddr,
1260 bool raz)
1261 {
1262 const u64 id = sys_reg_to_index(rd);
1263 int err;
1264 u64 val;
1265
1266 err = reg_from_user(&val, uaddr, id);
1267 if (err)
1268 return err;
1269
1270 /* This is what we mean by invariant: you can't change it. */
1271 if (val != read_id_reg(vcpu, rd, raz))
1272 return -EINVAL;
1273
1274 return 0;
1275 }
1276
get_id_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,const struct kvm_one_reg * reg,void __user * uaddr)1277 static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1278 const struct kvm_one_reg *reg, void __user *uaddr)
1279 {
1280 bool raz = sysreg_visible_as_raz(vcpu, rd);
1281
1282 return __get_id_reg(vcpu, rd, uaddr, raz);
1283 }
1284
set_id_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,const struct kvm_one_reg * reg,void __user * uaddr)1285 static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1286 const struct kvm_one_reg *reg, void __user *uaddr)
1287 {
1288 bool raz = sysreg_visible_as_raz(vcpu, rd);
1289
1290 return __set_id_reg(vcpu, rd, uaddr, raz);
1291 }
1292
get_raz_id_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,const struct kvm_one_reg * reg,void __user * uaddr)1293 static int get_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1294 const struct kvm_one_reg *reg, void __user *uaddr)
1295 {
1296 return __get_id_reg(vcpu, rd, uaddr, true);
1297 }
1298
set_raz_id_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,const struct kvm_one_reg * reg,void __user * uaddr)1299 static int set_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1300 const struct kvm_one_reg *reg, void __user *uaddr)
1301 {
1302 return __set_id_reg(vcpu, rd, uaddr, true);
1303 }
1304
access_ctr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1305 static bool access_ctr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1306 const struct sys_reg_desc *r)
1307 {
1308 if (p->is_write)
1309 return write_to_read_only(vcpu, p, r);
1310
1311 p->regval = read_sanitised_ftr_reg(SYS_CTR_EL0);
1312 return true;
1313 }
1314
access_clidr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1315 static bool access_clidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1316 const struct sys_reg_desc *r)
1317 {
1318 if (p->is_write)
1319 return write_to_read_only(vcpu, p, r);
1320
1321 p->regval = read_sysreg(clidr_el1);
1322 return true;
1323 }
1324
access_csselr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1325 static bool access_csselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1326 const struct sys_reg_desc *r)
1327 {
1328 int reg = r->reg;
1329
1330 /* See the 32bit mapping in kvm_host.h */
1331 if (p->is_aarch32)
1332 reg = r->reg / 2;
1333
1334 if (p->is_write)
1335 vcpu_write_sys_reg(vcpu, p->regval, reg);
1336 else
1337 p->regval = vcpu_read_sys_reg(vcpu, reg);
1338 return true;
1339 }
1340
access_ccsidr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1341 static bool access_ccsidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1342 const struct sys_reg_desc *r)
1343 {
1344 u32 csselr;
1345
1346 if (p->is_write)
1347 return write_to_read_only(vcpu, p, r);
1348
1349 csselr = vcpu_read_sys_reg(vcpu, CSSELR_EL1);
1350 p->regval = get_ccsidr(csselr);
1351
1352 /*
1353 * Guests should not be doing cache operations by set/way at all, and
1354 * for this reason, we trap them and attempt to infer the intent, so
1355 * that we can flush the entire guest's address space at the appropriate
1356 * time.
1357 * To prevent this trapping from causing performance problems, let's
1358 * expose the geometry of all data and unified caches (which are
1359 * guaranteed to be PIPT and thus non-aliasing) as 1 set and 1 way.
1360 * [If guests should attempt to infer aliasing properties from the
1361 * geometry (which is not permitted by the architecture), they would
1362 * only do so for virtually indexed caches.]
1363 */
1364 if (!(csselr & 1)) // data or unified cache
1365 p->regval &= ~GENMASK(27, 3);
1366 return true;
1367 }
1368
1369 /* sys_reg_desc initialiser for known cpufeature ID registers */
1370 #define ID_SANITISED(name) { \
1371 SYS_DESC(SYS_##name), \
1372 .access = access_id_reg, \
1373 .get_user = get_id_reg, \
1374 .set_user = set_id_reg, \
1375 .visibility = id_visibility, \
1376 }
1377
1378 /*
1379 * sys_reg_desc initialiser for architecturally unallocated cpufeature ID
1380 * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2
1381 * (1 <= crm < 8, 0 <= Op2 < 8).
1382 */
1383 #define ID_UNALLOCATED(crm, op2) { \
1384 Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2), \
1385 .access = access_raz_id_reg, \
1386 .get_user = get_raz_id_reg, \
1387 .set_user = set_raz_id_reg, \
1388 }
1389
1390 /*
1391 * sys_reg_desc initialiser for known ID registers that we hide from guests.
1392 * For now, these are exposed just like unallocated ID regs: they appear
1393 * RAZ for the guest.
1394 */
1395 #define ID_HIDDEN(name) { \
1396 SYS_DESC(SYS_##name), \
1397 .access = access_raz_id_reg, \
1398 .get_user = get_raz_id_reg, \
1399 .set_user = set_raz_id_reg, \
1400 }
1401
1402 /*
1403 * Architected system registers.
1404 * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
1405 *
1406 * Debug handling: We do trap most, if not all debug related system
1407 * registers. The implementation is good enough to ensure that a guest
1408 * can use these with minimal performance degradation. The drawback is
1409 * that we don't implement any of the external debug, none of the
1410 * OSlock protocol. This should be revisited if we ever encounter a
1411 * more demanding guest...
1412 */
1413 static const struct sys_reg_desc sys_reg_descs[] = {
1414 { SYS_DESC(SYS_DC_ISW), access_dcsw },
1415 { SYS_DESC(SYS_DC_CSW), access_dcsw },
1416 { SYS_DESC(SYS_DC_CISW), access_dcsw },
1417
1418 DBG_BCR_BVR_WCR_WVR_EL1(0),
1419 DBG_BCR_BVR_WCR_WVR_EL1(1),
1420 { SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
1421 { SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 },
1422 DBG_BCR_BVR_WCR_WVR_EL1(2),
1423 DBG_BCR_BVR_WCR_WVR_EL1(3),
1424 DBG_BCR_BVR_WCR_WVR_EL1(4),
1425 DBG_BCR_BVR_WCR_WVR_EL1(5),
1426 DBG_BCR_BVR_WCR_WVR_EL1(6),
1427 DBG_BCR_BVR_WCR_WVR_EL1(7),
1428 DBG_BCR_BVR_WCR_WVR_EL1(8),
1429 DBG_BCR_BVR_WCR_WVR_EL1(9),
1430 DBG_BCR_BVR_WCR_WVR_EL1(10),
1431 DBG_BCR_BVR_WCR_WVR_EL1(11),
1432 DBG_BCR_BVR_WCR_WVR_EL1(12),
1433 DBG_BCR_BVR_WCR_WVR_EL1(13),
1434 DBG_BCR_BVR_WCR_WVR_EL1(14),
1435 DBG_BCR_BVR_WCR_WVR_EL1(15),
1436
1437 { SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi },
1438 { SYS_DESC(SYS_OSLAR_EL1), trap_raz_wi },
1439 { SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1 },
1440 { SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi },
1441 { SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi },
1442 { SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi },
1443 { SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi },
1444 { SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 },
1445
1446 { SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi },
1447 { SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi },
1448 // DBGDTR[TR]X_EL0 share the same encoding
1449 { SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi },
1450
1451 { SYS_DESC(SYS_DBGVCR32_EL2), NULL, reset_val, DBGVCR32_EL2, 0 },
1452
1453 { SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 },
1454
1455 /*
1456 * ID regs: all ID_SANITISED() entries here must have corresponding
1457 * entries in arm64_ftr_regs[].
1458 */
1459
1460 /* AArch64 mappings of the AArch32 ID registers */
1461 /* CRm=1 */
1462 ID_SANITISED(ID_PFR0_EL1),
1463 ID_SANITISED(ID_PFR1_EL1),
1464 ID_SANITISED(ID_DFR0_EL1),
1465 ID_HIDDEN(ID_AFR0_EL1),
1466 ID_SANITISED(ID_MMFR0_EL1),
1467 ID_SANITISED(ID_MMFR1_EL1),
1468 ID_SANITISED(ID_MMFR2_EL1),
1469 ID_SANITISED(ID_MMFR3_EL1),
1470
1471 /* CRm=2 */
1472 ID_SANITISED(ID_ISAR0_EL1),
1473 ID_SANITISED(ID_ISAR1_EL1),
1474 ID_SANITISED(ID_ISAR2_EL1),
1475 ID_SANITISED(ID_ISAR3_EL1),
1476 ID_SANITISED(ID_ISAR4_EL1),
1477 ID_SANITISED(ID_ISAR5_EL1),
1478 ID_SANITISED(ID_MMFR4_EL1),
1479 ID_SANITISED(ID_ISAR6_EL1),
1480
1481 /* CRm=3 */
1482 ID_SANITISED(MVFR0_EL1),
1483 ID_SANITISED(MVFR1_EL1),
1484 ID_SANITISED(MVFR2_EL1),
1485 ID_UNALLOCATED(3,3),
1486 ID_SANITISED(ID_PFR2_EL1),
1487 ID_HIDDEN(ID_DFR1_EL1),
1488 ID_SANITISED(ID_MMFR5_EL1),
1489 ID_UNALLOCATED(3,7),
1490
1491 /* AArch64 ID registers */
1492 /* CRm=4 */
1493 { SYS_DESC(SYS_ID_AA64PFR0_EL1), .access = access_id_reg,
1494 .get_user = get_id_reg, .set_user = set_id_aa64pfr0_el1, },
1495 ID_SANITISED(ID_AA64PFR1_EL1),
1496 ID_UNALLOCATED(4,2),
1497 ID_UNALLOCATED(4,3),
1498 ID_SANITISED(ID_AA64ZFR0_EL1),
1499 ID_UNALLOCATED(4,5),
1500 ID_UNALLOCATED(4,6),
1501 ID_UNALLOCATED(4,7),
1502
1503 /* CRm=5 */
1504 ID_SANITISED(ID_AA64DFR0_EL1),
1505 ID_SANITISED(ID_AA64DFR1_EL1),
1506 ID_UNALLOCATED(5,2),
1507 ID_UNALLOCATED(5,3),
1508 ID_HIDDEN(ID_AA64AFR0_EL1),
1509 ID_HIDDEN(ID_AA64AFR1_EL1),
1510 ID_UNALLOCATED(5,6),
1511 ID_UNALLOCATED(5,7),
1512
1513 /* CRm=6 */
1514 ID_SANITISED(ID_AA64ISAR0_EL1),
1515 ID_SANITISED(ID_AA64ISAR1_EL1),
1516 ID_UNALLOCATED(6,2),
1517 ID_UNALLOCATED(6,3),
1518 ID_UNALLOCATED(6,4),
1519 ID_UNALLOCATED(6,5),
1520 ID_UNALLOCATED(6,6),
1521 ID_UNALLOCATED(6,7),
1522
1523 /* CRm=7 */
1524 ID_SANITISED(ID_AA64MMFR0_EL1),
1525 ID_SANITISED(ID_AA64MMFR1_EL1),
1526 ID_SANITISED(ID_AA64MMFR2_EL1),
1527 ID_UNALLOCATED(7,3),
1528 ID_UNALLOCATED(7,4),
1529 ID_UNALLOCATED(7,5),
1530 ID_UNALLOCATED(7,6),
1531 ID_UNALLOCATED(7,7),
1532
1533 { SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
1534 { SYS_DESC(SYS_ACTLR_EL1), access_actlr, reset_actlr, ACTLR_EL1 },
1535 { SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 },
1536
1537 { SYS_DESC(SYS_RGSR_EL1), undef_access },
1538 { SYS_DESC(SYS_GCR_EL1), undef_access },
1539
1540 { SYS_DESC(SYS_ZCR_EL1), NULL, reset_val, ZCR_EL1, 0, .visibility = sve_visibility },
1541 { SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 },
1542 { SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 },
1543 { SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 },
1544
1545 PTRAUTH_KEY(APIA),
1546 PTRAUTH_KEY(APIB),
1547 PTRAUTH_KEY(APDA),
1548 PTRAUTH_KEY(APDB),
1549 PTRAUTH_KEY(APGA),
1550
1551 { SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 },
1552 { SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 },
1553 { SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 },
1554
1555 { SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi },
1556 { SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi },
1557 { SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi },
1558 { SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi },
1559 { SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi },
1560 { SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi },
1561 { SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi },
1562 { SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi },
1563
1564 { SYS_DESC(SYS_TFSR_EL1), undef_access },
1565 { SYS_DESC(SYS_TFSRE0_EL1), undef_access },
1566
1567 { SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 },
1568 { SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 },
1569
1570 { SYS_DESC(SYS_PMINTENSET_EL1), access_pminten, reset_unknown, PMINTENSET_EL1 },
1571 { SYS_DESC(SYS_PMINTENCLR_EL1), access_pminten, reset_unknown, PMINTENSET_EL1 },
1572
1573 { SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 },
1574 { SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 },
1575
1576 { SYS_DESC(SYS_LORSA_EL1), trap_loregion },
1577 { SYS_DESC(SYS_LOREA_EL1), trap_loregion },
1578 { SYS_DESC(SYS_LORN_EL1), trap_loregion },
1579 { SYS_DESC(SYS_LORC_EL1), trap_loregion },
1580 { SYS_DESC(SYS_LORID_EL1), trap_loregion },
1581
1582 { SYS_DESC(SYS_VBAR_EL1), NULL, reset_val, VBAR_EL1, 0 },
1583 { SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 },
1584
1585 { SYS_DESC(SYS_ICC_IAR0_EL1), write_to_read_only },
1586 { SYS_DESC(SYS_ICC_EOIR0_EL1), read_from_write_only },
1587 { SYS_DESC(SYS_ICC_HPPIR0_EL1), write_to_read_only },
1588 { SYS_DESC(SYS_ICC_DIR_EL1), read_from_write_only },
1589 { SYS_DESC(SYS_ICC_RPR_EL1), write_to_read_only },
1590 { SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi },
1591 { SYS_DESC(SYS_ICC_ASGI1R_EL1), access_gic_sgi },
1592 { SYS_DESC(SYS_ICC_SGI0R_EL1), access_gic_sgi },
1593 { SYS_DESC(SYS_ICC_IAR1_EL1), write_to_read_only },
1594 { SYS_DESC(SYS_ICC_EOIR1_EL1), read_from_write_only },
1595 { SYS_DESC(SYS_ICC_HPPIR1_EL1), write_to_read_only },
1596 { SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
1597
1598 { SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
1599 { SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 },
1600
1601 { SYS_DESC(SYS_SCXTNUM_EL1), undef_access },
1602
1603 { SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0},
1604
1605 { SYS_DESC(SYS_CCSIDR_EL1), access_ccsidr },
1606 { SYS_DESC(SYS_CLIDR_EL1), access_clidr },
1607 { SYS_DESC(SYS_CSSELR_EL1), access_csselr, reset_unknown, CSSELR_EL1 },
1608 { SYS_DESC(SYS_CTR_EL0), access_ctr },
1609
1610 { SYS_DESC(SYS_PMCR_EL0), access_pmcr, reset_pmcr, PMCR_EL0 },
1611 { SYS_DESC(SYS_PMCNTENSET_EL0), access_pmcnten, reset_unknown, PMCNTENSET_EL0 },
1612 { SYS_DESC(SYS_PMCNTENCLR_EL0), access_pmcnten, reset_unknown, PMCNTENSET_EL0 },
1613 { SYS_DESC(SYS_PMOVSCLR_EL0), access_pmovs, reset_unknown, PMOVSSET_EL0 },
1614 { SYS_DESC(SYS_PMSWINC_EL0), access_pmswinc, reset_unknown, PMSWINC_EL0 },
1615 { SYS_DESC(SYS_PMSELR_EL0), access_pmselr, reset_unknown, PMSELR_EL0 },
1616 { SYS_DESC(SYS_PMCEID0_EL0), access_pmceid },
1617 { SYS_DESC(SYS_PMCEID1_EL0), access_pmceid },
1618 { SYS_DESC(SYS_PMCCNTR_EL0), access_pmu_evcntr, reset_unknown, PMCCNTR_EL0 },
1619 { SYS_DESC(SYS_PMXEVTYPER_EL0), access_pmu_evtyper },
1620 { SYS_DESC(SYS_PMXEVCNTR_EL0), access_pmu_evcntr },
1621 /*
1622 * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
1623 * in 32bit mode. Here we choose to reset it as zero for consistency.
1624 */
1625 { SYS_DESC(SYS_PMUSERENR_EL0), access_pmuserenr, reset_val, PMUSERENR_EL0, 0 },
1626 { SYS_DESC(SYS_PMOVSSET_EL0), access_pmovs, reset_unknown, PMOVSSET_EL0 },
1627
1628 { SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 },
1629 { SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 },
1630
1631 { SYS_DESC(SYS_SCXTNUM_EL0), undef_access },
1632
1633 { SYS_DESC(SYS_AMCR_EL0), undef_access },
1634 { SYS_DESC(SYS_AMCFGR_EL0), undef_access },
1635 { SYS_DESC(SYS_AMCGCR_EL0), undef_access },
1636 { SYS_DESC(SYS_AMUSERENR_EL0), undef_access },
1637 { SYS_DESC(SYS_AMCNTENCLR0_EL0), undef_access },
1638 { SYS_DESC(SYS_AMCNTENSET0_EL0), undef_access },
1639 { SYS_DESC(SYS_AMCNTENCLR1_EL0), undef_access },
1640 { SYS_DESC(SYS_AMCNTENSET1_EL0), undef_access },
1641 AMU_AMEVCNTR0_EL0(0),
1642 AMU_AMEVCNTR0_EL0(1),
1643 AMU_AMEVCNTR0_EL0(2),
1644 AMU_AMEVCNTR0_EL0(3),
1645 AMU_AMEVCNTR0_EL0(4),
1646 AMU_AMEVCNTR0_EL0(5),
1647 AMU_AMEVCNTR0_EL0(6),
1648 AMU_AMEVCNTR0_EL0(7),
1649 AMU_AMEVCNTR0_EL0(8),
1650 AMU_AMEVCNTR0_EL0(9),
1651 AMU_AMEVCNTR0_EL0(10),
1652 AMU_AMEVCNTR0_EL0(11),
1653 AMU_AMEVCNTR0_EL0(12),
1654 AMU_AMEVCNTR0_EL0(13),
1655 AMU_AMEVCNTR0_EL0(14),
1656 AMU_AMEVCNTR0_EL0(15),
1657 AMU_AMEVTYPER0_EL0(0),
1658 AMU_AMEVTYPER0_EL0(1),
1659 AMU_AMEVTYPER0_EL0(2),
1660 AMU_AMEVTYPER0_EL0(3),
1661 AMU_AMEVTYPER0_EL0(4),
1662 AMU_AMEVTYPER0_EL0(5),
1663 AMU_AMEVTYPER0_EL0(6),
1664 AMU_AMEVTYPER0_EL0(7),
1665 AMU_AMEVTYPER0_EL0(8),
1666 AMU_AMEVTYPER0_EL0(9),
1667 AMU_AMEVTYPER0_EL0(10),
1668 AMU_AMEVTYPER0_EL0(11),
1669 AMU_AMEVTYPER0_EL0(12),
1670 AMU_AMEVTYPER0_EL0(13),
1671 AMU_AMEVTYPER0_EL0(14),
1672 AMU_AMEVTYPER0_EL0(15),
1673 AMU_AMEVCNTR1_EL0(0),
1674 AMU_AMEVCNTR1_EL0(1),
1675 AMU_AMEVCNTR1_EL0(2),
1676 AMU_AMEVCNTR1_EL0(3),
1677 AMU_AMEVCNTR1_EL0(4),
1678 AMU_AMEVCNTR1_EL0(5),
1679 AMU_AMEVCNTR1_EL0(6),
1680 AMU_AMEVCNTR1_EL0(7),
1681 AMU_AMEVCNTR1_EL0(8),
1682 AMU_AMEVCNTR1_EL0(9),
1683 AMU_AMEVCNTR1_EL0(10),
1684 AMU_AMEVCNTR1_EL0(11),
1685 AMU_AMEVCNTR1_EL0(12),
1686 AMU_AMEVCNTR1_EL0(13),
1687 AMU_AMEVCNTR1_EL0(14),
1688 AMU_AMEVCNTR1_EL0(15),
1689 AMU_AMEVTYPER1_EL0(0),
1690 AMU_AMEVTYPER1_EL0(1),
1691 AMU_AMEVTYPER1_EL0(2),
1692 AMU_AMEVTYPER1_EL0(3),
1693 AMU_AMEVTYPER1_EL0(4),
1694 AMU_AMEVTYPER1_EL0(5),
1695 AMU_AMEVTYPER1_EL0(6),
1696 AMU_AMEVTYPER1_EL0(7),
1697 AMU_AMEVTYPER1_EL0(8),
1698 AMU_AMEVTYPER1_EL0(9),
1699 AMU_AMEVTYPER1_EL0(10),
1700 AMU_AMEVTYPER1_EL0(11),
1701 AMU_AMEVTYPER1_EL0(12),
1702 AMU_AMEVTYPER1_EL0(13),
1703 AMU_AMEVTYPER1_EL0(14),
1704 AMU_AMEVTYPER1_EL0(15),
1705
1706 { SYS_DESC(SYS_CNTP_TVAL_EL0), access_arch_timer },
1707 { SYS_DESC(SYS_CNTP_CTL_EL0), access_arch_timer },
1708 { SYS_DESC(SYS_CNTP_CVAL_EL0), access_arch_timer },
1709
1710 /* PMEVCNTRn_EL0 */
1711 PMU_PMEVCNTR_EL0(0),
1712 PMU_PMEVCNTR_EL0(1),
1713 PMU_PMEVCNTR_EL0(2),
1714 PMU_PMEVCNTR_EL0(3),
1715 PMU_PMEVCNTR_EL0(4),
1716 PMU_PMEVCNTR_EL0(5),
1717 PMU_PMEVCNTR_EL0(6),
1718 PMU_PMEVCNTR_EL0(7),
1719 PMU_PMEVCNTR_EL0(8),
1720 PMU_PMEVCNTR_EL0(9),
1721 PMU_PMEVCNTR_EL0(10),
1722 PMU_PMEVCNTR_EL0(11),
1723 PMU_PMEVCNTR_EL0(12),
1724 PMU_PMEVCNTR_EL0(13),
1725 PMU_PMEVCNTR_EL0(14),
1726 PMU_PMEVCNTR_EL0(15),
1727 PMU_PMEVCNTR_EL0(16),
1728 PMU_PMEVCNTR_EL0(17),
1729 PMU_PMEVCNTR_EL0(18),
1730 PMU_PMEVCNTR_EL0(19),
1731 PMU_PMEVCNTR_EL0(20),
1732 PMU_PMEVCNTR_EL0(21),
1733 PMU_PMEVCNTR_EL0(22),
1734 PMU_PMEVCNTR_EL0(23),
1735 PMU_PMEVCNTR_EL0(24),
1736 PMU_PMEVCNTR_EL0(25),
1737 PMU_PMEVCNTR_EL0(26),
1738 PMU_PMEVCNTR_EL0(27),
1739 PMU_PMEVCNTR_EL0(28),
1740 PMU_PMEVCNTR_EL0(29),
1741 PMU_PMEVCNTR_EL0(30),
1742 /* PMEVTYPERn_EL0 */
1743 PMU_PMEVTYPER_EL0(0),
1744 PMU_PMEVTYPER_EL0(1),
1745 PMU_PMEVTYPER_EL0(2),
1746 PMU_PMEVTYPER_EL0(3),
1747 PMU_PMEVTYPER_EL0(4),
1748 PMU_PMEVTYPER_EL0(5),
1749 PMU_PMEVTYPER_EL0(6),
1750 PMU_PMEVTYPER_EL0(7),
1751 PMU_PMEVTYPER_EL0(8),
1752 PMU_PMEVTYPER_EL0(9),
1753 PMU_PMEVTYPER_EL0(10),
1754 PMU_PMEVTYPER_EL0(11),
1755 PMU_PMEVTYPER_EL0(12),
1756 PMU_PMEVTYPER_EL0(13),
1757 PMU_PMEVTYPER_EL0(14),
1758 PMU_PMEVTYPER_EL0(15),
1759 PMU_PMEVTYPER_EL0(16),
1760 PMU_PMEVTYPER_EL0(17),
1761 PMU_PMEVTYPER_EL0(18),
1762 PMU_PMEVTYPER_EL0(19),
1763 PMU_PMEVTYPER_EL0(20),
1764 PMU_PMEVTYPER_EL0(21),
1765 PMU_PMEVTYPER_EL0(22),
1766 PMU_PMEVTYPER_EL0(23),
1767 PMU_PMEVTYPER_EL0(24),
1768 PMU_PMEVTYPER_EL0(25),
1769 PMU_PMEVTYPER_EL0(26),
1770 PMU_PMEVTYPER_EL0(27),
1771 PMU_PMEVTYPER_EL0(28),
1772 PMU_PMEVTYPER_EL0(29),
1773 PMU_PMEVTYPER_EL0(30),
1774 /*
1775 * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
1776 * in 32bit mode. Here we choose to reset it as zero for consistency.
1777 */
1778 { SYS_DESC(SYS_PMCCFILTR_EL0), access_pmu_evtyper, reset_val, PMCCFILTR_EL0, 0 },
1779
1780 { SYS_DESC(SYS_DACR32_EL2), NULL, reset_unknown, DACR32_EL2 },
1781 { SYS_DESC(SYS_IFSR32_EL2), NULL, reset_unknown, IFSR32_EL2 },
1782 { SYS_DESC(SYS_FPEXC32_EL2), NULL, reset_val, FPEXC32_EL2, 0x700 },
1783 };
1784
trap_dbgidr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1785 static bool trap_dbgidr(struct kvm_vcpu *vcpu,
1786 struct sys_reg_params *p,
1787 const struct sys_reg_desc *r)
1788 {
1789 if (p->is_write) {
1790 return ignore_write(vcpu, p);
1791 } else {
1792 u64 dfr = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
1793 u64 pfr = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1794 u32 el3 = !!cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR0_EL3_SHIFT);
1795
1796 p->regval = ((((dfr >> ID_AA64DFR0_WRPS_SHIFT) & 0xf) << 28) |
1797 (((dfr >> ID_AA64DFR0_BRPS_SHIFT) & 0xf) << 24) |
1798 (((dfr >> ID_AA64DFR0_CTX_CMPS_SHIFT) & 0xf) << 20)
1799 | (6 << 16) | (el3 << 14) | (el3 << 12));
1800 return true;
1801 }
1802 }
1803
trap_debug32(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1804 static bool trap_debug32(struct kvm_vcpu *vcpu,
1805 struct sys_reg_params *p,
1806 const struct sys_reg_desc *r)
1807 {
1808 if (p->is_write) {
1809 vcpu_cp14(vcpu, r->reg) = p->regval;
1810 vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
1811 } else {
1812 p->regval = vcpu_cp14(vcpu, r->reg);
1813 }
1814
1815 return true;
1816 }
1817
1818 /* AArch32 debug register mappings
1819 *
1820 * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
1821 * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
1822 *
1823 * All control registers and watchpoint value registers are mapped to
1824 * the lower 32 bits of their AArch64 equivalents. We share the trap
1825 * handlers with the above AArch64 code which checks what mode the
1826 * system is in.
1827 */
1828
trap_xvr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * rd)1829 static bool trap_xvr(struct kvm_vcpu *vcpu,
1830 struct sys_reg_params *p,
1831 const struct sys_reg_desc *rd)
1832 {
1833 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
1834
1835 if (p->is_write) {
1836 u64 val = *dbg_reg;
1837
1838 val &= 0xffffffffUL;
1839 val |= p->regval << 32;
1840 *dbg_reg = val;
1841
1842 vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
1843 } else {
1844 p->regval = *dbg_reg >> 32;
1845 }
1846
1847 trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
1848
1849 return true;
1850 }
1851
1852 #define DBG_BCR_BVR_WCR_WVR(n) \
1853 /* DBGBVRn */ \
1854 { Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, \
1855 /* DBGBCRn */ \
1856 { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n }, \
1857 /* DBGWVRn */ \
1858 { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n }, \
1859 /* DBGWCRn */ \
1860 { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
1861
1862 #define DBGBXVR(n) \
1863 { Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_xvr, NULL, n }
1864
1865 /*
1866 * Trapped cp14 registers. We generally ignore most of the external
1867 * debug, on the principle that they don't really make sense to a
1868 * guest. Revisit this one day, would this principle change.
1869 */
1870 static const struct sys_reg_desc cp14_regs[] = {
1871 /* DBGIDR */
1872 { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgidr },
1873 /* DBGDTRRXext */
1874 { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
1875
1876 DBG_BCR_BVR_WCR_WVR(0),
1877 /* DBGDSCRint */
1878 { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
1879 DBG_BCR_BVR_WCR_WVR(1),
1880 /* DBGDCCINT */
1881 { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug32, NULL, cp14_DBGDCCINT },
1882 /* DBGDSCRext */
1883 { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug32, NULL, cp14_DBGDSCRext },
1884 DBG_BCR_BVR_WCR_WVR(2),
1885 /* DBGDTR[RT]Xint */
1886 { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
1887 /* DBGDTR[RT]Xext */
1888 { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
1889 DBG_BCR_BVR_WCR_WVR(3),
1890 DBG_BCR_BVR_WCR_WVR(4),
1891 DBG_BCR_BVR_WCR_WVR(5),
1892 /* DBGWFAR */
1893 { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
1894 /* DBGOSECCR */
1895 { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
1896 DBG_BCR_BVR_WCR_WVR(6),
1897 /* DBGVCR */
1898 { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug32, NULL, cp14_DBGVCR },
1899 DBG_BCR_BVR_WCR_WVR(7),
1900 DBG_BCR_BVR_WCR_WVR(8),
1901 DBG_BCR_BVR_WCR_WVR(9),
1902 DBG_BCR_BVR_WCR_WVR(10),
1903 DBG_BCR_BVR_WCR_WVR(11),
1904 DBG_BCR_BVR_WCR_WVR(12),
1905 DBG_BCR_BVR_WCR_WVR(13),
1906 DBG_BCR_BVR_WCR_WVR(14),
1907 DBG_BCR_BVR_WCR_WVR(15),
1908
1909 /* DBGDRAR (32bit) */
1910 { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
1911
1912 DBGBXVR(0),
1913 /* DBGOSLAR */
1914 { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi },
1915 DBGBXVR(1),
1916 /* DBGOSLSR */
1917 { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1 },
1918 DBGBXVR(2),
1919 DBGBXVR(3),
1920 /* DBGOSDLR */
1921 { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
1922 DBGBXVR(4),
1923 /* DBGPRCR */
1924 { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
1925 DBGBXVR(5),
1926 DBGBXVR(6),
1927 DBGBXVR(7),
1928 DBGBXVR(8),
1929 DBGBXVR(9),
1930 DBGBXVR(10),
1931 DBGBXVR(11),
1932 DBGBXVR(12),
1933 DBGBXVR(13),
1934 DBGBXVR(14),
1935 DBGBXVR(15),
1936
1937 /* DBGDSAR (32bit) */
1938 { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
1939
1940 /* DBGDEVID2 */
1941 { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
1942 /* DBGDEVID1 */
1943 { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
1944 /* DBGDEVID */
1945 { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
1946 /* DBGCLAIMSET */
1947 { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
1948 /* DBGCLAIMCLR */
1949 { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
1950 /* DBGAUTHSTATUS */
1951 { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
1952 };
1953
1954 /* Trapped cp14 64bit registers */
1955 static const struct sys_reg_desc cp14_64_regs[] = {
1956 /* DBGDRAR (64bit) */
1957 { Op1( 0), CRm( 1), .access = trap_raz_wi },
1958
1959 /* DBGDSAR (64bit) */
1960 { Op1( 0), CRm( 2), .access = trap_raz_wi },
1961 };
1962
1963 /* Macro to expand the PMEVCNTRn register */
1964 #define PMU_PMEVCNTR(n) \
1965 /* PMEVCNTRn */ \
1966 { Op1(0), CRn(0b1110), \
1967 CRm((0b1000 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)), \
1968 access_pmu_evcntr }
1969
1970 /* Macro to expand the PMEVTYPERn register */
1971 #define PMU_PMEVTYPER(n) \
1972 /* PMEVTYPERn */ \
1973 { Op1(0), CRn(0b1110), \
1974 CRm((0b1100 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)), \
1975 access_pmu_evtyper }
1976
1977 /*
1978 * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
1979 * depending on the way they are accessed (as a 32bit or a 64bit
1980 * register).
1981 */
1982 static const struct sys_reg_desc cp15_regs[] = {
1983 { Op1( 0), CRn( 0), CRm( 0), Op2( 1), access_ctr },
1984 { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, c1_SCTLR },
1985 { Op1( 0), CRn( 1), CRm( 0), Op2( 1), access_actlr },
1986 { Op1( 0), CRn( 1), CRm( 0), Op2( 3), access_actlr },
1987 { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
1988 { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, c2_TTBR1 },
1989 { Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, c2_TTBCR },
1990 { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, c3_DACR },
1991 { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, c5_DFSR },
1992 { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, c5_IFSR },
1993 { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, c5_ADFSR },
1994 { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, c5_AIFSR },
1995 { Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, c6_DFAR },
1996 { Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, c6_IFAR },
1997
1998 /*
1999 * DC{C,I,CI}SW operations:
2000 */
2001 { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
2002 { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
2003 { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
2004
2005 /* PMU */
2006 { Op1( 0), CRn( 9), CRm(12), Op2( 0), access_pmcr },
2007 { Op1( 0), CRn( 9), CRm(12), Op2( 1), access_pmcnten },
2008 { Op1( 0), CRn( 9), CRm(12), Op2( 2), access_pmcnten },
2009 { Op1( 0), CRn( 9), CRm(12), Op2( 3), access_pmovs },
2010 { Op1( 0), CRn( 9), CRm(12), Op2( 4), access_pmswinc },
2011 { Op1( 0), CRn( 9), CRm(12), Op2( 5), access_pmselr },
2012 { Op1( 0), CRn( 9), CRm(12), Op2( 6), access_pmceid },
2013 { Op1( 0), CRn( 9), CRm(12), Op2( 7), access_pmceid },
2014 { Op1( 0), CRn( 9), CRm(13), Op2( 0), access_pmu_evcntr },
2015 { Op1( 0), CRn( 9), CRm(13), Op2( 1), access_pmu_evtyper },
2016 { Op1( 0), CRn( 9), CRm(13), Op2( 2), access_pmu_evcntr },
2017 { Op1( 0), CRn( 9), CRm(14), Op2( 0), access_pmuserenr },
2018 { Op1( 0), CRn( 9), CRm(14), Op2( 1), access_pminten },
2019 { Op1( 0), CRn( 9), CRm(14), Op2( 2), access_pminten },
2020 { Op1( 0), CRn( 9), CRm(14), Op2( 3), access_pmovs },
2021
2022 { Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, c10_PRRR },
2023 { Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, c10_NMRR },
2024 { Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, c10_AMAIR0 },
2025 { Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, c10_AMAIR1 },
2026
2027 /* ICC_SRE */
2028 { Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre },
2029
2030 { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, c13_CID },
2031
2032 /* Arch Tmers */
2033 { SYS_DESC(SYS_AARCH32_CNTP_TVAL), access_arch_timer },
2034 { SYS_DESC(SYS_AARCH32_CNTP_CTL), access_arch_timer },
2035
2036 /* PMEVCNTRn */
2037 PMU_PMEVCNTR(0),
2038 PMU_PMEVCNTR(1),
2039 PMU_PMEVCNTR(2),
2040 PMU_PMEVCNTR(3),
2041 PMU_PMEVCNTR(4),
2042 PMU_PMEVCNTR(5),
2043 PMU_PMEVCNTR(6),
2044 PMU_PMEVCNTR(7),
2045 PMU_PMEVCNTR(8),
2046 PMU_PMEVCNTR(9),
2047 PMU_PMEVCNTR(10),
2048 PMU_PMEVCNTR(11),
2049 PMU_PMEVCNTR(12),
2050 PMU_PMEVCNTR(13),
2051 PMU_PMEVCNTR(14),
2052 PMU_PMEVCNTR(15),
2053 PMU_PMEVCNTR(16),
2054 PMU_PMEVCNTR(17),
2055 PMU_PMEVCNTR(18),
2056 PMU_PMEVCNTR(19),
2057 PMU_PMEVCNTR(20),
2058 PMU_PMEVCNTR(21),
2059 PMU_PMEVCNTR(22),
2060 PMU_PMEVCNTR(23),
2061 PMU_PMEVCNTR(24),
2062 PMU_PMEVCNTR(25),
2063 PMU_PMEVCNTR(26),
2064 PMU_PMEVCNTR(27),
2065 PMU_PMEVCNTR(28),
2066 PMU_PMEVCNTR(29),
2067 PMU_PMEVCNTR(30),
2068 /* PMEVTYPERn */
2069 PMU_PMEVTYPER(0),
2070 PMU_PMEVTYPER(1),
2071 PMU_PMEVTYPER(2),
2072 PMU_PMEVTYPER(3),
2073 PMU_PMEVTYPER(4),
2074 PMU_PMEVTYPER(5),
2075 PMU_PMEVTYPER(6),
2076 PMU_PMEVTYPER(7),
2077 PMU_PMEVTYPER(8),
2078 PMU_PMEVTYPER(9),
2079 PMU_PMEVTYPER(10),
2080 PMU_PMEVTYPER(11),
2081 PMU_PMEVTYPER(12),
2082 PMU_PMEVTYPER(13),
2083 PMU_PMEVTYPER(14),
2084 PMU_PMEVTYPER(15),
2085 PMU_PMEVTYPER(16),
2086 PMU_PMEVTYPER(17),
2087 PMU_PMEVTYPER(18),
2088 PMU_PMEVTYPER(19),
2089 PMU_PMEVTYPER(20),
2090 PMU_PMEVTYPER(21),
2091 PMU_PMEVTYPER(22),
2092 PMU_PMEVTYPER(23),
2093 PMU_PMEVTYPER(24),
2094 PMU_PMEVTYPER(25),
2095 PMU_PMEVTYPER(26),
2096 PMU_PMEVTYPER(27),
2097 PMU_PMEVTYPER(28),
2098 PMU_PMEVTYPER(29),
2099 PMU_PMEVTYPER(30),
2100 /* PMCCFILTR */
2101 { Op1(0), CRn(14), CRm(15), Op2(7), access_pmu_evtyper },
2102
2103 { Op1(1), CRn( 0), CRm( 0), Op2(0), access_ccsidr },
2104 { Op1(1), CRn( 0), CRm( 0), Op2(1), access_clidr },
2105 { Op1(2), CRn( 0), CRm( 0), Op2(0), access_csselr, NULL, c0_CSSELR },
2106 };
2107
2108 static const struct sys_reg_desc cp15_64_regs[] = {
2109 { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
2110 { Op1( 0), CRn( 0), CRm( 9), Op2( 0), access_pmu_evcntr },
2111 { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI1R */
2112 { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR1 },
2113 { Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */
2114 { Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */
2115 { SYS_DESC(SYS_AARCH32_CNTP_CVAL), access_arch_timer },
2116 };
2117
check_sysreg_table(const struct sys_reg_desc * table,unsigned int n,bool is_32)2118 static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n,
2119 bool is_32)
2120 {
2121 unsigned int i;
2122
2123 for (i = 0; i < n; i++) {
2124 if (!is_32 && table[i].reg && !table[i].reset) {
2125 kvm_err("sys_reg table %p entry %d has lacks reset\n",
2126 table, i);
2127 return 1;
2128 }
2129
2130 if (i && cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
2131 kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
2132 return 1;
2133 }
2134 }
2135
2136 return 0;
2137 }
2138
match_sys_reg(const void * key,const void * elt)2139 static int match_sys_reg(const void *key, const void *elt)
2140 {
2141 const unsigned long pval = (unsigned long)key;
2142 const struct sys_reg_desc *r = elt;
2143
2144 return pval - reg_to_encoding(r);
2145 }
2146
find_reg(const struct sys_reg_params * params,const struct sys_reg_desc table[],unsigned int num)2147 static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
2148 const struct sys_reg_desc table[],
2149 unsigned int num)
2150 {
2151 unsigned long pval = reg_to_encoding(params);
2152
2153 return bsearch((void *)pval, table, num, sizeof(table[0]), match_sys_reg);
2154 }
2155
kvm_handle_cp14_load_store(struct kvm_vcpu * vcpu)2156 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu)
2157 {
2158 kvm_inject_undefined(vcpu);
2159 return 1;
2160 }
2161
perform_access(struct kvm_vcpu * vcpu,struct sys_reg_params * params,const struct sys_reg_desc * r)2162 static void perform_access(struct kvm_vcpu *vcpu,
2163 struct sys_reg_params *params,
2164 const struct sys_reg_desc *r)
2165 {
2166 trace_kvm_sys_access(*vcpu_pc(vcpu), params, r);
2167
2168 /* Check for regs disabled by runtime config */
2169 if (sysreg_hidden(vcpu, r)) {
2170 kvm_inject_undefined(vcpu);
2171 return;
2172 }
2173
2174 /*
2175 * Not having an accessor means that we have configured a trap
2176 * that we don't know how to handle. This certainly qualifies
2177 * as a gross bug that should be fixed right away.
2178 */
2179 BUG_ON(!r->access);
2180
2181 /* Skip instruction if instructed so */
2182 if (likely(r->access(vcpu, params, r)))
2183 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
2184 }
2185
2186 /*
2187 * emulate_cp -- tries to match a sys_reg access in a handling table, and
2188 * call the corresponding trap handler.
2189 *
2190 * @params: pointer to the descriptor of the access
2191 * @table: array of trap descriptors
2192 * @num: size of the trap descriptor array
2193 *
2194 * Return 0 if the access has been handled, and -1 if not.
2195 */
emulate_cp(struct kvm_vcpu * vcpu,struct sys_reg_params * params,const struct sys_reg_desc * table,size_t num)2196 static int emulate_cp(struct kvm_vcpu *vcpu,
2197 struct sys_reg_params *params,
2198 const struct sys_reg_desc *table,
2199 size_t num)
2200 {
2201 const struct sys_reg_desc *r;
2202
2203 if (!table)
2204 return -1; /* Not handled */
2205
2206 r = find_reg(params, table, num);
2207
2208 if (r) {
2209 perform_access(vcpu, params, r);
2210 return 0;
2211 }
2212
2213 /* Not handled */
2214 return -1;
2215 }
2216
unhandled_cp_access(struct kvm_vcpu * vcpu,struct sys_reg_params * params)2217 static void unhandled_cp_access(struct kvm_vcpu *vcpu,
2218 struct sys_reg_params *params)
2219 {
2220 u8 esr_ec = kvm_vcpu_trap_get_class(vcpu);
2221 int cp = -1;
2222
2223 switch (esr_ec) {
2224 case ESR_ELx_EC_CP15_32:
2225 case ESR_ELx_EC_CP15_64:
2226 cp = 15;
2227 break;
2228 case ESR_ELx_EC_CP14_MR:
2229 case ESR_ELx_EC_CP14_64:
2230 cp = 14;
2231 break;
2232 default:
2233 WARN_ON(1);
2234 }
2235
2236 print_sys_reg_msg(params,
2237 "Unsupported guest CP%d access at: %08lx [%08lx]\n",
2238 cp, *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
2239 kvm_inject_undefined(vcpu);
2240 }
2241
2242 /**
2243 * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
2244 * @vcpu: The VCPU pointer
2245 * @run: The kvm_run struct
2246 */
kvm_handle_cp_64(struct kvm_vcpu * vcpu,const struct sys_reg_desc * global,size_t nr_global)2247 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
2248 const struct sys_reg_desc *global,
2249 size_t nr_global)
2250 {
2251 struct sys_reg_params params;
2252 u32 esr = kvm_vcpu_get_esr(vcpu);
2253 int Rt = kvm_vcpu_sys_get_rt(vcpu);
2254 int Rt2 = (esr >> 10) & 0x1f;
2255
2256 params.is_aarch32 = true;
2257 params.is_32bit = false;
2258 params.CRm = (esr >> 1) & 0xf;
2259 params.is_write = ((esr & 1) == 0);
2260
2261 params.Op0 = 0;
2262 params.Op1 = (esr >> 16) & 0xf;
2263 params.Op2 = 0;
2264 params.CRn = 0;
2265
2266 /*
2267 * Make a 64-bit value out of Rt and Rt2. As we use the same trap
2268 * backends between AArch32 and AArch64, we get away with it.
2269 */
2270 if (params.is_write) {
2271 params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
2272 params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
2273 }
2274
2275 /*
2276 * If the table contains a handler, handle the
2277 * potential register operation in the case of a read and return
2278 * with success.
2279 */
2280 if (!emulate_cp(vcpu, ¶ms, global, nr_global)) {
2281 /* Split up the value between registers for the read side */
2282 if (!params.is_write) {
2283 vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
2284 vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
2285 }
2286
2287 return 1;
2288 }
2289
2290 unhandled_cp_access(vcpu, ¶ms);
2291 return 1;
2292 }
2293
2294 /**
2295 * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
2296 * @vcpu: The VCPU pointer
2297 * @run: The kvm_run struct
2298 */
kvm_handle_cp_32(struct kvm_vcpu * vcpu,const struct sys_reg_desc * global,size_t nr_global)2299 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
2300 const struct sys_reg_desc *global,
2301 size_t nr_global)
2302 {
2303 struct sys_reg_params params;
2304 u32 esr = kvm_vcpu_get_esr(vcpu);
2305 int Rt = kvm_vcpu_sys_get_rt(vcpu);
2306
2307 params.is_aarch32 = true;
2308 params.is_32bit = true;
2309 params.CRm = (esr >> 1) & 0xf;
2310 params.regval = vcpu_get_reg(vcpu, Rt);
2311 params.is_write = ((esr & 1) == 0);
2312 params.CRn = (esr >> 10) & 0xf;
2313 params.Op0 = 0;
2314 params.Op1 = (esr >> 14) & 0x7;
2315 params.Op2 = (esr >> 17) & 0x7;
2316
2317 if (!emulate_cp(vcpu, ¶ms, global, nr_global)) {
2318 if (!params.is_write)
2319 vcpu_set_reg(vcpu, Rt, params.regval);
2320 return 1;
2321 }
2322
2323 unhandled_cp_access(vcpu, ¶ms);
2324 return 1;
2325 }
2326
kvm_handle_cp15_64(struct kvm_vcpu * vcpu)2327 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu)
2328 {
2329 return kvm_handle_cp_64(vcpu, cp15_64_regs, ARRAY_SIZE(cp15_64_regs));
2330 }
2331
kvm_handle_cp15_32(struct kvm_vcpu * vcpu)2332 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu)
2333 {
2334 return kvm_handle_cp_32(vcpu, cp15_regs, ARRAY_SIZE(cp15_regs));
2335 }
2336
kvm_handle_cp14_64(struct kvm_vcpu * vcpu)2337 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu)
2338 {
2339 return kvm_handle_cp_64(vcpu, cp14_64_regs, ARRAY_SIZE(cp14_64_regs));
2340 }
2341
kvm_handle_cp14_32(struct kvm_vcpu * vcpu)2342 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu)
2343 {
2344 return kvm_handle_cp_32(vcpu, cp14_regs, ARRAY_SIZE(cp14_regs));
2345 }
2346
is_imp_def_sys_reg(struct sys_reg_params * params)2347 static bool is_imp_def_sys_reg(struct sys_reg_params *params)
2348 {
2349 // See ARM DDI 0487E.a, section D12.3.2
2350 return params->Op0 == 3 && (params->CRn & 0b1011) == 0b1011;
2351 }
2352
emulate_sys_reg(struct kvm_vcpu * vcpu,struct sys_reg_params * params)2353 static int emulate_sys_reg(struct kvm_vcpu *vcpu,
2354 struct sys_reg_params *params)
2355 {
2356 const struct sys_reg_desc *r;
2357
2358 r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2359
2360 if (likely(r)) {
2361 perform_access(vcpu, params, r);
2362 } else if (is_imp_def_sys_reg(params)) {
2363 kvm_inject_undefined(vcpu);
2364 } else {
2365 print_sys_reg_msg(params,
2366 "Unsupported guest sys_reg access at: %lx [%08lx]\n",
2367 *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
2368 kvm_inject_undefined(vcpu);
2369 }
2370 return 1;
2371 }
2372
2373 /**
2374 * kvm_reset_sys_regs - sets system registers to reset value
2375 * @vcpu: The VCPU pointer
2376 *
2377 * This function finds the right table above and sets the registers on the
2378 * virtual CPU struct to their architecturally defined reset values.
2379 */
kvm_reset_sys_regs(struct kvm_vcpu * vcpu)2380 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
2381 {
2382 unsigned long i;
2383
2384 for (i = 0; i < ARRAY_SIZE(sys_reg_descs); i++)
2385 if (sys_reg_descs[i].reset)
2386 sys_reg_descs[i].reset(vcpu, &sys_reg_descs[i]);
2387 }
2388
2389 /**
2390 * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
2391 * @vcpu: The VCPU pointer
2392 */
kvm_handle_sys_reg(struct kvm_vcpu * vcpu)2393 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu)
2394 {
2395 struct sys_reg_params params;
2396 unsigned long esr = kvm_vcpu_get_esr(vcpu);
2397 int Rt = kvm_vcpu_sys_get_rt(vcpu);
2398 int ret;
2399
2400 trace_kvm_handle_sys_reg(esr);
2401
2402 params.is_aarch32 = false;
2403 params.is_32bit = false;
2404 params.Op0 = (esr >> 20) & 3;
2405 params.Op1 = (esr >> 14) & 0x7;
2406 params.CRn = (esr >> 10) & 0xf;
2407 params.CRm = (esr >> 1) & 0xf;
2408 params.Op2 = (esr >> 17) & 0x7;
2409 params.regval = vcpu_get_reg(vcpu, Rt);
2410 params.is_write = !(esr & 1);
2411
2412 ret = emulate_sys_reg(vcpu, ¶ms);
2413
2414 if (!params.is_write)
2415 vcpu_set_reg(vcpu, Rt, params.regval);
2416 return ret;
2417 }
2418
2419 /******************************************************************************
2420 * Userspace API
2421 *****************************************************************************/
2422
index_to_params(u64 id,struct sys_reg_params * params)2423 static bool index_to_params(u64 id, struct sys_reg_params *params)
2424 {
2425 switch (id & KVM_REG_SIZE_MASK) {
2426 case KVM_REG_SIZE_U64:
2427 /* Any unused index bits means it's not valid. */
2428 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
2429 | KVM_REG_ARM_COPROC_MASK
2430 | KVM_REG_ARM64_SYSREG_OP0_MASK
2431 | KVM_REG_ARM64_SYSREG_OP1_MASK
2432 | KVM_REG_ARM64_SYSREG_CRN_MASK
2433 | KVM_REG_ARM64_SYSREG_CRM_MASK
2434 | KVM_REG_ARM64_SYSREG_OP2_MASK))
2435 return false;
2436 params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
2437 >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
2438 params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
2439 >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
2440 params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
2441 >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
2442 params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
2443 >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
2444 params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
2445 >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
2446 return true;
2447 default:
2448 return false;
2449 }
2450 }
2451
find_reg_by_id(u64 id,struct sys_reg_params * params,const struct sys_reg_desc table[],unsigned int num)2452 const struct sys_reg_desc *find_reg_by_id(u64 id,
2453 struct sys_reg_params *params,
2454 const struct sys_reg_desc table[],
2455 unsigned int num)
2456 {
2457 if (!index_to_params(id, params))
2458 return NULL;
2459
2460 return find_reg(params, table, num);
2461 }
2462
2463 /* Decode an index value, and find the sys_reg_desc entry. */
index_to_sys_reg_desc(struct kvm_vcpu * vcpu,u64 id)2464 static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
2465 u64 id)
2466 {
2467 const struct sys_reg_desc *r;
2468 struct sys_reg_params params;
2469
2470 /* We only do sys_reg for now. */
2471 if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
2472 return NULL;
2473
2474 if (!index_to_params(id, ¶ms))
2475 return NULL;
2476
2477 r = find_reg(¶ms, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2478
2479 /* Not saved in the sys_reg array and not otherwise accessible? */
2480 if (r && !(r->reg || r->get_user))
2481 r = NULL;
2482
2483 return r;
2484 }
2485
2486 /*
2487 * These are the invariant sys_reg registers: we let the guest see the
2488 * host versions of these, so they're part of the guest state.
2489 *
2490 * A future CPU may provide a mechanism to present different values to
2491 * the guest, or a future kvm may trap them.
2492 */
2493
2494 #define FUNCTION_INVARIANT(reg) \
2495 static void get_##reg(struct kvm_vcpu *v, \
2496 const struct sys_reg_desc *r) \
2497 { \
2498 ((struct sys_reg_desc *)r)->val = read_sysreg(reg); \
2499 }
2500
2501 FUNCTION_INVARIANT(midr_el1)
FUNCTION_INVARIANT(revidr_el1)2502 FUNCTION_INVARIANT(revidr_el1)
2503 FUNCTION_INVARIANT(clidr_el1)
2504 FUNCTION_INVARIANT(aidr_el1)
2505
2506 static void get_ctr_el0(struct kvm_vcpu *v, const struct sys_reg_desc *r)
2507 {
2508 ((struct sys_reg_desc *)r)->val = read_sanitised_ftr_reg(SYS_CTR_EL0);
2509 }
2510
2511 /* ->val is filled in by kvm_sys_reg_table_init() */
2512 static struct sys_reg_desc invariant_sys_regs[] = {
2513 { SYS_DESC(SYS_MIDR_EL1), NULL, get_midr_el1 },
2514 { SYS_DESC(SYS_REVIDR_EL1), NULL, get_revidr_el1 },
2515 { SYS_DESC(SYS_CLIDR_EL1), NULL, get_clidr_el1 },
2516 { SYS_DESC(SYS_AIDR_EL1), NULL, get_aidr_el1 },
2517 { SYS_DESC(SYS_CTR_EL0), NULL, get_ctr_el0 },
2518 };
2519
reg_from_user(u64 * val,const void __user * uaddr,u64 id)2520 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
2521 {
2522 if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
2523 return -EFAULT;
2524 return 0;
2525 }
2526
reg_to_user(void __user * uaddr,const u64 * val,u64 id)2527 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
2528 {
2529 if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
2530 return -EFAULT;
2531 return 0;
2532 }
2533
get_invariant_sys_reg(u64 id,void __user * uaddr)2534 static int get_invariant_sys_reg(u64 id, void __user *uaddr)
2535 {
2536 struct sys_reg_params params;
2537 const struct sys_reg_desc *r;
2538
2539 r = find_reg_by_id(id, ¶ms, invariant_sys_regs,
2540 ARRAY_SIZE(invariant_sys_regs));
2541 if (!r)
2542 return -ENOENT;
2543
2544 return reg_to_user(uaddr, &r->val, id);
2545 }
2546
set_invariant_sys_reg(u64 id,void __user * uaddr)2547 static int set_invariant_sys_reg(u64 id, void __user *uaddr)
2548 {
2549 struct sys_reg_params params;
2550 const struct sys_reg_desc *r;
2551 int err;
2552 u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
2553
2554 r = find_reg_by_id(id, ¶ms, invariant_sys_regs,
2555 ARRAY_SIZE(invariant_sys_regs));
2556 if (!r)
2557 return -ENOENT;
2558
2559 err = reg_from_user(&val, uaddr, id);
2560 if (err)
2561 return err;
2562
2563 /* This is what we mean by invariant: you can't change it. */
2564 if (r->val != val)
2565 return -EINVAL;
2566
2567 return 0;
2568 }
2569
is_valid_cache(u32 val)2570 static bool is_valid_cache(u32 val)
2571 {
2572 u32 level, ctype;
2573
2574 if (val >= CSSELR_MAX)
2575 return false;
2576
2577 /* Bottom bit is Instruction or Data bit. Next 3 bits are level. */
2578 level = (val >> 1);
2579 ctype = (cache_levels >> (level * 3)) & 7;
2580
2581 switch (ctype) {
2582 case 0: /* No cache */
2583 return false;
2584 case 1: /* Instruction cache only */
2585 return (val & 1);
2586 case 2: /* Data cache only */
2587 case 4: /* Unified cache */
2588 return !(val & 1);
2589 case 3: /* Separate instruction and data caches */
2590 return true;
2591 default: /* Reserved: we can't know instruction or data. */
2592 return false;
2593 }
2594 }
2595
demux_c15_get(u64 id,void __user * uaddr)2596 static int demux_c15_get(u64 id, void __user *uaddr)
2597 {
2598 u32 val;
2599 u32 __user *uval = uaddr;
2600
2601 /* Fail if we have unknown bits set. */
2602 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2603 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2604 return -ENOENT;
2605
2606 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2607 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2608 if (KVM_REG_SIZE(id) != 4)
2609 return -ENOENT;
2610 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2611 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2612 if (!is_valid_cache(val))
2613 return -ENOENT;
2614
2615 return put_user(get_ccsidr(val), uval);
2616 default:
2617 return -ENOENT;
2618 }
2619 }
2620
demux_c15_set(u64 id,void __user * uaddr)2621 static int demux_c15_set(u64 id, void __user *uaddr)
2622 {
2623 u32 val, newval;
2624 u32 __user *uval = uaddr;
2625
2626 /* Fail if we have unknown bits set. */
2627 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2628 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2629 return -ENOENT;
2630
2631 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2632 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2633 if (KVM_REG_SIZE(id) != 4)
2634 return -ENOENT;
2635 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2636 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2637 if (!is_valid_cache(val))
2638 return -ENOENT;
2639
2640 if (get_user(newval, uval))
2641 return -EFAULT;
2642
2643 /* This is also invariant: you can't change it. */
2644 if (newval != get_ccsidr(val))
2645 return -EINVAL;
2646 return 0;
2647 default:
2648 return -ENOENT;
2649 }
2650 }
2651
kvm_arm_sys_reg_get_reg(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)2652 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2653 {
2654 const struct sys_reg_desc *r;
2655 void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2656
2657 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2658 return demux_c15_get(reg->id, uaddr);
2659
2660 if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2661 return -ENOENT;
2662
2663 r = index_to_sys_reg_desc(vcpu, reg->id);
2664 if (!r)
2665 return get_invariant_sys_reg(reg->id, uaddr);
2666
2667 /* Check for regs disabled by runtime config */
2668 if (sysreg_hidden(vcpu, r))
2669 return -ENOENT;
2670
2671 if (r->get_user)
2672 return (r->get_user)(vcpu, r, reg, uaddr);
2673
2674 return reg_to_user(uaddr, &__vcpu_sys_reg(vcpu, r->reg), reg->id);
2675 }
2676
kvm_arm_sys_reg_set_reg(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)2677 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2678 {
2679 const struct sys_reg_desc *r;
2680 void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2681
2682 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2683 return demux_c15_set(reg->id, uaddr);
2684
2685 if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2686 return -ENOENT;
2687
2688 r = index_to_sys_reg_desc(vcpu, reg->id);
2689 if (!r)
2690 return set_invariant_sys_reg(reg->id, uaddr);
2691
2692 /* Check for regs disabled by runtime config */
2693 if (sysreg_hidden(vcpu, r))
2694 return -ENOENT;
2695
2696 if (r->set_user)
2697 return (r->set_user)(vcpu, r, reg, uaddr);
2698
2699 return reg_from_user(&__vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
2700 }
2701
num_demux_regs(void)2702 static unsigned int num_demux_regs(void)
2703 {
2704 unsigned int i, count = 0;
2705
2706 for (i = 0; i < CSSELR_MAX; i++)
2707 if (is_valid_cache(i))
2708 count++;
2709
2710 return count;
2711 }
2712
write_demux_regids(u64 __user * uindices)2713 static int write_demux_regids(u64 __user *uindices)
2714 {
2715 u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
2716 unsigned int i;
2717
2718 val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
2719 for (i = 0; i < CSSELR_MAX; i++) {
2720 if (!is_valid_cache(i))
2721 continue;
2722 if (put_user(val | i, uindices))
2723 return -EFAULT;
2724 uindices++;
2725 }
2726 return 0;
2727 }
2728
sys_reg_to_index(const struct sys_reg_desc * reg)2729 static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
2730 {
2731 return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
2732 KVM_REG_ARM64_SYSREG |
2733 (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
2734 (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
2735 (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
2736 (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
2737 (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
2738 }
2739
copy_reg_to_user(const struct sys_reg_desc * reg,u64 __user ** uind)2740 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
2741 {
2742 if (!*uind)
2743 return true;
2744
2745 if (put_user(sys_reg_to_index(reg), *uind))
2746 return false;
2747
2748 (*uind)++;
2749 return true;
2750 }
2751
walk_one_sys_reg(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 __user ** uind,unsigned int * total)2752 static int walk_one_sys_reg(const struct kvm_vcpu *vcpu,
2753 const struct sys_reg_desc *rd,
2754 u64 __user **uind,
2755 unsigned int *total)
2756 {
2757 /*
2758 * Ignore registers we trap but don't save,
2759 * and for which no custom user accessor is provided.
2760 */
2761 if (!(rd->reg || rd->get_user))
2762 return 0;
2763
2764 if (sysreg_hidden(vcpu, rd))
2765 return 0;
2766
2767 if (!copy_reg_to_user(rd, uind))
2768 return -EFAULT;
2769
2770 (*total)++;
2771 return 0;
2772 }
2773
2774 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
walk_sys_regs(struct kvm_vcpu * vcpu,u64 __user * uind)2775 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
2776 {
2777 const struct sys_reg_desc *i2, *end2;
2778 unsigned int total = 0;
2779 int err;
2780
2781 i2 = sys_reg_descs;
2782 end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
2783
2784 while (i2 != end2) {
2785 err = walk_one_sys_reg(vcpu, i2++, &uind, &total);
2786 if (err)
2787 return err;
2788 }
2789 return total;
2790 }
2791
kvm_arm_num_sys_reg_descs(struct kvm_vcpu * vcpu)2792 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
2793 {
2794 return ARRAY_SIZE(invariant_sys_regs)
2795 + num_demux_regs()
2796 + walk_sys_regs(vcpu, (u64 __user *)NULL);
2797 }
2798
kvm_arm_copy_sys_reg_indices(struct kvm_vcpu * vcpu,u64 __user * uindices)2799 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
2800 {
2801 unsigned int i;
2802 int err;
2803
2804 /* Then give them all the invariant registers' indices. */
2805 for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
2806 if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
2807 return -EFAULT;
2808 uindices++;
2809 }
2810
2811 err = walk_sys_regs(vcpu, uindices);
2812 if (err < 0)
2813 return err;
2814 uindices += err;
2815
2816 return write_demux_regids(uindices);
2817 }
2818
kvm_sys_reg_table_init(void)2819 void kvm_sys_reg_table_init(void)
2820 {
2821 unsigned int i;
2822 struct sys_reg_desc clidr;
2823
2824 /* Make sure tables are unique and in order. */
2825 BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs), false));
2826 BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs), true));
2827 BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs), true));
2828 BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs), true));
2829 BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs), true));
2830 BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs), false));
2831
2832 /* We abuse the reset function to overwrite the table itself. */
2833 for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
2834 invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
2835
2836 /*
2837 * CLIDR format is awkward, so clean it up. See ARM B4.1.20:
2838 *
2839 * If software reads the Cache Type fields from Ctype1
2840 * upwards, once it has seen a value of 0b000, no caches
2841 * exist at further-out levels of the hierarchy. So, for
2842 * example, if Ctype3 is the first Cache Type field with a
2843 * value of 0b000, the values of Ctype4 to Ctype7 must be
2844 * ignored.
2845 */
2846 get_clidr_el1(NULL, &clidr); /* Ugly... */
2847 cache_levels = clidr.val;
2848 for (i = 0; i < 7; i++)
2849 if (((cache_levels >> (i*3)) & 7) == 0)
2850 break;
2851 /* Clear all higher bits. */
2852 cache_levels &= (1 << (i*3))-1;
2853 }
2854