1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * derived from drivers/kvm/kvm_main.c
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright (C) 2008 Qumranet, Inc.
9 * Copyright IBM Corporation, 2008
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 *
12 * Authors:
13 * Avi Kivity <avi@qumranet.com>
14 * Yaniv Kamay <yaniv@qumranet.com>
15 * Amit Shah <amit.shah@qumranet.com>
16 * Ben-Ami Yassour <benami@il.ibm.com>
17 */
18
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "ioapic.h"
22 #include "mmu.h"
23 #include "i8254.h"
24 #include "tss.h"
25 #include "kvm_cache_regs.h"
26 #include "kvm_emulate.h"
27 #include "x86.h"
28 #include "cpuid.h"
29 #include "pmu.h"
30 #include "hyperv.h"
31 #include "lapic.h"
32
33 #include <linux/clocksource.h>
34 #include <linux/interrupt.h>
35 #include <linux/kvm.h>
36 #include <linux/fs.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <linux/moduleparam.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
57 #include <linux/sched/isolation.h>
58 #include <linux/mem_encrypt.h>
59 #include <linux/entry-kvm.h>
60
61 #include <trace/events/kvm.h>
62
63 #include <asm/debugreg.h>
64 #include <asm/msr.h>
65 #include <asm/desc.h>
66 #include <asm/mce.h>
67 #include <linux/kernel_stat.h>
68 #include <asm/fpu/internal.h> /* Ugh! */
69 #include <asm/pvclock.h>
70 #include <asm/div64.h>
71 #include <asm/irq_remapping.h>
72 #include <asm/mshyperv.h>
73 #include <asm/hypervisor.h>
74 #include <asm/tlbflush.h>
75 #include <asm/intel_pt.h>
76 #include <asm/emulate_prefix.h>
77 #include <clocksource/hyperv_timer.h>
78
79 #define CREATE_TRACE_POINTS
80 #include "trace.h"
81
82 #define MAX_IO_MSRS 256
83 #define KVM_MAX_MCE_BANKS 32
84 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
85 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
86
87 #define emul_to_vcpu(ctxt) \
88 ((struct kvm_vcpu *)(ctxt)->vcpu)
89
90 /* EFER defaults:
91 * - enable syscall per default because its emulated by KVM
92 * - enable LME and LMA per default on 64 bit KVM
93 */
94 #ifdef CONFIG_X86_64
95 static
96 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
97 #else
98 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
99 #endif
100
101 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
102
103 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
104 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
105
106 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
107 static void process_nmi(struct kvm_vcpu *vcpu);
108 static void enter_smm(struct kvm_vcpu *vcpu);
109 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
110 static void store_regs(struct kvm_vcpu *vcpu);
111 static int sync_regs(struct kvm_vcpu *vcpu);
112
113 struct kvm_x86_ops kvm_x86_ops __read_mostly;
114 EXPORT_SYMBOL_GPL(kvm_x86_ops);
115
116 static bool __read_mostly ignore_msrs = 0;
117 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
118
119 static bool __read_mostly report_ignored_msrs = true;
120 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
121
122 unsigned int min_timer_period_us = 200;
123 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
124
125 static bool __read_mostly kvmclock_periodic_sync = true;
126 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
127
128 bool __read_mostly kvm_has_tsc_control;
129 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
130 u32 __read_mostly kvm_max_guest_tsc_khz;
131 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
132 u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits;
133 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
134 u64 __read_mostly kvm_max_tsc_scaling_ratio;
135 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
136 u64 __read_mostly kvm_default_tsc_scaling_ratio;
137 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
138
139 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
140 static u32 __read_mostly tsc_tolerance_ppm = 250;
141 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
142
143 /*
144 * lapic timer advance (tscdeadline mode only) in nanoseconds. '-1' enables
145 * adaptive tuning starting from default advancment of 1000ns. '0' disables
146 * advancement entirely. Any other value is used as-is and disables adaptive
147 * tuning, i.e. allows priveleged userspace to set an exact advancement time.
148 */
149 static int __read_mostly lapic_timer_advance_ns = -1;
150 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
151
152 static bool __read_mostly vector_hashing = true;
153 module_param(vector_hashing, bool, S_IRUGO);
154
155 bool __read_mostly enable_vmware_backdoor = false;
156 module_param(enable_vmware_backdoor, bool, S_IRUGO);
157 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
158
159 static bool __read_mostly force_emulation_prefix = false;
160 module_param(force_emulation_prefix, bool, S_IRUGO);
161
162 int __read_mostly pi_inject_timer = -1;
163 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
164
165 /*
166 * Restoring the host value for MSRs that are only consumed when running in
167 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
168 * returns to userspace, i.e. the kernel can run with the guest's value.
169 */
170 #define KVM_MAX_NR_USER_RETURN_MSRS 16
171
172 struct kvm_user_return_msrs_global {
173 int nr;
174 u32 msrs[KVM_MAX_NR_USER_RETURN_MSRS];
175 };
176
177 struct kvm_user_return_msrs {
178 struct user_return_notifier urn;
179 bool registered;
180 struct kvm_user_return_msr_values {
181 u64 host;
182 u64 curr;
183 } values[KVM_MAX_NR_USER_RETURN_MSRS];
184 };
185
186 static struct kvm_user_return_msrs_global __read_mostly user_return_msrs_global;
187 static struct kvm_user_return_msrs __percpu *user_return_msrs;
188
189 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
190 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
191 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
192 | XFEATURE_MASK_PKRU)
193
194 u64 __read_mostly host_efer;
195 EXPORT_SYMBOL_GPL(host_efer);
196
197 bool __read_mostly allow_smaller_maxphyaddr = 0;
198 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
199
200 static u64 __read_mostly host_xss;
201 u64 __read_mostly supported_xss;
202 EXPORT_SYMBOL_GPL(supported_xss);
203
204 struct kvm_stats_debugfs_item debugfs_entries[] = {
205 VCPU_STAT("pf_fixed", pf_fixed),
206 VCPU_STAT("pf_guest", pf_guest),
207 VCPU_STAT("tlb_flush", tlb_flush),
208 VCPU_STAT("invlpg", invlpg),
209 VCPU_STAT("exits", exits),
210 VCPU_STAT("io_exits", io_exits),
211 VCPU_STAT("mmio_exits", mmio_exits),
212 VCPU_STAT("signal_exits", signal_exits),
213 VCPU_STAT("irq_window", irq_window_exits),
214 VCPU_STAT("nmi_window", nmi_window_exits),
215 VCPU_STAT("halt_exits", halt_exits),
216 VCPU_STAT("halt_successful_poll", halt_successful_poll),
217 VCPU_STAT("halt_attempted_poll", halt_attempted_poll),
218 VCPU_STAT("halt_poll_invalid", halt_poll_invalid),
219 VCPU_STAT("halt_wakeup", halt_wakeup),
220 VCPU_STAT("hypercalls", hypercalls),
221 VCPU_STAT("request_irq", request_irq_exits),
222 VCPU_STAT("irq_exits", irq_exits),
223 VCPU_STAT("host_state_reload", host_state_reload),
224 VCPU_STAT("fpu_reload", fpu_reload),
225 VCPU_STAT("insn_emulation", insn_emulation),
226 VCPU_STAT("insn_emulation_fail", insn_emulation_fail),
227 VCPU_STAT("irq_injections", irq_injections),
228 VCPU_STAT("nmi_injections", nmi_injections),
229 VCPU_STAT("req_event", req_event),
230 VCPU_STAT("l1d_flush", l1d_flush),
231 VCPU_STAT("halt_poll_success_ns", halt_poll_success_ns),
232 VCPU_STAT("halt_poll_fail_ns", halt_poll_fail_ns),
233 VM_STAT("mmu_shadow_zapped", mmu_shadow_zapped),
234 VM_STAT("mmu_pte_write", mmu_pte_write),
235 VM_STAT("mmu_pte_updated", mmu_pte_updated),
236 VM_STAT("mmu_pde_zapped", mmu_pde_zapped),
237 VM_STAT("mmu_flooded", mmu_flooded),
238 VM_STAT("mmu_recycled", mmu_recycled),
239 VM_STAT("mmu_cache_miss", mmu_cache_miss),
240 VM_STAT("mmu_unsync", mmu_unsync),
241 VM_STAT("remote_tlb_flush", remote_tlb_flush),
242 VM_STAT("largepages", lpages, .mode = 0444),
243 VM_STAT("nx_largepages_splitted", nx_lpage_splits, .mode = 0444),
244 VM_STAT("max_mmu_page_hash_collisions", max_mmu_page_hash_collisions),
245 { NULL }
246 };
247
248 u64 __read_mostly host_xcr0;
249 u64 __read_mostly supported_xcr0;
250 EXPORT_SYMBOL_GPL(supported_xcr0);
251
252 static struct kmem_cache *x86_fpu_cache;
253
254 static struct kmem_cache *x86_emulator_cache;
255
256 /*
257 * When called, it means the previous get/set msr reached an invalid msr.
258 * Return true if we want to ignore/silent this failed msr access.
259 */
kvm_msr_ignored_check(struct kvm_vcpu * vcpu,u32 msr,u64 data,bool write)260 static bool kvm_msr_ignored_check(struct kvm_vcpu *vcpu, u32 msr,
261 u64 data, bool write)
262 {
263 const char *op = write ? "wrmsr" : "rdmsr";
264
265 if (ignore_msrs) {
266 if (report_ignored_msrs)
267 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
268 op, msr, data);
269 /* Mask the error */
270 return true;
271 } else {
272 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
273 op, msr, data);
274 return false;
275 }
276 }
277
kvm_alloc_emulator_cache(void)278 static struct kmem_cache *kvm_alloc_emulator_cache(void)
279 {
280 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
281 unsigned int size = sizeof(struct x86_emulate_ctxt);
282
283 return kmem_cache_create_usercopy("x86_emulator", size,
284 __alignof__(struct x86_emulate_ctxt),
285 SLAB_ACCOUNT, useroffset,
286 size - useroffset, NULL);
287 }
288
289 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
290
kvm_async_pf_hash_reset(struct kvm_vcpu * vcpu)291 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
292 {
293 int i;
294 for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
295 vcpu->arch.apf.gfns[i] = ~0;
296 }
297
kvm_on_user_return(struct user_return_notifier * urn)298 static void kvm_on_user_return(struct user_return_notifier *urn)
299 {
300 unsigned slot;
301 struct kvm_user_return_msrs *msrs
302 = container_of(urn, struct kvm_user_return_msrs, urn);
303 struct kvm_user_return_msr_values *values;
304 unsigned long flags;
305
306 /*
307 * Disabling irqs at this point since the following code could be
308 * interrupted and executed through kvm_arch_hardware_disable()
309 */
310 local_irq_save(flags);
311 if (msrs->registered) {
312 msrs->registered = false;
313 user_return_notifier_unregister(urn);
314 }
315 local_irq_restore(flags);
316 for (slot = 0; slot < user_return_msrs_global.nr; ++slot) {
317 values = &msrs->values[slot];
318 if (values->host != values->curr) {
319 wrmsrl(user_return_msrs_global.msrs[slot], values->host);
320 values->curr = values->host;
321 }
322 }
323 }
324
kvm_define_user_return_msr(unsigned slot,u32 msr)325 void kvm_define_user_return_msr(unsigned slot, u32 msr)
326 {
327 BUG_ON(slot >= KVM_MAX_NR_USER_RETURN_MSRS);
328 user_return_msrs_global.msrs[slot] = msr;
329 if (slot >= user_return_msrs_global.nr)
330 user_return_msrs_global.nr = slot + 1;
331 }
332 EXPORT_SYMBOL_GPL(kvm_define_user_return_msr);
333
kvm_user_return_msr_cpu_online(void)334 static void kvm_user_return_msr_cpu_online(void)
335 {
336 unsigned int cpu = smp_processor_id();
337 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
338 u64 value;
339 int i;
340
341 for (i = 0; i < user_return_msrs_global.nr; ++i) {
342 rdmsrl_safe(user_return_msrs_global.msrs[i], &value);
343 msrs->values[i].host = value;
344 msrs->values[i].curr = value;
345 }
346 }
347
kvm_set_user_return_msr(unsigned slot,u64 value,u64 mask)348 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
349 {
350 unsigned int cpu = smp_processor_id();
351 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
352 int err;
353
354 value = (value & mask) | (msrs->values[slot].host & ~mask);
355 if (value == msrs->values[slot].curr)
356 return 0;
357 err = wrmsrl_safe(user_return_msrs_global.msrs[slot], value);
358 if (err)
359 return 1;
360
361 msrs->values[slot].curr = value;
362 if (!msrs->registered) {
363 msrs->urn.on_user_return = kvm_on_user_return;
364 user_return_notifier_register(&msrs->urn);
365 msrs->registered = true;
366 }
367 return 0;
368 }
369 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
370
drop_user_return_notifiers(void)371 static void drop_user_return_notifiers(void)
372 {
373 unsigned int cpu = smp_processor_id();
374 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
375
376 if (msrs->registered)
377 kvm_on_user_return(&msrs->urn);
378 }
379
kvm_get_apic_base(struct kvm_vcpu * vcpu)380 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
381 {
382 return vcpu->arch.apic_base;
383 }
384 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
385
kvm_get_apic_mode(struct kvm_vcpu * vcpu)386 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
387 {
388 return kvm_apic_mode(kvm_get_apic_base(vcpu));
389 }
390 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
391
kvm_set_apic_base(struct kvm_vcpu * vcpu,struct msr_data * msr_info)392 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
393 {
394 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
395 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
396 u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
397 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
398
399 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
400 return 1;
401 if (!msr_info->host_initiated) {
402 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
403 return 1;
404 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
405 return 1;
406 }
407
408 kvm_lapic_set_base(vcpu, msr_info->data);
409 kvm_recalculate_apic_map(vcpu->kvm);
410 return 0;
411 }
412 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
413
kvm_spurious_fault(void)414 asmlinkage __visible noinstr void kvm_spurious_fault(void)
415 {
416 /* Fault while not rebooting. We want the trace. */
417 BUG_ON(!kvm_rebooting);
418 }
419 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
420
421 #define EXCPT_BENIGN 0
422 #define EXCPT_CONTRIBUTORY 1
423 #define EXCPT_PF 2
424
exception_class(int vector)425 static int exception_class(int vector)
426 {
427 switch (vector) {
428 case PF_VECTOR:
429 return EXCPT_PF;
430 case DE_VECTOR:
431 case TS_VECTOR:
432 case NP_VECTOR:
433 case SS_VECTOR:
434 case GP_VECTOR:
435 return EXCPT_CONTRIBUTORY;
436 default:
437 break;
438 }
439 return EXCPT_BENIGN;
440 }
441
442 #define EXCPT_FAULT 0
443 #define EXCPT_TRAP 1
444 #define EXCPT_ABORT 2
445 #define EXCPT_INTERRUPT 3
446
exception_type(int vector)447 static int exception_type(int vector)
448 {
449 unsigned int mask;
450
451 if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
452 return EXCPT_INTERRUPT;
453
454 mask = 1 << vector;
455
456 /* #DB is trap, as instruction watchpoints are handled elsewhere */
457 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
458 return EXCPT_TRAP;
459
460 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
461 return EXCPT_ABORT;
462
463 /* Reserved exceptions will result in fault */
464 return EXCPT_FAULT;
465 }
466
kvm_deliver_exception_payload(struct kvm_vcpu * vcpu)467 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
468 {
469 unsigned nr = vcpu->arch.exception.nr;
470 bool has_payload = vcpu->arch.exception.has_payload;
471 unsigned long payload = vcpu->arch.exception.payload;
472
473 if (!has_payload)
474 return;
475
476 switch (nr) {
477 case DB_VECTOR:
478 /*
479 * "Certain debug exceptions may clear bit 0-3. The
480 * remaining contents of the DR6 register are never
481 * cleared by the processor".
482 */
483 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
484 /*
485 * DR6.RTM is set by all #DB exceptions that don't clear it.
486 */
487 vcpu->arch.dr6 |= DR6_RTM;
488 vcpu->arch.dr6 |= payload;
489 /*
490 * Bit 16 should be set in the payload whenever the #DB
491 * exception should clear DR6.RTM. This makes the payload
492 * compatible with the pending debug exceptions under VMX.
493 * Though not currently documented in the SDM, this also
494 * makes the payload compatible with the exit qualification
495 * for #DB exceptions under VMX.
496 */
497 vcpu->arch.dr6 ^= payload & DR6_RTM;
498
499 /*
500 * The #DB payload is defined as compatible with the 'pending
501 * debug exceptions' field under VMX, not DR6. While bit 12 is
502 * defined in the 'pending debug exceptions' field (enabled
503 * breakpoint), it is reserved and must be zero in DR6.
504 */
505 vcpu->arch.dr6 &= ~BIT(12);
506 break;
507 case PF_VECTOR:
508 vcpu->arch.cr2 = payload;
509 break;
510 }
511
512 vcpu->arch.exception.has_payload = false;
513 vcpu->arch.exception.payload = 0;
514 }
515 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
516
kvm_multiple_exception(struct kvm_vcpu * vcpu,unsigned nr,bool has_error,u32 error_code,bool has_payload,unsigned long payload,bool reinject)517 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
518 unsigned nr, bool has_error, u32 error_code,
519 bool has_payload, unsigned long payload, bool reinject)
520 {
521 u32 prev_nr;
522 int class1, class2;
523
524 kvm_make_request(KVM_REQ_EVENT, vcpu);
525
526 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
527 queue:
528 if (has_error && !is_protmode(vcpu))
529 has_error = false;
530 if (reinject) {
531 /*
532 * On vmentry, vcpu->arch.exception.pending is only
533 * true if an event injection was blocked by
534 * nested_run_pending. In that case, however,
535 * vcpu_enter_guest requests an immediate exit,
536 * and the guest shouldn't proceed far enough to
537 * need reinjection.
538 */
539 WARN_ON_ONCE(vcpu->arch.exception.pending);
540 vcpu->arch.exception.injected = true;
541 if (WARN_ON_ONCE(has_payload)) {
542 /*
543 * A reinjected event has already
544 * delivered its payload.
545 */
546 has_payload = false;
547 payload = 0;
548 }
549 } else {
550 vcpu->arch.exception.pending = true;
551 vcpu->arch.exception.injected = false;
552 }
553 vcpu->arch.exception.has_error_code = has_error;
554 vcpu->arch.exception.nr = nr;
555 vcpu->arch.exception.error_code = error_code;
556 vcpu->arch.exception.has_payload = has_payload;
557 vcpu->arch.exception.payload = payload;
558 if (!is_guest_mode(vcpu))
559 kvm_deliver_exception_payload(vcpu);
560 return;
561 }
562
563 /* to check exception */
564 prev_nr = vcpu->arch.exception.nr;
565 if (prev_nr == DF_VECTOR) {
566 /* triple fault -> shutdown */
567 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
568 return;
569 }
570 class1 = exception_class(prev_nr);
571 class2 = exception_class(nr);
572 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
573 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
574 /*
575 * Generate double fault per SDM Table 5-5. Set
576 * exception.pending = true so that the double fault
577 * can trigger a nested vmexit.
578 */
579 vcpu->arch.exception.pending = true;
580 vcpu->arch.exception.injected = false;
581 vcpu->arch.exception.has_error_code = true;
582 vcpu->arch.exception.nr = DF_VECTOR;
583 vcpu->arch.exception.error_code = 0;
584 vcpu->arch.exception.has_payload = false;
585 vcpu->arch.exception.payload = 0;
586 } else
587 /* replace previous exception with a new one in a hope
588 that instruction re-execution will regenerate lost
589 exception */
590 goto queue;
591 }
592
kvm_queue_exception(struct kvm_vcpu * vcpu,unsigned nr)593 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
594 {
595 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
596 }
597 EXPORT_SYMBOL_GPL(kvm_queue_exception);
598
kvm_requeue_exception(struct kvm_vcpu * vcpu,unsigned nr)599 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
600 {
601 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
602 }
603 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
604
kvm_queue_exception_p(struct kvm_vcpu * vcpu,unsigned nr,unsigned long payload)605 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
606 unsigned long payload)
607 {
608 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
609 }
610 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
611
kvm_queue_exception_e_p(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code,unsigned long payload)612 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
613 u32 error_code, unsigned long payload)
614 {
615 kvm_multiple_exception(vcpu, nr, true, error_code,
616 true, payload, false);
617 }
618
kvm_complete_insn_gp(struct kvm_vcpu * vcpu,int err)619 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
620 {
621 if (err)
622 kvm_inject_gp(vcpu, 0);
623 else
624 return kvm_skip_emulated_instruction(vcpu);
625
626 return 1;
627 }
628 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
629
kvm_inject_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)630 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
631 {
632 ++vcpu->stat.pf_guest;
633 vcpu->arch.exception.nested_apf =
634 is_guest_mode(vcpu) && fault->async_page_fault;
635 if (vcpu->arch.exception.nested_apf) {
636 vcpu->arch.apf.nested_apf_token = fault->address;
637 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
638 } else {
639 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
640 fault->address);
641 }
642 }
643 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
644
kvm_inject_emulated_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)645 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
646 struct x86_exception *fault)
647 {
648 struct kvm_mmu *fault_mmu;
649 WARN_ON_ONCE(fault->vector != PF_VECTOR);
650
651 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
652 vcpu->arch.walk_mmu;
653
654 /*
655 * Invalidate the TLB entry for the faulting address, if it exists,
656 * else the access will fault indefinitely (and to emulate hardware).
657 */
658 if ((fault->error_code & PFERR_PRESENT_MASK) &&
659 !(fault->error_code & PFERR_RSVD_MASK))
660 kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address,
661 fault_mmu->root_hpa);
662
663 fault_mmu->inject_page_fault(vcpu, fault);
664 return fault->nested_page_fault;
665 }
666 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
667
kvm_inject_nmi(struct kvm_vcpu * vcpu)668 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
669 {
670 atomic_inc(&vcpu->arch.nmi_queued);
671 kvm_make_request(KVM_REQ_NMI, vcpu);
672 }
673 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
674
kvm_queue_exception_e(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code)675 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
676 {
677 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
678 }
679 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
680
kvm_requeue_exception_e(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code)681 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
682 {
683 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
684 }
685 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
686
687 /*
688 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
689 * a #GP and return false.
690 */
kvm_require_cpl(struct kvm_vcpu * vcpu,int required_cpl)691 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
692 {
693 if (kvm_x86_ops.get_cpl(vcpu) <= required_cpl)
694 return true;
695 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
696 return false;
697 }
698 EXPORT_SYMBOL_GPL(kvm_require_cpl);
699
kvm_require_dr(struct kvm_vcpu * vcpu,int dr)700 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
701 {
702 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
703 return true;
704
705 kvm_queue_exception(vcpu, UD_VECTOR);
706 return false;
707 }
708 EXPORT_SYMBOL_GPL(kvm_require_dr);
709
710 /*
711 * This function will be used to read from the physical memory of the currently
712 * running guest. The difference to kvm_vcpu_read_guest_page is that this function
713 * can read from guest physical or from the guest's guest physical memory.
714 */
kvm_read_guest_page_mmu(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu,gfn_t ngfn,void * data,int offset,int len,u32 access)715 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
716 gfn_t ngfn, void *data, int offset, int len,
717 u32 access)
718 {
719 struct x86_exception exception;
720 gfn_t real_gfn;
721 gpa_t ngpa;
722
723 ngpa = gfn_to_gpa(ngfn);
724 real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
725 if (real_gfn == UNMAPPED_GVA)
726 return -EFAULT;
727
728 real_gfn = gpa_to_gfn(real_gfn);
729
730 return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
731 }
732 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
733
kvm_read_nested_guest_page(struct kvm_vcpu * vcpu,gfn_t gfn,void * data,int offset,int len,u32 access)734 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
735 void *data, int offset, int len, u32 access)
736 {
737 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
738 data, offset, len, access);
739 }
740
pdptr_rsvd_bits(struct kvm_vcpu * vcpu)741 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
742 {
743 return rsvd_bits(cpuid_maxphyaddr(vcpu), 63) | rsvd_bits(5, 8) |
744 rsvd_bits(1, 2);
745 }
746
747 /*
748 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise.
749 */
load_pdptrs(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu,unsigned long cr3)750 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
751 {
752 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
753 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
754 int i;
755 int ret;
756 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
757
758 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
759 offset * sizeof(u64), sizeof(pdpte),
760 PFERR_USER_MASK|PFERR_WRITE_MASK);
761 if (ret < 0) {
762 ret = 0;
763 goto out;
764 }
765 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
766 if ((pdpte[i] & PT_PRESENT_MASK) &&
767 (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
768 ret = 0;
769 goto out;
770 }
771 }
772 ret = 1;
773
774 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
775 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
776
777 out:
778
779 return ret;
780 }
781 EXPORT_SYMBOL_GPL(load_pdptrs);
782
pdptrs_changed(struct kvm_vcpu * vcpu)783 bool pdptrs_changed(struct kvm_vcpu *vcpu)
784 {
785 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
786 int offset;
787 gfn_t gfn;
788 int r;
789
790 if (!is_pae_paging(vcpu))
791 return false;
792
793 if (!kvm_register_is_available(vcpu, VCPU_EXREG_PDPTR))
794 return true;
795
796 gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
797 offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
798 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
799 PFERR_USER_MASK | PFERR_WRITE_MASK);
800 if (r < 0)
801 return true;
802
803 return memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
804 }
805 EXPORT_SYMBOL_GPL(pdptrs_changed);
806
kvm_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)807 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
808 {
809 unsigned long old_cr0 = kvm_read_cr0(vcpu);
810 unsigned long pdptr_bits = X86_CR0_CD | X86_CR0_NW | X86_CR0_PG;
811 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
812
813 cr0 |= X86_CR0_ET;
814
815 #ifdef CONFIG_X86_64
816 if (cr0 & 0xffffffff00000000UL)
817 return 1;
818 #endif
819
820 cr0 &= ~CR0_RESERVED_BITS;
821
822 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
823 return 1;
824
825 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
826 return 1;
827
828 #ifdef CONFIG_X86_64
829 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
830 (cr0 & X86_CR0_PG)) {
831 int cs_db, cs_l;
832
833 if (!is_pae(vcpu))
834 return 1;
835 kvm_x86_ops.get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
836 if (cs_l)
837 return 1;
838 }
839 #endif
840 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
841 is_pae(vcpu) && ((cr0 ^ old_cr0) & pdptr_bits) &&
842 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)))
843 return 1;
844
845 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
846 return 1;
847
848 kvm_x86_ops.set_cr0(vcpu, cr0);
849
850 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
851 kvm_clear_async_pf_completion_queue(vcpu);
852 kvm_async_pf_hash_reset(vcpu);
853 }
854
855 if ((cr0 ^ old_cr0) & update_bits)
856 kvm_mmu_reset_context(vcpu);
857
858 if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
859 kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
860 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
861 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
862
863 return 0;
864 }
865 EXPORT_SYMBOL_GPL(kvm_set_cr0);
866
kvm_lmsw(struct kvm_vcpu * vcpu,unsigned long msw)867 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
868 {
869 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
870 }
871 EXPORT_SYMBOL_GPL(kvm_lmsw);
872
kvm_load_guest_xsave_state(struct kvm_vcpu * vcpu)873 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
874 {
875 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
876
877 if (vcpu->arch.xcr0 != host_xcr0)
878 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
879
880 if (vcpu->arch.xsaves_enabled &&
881 vcpu->arch.ia32_xss != host_xss)
882 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
883 }
884
885 if (static_cpu_has(X86_FEATURE_PKU) &&
886 (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
887 (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU)) &&
888 vcpu->arch.pkru != vcpu->arch.host_pkru)
889 __write_pkru(vcpu->arch.pkru);
890 }
891 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
892
kvm_load_host_xsave_state(struct kvm_vcpu * vcpu)893 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
894 {
895 if (static_cpu_has(X86_FEATURE_PKU) &&
896 (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
897 (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU))) {
898 vcpu->arch.pkru = rdpkru();
899 if (vcpu->arch.pkru != vcpu->arch.host_pkru)
900 __write_pkru(vcpu->arch.host_pkru);
901 }
902
903 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
904
905 if (vcpu->arch.xcr0 != host_xcr0)
906 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
907
908 if (vcpu->arch.xsaves_enabled &&
909 vcpu->arch.ia32_xss != host_xss)
910 wrmsrl(MSR_IA32_XSS, host_xss);
911 }
912
913 }
914 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
915
__kvm_set_xcr(struct kvm_vcpu * vcpu,u32 index,u64 xcr)916 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
917 {
918 u64 xcr0 = xcr;
919 u64 old_xcr0 = vcpu->arch.xcr0;
920 u64 valid_bits;
921
922 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
923 if (index != XCR_XFEATURE_ENABLED_MASK)
924 return 1;
925 if (!(xcr0 & XFEATURE_MASK_FP))
926 return 1;
927 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
928 return 1;
929
930 /*
931 * Do not allow the guest to set bits that we do not support
932 * saving. However, xcr0 bit 0 is always set, even if the
933 * emulated CPU does not support XSAVE (see fx_init).
934 */
935 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
936 if (xcr0 & ~valid_bits)
937 return 1;
938
939 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
940 (!(xcr0 & XFEATURE_MASK_BNDCSR)))
941 return 1;
942
943 if (xcr0 & XFEATURE_MASK_AVX512) {
944 if (!(xcr0 & XFEATURE_MASK_YMM))
945 return 1;
946 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
947 return 1;
948 }
949 vcpu->arch.xcr0 = xcr0;
950
951 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
952 kvm_update_cpuid_runtime(vcpu);
953 return 0;
954 }
955
kvm_set_xcr(struct kvm_vcpu * vcpu,u32 index,u64 xcr)956 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
957 {
958 if (kvm_x86_ops.get_cpl(vcpu) != 0 ||
959 __kvm_set_xcr(vcpu, index, xcr)) {
960 kvm_inject_gp(vcpu, 0);
961 return 1;
962 }
963 return 0;
964 }
965 EXPORT_SYMBOL_GPL(kvm_set_xcr);
966
kvm_valid_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)967 int kvm_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
968 {
969 if (cr4 & cr4_reserved_bits)
970 return -EINVAL;
971
972 if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
973 return -EINVAL;
974
975 return 0;
976 }
977 EXPORT_SYMBOL_GPL(kvm_valid_cr4);
978
kvm_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)979 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
980 {
981 unsigned long old_cr4 = kvm_read_cr4(vcpu);
982 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
983 X86_CR4_SMEP;
984 unsigned long mmu_role_bits = pdptr_bits | X86_CR4_SMAP | X86_CR4_PKE;
985
986 if (kvm_valid_cr4(vcpu, cr4))
987 return 1;
988
989 if (is_long_mode(vcpu)) {
990 if (!(cr4 & X86_CR4_PAE))
991 return 1;
992 if ((cr4 ^ old_cr4) & X86_CR4_LA57)
993 return 1;
994 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
995 && ((cr4 ^ old_cr4) & pdptr_bits)
996 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
997 kvm_read_cr3(vcpu)))
998 return 1;
999
1000 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1001 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
1002 return 1;
1003
1004 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1005 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1006 return 1;
1007 }
1008
1009 if (kvm_x86_ops.set_cr4(vcpu, cr4))
1010 return 1;
1011
1012 if (((cr4 ^ old_cr4) & mmu_role_bits) ||
1013 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1014 kvm_mmu_reset_context(vcpu);
1015
1016 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
1017 kvm_update_cpuid_runtime(vcpu);
1018
1019 return 0;
1020 }
1021 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1022
kvm_set_cr3(struct kvm_vcpu * vcpu,unsigned long cr3)1023 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1024 {
1025 bool skip_tlb_flush = false;
1026 #ifdef CONFIG_X86_64
1027 bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
1028
1029 if (pcid_enabled) {
1030 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1031 cr3 &= ~X86_CR3_PCID_NOFLUSH;
1032 }
1033 #endif
1034
1035 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
1036 if (!skip_tlb_flush) {
1037 kvm_mmu_sync_roots(vcpu);
1038 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1039 }
1040 return 0;
1041 }
1042
1043 if (is_long_mode(vcpu) &&
1044 (cr3 & vcpu->arch.cr3_lm_rsvd_bits))
1045 return 1;
1046 else if (is_pae_paging(vcpu) &&
1047 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
1048 return 1;
1049
1050 kvm_mmu_new_pgd(vcpu, cr3, skip_tlb_flush, skip_tlb_flush);
1051 vcpu->arch.cr3 = cr3;
1052 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
1053
1054 return 0;
1055 }
1056 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1057
kvm_set_cr8(struct kvm_vcpu * vcpu,unsigned long cr8)1058 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1059 {
1060 if (cr8 & CR8_RESERVED_BITS)
1061 return 1;
1062 if (lapic_in_kernel(vcpu))
1063 kvm_lapic_set_tpr(vcpu, cr8);
1064 else
1065 vcpu->arch.cr8 = cr8;
1066 return 0;
1067 }
1068 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1069
kvm_get_cr8(struct kvm_vcpu * vcpu)1070 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1071 {
1072 if (lapic_in_kernel(vcpu))
1073 return kvm_lapic_get_cr8(vcpu);
1074 else
1075 return vcpu->arch.cr8;
1076 }
1077 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1078
kvm_update_dr0123(struct kvm_vcpu * vcpu)1079 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1080 {
1081 int i;
1082
1083 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1084 for (i = 0; i < KVM_NR_DB_REGS; i++)
1085 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1086 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
1087 }
1088 }
1089
kvm_update_dr7(struct kvm_vcpu * vcpu)1090 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1091 {
1092 unsigned long dr7;
1093
1094 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1095 dr7 = vcpu->arch.guest_debug_dr7;
1096 else
1097 dr7 = vcpu->arch.dr7;
1098 kvm_x86_ops.set_dr7(vcpu, dr7);
1099 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1100 if (dr7 & DR7_BP_EN_MASK)
1101 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1102 }
1103 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1104
kvm_dr6_fixed(struct kvm_vcpu * vcpu)1105 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1106 {
1107 u64 fixed = DR6_FIXED_1;
1108
1109 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1110 fixed |= DR6_RTM;
1111 return fixed;
1112 }
1113
__kvm_set_dr(struct kvm_vcpu * vcpu,int dr,unsigned long val)1114 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1115 {
1116 size_t size = ARRAY_SIZE(vcpu->arch.db);
1117
1118 switch (dr) {
1119 case 0 ... 3:
1120 vcpu->arch.db[array_index_nospec(dr, size)] = val;
1121 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1122 vcpu->arch.eff_db[dr] = val;
1123 break;
1124 case 4:
1125 case 6:
1126 if (!kvm_dr6_valid(val))
1127 return -1; /* #GP */
1128 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1129 break;
1130 case 5:
1131 default: /* 7 */
1132 if (!kvm_dr7_valid(val))
1133 return -1; /* #GP */
1134 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1135 kvm_update_dr7(vcpu);
1136 break;
1137 }
1138
1139 return 0;
1140 }
1141
kvm_set_dr(struct kvm_vcpu * vcpu,int dr,unsigned long val)1142 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1143 {
1144 if (__kvm_set_dr(vcpu, dr, val)) {
1145 kvm_inject_gp(vcpu, 0);
1146 return 1;
1147 }
1148 return 0;
1149 }
1150 EXPORT_SYMBOL_GPL(kvm_set_dr);
1151
kvm_get_dr(struct kvm_vcpu * vcpu,int dr,unsigned long * val)1152 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1153 {
1154 size_t size = ARRAY_SIZE(vcpu->arch.db);
1155
1156 switch (dr) {
1157 case 0 ... 3:
1158 *val = vcpu->arch.db[array_index_nospec(dr, size)];
1159 break;
1160 case 4:
1161 case 6:
1162 *val = vcpu->arch.dr6;
1163 break;
1164 case 5:
1165 default: /* 7 */
1166 *val = vcpu->arch.dr7;
1167 break;
1168 }
1169 return 0;
1170 }
1171 EXPORT_SYMBOL_GPL(kvm_get_dr);
1172
kvm_rdpmc(struct kvm_vcpu * vcpu)1173 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
1174 {
1175 u32 ecx = kvm_rcx_read(vcpu);
1176 u64 data;
1177 int err;
1178
1179 err = kvm_pmu_rdpmc(vcpu, ecx, &data);
1180 if (err)
1181 return err;
1182 kvm_rax_write(vcpu, (u32)data);
1183 kvm_rdx_write(vcpu, data >> 32);
1184 return err;
1185 }
1186 EXPORT_SYMBOL_GPL(kvm_rdpmc);
1187
1188 /*
1189 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1190 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1191 *
1192 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1193 * extract the supported MSRs from the related const lists.
1194 * msrs_to_save is selected from the msrs_to_save_all to reflect the
1195 * capabilities of the host cpu. This capabilities test skips MSRs that are
1196 * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1197 * may depend on host virtualization features rather than host cpu features.
1198 */
1199
1200 static const u32 msrs_to_save_all[] = {
1201 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1202 MSR_STAR,
1203 #ifdef CONFIG_X86_64
1204 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1205 #endif
1206 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1207 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1208 MSR_IA32_SPEC_CTRL,
1209 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1210 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1211 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1212 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1213 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1214 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1215 MSR_IA32_UMWAIT_CONTROL,
1216
1217 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1218 MSR_ARCH_PERFMON_FIXED_CTR0 + 2, MSR_ARCH_PERFMON_FIXED_CTR0 + 3,
1219 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1220 MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1221 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1222 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1223 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1224 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1225 MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1226 MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1227 MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1228 MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1229 MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1230 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1231 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1232 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1233 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1234 MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1235 MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1236 MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1237 MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1238 MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1239 };
1240
1241 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1242 static unsigned num_msrs_to_save;
1243
1244 static const u32 emulated_msrs_all[] = {
1245 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1246 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1247 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1248 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1249 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1250 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1251 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1252 HV_X64_MSR_RESET,
1253 HV_X64_MSR_VP_INDEX,
1254 HV_X64_MSR_VP_RUNTIME,
1255 HV_X64_MSR_SCONTROL,
1256 HV_X64_MSR_STIMER0_CONFIG,
1257 HV_X64_MSR_VP_ASSIST_PAGE,
1258 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1259 HV_X64_MSR_TSC_EMULATION_STATUS,
1260 HV_X64_MSR_SYNDBG_OPTIONS,
1261 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1262 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1263 HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1264
1265 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1266 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1267
1268 MSR_IA32_TSC_ADJUST,
1269 MSR_IA32_TSCDEADLINE,
1270 MSR_IA32_ARCH_CAPABILITIES,
1271 MSR_IA32_PERF_CAPABILITIES,
1272 MSR_IA32_MISC_ENABLE,
1273 MSR_IA32_MCG_STATUS,
1274 MSR_IA32_MCG_CTL,
1275 MSR_IA32_MCG_EXT_CTL,
1276 MSR_IA32_SMBASE,
1277 MSR_SMI_COUNT,
1278 MSR_PLATFORM_INFO,
1279 MSR_MISC_FEATURES_ENABLES,
1280 MSR_AMD64_VIRT_SPEC_CTRL,
1281 MSR_IA32_POWER_CTL,
1282 MSR_IA32_UCODE_REV,
1283
1284 /*
1285 * The following list leaves out MSRs whose values are determined
1286 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1287 * We always support the "true" VMX control MSRs, even if the host
1288 * processor does not, so I am putting these registers here rather
1289 * than in msrs_to_save_all.
1290 */
1291 MSR_IA32_VMX_BASIC,
1292 MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1293 MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1294 MSR_IA32_VMX_TRUE_EXIT_CTLS,
1295 MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1296 MSR_IA32_VMX_MISC,
1297 MSR_IA32_VMX_CR0_FIXED0,
1298 MSR_IA32_VMX_CR4_FIXED0,
1299 MSR_IA32_VMX_VMCS_ENUM,
1300 MSR_IA32_VMX_PROCBASED_CTLS2,
1301 MSR_IA32_VMX_EPT_VPID_CAP,
1302 MSR_IA32_VMX_VMFUNC,
1303
1304 MSR_K7_HWCR,
1305 MSR_KVM_POLL_CONTROL,
1306 };
1307
1308 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1309 static unsigned num_emulated_msrs;
1310
1311 /*
1312 * List of msr numbers which are used to expose MSR-based features that
1313 * can be used by a hypervisor to validate requested CPU features.
1314 */
1315 static const u32 msr_based_features_all[] = {
1316 MSR_IA32_VMX_BASIC,
1317 MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1318 MSR_IA32_VMX_PINBASED_CTLS,
1319 MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1320 MSR_IA32_VMX_PROCBASED_CTLS,
1321 MSR_IA32_VMX_TRUE_EXIT_CTLS,
1322 MSR_IA32_VMX_EXIT_CTLS,
1323 MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1324 MSR_IA32_VMX_ENTRY_CTLS,
1325 MSR_IA32_VMX_MISC,
1326 MSR_IA32_VMX_CR0_FIXED0,
1327 MSR_IA32_VMX_CR0_FIXED1,
1328 MSR_IA32_VMX_CR4_FIXED0,
1329 MSR_IA32_VMX_CR4_FIXED1,
1330 MSR_IA32_VMX_VMCS_ENUM,
1331 MSR_IA32_VMX_PROCBASED_CTLS2,
1332 MSR_IA32_VMX_EPT_VPID_CAP,
1333 MSR_IA32_VMX_VMFUNC,
1334
1335 MSR_F10H_DECFG,
1336 MSR_IA32_UCODE_REV,
1337 MSR_IA32_ARCH_CAPABILITIES,
1338 MSR_IA32_PERF_CAPABILITIES,
1339 };
1340
1341 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1342 static unsigned int num_msr_based_features;
1343
kvm_get_arch_capabilities(void)1344 static u64 kvm_get_arch_capabilities(void)
1345 {
1346 u64 data = 0;
1347
1348 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1349 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1350
1351 /*
1352 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1353 * the nested hypervisor runs with NX huge pages. If it is not,
1354 * L1 is anyway vulnerable to ITLB_MULTIHIT explots from other
1355 * L1 guests, so it need not worry about its own (L2) guests.
1356 */
1357 data |= ARCH_CAP_PSCHANGE_MC_NO;
1358
1359 /*
1360 * If we're doing cache flushes (either "always" or "cond")
1361 * we will do one whenever the guest does a vmlaunch/vmresume.
1362 * If an outer hypervisor is doing the cache flush for us
1363 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1364 * capability to the guest too, and if EPT is disabled we're not
1365 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will
1366 * require a nested hypervisor to do a flush of its own.
1367 */
1368 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1369 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1370
1371 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1372 data |= ARCH_CAP_RDCL_NO;
1373 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1374 data |= ARCH_CAP_SSB_NO;
1375 if (!boot_cpu_has_bug(X86_BUG_MDS))
1376 data |= ARCH_CAP_MDS_NO;
1377
1378 /*
1379 * On TAA affected systems:
1380 * - nothing to do if TSX is disabled on the host.
1381 * - we emulate TSX_CTRL if present on the host.
1382 * This lets the guest use VERW to clear CPU buffers.
1383 */
1384 if (!boot_cpu_has(X86_FEATURE_RTM))
1385 data &= ~(ARCH_CAP_TAA_NO | ARCH_CAP_TSX_CTRL_MSR);
1386 else if (!boot_cpu_has_bug(X86_BUG_TAA))
1387 data |= ARCH_CAP_TAA_NO;
1388
1389 return data;
1390 }
1391
kvm_get_msr_feature(struct kvm_msr_entry * msr)1392 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1393 {
1394 switch (msr->index) {
1395 case MSR_IA32_ARCH_CAPABILITIES:
1396 msr->data = kvm_get_arch_capabilities();
1397 break;
1398 case MSR_IA32_UCODE_REV:
1399 rdmsrl_safe(msr->index, &msr->data);
1400 break;
1401 default:
1402 return kvm_x86_ops.get_msr_feature(msr);
1403 }
1404 return 0;
1405 }
1406
do_get_msr_feature(struct kvm_vcpu * vcpu,unsigned index,u64 * data)1407 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1408 {
1409 struct kvm_msr_entry msr;
1410 int r;
1411
1412 msr.index = index;
1413 r = kvm_get_msr_feature(&msr);
1414
1415 if (r == KVM_MSR_RET_INVALID) {
1416 /* Unconditionally clear the output for simplicity */
1417 *data = 0;
1418 if (kvm_msr_ignored_check(vcpu, index, 0, false))
1419 r = 0;
1420 }
1421
1422 if (r)
1423 return r;
1424
1425 *data = msr.data;
1426
1427 return 0;
1428 }
1429
__kvm_valid_efer(struct kvm_vcpu * vcpu,u64 efer)1430 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1431 {
1432 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1433 return false;
1434
1435 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1436 return false;
1437
1438 if (efer & (EFER_LME | EFER_LMA) &&
1439 !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1440 return false;
1441
1442 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1443 return false;
1444
1445 return true;
1446
1447 }
kvm_valid_efer(struct kvm_vcpu * vcpu,u64 efer)1448 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1449 {
1450 if (efer & efer_reserved_bits)
1451 return false;
1452
1453 return __kvm_valid_efer(vcpu, efer);
1454 }
1455 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1456
set_efer(struct kvm_vcpu * vcpu,struct msr_data * msr_info)1457 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1458 {
1459 u64 old_efer = vcpu->arch.efer;
1460 u64 efer = msr_info->data;
1461 int r;
1462
1463 if (efer & efer_reserved_bits)
1464 return 1;
1465
1466 if (!msr_info->host_initiated) {
1467 if (!__kvm_valid_efer(vcpu, efer))
1468 return 1;
1469
1470 if (is_paging(vcpu) &&
1471 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1472 return 1;
1473 }
1474
1475 efer &= ~EFER_LMA;
1476 efer |= vcpu->arch.efer & EFER_LMA;
1477
1478 r = kvm_x86_ops.set_efer(vcpu, efer);
1479 if (r) {
1480 WARN_ON(r > 0);
1481 return r;
1482 }
1483
1484 /* Update reserved bits */
1485 if ((efer ^ old_efer) & EFER_NX)
1486 kvm_mmu_reset_context(vcpu);
1487
1488 return 0;
1489 }
1490
kvm_enable_efer_bits(u64 mask)1491 void kvm_enable_efer_bits(u64 mask)
1492 {
1493 efer_reserved_bits &= ~mask;
1494 }
1495 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1496
kvm_msr_allowed(struct kvm_vcpu * vcpu,u32 index,u32 type)1497 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1498 {
1499 struct kvm *kvm = vcpu->kvm;
1500 struct msr_bitmap_range *ranges = kvm->arch.msr_filter.ranges;
1501 u32 count = kvm->arch.msr_filter.count;
1502 u32 i;
1503 bool r = kvm->arch.msr_filter.default_allow;
1504 int idx;
1505
1506 /* MSR filtering not set up or x2APIC enabled, allow everything */
1507 if (!count || (index >= 0x800 && index <= 0x8ff))
1508 return true;
1509
1510 /* Prevent collision with set_msr_filter */
1511 idx = srcu_read_lock(&kvm->srcu);
1512
1513 for (i = 0; i < count; i++) {
1514 u32 start = ranges[i].base;
1515 u32 end = start + ranges[i].nmsrs;
1516 u32 flags = ranges[i].flags;
1517 unsigned long *bitmap = ranges[i].bitmap;
1518
1519 if ((index >= start) && (index < end) && (flags & type)) {
1520 r = !!test_bit(index - start, bitmap);
1521 break;
1522 }
1523 }
1524
1525 srcu_read_unlock(&kvm->srcu, idx);
1526
1527 return r;
1528 }
1529 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1530
1531 /*
1532 * Write @data into the MSR specified by @index. Select MSR specific fault
1533 * checks are bypassed if @host_initiated is %true.
1534 * Returns 0 on success, non-0 otherwise.
1535 * Assumes vcpu_load() was already called.
1536 */
__kvm_set_msr(struct kvm_vcpu * vcpu,u32 index,u64 data,bool host_initiated)1537 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1538 bool host_initiated)
1539 {
1540 struct msr_data msr;
1541
1542 if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1543 return KVM_MSR_RET_FILTERED;
1544
1545 switch (index) {
1546 case MSR_FS_BASE:
1547 case MSR_GS_BASE:
1548 case MSR_KERNEL_GS_BASE:
1549 case MSR_CSTAR:
1550 case MSR_LSTAR:
1551 if (is_noncanonical_address(data, vcpu))
1552 return 1;
1553 break;
1554 case MSR_IA32_SYSENTER_EIP:
1555 case MSR_IA32_SYSENTER_ESP:
1556 /*
1557 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1558 * non-canonical address is written on Intel but not on
1559 * AMD (which ignores the top 32-bits, because it does
1560 * not implement 64-bit SYSENTER).
1561 *
1562 * 64-bit code should hence be able to write a non-canonical
1563 * value on AMD. Making the address canonical ensures that
1564 * vmentry does not fail on Intel after writing a non-canonical
1565 * value, and that something deterministic happens if the guest
1566 * invokes 64-bit SYSENTER.
1567 */
1568 data = get_canonical(data, vcpu_virt_addr_bits(vcpu));
1569 }
1570
1571 msr.data = data;
1572 msr.index = index;
1573 msr.host_initiated = host_initiated;
1574
1575 return kvm_x86_ops.set_msr(vcpu, &msr);
1576 }
1577
kvm_set_msr_ignored_check(struct kvm_vcpu * vcpu,u32 index,u64 data,bool host_initiated)1578 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1579 u32 index, u64 data, bool host_initiated)
1580 {
1581 int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1582
1583 if (ret == KVM_MSR_RET_INVALID)
1584 if (kvm_msr_ignored_check(vcpu, index, data, true))
1585 ret = 0;
1586
1587 return ret;
1588 }
1589
1590 /*
1591 * Read the MSR specified by @index into @data. Select MSR specific fault
1592 * checks are bypassed if @host_initiated is %true.
1593 * Returns 0 on success, non-0 otherwise.
1594 * Assumes vcpu_load() was already called.
1595 */
__kvm_get_msr(struct kvm_vcpu * vcpu,u32 index,u64 * data,bool host_initiated)1596 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1597 bool host_initiated)
1598 {
1599 struct msr_data msr;
1600 int ret;
1601
1602 if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1603 return KVM_MSR_RET_FILTERED;
1604
1605 msr.index = index;
1606 msr.host_initiated = host_initiated;
1607
1608 ret = kvm_x86_ops.get_msr(vcpu, &msr);
1609 if (!ret)
1610 *data = msr.data;
1611 return ret;
1612 }
1613
kvm_get_msr_ignored_check(struct kvm_vcpu * vcpu,u32 index,u64 * data,bool host_initiated)1614 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1615 u32 index, u64 *data, bool host_initiated)
1616 {
1617 int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1618
1619 if (ret == KVM_MSR_RET_INVALID) {
1620 /* Unconditionally clear *data for simplicity */
1621 *data = 0;
1622 if (kvm_msr_ignored_check(vcpu, index, 0, false))
1623 ret = 0;
1624 }
1625
1626 return ret;
1627 }
1628
kvm_get_msr(struct kvm_vcpu * vcpu,u32 index,u64 * data)1629 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1630 {
1631 return kvm_get_msr_ignored_check(vcpu, index, data, false);
1632 }
1633 EXPORT_SYMBOL_GPL(kvm_get_msr);
1634
kvm_set_msr(struct kvm_vcpu * vcpu,u32 index,u64 data)1635 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1636 {
1637 return kvm_set_msr_ignored_check(vcpu, index, data, false);
1638 }
1639 EXPORT_SYMBOL_GPL(kvm_set_msr);
1640
complete_emulated_msr(struct kvm_vcpu * vcpu,bool is_read)1641 static int complete_emulated_msr(struct kvm_vcpu *vcpu, bool is_read)
1642 {
1643 if (vcpu->run->msr.error) {
1644 kvm_inject_gp(vcpu, 0);
1645 return 1;
1646 } else if (is_read) {
1647 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1648 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1649 }
1650
1651 return kvm_skip_emulated_instruction(vcpu);
1652 }
1653
complete_emulated_rdmsr(struct kvm_vcpu * vcpu)1654 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1655 {
1656 return complete_emulated_msr(vcpu, true);
1657 }
1658
complete_emulated_wrmsr(struct kvm_vcpu * vcpu)1659 static int complete_emulated_wrmsr(struct kvm_vcpu *vcpu)
1660 {
1661 return complete_emulated_msr(vcpu, false);
1662 }
1663
kvm_msr_reason(int r)1664 static u64 kvm_msr_reason(int r)
1665 {
1666 switch (r) {
1667 case KVM_MSR_RET_INVALID:
1668 return KVM_MSR_EXIT_REASON_UNKNOWN;
1669 case KVM_MSR_RET_FILTERED:
1670 return KVM_MSR_EXIT_REASON_FILTER;
1671 default:
1672 return KVM_MSR_EXIT_REASON_INVAL;
1673 }
1674 }
1675
kvm_msr_user_space(struct kvm_vcpu * vcpu,u32 index,u32 exit_reason,u64 data,int (* completion)(struct kvm_vcpu * vcpu),int r)1676 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
1677 u32 exit_reason, u64 data,
1678 int (*completion)(struct kvm_vcpu *vcpu),
1679 int r)
1680 {
1681 u64 msr_reason = kvm_msr_reason(r);
1682
1683 /* Check if the user wanted to know about this MSR fault */
1684 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
1685 return 0;
1686
1687 vcpu->run->exit_reason = exit_reason;
1688 vcpu->run->msr.error = 0;
1689 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
1690 vcpu->run->msr.reason = msr_reason;
1691 vcpu->run->msr.index = index;
1692 vcpu->run->msr.data = data;
1693 vcpu->arch.complete_userspace_io = completion;
1694
1695 return 1;
1696 }
1697
kvm_get_msr_user_space(struct kvm_vcpu * vcpu,u32 index,int r)1698 static int kvm_get_msr_user_space(struct kvm_vcpu *vcpu, u32 index, int r)
1699 {
1700 return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_RDMSR, 0,
1701 complete_emulated_rdmsr, r);
1702 }
1703
kvm_set_msr_user_space(struct kvm_vcpu * vcpu,u32 index,u64 data,int r)1704 static int kvm_set_msr_user_space(struct kvm_vcpu *vcpu, u32 index, u64 data, int r)
1705 {
1706 return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_WRMSR, data,
1707 complete_emulated_wrmsr, r);
1708 }
1709
kvm_emulate_rdmsr(struct kvm_vcpu * vcpu)1710 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1711 {
1712 u32 ecx = kvm_rcx_read(vcpu);
1713 u64 data;
1714 int r;
1715
1716 r = kvm_get_msr(vcpu, ecx, &data);
1717
1718 /* MSR read failed? See if we should ask user space */
1719 if (r && kvm_get_msr_user_space(vcpu, ecx, r)) {
1720 /* Bounce to user space */
1721 return 0;
1722 }
1723
1724 /* MSR read failed? Inject a #GP */
1725 if (r) {
1726 trace_kvm_msr_read_ex(ecx);
1727 kvm_inject_gp(vcpu, 0);
1728 return 1;
1729 }
1730
1731 trace_kvm_msr_read(ecx, data);
1732
1733 kvm_rax_write(vcpu, data & -1u);
1734 kvm_rdx_write(vcpu, (data >> 32) & -1u);
1735 return kvm_skip_emulated_instruction(vcpu);
1736 }
1737 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
1738
kvm_emulate_wrmsr(struct kvm_vcpu * vcpu)1739 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
1740 {
1741 u32 ecx = kvm_rcx_read(vcpu);
1742 u64 data = kvm_read_edx_eax(vcpu);
1743 int r;
1744
1745 r = kvm_set_msr(vcpu, ecx, data);
1746
1747 /* MSR write failed? See if we should ask user space */
1748 if (r && kvm_set_msr_user_space(vcpu, ecx, data, r))
1749 /* Bounce to user space */
1750 return 0;
1751
1752 /* Signal all other negative errors to userspace */
1753 if (r < 0)
1754 return r;
1755
1756 /* MSR write failed? Inject a #GP */
1757 if (r > 0) {
1758 trace_kvm_msr_write_ex(ecx, data);
1759 kvm_inject_gp(vcpu, 0);
1760 return 1;
1761 }
1762
1763 trace_kvm_msr_write(ecx, data);
1764 return kvm_skip_emulated_instruction(vcpu);
1765 }
1766 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
1767
kvm_vcpu_exit_request(struct kvm_vcpu * vcpu)1768 bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
1769 {
1770 return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
1771 xfer_to_guest_mode_work_pending();
1772 }
1773 EXPORT_SYMBOL_GPL(kvm_vcpu_exit_request);
1774
1775 /*
1776 * The fast path for frequent and performance sensitive wrmsr emulation,
1777 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
1778 * the latency of virtual IPI by avoiding the expensive bits of transitioning
1779 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
1780 * other cases which must be called after interrupts are enabled on the host.
1781 */
handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu * vcpu,u64 data)1782 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
1783 {
1784 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
1785 return 1;
1786
1787 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
1788 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
1789 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
1790 ((u32)(data >> 32) != X2APIC_BROADCAST)) {
1791
1792 data &= ~(1 << 12);
1793 kvm_apic_send_ipi(vcpu->arch.apic, (u32)data, (u32)(data >> 32));
1794 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR2, (u32)(data >> 32));
1795 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR, (u32)data);
1796 trace_kvm_apic_write(APIC_ICR, (u32)data);
1797 return 0;
1798 }
1799
1800 return 1;
1801 }
1802
handle_fastpath_set_tscdeadline(struct kvm_vcpu * vcpu,u64 data)1803 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
1804 {
1805 if (!kvm_can_use_hv_timer(vcpu))
1806 return 1;
1807
1808 kvm_set_lapic_tscdeadline_msr(vcpu, data);
1809 return 0;
1810 }
1811
handle_fastpath_set_msr_irqoff(struct kvm_vcpu * vcpu)1812 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
1813 {
1814 u32 msr = kvm_rcx_read(vcpu);
1815 u64 data;
1816 fastpath_t ret = EXIT_FASTPATH_NONE;
1817
1818 switch (msr) {
1819 case APIC_BASE_MSR + (APIC_ICR >> 4):
1820 data = kvm_read_edx_eax(vcpu);
1821 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
1822 kvm_skip_emulated_instruction(vcpu);
1823 ret = EXIT_FASTPATH_EXIT_HANDLED;
1824 }
1825 break;
1826 case MSR_IA32_TSCDEADLINE:
1827 data = kvm_read_edx_eax(vcpu);
1828 if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
1829 kvm_skip_emulated_instruction(vcpu);
1830 ret = EXIT_FASTPATH_REENTER_GUEST;
1831 }
1832 break;
1833 default:
1834 break;
1835 }
1836
1837 if (ret != EXIT_FASTPATH_NONE)
1838 trace_kvm_msr_write(msr, data);
1839
1840 return ret;
1841 }
1842 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
1843
1844 /*
1845 * Adapt set_msr() to msr_io()'s calling convention
1846 */
do_get_msr(struct kvm_vcpu * vcpu,unsigned index,u64 * data)1847 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1848 {
1849 return kvm_get_msr_ignored_check(vcpu, index, data, true);
1850 }
1851
do_set_msr(struct kvm_vcpu * vcpu,unsigned index,u64 * data)1852 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1853 {
1854 return kvm_set_msr_ignored_check(vcpu, index, *data, true);
1855 }
1856
1857 #ifdef CONFIG_X86_64
1858 struct pvclock_clock {
1859 int vclock_mode;
1860 u64 cycle_last;
1861 u64 mask;
1862 u32 mult;
1863 u32 shift;
1864 u64 base_cycles;
1865 u64 offset;
1866 };
1867
1868 struct pvclock_gtod_data {
1869 seqcount_t seq;
1870
1871 struct pvclock_clock clock; /* extract of a clocksource struct */
1872 struct pvclock_clock raw_clock; /* extract of a clocksource struct */
1873
1874 ktime_t offs_boot;
1875 u64 wall_time_sec;
1876 };
1877
1878 static struct pvclock_gtod_data pvclock_gtod_data;
1879
update_pvclock_gtod(struct timekeeper * tk)1880 static void update_pvclock_gtod(struct timekeeper *tk)
1881 {
1882 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1883
1884 write_seqcount_begin(&vdata->seq);
1885
1886 /* copy pvclock gtod data */
1887 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode;
1888 vdata->clock.cycle_last = tk->tkr_mono.cycle_last;
1889 vdata->clock.mask = tk->tkr_mono.mask;
1890 vdata->clock.mult = tk->tkr_mono.mult;
1891 vdata->clock.shift = tk->tkr_mono.shift;
1892 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec;
1893 vdata->clock.offset = tk->tkr_mono.base;
1894
1895 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode;
1896 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last;
1897 vdata->raw_clock.mask = tk->tkr_raw.mask;
1898 vdata->raw_clock.mult = tk->tkr_raw.mult;
1899 vdata->raw_clock.shift = tk->tkr_raw.shift;
1900 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec;
1901 vdata->raw_clock.offset = tk->tkr_raw.base;
1902
1903 vdata->wall_time_sec = tk->xtime_sec;
1904
1905 vdata->offs_boot = tk->offs_boot;
1906
1907 write_seqcount_end(&vdata->seq);
1908 }
1909
get_kvmclock_base_ns(void)1910 static s64 get_kvmclock_base_ns(void)
1911 {
1912 /* Count up from boot time, but with the frequency of the raw clock. */
1913 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
1914 }
1915 #else
get_kvmclock_base_ns(void)1916 static s64 get_kvmclock_base_ns(void)
1917 {
1918 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */
1919 return ktime_get_boottime_ns();
1920 }
1921 #endif
1922
kvm_write_wall_clock(struct kvm * kvm,gpa_t wall_clock)1923 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1924 {
1925 int version;
1926 int r;
1927 struct pvclock_wall_clock wc;
1928 u64 wall_nsec;
1929
1930 kvm->arch.wall_clock = wall_clock;
1931
1932 if (!wall_clock)
1933 return;
1934
1935 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1936 if (r)
1937 return;
1938
1939 if (version & 1)
1940 ++version; /* first time write, random junk */
1941
1942 ++version;
1943
1944 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1945 return;
1946
1947 /*
1948 * The guest calculates current wall clock time by adding
1949 * system time (updated by kvm_guest_time_update below) to the
1950 * wall clock specified here. We do the reverse here.
1951 */
1952 wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
1953
1954 wc.nsec = do_div(wall_nsec, 1000000000);
1955 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
1956 wc.version = version;
1957
1958 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1959
1960 version++;
1961 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1962 }
1963
kvm_write_system_time(struct kvm_vcpu * vcpu,gpa_t system_time,bool old_msr,bool host_initiated)1964 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
1965 bool old_msr, bool host_initiated)
1966 {
1967 struct kvm_arch *ka = &vcpu->kvm->arch;
1968
1969 if (vcpu->vcpu_id == 0 && !host_initiated) {
1970 if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
1971 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1972
1973 ka->boot_vcpu_runs_old_kvmclock = old_msr;
1974 }
1975
1976 vcpu->arch.time = system_time;
1977 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
1978
1979 /* we verify if the enable bit is set... */
1980 vcpu->arch.pv_time_enabled = false;
1981 if (!(system_time & 1))
1982 return;
1983
1984 if (!kvm_gfn_to_hva_cache_init(vcpu->kvm,
1985 &vcpu->arch.pv_time, system_time & ~1ULL,
1986 sizeof(struct pvclock_vcpu_time_info)))
1987 vcpu->arch.pv_time_enabled = true;
1988
1989 return;
1990 }
1991
div_frac(uint32_t dividend,uint32_t divisor)1992 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1993 {
1994 do_shl32_div32(dividend, divisor);
1995 return dividend;
1996 }
1997
kvm_get_time_scale(uint64_t scaled_hz,uint64_t base_hz,s8 * pshift,u32 * pmultiplier)1998 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1999 s8 *pshift, u32 *pmultiplier)
2000 {
2001 uint64_t scaled64;
2002 int32_t shift = 0;
2003 uint64_t tps64;
2004 uint32_t tps32;
2005
2006 tps64 = base_hz;
2007 scaled64 = scaled_hz;
2008 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2009 tps64 >>= 1;
2010 shift--;
2011 }
2012
2013 tps32 = (uint32_t)tps64;
2014 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2015 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2016 scaled64 >>= 1;
2017 else
2018 tps32 <<= 1;
2019 shift++;
2020 }
2021
2022 *pshift = shift;
2023 *pmultiplier = div_frac(scaled64, tps32);
2024 }
2025
2026 #ifdef CONFIG_X86_64
2027 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2028 #endif
2029
2030 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2031 static unsigned long max_tsc_khz;
2032
adjust_tsc_khz(u32 khz,s32 ppm)2033 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2034 {
2035 u64 v = (u64)khz * (1000000 + ppm);
2036 do_div(v, 1000000);
2037 return v;
2038 }
2039
set_tsc_khz(struct kvm_vcpu * vcpu,u32 user_tsc_khz,bool scale)2040 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2041 {
2042 u64 ratio;
2043
2044 /* Guest TSC same frequency as host TSC? */
2045 if (!scale) {
2046 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
2047 return 0;
2048 }
2049
2050 /* TSC scaling supported? */
2051 if (!kvm_has_tsc_control) {
2052 if (user_tsc_khz > tsc_khz) {
2053 vcpu->arch.tsc_catchup = 1;
2054 vcpu->arch.tsc_always_catchup = 1;
2055 return 0;
2056 } else {
2057 pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2058 return -1;
2059 }
2060 }
2061
2062 /* TSC scaling required - calculate ratio */
2063 ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
2064 user_tsc_khz, tsc_khz);
2065
2066 if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
2067 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2068 user_tsc_khz);
2069 return -1;
2070 }
2071
2072 vcpu->arch.tsc_scaling_ratio = ratio;
2073 return 0;
2074 }
2075
kvm_set_tsc_khz(struct kvm_vcpu * vcpu,u32 user_tsc_khz)2076 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2077 {
2078 u32 thresh_lo, thresh_hi;
2079 int use_scaling = 0;
2080
2081 /* tsc_khz can be zero if TSC calibration fails */
2082 if (user_tsc_khz == 0) {
2083 /* set tsc_scaling_ratio to a safe value */
2084 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
2085 return -1;
2086 }
2087
2088 /* Compute a scale to convert nanoseconds in TSC cycles */
2089 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2090 &vcpu->arch.virtual_tsc_shift,
2091 &vcpu->arch.virtual_tsc_mult);
2092 vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2093
2094 /*
2095 * Compute the variation in TSC rate which is acceptable
2096 * within the range of tolerance and decide if the
2097 * rate being applied is within that bounds of the hardware
2098 * rate. If so, no scaling or compensation need be done.
2099 */
2100 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2101 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2102 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2103 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
2104 use_scaling = 1;
2105 }
2106 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2107 }
2108
compute_guest_tsc(struct kvm_vcpu * vcpu,s64 kernel_ns)2109 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2110 {
2111 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2112 vcpu->arch.virtual_tsc_mult,
2113 vcpu->arch.virtual_tsc_shift);
2114 tsc += vcpu->arch.this_tsc_write;
2115 return tsc;
2116 }
2117
gtod_is_based_on_tsc(int mode)2118 static inline int gtod_is_based_on_tsc(int mode)
2119 {
2120 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2121 }
2122
kvm_track_tsc_matching(struct kvm_vcpu * vcpu)2123 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2124 {
2125 #ifdef CONFIG_X86_64
2126 bool vcpus_matched;
2127 struct kvm_arch *ka = &vcpu->kvm->arch;
2128 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2129
2130 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2131 atomic_read(&vcpu->kvm->online_vcpus));
2132
2133 /*
2134 * Once the masterclock is enabled, always perform request in
2135 * order to update it.
2136 *
2137 * In order to enable masterclock, the host clocksource must be TSC
2138 * and the vcpus need to have matched TSCs. When that happens,
2139 * perform request to enable masterclock.
2140 */
2141 if (ka->use_master_clock ||
2142 (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2143 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2144
2145 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2146 atomic_read(&vcpu->kvm->online_vcpus),
2147 ka->use_master_clock, gtod->clock.vclock_mode);
2148 #endif
2149 }
2150
2151 /*
2152 * Multiply tsc by a fixed point number represented by ratio.
2153 *
2154 * The most significant 64-N bits (mult) of ratio represent the
2155 * integral part of the fixed point number; the remaining N bits
2156 * (frac) represent the fractional part, ie. ratio represents a fixed
2157 * point number (mult + frac * 2^(-N)).
2158 *
2159 * N equals to kvm_tsc_scaling_ratio_frac_bits.
2160 */
__scale_tsc(u64 ratio,u64 tsc)2161 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2162 {
2163 return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
2164 }
2165
kvm_scale_tsc(struct kvm_vcpu * vcpu,u64 tsc)2166 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
2167 {
2168 u64 _tsc = tsc;
2169 u64 ratio = vcpu->arch.tsc_scaling_ratio;
2170
2171 if (ratio != kvm_default_tsc_scaling_ratio)
2172 _tsc = __scale_tsc(ratio, tsc);
2173
2174 return _tsc;
2175 }
2176 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
2177
kvm_compute_tsc_offset(struct kvm_vcpu * vcpu,u64 target_tsc)2178 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2179 {
2180 u64 tsc;
2181
2182 tsc = kvm_scale_tsc(vcpu, rdtsc());
2183
2184 return target_tsc - tsc;
2185 }
2186
kvm_read_l1_tsc(struct kvm_vcpu * vcpu,u64 host_tsc)2187 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2188 {
2189 return vcpu->arch.l1_tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
2190 }
2191 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2192
kvm_vcpu_write_tsc_offset(struct kvm_vcpu * vcpu,u64 offset)2193 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
2194 {
2195 vcpu->arch.l1_tsc_offset = offset;
2196 vcpu->arch.tsc_offset = kvm_x86_ops.write_l1_tsc_offset(vcpu, offset);
2197 }
2198
kvm_check_tsc_unstable(void)2199 static inline bool kvm_check_tsc_unstable(void)
2200 {
2201 #ifdef CONFIG_X86_64
2202 /*
2203 * TSC is marked unstable when we're running on Hyper-V,
2204 * 'TSC page' clocksource is good.
2205 */
2206 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2207 return false;
2208 #endif
2209 return check_tsc_unstable();
2210 }
2211
kvm_synchronize_tsc(struct kvm_vcpu * vcpu,u64 data)2212 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2213 {
2214 struct kvm *kvm = vcpu->kvm;
2215 u64 offset, ns, elapsed;
2216 unsigned long flags;
2217 bool matched;
2218 bool already_matched;
2219 bool synchronizing = false;
2220
2221 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2222 offset = kvm_compute_tsc_offset(vcpu, data);
2223 ns = get_kvmclock_base_ns();
2224 elapsed = ns - kvm->arch.last_tsc_nsec;
2225
2226 if (vcpu->arch.virtual_tsc_khz) {
2227 if (data == 0) {
2228 /*
2229 * detection of vcpu initialization -- need to sync
2230 * with other vCPUs. This particularly helps to keep
2231 * kvm_clock stable after CPU hotplug
2232 */
2233 synchronizing = true;
2234 } else {
2235 u64 tsc_exp = kvm->arch.last_tsc_write +
2236 nsec_to_cycles(vcpu, elapsed);
2237 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2238 /*
2239 * Special case: TSC write with a small delta (1 second)
2240 * of virtual cycle time against real time is
2241 * interpreted as an attempt to synchronize the CPU.
2242 */
2243 synchronizing = data < tsc_exp + tsc_hz &&
2244 data + tsc_hz > tsc_exp;
2245 }
2246 }
2247
2248 /*
2249 * For a reliable TSC, we can match TSC offsets, and for an unstable
2250 * TSC, we add elapsed time in this computation. We could let the
2251 * compensation code attempt to catch up if we fall behind, but
2252 * it's better to try to match offsets from the beginning.
2253 */
2254 if (synchronizing &&
2255 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2256 if (!kvm_check_tsc_unstable()) {
2257 offset = kvm->arch.cur_tsc_offset;
2258 } else {
2259 u64 delta = nsec_to_cycles(vcpu, elapsed);
2260 data += delta;
2261 offset = kvm_compute_tsc_offset(vcpu, data);
2262 }
2263 matched = true;
2264 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
2265 } else {
2266 /*
2267 * We split periods of matched TSC writes into generations.
2268 * For each generation, we track the original measured
2269 * nanosecond time, offset, and write, so if TSCs are in
2270 * sync, we can match exact offset, and if not, we can match
2271 * exact software computation in compute_guest_tsc()
2272 *
2273 * These values are tracked in kvm->arch.cur_xxx variables.
2274 */
2275 kvm->arch.cur_tsc_generation++;
2276 kvm->arch.cur_tsc_nsec = ns;
2277 kvm->arch.cur_tsc_write = data;
2278 kvm->arch.cur_tsc_offset = offset;
2279 matched = false;
2280 }
2281
2282 /*
2283 * We also track th most recent recorded KHZ, write and time to
2284 * allow the matching interval to be extended at each write.
2285 */
2286 kvm->arch.last_tsc_nsec = ns;
2287 kvm->arch.last_tsc_write = data;
2288 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2289
2290 vcpu->arch.last_guest_tsc = data;
2291
2292 /* Keep track of which generation this VCPU has synchronized to */
2293 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2294 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2295 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2296
2297 kvm_vcpu_write_tsc_offset(vcpu, offset);
2298 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2299
2300 spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
2301 if (!matched) {
2302 kvm->arch.nr_vcpus_matched_tsc = 0;
2303 } else if (!already_matched) {
2304 kvm->arch.nr_vcpus_matched_tsc++;
2305 }
2306
2307 kvm_track_tsc_matching(vcpu);
2308 spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
2309 }
2310
adjust_tsc_offset_guest(struct kvm_vcpu * vcpu,s64 adjustment)2311 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2312 s64 adjustment)
2313 {
2314 u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2315 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2316 }
2317
adjust_tsc_offset_host(struct kvm_vcpu * vcpu,s64 adjustment)2318 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2319 {
2320 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
2321 WARN_ON(adjustment < 0);
2322 adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
2323 adjust_tsc_offset_guest(vcpu, adjustment);
2324 }
2325
2326 #ifdef CONFIG_X86_64
2327
read_tsc(void)2328 static u64 read_tsc(void)
2329 {
2330 u64 ret = (u64)rdtsc_ordered();
2331 u64 last = pvclock_gtod_data.clock.cycle_last;
2332
2333 if (likely(ret >= last))
2334 return ret;
2335
2336 /*
2337 * GCC likes to generate cmov here, but this branch is extremely
2338 * predictable (it's just a function of time and the likely is
2339 * very likely) and there's a data dependence, so force GCC
2340 * to generate a branch instead. I don't barrier() because
2341 * we don't actually need a barrier, and if this function
2342 * ever gets inlined it will generate worse code.
2343 */
2344 asm volatile ("");
2345 return last;
2346 }
2347
vgettsc(struct pvclock_clock * clock,u64 * tsc_timestamp,int * mode)2348 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2349 int *mode)
2350 {
2351 long v;
2352 u64 tsc_pg_val;
2353
2354 switch (clock->vclock_mode) {
2355 case VDSO_CLOCKMODE_HVCLOCK:
2356 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2357 tsc_timestamp);
2358 if (tsc_pg_val != U64_MAX) {
2359 /* TSC page valid */
2360 *mode = VDSO_CLOCKMODE_HVCLOCK;
2361 v = (tsc_pg_val - clock->cycle_last) &
2362 clock->mask;
2363 } else {
2364 /* TSC page invalid */
2365 *mode = VDSO_CLOCKMODE_NONE;
2366 }
2367 break;
2368 case VDSO_CLOCKMODE_TSC:
2369 *mode = VDSO_CLOCKMODE_TSC;
2370 *tsc_timestamp = read_tsc();
2371 v = (*tsc_timestamp - clock->cycle_last) &
2372 clock->mask;
2373 break;
2374 default:
2375 *mode = VDSO_CLOCKMODE_NONE;
2376 }
2377
2378 if (*mode == VDSO_CLOCKMODE_NONE)
2379 *tsc_timestamp = v = 0;
2380
2381 return v * clock->mult;
2382 }
2383
do_monotonic_raw(s64 * t,u64 * tsc_timestamp)2384 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2385 {
2386 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2387 unsigned long seq;
2388 int mode;
2389 u64 ns;
2390
2391 do {
2392 seq = read_seqcount_begin(>od->seq);
2393 ns = gtod->raw_clock.base_cycles;
2394 ns += vgettsc(>od->raw_clock, tsc_timestamp, &mode);
2395 ns >>= gtod->raw_clock.shift;
2396 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2397 } while (unlikely(read_seqcount_retry(>od->seq, seq)));
2398 *t = ns;
2399
2400 return mode;
2401 }
2402
do_realtime(struct timespec64 * ts,u64 * tsc_timestamp)2403 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2404 {
2405 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2406 unsigned long seq;
2407 int mode;
2408 u64 ns;
2409
2410 do {
2411 seq = read_seqcount_begin(>od->seq);
2412 ts->tv_sec = gtod->wall_time_sec;
2413 ns = gtod->clock.base_cycles;
2414 ns += vgettsc(>od->clock, tsc_timestamp, &mode);
2415 ns >>= gtod->clock.shift;
2416 } while (unlikely(read_seqcount_retry(>od->seq, seq)));
2417
2418 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2419 ts->tv_nsec = ns;
2420
2421 return mode;
2422 }
2423
2424 /* returns true if host is using TSC based clocksource */
kvm_get_time_and_clockread(s64 * kernel_ns,u64 * tsc_timestamp)2425 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2426 {
2427 /* checked again under seqlock below */
2428 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2429 return false;
2430
2431 return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2432 tsc_timestamp));
2433 }
2434
2435 /* returns true if host is using TSC based clocksource */
kvm_get_walltime_and_clockread(struct timespec64 * ts,u64 * tsc_timestamp)2436 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2437 u64 *tsc_timestamp)
2438 {
2439 /* checked again under seqlock below */
2440 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2441 return false;
2442
2443 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2444 }
2445 #endif
2446
2447 /*
2448 *
2449 * Assuming a stable TSC across physical CPUS, and a stable TSC
2450 * across virtual CPUs, the following condition is possible.
2451 * Each numbered line represents an event visible to both
2452 * CPUs at the next numbered event.
2453 *
2454 * "timespecX" represents host monotonic time. "tscX" represents
2455 * RDTSC value.
2456 *
2457 * VCPU0 on CPU0 | VCPU1 on CPU1
2458 *
2459 * 1. read timespec0,tsc0
2460 * 2. | timespec1 = timespec0 + N
2461 * | tsc1 = tsc0 + M
2462 * 3. transition to guest | transition to guest
2463 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2464 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
2465 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2466 *
2467 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2468 *
2469 * - ret0 < ret1
2470 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2471 * ...
2472 * - 0 < N - M => M < N
2473 *
2474 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2475 * always the case (the difference between two distinct xtime instances
2476 * might be smaller then the difference between corresponding TSC reads,
2477 * when updating guest vcpus pvclock areas).
2478 *
2479 * To avoid that problem, do not allow visibility of distinct
2480 * system_timestamp/tsc_timestamp values simultaneously: use a master
2481 * copy of host monotonic time values. Update that master copy
2482 * in lockstep.
2483 *
2484 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2485 *
2486 */
2487
pvclock_update_vm_gtod_copy(struct kvm * kvm)2488 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2489 {
2490 #ifdef CONFIG_X86_64
2491 struct kvm_arch *ka = &kvm->arch;
2492 int vclock_mode;
2493 bool host_tsc_clocksource, vcpus_matched;
2494
2495 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2496 atomic_read(&kvm->online_vcpus));
2497
2498 /*
2499 * If the host uses TSC clock, then passthrough TSC as stable
2500 * to the guest.
2501 */
2502 host_tsc_clocksource = kvm_get_time_and_clockread(
2503 &ka->master_kernel_ns,
2504 &ka->master_cycle_now);
2505
2506 ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2507 && !ka->backwards_tsc_observed
2508 && !ka->boot_vcpu_runs_old_kvmclock;
2509
2510 if (ka->use_master_clock)
2511 atomic_set(&kvm_guest_has_master_clock, 1);
2512
2513 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2514 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2515 vcpus_matched);
2516 #endif
2517 }
2518
kvm_make_mclock_inprogress_request(struct kvm * kvm)2519 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2520 {
2521 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2522 }
2523
kvm_gen_update_masterclock(struct kvm * kvm)2524 static void kvm_gen_update_masterclock(struct kvm *kvm)
2525 {
2526 #ifdef CONFIG_X86_64
2527 int i;
2528 struct kvm_vcpu *vcpu;
2529 struct kvm_arch *ka = &kvm->arch;
2530
2531 spin_lock(&ka->pvclock_gtod_sync_lock);
2532 kvm_make_mclock_inprogress_request(kvm);
2533 /* no guest entries from this point */
2534 pvclock_update_vm_gtod_copy(kvm);
2535
2536 kvm_for_each_vcpu(i, vcpu, kvm)
2537 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2538
2539 /* guest entries allowed */
2540 kvm_for_each_vcpu(i, vcpu, kvm)
2541 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2542
2543 spin_unlock(&ka->pvclock_gtod_sync_lock);
2544 #endif
2545 }
2546
get_kvmclock_ns(struct kvm * kvm)2547 u64 get_kvmclock_ns(struct kvm *kvm)
2548 {
2549 struct kvm_arch *ka = &kvm->arch;
2550 struct pvclock_vcpu_time_info hv_clock;
2551 u64 ret;
2552
2553 spin_lock(&ka->pvclock_gtod_sync_lock);
2554 if (!ka->use_master_clock) {
2555 spin_unlock(&ka->pvclock_gtod_sync_lock);
2556 return get_kvmclock_base_ns() + ka->kvmclock_offset;
2557 }
2558
2559 hv_clock.tsc_timestamp = ka->master_cycle_now;
2560 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2561 spin_unlock(&ka->pvclock_gtod_sync_lock);
2562
2563 /* both __this_cpu_read() and rdtsc() should be on the same cpu */
2564 get_cpu();
2565
2566 if (__this_cpu_read(cpu_tsc_khz)) {
2567 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2568 &hv_clock.tsc_shift,
2569 &hv_clock.tsc_to_system_mul);
2570 ret = __pvclock_read_cycles(&hv_clock, rdtsc());
2571 } else
2572 ret = get_kvmclock_base_ns() + ka->kvmclock_offset;
2573
2574 put_cpu();
2575
2576 return ret;
2577 }
2578
kvm_setup_pvclock_page(struct kvm_vcpu * v)2579 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
2580 {
2581 struct kvm_vcpu_arch *vcpu = &v->arch;
2582 struct pvclock_vcpu_time_info guest_hv_clock;
2583
2584 if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
2585 &guest_hv_clock, sizeof(guest_hv_clock))))
2586 return;
2587
2588 /* This VCPU is paused, but it's legal for a guest to read another
2589 * VCPU's kvmclock, so we really have to follow the specification where
2590 * it says that version is odd if data is being modified, and even after
2591 * it is consistent.
2592 *
2593 * Version field updates must be kept separate. This is because
2594 * kvm_write_guest_cached might use a "rep movs" instruction, and
2595 * writes within a string instruction are weakly ordered. So there
2596 * are three writes overall.
2597 *
2598 * As a small optimization, only write the version field in the first
2599 * and third write. The vcpu->pv_time cache is still valid, because the
2600 * version field is the first in the struct.
2601 */
2602 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2603
2604 if (guest_hv_clock.version & 1)
2605 ++guest_hv_clock.version; /* first time write, random junk */
2606
2607 vcpu->hv_clock.version = guest_hv_clock.version + 1;
2608 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2609 &vcpu->hv_clock,
2610 sizeof(vcpu->hv_clock.version));
2611
2612 smp_wmb();
2613
2614 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2615 vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2616
2617 if (vcpu->pvclock_set_guest_stopped_request) {
2618 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2619 vcpu->pvclock_set_guest_stopped_request = false;
2620 }
2621
2622 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2623
2624 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2625 &vcpu->hv_clock,
2626 sizeof(vcpu->hv_clock));
2627
2628 smp_wmb();
2629
2630 vcpu->hv_clock.version++;
2631 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2632 &vcpu->hv_clock,
2633 sizeof(vcpu->hv_clock.version));
2634 }
2635
kvm_guest_time_update(struct kvm_vcpu * v)2636 static int kvm_guest_time_update(struct kvm_vcpu *v)
2637 {
2638 unsigned long flags, tgt_tsc_khz;
2639 struct kvm_vcpu_arch *vcpu = &v->arch;
2640 struct kvm_arch *ka = &v->kvm->arch;
2641 s64 kernel_ns;
2642 u64 tsc_timestamp, host_tsc;
2643 u8 pvclock_flags;
2644 bool use_master_clock;
2645
2646 kernel_ns = 0;
2647 host_tsc = 0;
2648
2649 /*
2650 * If the host uses TSC clock, then passthrough TSC as stable
2651 * to the guest.
2652 */
2653 spin_lock(&ka->pvclock_gtod_sync_lock);
2654 use_master_clock = ka->use_master_clock;
2655 if (use_master_clock) {
2656 host_tsc = ka->master_cycle_now;
2657 kernel_ns = ka->master_kernel_ns;
2658 }
2659 spin_unlock(&ka->pvclock_gtod_sync_lock);
2660
2661 /* Keep irq disabled to prevent changes to the clock */
2662 local_irq_save(flags);
2663 tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2664 if (unlikely(tgt_tsc_khz == 0)) {
2665 local_irq_restore(flags);
2666 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2667 return 1;
2668 }
2669 if (!use_master_clock) {
2670 host_tsc = rdtsc();
2671 kernel_ns = get_kvmclock_base_ns();
2672 }
2673
2674 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2675
2676 /*
2677 * We may have to catch up the TSC to match elapsed wall clock
2678 * time for two reasons, even if kvmclock is used.
2679 * 1) CPU could have been running below the maximum TSC rate
2680 * 2) Broken TSC compensation resets the base at each VCPU
2681 * entry to avoid unknown leaps of TSC even when running
2682 * again on the same CPU. This may cause apparent elapsed
2683 * time to disappear, and the guest to stand still or run
2684 * very slowly.
2685 */
2686 if (vcpu->tsc_catchup) {
2687 u64 tsc = compute_guest_tsc(v, kernel_ns);
2688 if (tsc > tsc_timestamp) {
2689 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2690 tsc_timestamp = tsc;
2691 }
2692 }
2693
2694 local_irq_restore(flags);
2695
2696 /* With all the info we got, fill in the values */
2697
2698 if (kvm_has_tsc_control)
2699 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2700
2701 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2702 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2703 &vcpu->hv_clock.tsc_shift,
2704 &vcpu->hv_clock.tsc_to_system_mul);
2705 vcpu->hw_tsc_khz = tgt_tsc_khz;
2706 }
2707
2708 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2709 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2710 vcpu->last_guest_tsc = tsc_timestamp;
2711
2712 /* If the host uses TSC clocksource, then it is stable */
2713 pvclock_flags = 0;
2714 if (use_master_clock)
2715 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2716
2717 vcpu->hv_clock.flags = pvclock_flags;
2718
2719 if (vcpu->pv_time_enabled)
2720 kvm_setup_pvclock_page(v);
2721 if (v == kvm_get_vcpu(v->kvm, 0))
2722 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2723 return 0;
2724 }
2725
2726 /*
2727 * kvmclock updates which are isolated to a given vcpu, such as
2728 * vcpu->cpu migration, should not allow system_timestamp from
2729 * the rest of the vcpus to remain static. Otherwise ntp frequency
2730 * correction applies to one vcpu's system_timestamp but not
2731 * the others.
2732 *
2733 * So in those cases, request a kvmclock update for all vcpus.
2734 * We need to rate-limit these requests though, as they can
2735 * considerably slow guests that have a large number of vcpus.
2736 * The time for a remote vcpu to update its kvmclock is bound
2737 * by the delay we use to rate-limit the updates.
2738 */
2739
2740 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2741
kvmclock_update_fn(struct work_struct * work)2742 static void kvmclock_update_fn(struct work_struct *work)
2743 {
2744 int i;
2745 struct delayed_work *dwork = to_delayed_work(work);
2746 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2747 kvmclock_update_work);
2748 struct kvm *kvm = container_of(ka, struct kvm, arch);
2749 struct kvm_vcpu *vcpu;
2750
2751 kvm_for_each_vcpu(i, vcpu, kvm) {
2752 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2753 kvm_vcpu_kick(vcpu);
2754 }
2755 }
2756
kvm_gen_kvmclock_update(struct kvm_vcpu * v)2757 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2758 {
2759 struct kvm *kvm = v->kvm;
2760
2761 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2762 schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2763 KVMCLOCK_UPDATE_DELAY);
2764 }
2765
2766 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2767
kvmclock_sync_fn(struct work_struct * work)2768 static void kvmclock_sync_fn(struct work_struct *work)
2769 {
2770 struct delayed_work *dwork = to_delayed_work(work);
2771 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2772 kvmclock_sync_work);
2773 struct kvm *kvm = container_of(ka, struct kvm, arch);
2774
2775 if (!kvmclock_periodic_sync)
2776 return;
2777
2778 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2779 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2780 KVMCLOCK_SYNC_PERIOD);
2781 }
2782
2783 /*
2784 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
2785 */
can_set_mci_status(struct kvm_vcpu * vcpu)2786 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
2787 {
2788 /* McStatusWrEn enabled? */
2789 if (guest_cpuid_is_amd_or_hygon(vcpu))
2790 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
2791
2792 return false;
2793 }
2794
set_msr_mce(struct kvm_vcpu * vcpu,struct msr_data * msr_info)2795 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2796 {
2797 u64 mcg_cap = vcpu->arch.mcg_cap;
2798 unsigned bank_num = mcg_cap & 0xff;
2799 u32 msr = msr_info->index;
2800 u64 data = msr_info->data;
2801
2802 switch (msr) {
2803 case MSR_IA32_MCG_STATUS:
2804 vcpu->arch.mcg_status = data;
2805 break;
2806 case MSR_IA32_MCG_CTL:
2807 if (!(mcg_cap & MCG_CTL_P) &&
2808 (data || !msr_info->host_initiated))
2809 return 1;
2810 if (data != 0 && data != ~(u64)0)
2811 return 1;
2812 vcpu->arch.mcg_ctl = data;
2813 break;
2814 default:
2815 if (msr >= MSR_IA32_MC0_CTL &&
2816 msr < MSR_IA32_MCx_CTL(bank_num)) {
2817 u32 offset = array_index_nospec(
2818 msr - MSR_IA32_MC0_CTL,
2819 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
2820
2821 /* only 0 or all 1s can be written to IA32_MCi_CTL
2822 * some Linux kernels though clear bit 10 in bank 4 to
2823 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2824 * this to avoid an uncatched #GP in the guest
2825 */
2826 if ((offset & 0x3) == 0 &&
2827 data != 0 && (data | (1 << 10)) != ~(u64)0)
2828 return -1;
2829
2830 /* MCi_STATUS */
2831 if (!msr_info->host_initiated &&
2832 (offset & 0x3) == 1 && data != 0) {
2833 if (!can_set_mci_status(vcpu))
2834 return -1;
2835 }
2836
2837 vcpu->arch.mce_banks[offset] = data;
2838 break;
2839 }
2840 return 1;
2841 }
2842 return 0;
2843 }
2844
xen_hvm_config(struct kvm_vcpu * vcpu,u64 data)2845 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2846 {
2847 struct kvm *kvm = vcpu->kvm;
2848 int lm = is_long_mode(vcpu);
2849 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2850 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2851 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2852 : kvm->arch.xen_hvm_config.blob_size_32;
2853 u32 page_num = data & ~PAGE_MASK;
2854 u64 page_addr = data & PAGE_MASK;
2855 u8 *page;
2856
2857 if (page_num >= blob_size)
2858 return 1;
2859
2860 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2861 if (IS_ERR(page))
2862 return PTR_ERR(page);
2863
2864 if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE)) {
2865 kfree(page);
2866 return 1;
2867 }
2868 return 0;
2869 }
2870
kvm_pv_async_pf_enabled(struct kvm_vcpu * vcpu)2871 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
2872 {
2873 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
2874
2875 return (vcpu->arch.apf.msr_en_val & mask) == mask;
2876 }
2877
kvm_pv_enable_async_pf(struct kvm_vcpu * vcpu,u64 data)2878 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2879 {
2880 gpa_t gpa = data & ~0x3f;
2881
2882 /* Bits 4:5 are reserved, Should be zero */
2883 if (data & 0x30)
2884 return 1;
2885
2886 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
2887 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
2888 return 1;
2889
2890 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
2891 (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
2892 return 1;
2893
2894 if (!lapic_in_kernel(vcpu))
2895 return data ? 1 : 0;
2896
2897 vcpu->arch.apf.msr_en_val = data;
2898
2899 if (!kvm_pv_async_pf_enabled(vcpu)) {
2900 kvm_clear_async_pf_completion_queue(vcpu);
2901 kvm_async_pf_hash_reset(vcpu);
2902 return 0;
2903 }
2904
2905 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2906 sizeof(u64)))
2907 return 1;
2908
2909 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2910 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2911
2912 kvm_async_pf_wakeup_all(vcpu);
2913
2914 return 0;
2915 }
2916
kvm_pv_enable_async_pf_int(struct kvm_vcpu * vcpu,u64 data)2917 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
2918 {
2919 /* Bits 8-63 are reserved */
2920 if (data >> 8)
2921 return 1;
2922
2923 if (!lapic_in_kernel(vcpu))
2924 return 1;
2925
2926 vcpu->arch.apf.msr_int_val = data;
2927
2928 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
2929
2930 return 0;
2931 }
2932
kvmclock_reset(struct kvm_vcpu * vcpu)2933 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2934 {
2935 vcpu->arch.pv_time_enabled = false;
2936 vcpu->arch.time = 0;
2937 }
2938
kvm_vcpu_flush_tlb_all(struct kvm_vcpu * vcpu)2939 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
2940 {
2941 ++vcpu->stat.tlb_flush;
2942 kvm_x86_ops.tlb_flush_all(vcpu);
2943 }
2944
kvm_vcpu_flush_tlb_guest(struct kvm_vcpu * vcpu)2945 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
2946 {
2947 ++vcpu->stat.tlb_flush;
2948 kvm_x86_ops.tlb_flush_guest(vcpu);
2949 }
2950
record_steal_time(struct kvm_vcpu * vcpu)2951 static void record_steal_time(struct kvm_vcpu *vcpu)
2952 {
2953 struct kvm_host_map map;
2954 struct kvm_steal_time *st;
2955
2956 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2957 return;
2958
2959 /* -EAGAIN is returned in atomic context so we can just return. */
2960 if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT,
2961 &map, &vcpu->arch.st.cache, false))
2962 return;
2963
2964 st = map.hva +
2965 offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
2966
2967 /*
2968 * Doing a TLB flush here, on the guest's behalf, can avoid
2969 * expensive IPIs.
2970 */
2971 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
2972 trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
2973 st->preempted & KVM_VCPU_FLUSH_TLB);
2974 if (xchg(&st->preempted, 0) & KVM_VCPU_FLUSH_TLB)
2975 kvm_vcpu_flush_tlb_guest(vcpu);
2976 }
2977
2978 vcpu->arch.st.preempted = 0;
2979
2980 if (st->version & 1)
2981 st->version += 1; /* first time write, random junk */
2982
2983 st->version += 1;
2984
2985 smp_wmb();
2986
2987 st->steal += current->sched_info.run_delay -
2988 vcpu->arch.st.last_steal;
2989 vcpu->arch.st.last_steal = current->sched_info.run_delay;
2990
2991 smp_wmb();
2992
2993 st->version += 1;
2994
2995 kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, false);
2996 }
2997
kvm_set_msr_common(struct kvm_vcpu * vcpu,struct msr_data * msr_info)2998 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2999 {
3000 bool pr = false;
3001 u32 msr = msr_info->index;
3002 u64 data = msr_info->data;
3003
3004 switch (msr) {
3005 case MSR_AMD64_NB_CFG:
3006 case MSR_IA32_UCODE_WRITE:
3007 case MSR_VM_HSAVE_PA:
3008 case MSR_AMD64_PATCH_LOADER:
3009 case MSR_AMD64_BU_CFG2:
3010 case MSR_AMD64_DC_CFG:
3011 case MSR_F15H_EX_CFG:
3012 break;
3013
3014 case MSR_IA32_UCODE_REV:
3015 if (msr_info->host_initiated)
3016 vcpu->arch.microcode_version = data;
3017 break;
3018 case MSR_IA32_ARCH_CAPABILITIES:
3019 if (!msr_info->host_initiated)
3020 return 1;
3021 vcpu->arch.arch_capabilities = data;
3022 break;
3023 case MSR_IA32_PERF_CAPABILITIES: {
3024 struct kvm_msr_entry msr_ent = {.index = msr, .data = 0};
3025
3026 if (!msr_info->host_initiated)
3027 return 1;
3028 if (guest_cpuid_has(vcpu, X86_FEATURE_PDCM) && kvm_get_msr_feature(&msr_ent))
3029 return 1;
3030 if (data & ~msr_ent.data)
3031 return 1;
3032
3033 vcpu->arch.perf_capabilities = data;
3034
3035 return 0;
3036 }
3037 case MSR_EFER:
3038 return set_efer(vcpu, msr_info);
3039 case MSR_K7_HWCR:
3040 data &= ~(u64)0x40; /* ignore flush filter disable */
3041 data &= ~(u64)0x100; /* ignore ignne emulation enable */
3042 data &= ~(u64)0x8; /* ignore TLB cache disable */
3043
3044 /* Handle McStatusWrEn */
3045 if (data == BIT_ULL(18)) {
3046 vcpu->arch.msr_hwcr = data;
3047 } else if (data != 0) {
3048 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
3049 data);
3050 return 1;
3051 }
3052 break;
3053 case MSR_FAM10H_MMIO_CONF_BASE:
3054 if (data != 0) {
3055 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
3056 "0x%llx\n", data);
3057 return 1;
3058 }
3059 break;
3060 case MSR_IA32_DEBUGCTLMSR:
3061 if (!data) {
3062 /* We support the non-activated case already */
3063 break;
3064 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
3065 /* Values other than LBR and BTF are vendor-specific,
3066 thus reserved and should throw a #GP */
3067 return 1;
3068 } else if (report_ignored_msrs)
3069 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
3070 __func__, data);
3071 break;
3072 case 0x200 ... 0x2ff:
3073 return kvm_mtrr_set_msr(vcpu, msr, data);
3074 case MSR_IA32_APICBASE:
3075 return kvm_set_apic_base(vcpu, msr_info);
3076 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3077 return kvm_x2apic_msr_write(vcpu, msr, data);
3078 case MSR_IA32_TSCDEADLINE:
3079 kvm_set_lapic_tscdeadline_msr(vcpu, data);
3080 break;
3081 case MSR_IA32_TSC_ADJUST:
3082 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3083 if (!msr_info->host_initiated) {
3084 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3085 adjust_tsc_offset_guest(vcpu, adj);
3086 }
3087 vcpu->arch.ia32_tsc_adjust_msr = data;
3088 }
3089 break;
3090 case MSR_IA32_MISC_ENABLE:
3091 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3092 ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
3093 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3094 return 1;
3095 vcpu->arch.ia32_misc_enable_msr = data;
3096 kvm_update_cpuid_runtime(vcpu);
3097 } else {
3098 vcpu->arch.ia32_misc_enable_msr = data;
3099 }
3100 break;
3101 case MSR_IA32_SMBASE:
3102 if (!msr_info->host_initiated)
3103 return 1;
3104 vcpu->arch.smbase = data;
3105 break;
3106 case MSR_IA32_POWER_CTL:
3107 vcpu->arch.msr_ia32_power_ctl = data;
3108 break;
3109 case MSR_IA32_TSC:
3110 if (msr_info->host_initiated) {
3111 kvm_synchronize_tsc(vcpu, data);
3112 } else {
3113 u64 adj = kvm_compute_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3114 adjust_tsc_offset_guest(vcpu, adj);
3115 vcpu->arch.ia32_tsc_adjust_msr += adj;
3116 }
3117 break;
3118 case MSR_IA32_XSS:
3119 if (!msr_info->host_initiated &&
3120 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3121 return 1;
3122 /*
3123 * KVM supports exposing PT to the guest, but does not support
3124 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3125 * XSAVES/XRSTORS to save/restore PT MSRs.
3126 */
3127 if (data & ~supported_xss)
3128 return 1;
3129 vcpu->arch.ia32_xss = data;
3130 break;
3131 case MSR_SMI_COUNT:
3132 if (!msr_info->host_initiated)
3133 return 1;
3134 vcpu->arch.smi_count = data;
3135 break;
3136 case MSR_KVM_WALL_CLOCK_NEW:
3137 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3138 return 1;
3139
3140 kvm_write_wall_clock(vcpu->kvm, data);
3141 break;
3142 case MSR_KVM_WALL_CLOCK:
3143 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3144 return 1;
3145
3146 kvm_write_wall_clock(vcpu->kvm, data);
3147 break;
3148 case MSR_KVM_SYSTEM_TIME_NEW:
3149 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3150 return 1;
3151
3152 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3153 break;
3154 case MSR_KVM_SYSTEM_TIME:
3155 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3156 return 1;
3157
3158 kvm_write_system_time(vcpu, data, true, msr_info->host_initiated);
3159 break;
3160 case MSR_KVM_ASYNC_PF_EN:
3161 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3162 return 1;
3163
3164 if (kvm_pv_enable_async_pf(vcpu, data))
3165 return 1;
3166 break;
3167 case MSR_KVM_ASYNC_PF_INT:
3168 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3169 return 1;
3170
3171 if (kvm_pv_enable_async_pf_int(vcpu, data))
3172 return 1;
3173 break;
3174 case MSR_KVM_ASYNC_PF_ACK:
3175 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3176 return 1;
3177 if (data & 0x1) {
3178 vcpu->arch.apf.pageready_pending = false;
3179 kvm_check_async_pf_completion(vcpu);
3180 }
3181 break;
3182 case MSR_KVM_STEAL_TIME:
3183 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3184 return 1;
3185
3186 if (unlikely(!sched_info_on()))
3187 return 1;
3188
3189 if (data & KVM_STEAL_RESERVED_MASK)
3190 return 1;
3191
3192 vcpu->arch.st.msr_val = data;
3193
3194 if (!(data & KVM_MSR_ENABLED))
3195 break;
3196
3197 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3198
3199 break;
3200 case MSR_KVM_PV_EOI_EN:
3201 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3202 return 1;
3203
3204 if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
3205 return 1;
3206 break;
3207
3208 case MSR_KVM_POLL_CONTROL:
3209 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3210 return 1;
3211
3212 /* only enable bit supported */
3213 if (data & (-1ULL << 1))
3214 return 1;
3215
3216 vcpu->arch.msr_kvm_poll_control = data;
3217 break;
3218
3219 case MSR_IA32_MCG_CTL:
3220 case MSR_IA32_MCG_STATUS:
3221 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3222 return set_msr_mce(vcpu, msr_info);
3223
3224 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3225 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3226 pr = true;
3227 fallthrough;
3228 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3229 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3230 if (kvm_pmu_is_valid_msr(vcpu, msr))
3231 return kvm_pmu_set_msr(vcpu, msr_info);
3232
3233 if (pr || data != 0)
3234 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
3235 "0x%x data 0x%llx\n", msr, data);
3236 break;
3237 case MSR_K7_CLK_CTL:
3238 /*
3239 * Ignore all writes to this no longer documented MSR.
3240 * Writes are only relevant for old K7 processors,
3241 * all pre-dating SVM, but a recommended workaround from
3242 * AMD for these chips. It is possible to specify the
3243 * affected processor models on the command line, hence
3244 * the need to ignore the workaround.
3245 */
3246 break;
3247 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3248 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3249 case HV_X64_MSR_SYNDBG_OPTIONS:
3250 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3251 case HV_X64_MSR_CRASH_CTL:
3252 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3253 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3254 case HV_X64_MSR_TSC_EMULATION_CONTROL:
3255 case HV_X64_MSR_TSC_EMULATION_STATUS:
3256 return kvm_hv_set_msr_common(vcpu, msr, data,
3257 msr_info->host_initiated);
3258 case MSR_IA32_BBL_CR_CTL3:
3259 /* Drop writes to this legacy MSR -- see rdmsr
3260 * counterpart for further detail.
3261 */
3262 if (report_ignored_msrs)
3263 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
3264 msr, data);
3265 break;
3266 case MSR_AMD64_OSVW_ID_LENGTH:
3267 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3268 return 1;
3269 vcpu->arch.osvw.length = data;
3270 break;
3271 case MSR_AMD64_OSVW_STATUS:
3272 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3273 return 1;
3274 vcpu->arch.osvw.status = data;
3275 break;
3276 case MSR_PLATFORM_INFO:
3277 if (!msr_info->host_initiated ||
3278 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3279 cpuid_fault_enabled(vcpu)))
3280 return 1;
3281 vcpu->arch.msr_platform_info = data;
3282 break;
3283 case MSR_MISC_FEATURES_ENABLES:
3284 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3285 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3286 !supports_cpuid_fault(vcpu)))
3287 return 1;
3288 vcpu->arch.msr_misc_features_enables = data;
3289 break;
3290 default:
3291 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
3292 return xen_hvm_config(vcpu, data);
3293 if (kvm_pmu_is_valid_msr(vcpu, msr))
3294 return kvm_pmu_set_msr(vcpu, msr_info);
3295 return KVM_MSR_RET_INVALID;
3296 }
3297 return 0;
3298 }
3299 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3300
get_msr_mce(struct kvm_vcpu * vcpu,u32 msr,u64 * pdata,bool host)3301 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3302 {
3303 u64 data;
3304 u64 mcg_cap = vcpu->arch.mcg_cap;
3305 unsigned bank_num = mcg_cap & 0xff;
3306
3307 switch (msr) {
3308 case MSR_IA32_P5_MC_ADDR:
3309 case MSR_IA32_P5_MC_TYPE:
3310 data = 0;
3311 break;
3312 case MSR_IA32_MCG_CAP:
3313 data = vcpu->arch.mcg_cap;
3314 break;
3315 case MSR_IA32_MCG_CTL:
3316 if (!(mcg_cap & MCG_CTL_P) && !host)
3317 return 1;
3318 data = vcpu->arch.mcg_ctl;
3319 break;
3320 case MSR_IA32_MCG_STATUS:
3321 data = vcpu->arch.mcg_status;
3322 break;
3323 default:
3324 if (msr >= MSR_IA32_MC0_CTL &&
3325 msr < MSR_IA32_MCx_CTL(bank_num)) {
3326 u32 offset = array_index_nospec(
3327 msr - MSR_IA32_MC0_CTL,
3328 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3329
3330 data = vcpu->arch.mce_banks[offset];
3331 break;
3332 }
3333 return 1;
3334 }
3335 *pdata = data;
3336 return 0;
3337 }
3338
kvm_get_msr_common(struct kvm_vcpu * vcpu,struct msr_data * msr_info)3339 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3340 {
3341 switch (msr_info->index) {
3342 case MSR_IA32_PLATFORM_ID:
3343 case MSR_IA32_EBL_CR_POWERON:
3344 case MSR_IA32_DEBUGCTLMSR:
3345 case MSR_IA32_LASTBRANCHFROMIP:
3346 case MSR_IA32_LASTBRANCHTOIP:
3347 case MSR_IA32_LASTINTFROMIP:
3348 case MSR_IA32_LASTINTTOIP:
3349 case MSR_K8_SYSCFG:
3350 case MSR_K8_TSEG_ADDR:
3351 case MSR_K8_TSEG_MASK:
3352 case MSR_VM_HSAVE_PA:
3353 case MSR_K8_INT_PENDING_MSG:
3354 case MSR_AMD64_NB_CFG:
3355 case MSR_FAM10H_MMIO_CONF_BASE:
3356 case MSR_AMD64_BU_CFG2:
3357 case MSR_IA32_PERF_CTL:
3358 case MSR_AMD64_DC_CFG:
3359 case MSR_F15H_EX_CFG:
3360 /*
3361 * Intel Sandy Bridge CPUs must support the RAPL (running average power
3362 * limit) MSRs. Just return 0, as we do not want to expose the host
3363 * data here. Do not conditionalize this on CPUID, as KVM does not do
3364 * so for existing CPU-specific MSRs.
3365 */
3366 case MSR_RAPL_POWER_UNIT:
3367 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */
3368 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */
3369 case MSR_PKG_ENERGY_STATUS: /* Total package */
3370 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */
3371 msr_info->data = 0;
3372 break;
3373 case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3374 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3375 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3376 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3377 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3378 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3379 return kvm_pmu_get_msr(vcpu, msr_info);
3380 msr_info->data = 0;
3381 break;
3382 case MSR_IA32_UCODE_REV:
3383 msr_info->data = vcpu->arch.microcode_version;
3384 break;
3385 case MSR_IA32_ARCH_CAPABILITIES:
3386 if (!msr_info->host_initiated &&
3387 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3388 return 1;
3389 msr_info->data = vcpu->arch.arch_capabilities;
3390 break;
3391 case MSR_IA32_PERF_CAPABILITIES:
3392 if (!msr_info->host_initiated &&
3393 !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
3394 return 1;
3395 msr_info->data = vcpu->arch.perf_capabilities;
3396 break;
3397 case MSR_IA32_POWER_CTL:
3398 msr_info->data = vcpu->arch.msr_ia32_power_ctl;
3399 break;
3400 case MSR_IA32_TSC: {
3401 /*
3402 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
3403 * even when not intercepted. AMD manual doesn't explicitly
3404 * state this but appears to behave the same.
3405 *
3406 * On userspace reads and writes, however, we unconditionally
3407 * return L1's TSC value to ensure backwards-compatible
3408 * behavior for migration.
3409 */
3410 u64 tsc_offset = msr_info->host_initiated ? vcpu->arch.l1_tsc_offset :
3411 vcpu->arch.tsc_offset;
3412
3413 msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + tsc_offset;
3414 break;
3415 }
3416 case MSR_MTRRcap:
3417 case 0x200 ... 0x2ff:
3418 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
3419 case 0xcd: /* fsb frequency */
3420 msr_info->data = 3;
3421 break;
3422 /*
3423 * MSR_EBC_FREQUENCY_ID
3424 * Conservative value valid for even the basic CPU models.
3425 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
3426 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
3427 * and 266MHz for model 3, or 4. Set Core Clock
3428 * Frequency to System Bus Frequency Ratio to 1 (bits
3429 * 31:24) even though these are only valid for CPU
3430 * models > 2, however guests may end up dividing or
3431 * multiplying by zero otherwise.
3432 */
3433 case MSR_EBC_FREQUENCY_ID:
3434 msr_info->data = 1 << 24;
3435 break;
3436 case MSR_IA32_APICBASE:
3437 msr_info->data = kvm_get_apic_base(vcpu);
3438 break;
3439 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3440 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
3441 case MSR_IA32_TSCDEADLINE:
3442 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
3443 break;
3444 case MSR_IA32_TSC_ADJUST:
3445 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
3446 break;
3447 case MSR_IA32_MISC_ENABLE:
3448 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
3449 break;
3450 case MSR_IA32_SMBASE:
3451 if (!msr_info->host_initiated)
3452 return 1;
3453 msr_info->data = vcpu->arch.smbase;
3454 break;
3455 case MSR_SMI_COUNT:
3456 msr_info->data = vcpu->arch.smi_count;
3457 break;
3458 case MSR_IA32_PERF_STATUS:
3459 /* TSC increment by tick */
3460 msr_info->data = 1000ULL;
3461 /* CPU multiplier */
3462 msr_info->data |= (((uint64_t)4ULL) << 40);
3463 break;
3464 case MSR_EFER:
3465 msr_info->data = vcpu->arch.efer;
3466 break;
3467 case MSR_KVM_WALL_CLOCK:
3468 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3469 return 1;
3470
3471 msr_info->data = vcpu->kvm->arch.wall_clock;
3472 break;
3473 case MSR_KVM_WALL_CLOCK_NEW:
3474 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3475 return 1;
3476
3477 msr_info->data = vcpu->kvm->arch.wall_clock;
3478 break;
3479 case MSR_KVM_SYSTEM_TIME:
3480 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3481 return 1;
3482
3483 msr_info->data = vcpu->arch.time;
3484 break;
3485 case MSR_KVM_SYSTEM_TIME_NEW:
3486 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3487 return 1;
3488
3489 msr_info->data = vcpu->arch.time;
3490 break;
3491 case MSR_KVM_ASYNC_PF_EN:
3492 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3493 return 1;
3494
3495 msr_info->data = vcpu->arch.apf.msr_en_val;
3496 break;
3497 case MSR_KVM_ASYNC_PF_INT:
3498 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3499 return 1;
3500
3501 msr_info->data = vcpu->arch.apf.msr_int_val;
3502 break;
3503 case MSR_KVM_ASYNC_PF_ACK:
3504 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3505 return 1;
3506
3507 msr_info->data = 0;
3508 break;
3509 case MSR_KVM_STEAL_TIME:
3510 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3511 return 1;
3512
3513 msr_info->data = vcpu->arch.st.msr_val;
3514 break;
3515 case MSR_KVM_PV_EOI_EN:
3516 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3517 return 1;
3518
3519 msr_info->data = vcpu->arch.pv_eoi.msr_val;
3520 break;
3521 case MSR_KVM_POLL_CONTROL:
3522 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3523 return 1;
3524
3525 msr_info->data = vcpu->arch.msr_kvm_poll_control;
3526 break;
3527 case MSR_IA32_P5_MC_ADDR:
3528 case MSR_IA32_P5_MC_TYPE:
3529 case MSR_IA32_MCG_CAP:
3530 case MSR_IA32_MCG_CTL:
3531 case MSR_IA32_MCG_STATUS:
3532 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3533 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
3534 msr_info->host_initiated);
3535 case MSR_IA32_XSS:
3536 if (!msr_info->host_initiated &&
3537 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3538 return 1;
3539 msr_info->data = vcpu->arch.ia32_xss;
3540 break;
3541 case MSR_K7_CLK_CTL:
3542 /*
3543 * Provide expected ramp-up count for K7. All other
3544 * are set to zero, indicating minimum divisors for
3545 * every field.
3546 *
3547 * This prevents guest kernels on AMD host with CPU
3548 * type 6, model 8 and higher from exploding due to
3549 * the rdmsr failing.
3550 */
3551 msr_info->data = 0x20000000;
3552 break;
3553 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3554 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3555 case HV_X64_MSR_SYNDBG_OPTIONS:
3556 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3557 case HV_X64_MSR_CRASH_CTL:
3558 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3559 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3560 case HV_X64_MSR_TSC_EMULATION_CONTROL:
3561 case HV_X64_MSR_TSC_EMULATION_STATUS:
3562 return kvm_hv_get_msr_common(vcpu,
3563 msr_info->index, &msr_info->data,
3564 msr_info->host_initiated);
3565 case MSR_IA32_BBL_CR_CTL3:
3566 /* This legacy MSR exists but isn't fully documented in current
3567 * silicon. It is however accessed by winxp in very narrow
3568 * scenarios where it sets bit #19, itself documented as
3569 * a "reserved" bit. Best effort attempt to source coherent
3570 * read data here should the balance of the register be
3571 * interpreted by the guest:
3572 *
3573 * L2 cache control register 3: 64GB range, 256KB size,
3574 * enabled, latency 0x1, configured
3575 */
3576 msr_info->data = 0xbe702111;
3577 break;
3578 case MSR_AMD64_OSVW_ID_LENGTH:
3579 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3580 return 1;
3581 msr_info->data = vcpu->arch.osvw.length;
3582 break;
3583 case MSR_AMD64_OSVW_STATUS:
3584 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3585 return 1;
3586 msr_info->data = vcpu->arch.osvw.status;
3587 break;
3588 case MSR_PLATFORM_INFO:
3589 if (!msr_info->host_initiated &&
3590 !vcpu->kvm->arch.guest_can_read_msr_platform_info)
3591 return 1;
3592 msr_info->data = vcpu->arch.msr_platform_info;
3593 break;
3594 case MSR_MISC_FEATURES_ENABLES:
3595 msr_info->data = vcpu->arch.msr_misc_features_enables;
3596 break;
3597 case MSR_K7_HWCR:
3598 msr_info->data = vcpu->arch.msr_hwcr;
3599 break;
3600 default:
3601 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3602 return kvm_pmu_get_msr(vcpu, msr_info);
3603 return KVM_MSR_RET_INVALID;
3604 }
3605 return 0;
3606 }
3607 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
3608
3609 /*
3610 * Read or write a bunch of msrs. All parameters are kernel addresses.
3611 *
3612 * @return number of msrs set successfully.
3613 */
__msr_io(struct kvm_vcpu * vcpu,struct kvm_msrs * msrs,struct kvm_msr_entry * entries,int (* do_msr)(struct kvm_vcpu * vcpu,unsigned index,u64 * data))3614 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
3615 struct kvm_msr_entry *entries,
3616 int (*do_msr)(struct kvm_vcpu *vcpu,
3617 unsigned index, u64 *data))
3618 {
3619 int i;
3620
3621 for (i = 0; i < msrs->nmsrs; ++i)
3622 if (do_msr(vcpu, entries[i].index, &entries[i].data))
3623 break;
3624
3625 return i;
3626 }
3627
3628 /*
3629 * Read or write a bunch of msrs. Parameters are user addresses.
3630 *
3631 * @return number of msrs set successfully.
3632 */
msr_io(struct kvm_vcpu * vcpu,struct kvm_msrs __user * user_msrs,int (* do_msr)(struct kvm_vcpu * vcpu,unsigned index,u64 * data),int writeback)3633 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
3634 int (*do_msr)(struct kvm_vcpu *vcpu,
3635 unsigned index, u64 *data),
3636 int writeback)
3637 {
3638 struct kvm_msrs msrs;
3639 struct kvm_msr_entry *entries;
3640 int r, n;
3641 unsigned size;
3642
3643 r = -EFAULT;
3644 if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
3645 goto out;
3646
3647 r = -E2BIG;
3648 if (msrs.nmsrs >= MAX_IO_MSRS)
3649 goto out;
3650
3651 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
3652 entries = memdup_user(user_msrs->entries, size);
3653 if (IS_ERR(entries)) {
3654 r = PTR_ERR(entries);
3655 goto out;
3656 }
3657
3658 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
3659 if (r < 0)
3660 goto out_free;
3661
3662 r = -EFAULT;
3663 if (writeback && copy_to_user(user_msrs->entries, entries, size))
3664 goto out_free;
3665
3666 r = n;
3667
3668 out_free:
3669 kfree(entries);
3670 out:
3671 return r;
3672 }
3673
kvm_can_mwait_in_guest(void)3674 static inline bool kvm_can_mwait_in_guest(void)
3675 {
3676 return boot_cpu_has(X86_FEATURE_MWAIT) &&
3677 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
3678 boot_cpu_has(X86_FEATURE_ARAT);
3679 }
3680
kvm_vm_ioctl_check_extension(struct kvm * kvm,long ext)3681 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
3682 {
3683 int r = 0;
3684
3685 switch (ext) {
3686 case KVM_CAP_IRQCHIP:
3687 case KVM_CAP_HLT:
3688 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
3689 case KVM_CAP_SET_TSS_ADDR:
3690 case KVM_CAP_EXT_CPUID:
3691 case KVM_CAP_EXT_EMUL_CPUID:
3692 case KVM_CAP_CLOCKSOURCE:
3693 case KVM_CAP_PIT:
3694 case KVM_CAP_NOP_IO_DELAY:
3695 case KVM_CAP_MP_STATE:
3696 case KVM_CAP_SYNC_MMU:
3697 case KVM_CAP_USER_NMI:
3698 case KVM_CAP_REINJECT_CONTROL:
3699 case KVM_CAP_IRQ_INJECT_STATUS:
3700 case KVM_CAP_IOEVENTFD:
3701 case KVM_CAP_IOEVENTFD_NO_LENGTH:
3702 case KVM_CAP_PIT2:
3703 case KVM_CAP_PIT_STATE2:
3704 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
3705 case KVM_CAP_XEN_HVM:
3706 case KVM_CAP_VCPU_EVENTS:
3707 case KVM_CAP_HYPERV:
3708 case KVM_CAP_HYPERV_VAPIC:
3709 case KVM_CAP_HYPERV_SPIN:
3710 case KVM_CAP_HYPERV_SYNIC:
3711 case KVM_CAP_HYPERV_SYNIC2:
3712 case KVM_CAP_HYPERV_VP_INDEX:
3713 case KVM_CAP_HYPERV_EVENTFD:
3714 case KVM_CAP_HYPERV_TLBFLUSH:
3715 case KVM_CAP_HYPERV_SEND_IPI:
3716 case KVM_CAP_HYPERV_CPUID:
3717 case KVM_CAP_PCI_SEGMENT:
3718 case KVM_CAP_DEBUGREGS:
3719 case KVM_CAP_X86_ROBUST_SINGLESTEP:
3720 case KVM_CAP_XSAVE:
3721 case KVM_CAP_ASYNC_PF:
3722 case KVM_CAP_ASYNC_PF_INT:
3723 case KVM_CAP_GET_TSC_KHZ:
3724 case KVM_CAP_KVMCLOCK_CTRL:
3725 case KVM_CAP_READONLY_MEM:
3726 case KVM_CAP_HYPERV_TIME:
3727 case KVM_CAP_IOAPIC_POLARITY_IGNORED:
3728 case KVM_CAP_TSC_DEADLINE_TIMER:
3729 case KVM_CAP_DISABLE_QUIRKS:
3730 case KVM_CAP_SET_BOOT_CPU_ID:
3731 case KVM_CAP_SPLIT_IRQCHIP:
3732 case KVM_CAP_IMMEDIATE_EXIT:
3733 case KVM_CAP_PMU_EVENT_FILTER:
3734 case KVM_CAP_GET_MSR_FEATURES:
3735 case KVM_CAP_MSR_PLATFORM_INFO:
3736 case KVM_CAP_EXCEPTION_PAYLOAD:
3737 case KVM_CAP_SET_GUEST_DEBUG:
3738 case KVM_CAP_LAST_CPU:
3739 case KVM_CAP_X86_USER_SPACE_MSR:
3740 case KVM_CAP_X86_MSR_FILTER:
3741 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
3742 r = 1;
3743 break;
3744 case KVM_CAP_SYNC_REGS:
3745 r = KVM_SYNC_X86_VALID_FIELDS;
3746 break;
3747 case KVM_CAP_ADJUST_CLOCK:
3748 r = KVM_CLOCK_TSC_STABLE;
3749 break;
3750 case KVM_CAP_X86_DISABLE_EXITS:
3751 r |= KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
3752 KVM_X86_DISABLE_EXITS_CSTATE;
3753 if(kvm_can_mwait_in_guest())
3754 r |= KVM_X86_DISABLE_EXITS_MWAIT;
3755 break;
3756 case KVM_CAP_X86_SMM:
3757 /* SMBASE is usually relocated above 1M on modern chipsets,
3758 * and SMM handlers might indeed rely on 4G segment limits,
3759 * so do not report SMM to be available if real mode is
3760 * emulated via vm86 mode. Still, do not go to great lengths
3761 * to avoid userspace's usage of the feature, because it is a
3762 * fringe case that is not enabled except via specific settings
3763 * of the module parameters.
3764 */
3765 r = kvm_x86_ops.has_emulated_msr(MSR_IA32_SMBASE);
3766 break;
3767 case KVM_CAP_VAPIC:
3768 r = !kvm_x86_ops.cpu_has_accelerated_tpr();
3769 break;
3770 case KVM_CAP_NR_VCPUS:
3771 r = KVM_SOFT_MAX_VCPUS;
3772 break;
3773 case KVM_CAP_MAX_VCPUS:
3774 r = KVM_MAX_VCPUS;
3775 break;
3776 case KVM_CAP_MAX_VCPU_ID:
3777 r = KVM_MAX_VCPU_ID;
3778 break;
3779 case KVM_CAP_PV_MMU: /* obsolete */
3780 r = 0;
3781 break;
3782 case KVM_CAP_MCE:
3783 r = KVM_MAX_MCE_BANKS;
3784 break;
3785 case KVM_CAP_XCRS:
3786 r = boot_cpu_has(X86_FEATURE_XSAVE);
3787 break;
3788 case KVM_CAP_TSC_CONTROL:
3789 r = kvm_has_tsc_control;
3790 break;
3791 case KVM_CAP_X2APIC_API:
3792 r = KVM_X2APIC_API_VALID_FLAGS;
3793 break;
3794 case KVM_CAP_NESTED_STATE:
3795 r = kvm_x86_ops.nested_ops->get_state ?
3796 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
3797 break;
3798 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
3799 r = kvm_x86_ops.enable_direct_tlbflush != NULL;
3800 break;
3801 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
3802 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
3803 break;
3804 case KVM_CAP_SMALLER_MAXPHYADDR:
3805 r = (int) allow_smaller_maxphyaddr;
3806 break;
3807 case KVM_CAP_STEAL_TIME:
3808 r = sched_info_on();
3809 break;
3810 default:
3811 break;
3812 }
3813 return r;
3814
3815 }
3816
kvm_arch_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)3817 long kvm_arch_dev_ioctl(struct file *filp,
3818 unsigned int ioctl, unsigned long arg)
3819 {
3820 void __user *argp = (void __user *)arg;
3821 long r;
3822
3823 switch (ioctl) {
3824 case KVM_GET_MSR_INDEX_LIST: {
3825 struct kvm_msr_list __user *user_msr_list = argp;
3826 struct kvm_msr_list msr_list;
3827 unsigned n;
3828
3829 r = -EFAULT;
3830 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3831 goto out;
3832 n = msr_list.nmsrs;
3833 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
3834 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3835 goto out;
3836 r = -E2BIG;
3837 if (n < msr_list.nmsrs)
3838 goto out;
3839 r = -EFAULT;
3840 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
3841 num_msrs_to_save * sizeof(u32)))
3842 goto out;
3843 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
3844 &emulated_msrs,
3845 num_emulated_msrs * sizeof(u32)))
3846 goto out;
3847 r = 0;
3848 break;
3849 }
3850 case KVM_GET_SUPPORTED_CPUID:
3851 case KVM_GET_EMULATED_CPUID: {
3852 struct kvm_cpuid2 __user *cpuid_arg = argp;
3853 struct kvm_cpuid2 cpuid;
3854
3855 r = -EFAULT;
3856 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3857 goto out;
3858
3859 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
3860 ioctl);
3861 if (r)
3862 goto out;
3863
3864 r = -EFAULT;
3865 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3866 goto out;
3867 r = 0;
3868 break;
3869 }
3870 case KVM_X86_GET_MCE_CAP_SUPPORTED:
3871 r = -EFAULT;
3872 if (copy_to_user(argp, &kvm_mce_cap_supported,
3873 sizeof(kvm_mce_cap_supported)))
3874 goto out;
3875 r = 0;
3876 break;
3877 case KVM_GET_MSR_FEATURE_INDEX_LIST: {
3878 struct kvm_msr_list __user *user_msr_list = argp;
3879 struct kvm_msr_list msr_list;
3880 unsigned int n;
3881
3882 r = -EFAULT;
3883 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3884 goto out;
3885 n = msr_list.nmsrs;
3886 msr_list.nmsrs = num_msr_based_features;
3887 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3888 goto out;
3889 r = -E2BIG;
3890 if (n < msr_list.nmsrs)
3891 goto out;
3892 r = -EFAULT;
3893 if (copy_to_user(user_msr_list->indices, &msr_based_features,
3894 num_msr_based_features * sizeof(u32)))
3895 goto out;
3896 r = 0;
3897 break;
3898 }
3899 case KVM_GET_MSRS:
3900 r = msr_io(NULL, argp, do_get_msr_feature, 1);
3901 break;
3902 default:
3903 r = -EINVAL;
3904 break;
3905 }
3906 out:
3907 return r;
3908 }
3909
wbinvd_ipi(void * garbage)3910 static void wbinvd_ipi(void *garbage)
3911 {
3912 wbinvd();
3913 }
3914
need_emulate_wbinvd(struct kvm_vcpu * vcpu)3915 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
3916 {
3917 return kvm_arch_has_noncoherent_dma(vcpu->kvm);
3918 }
3919
kvm_arch_vcpu_load(struct kvm_vcpu * vcpu,int cpu)3920 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
3921 {
3922 /* Address WBINVD may be executed by guest */
3923 if (need_emulate_wbinvd(vcpu)) {
3924 if (kvm_x86_ops.has_wbinvd_exit())
3925 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
3926 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
3927 smp_call_function_single(vcpu->cpu,
3928 wbinvd_ipi, NULL, 1);
3929 }
3930
3931 kvm_x86_ops.vcpu_load(vcpu, cpu);
3932
3933 /* Save host pkru register if supported */
3934 vcpu->arch.host_pkru = read_pkru();
3935
3936 /* Apply any externally detected TSC adjustments (due to suspend) */
3937 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
3938 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
3939 vcpu->arch.tsc_offset_adjustment = 0;
3940 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3941 }
3942
3943 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
3944 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
3945 rdtsc() - vcpu->arch.last_host_tsc;
3946 if (tsc_delta < 0)
3947 mark_tsc_unstable("KVM discovered backwards TSC");
3948
3949 if (kvm_check_tsc_unstable()) {
3950 u64 offset = kvm_compute_tsc_offset(vcpu,
3951 vcpu->arch.last_guest_tsc);
3952 kvm_vcpu_write_tsc_offset(vcpu, offset);
3953 vcpu->arch.tsc_catchup = 1;
3954 }
3955
3956 if (kvm_lapic_hv_timer_in_use(vcpu))
3957 kvm_lapic_restart_hv_timer(vcpu);
3958
3959 /*
3960 * On a host with synchronized TSC, there is no need to update
3961 * kvmclock on vcpu->cpu migration
3962 */
3963 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
3964 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
3965 if (vcpu->cpu != cpu)
3966 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
3967 vcpu->cpu = cpu;
3968 }
3969
3970 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3971 }
3972
kvm_steal_time_set_preempted(struct kvm_vcpu * vcpu)3973 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
3974 {
3975 struct kvm_host_map map;
3976 struct kvm_steal_time *st;
3977
3978 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3979 return;
3980
3981 if (vcpu->arch.st.preempted)
3982 return;
3983
3984 if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT, &map,
3985 &vcpu->arch.st.cache, true))
3986 return;
3987
3988 st = map.hva +
3989 offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
3990
3991 st->preempted = vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
3992
3993 kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, true);
3994 }
3995
kvm_arch_vcpu_put(struct kvm_vcpu * vcpu)3996 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
3997 {
3998 int idx;
3999
4000 if (vcpu->preempted)
4001 vcpu->arch.preempted_in_kernel = !kvm_x86_ops.get_cpl(vcpu);
4002
4003 /*
4004 * Disable page faults because we're in atomic context here.
4005 * kvm_write_guest_offset_cached() would call might_fault()
4006 * that relies on pagefault_disable() to tell if there's a
4007 * bug. NOTE: the write to guest memory may not go through if
4008 * during postcopy live migration or if there's heavy guest
4009 * paging.
4010 */
4011 pagefault_disable();
4012 /*
4013 * kvm_memslots() will be called by
4014 * kvm_write_guest_offset_cached() so take the srcu lock.
4015 */
4016 idx = srcu_read_lock(&vcpu->kvm->srcu);
4017 kvm_steal_time_set_preempted(vcpu);
4018 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4019 pagefault_enable();
4020 kvm_x86_ops.vcpu_put(vcpu);
4021 vcpu->arch.last_host_tsc = rdtsc();
4022 /*
4023 * If userspace has set any breakpoints or watchpoints, dr6 is restored
4024 * on every vmexit, but if not, we might have a stale dr6 from the
4025 * guest. do_debug expects dr6 to be cleared after it runs, do the same.
4026 */
4027 set_debugreg(0, 6);
4028 }
4029
kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s)4030 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4031 struct kvm_lapic_state *s)
4032 {
4033 if (vcpu->arch.apicv_active)
4034 kvm_x86_ops.sync_pir_to_irr(vcpu);
4035
4036 return kvm_apic_get_state(vcpu, s);
4037 }
4038
kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s)4039 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4040 struct kvm_lapic_state *s)
4041 {
4042 int r;
4043
4044 r = kvm_apic_set_state(vcpu, s);
4045 if (r)
4046 return r;
4047 update_cr8_intercept(vcpu);
4048
4049 return 0;
4050 }
4051
kvm_cpu_accept_dm_intr(struct kvm_vcpu * vcpu)4052 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4053 {
4054 /*
4055 * We can accept userspace's request for interrupt injection
4056 * as long as we have a place to store the interrupt number.
4057 * The actual injection will happen when the CPU is able to
4058 * deliver the interrupt.
4059 */
4060 if (kvm_cpu_has_extint(vcpu))
4061 return false;
4062
4063 /* Acknowledging ExtINT does not happen if LINT0 is masked. */
4064 return (!lapic_in_kernel(vcpu) ||
4065 kvm_apic_accept_pic_intr(vcpu));
4066 }
4067
kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu * vcpu)4068 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4069 {
4070 return kvm_arch_interrupt_allowed(vcpu) &&
4071 kvm_cpu_accept_dm_intr(vcpu);
4072 }
4073
kvm_vcpu_ioctl_interrupt(struct kvm_vcpu * vcpu,struct kvm_interrupt * irq)4074 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4075 struct kvm_interrupt *irq)
4076 {
4077 if (irq->irq >= KVM_NR_INTERRUPTS)
4078 return -EINVAL;
4079
4080 if (!irqchip_in_kernel(vcpu->kvm)) {
4081 kvm_queue_interrupt(vcpu, irq->irq, false);
4082 kvm_make_request(KVM_REQ_EVENT, vcpu);
4083 return 0;
4084 }
4085
4086 /*
4087 * With in-kernel LAPIC, we only use this to inject EXTINT, so
4088 * fail for in-kernel 8259.
4089 */
4090 if (pic_in_kernel(vcpu->kvm))
4091 return -ENXIO;
4092
4093 if (vcpu->arch.pending_external_vector != -1)
4094 return -EEXIST;
4095
4096 vcpu->arch.pending_external_vector = irq->irq;
4097 kvm_make_request(KVM_REQ_EVENT, vcpu);
4098 return 0;
4099 }
4100
kvm_vcpu_ioctl_nmi(struct kvm_vcpu * vcpu)4101 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
4102 {
4103 kvm_inject_nmi(vcpu);
4104
4105 return 0;
4106 }
4107
kvm_vcpu_ioctl_smi(struct kvm_vcpu * vcpu)4108 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
4109 {
4110 kvm_make_request(KVM_REQ_SMI, vcpu);
4111
4112 return 0;
4113 }
4114
vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu * vcpu,struct kvm_tpr_access_ctl * tac)4115 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
4116 struct kvm_tpr_access_ctl *tac)
4117 {
4118 if (tac->flags)
4119 return -EINVAL;
4120 vcpu->arch.tpr_access_reporting = !!tac->enabled;
4121 return 0;
4122 }
4123
kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu * vcpu,u64 mcg_cap)4124 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
4125 u64 mcg_cap)
4126 {
4127 int r;
4128 unsigned bank_num = mcg_cap & 0xff, bank;
4129
4130 r = -EINVAL;
4131 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
4132 goto out;
4133 if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
4134 goto out;
4135 r = 0;
4136 vcpu->arch.mcg_cap = mcg_cap;
4137 /* Init IA32_MCG_CTL to all 1s */
4138 if (mcg_cap & MCG_CTL_P)
4139 vcpu->arch.mcg_ctl = ~(u64)0;
4140 /* Init IA32_MCi_CTL to all 1s */
4141 for (bank = 0; bank < bank_num; bank++)
4142 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
4143
4144 kvm_x86_ops.setup_mce(vcpu);
4145 out:
4146 return r;
4147 }
4148
kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu * vcpu,struct kvm_x86_mce * mce)4149 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
4150 struct kvm_x86_mce *mce)
4151 {
4152 u64 mcg_cap = vcpu->arch.mcg_cap;
4153 unsigned bank_num = mcg_cap & 0xff;
4154 u64 *banks = vcpu->arch.mce_banks;
4155
4156 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
4157 return -EINVAL;
4158 /*
4159 * if IA32_MCG_CTL is not all 1s, the uncorrected error
4160 * reporting is disabled
4161 */
4162 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
4163 vcpu->arch.mcg_ctl != ~(u64)0)
4164 return 0;
4165 banks += 4 * mce->bank;
4166 /*
4167 * if IA32_MCi_CTL is not all 1s, the uncorrected error
4168 * reporting is disabled for the bank
4169 */
4170 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
4171 return 0;
4172 if (mce->status & MCI_STATUS_UC) {
4173 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
4174 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
4175 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4176 return 0;
4177 }
4178 if (banks[1] & MCI_STATUS_VAL)
4179 mce->status |= MCI_STATUS_OVER;
4180 banks[2] = mce->addr;
4181 banks[3] = mce->misc;
4182 vcpu->arch.mcg_status = mce->mcg_status;
4183 banks[1] = mce->status;
4184 kvm_queue_exception(vcpu, MC_VECTOR);
4185 } else if (!(banks[1] & MCI_STATUS_VAL)
4186 || !(banks[1] & MCI_STATUS_UC)) {
4187 if (banks[1] & MCI_STATUS_VAL)
4188 mce->status |= MCI_STATUS_OVER;
4189 banks[2] = mce->addr;
4190 banks[3] = mce->misc;
4191 banks[1] = mce->status;
4192 } else
4193 banks[1] |= MCI_STATUS_OVER;
4194 return 0;
4195 }
4196
kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)4197 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
4198 struct kvm_vcpu_events *events)
4199 {
4200 process_nmi(vcpu);
4201
4202 /*
4203 * In guest mode, payload delivery should be deferred,
4204 * so that the L1 hypervisor can intercept #PF before
4205 * CR2 is modified (or intercept #DB before DR6 is
4206 * modified under nVMX). Unless the per-VM capability,
4207 * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of
4208 * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we
4209 * opportunistically defer the exception payload, deliver it if the
4210 * capability hasn't been requested before processing a
4211 * KVM_GET_VCPU_EVENTS.
4212 */
4213 if (!vcpu->kvm->arch.exception_payload_enabled &&
4214 vcpu->arch.exception.pending && vcpu->arch.exception.has_payload)
4215 kvm_deliver_exception_payload(vcpu);
4216
4217 /*
4218 * The API doesn't provide the instruction length for software
4219 * exceptions, so don't report them. As long as the guest RIP
4220 * isn't advanced, we should expect to encounter the exception
4221 * again.
4222 */
4223 if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
4224 events->exception.injected = 0;
4225 events->exception.pending = 0;
4226 } else {
4227 events->exception.injected = vcpu->arch.exception.injected;
4228 events->exception.pending = vcpu->arch.exception.pending;
4229 /*
4230 * For ABI compatibility, deliberately conflate
4231 * pending and injected exceptions when
4232 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
4233 */
4234 if (!vcpu->kvm->arch.exception_payload_enabled)
4235 events->exception.injected |=
4236 vcpu->arch.exception.pending;
4237 }
4238 events->exception.nr = vcpu->arch.exception.nr;
4239 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
4240 events->exception.error_code = vcpu->arch.exception.error_code;
4241 events->exception_has_payload = vcpu->arch.exception.has_payload;
4242 events->exception_payload = vcpu->arch.exception.payload;
4243
4244 events->interrupt.injected =
4245 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
4246 events->interrupt.nr = vcpu->arch.interrupt.nr;
4247 events->interrupt.soft = 0;
4248 events->interrupt.shadow = kvm_x86_ops.get_interrupt_shadow(vcpu);
4249
4250 events->nmi.injected = vcpu->arch.nmi_injected;
4251 events->nmi.pending = vcpu->arch.nmi_pending != 0;
4252 events->nmi.masked = kvm_x86_ops.get_nmi_mask(vcpu);
4253 events->nmi.pad = 0;
4254
4255 events->sipi_vector = 0; /* never valid when reporting to user space */
4256
4257 events->smi.smm = is_smm(vcpu);
4258 events->smi.pending = vcpu->arch.smi_pending;
4259 events->smi.smm_inside_nmi =
4260 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
4261 events->smi.latched_init = kvm_lapic_latched_init(vcpu);
4262
4263 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
4264 | KVM_VCPUEVENT_VALID_SHADOW
4265 | KVM_VCPUEVENT_VALID_SMM);
4266 if (vcpu->kvm->arch.exception_payload_enabled)
4267 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
4268
4269 memset(&events->reserved, 0, sizeof(events->reserved));
4270 }
4271
4272 static void kvm_smm_changed(struct kvm_vcpu *vcpu);
4273
kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)4274 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
4275 struct kvm_vcpu_events *events)
4276 {
4277 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
4278 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
4279 | KVM_VCPUEVENT_VALID_SHADOW
4280 | KVM_VCPUEVENT_VALID_SMM
4281 | KVM_VCPUEVENT_VALID_PAYLOAD))
4282 return -EINVAL;
4283
4284 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
4285 if (!vcpu->kvm->arch.exception_payload_enabled)
4286 return -EINVAL;
4287 if (events->exception.pending)
4288 events->exception.injected = 0;
4289 else
4290 events->exception_has_payload = 0;
4291 } else {
4292 events->exception.pending = 0;
4293 events->exception_has_payload = 0;
4294 }
4295
4296 if ((events->exception.injected || events->exception.pending) &&
4297 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
4298 return -EINVAL;
4299
4300 /* INITs are latched while in SMM */
4301 if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
4302 (events->smi.smm || events->smi.pending) &&
4303 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4304 return -EINVAL;
4305
4306 process_nmi(vcpu);
4307 vcpu->arch.exception.injected = events->exception.injected;
4308 vcpu->arch.exception.pending = events->exception.pending;
4309 vcpu->arch.exception.nr = events->exception.nr;
4310 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
4311 vcpu->arch.exception.error_code = events->exception.error_code;
4312 vcpu->arch.exception.has_payload = events->exception_has_payload;
4313 vcpu->arch.exception.payload = events->exception_payload;
4314
4315 vcpu->arch.interrupt.injected = events->interrupt.injected;
4316 vcpu->arch.interrupt.nr = events->interrupt.nr;
4317 vcpu->arch.interrupt.soft = events->interrupt.soft;
4318 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
4319 kvm_x86_ops.set_interrupt_shadow(vcpu,
4320 events->interrupt.shadow);
4321
4322 vcpu->arch.nmi_injected = events->nmi.injected;
4323 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
4324 vcpu->arch.nmi_pending = events->nmi.pending;
4325 kvm_x86_ops.set_nmi_mask(vcpu, events->nmi.masked);
4326
4327 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
4328 lapic_in_kernel(vcpu))
4329 vcpu->arch.apic->sipi_vector = events->sipi_vector;
4330
4331 if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
4332 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
4333 if (events->smi.smm)
4334 vcpu->arch.hflags |= HF_SMM_MASK;
4335 else
4336 vcpu->arch.hflags &= ~HF_SMM_MASK;
4337 kvm_smm_changed(vcpu);
4338 }
4339
4340 vcpu->arch.smi_pending = events->smi.pending;
4341
4342 if (events->smi.smm) {
4343 if (events->smi.smm_inside_nmi)
4344 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
4345 else
4346 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
4347 }
4348
4349 if (lapic_in_kernel(vcpu)) {
4350 if (events->smi.latched_init)
4351 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4352 else
4353 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4354 }
4355 }
4356
4357 kvm_make_request(KVM_REQ_EVENT, vcpu);
4358
4359 return 0;
4360 }
4361
kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu * vcpu,struct kvm_debugregs * dbgregs)4362 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
4363 struct kvm_debugregs *dbgregs)
4364 {
4365 unsigned long val;
4366
4367 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
4368 kvm_get_dr(vcpu, 6, &val);
4369 dbgregs->dr6 = val;
4370 dbgregs->dr7 = vcpu->arch.dr7;
4371 dbgregs->flags = 0;
4372 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
4373 }
4374
kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu * vcpu,struct kvm_debugregs * dbgregs)4375 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
4376 struct kvm_debugregs *dbgregs)
4377 {
4378 if (dbgregs->flags)
4379 return -EINVAL;
4380
4381 if (dbgregs->dr6 & ~0xffffffffull)
4382 return -EINVAL;
4383 if (dbgregs->dr7 & ~0xffffffffull)
4384 return -EINVAL;
4385
4386 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
4387 kvm_update_dr0123(vcpu);
4388 vcpu->arch.dr6 = dbgregs->dr6;
4389 vcpu->arch.dr7 = dbgregs->dr7;
4390 kvm_update_dr7(vcpu);
4391
4392 return 0;
4393 }
4394
4395 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
4396
fill_xsave(u8 * dest,struct kvm_vcpu * vcpu)4397 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
4398 {
4399 struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4400 u64 xstate_bv = xsave->header.xfeatures;
4401 u64 valid;
4402
4403 /*
4404 * Copy legacy XSAVE area, to avoid complications with CPUID
4405 * leaves 0 and 1 in the loop below.
4406 */
4407 memcpy(dest, xsave, XSAVE_HDR_OFFSET);
4408
4409 /* Set XSTATE_BV */
4410 xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
4411 *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
4412
4413 /*
4414 * Copy each region from the possibly compacted offset to the
4415 * non-compacted offset.
4416 */
4417 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4418 while (valid) {
4419 u64 xfeature_mask = valid & -valid;
4420 int xfeature_nr = fls64(xfeature_mask) - 1;
4421 void *src = get_xsave_addr(xsave, xfeature_nr);
4422
4423 if (src) {
4424 u32 size, offset, ecx, edx;
4425 cpuid_count(XSTATE_CPUID, xfeature_nr,
4426 &size, &offset, &ecx, &edx);
4427 if (xfeature_nr == XFEATURE_PKRU)
4428 memcpy(dest + offset, &vcpu->arch.pkru,
4429 sizeof(vcpu->arch.pkru));
4430 else
4431 memcpy(dest + offset, src, size);
4432
4433 }
4434
4435 valid -= xfeature_mask;
4436 }
4437 }
4438
load_xsave(struct kvm_vcpu * vcpu,u8 * src)4439 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
4440 {
4441 struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4442 u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
4443 u64 valid;
4444
4445 /*
4446 * Copy legacy XSAVE area, to avoid complications with CPUID
4447 * leaves 0 and 1 in the loop below.
4448 */
4449 memcpy(xsave, src, XSAVE_HDR_OFFSET);
4450
4451 /* Set XSTATE_BV and possibly XCOMP_BV. */
4452 xsave->header.xfeatures = xstate_bv;
4453 if (boot_cpu_has(X86_FEATURE_XSAVES))
4454 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
4455
4456 /*
4457 * Copy each region from the non-compacted offset to the
4458 * possibly compacted offset.
4459 */
4460 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4461 while (valid) {
4462 u64 xfeature_mask = valid & -valid;
4463 int xfeature_nr = fls64(xfeature_mask) - 1;
4464 void *dest = get_xsave_addr(xsave, xfeature_nr);
4465
4466 if (dest) {
4467 u32 size, offset, ecx, edx;
4468 cpuid_count(XSTATE_CPUID, xfeature_nr,
4469 &size, &offset, &ecx, &edx);
4470 if (xfeature_nr == XFEATURE_PKRU)
4471 memcpy(&vcpu->arch.pkru, src + offset,
4472 sizeof(vcpu->arch.pkru));
4473 else
4474 memcpy(dest, src + offset, size);
4475 }
4476
4477 valid -= xfeature_mask;
4478 }
4479 }
4480
kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu * vcpu,struct kvm_xsave * guest_xsave)4481 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
4482 struct kvm_xsave *guest_xsave)
4483 {
4484 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4485 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
4486 fill_xsave((u8 *) guest_xsave->region, vcpu);
4487 } else {
4488 memcpy(guest_xsave->region,
4489 &vcpu->arch.guest_fpu->state.fxsave,
4490 sizeof(struct fxregs_state));
4491 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
4492 XFEATURE_MASK_FPSSE;
4493 }
4494 }
4495
4496 #define XSAVE_MXCSR_OFFSET 24
4497
kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu * vcpu,struct kvm_xsave * guest_xsave)4498 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
4499 struct kvm_xsave *guest_xsave)
4500 {
4501 u64 xstate_bv =
4502 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
4503 u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
4504
4505 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4506 /*
4507 * Here we allow setting states that are not present in
4508 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility
4509 * with old userspace.
4510 */
4511 if (xstate_bv & ~supported_xcr0 || mxcsr & ~mxcsr_feature_mask)
4512 return -EINVAL;
4513 load_xsave(vcpu, (u8 *)guest_xsave->region);
4514 } else {
4515 if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
4516 mxcsr & ~mxcsr_feature_mask)
4517 return -EINVAL;
4518 memcpy(&vcpu->arch.guest_fpu->state.fxsave,
4519 guest_xsave->region, sizeof(struct fxregs_state));
4520 }
4521 return 0;
4522 }
4523
kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu * vcpu,struct kvm_xcrs * guest_xcrs)4524 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
4525 struct kvm_xcrs *guest_xcrs)
4526 {
4527 if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
4528 guest_xcrs->nr_xcrs = 0;
4529 return;
4530 }
4531
4532 guest_xcrs->nr_xcrs = 1;
4533 guest_xcrs->flags = 0;
4534 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
4535 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
4536 }
4537
kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu * vcpu,struct kvm_xcrs * guest_xcrs)4538 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
4539 struct kvm_xcrs *guest_xcrs)
4540 {
4541 int i, r = 0;
4542
4543 if (!boot_cpu_has(X86_FEATURE_XSAVE))
4544 return -EINVAL;
4545
4546 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
4547 return -EINVAL;
4548
4549 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
4550 /* Only support XCR0 currently */
4551 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
4552 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
4553 guest_xcrs->xcrs[i].value);
4554 break;
4555 }
4556 if (r)
4557 r = -EINVAL;
4558 return r;
4559 }
4560
4561 /*
4562 * kvm_set_guest_paused() indicates to the guest kernel that it has been
4563 * stopped by the hypervisor. This function will be called from the host only.
4564 * EINVAL is returned when the host attempts to set the flag for a guest that
4565 * does not support pv clocks.
4566 */
kvm_set_guest_paused(struct kvm_vcpu * vcpu)4567 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
4568 {
4569 if (!vcpu->arch.pv_time_enabled)
4570 return -EINVAL;
4571 vcpu->arch.pvclock_set_guest_stopped_request = true;
4572 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4573 return 0;
4574 }
4575
kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu * vcpu,struct kvm_enable_cap * cap)4576 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
4577 struct kvm_enable_cap *cap)
4578 {
4579 int r;
4580 uint16_t vmcs_version;
4581 void __user *user_ptr;
4582
4583 if (cap->flags)
4584 return -EINVAL;
4585
4586 switch (cap->cap) {
4587 case KVM_CAP_HYPERV_SYNIC2:
4588 if (cap->args[0])
4589 return -EINVAL;
4590 fallthrough;
4591
4592 case KVM_CAP_HYPERV_SYNIC:
4593 if (!irqchip_in_kernel(vcpu->kvm))
4594 return -EINVAL;
4595 return kvm_hv_activate_synic(vcpu, cap->cap ==
4596 KVM_CAP_HYPERV_SYNIC2);
4597 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4598 if (!kvm_x86_ops.nested_ops->enable_evmcs)
4599 return -ENOTTY;
4600 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
4601 if (!r) {
4602 user_ptr = (void __user *)(uintptr_t)cap->args[0];
4603 if (copy_to_user(user_ptr, &vmcs_version,
4604 sizeof(vmcs_version)))
4605 r = -EFAULT;
4606 }
4607 return r;
4608 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4609 if (!kvm_x86_ops.enable_direct_tlbflush)
4610 return -ENOTTY;
4611
4612 return kvm_x86_ops.enable_direct_tlbflush(vcpu);
4613
4614 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4615 vcpu->arch.pv_cpuid.enforce = cap->args[0];
4616 if (vcpu->arch.pv_cpuid.enforce)
4617 kvm_update_pv_runtime(vcpu);
4618
4619 return 0;
4620
4621 default:
4622 return -EINVAL;
4623 }
4624 }
4625
kvm_arch_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)4626 long kvm_arch_vcpu_ioctl(struct file *filp,
4627 unsigned int ioctl, unsigned long arg)
4628 {
4629 struct kvm_vcpu *vcpu = filp->private_data;
4630 void __user *argp = (void __user *)arg;
4631 int r;
4632 union {
4633 struct kvm_lapic_state *lapic;
4634 struct kvm_xsave *xsave;
4635 struct kvm_xcrs *xcrs;
4636 void *buffer;
4637 } u;
4638
4639 vcpu_load(vcpu);
4640
4641 u.buffer = NULL;
4642 switch (ioctl) {
4643 case KVM_GET_LAPIC: {
4644 r = -EINVAL;
4645 if (!lapic_in_kernel(vcpu))
4646 goto out;
4647 u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
4648 GFP_KERNEL_ACCOUNT);
4649
4650 r = -ENOMEM;
4651 if (!u.lapic)
4652 goto out;
4653 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
4654 if (r)
4655 goto out;
4656 r = -EFAULT;
4657 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
4658 goto out;
4659 r = 0;
4660 break;
4661 }
4662 case KVM_SET_LAPIC: {
4663 r = -EINVAL;
4664 if (!lapic_in_kernel(vcpu))
4665 goto out;
4666 u.lapic = memdup_user(argp, sizeof(*u.lapic));
4667 if (IS_ERR(u.lapic)) {
4668 r = PTR_ERR(u.lapic);
4669 goto out_nofree;
4670 }
4671
4672 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
4673 break;
4674 }
4675 case KVM_INTERRUPT: {
4676 struct kvm_interrupt irq;
4677
4678 r = -EFAULT;
4679 if (copy_from_user(&irq, argp, sizeof(irq)))
4680 goto out;
4681 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
4682 break;
4683 }
4684 case KVM_NMI: {
4685 r = kvm_vcpu_ioctl_nmi(vcpu);
4686 break;
4687 }
4688 case KVM_SMI: {
4689 r = kvm_vcpu_ioctl_smi(vcpu);
4690 break;
4691 }
4692 case KVM_SET_CPUID: {
4693 struct kvm_cpuid __user *cpuid_arg = argp;
4694 struct kvm_cpuid cpuid;
4695
4696 r = -EFAULT;
4697 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4698 goto out;
4699 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4700 break;
4701 }
4702 case KVM_SET_CPUID2: {
4703 struct kvm_cpuid2 __user *cpuid_arg = argp;
4704 struct kvm_cpuid2 cpuid;
4705
4706 r = -EFAULT;
4707 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4708 goto out;
4709 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
4710 cpuid_arg->entries);
4711 break;
4712 }
4713 case KVM_GET_CPUID2: {
4714 struct kvm_cpuid2 __user *cpuid_arg = argp;
4715 struct kvm_cpuid2 cpuid;
4716
4717 r = -EFAULT;
4718 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4719 goto out;
4720 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
4721 cpuid_arg->entries);
4722 if (r)
4723 goto out;
4724 r = -EFAULT;
4725 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4726 goto out;
4727 r = 0;
4728 break;
4729 }
4730 case KVM_GET_MSRS: {
4731 int idx = srcu_read_lock(&vcpu->kvm->srcu);
4732 r = msr_io(vcpu, argp, do_get_msr, 1);
4733 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4734 break;
4735 }
4736 case KVM_SET_MSRS: {
4737 int idx = srcu_read_lock(&vcpu->kvm->srcu);
4738 r = msr_io(vcpu, argp, do_set_msr, 0);
4739 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4740 break;
4741 }
4742 case KVM_TPR_ACCESS_REPORTING: {
4743 struct kvm_tpr_access_ctl tac;
4744
4745 r = -EFAULT;
4746 if (copy_from_user(&tac, argp, sizeof(tac)))
4747 goto out;
4748 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
4749 if (r)
4750 goto out;
4751 r = -EFAULT;
4752 if (copy_to_user(argp, &tac, sizeof(tac)))
4753 goto out;
4754 r = 0;
4755 break;
4756 };
4757 case KVM_SET_VAPIC_ADDR: {
4758 struct kvm_vapic_addr va;
4759 int idx;
4760
4761 r = -EINVAL;
4762 if (!lapic_in_kernel(vcpu))
4763 goto out;
4764 r = -EFAULT;
4765 if (copy_from_user(&va, argp, sizeof(va)))
4766 goto out;
4767 idx = srcu_read_lock(&vcpu->kvm->srcu);
4768 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
4769 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4770 break;
4771 }
4772 case KVM_X86_SETUP_MCE: {
4773 u64 mcg_cap;
4774
4775 r = -EFAULT;
4776 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
4777 goto out;
4778 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
4779 break;
4780 }
4781 case KVM_X86_SET_MCE: {
4782 struct kvm_x86_mce mce;
4783
4784 r = -EFAULT;
4785 if (copy_from_user(&mce, argp, sizeof(mce)))
4786 goto out;
4787 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
4788 break;
4789 }
4790 case KVM_GET_VCPU_EVENTS: {
4791 struct kvm_vcpu_events events;
4792
4793 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
4794
4795 r = -EFAULT;
4796 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
4797 break;
4798 r = 0;
4799 break;
4800 }
4801 case KVM_SET_VCPU_EVENTS: {
4802 struct kvm_vcpu_events events;
4803
4804 r = -EFAULT;
4805 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
4806 break;
4807
4808 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
4809 break;
4810 }
4811 case KVM_GET_DEBUGREGS: {
4812 struct kvm_debugregs dbgregs;
4813
4814 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
4815
4816 r = -EFAULT;
4817 if (copy_to_user(argp, &dbgregs,
4818 sizeof(struct kvm_debugregs)))
4819 break;
4820 r = 0;
4821 break;
4822 }
4823 case KVM_SET_DEBUGREGS: {
4824 struct kvm_debugregs dbgregs;
4825
4826 r = -EFAULT;
4827 if (copy_from_user(&dbgregs, argp,
4828 sizeof(struct kvm_debugregs)))
4829 break;
4830
4831 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
4832 break;
4833 }
4834 case KVM_GET_XSAVE: {
4835 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
4836 r = -ENOMEM;
4837 if (!u.xsave)
4838 break;
4839
4840 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
4841
4842 r = -EFAULT;
4843 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
4844 break;
4845 r = 0;
4846 break;
4847 }
4848 case KVM_SET_XSAVE: {
4849 u.xsave = memdup_user(argp, sizeof(*u.xsave));
4850 if (IS_ERR(u.xsave)) {
4851 r = PTR_ERR(u.xsave);
4852 goto out_nofree;
4853 }
4854
4855 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
4856 break;
4857 }
4858 case KVM_GET_XCRS: {
4859 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
4860 r = -ENOMEM;
4861 if (!u.xcrs)
4862 break;
4863
4864 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
4865
4866 r = -EFAULT;
4867 if (copy_to_user(argp, u.xcrs,
4868 sizeof(struct kvm_xcrs)))
4869 break;
4870 r = 0;
4871 break;
4872 }
4873 case KVM_SET_XCRS: {
4874 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
4875 if (IS_ERR(u.xcrs)) {
4876 r = PTR_ERR(u.xcrs);
4877 goto out_nofree;
4878 }
4879
4880 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
4881 break;
4882 }
4883 case KVM_SET_TSC_KHZ: {
4884 u32 user_tsc_khz;
4885
4886 r = -EINVAL;
4887 user_tsc_khz = (u32)arg;
4888
4889 if (kvm_has_tsc_control &&
4890 user_tsc_khz >= kvm_max_guest_tsc_khz)
4891 goto out;
4892
4893 if (user_tsc_khz == 0)
4894 user_tsc_khz = tsc_khz;
4895
4896 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
4897 r = 0;
4898
4899 goto out;
4900 }
4901 case KVM_GET_TSC_KHZ: {
4902 r = vcpu->arch.virtual_tsc_khz;
4903 goto out;
4904 }
4905 case KVM_KVMCLOCK_CTRL: {
4906 r = kvm_set_guest_paused(vcpu);
4907 goto out;
4908 }
4909 case KVM_ENABLE_CAP: {
4910 struct kvm_enable_cap cap;
4911
4912 r = -EFAULT;
4913 if (copy_from_user(&cap, argp, sizeof(cap)))
4914 goto out;
4915 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
4916 break;
4917 }
4918 case KVM_GET_NESTED_STATE: {
4919 struct kvm_nested_state __user *user_kvm_nested_state = argp;
4920 u32 user_data_size;
4921
4922 r = -EINVAL;
4923 if (!kvm_x86_ops.nested_ops->get_state)
4924 break;
4925
4926 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
4927 r = -EFAULT;
4928 if (get_user(user_data_size, &user_kvm_nested_state->size))
4929 break;
4930
4931 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
4932 user_data_size);
4933 if (r < 0)
4934 break;
4935
4936 if (r > user_data_size) {
4937 if (put_user(r, &user_kvm_nested_state->size))
4938 r = -EFAULT;
4939 else
4940 r = -E2BIG;
4941 break;
4942 }
4943
4944 r = 0;
4945 break;
4946 }
4947 case KVM_SET_NESTED_STATE: {
4948 struct kvm_nested_state __user *user_kvm_nested_state = argp;
4949 struct kvm_nested_state kvm_state;
4950 int idx;
4951
4952 r = -EINVAL;
4953 if (!kvm_x86_ops.nested_ops->set_state)
4954 break;
4955
4956 r = -EFAULT;
4957 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
4958 break;
4959
4960 r = -EINVAL;
4961 if (kvm_state.size < sizeof(kvm_state))
4962 break;
4963
4964 if (kvm_state.flags &
4965 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
4966 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
4967 | KVM_STATE_NESTED_GIF_SET))
4968 break;
4969
4970 /* nested_run_pending implies guest_mode. */
4971 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
4972 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
4973 break;
4974
4975 idx = srcu_read_lock(&vcpu->kvm->srcu);
4976 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
4977 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4978 break;
4979 }
4980 case KVM_GET_SUPPORTED_HV_CPUID: {
4981 struct kvm_cpuid2 __user *cpuid_arg = argp;
4982 struct kvm_cpuid2 cpuid;
4983
4984 r = -EFAULT;
4985 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4986 goto out;
4987
4988 r = kvm_vcpu_ioctl_get_hv_cpuid(vcpu, &cpuid,
4989 cpuid_arg->entries);
4990 if (r)
4991 goto out;
4992
4993 r = -EFAULT;
4994 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4995 goto out;
4996 r = 0;
4997 break;
4998 }
4999 default:
5000 r = -EINVAL;
5001 }
5002 out:
5003 kfree(u.buffer);
5004 out_nofree:
5005 vcpu_put(vcpu);
5006 return r;
5007 }
5008
kvm_arch_vcpu_fault(struct kvm_vcpu * vcpu,struct vm_fault * vmf)5009 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
5010 {
5011 return VM_FAULT_SIGBUS;
5012 }
5013
kvm_vm_ioctl_set_tss_addr(struct kvm * kvm,unsigned long addr)5014 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
5015 {
5016 int ret;
5017
5018 if (addr > (unsigned int)(-3 * PAGE_SIZE))
5019 return -EINVAL;
5020 ret = kvm_x86_ops.set_tss_addr(kvm, addr);
5021 return ret;
5022 }
5023
kvm_vm_ioctl_set_identity_map_addr(struct kvm * kvm,u64 ident_addr)5024 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
5025 u64 ident_addr)
5026 {
5027 return kvm_x86_ops.set_identity_map_addr(kvm, ident_addr);
5028 }
5029
kvm_vm_ioctl_set_nr_mmu_pages(struct kvm * kvm,unsigned long kvm_nr_mmu_pages)5030 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
5031 unsigned long kvm_nr_mmu_pages)
5032 {
5033 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
5034 return -EINVAL;
5035
5036 mutex_lock(&kvm->slots_lock);
5037
5038 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
5039 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
5040
5041 mutex_unlock(&kvm->slots_lock);
5042 return 0;
5043 }
5044
kvm_vm_ioctl_get_nr_mmu_pages(struct kvm * kvm)5045 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
5046 {
5047 return kvm->arch.n_max_mmu_pages;
5048 }
5049
kvm_vm_ioctl_get_irqchip(struct kvm * kvm,struct kvm_irqchip * chip)5050 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5051 {
5052 struct kvm_pic *pic = kvm->arch.vpic;
5053 int r;
5054
5055 r = 0;
5056 switch (chip->chip_id) {
5057 case KVM_IRQCHIP_PIC_MASTER:
5058 memcpy(&chip->chip.pic, &pic->pics[0],
5059 sizeof(struct kvm_pic_state));
5060 break;
5061 case KVM_IRQCHIP_PIC_SLAVE:
5062 memcpy(&chip->chip.pic, &pic->pics[1],
5063 sizeof(struct kvm_pic_state));
5064 break;
5065 case KVM_IRQCHIP_IOAPIC:
5066 kvm_get_ioapic(kvm, &chip->chip.ioapic);
5067 break;
5068 default:
5069 r = -EINVAL;
5070 break;
5071 }
5072 return r;
5073 }
5074
kvm_vm_ioctl_set_irqchip(struct kvm * kvm,struct kvm_irqchip * chip)5075 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5076 {
5077 struct kvm_pic *pic = kvm->arch.vpic;
5078 int r;
5079
5080 r = 0;
5081 switch (chip->chip_id) {
5082 case KVM_IRQCHIP_PIC_MASTER:
5083 spin_lock(&pic->lock);
5084 memcpy(&pic->pics[0], &chip->chip.pic,
5085 sizeof(struct kvm_pic_state));
5086 spin_unlock(&pic->lock);
5087 break;
5088 case KVM_IRQCHIP_PIC_SLAVE:
5089 spin_lock(&pic->lock);
5090 memcpy(&pic->pics[1], &chip->chip.pic,
5091 sizeof(struct kvm_pic_state));
5092 spin_unlock(&pic->lock);
5093 break;
5094 case KVM_IRQCHIP_IOAPIC:
5095 kvm_set_ioapic(kvm, &chip->chip.ioapic);
5096 break;
5097 default:
5098 r = -EINVAL;
5099 break;
5100 }
5101 kvm_pic_update_irq(pic);
5102 return r;
5103 }
5104
kvm_vm_ioctl_get_pit(struct kvm * kvm,struct kvm_pit_state * ps)5105 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5106 {
5107 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
5108
5109 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
5110
5111 mutex_lock(&kps->lock);
5112 memcpy(ps, &kps->channels, sizeof(*ps));
5113 mutex_unlock(&kps->lock);
5114 return 0;
5115 }
5116
kvm_vm_ioctl_set_pit(struct kvm * kvm,struct kvm_pit_state * ps)5117 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5118 {
5119 int i;
5120 struct kvm_pit *pit = kvm->arch.vpit;
5121
5122 mutex_lock(&pit->pit_state.lock);
5123 memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
5124 for (i = 0; i < 3; i++)
5125 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
5126 mutex_unlock(&pit->pit_state.lock);
5127 return 0;
5128 }
5129
kvm_vm_ioctl_get_pit2(struct kvm * kvm,struct kvm_pit_state2 * ps)5130 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5131 {
5132 mutex_lock(&kvm->arch.vpit->pit_state.lock);
5133 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
5134 sizeof(ps->channels));
5135 ps->flags = kvm->arch.vpit->pit_state.flags;
5136 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
5137 memset(&ps->reserved, 0, sizeof(ps->reserved));
5138 return 0;
5139 }
5140
kvm_vm_ioctl_set_pit2(struct kvm * kvm,struct kvm_pit_state2 * ps)5141 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5142 {
5143 int start = 0;
5144 int i;
5145 u32 prev_legacy, cur_legacy;
5146 struct kvm_pit *pit = kvm->arch.vpit;
5147
5148 mutex_lock(&pit->pit_state.lock);
5149 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
5150 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
5151 if (!prev_legacy && cur_legacy)
5152 start = 1;
5153 memcpy(&pit->pit_state.channels, &ps->channels,
5154 sizeof(pit->pit_state.channels));
5155 pit->pit_state.flags = ps->flags;
5156 for (i = 0; i < 3; i++)
5157 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
5158 start && i == 0);
5159 mutex_unlock(&pit->pit_state.lock);
5160 return 0;
5161 }
5162
kvm_vm_ioctl_reinject(struct kvm * kvm,struct kvm_reinject_control * control)5163 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
5164 struct kvm_reinject_control *control)
5165 {
5166 struct kvm_pit *pit = kvm->arch.vpit;
5167
5168 /* pit->pit_state.lock was overloaded to prevent userspace from getting
5169 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
5170 * ioctls in parallel. Use a separate lock if that ioctl isn't rare.
5171 */
5172 mutex_lock(&pit->pit_state.lock);
5173 kvm_pit_set_reinject(pit, control->pit_reinject);
5174 mutex_unlock(&pit->pit_state.lock);
5175
5176 return 0;
5177 }
5178
kvm_arch_sync_dirty_log(struct kvm * kvm,struct kvm_memory_slot * memslot)5179 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
5180 {
5181 /*
5182 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
5183 */
5184 if (kvm_x86_ops.flush_log_dirty)
5185 kvm_x86_ops.flush_log_dirty(kvm);
5186 }
5187
kvm_vm_ioctl_irq_line(struct kvm * kvm,struct kvm_irq_level * irq_event,bool line_status)5188 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
5189 bool line_status)
5190 {
5191 if (!irqchip_in_kernel(kvm))
5192 return -ENXIO;
5193
5194 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
5195 irq_event->irq, irq_event->level,
5196 line_status);
5197 return 0;
5198 }
5199
kvm_vm_ioctl_enable_cap(struct kvm * kvm,struct kvm_enable_cap * cap)5200 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
5201 struct kvm_enable_cap *cap)
5202 {
5203 int r;
5204
5205 if (cap->flags)
5206 return -EINVAL;
5207
5208 switch (cap->cap) {
5209 case KVM_CAP_DISABLE_QUIRKS:
5210 kvm->arch.disabled_quirks = cap->args[0];
5211 r = 0;
5212 break;
5213 case KVM_CAP_SPLIT_IRQCHIP: {
5214 mutex_lock(&kvm->lock);
5215 r = -EINVAL;
5216 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
5217 goto split_irqchip_unlock;
5218 r = -EEXIST;
5219 if (irqchip_in_kernel(kvm))
5220 goto split_irqchip_unlock;
5221 if (kvm->created_vcpus)
5222 goto split_irqchip_unlock;
5223 r = kvm_setup_empty_irq_routing(kvm);
5224 if (r)
5225 goto split_irqchip_unlock;
5226 /* Pairs with irqchip_in_kernel. */
5227 smp_wmb();
5228 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
5229 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
5230 r = 0;
5231 split_irqchip_unlock:
5232 mutex_unlock(&kvm->lock);
5233 break;
5234 }
5235 case KVM_CAP_X2APIC_API:
5236 r = -EINVAL;
5237 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
5238 break;
5239
5240 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
5241 kvm->arch.x2apic_format = true;
5242 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
5243 kvm->arch.x2apic_broadcast_quirk_disabled = true;
5244
5245 r = 0;
5246 break;
5247 case KVM_CAP_X86_DISABLE_EXITS:
5248 r = -EINVAL;
5249 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
5250 break;
5251
5252 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
5253 kvm_can_mwait_in_guest())
5254 kvm->arch.mwait_in_guest = true;
5255 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
5256 kvm->arch.hlt_in_guest = true;
5257 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
5258 kvm->arch.pause_in_guest = true;
5259 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
5260 kvm->arch.cstate_in_guest = true;
5261 r = 0;
5262 break;
5263 case KVM_CAP_MSR_PLATFORM_INFO:
5264 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
5265 r = 0;
5266 break;
5267 case KVM_CAP_EXCEPTION_PAYLOAD:
5268 kvm->arch.exception_payload_enabled = cap->args[0];
5269 r = 0;
5270 break;
5271 case KVM_CAP_X86_USER_SPACE_MSR:
5272 kvm->arch.user_space_msr_mask = cap->args[0];
5273 r = 0;
5274 break;
5275 default:
5276 r = -EINVAL;
5277 break;
5278 }
5279 return r;
5280 }
5281
kvm_clear_msr_filter(struct kvm * kvm)5282 static void kvm_clear_msr_filter(struct kvm *kvm)
5283 {
5284 u32 i;
5285 u32 count = kvm->arch.msr_filter.count;
5286 struct msr_bitmap_range ranges[16];
5287
5288 mutex_lock(&kvm->lock);
5289 kvm->arch.msr_filter.count = 0;
5290 memcpy(ranges, kvm->arch.msr_filter.ranges, count * sizeof(ranges[0]));
5291 mutex_unlock(&kvm->lock);
5292 synchronize_srcu(&kvm->srcu);
5293
5294 for (i = 0; i < count; i++)
5295 kfree(ranges[i].bitmap);
5296 }
5297
kvm_add_msr_filter(struct kvm * kvm,struct kvm_msr_filter_range * user_range)5298 static int kvm_add_msr_filter(struct kvm *kvm, struct kvm_msr_filter_range *user_range)
5299 {
5300 struct msr_bitmap_range *ranges = kvm->arch.msr_filter.ranges;
5301 struct msr_bitmap_range range;
5302 unsigned long *bitmap = NULL;
5303 size_t bitmap_size;
5304 int r;
5305
5306 if (!user_range->nmsrs)
5307 return 0;
5308
5309 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
5310 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
5311 return -EINVAL;
5312
5313 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
5314 if (IS_ERR(bitmap))
5315 return PTR_ERR(bitmap);
5316
5317 range = (struct msr_bitmap_range) {
5318 .flags = user_range->flags,
5319 .base = user_range->base,
5320 .nmsrs = user_range->nmsrs,
5321 .bitmap = bitmap,
5322 };
5323
5324 if (range.flags & ~(KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE)) {
5325 r = -EINVAL;
5326 goto err;
5327 }
5328
5329 if (!range.flags) {
5330 r = -EINVAL;
5331 goto err;
5332 }
5333
5334 /* Everything ok, add this range identifier to our global pool */
5335 ranges[kvm->arch.msr_filter.count] = range;
5336 /* Make sure we filled the array before we tell anyone to walk it */
5337 smp_wmb();
5338 kvm->arch.msr_filter.count++;
5339
5340 return 0;
5341 err:
5342 kfree(bitmap);
5343 return r;
5344 }
5345
kvm_vm_ioctl_set_msr_filter(struct kvm * kvm,void __user * argp)5346 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, void __user *argp)
5347 {
5348 struct kvm_msr_filter __user *user_msr_filter = argp;
5349 struct kvm_msr_filter filter;
5350 bool default_allow;
5351 int r = 0;
5352 bool empty = true;
5353 u32 i;
5354
5355 if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
5356 return -EFAULT;
5357
5358 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++)
5359 empty &= !filter.ranges[i].nmsrs;
5360
5361 default_allow = !(filter.flags & KVM_MSR_FILTER_DEFAULT_DENY);
5362 if (empty && !default_allow)
5363 return -EINVAL;
5364
5365 kvm_clear_msr_filter(kvm);
5366
5367 kvm->arch.msr_filter.default_allow = default_allow;
5368
5369 /*
5370 * Protect from concurrent calls to this function that could trigger
5371 * a TOCTOU violation on kvm->arch.msr_filter.count.
5372 */
5373 mutex_lock(&kvm->lock);
5374 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
5375 r = kvm_add_msr_filter(kvm, &filter.ranges[i]);
5376 if (r)
5377 break;
5378 }
5379
5380 kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
5381 mutex_unlock(&kvm->lock);
5382
5383 return r;
5384 }
5385
kvm_arch_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)5386 long kvm_arch_vm_ioctl(struct file *filp,
5387 unsigned int ioctl, unsigned long arg)
5388 {
5389 struct kvm *kvm = filp->private_data;
5390 void __user *argp = (void __user *)arg;
5391 int r = -ENOTTY;
5392 /*
5393 * This union makes it completely explicit to gcc-3.x
5394 * that these two variables' stack usage should be
5395 * combined, not added together.
5396 */
5397 union {
5398 struct kvm_pit_state ps;
5399 struct kvm_pit_state2 ps2;
5400 struct kvm_pit_config pit_config;
5401 } u;
5402
5403 switch (ioctl) {
5404 case KVM_SET_TSS_ADDR:
5405 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
5406 break;
5407 case KVM_SET_IDENTITY_MAP_ADDR: {
5408 u64 ident_addr;
5409
5410 mutex_lock(&kvm->lock);
5411 r = -EINVAL;
5412 if (kvm->created_vcpus)
5413 goto set_identity_unlock;
5414 r = -EFAULT;
5415 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
5416 goto set_identity_unlock;
5417 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
5418 set_identity_unlock:
5419 mutex_unlock(&kvm->lock);
5420 break;
5421 }
5422 case KVM_SET_NR_MMU_PAGES:
5423 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
5424 break;
5425 case KVM_GET_NR_MMU_PAGES:
5426 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
5427 break;
5428 case KVM_CREATE_IRQCHIP: {
5429 mutex_lock(&kvm->lock);
5430
5431 r = -EEXIST;
5432 if (irqchip_in_kernel(kvm))
5433 goto create_irqchip_unlock;
5434
5435 r = -EINVAL;
5436 if (kvm->created_vcpus)
5437 goto create_irqchip_unlock;
5438
5439 r = kvm_pic_init(kvm);
5440 if (r)
5441 goto create_irqchip_unlock;
5442
5443 r = kvm_ioapic_init(kvm);
5444 if (r) {
5445 kvm_pic_destroy(kvm);
5446 goto create_irqchip_unlock;
5447 }
5448
5449 r = kvm_setup_default_irq_routing(kvm);
5450 if (r) {
5451 kvm_ioapic_destroy(kvm);
5452 kvm_pic_destroy(kvm);
5453 goto create_irqchip_unlock;
5454 }
5455 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
5456 smp_wmb();
5457 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
5458 create_irqchip_unlock:
5459 mutex_unlock(&kvm->lock);
5460 break;
5461 }
5462 case KVM_CREATE_PIT:
5463 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
5464 goto create_pit;
5465 case KVM_CREATE_PIT2:
5466 r = -EFAULT;
5467 if (copy_from_user(&u.pit_config, argp,
5468 sizeof(struct kvm_pit_config)))
5469 goto out;
5470 create_pit:
5471 mutex_lock(&kvm->lock);
5472 r = -EEXIST;
5473 if (kvm->arch.vpit)
5474 goto create_pit_unlock;
5475 r = -ENOMEM;
5476 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
5477 if (kvm->arch.vpit)
5478 r = 0;
5479 create_pit_unlock:
5480 mutex_unlock(&kvm->lock);
5481 break;
5482 case KVM_GET_IRQCHIP: {
5483 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5484 struct kvm_irqchip *chip;
5485
5486 chip = memdup_user(argp, sizeof(*chip));
5487 if (IS_ERR(chip)) {
5488 r = PTR_ERR(chip);
5489 goto out;
5490 }
5491
5492 r = -ENXIO;
5493 if (!irqchip_kernel(kvm))
5494 goto get_irqchip_out;
5495 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
5496 if (r)
5497 goto get_irqchip_out;
5498 r = -EFAULT;
5499 if (copy_to_user(argp, chip, sizeof(*chip)))
5500 goto get_irqchip_out;
5501 r = 0;
5502 get_irqchip_out:
5503 kfree(chip);
5504 break;
5505 }
5506 case KVM_SET_IRQCHIP: {
5507 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5508 struct kvm_irqchip *chip;
5509
5510 chip = memdup_user(argp, sizeof(*chip));
5511 if (IS_ERR(chip)) {
5512 r = PTR_ERR(chip);
5513 goto out;
5514 }
5515
5516 r = -ENXIO;
5517 if (!irqchip_kernel(kvm))
5518 goto set_irqchip_out;
5519 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
5520 set_irqchip_out:
5521 kfree(chip);
5522 break;
5523 }
5524 case KVM_GET_PIT: {
5525 r = -EFAULT;
5526 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
5527 goto out;
5528 r = -ENXIO;
5529 if (!kvm->arch.vpit)
5530 goto out;
5531 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
5532 if (r)
5533 goto out;
5534 r = -EFAULT;
5535 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
5536 goto out;
5537 r = 0;
5538 break;
5539 }
5540 case KVM_SET_PIT: {
5541 r = -EFAULT;
5542 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
5543 goto out;
5544 mutex_lock(&kvm->lock);
5545 r = -ENXIO;
5546 if (!kvm->arch.vpit)
5547 goto set_pit_out;
5548 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
5549 set_pit_out:
5550 mutex_unlock(&kvm->lock);
5551 break;
5552 }
5553 case KVM_GET_PIT2: {
5554 r = -ENXIO;
5555 if (!kvm->arch.vpit)
5556 goto out;
5557 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
5558 if (r)
5559 goto out;
5560 r = -EFAULT;
5561 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
5562 goto out;
5563 r = 0;
5564 break;
5565 }
5566 case KVM_SET_PIT2: {
5567 r = -EFAULT;
5568 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
5569 goto out;
5570 mutex_lock(&kvm->lock);
5571 r = -ENXIO;
5572 if (!kvm->arch.vpit)
5573 goto set_pit2_out;
5574 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
5575 set_pit2_out:
5576 mutex_unlock(&kvm->lock);
5577 break;
5578 }
5579 case KVM_REINJECT_CONTROL: {
5580 struct kvm_reinject_control control;
5581 r = -EFAULT;
5582 if (copy_from_user(&control, argp, sizeof(control)))
5583 goto out;
5584 r = -ENXIO;
5585 if (!kvm->arch.vpit)
5586 goto out;
5587 r = kvm_vm_ioctl_reinject(kvm, &control);
5588 break;
5589 }
5590 case KVM_SET_BOOT_CPU_ID:
5591 r = 0;
5592 mutex_lock(&kvm->lock);
5593 if (kvm->created_vcpus)
5594 r = -EBUSY;
5595 else
5596 kvm->arch.bsp_vcpu_id = arg;
5597 mutex_unlock(&kvm->lock);
5598 break;
5599 case KVM_XEN_HVM_CONFIG: {
5600 struct kvm_xen_hvm_config xhc;
5601 r = -EFAULT;
5602 if (copy_from_user(&xhc, argp, sizeof(xhc)))
5603 goto out;
5604 r = -EINVAL;
5605 if (xhc.flags)
5606 goto out;
5607 memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
5608 r = 0;
5609 break;
5610 }
5611 case KVM_SET_CLOCK: {
5612 struct kvm_clock_data user_ns;
5613 u64 now_ns;
5614
5615 r = -EFAULT;
5616 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
5617 goto out;
5618
5619 r = -EINVAL;
5620 if (user_ns.flags)
5621 goto out;
5622
5623 r = 0;
5624 /*
5625 * TODO: userspace has to take care of races with VCPU_RUN, so
5626 * kvm_gen_update_masterclock() can be cut down to locked
5627 * pvclock_update_vm_gtod_copy().
5628 */
5629 kvm_gen_update_masterclock(kvm);
5630 now_ns = get_kvmclock_ns(kvm);
5631 kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
5632 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
5633 break;
5634 }
5635 case KVM_GET_CLOCK: {
5636 struct kvm_clock_data user_ns;
5637 u64 now_ns;
5638
5639 now_ns = get_kvmclock_ns(kvm);
5640 user_ns.clock = now_ns;
5641 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
5642 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
5643
5644 r = -EFAULT;
5645 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
5646 goto out;
5647 r = 0;
5648 break;
5649 }
5650 case KVM_MEMORY_ENCRYPT_OP: {
5651 r = -ENOTTY;
5652 if (kvm_x86_ops.mem_enc_op)
5653 r = kvm_x86_ops.mem_enc_op(kvm, argp);
5654 break;
5655 }
5656 case KVM_MEMORY_ENCRYPT_REG_REGION: {
5657 struct kvm_enc_region region;
5658
5659 r = -EFAULT;
5660 if (copy_from_user(®ion, argp, sizeof(region)))
5661 goto out;
5662
5663 r = -ENOTTY;
5664 if (kvm_x86_ops.mem_enc_reg_region)
5665 r = kvm_x86_ops.mem_enc_reg_region(kvm, ®ion);
5666 break;
5667 }
5668 case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
5669 struct kvm_enc_region region;
5670
5671 r = -EFAULT;
5672 if (copy_from_user(®ion, argp, sizeof(region)))
5673 goto out;
5674
5675 r = -ENOTTY;
5676 if (kvm_x86_ops.mem_enc_unreg_region)
5677 r = kvm_x86_ops.mem_enc_unreg_region(kvm, ®ion);
5678 break;
5679 }
5680 case KVM_HYPERV_EVENTFD: {
5681 struct kvm_hyperv_eventfd hvevfd;
5682
5683 r = -EFAULT;
5684 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
5685 goto out;
5686 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
5687 break;
5688 }
5689 case KVM_SET_PMU_EVENT_FILTER:
5690 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
5691 break;
5692 case KVM_X86_SET_MSR_FILTER:
5693 r = kvm_vm_ioctl_set_msr_filter(kvm, argp);
5694 break;
5695 default:
5696 r = -ENOTTY;
5697 }
5698 out:
5699 return r;
5700 }
5701
kvm_init_msr_list(void)5702 static void kvm_init_msr_list(void)
5703 {
5704 struct x86_pmu_capability x86_pmu;
5705 u32 dummy[2];
5706 unsigned i;
5707
5708 BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4,
5709 "Please update the fixed PMCs in msrs_to_saved_all[]");
5710
5711 perf_get_x86_pmu_capability(&x86_pmu);
5712
5713 num_msrs_to_save = 0;
5714 num_emulated_msrs = 0;
5715 num_msr_based_features = 0;
5716
5717 for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
5718 if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
5719 continue;
5720
5721 /*
5722 * Even MSRs that are valid in the host may not be exposed
5723 * to the guests in some cases.
5724 */
5725 switch (msrs_to_save_all[i]) {
5726 case MSR_IA32_BNDCFGS:
5727 if (!kvm_mpx_supported())
5728 continue;
5729 break;
5730 case MSR_TSC_AUX:
5731 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP))
5732 continue;
5733 break;
5734 case MSR_IA32_UMWAIT_CONTROL:
5735 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
5736 continue;
5737 break;
5738 case MSR_IA32_RTIT_CTL:
5739 case MSR_IA32_RTIT_STATUS:
5740 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
5741 continue;
5742 break;
5743 case MSR_IA32_RTIT_CR3_MATCH:
5744 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5745 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
5746 continue;
5747 break;
5748 case MSR_IA32_RTIT_OUTPUT_BASE:
5749 case MSR_IA32_RTIT_OUTPUT_MASK:
5750 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5751 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
5752 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
5753 continue;
5754 break;
5755 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
5756 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5757 msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
5758 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
5759 continue;
5760 break;
5761 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
5762 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
5763 min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
5764 continue;
5765 break;
5766 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
5767 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
5768 min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
5769 continue;
5770 break;
5771 default:
5772 break;
5773 }
5774
5775 msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
5776 }
5777
5778 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
5779 if (!kvm_x86_ops.has_emulated_msr(emulated_msrs_all[i]))
5780 continue;
5781
5782 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
5783 }
5784
5785 for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
5786 struct kvm_msr_entry msr;
5787
5788 msr.index = msr_based_features_all[i];
5789 if (kvm_get_msr_feature(&msr))
5790 continue;
5791
5792 msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
5793 }
5794 }
5795
vcpu_mmio_write(struct kvm_vcpu * vcpu,gpa_t addr,int len,const void * v)5796 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
5797 const void *v)
5798 {
5799 int handled = 0;
5800 int n;
5801
5802 do {
5803 n = min(len, 8);
5804 if (!(lapic_in_kernel(vcpu) &&
5805 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
5806 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
5807 break;
5808 handled += n;
5809 addr += n;
5810 len -= n;
5811 v += n;
5812 } while (len);
5813
5814 return handled;
5815 }
5816
vcpu_mmio_read(struct kvm_vcpu * vcpu,gpa_t addr,int len,void * v)5817 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
5818 {
5819 int handled = 0;
5820 int n;
5821
5822 do {
5823 n = min(len, 8);
5824 if (!(lapic_in_kernel(vcpu) &&
5825 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
5826 addr, n, v))
5827 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
5828 break;
5829 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
5830 handled += n;
5831 addr += n;
5832 len -= n;
5833 v += n;
5834 } while (len);
5835
5836 return handled;
5837 }
5838
kvm_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)5839 static void kvm_set_segment(struct kvm_vcpu *vcpu,
5840 struct kvm_segment *var, int seg)
5841 {
5842 kvm_x86_ops.set_segment(vcpu, var, seg);
5843 }
5844
kvm_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)5845 void kvm_get_segment(struct kvm_vcpu *vcpu,
5846 struct kvm_segment *var, int seg)
5847 {
5848 kvm_x86_ops.get_segment(vcpu, var, seg);
5849 }
5850
translate_nested_gpa(struct kvm_vcpu * vcpu,gpa_t gpa,u32 access,struct x86_exception * exception)5851 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
5852 struct x86_exception *exception)
5853 {
5854 gpa_t t_gpa;
5855
5856 BUG_ON(!mmu_is_nested(vcpu));
5857
5858 /* NPT walks are always user-walks */
5859 access |= PFERR_USER_MASK;
5860 t_gpa = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
5861
5862 return t_gpa;
5863 }
5864
kvm_mmu_gva_to_gpa_read(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)5865 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
5866 struct x86_exception *exception)
5867 {
5868 u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5869 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5870 }
5871
kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)5872 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
5873 struct x86_exception *exception)
5874 {
5875 u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5876 access |= PFERR_FETCH_MASK;
5877 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5878 }
5879
kvm_mmu_gva_to_gpa_write(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)5880 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
5881 struct x86_exception *exception)
5882 {
5883 u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5884 access |= PFERR_WRITE_MASK;
5885 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5886 }
5887
5888 /* uses this to access any guest's mapped memory without checking CPL */
kvm_mmu_gva_to_gpa_system(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)5889 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
5890 struct x86_exception *exception)
5891 {
5892 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
5893 }
5894
kvm_read_guest_virt_helper(gva_t addr,void * val,unsigned int bytes,struct kvm_vcpu * vcpu,u32 access,struct x86_exception * exception)5895 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5896 struct kvm_vcpu *vcpu, u32 access,
5897 struct x86_exception *exception)
5898 {
5899 void *data = val;
5900 int r = X86EMUL_CONTINUE;
5901
5902 while (bytes) {
5903 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
5904 exception);
5905 unsigned offset = addr & (PAGE_SIZE-1);
5906 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
5907 int ret;
5908
5909 if (gpa == UNMAPPED_GVA)
5910 return X86EMUL_PROPAGATE_FAULT;
5911 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
5912 offset, toread);
5913 if (ret < 0) {
5914 r = X86EMUL_IO_NEEDED;
5915 goto out;
5916 }
5917
5918 bytes -= toread;
5919 data += toread;
5920 addr += toread;
5921 }
5922 out:
5923 return r;
5924 }
5925
5926 /* used for instruction fetching */
kvm_fetch_guest_virt(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)5927 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
5928 gva_t addr, void *val, unsigned int bytes,
5929 struct x86_exception *exception)
5930 {
5931 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5932 u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5933 unsigned offset;
5934 int ret;
5935
5936 /* Inline kvm_read_guest_virt_helper for speed. */
5937 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
5938 exception);
5939 if (unlikely(gpa == UNMAPPED_GVA))
5940 return X86EMUL_PROPAGATE_FAULT;
5941
5942 offset = addr & (PAGE_SIZE-1);
5943 if (WARN_ON(offset + bytes > PAGE_SIZE))
5944 bytes = (unsigned)PAGE_SIZE - offset;
5945 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
5946 offset, bytes);
5947 if (unlikely(ret < 0))
5948 return X86EMUL_IO_NEEDED;
5949
5950 return X86EMUL_CONTINUE;
5951 }
5952
kvm_read_guest_virt(struct kvm_vcpu * vcpu,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)5953 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
5954 gva_t addr, void *val, unsigned int bytes,
5955 struct x86_exception *exception)
5956 {
5957 u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5958
5959 /*
5960 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
5961 * is returned, but our callers are not ready for that and they blindly
5962 * call kvm_inject_page_fault. Ensure that they at least do not leak
5963 * uninitialized kernel stack memory into cr2 and error code.
5964 */
5965 memset(exception, 0, sizeof(*exception));
5966 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
5967 exception);
5968 }
5969 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
5970
emulator_read_std(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception,bool system)5971 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
5972 gva_t addr, void *val, unsigned int bytes,
5973 struct x86_exception *exception, bool system)
5974 {
5975 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5976 u32 access = 0;
5977
5978 if (!system && kvm_x86_ops.get_cpl(vcpu) == 3)
5979 access |= PFERR_USER_MASK;
5980
5981 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
5982 }
5983
kvm_read_guest_phys_system(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes)5984 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
5985 unsigned long addr, void *val, unsigned int bytes)
5986 {
5987 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5988 int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
5989
5990 return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
5991 }
5992
kvm_write_guest_virt_helper(gva_t addr,void * val,unsigned int bytes,struct kvm_vcpu * vcpu,u32 access,struct x86_exception * exception)5993 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5994 struct kvm_vcpu *vcpu, u32 access,
5995 struct x86_exception *exception)
5996 {
5997 void *data = val;
5998 int r = X86EMUL_CONTINUE;
5999
6000 while (bytes) {
6001 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
6002 access,
6003 exception);
6004 unsigned offset = addr & (PAGE_SIZE-1);
6005 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
6006 int ret;
6007
6008 if (gpa == UNMAPPED_GVA)
6009 return X86EMUL_PROPAGATE_FAULT;
6010 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
6011 if (ret < 0) {
6012 r = X86EMUL_IO_NEEDED;
6013 goto out;
6014 }
6015
6016 bytes -= towrite;
6017 data += towrite;
6018 addr += towrite;
6019 }
6020 out:
6021 return r;
6022 }
6023
emulator_write_std(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception,bool system)6024 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
6025 unsigned int bytes, struct x86_exception *exception,
6026 bool system)
6027 {
6028 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6029 u32 access = PFERR_WRITE_MASK;
6030
6031 if (!system && kvm_x86_ops.get_cpl(vcpu) == 3)
6032 access |= PFERR_USER_MASK;
6033
6034 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6035 access, exception);
6036 }
6037
kvm_write_guest_virt_system(struct kvm_vcpu * vcpu,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)6038 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
6039 unsigned int bytes, struct x86_exception *exception)
6040 {
6041 /* kvm_write_guest_virt_system can pull in tons of pages. */
6042 vcpu->arch.l1tf_flush_l1d = true;
6043
6044 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6045 PFERR_WRITE_MASK, exception);
6046 }
6047 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
6048
handle_ud(struct kvm_vcpu * vcpu)6049 int handle_ud(struct kvm_vcpu *vcpu)
6050 {
6051 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
6052 int emul_type = EMULTYPE_TRAP_UD;
6053 char sig[5]; /* ud2; .ascii "kvm" */
6054 struct x86_exception e;
6055
6056 if (unlikely(!kvm_x86_ops.can_emulate_instruction(vcpu, NULL, 0)))
6057 return 1;
6058
6059 if (force_emulation_prefix &&
6060 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
6061 sig, sizeof(sig), &e) == 0 &&
6062 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
6063 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
6064 emul_type = EMULTYPE_TRAP_UD_FORCED;
6065 }
6066
6067 return kvm_emulate_instruction(vcpu, emul_type);
6068 }
6069 EXPORT_SYMBOL_GPL(handle_ud);
6070
vcpu_is_mmio_gpa(struct kvm_vcpu * vcpu,unsigned long gva,gpa_t gpa,bool write)6071 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6072 gpa_t gpa, bool write)
6073 {
6074 /* For APIC access vmexit */
6075 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6076 return 1;
6077
6078 if (vcpu_match_mmio_gpa(vcpu, gpa)) {
6079 trace_vcpu_match_mmio(gva, gpa, write, true);
6080 return 1;
6081 }
6082
6083 return 0;
6084 }
6085
vcpu_mmio_gva_to_gpa(struct kvm_vcpu * vcpu,unsigned long gva,gpa_t * gpa,struct x86_exception * exception,bool write)6086 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6087 gpa_t *gpa, struct x86_exception *exception,
6088 bool write)
6089 {
6090 u32 access = ((kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
6091 | (write ? PFERR_WRITE_MASK : 0);
6092
6093 /*
6094 * currently PKRU is only applied to ept enabled guest so
6095 * there is no pkey in EPT page table for L1 guest or EPT
6096 * shadow page table for L2 guest.
6097 */
6098 if (vcpu_match_mmio_gva(vcpu, gva)
6099 && !permission_fault(vcpu, vcpu->arch.walk_mmu,
6100 vcpu->arch.mmio_access, 0, access)) {
6101 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
6102 (gva & (PAGE_SIZE - 1));
6103 trace_vcpu_match_mmio(gva, *gpa, write, false);
6104 return 1;
6105 }
6106
6107 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6108
6109 if (*gpa == UNMAPPED_GVA)
6110 return -1;
6111
6112 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
6113 }
6114
emulator_write_phys(struct kvm_vcpu * vcpu,gpa_t gpa,const void * val,int bytes)6115 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
6116 const void *val, int bytes)
6117 {
6118 int ret;
6119
6120 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
6121 if (ret < 0)
6122 return 0;
6123 kvm_page_track_write(vcpu, gpa, val, bytes);
6124 return 1;
6125 }
6126
6127 struct read_write_emulator_ops {
6128 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
6129 int bytes);
6130 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
6131 void *val, int bytes);
6132 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6133 int bytes, void *val);
6134 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6135 void *val, int bytes);
6136 bool write;
6137 };
6138
read_prepare(struct kvm_vcpu * vcpu,void * val,int bytes)6139 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
6140 {
6141 if (vcpu->mmio_read_completed) {
6142 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
6143 vcpu->mmio_fragments[0].gpa, val);
6144 vcpu->mmio_read_completed = 0;
6145 return 1;
6146 }
6147
6148 return 0;
6149 }
6150
read_emulate(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)6151 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6152 void *val, int bytes)
6153 {
6154 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
6155 }
6156
write_emulate(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)6157 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6158 void *val, int bytes)
6159 {
6160 return emulator_write_phys(vcpu, gpa, val, bytes);
6161 }
6162
write_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,int bytes,void * val)6163 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
6164 {
6165 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
6166 return vcpu_mmio_write(vcpu, gpa, bytes, val);
6167 }
6168
read_exit_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)6169 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6170 void *val, int bytes)
6171 {
6172 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
6173 return X86EMUL_IO_NEEDED;
6174 }
6175
write_exit_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)6176 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6177 void *val, int bytes)
6178 {
6179 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
6180
6181 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
6182 return X86EMUL_CONTINUE;
6183 }
6184
6185 static const struct read_write_emulator_ops read_emultor = {
6186 .read_write_prepare = read_prepare,
6187 .read_write_emulate = read_emulate,
6188 .read_write_mmio = vcpu_mmio_read,
6189 .read_write_exit_mmio = read_exit_mmio,
6190 };
6191
6192 static const struct read_write_emulator_ops write_emultor = {
6193 .read_write_emulate = write_emulate,
6194 .read_write_mmio = write_mmio,
6195 .read_write_exit_mmio = write_exit_mmio,
6196 .write = true,
6197 };
6198
emulator_read_write_onepage(unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception,struct kvm_vcpu * vcpu,const struct read_write_emulator_ops * ops)6199 static int emulator_read_write_onepage(unsigned long addr, void *val,
6200 unsigned int bytes,
6201 struct x86_exception *exception,
6202 struct kvm_vcpu *vcpu,
6203 const struct read_write_emulator_ops *ops)
6204 {
6205 gpa_t gpa;
6206 int handled, ret;
6207 bool write = ops->write;
6208 struct kvm_mmio_fragment *frag;
6209 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6210
6211 /*
6212 * If the exit was due to a NPF we may already have a GPA.
6213 * If the GPA is present, use it to avoid the GVA to GPA table walk.
6214 * Note, this cannot be used on string operations since string
6215 * operation using rep will only have the initial GPA from the NPF
6216 * occurred.
6217 */
6218 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
6219 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
6220 gpa = ctxt->gpa_val;
6221 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
6222 } else {
6223 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
6224 if (ret < 0)
6225 return X86EMUL_PROPAGATE_FAULT;
6226 }
6227
6228 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
6229 return X86EMUL_CONTINUE;
6230
6231 /*
6232 * Is this MMIO handled locally?
6233 */
6234 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
6235 if (handled == bytes)
6236 return X86EMUL_CONTINUE;
6237
6238 gpa += handled;
6239 bytes -= handled;
6240 val += handled;
6241
6242 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
6243 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
6244 frag->gpa = gpa;
6245 frag->data = val;
6246 frag->len = bytes;
6247 return X86EMUL_CONTINUE;
6248 }
6249
emulator_read_write(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception,const struct read_write_emulator_ops * ops)6250 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
6251 unsigned long addr,
6252 void *val, unsigned int bytes,
6253 struct x86_exception *exception,
6254 const struct read_write_emulator_ops *ops)
6255 {
6256 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6257 gpa_t gpa;
6258 int rc;
6259
6260 if (ops->read_write_prepare &&
6261 ops->read_write_prepare(vcpu, val, bytes))
6262 return X86EMUL_CONTINUE;
6263
6264 vcpu->mmio_nr_fragments = 0;
6265
6266 /* Crossing a page boundary? */
6267 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
6268 int now;
6269
6270 now = -addr & ~PAGE_MASK;
6271 rc = emulator_read_write_onepage(addr, val, now, exception,
6272 vcpu, ops);
6273
6274 if (rc != X86EMUL_CONTINUE)
6275 return rc;
6276 addr += now;
6277 if (ctxt->mode != X86EMUL_MODE_PROT64)
6278 addr = (u32)addr;
6279 val += now;
6280 bytes -= now;
6281 }
6282
6283 rc = emulator_read_write_onepage(addr, val, bytes, exception,
6284 vcpu, ops);
6285 if (rc != X86EMUL_CONTINUE)
6286 return rc;
6287
6288 if (!vcpu->mmio_nr_fragments)
6289 return rc;
6290
6291 gpa = vcpu->mmio_fragments[0].gpa;
6292
6293 vcpu->mmio_needed = 1;
6294 vcpu->mmio_cur_fragment = 0;
6295
6296 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
6297 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
6298 vcpu->run->exit_reason = KVM_EXIT_MMIO;
6299 vcpu->run->mmio.phys_addr = gpa;
6300
6301 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
6302 }
6303
emulator_read_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception)6304 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
6305 unsigned long addr,
6306 void *val,
6307 unsigned int bytes,
6308 struct x86_exception *exception)
6309 {
6310 return emulator_read_write(ctxt, addr, val, bytes,
6311 exception, &read_emultor);
6312 }
6313
emulator_write_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,const void * val,unsigned int bytes,struct x86_exception * exception)6314 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
6315 unsigned long addr,
6316 const void *val,
6317 unsigned int bytes,
6318 struct x86_exception *exception)
6319 {
6320 return emulator_read_write(ctxt, addr, (void *)val, bytes,
6321 exception, &write_emultor);
6322 }
6323
6324 #define CMPXCHG_TYPE(t, ptr, old, new) \
6325 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
6326
6327 #ifdef CONFIG_X86_64
6328 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
6329 #else
6330 # define CMPXCHG64(ptr, old, new) \
6331 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
6332 #endif
6333
emulator_cmpxchg_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,const void * old,const void * new,unsigned int bytes,struct x86_exception * exception)6334 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
6335 unsigned long addr,
6336 const void *old,
6337 const void *new,
6338 unsigned int bytes,
6339 struct x86_exception *exception)
6340 {
6341 struct kvm_host_map map;
6342 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6343 u64 page_line_mask;
6344 gpa_t gpa;
6345 char *kaddr;
6346 bool exchanged;
6347
6348 /* guests cmpxchg8b have to be emulated atomically */
6349 if (bytes > 8 || (bytes & (bytes - 1)))
6350 goto emul_write;
6351
6352 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
6353
6354 if (gpa == UNMAPPED_GVA ||
6355 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6356 goto emul_write;
6357
6358 /*
6359 * Emulate the atomic as a straight write to avoid #AC if SLD is
6360 * enabled in the host and the access splits a cache line.
6361 */
6362 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
6363 page_line_mask = ~(cache_line_size() - 1);
6364 else
6365 page_line_mask = PAGE_MASK;
6366
6367 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
6368 goto emul_write;
6369
6370 if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
6371 goto emul_write;
6372
6373 kaddr = map.hva + offset_in_page(gpa);
6374
6375 switch (bytes) {
6376 case 1:
6377 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
6378 break;
6379 case 2:
6380 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
6381 break;
6382 case 4:
6383 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
6384 break;
6385 case 8:
6386 exchanged = CMPXCHG64(kaddr, old, new);
6387 break;
6388 default:
6389 BUG();
6390 }
6391
6392 kvm_vcpu_unmap(vcpu, &map, true);
6393
6394 if (!exchanged)
6395 return X86EMUL_CMPXCHG_FAILED;
6396
6397 kvm_page_track_write(vcpu, gpa, new, bytes);
6398
6399 return X86EMUL_CONTINUE;
6400
6401 emul_write:
6402 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
6403
6404 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
6405 }
6406
kernel_pio(struct kvm_vcpu * vcpu,void * pd)6407 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
6408 {
6409 int r = 0, i;
6410
6411 for (i = 0; i < vcpu->arch.pio.count; i++) {
6412 if (vcpu->arch.pio.in)
6413 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
6414 vcpu->arch.pio.size, pd);
6415 else
6416 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
6417 vcpu->arch.pio.port, vcpu->arch.pio.size,
6418 pd);
6419 if (r)
6420 break;
6421 pd += vcpu->arch.pio.size;
6422 }
6423 return r;
6424 }
6425
emulator_pio_in_out(struct kvm_vcpu * vcpu,int size,unsigned short port,void * val,unsigned int count,bool in)6426 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
6427 unsigned short port, void *val,
6428 unsigned int count, bool in)
6429 {
6430 vcpu->arch.pio.port = port;
6431 vcpu->arch.pio.in = in;
6432 vcpu->arch.pio.count = count;
6433 vcpu->arch.pio.size = size;
6434
6435 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
6436 vcpu->arch.pio.count = 0;
6437 return 1;
6438 }
6439
6440 vcpu->run->exit_reason = KVM_EXIT_IO;
6441 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
6442 vcpu->run->io.size = size;
6443 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
6444 vcpu->run->io.count = count;
6445 vcpu->run->io.port = port;
6446
6447 return 0;
6448 }
6449
emulator_pio_in(struct kvm_vcpu * vcpu,int size,unsigned short port,void * val,unsigned int count)6450 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
6451 unsigned short port, void *val, unsigned int count)
6452 {
6453 int ret;
6454
6455 if (vcpu->arch.pio.count)
6456 goto data_avail;
6457
6458 memset(vcpu->arch.pio_data, 0, size * count);
6459
6460 ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
6461 if (ret) {
6462 data_avail:
6463 memcpy(val, vcpu->arch.pio_data, size * count);
6464 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
6465 vcpu->arch.pio.count = 0;
6466 return 1;
6467 }
6468
6469 return 0;
6470 }
6471
emulator_pio_in_emulated(struct x86_emulate_ctxt * ctxt,int size,unsigned short port,void * val,unsigned int count)6472 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
6473 int size, unsigned short port, void *val,
6474 unsigned int count)
6475 {
6476 return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count);
6477
6478 }
6479
emulator_pio_out(struct kvm_vcpu * vcpu,int size,unsigned short port,const void * val,unsigned int count)6480 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
6481 unsigned short port, const void *val,
6482 unsigned int count)
6483 {
6484 memcpy(vcpu->arch.pio_data, val, size * count);
6485 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
6486 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
6487 }
6488
emulator_pio_out_emulated(struct x86_emulate_ctxt * ctxt,int size,unsigned short port,const void * val,unsigned int count)6489 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
6490 int size, unsigned short port,
6491 const void *val, unsigned int count)
6492 {
6493 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
6494 }
6495
get_segment_base(struct kvm_vcpu * vcpu,int seg)6496 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
6497 {
6498 return kvm_x86_ops.get_segment_base(vcpu, seg);
6499 }
6500
emulator_invlpg(struct x86_emulate_ctxt * ctxt,ulong address)6501 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
6502 {
6503 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
6504 }
6505
kvm_emulate_wbinvd_noskip(struct kvm_vcpu * vcpu)6506 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
6507 {
6508 if (!need_emulate_wbinvd(vcpu))
6509 return X86EMUL_CONTINUE;
6510
6511 if (kvm_x86_ops.has_wbinvd_exit()) {
6512 int cpu = get_cpu();
6513
6514 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
6515 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
6516 wbinvd_ipi, NULL, 1);
6517 put_cpu();
6518 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
6519 } else
6520 wbinvd();
6521 return X86EMUL_CONTINUE;
6522 }
6523
kvm_emulate_wbinvd(struct kvm_vcpu * vcpu)6524 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
6525 {
6526 kvm_emulate_wbinvd_noskip(vcpu);
6527 return kvm_skip_emulated_instruction(vcpu);
6528 }
6529 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
6530
6531
6532
emulator_wbinvd(struct x86_emulate_ctxt * ctxt)6533 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
6534 {
6535 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
6536 }
6537
emulator_get_dr(struct x86_emulate_ctxt * ctxt,int dr,unsigned long * dest)6538 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
6539 unsigned long *dest)
6540 {
6541 return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
6542 }
6543
emulator_set_dr(struct x86_emulate_ctxt * ctxt,int dr,unsigned long value)6544 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
6545 unsigned long value)
6546 {
6547
6548 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
6549 }
6550
mk_cr_64(u64 curr_cr,u32 new_val)6551 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
6552 {
6553 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
6554 }
6555
emulator_get_cr(struct x86_emulate_ctxt * ctxt,int cr)6556 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
6557 {
6558 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6559 unsigned long value;
6560
6561 switch (cr) {
6562 case 0:
6563 value = kvm_read_cr0(vcpu);
6564 break;
6565 case 2:
6566 value = vcpu->arch.cr2;
6567 break;
6568 case 3:
6569 value = kvm_read_cr3(vcpu);
6570 break;
6571 case 4:
6572 value = kvm_read_cr4(vcpu);
6573 break;
6574 case 8:
6575 value = kvm_get_cr8(vcpu);
6576 break;
6577 default:
6578 kvm_err("%s: unexpected cr %u\n", __func__, cr);
6579 return 0;
6580 }
6581
6582 return value;
6583 }
6584
emulator_set_cr(struct x86_emulate_ctxt * ctxt,int cr,ulong val)6585 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
6586 {
6587 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6588 int res = 0;
6589
6590 switch (cr) {
6591 case 0:
6592 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
6593 break;
6594 case 2:
6595 vcpu->arch.cr2 = val;
6596 break;
6597 case 3:
6598 res = kvm_set_cr3(vcpu, val);
6599 break;
6600 case 4:
6601 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
6602 break;
6603 case 8:
6604 res = kvm_set_cr8(vcpu, val);
6605 break;
6606 default:
6607 kvm_err("%s: unexpected cr %u\n", __func__, cr);
6608 res = -1;
6609 }
6610
6611 return res;
6612 }
6613
emulator_get_cpl(struct x86_emulate_ctxt * ctxt)6614 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
6615 {
6616 return kvm_x86_ops.get_cpl(emul_to_vcpu(ctxt));
6617 }
6618
emulator_get_gdt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)6619 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6620 {
6621 kvm_x86_ops.get_gdt(emul_to_vcpu(ctxt), dt);
6622 }
6623
emulator_get_idt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)6624 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6625 {
6626 kvm_x86_ops.get_idt(emul_to_vcpu(ctxt), dt);
6627 }
6628
emulator_set_gdt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)6629 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6630 {
6631 kvm_x86_ops.set_gdt(emul_to_vcpu(ctxt), dt);
6632 }
6633
emulator_set_idt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)6634 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6635 {
6636 kvm_x86_ops.set_idt(emul_to_vcpu(ctxt), dt);
6637 }
6638
emulator_get_cached_segment_base(struct x86_emulate_ctxt * ctxt,int seg)6639 static unsigned long emulator_get_cached_segment_base(
6640 struct x86_emulate_ctxt *ctxt, int seg)
6641 {
6642 return get_segment_base(emul_to_vcpu(ctxt), seg);
6643 }
6644
emulator_get_segment(struct x86_emulate_ctxt * ctxt,u16 * selector,struct desc_struct * desc,u32 * base3,int seg)6645 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
6646 struct desc_struct *desc, u32 *base3,
6647 int seg)
6648 {
6649 struct kvm_segment var;
6650
6651 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
6652 *selector = var.selector;
6653
6654 if (var.unusable) {
6655 memset(desc, 0, sizeof(*desc));
6656 if (base3)
6657 *base3 = 0;
6658 return false;
6659 }
6660
6661 if (var.g)
6662 var.limit >>= 12;
6663 set_desc_limit(desc, var.limit);
6664 set_desc_base(desc, (unsigned long)var.base);
6665 #ifdef CONFIG_X86_64
6666 if (base3)
6667 *base3 = var.base >> 32;
6668 #endif
6669 desc->type = var.type;
6670 desc->s = var.s;
6671 desc->dpl = var.dpl;
6672 desc->p = var.present;
6673 desc->avl = var.avl;
6674 desc->l = var.l;
6675 desc->d = var.db;
6676 desc->g = var.g;
6677
6678 return true;
6679 }
6680
emulator_set_segment(struct x86_emulate_ctxt * ctxt,u16 selector,struct desc_struct * desc,u32 base3,int seg)6681 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
6682 struct desc_struct *desc, u32 base3,
6683 int seg)
6684 {
6685 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6686 struct kvm_segment var;
6687
6688 var.selector = selector;
6689 var.base = get_desc_base(desc);
6690 #ifdef CONFIG_X86_64
6691 var.base |= ((u64)base3) << 32;
6692 #endif
6693 var.limit = get_desc_limit(desc);
6694 if (desc->g)
6695 var.limit = (var.limit << 12) | 0xfff;
6696 var.type = desc->type;
6697 var.dpl = desc->dpl;
6698 var.db = desc->d;
6699 var.s = desc->s;
6700 var.l = desc->l;
6701 var.g = desc->g;
6702 var.avl = desc->avl;
6703 var.present = desc->p;
6704 var.unusable = !var.present;
6705 var.padding = 0;
6706
6707 kvm_set_segment(vcpu, &var, seg);
6708 return;
6709 }
6710
emulator_get_msr(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 * pdata)6711 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
6712 u32 msr_index, u64 *pdata)
6713 {
6714 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6715 int r;
6716
6717 r = kvm_get_msr(vcpu, msr_index, pdata);
6718
6719 if (r && kvm_get_msr_user_space(vcpu, msr_index, r)) {
6720 /* Bounce to user space */
6721 return X86EMUL_IO_NEEDED;
6722 }
6723
6724 return r;
6725 }
6726
emulator_set_msr(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 data)6727 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
6728 u32 msr_index, u64 data)
6729 {
6730 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6731 int r;
6732
6733 r = kvm_set_msr(vcpu, msr_index, data);
6734
6735 if (r && kvm_set_msr_user_space(vcpu, msr_index, data, r)) {
6736 /* Bounce to user space */
6737 return X86EMUL_IO_NEEDED;
6738 }
6739
6740 return r;
6741 }
6742
emulator_get_smbase(struct x86_emulate_ctxt * ctxt)6743 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
6744 {
6745 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6746
6747 return vcpu->arch.smbase;
6748 }
6749
emulator_set_smbase(struct x86_emulate_ctxt * ctxt,u64 smbase)6750 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
6751 {
6752 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6753
6754 vcpu->arch.smbase = smbase;
6755 }
6756
emulator_check_pmc(struct x86_emulate_ctxt * ctxt,u32 pmc)6757 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
6758 u32 pmc)
6759 {
6760 return kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc);
6761 }
6762
emulator_read_pmc(struct x86_emulate_ctxt * ctxt,u32 pmc,u64 * pdata)6763 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
6764 u32 pmc, u64 *pdata)
6765 {
6766 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
6767 }
6768
emulator_halt(struct x86_emulate_ctxt * ctxt)6769 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
6770 {
6771 emul_to_vcpu(ctxt)->arch.halt_request = 1;
6772 }
6773
emulator_intercept(struct x86_emulate_ctxt * ctxt,struct x86_instruction_info * info,enum x86_intercept_stage stage)6774 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
6775 struct x86_instruction_info *info,
6776 enum x86_intercept_stage stage)
6777 {
6778 return kvm_x86_ops.check_intercept(emul_to_vcpu(ctxt), info, stage,
6779 &ctxt->exception);
6780 }
6781
emulator_get_cpuid(struct x86_emulate_ctxt * ctxt,u32 * eax,u32 * ebx,u32 * ecx,u32 * edx,bool exact_only)6782 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
6783 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
6784 bool exact_only)
6785 {
6786 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
6787 }
6788
emulator_guest_has_long_mode(struct x86_emulate_ctxt * ctxt)6789 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
6790 {
6791 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
6792 }
6793
emulator_guest_has_movbe(struct x86_emulate_ctxt * ctxt)6794 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
6795 {
6796 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
6797 }
6798
emulator_guest_has_fxsr(struct x86_emulate_ctxt * ctxt)6799 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
6800 {
6801 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
6802 }
6803
emulator_read_gpr(struct x86_emulate_ctxt * ctxt,unsigned reg)6804 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
6805 {
6806 return kvm_register_read(emul_to_vcpu(ctxt), reg);
6807 }
6808
emulator_write_gpr(struct x86_emulate_ctxt * ctxt,unsigned reg,ulong val)6809 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
6810 {
6811 kvm_register_write(emul_to_vcpu(ctxt), reg, val);
6812 }
6813
emulator_set_nmi_mask(struct x86_emulate_ctxt * ctxt,bool masked)6814 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
6815 {
6816 kvm_x86_ops.set_nmi_mask(emul_to_vcpu(ctxt), masked);
6817 }
6818
emulator_get_hflags(struct x86_emulate_ctxt * ctxt)6819 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
6820 {
6821 return emul_to_vcpu(ctxt)->arch.hflags;
6822 }
6823
emulator_set_hflags(struct x86_emulate_ctxt * ctxt,unsigned emul_flags)6824 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
6825 {
6826 emul_to_vcpu(ctxt)->arch.hflags = emul_flags;
6827 }
6828
emulator_pre_leave_smm(struct x86_emulate_ctxt * ctxt,const char * smstate)6829 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt,
6830 const char *smstate)
6831 {
6832 return kvm_x86_ops.pre_leave_smm(emul_to_vcpu(ctxt), smstate);
6833 }
6834
emulator_post_leave_smm(struct x86_emulate_ctxt * ctxt)6835 static void emulator_post_leave_smm(struct x86_emulate_ctxt *ctxt)
6836 {
6837 kvm_smm_changed(emul_to_vcpu(ctxt));
6838 }
6839
emulator_set_xcr(struct x86_emulate_ctxt * ctxt,u32 index,u64 xcr)6840 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
6841 {
6842 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
6843 }
6844
6845 static const struct x86_emulate_ops emulate_ops = {
6846 .read_gpr = emulator_read_gpr,
6847 .write_gpr = emulator_write_gpr,
6848 .read_std = emulator_read_std,
6849 .write_std = emulator_write_std,
6850 .read_phys = kvm_read_guest_phys_system,
6851 .fetch = kvm_fetch_guest_virt,
6852 .read_emulated = emulator_read_emulated,
6853 .write_emulated = emulator_write_emulated,
6854 .cmpxchg_emulated = emulator_cmpxchg_emulated,
6855 .invlpg = emulator_invlpg,
6856 .pio_in_emulated = emulator_pio_in_emulated,
6857 .pio_out_emulated = emulator_pio_out_emulated,
6858 .get_segment = emulator_get_segment,
6859 .set_segment = emulator_set_segment,
6860 .get_cached_segment_base = emulator_get_cached_segment_base,
6861 .get_gdt = emulator_get_gdt,
6862 .get_idt = emulator_get_idt,
6863 .set_gdt = emulator_set_gdt,
6864 .set_idt = emulator_set_idt,
6865 .get_cr = emulator_get_cr,
6866 .set_cr = emulator_set_cr,
6867 .cpl = emulator_get_cpl,
6868 .get_dr = emulator_get_dr,
6869 .set_dr = emulator_set_dr,
6870 .get_smbase = emulator_get_smbase,
6871 .set_smbase = emulator_set_smbase,
6872 .set_msr = emulator_set_msr,
6873 .get_msr = emulator_get_msr,
6874 .check_pmc = emulator_check_pmc,
6875 .read_pmc = emulator_read_pmc,
6876 .halt = emulator_halt,
6877 .wbinvd = emulator_wbinvd,
6878 .fix_hypercall = emulator_fix_hypercall,
6879 .intercept = emulator_intercept,
6880 .get_cpuid = emulator_get_cpuid,
6881 .guest_has_long_mode = emulator_guest_has_long_mode,
6882 .guest_has_movbe = emulator_guest_has_movbe,
6883 .guest_has_fxsr = emulator_guest_has_fxsr,
6884 .set_nmi_mask = emulator_set_nmi_mask,
6885 .get_hflags = emulator_get_hflags,
6886 .set_hflags = emulator_set_hflags,
6887 .pre_leave_smm = emulator_pre_leave_smm,
6888 .post_leave_smm = emulator_post_leave_smm,
6889 .set_xcr = emulator_set_xcr,
6890 };
6891
toggle_interruptibility(struct kvm_vcpu * vcpu,u32 mask)6892 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
6893 {
6894 u32 int_shadow = kvm_x86_ops.get_interrupt_shadow(vcpu);
6895 /*
6896 * an sti; sti; sequence only disable interrupts for the first
6897 * instruction. So, if the last instruction, be it emulated or
6898 * not, left the system with the INT_STI flag enabled, it
6899 * means that the last instruction is an sti. We should not
6900 * leave the flag on in this case. The same goes for mov ss
6901 */
6902 if (int_shadow & mask)
6903 mask = 0;
6904 if (unlikely(int_shadow || mask)) {
6905 kvm_x86_ops.set_interrupt_shadow(vcpu, mask);
6906 if (!mask)
6907 kvm_make_request(KVM_REQ_EVENT, vcpu);
6908 }
6909 }
6910
inject_emulated_exception(struct kvm_vcpu * vcpu)6911 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
6912 {
6913 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6914 if (ctxt->exception.vector == PF_VECTOR)
6915 return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
6916
6917 if (ctxt->exception.error_code_valid)
6918 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
6919 ctxt->exception.error_code);
6920 else
6921 kvm_queue_exception(vcpu, ctxt->exception.vector);
6922 return false;
6923 }
6924
alloc_emulate_ctxt(struct kvm_vcpu * vcpu)6925 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
6926 {
6927 struct x86_emulate_ctxt *ctxt;
6928
6929 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
6930 if (!ctxt) {
6931 pr_err("kvm: failed to allocate vcpu's emulator\n");
6932 return NULL;
6933 }
6934
6935 ctxt->vcpu = vcpu;
6936 ctxt->ops = &emulate_ops;
6937 vcpu->arch.emulate_ctxt = ctxt;
6938
6939 return ctxt;
6940 }
6941
init_emulate_ctxt(struct kvm_vcpu * vcpu)6942 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
6943 {
6944 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6945 int cs_db, cs_l;
6946
6947 kvm_x86_ops.get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
6948
6949 ctxt->gpa_available = false;
6950 ctxt->eflags = kvm_get_rflags(vcpu);
6951 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
6952
6953 ctxt->eip = kvm_rip_read(vcpu);
6954 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
6955 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
6956 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
6957 cs_db ? X86EMUL_MODE_PROT32 :
6958 X86EMUL_MODE_PROT16;
6959 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
6960 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
6961 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
6962
6963 init_decode_cache(ctxt);
6964 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6965 }
6966
kvm_inject_realmode_interrupt(struct kvm_vcpu * vcpu,int irq,int inc_eip)6967 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
6968 {
6969 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6970 int ret;
6971
6972 init_emulate_ctxt(vcpu);
6973
6974 ctxt->op_bytes = 2;
6975 ctxt->ad_bytes = 2;
6976 ctxt->_eip = ctxt->eip + inc_eip;
6977 ret = emulate_int_real(ctxt, irq);
6978
6979 if (ret != X86EMUL_CONTINUE) {
6980 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6981 } else {
6982 ctxt->eip = ctxt->_eip;
6983 kvm_rip_write(vcpu, ctxt->eip);
6984 kvm_set_rflags(vcpu, ctxt->eflags);
6985 }
6986 }
6987 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
6988
handle_emulation_failure(struct kvm_vcpu * vcpu,int emulation_type)6989 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
6990 {
6991 ++vcpu->stat.insn_emulation_fail;
6992 trace_kvm_emulate_insn_failed(vcpu);
6993
6994 if (emulation_type & EMULTYPE_VMWARE_GP) {
6995 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
6996 return 1;
6997 }
6998
6999 if (emulation_type & EMULTYPE_SKIP) {
7000 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7001 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
7002 vcpu->run->internal.ndata = 0;
7003 return 0;
7004 }
7005
7006 kvm_queue_exception(vcpu, UD_VECTOR);
7007
7008 if (!is_guest_mode(vcpu) && kvm_x86_ops.get_cpl(vcpu) == 0) {
7009 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7010 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
7011 vcpu->run->internal.ndata = 0;
7012 return 0;
7013 }
7014
7015 return 1;
7016 }
7017
reexecute_instruction(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,bool write_fault_to_shadow_pgtable,int emulation_type)7018 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7019 bool write_fault_to_shadow_pgtable,
7020 int emulation_type)
7021 {
7022 gpa_t gpa = cr2_or_gpa;
7023 kvm_pfn_t pfn;
7024
7025 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7026 return false;
7027
7028 if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7029 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7030 return false;
7031
7032 if (!vcpu->arch.mmu->direct_map) {
7033 /*
7034 * Write permission should be allowed since only
7035 * write access need to be emulated.
7036 */
7037 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7038
7039 /*
7040 * If the mapping is invalid in guest, let cpu retry
7041 * it to generate fault.
7042 */
7043 if (gpa == UNMAPPED_GVA)
7044 return true;
7045 }
7046
7047 /*
7048 * Do not retry the unhandleable instruction if it faults on the
7049 * readonly host memory, otherwise it will goto a infinite loop:
7050 * retry instruction -> write #PF -> emulation fail -> retry
7051 * instruction -> ...
7052 */
7053 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
7054
7055 /*
7056 * If the instruction failed on the error pfn, it can not be fixed,
7057 * report the error to userspace.
7058 */
7059 if (is_error_noslot_pfn(pfn))
7060 return false;
7061
7062 kvm_release_pfn_clean(pfn);
7063
7064 /* The instructions are well-emulated on direct mmu. */
7065 if (vcpu->arch.mmu->direct_map) {
7066 unsigned int indirect_shadow_pages;
7067
7068 spin_lock(&vcpu->kvm->mmu_lock);
7069 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
7070 spin_unlock(&vcpu->kvm->mmu_lock);
7071
7072 if (indirect_shadow_pages)
7073 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7074
7075 return true;
7076 }
7077
7078 /*
7079 * if emulation was due to access to shadowed page table
7080 * and it failed try to unshadow page and re-enter the
7081 * guest to let CPU execute the instruction.
7082 */
7083 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7084
7085 /*
7086 * If the access faults on its page table, it can not
7087 * be fixed by unprotecting shadow page and it should
7088 * be reported to userspace.
7089 */
7090 return !write_fault_to_shadow_pgtable;
7091 }
7092
retry_instruction(struct x86_emulate_ctxt * ctxt,gpa_t cr2_or_gpa,int emulation_type)7093 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
7094 gpa_t cr2_or_gpa, int emulation_type)
7095 {
7096 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7097 unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
7098
7099 last_retry_eip = vcpu->arch.last_retry_eip;
7100 last_retry_addr = vcpu->arch.last_retry_addr;
7101
7102 /*
7103 * If the emulation is caused by #PF and it is non-page_table
7104 * writing instruction, it means the VM-EXIT is caused by shadow
7105 * page protected, we can zap the shadow page and retry this
7106 * instruction directly.
7107 *
7108 * Note: if the guest uses a non-page-table modifying instruction
7109 * on the PDE that points to the instruction, then we will unmap
7110 * the instruction and go to an infinite loop. So, we cache the
7111 * last retried eip and the last fault address, if we meet the eip
7112 * and the address again, we can break out of the potential infinite
7113 * loop.
7114 */
7115 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
7116
7117 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7118 return false;
7119
7120 if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7121 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7122 return false;
7123
7124 if (x86_page_table_writing_insn(ctxt))
7125 return false;
7126
7127 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
7128 return false;
7129
7130 vcpu->arch.last_retry_eip = ctxt->eip;
7131 vcpu->arch.last_retry_addr = cr2_or_gpa;
7132
7133 if (!vcpu->arch.mmu->direct_map)
7134 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7135
7136 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7137
7138 return true;
7139 }
7140
7141 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
7142 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
7143
kvm_smm_changed(struct kvm_vcpu * vcpu)7144 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
7145 {
7146 if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
7147 /* This is a good place to trace that we are exiting SMM. */
7148 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
7149
7150 /* Process a latched INIT or SMI, if any. */
7151 kvm_make_request(KVM_REQ_EVENT, vcpu);
7152 }
7153
7154 kvm_mmu_reset_context(vcpu);
7155 }
7156
kvm_vcpu_check_hw_bp(unsigned long addr,u32 type,u32 dr7,unsigned long * db)7157 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
7158 unsigned long *db)
7159 {
7160 u32 dr6 = 0;
7161 int i;
7162 u32 enable, rwlen;
7163
7164 enable = dr7;
7165 rwlen = dr7 >> 16;
7166 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
7167 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
7168 dr6 |= (1 << i);
7169 return dr6;
7170 }
7171
kvm_vcpu_do_singlestep(struct kvm_vcpu * vcpu)7172 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
7173 {
7174 struct kvm_run *kvm_run = vcpu->run;
7175
7176 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
7177 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
7178 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
7179 kvm_run->debug.arch.exception = DB_VECTOR;
7180 kvm_run->exit_reason = KVM_EXIT_DEBUG;
7181 return 0;
7182 }
7183 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
7184 return 1;
7185 }
7186
kvm_skip_emulated_instruction(struct kvm_vcpu * vcpu)7187 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
7188 {
7189 unsigned long rflags = kvm_x86_ops.get_rflags(vcpu);
7190 int r;
7191
7192 r = kvm_x86_ops.skip_emulated_instruction(vcpu);
7193 if (unlikely(!r))
7194 return 0;
7195
7196 /*
7197 * rflags is the old, "raw" value of the flags. The new value has
7198 * not been saved yet.
7199 *
7200 * This is correct even for TF set by the guest, because "the
7201 * processor will not generate this exception after the instruction
7202 * that sets the TF flag".
7203 */
7204 if (unlikely(rflags & X86_EFLAGS_TF))
7205 r = kvm_vcpu_do_singlestep(vcpu);
7206 return r;
7207 }
7208 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
7209
kvm_vcpu_check_breakpoint(struct kvm_vcpu * vcpu,int * r)7210 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
7211 {
7212 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
7213 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
7214 struct kvm_run *kvm_run = vcpu->run;
7215 unsigned long eip = kvm_get_linear_rip(vcpu);
7216 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
7217 vcpu->arch.guest_debug_dr7,
7218 vcpu->arch.eff_db);
7219
7220 if (dr6 != 0) {
7221 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
7222 kvm_run->debug.arch.pc = eip;
7223 kvm_run->debug.arch.exception = DB_VECTOR;
7224 kvm_run->exit_reason = KVM_EXIT_DEBUG;
7225 *r = 0;
7226 return true;
7227 }
7228 }
7229
7230 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
7231 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
7232 unsigned long eip = kvm_get_linear_rip(vcpu);
7233 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
7234 vcpu->arch.dr7,
7235 vcpu->arch.db);
7236
7237 if (dr6 != 0) {
7238 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
7239 *r = 1;
7240 return true;
7241 }
7242 }
7243
7244 return false;
7245 }
7246
is_vmware_backdoor_opcode(struct x86_emulate_ctxt * ctxt)7247 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
7248 {
7249 switch (ctxt->opcode_len) {
7250 case 1:
7251 switch (ctxt->b) {
7252 case 0xe4: /* IN */
7253 case 0xe5:
7254 case 0xec:
7255 case 0xed:
7256 case 0xe6: /* OUT */
7257 case 0xe7:
7258 case 0xee:
7259 case 0xef:
7260 case 0x6c: /* INS */
7261 case 0x6d:
7262 case 0x6e: /* OUTS */
7263 case 0x6f:
7264 return true;
7265 }
7266 break;
7267 case 2:
7268 switch (ctxt->b) {
7269 case 0x33: /* RDPMC */
7270 return true;
7271 }
7272 break;
7273 }
7274
7275 return false;
7276 }
7277
x86_emulate_instruction(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,int emulation_type,void * insn,int insn_len)7278 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7279 int emulation_type, void *insn, int insn_len)
7280 {
7281 int r;
7282 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7283 bool writeback = true;
7284 bool write_fault_to_spt;
7285
7286 if (unlikely(!kvm_x86_ops.can_emulate_instruction(vcpu, insn, insn_len)))
7287 return 1;
7288
7289 vcpu->arch.l1tf_flush_l1d = true;
7290
7291 /*
7292 * Clear write_fault_to_shadow_pgtable here to ensure it is
7293 * never reused.
7294 */
7295 write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
7296 vcpu->arch.write_fault_to_shadow_pgtable = false;
7297 kvm_clear_exception_queue(vcpu);
7298
7299 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
7300 init_emulate_ctxt(vcpu);
7301
7302 /*
7303 * We will reenter on the same instruction since
7304 * we do not set complete_userspace_io. This does not
7305 * handle watchpoints yet, those would be handled in
7306 * the emulate_ops.
7307 */
7308 if (!(emulation_type & EMULTYPE_SKIP) &&
7309 kvm_vcpu_check_breakpoint(vcpu, &r))
7310 return r;
7311
7312 ctxt->interruptibility = 0;
7313 ctxt->have_exception = false;
7314 ctxt->exception.vector = -1;
7315 ctxt->perm_ok = false;
7316
7317 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
7318
7319 r = x86_decode_insn(ctxt, insn, insn_len);
7320
7321 trace_kvm_emulate_insn_start(vcpu);
7322 ++vcpu->stat.insn_emulation;
7323 if (r != EMULATION_OK) {
7324 if ((emulation_type & EMULTYPE_TRAP_UD) ||
7325 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
7326 kvm_queue_exception(vcpu, UD_VECTOR);
7327 return 1;
7328 }
7329 if (reexecute_instruction(vcpu, cr2_or_gpa,
7330 write_fault_to_spt,
7331 emulation_type))
7332 return 1;
7333 if (ctxt->have_exception) {
7334 /*
7335 * #UD should result in just EMULATION_FAILED, and trap-like
7336 * exception should not be encountered during decode.
7337 */
7338 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
7339 exception_type(ctxt->exception.vector) == EXCPT_TRAP);
7340 inject_emulated_exception(vcpu);
7341 return 1;
7342 }
7343 return handle_emulation_failure(vcpu, emulation_type);
7344 }
7345 }
7346
7347 if ((emulation_type & EMULTYPE_VMWARE_GP) &&
7348 !is_vmware_backdoor_opcode(ctxt)) {
7349 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7350 return 1;
7351 }
7352
7353 /*
7354 * Note, EMULTYPE_SKIP is intended for use *only* by vendor callbacks
7355 * for kvm_skip_emulated_instruction(). The caller is responsible for
7356 * updating interruptibility state and injecting single-step #DBs.
7357 */
7358 if (emulation_type & EMULTYPE_SKIP) {
7359 kvm_rip_write(vcpu, ctxt->_eip);
7360 if (ctxt->eflags & X86_EFLAGS_RF)
7361 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
7362 return 1;
7363 }
7364
7365 if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
7366 return 1;
7367
7368 /* this is needed for vmware backdoor interface to work since it
7369 changes registers values during IO operation */
7370 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
7371 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7372 emulator_invalidate_register_cache(ctxt);
7373 }
7374
7375 restart:
7376 if (emulation_type & EMULTYPE_PF) {
7377 /* Save the faulting GPA (cr2) in the address field */
7378 ctxt->exception.address = cr2_or_gpa;
7379
7380 /* With shadow page tables, cr2 contains a GVA or nGPA. */
7381 if (vcpu->arch.mmu->direct_map) {
7382 ctxt->gpa_available = true;
7383 ctxt->gpa_val = cr2_or_gpa;
7384 }
7385 } else {
7386 /* Sanitize the address out of an abundance of paranoia. */
7387 ctxt->exception.address = 0;
7388 }
7389
7390 r = x86_emulate_insn(ctxt);
7391
7392 if (r == EMULATION_INTERCEPTED)
7393 return 1;
7394
7395 if (r == EMULATION_FAILED) {
7396 if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
7397 emulation_type))
7398 return 1;
7399
7400 return handle_emulation_failure(vcpu, emulation_type);
7401 }
7402
7403 if (ctxt->have_exception) {
7404 r = 1;
7405 if (inject_emulated_exception(vcpu))
7406 return r;
7407 } else if (vcpu->arch.pio.count) {
7408 if (!vcpu->arch.pio.in) {
7409 /* FIXME: return into emulator if single-stepping. */
7410 vcpu->arch.pio.count = 0;
7411 } else {
7412 writeback = false;
7413 vcpu->arch.complete_userspace_io = complete_emulated_pio;
7414 }
7415 r = 0;
7416 } else if (vcpu->mmio_needed) {
7417 ++vcpu->stat.mmio_exits;
7418
7419 if (!vcpu->mmio_is_write)
7420 writeback = false;
7421 r = 0;
7422 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7423 } else if (r == EMULATION_RESTART)
7424 goto restart;
7425 else
7426 r = 1;
7427
7428 if (writeback) {
7429 unsigned long rflags = kvm_x86_ops.get_rflags(vcpu);
7430 toggle_interruptibility(vcpu, ctxt->interruptibility);
7431 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7432 if (!ctxt->have_exception ||
7433 exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
7434 kvm_rip_write(vcpu, ctxt->eip);
7435 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
7436 r = kvm_vcpu_do_singlestep(vcpu);
7437 if (kvm_x86_ops.update_emulated_instruction)
7438 kvm_x86_ops.update_emulated_instruction(vcpu);
7439 __kvm_set_rflags(vcpu, ctxt->eflags);
7440 }
7441
7442 /*
7443 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
7444 * do nothing, and it will be requested again as soon as
7445 * the shadow expires. But we still need to check here,
7446 * because POPF has no interrupt shadow.
7447 */
7448 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
7449 kvm_make_request(KVM_REQ_EVENT, vcpu);
7450 } else
7451 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
7452
7453 return r;
7454 }
7455
kvm_emulate_instruction(struct kvm_vcpu * vcpu,int emulation_type)7456 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
7457 {
7458 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
7459 }
7460 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
7461
kvm_emulate_instruction_from_buffer(struct kvm_vcpu * vcpu,void * insn,int insn_len)7462 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
7463 void *insn, int insn_len)
7464 {
7465 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
7466 }
7467 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
7468
complete_fast_pio_out_port_0x7e(struct kvm_vcpu * vcpu)7469 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
7470 {
7471 vcpu->arch.pio.count = 0;
7472 return 1;
7473 }
7474
complete_fast_pio_out(struct kvm_vcpu * vcpu)7475 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
7476 {
7477 vcpu->arch.pio.count = 0;
7478
7479 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
7480 return 1;
7481
7482 return kvm_skip_emulated_instruction(vcpu);
7483 }
7484
kvm_fast_pio_out(struct kvm_vcpu * vcpu,int size,unsigned short port)7485 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
7486 unsigned short port)
7487 {
7488 unsigned long val = kvm_rax_read(vcpu);
7489 int ret = emulator_pio_out(vcpu, size, port, &val, 1);
7490
7491 if (ret)
7492 return ret;
7493
7494 /*
7495 * Workaround userspace that relies on old KVM behavior of %rip being
7496 * incremented prior to exiting to userspace to handle "OUT 0x7e".
7497 */
7498 if (port == 0x7e &&
7499 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
7500 vcpu->arch.complete_userspace_io =
7501 complete_fast_pio_out_port_0x7e;
7502 kvm_skip_emulated_instruction(vcpu);
7503 } else {
7504 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
7505 vcpu->arch.complete_userspace_io = complete_fast_pio_out;
7506 }
7507 return 0;
7508 }
7509
complete_fast_pio_in(struct kvm_vcpu * vcpu)7510 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
7511 {
7512 unsigned long val;
7513
7514 /* We should only ever be called with arch.pio.count equal to 1 */
7515 BUG_ON(vcpu->arch.pio.count != 1);
7516
7517 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
7518 vcpu->arch.pio.count = 0;
7519 return 1;
7520 }
7521
7522 /* For size less than 4 we merge, else we zero extend */
7523 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
7524
7525 /*
7526 * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform
7527 * the copy and tracing
7528 */
7529 emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1);
7530 kvm_rax_write(vcpu, val);
7531
7532 return kvm_skip_emulated_instruction(vcpu);
7533 }
7534
kvm_fast_pio_in(struct kvm_vcpu * vcpu,int size,unsigned short port)7535 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
7536 unsigned short port)
7537 {
7538 unsigned long val;
7539 int ret;
7540
7541 /* For size less than 4 we merge, else we zero extend */
7542 val = (size < 4) ? kvm_rax_read(vcpu) : 0;
7543
7544 ret = emulator_pio_in(vcpu, size, port, &val, 1);
7545 if (ret) {
7546 kvm_rax_write(vcpu, val);
7547 return ret;
7548 }
7549
7550 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
7551 vcpu->arch.complete_userspace_io = complete_fast_pio_in;
7552
7553 return 0;
7554 }
7555
kvm_fast_pio(struct kvm_vcpu * vcpu,int size,unsigned short port,int in)7556 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
7557 {
7558 int ret;
7559
7560 if (in)
7561 ret = kvm_fast_pio_in(vcpu, size, port);
7562 else
7563 ret = kvm_fast_pio_out(vcpu, size, port);
7564 return ret && kvm_skip_emulated_instruction(vcpu);
7565 }
7566 EXPORT_SYMBOL_GPL(kvm_fast_pio);
7567
kvmclock_cpu_down_prep(unsigned int cpu)7568 static int kvmclock_cpu_down_prep(unsigned int cpu)
7569 {
7570 __this_cpu_write(cpu_tsc_khz, 0);
7571 return 0;
7572 }
7573
tsc_khz_changed(void * data)7574 static void tsc_khz_changed(void *data)
7575 {
7576 struct cpufreq_freqs *freq = data;
7577 unsigned long khz = 0;
7578
7579 if (data)
7580 khz = freq->new;
7581 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7582 khz = cpufreq_quick_get(raw_smp_processor_id());
7583 if (!khz)
7584 khz = tsc_khz;
7585 __this_cpu_write(cpu_tsc_khz, khz);
7586 }
7587
7588 #ifdef CONFIG_X86_64
kvm_hyperv_tsc_notifier(void)7589 static void kvm_hyperv_tsc_notifier(void)
7590 {
7591 struct kvm *kvm;
7592 struct kvm_vcpu *vcpu;
7593 int cpu;
7594
7595 mutex_lock(&kvm_lock);
7596 list_for_each_entry(kvm, &vm_list, vm_list)
7597 kvm_make_mclock_inprogress_request(kvm);
7598
7599 hyperv_stop_tsc_emulation();
7600
7601 /* TSC frequency always matches when on Hyper-V */
7602 for_each_present_cpu(cpu)
7603 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
7604 kvm_max_guest_tsc_khz = tsc_khz;
7605
7606 list_for_each_entry(kvm, &vm_list, vm_list) {
7607 struct kvm_arch *ka = &kvm->arch;
7608
7609 spin_lock(&ka->pvclock_gtod_sync_lock);
7610
7611 pvclock_update_vm_gtod_copy(kvm);
7612
7613 kvm_for_each_vcpu(cpu, vcpu, kvm)
7614 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7615
7616 kvm_for_each_vcpu(cpu, vcpu, kvm)
7617 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
7618
7619 spin_unlock(&ka->pvclock_gtod_sync_lock);
7620 }
7621 mutex_unlock(&kvm_lock);
7622 }
7623 #endif
7624
__kvmclock_cpufreq_notifier(struct cpufreq_freqs * freq,int cpu)7625 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
7626 {
7627 struct kvm *kvm;
7628 struct kvm_vcpu *vcpu;
7629 int i, send_ipi = 0;
7630
7631 /*
7632 * We allow guests to temporarily run on slowing clocks,
7633 * provided we notify them after, or to run on accelerating
7634 * clocks, provided we notify them before. Thus time never
7635 * goes backwards.
7636 *
7637 * However, we have a problem. We can't atomically update
7638 * the frequency of a given CPU from this function; it is
7639 * merely a notifier, which can be called from any CPU.
7640 * Changing the TSC frequency at arbitrary points in time
7641 * requires a recomputation of local variables related to
7642 * the TSC for each VCPU. We must flag these local variables
7643 * to be updated and be sure the update takes place with the
7644 * new frequency before any guests proceed.
7645 *
7646 * Unfortunately, the combination of hotplug CPU and frequency
7647 * change creates an intractable locking scenario; the order
7648 * of when these callouts happen is undefined with respect to
7649 * CPU hotplug, and they can race with each other. As such,
7650 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
7651 * undefined; you can actually have a CPU frequency change take
7652 * place in between the computation of X and the setting of the
7653 * variable. To protect against this problem, all updates of
7654 * the per_cpu tsc_khz variable are done in an interrupt
7655 * protected IPI, and all callers wishing to update the value
7656 * must wait for a synchronous IPI to complete (which is trivial
7657 * if the caller is on the CPU already). This establishes the
7658 * necessary total order on variable updates.
7659 *
7660 * Note that because a guest time update may take place
7661 * anytime after the setting of the VCPU's request bit, the
7662 * correct TSC value must be set before the request. However,
7663 * to ensure the update actually makes it to any guest which
7664 * starts running in hardware virtualization between the set
7665 * and the acquisition of the spinlock, we must also ping the
7666 * CPU after setting the request bit.
7667 *
7668 */
7669
7670 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
7671
7672 mutex_lock(&kvm_lock);
7673 list_for_each_entry(kvm, &vm_list, vm_list) {
7674 kvm_for_each_vcpu(i, vcpu, kvm) {
7675 if (vcpu->cpu != cpu)
7676 continue;
7677 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7678 if (vcpu->cpu != raw_smp_processor_id())
7679 send_ipi = 1;
7680 }
7681 }
7682 mutex_unlock(&kvm_lock);
7683
7684 if (freq->old < freq->new && send_ipi) {
7685 /*
7686 * We upscale the frequency. Must make the guest
7687 * doesn't see old kvmclock values while running with
7688 * the new frequency, otherwise we risk the guest sees
7689 * time go backwards.
7690 *
7691 * In case we update the frequency for another cpu
7692 * (which might be in guest context) send an interrupt
7693 * to kick the cpu out of guest context. Next time
7694 * guest context is entered kvmclock will be updated,
7695 * so the guest will not see stale values.
7696 */
7697 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
7698 }
7699 }
7700
kvmclock_cpufreq_notifier(struct notifier_block * nb,unsigned long val,void * data)7701 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
7702 void *data)
7703 {
7704 struct cpufreq_freqs *freq = data;
7705 int cpu;
7706
7707 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
7708 return 0;
7709 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
7710 return 0;
7711
7712 for_each_cpu(cpu, freq->policy->cpus)
7713 __kvmclock_cpufreq_notifier(freq, cpu);
7714
7715 return 0;
7716 }
7717
7718 static struct notifier_block kvmclock_cpufreq_notifier_block = {
7719 .notifier_call = kvmclock_cpufreq_notifier
7720 };
7721
kvmclock_cpu_online(unsigned int cpu)7722 static int kvmclock_cpu_online(unsigned int cpu)
7723 {
7724 tsc_khz_changed(NULL);
7725 return 0;
7726 }
7727
kvm_timer_init(void)7728 static void kvm_timer_init(void)
7729 {
7730 max_tsc_khz = tsc_khz;
7731
7732 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
7733 #ifdef CONFIG_CPU_FREQ
7734 struct cpufreq_policy *policy;
7735 int cpu;
7736
7737 cpu = get_cpu();
7738 policy = cpufreq_cpu_get(cpu);
7739 if (policy) {
7740 if (policy->cpuinfo.max_freq)
7741 max_tsc_khz = policy->cpuinfo.max_freq;
7742 cpufreq_cpu_put(policy);
7743 }
7744 put_cpu();
7745 #endif
7746 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
7747 CPUFREQ_TRANSITION_NOTIFIER);
7748 }
7749
7750 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
7751 kvmclock_cpu_online, kvmclock_cpu_down_prep);
7752 }
7753
7754 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
7755 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
7756
kvm_is_in_guest(void)7757 int kvm_is_in_guest(void)
7758 {
7759 return __this_cpu_read(current_vcpu) != NULL;
7760 }
7761
kvm_is_user_mode(void)7762 static int kvm_is_user_mode(void)
7763 {
7764 int user_mode = 3;
7765
7766 if (__this_cpu_read(current_vcpu))
7767 user_mode = kvm_x86_ops.get_cpl(__this_cpu_read(current_vcpu));
7768
7769 return user_mode != 0;
7770 }
7771
kvm_get_guest_ip(void)7772 static unsigned long kvm_get_guest_ip(void)
7773 {
7774 unsigned long ip = 0;
7775
7776 if (__this_cpu_read(current_vcpu))
7777 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
7778
7779 return ip;
7780 }
7781
kvm_handle_intel_pt_intr(void)7782 static void kvm_handle_intel_pt_intr(void)
7783 {
7784 struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu);
7785
7786 kvm_make_request(KVM_REQ_PMI, vcpu);
7787 __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
7788 (unsigned long *)&vcpu->arch.pmu.global_status);
7789 }
7790
7791 static struct perf_guest_info_callbacks kvm_guest_cbs = {
7792 .is_in_guest = kvm_is_in_guest,
7793 .is_user_mode = kvm_is_user_mode,
7794 .get_guest_ip = kvm_get_guest_ip,
7795 .handle_intel_pt_intr = kvm_handle_intel_pt_intr,
7796 };
7797
7798 #ifdef CONFIG_X86_64
pvclock_gtod_update_fn(struct work_struct * work)7799 static void pvclock_gtod_update_fn(struct work_struct *work)
7800 {
7801 struct kvm *kvm;
7802
7803 struct kvm_vcpu *vcpu;
7804 int i;
7805
7806 mutex_lock(&kvm_lock);
7807 list_for_each_entry(kvm, &vm_list, vm_list)
7808 kvm_for_each_vcpu(i, vcpu, kvm)
7809 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7810 atomic_set(&kvm_guest_has_master_clock, 0);
7811 mutex_unlock(&kvm_lock);
7812 }
7813
7814 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
7815
7816 /*
7817 * Notification about pvclock gtod data update.
7818 */
pvclock_gtod_notify(struct notifier_block * nb,unsigned long unused,void * priv)7819 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
7820 void *priv)
7821 {
7822 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
7823 struct timekeeper *tk = priv;
7824
7825 update_pvclock_gtod(tk);
7826
7827 /* disable master clock if host does not trust, or does not
7828 * use, TSC based clocksource.
7829 */
7830 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
7831 atomic_read(&kvm_guest_has_master_clock) != 0)
7832 queue_work(system_long_wq, &pvclock_gtod_work);
7833
7834 return 0;
7835 }
7836
7837 static struct notifier_block pvclock_gtod_notifier = {
7838 .notifier_call = pvclock_gtod_notify,
7839 };
7840 #endif
7841
kvm_arch_init(void * opaque)7842 int kvm_arch_init(void *opaque)
7843 {
7844 struct kvm_x86_init_ops *ops = opaque;
7845 int r;
7846
7847 if (kvm_x86_ops.hardware_enable) {
7848 printk(KERN_ERR "kvm: already loaded the other module\n");
7849 r = -EEXIST;
7850 goto out;
7851 }
7852
7853 if (!ops->cpu_has_kvm_support()) {
7854 pr_err_ratelimited("kvm: no hardware support\n");
7855 r = -EOPNOTSUPP;
7856 goto out;
7857 }
7858 if (ops->disabled_by_bios()) {
7859 pr_err_ratelimited("kvm: disabled by bios\n");
7860 r = -EOPNOTSUPP;
7861 goto out;
7862 }
7863
7864 /*
7865 * KVM explicitly assumes that the guest has an FPU and
7866 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
7867 * vCPU's FPU state as a fxregs_state struct.
7868 */
7869 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
7870 printk(KERN_ERR "kvm: inadequate fpu\n");
7871 r = -EOPNOTSUPP;
7872 goto out;
7873 }
7874
7875 r = -ENOMEM;
7876 x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu),
7877 __alignof__(struct fpu), SLAB_ACCOUNT,
7878 NULL);
7879 if (!x86_fpu_cache) {
7880 printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n");
7881 goto out;
7882 }
7883
7884 x86_emulator_cache = kvm_alloc_emulator_cache();
7885 if (!x86_emulator_cache) {
7886 pr_err("kvm: failed to allocate cache for x86 emulator\n");
7887 goto out_free_x86_fpu_cache;
7888 }
7889
7890 user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
7891 if (!user_return_msrs) {
7892 printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n");
7893 goto out_free_x86_emulator_cache;
7894 }
7895
7896 r = kvm_mmu_module_init();
7897 if (r)
7898 goto out_free_percpu;
7899
7900 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
7901 PT_DIRTY_MASK, PT64_NX_MASK, 0,
7902 PT_PRESENT_MASK, 0, sme_me_mask);
7903 kvm_timer_init();
7904
7905 perf_register_guest_info_callbacks(&kvm_guest_cbs);
7906
7907 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
7908 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
7909 supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
7910 }
7911
7912 kvm_lapic_init();
7913 if (pi_inject_timer == -1)
7914 pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER);
7915 #ifdef CONFIG_X86_64
7916 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
7917
7918 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
7919 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
7920 #endif
7921
7922 return 0;
7923
7924 out_free_percpu:
7925 free_percpu(user_return_msrs);
7926 out_free_x86_emulator_cache:
7927 kmem_cache_destroy(x86_emulator_cache);
7928 out_free_x86_fpu_cache:
7929 kmem_cache_destroy(x86_fpu_cache);
7930 out:
7931 return r;
7932 }
7933
kvm_arch_exit(void)7934 void kvm_arch_exit(void)
7935 {
7936 #ifdef CONFIG_X86_64
7937 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
7938 clear_hv_tscchange_cb();
7939 #endif
7940 kvm_lapic_exit();
7941 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
7942
7943 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7944 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
7945 CPUFREQ_TRANSITION_NOTIFIER);
7946 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
7947 #ifdef CONFIG_X86_64
7948 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
7949 #endif
7950 kvm_x86_ops.hardware_enable = NULL;
7951 kvm_mmu_module_exit();
7952 free_percpu(user_return_msrs);
7953 kmem_cache_destroy(x86_fpu_cache);
7954 }
7955
kvm_vcpu_halt(struct kvm_vcpu * vcpu)7956 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
7957 {
7958 ++vcpu->stat.halt_exits;
7959 if (lapic_in_kernel(vcpu)) {
7960 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
7961 return 1;
7962 } else {
7963 vcpu->run->exit_reason = KVM_EXIT_HLT;
7964 return 0;
7965 }
7966 }
7967 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
7968
kvm_emulate_halt(struct kvm_vcpu * vcpu)7969 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
7970 {
7971 int ret = kvm_skip_emulated_instruction(vcpu);
7972 /*
7973 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
7974 * KVM_EXIT_DEBUG here.
7975 */
7976 return kvm_vcpu_halt(vcpu) && ret;
7977 }
7978 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
7979
7980 #ifdef CONFIG_X86_64
kvm_pv_clock_pairing(struct kvm_vcpu * vcpu,gpa_t paddr,unsigned long clock_type)7981 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
7982 unsigned long clock_type)
7983 {
7984 struct kvm_clock_pairing clock_pairing;
7985 struct timespec64 ts;
7986 u64 cycle;
7987 int ret;
7988
7989 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
7990 return -KVM_EOPNOTSUPP;
7991
7992 if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
7993 return -KVM_EOPNOTSUPP;
7994
7995 clock_pairing.sec = ts.tv_sec;
7996 clock_pairing.nsec = ts.tv_nsec;
7997 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
7998 clock_pairing.flags = 0;
7999 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
8000
8001 ret = 0;
8002 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
8003 sizeof(struct kvm_clock_pairing)))
8004 ret = -KVM_EFAULT;
8005
8006 return ret;
8007 }
8008 #endif
8009
8010 /*
8011 * kvm_pv_kick_cpu_op: Kick a vcpu.
8012 *
8013 * @apicid - apicid of vcpu to be kicked.
8014 */
kvm_pv_kick_cpu_op(struct kvm * kvm,unsigned long flags,int apicid)8015 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
8016 {
8017 struct kvm_lapic_irq lapic_irq;
8018
8019 lapic_irq.shorthand = APIC_DEST_NOSHORT;
8020 lapic_irq.dest_mode = APIC_DEST_PHYSICAL;
8021 lapic_irq.level = 0;
8022 lapic_irq.dest_id = apicid;
8023 lapic_irq.msi_redir_hint = false;
8024
8025 lapic_irq.delivery_mode = APIC_DM_REMRD;
8026 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
8027 }
8028
kvm_apicv_activated(struct kvm * kvm)8029 bool kvm_apicv_activated(struct kvm *kvm)
8030 {
8031 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
8032 }
8033 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
8034
kvm_apicv_init(struct kvm * kvm,bool enable)8035 void kvm_apicv_init(struct kvm *kvm, bool enable)
8036 {
8037 if (enable)
8038 clear_bit(APICV_INHIBIT_REASON_DISABLE,
8039 &kvm->arch.apicv_inhibit_reasons);
8040 else
8041 set_bit(APICV_INHIBIT_REASON_DISABLE,
8042 &kvm->arch.apicv_inhibit_reasons);
8043 }
8044 EXPORT_SYMBOL_GPL(kvm_apicv_init);
8045
kvm_sched_yield(struct kvm * kvm,unsigned long dest_id)8046 static void kvm_sched_yield(struct kvm *kvm, unsigned long dest_id)
8047 {
8048 struct kvm_vcpu *target = NULL;
8049 struct kvm_apic_map *map;
8050
8051 rcu_read_lock();
8052 map = rcu_dereference(kvm->arch.apic_map);
8053
8054 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
8055 target = map->phys_map[dest_id]->vcpu;
8056
8057 rcu_read_unlock();
8058
8059 if (target && READ_ONCE(target->ready))
8060 kvm_vcpu_yield_to(target);
8061 }
8062
kvm_emulate_hypercall(struct kvm_vcpu * vcpu)8063 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
8064 {
8065 unsigned long nr, a0, a1, a2, a3, ret;
8066 int op_64_bit;
8067
8068 if (kvm_hv_hypercall_enabled(vcpu->kvm))
8069 return kvm_hv_hypercall(vcpu);
8070
8071 nr = kvm_rax_read(vcpu);
8072 a0 = kvm_rbx_read(vcpu);
8073 a1 = kvm_rcx_read(vcpu);
8074 a2 = kvm_rdx_read(vcpu);
8075 a3 = kvm_rsi_read(vcpu);
8076
8077 trace_kvm_hypercall(nr, a0, a1, a2, a3);
8078
8079 op_64_bit = is_64_bit_mode(vcpu);
8080 if (!op_64_bit) {
8081 nr &= 0xFFFFFFFF;
8082 a0 &= 0xFFFFFFFF;
8083 a1 &= 0xFFFFFFFF;
8084 a2 &= 0xFFFFFFFF;
8085 a3 &= 0xFFFFFFFF;
8086 }
8087
8088 if (kvm_x86_ops.get_cpl(vcpu) != 0) {
8089 ret = -KVM_EPERM;
8090 goto out;
8091 }
8092
8093 ret = -KVM_ENOSYS;
8094
8095 switch (nr) {
8096 case KVM_HC_VAPIC_POLL_IRQ:
8097 ret = 0;
8098 break;
8099 case KVM_HC_KICK_CPU:
8100 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
8101 break;
8102
8103 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
8104 kvm_sched_yield(vcpu->kvm, a1);
8105 ret = 0;
8106 break;
8107 #ifdef CONFIG_X86_64
8108 case KVM_HC_CLOCK_PAIRING:
8109 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
8110 break;
8111 #endif
8112 case KVM_HC_SEND_IPI:
8113 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
8114 break;
8115
8116 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
8117 break;
8118 case KVM_HC_SCHED_YIELD:
8119 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
8120 break;
8121
8122 kvm_sched_yield(vcpu->kvm, a0);
8123 ret = 0;
8124 break;
8125 default:
8126 ret = -KVM_ENOSYS;
8127 break;
8128 }
8129 out:
8130 if (!op_64_bit)
8131 ret = (u32)ret;
8132 kvm_rax_write(vcpu, ret);
8133
8134 ++vcpu->stat.hypercalls;
8135 return kvm_skip_emulated_instruction(vcpu);
8136 }
8137 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
8138
emulator_fix_hypercall(struct x86_emulate_ctxt * ctxt)8139 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
8140 {
8141 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8142 char instruction[3];
8143 unsigned long rip = kvm_rip_read(vcpu);
8144
8145 kvm_x86_ops.patch_hypercall(vcpu, instruction);
8146
8147 return emulator_write_emulated(ctxt, rip, instruction, 3,
8148 &ctxt->exception);
8149 }
8150
dm_request_for_irq_injection(struct kvm_vcpu * vcpu)8151 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
8152 {
8153 return vcpu->run->request_interrupt_window &&
8154 likely(!pic_in_kernel(vcpu->kvm));
8155 }
8156
post_kvm_run_save(struct kvm_vcpu * vcpu)8157 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
8158 {
8159 struct kvm_run *kvm_run = vcpu->run;
8160
8161 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
8162 kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
8163 kvm_run->cr8 = kvm_get_cr8(vcpu);
8164 kvm_run->apic_base = kvm_get_apic_base(vcpu);
8165 kvm_run->ready_for_interrupt_injection =
8166 pic_in_kernel(vcpu->kvm) ||
8167 kvm_vcpu_ready_for_interrupt_injection(vcpu);
8168 }
8169
update_cr8_intercept(struct kvm_vcpu * vcpu)8170 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
8171 {
8172 int max_irr, tpr;
8173
8174 if (!kvm_x86_ops.update_cr8_intercept)
8175 return;
8176
8177 if (!lapic_in_kernel(vcpu))
8178 return;
8179
8180 if (vcpu->arch.apicv_active)
8181 return;
8182
8183 if (!vcpu->arch.apic->vapic_addr)
8184 max_irr = kvm_lapic_find_highest_irr(vcpu);
8185 else
8186 max_irr = -1;
8187
8188 if (max_irr != -1)
8189 max_irr >>= 4;
8190
8191 tpr = kvm_lapic_get_cr8(vcpu);
8192
8193 kvm_x86_ops.update_cr8_intercept(vcpu, tpr, max_irr);
8194 }
8195
inject_pending_event(struct kvm_vcpu * vcpu,bool * req_immediate_exit)8196 static void inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit)
8197 {
8198 int r;
8199 bool can_inject = true;
8200
8201 /* try to reinject previous events if any */
8202
8203 if (vcpu->arch.exception.injected) {
8204 kvm_x86_ops.queue_exception(vcpu);
8205 can_inject = false;
8206 }
8207 /*
8208 * Do not inject an NMI or interrupt if there is a pending
8209 * exception. Exceptions and interrupts are recognized at
8210 * instruction boundaries, i.e. the start of an instruction.
8211 * Trap-like exceptions, e.g. #DB, have higher priority than
8212 * NMIs and interrupts, i.e. traps are recognized before an
8213 * NMI/interrupt that's pending on the same instruction.
8214 * Fault-like exceptions, e.g. #GP and #PF, are the lowest
8215 * priority, but are only generated (pended) during instruction
8216 * execution, i.e. a pending fault-like exception means the
8217 * fault occurred on the *previous* instruction and must be
8218 * serviced prior to recognizing any new events in order to
8219 * fully complete the previous instruction.
8220 */
8221 else if (!vcpu->arch.exception.pending) {
8222 if (vcpu->arch.nmi_injected) {
8223 kvm_x86_ops.set_nmi(vcpu);
8224 can_inject = false;
8225 } else if (vcpu->arch.interrupt.injected) {
8226 kvm_x86_ops.set_irq(vcpu);
8227 can_inject = false;
8228 }
8229 }
8230
8231 WARN_ON_ONCE(vcpu->arch.exception.injected &&
8232 vcpu->arch.exception.pending);
8233
8234 /*
8235 * Call check_nested_events() even if we reinjected a previous event
8236 * in order for caller to determine if it should require immediate-exit
8237 * from L2 to L1 due to pending L1 events which require exit
8238 * from L2 to L1.
8239 */
8240 if (is_guest_mode(vcpu)) {
8241 r = kvm_x86_ops.nested_ops->check_events(vcpu);
8242 if (r < 0)
8243 goto busy;
8244 }
8245
8246 /* try to inject new event if pending */
8247 if (vcpu->arch.exception.pending) {
8248 trace_kvm_inj_exception(vcpu->arch.exception.nr,
8249 vcpu->arch.exception.has_error_code,
8250 vcpu->arch.exception.error_code);
8251
8252 vcpu->arch.exception.pending = false;
8253 vcpu->arch.exception.injected = true;
8254
8255 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
8256 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
8257 X86_EFLAGS_RF);
8258
8259 if (vcpu->arch.exception.nr == DB_VECTOR) {
8260 kvm_deliver_exception_payload(vcpu);
8261 if (vcpu->arch.dr7 & DR7_GD) {
8262 vcpu->arch.dr7 &= ~DR7_GD;
8263 kvm_update_dr7(vcpu);
8264 }
8265 }
8266
8267 kvm_x86_ops.queue_exception(vcpu);
8268 can_inject = false;
8269 }
8270
8271 /*
8272 * Finally, inject interrupt events. If an event cannot be injected
8273 * due to architectural conditions (e.g. IF=0) a window-open exit
8274 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending
8275 * and can architecturally be injected, but we cannot do it right now:
8276 * an interrupt could have arrived just now and we have to inject it
8277 * as a vmexit, or there could already an event in the queue, which is
8278 * indicated by can_inject. In that case we request an immediate exit
8279 * in order to make progress and get back here for another iteration.
8280 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
8281 */
8282 if (vcpu->arch.smi_pending) {
8283 r = can_inject ? kvm_x86_ops.smi_allowed(vcpu, true) : -EBUSY;
8284 if (r < 0)
8285 goto busy;
8286 if (r) {
8287 vcpu->arch.smi_pending = false;
8288 ++vcpu->arch.smi_count;
8289 enter_smm(vcpu);
8290 can_inject = false;
8291 } else
8292 kvm_x86_ops.enable_smi_window(vcpu);
8293 }
8294
8295 if (vcpu->arch.nmi_pending) {
8296 r = can_inject ? kvm_x86_ops.nmi_allowed(vcpu, true) : -EBUSY;
8297 if (r < 0)
8298 goto busy;
8299 if (r) {
8300 --vcpu->arch.nmi_pending;
8301 vcpu->arch.nmi_injected = true;
8302 kvm_x86_ops.set_nmi(vcpu);
8303 can_inject = false;
8304 WARN_ON(kvm_x86_ops.nmi_allowed(vcpu, true) < 0);
8305 }
8306 if (vcpu->arch.nmi_pending)
8307 kvm_x86_ops.enable_nmi_window(vcpu);
8308 }
8309
8310 if (kvm_cpu_has_injectable_intr(vcpu)) {
8311 r = can_inject ? kvm_x86_ops.interrupt_allowed(vcpu, true) : -EBUSY;
8312 if (r < 0)
8313 goto busy;
8314 if (r) {
8315 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
8316 kvm_x86_ops.set_irq(vcpu);
8317 WARN_ON(kvm_x86_ops.interrupt_allowed(vcpu, true) < 0);
8318 }
8319 if (kvm_cpu_has_injectable_intr(vcpu))
8320 kvm_x86_ops.enable_irq_window(vcpu);
8321 }
8322
8323 if (is_guest_mode(vcpu) &&
8324 kvm_x86_ops.nested_ops->hv_timer_pending &&
8325 kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
8326 *req_immediate_exit = true;
8327
8328 WARN_ON(vcpu->arch.exception.pending);
8329 return;
8330
8331 busy:
8332 *req_immediate_exit = true;
8333 return;
8334 }
8335
process_nmi(struct kvm_vcpu * vcpu)8336 static void process_nmi(struct kvm_vcpu *vcpu)
8337 {
8338 unsigned limit = 2;
8339
8340 /*
8341 * x86 is limited to one NMI running, and one NMI pending after it.
8342 * If an NMI is already in progress, limit further NMIs to just one.
8343 * Otherwise, allow two (and we'll inject the first one immediately).
8344 */
8345 if (kvm_x86_ops.get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
8346 limit = 1;
8347
8348 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
8349 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
8350 kvm_make_request(KVM_REQ_EVENT, vcpu);
8351 }
8352
enter_smm_get_segment_flags(struct kvm_segment * seg)8353 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
8354 {
8355 u32 flags = 0;
8356 flags |= seg->g << 23;
8357 flags |= seg->db << 22;
8358 flags |= seg->l << 21;
8359 flags |= seg->avl << 20;
8360 flags |= seg->present << 15;
8361 flags |= seg->dpl << 13;
8362 flags |= seg->s << 12;
8363 flags |= seg->type << 8;
8364 return flags;
8365 }
8366
enter_smm_save_seg_32(struct kvm_vcpu * vcpu,char * buf,int n)8367 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
8368 {
8369 struct kvm_segment seg;
8370 int offset;
8371
8372 kvm_get_segment(vcpu, &seg, n);
8373 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
8374
8375 if (n < 3)
8376 offset = 0x7f84 + n * 12;
8377 else
8378 offset = 0x7f2c + (n - 3) * 12;
8379
8380 put_smstate(u32, buf, offset + 8, seg.base);
8381 put_smstate(u32, buf, offset + 4, seg.limit);
8382 put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
8383 }
8384
8385 #ifdef CONFIG_X86_64
enter_smm_save_seg_64(struct kvm_vcpu * vcpu,char * buf,int n)8386 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
8387 {
8388 struct kvm_segment seg;
8389 int offset;
8390 u16 flags;
8391
8392 kvm_get_segment(vcpu, &seg, n);
8393 offset = 0x7e00 + n * 16;
8394
8395 flags = enter_smm_get_segment_flags(&seg) >> 8;
8396 put_smstate(u16, buf, offset, seg.selector);
8397 put_smstate(u16, buf, offset + 2, flags);
8398 put_smstate(u32, buf, offset + 4, seg.limit);
8399 put_smstate(u64, buf, offset + 8, seg.base);
8400 }
8401 #endif
8402
enter_smm_save_state_32(struct kvm_vcpu * vcpu,char * buf)8403 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
8404 {
8405 struct desc_ptr dt;
8406 struct kvm_segment seg;
8407 unsigned long val;
8408 int i;
8409
8410 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
8411 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
8412 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
8413 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
8414
8415 for (i = 0; i < 8; i++)
8416 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
8417
8418 kvm_get_dr(vcpu, 6, &val);
8419 put_smstate(u32, buf, 0x7fcc, (u32)val);
8420 kvm_get_dr(vcpu, 7, &val);
8421 put_smstate(u32, buf, 0x7fc8, (u32)val);
8422
8423 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
8424 put_smstate(u32, buf, 0x7fc4, seg.selector);
8425 put_smstate(u32, buf, 0x7f64, seg.base);
8426 put_smstate(u32, buf, 0x7f60, seg.limit);
8427 put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
8428
8429 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
8430 put_smstate(u32, buf, 0x7fc0, seg.selector);
8431 put_smstate(u32, buf, 0x7f80, seg.base);
8432 put_smstate(u32, buf, 0x7f7c, seg.limit);
8433 put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
8434
8435 kvm_x86_ops.get_gdt(vcpu, &dt);
8436 put_smstate(u32, buf, 0x7f74, dt.address);
8437 put_smstate(u32, buf, 0x7f70, dt.size);
8438
8439 kvm_x86_ops.get_idt(vcpu, &dt);
8440 put_smstate(u32, buf, 0x7f58, dt.address);
8441 put_smstate(u32, buf, 0x7f54, dt.size);
8442
8443 for (i = 0; i < 6; i++)
8444 enter_smm_save_seg_32(vcpu, buf, i);
8445
8446 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
8447
8448 /* revision id */
8449 put_smstate(u32, buf, 0x7efc, 0x00020000);
8450 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
8451 }
8452
8453 #ifdef CONFIG_X86_64
enter_smm_save_state_64(struct kvm_vcpu * vcpu,char * buf)8454 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
8455 {
8456 struct desc_ptr dt;
8457 struct kvm_segment seg;
8458 unsigned long val;
8459 int i;
8460
8461 for (i = 0; i < 16; i++)
8462 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
8463
8464 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
8465 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
8466
8467 kvm_get_dr(vcpu, 6, &val);
8468 put_smstate(u64, buf, 0x7f68, val);
8469 kvm_get_dr(vcpu, 7, &val);
8470 put_smstate(u64, buf, 0x7f60, val);
8471
8472 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
8473 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
8474 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
8475
8476 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
8477
8478 /* revision id */
8479 put_smstate(u32, buf, 0x7efc, 0x00020064);
8480
8481 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
8482
8483 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
8484 put_smstate(u16, buf, 0x7e90, seg.selector);
8485 put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
8486 put_smstate(u32, buf, 0x7e94, seg.limit);
8487 put_smstate(u64, buf, 0x7e98, seg.base);
8488
8489 kvm_x86_ops.get_idt(vcpu, &dt);
8490 put_smstate(u32, buf, 0x7e84, dt.size);
8491 put_smstate(u64, buf, 0x7e88, dt.address);
8492
8493 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
8494 put_smstate(u16, buf, 0x7e70, seg.selector);
8495 put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
8496 put_smstate(u32, buf, 0x7e74, seg.limit);
8497 put_smstate(u64, buf, 0x7e78, seg.base);
8498
8499 kvm_x86_ops.get_gdt(vcpu, &dt);
8500 put_smstate(u32, buf, 0x7e64, dt.size);
8501 put_smstate(u64, buf, 0x7e68, dt.address);
8502
8503 for (i = 0; i < 6; i++)
8504 enter_smm_save_seg_64(vcpu, buf, i);
8505 }
8506 #endif
8507
enter_smm(struct kvm_vcpu * vcpu)8508 static void enter_smm(struct kvm_vcpu *vcpu)
8509 {
8510 struct kvm_segment cs, ds;
8511 struct desc_ptr dt;
8512 char buf[512];
8513 u32 cr0;
8514
8515 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
8516 memset(buf, 0, 512);
8517 #ifdef CONFIG_X86_64
8518 if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
8519 enter_smm_save_state_64(vcpu, buf);
8520 else
8521 #endif
8522 enter_smm_save_state_32(vcpu, buf);
8523
8524 /*
8525 * Give pre_enter_smm() a chance to make ISA-specific changes to the
8526 * vCPU state (e.g. leave guest mode) after we've saved the state into
8527 * the SMM state-save area.
8528 */
8529 kvm_x86_ops.pre_enter_smm(vcpu, buf);
8530
8531 vcpu->arch.hflags |= HF_SMM_MASK;
8532 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
8533
8534 if (kvm_x86_ops.get_nmi_mask(vcpu))
8535 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
8536 else
8537 kvm_x86_ops.set_nmi_mask(vcpu, true);
8538
8539 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
8540 kvm_rip_write(vcpu, 0x8000);
8541
8542 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
8543 kvm_x86_ops.set_cr0(vcpu, cr0);
8544 vcpu->arch.cr0 = cr0;
8545
8546 kvm_x86_ops.set_cr4(vcpu, 0);
8547
8548 /* Undocumented: IDT limit is set to zero on entry to SMM. */
8549 dt.address = dt.size = 0;
8550 kvm_x86_ops.set_idt(vcpu, &dt);
8551
8552 __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
8553
8554 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
8555 cs.base = vcpu->arch.smbase;
8556
8557 ds.selector = 0;
8558 ds.base = 0;
8559
8560 cs.limit = ds.limit = 0xffffffff;
8561 cs.type = ds.type = 0x3;
8562 cs.dpl = ds.dpl = 0;
8563 cs.db = ds.db = 0;
8564 cs.s = ds.s = 1;
8565 cs.l = ds.l = 0;
8566 cs.g = ds.g = 1;
8567 cs.avl = ds.avl = 0;
8568 cs.present = ds.present = 1;
8569 cs.unusable = ds.unusable = 0;
8570 cs.padding = ds.padding = 0;
8571
8572 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
8573 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
8574 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
8575 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
8576 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
8577 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
8578
8579 #ifdef CONFIG_X86_64
8580 if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
8581 kvm_x86_ops.set_efer(vcpu, 0);
8582 #endif
8583
8584 kvm_update_cpuid_runtime(vcpu);
8585 kvm_mmu_reset_context(vcpu);
8586 }
8587
process_smi(struct kvm_vcpu * vcpu)8588 static void process_smi(struct kvm_vcpu *vcpu)
8589 {
8590 vcpu->arch.smi_pending = true;
8591 kvm_make_request(KVM_REQ_EVENT, vcpu);
8592 }
8593
kvm_make_scan_ioapic_request_mask(struct kvm * kvm,unsigned long * vcpu_bitmap)8594 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
8595 unsigned long *vcpu_bitmap)
8596 {
8597 cpumask_var_t cpus;
8598
8599 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
8600
8601 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC,
8602 NULL, vcpu_bitmap, cpus);
8603
8604 free_cpumask_var(cpus);
8605 }
8606
kvm_make_scan_ioapic_request(struct kvm * kvm)8607 void kvm_make_scan_ioapic_request(struct kvm *kvm)
8608 {
8609 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
8610 }
8611
kvm_vcpu_update_apicv(struct kvm_vcpu * vcpu)8612 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
8613 {
8614 if (!lapic_in_kernel(vcpu))
8615 return;
8616
8617 vcpu->arch.apicv_active = kvm_apicv_activated(vcpu->kvm);
8618 kvm_apic_update_apicv(vcpu);
8619 kvm_x86_ops.refresh_apicv_exec_ctrl(vcpu);
8620 }
8621 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv);
8622
8623 /*
8624 * NOTE: Do not hold any lock prior to calling this.
8625 *
8626 * In particular, kvm_request_apicv_update() expects kvm->srcu not to be
8627 * locked, because it calls __x86_set_memory_region() which does
8628 * synchronize_srcu(&kvm->srcu).
8629 */
kvm_request_apicv_update(struct kvm * kvm,bool activate,ulong bit)8630 void kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
8631 {
8632 struct kvm_vcpu *except;
8633 unsigned long old, new, expected;
8634
8635 if (!kvm_x86_ops.check_apicv_inhibit_reasons ||
8636 !kvm_x86_ops.check_apicv_inhibit_reasons(bit))
8637 return;
8638
8639 old = READ_ONCE(kvm->arch.apicv_inhibit_reasons);
8640 do {
8641 expected = new = old;
8642 if (activate)
8643 __clear_bit(bit, &new);
8644 else
8645 __set_bit(bit, &new);
8646 if (new == old)
8647 break;
8648 old = cmpxchg(&kvm->arch.apicv_inhibit_reasons, expected, new);
8649 } while (old != expected);
8650
8651 if (!!old == !!new)
8652 return;
8653
8654 trace_kvm_apicv_update_request(activate, bit);
8655 if (kvm_x86_ops.pre_update_apicv_exec_ctrl)
8656 kvm_x86_ops.pre_update_apicv_exec_ctrl(kvm, activate);
8657
8658 /*
8659 * Sending request to update APICV for all other vcpus,
8660 * while update the calling vcpu immediately instead of
8661 * waiting for another #VMEXIT to handle the request.
8662 */
8663 except = kvm_get_running_vcpu();
8664 kvm_make_all_cpus_request_except(kvm, KVM_REQ_APICV_UPDATE,
8665 except);
8666 if (except)
8667 kvm_vcpu_update_apicv(except);
8668 }
8669 EXPORT_SYMBOL_GPL(kvm_request_apicv_update);
8670
vcpu_scan_ioapic(struct kvm_vcpu * vcpu)8671 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
8672 {
8673 if (!kvm_apic_present(vcpu))
8674 return;
8675
8676 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
8677
8678 if (irqchip_split(vcpu->kvm))
8679 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
8680 else {
8681 if (vcpu->arch.apicv_active)
8682 kvm_x86_ops.sync_pir_to_irr(vcpu);
8683 if (ioapic_in_kernel(vcpu->kvm))
8684 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
8685 }
8686
8687 if (is_guest_mode(vcpu))
8688 vcpu->arch.load_eoi_exitmap_pending = true;
8689 else
8690 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
8691 }
8692
vcpu_load_eoi_exitmap(struct kvm_vcpu * vcpu)8693 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
8694 {
8695 u64 eoi_exit_bitmap[4];
8696
8697 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
8698 return;
8699
8700 bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
8701 vcpu_to_synic(vcpu)->vec_bitmap, 256);
8702 kvm_x86_ops.load_eoi_exitmap(vcpu, eoi_exit_bitmap);
8703 }
8704
kvm_arch_mmu_notifier_invalidate_range(struct kvm * kvm,unsigned long start,unsigned long end)8705 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
8706 unsigned long start, unsigned long end)
8707 {
8708 unsigned long apic_address;
8709
8710 /*
8711 * The physical address of apic access page is stored in the VMCS.
8712 * Update it when it becomes invalid.
8713 */
8714 apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
8715 if (start <= apic_address && apic_address < end)
8716 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
8717 }
8718
kvm_vcpu_reload_apic_access_page(struct kvm_vcpu * vcpu)8719 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
8720 {
8721 if (!lapic_in_kernel(vcpu))
8722 return;
8723
8724 if (!kvm_x86_ops.set_apic_access_page_addr)
8725 return;
8726
8727 kvm_x86_ops.set_apic_access_page_addr(vcpu);
8728 }
8729
__kvm_request_immediate_exit(struct kvm_vcpu * vcpu)8730 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
8731 {
8732 smp_send_reschedule(vcpu->cpu);
8733 }
8734 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
8735
8736 /*
8737 * Returns 1 to let vcpu_run() continue the guest execution loop without
8738 * exiting to the userspace. Otherwise, the value will be returned to the
8739 * userspace.
8740 */
vcpu_enter_guest(struct kvm_vcpu * vcpu)8741 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
8742 {
8743 int r;
8744 bool req_int_win =
8745 dm_request_for_irq_injection(vcpu) &&
8746 kvm_cpu_accept_dm_intr(vcpu);
8747 fastpath_t exit_fastpath;
8748
8749 bool req_immediate_exit = false;
8750
8751 if (kvm_request_pending(vcpu)) {
8752 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
8753 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
8754 r = 0;
8755 goto out;
8756 }
8757 }
8758 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
8759 kvm_mmu_unload(vcpu);
8760 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
8761 __kvm_migrate_timers(vcpu);
8762 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
8763 kvm_gen_update_masterclock(vcpu->kvm);
8764 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
8765 kvm_gen_kvmclock_update(vcpu);
8766 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
8767 r = kvm_guest_time_update(vcpu);
8768 if (unlikely(r))
8769 goto out;
8770 }
8771 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
8772 kvm_mmu_sync_roots(vcpu);
8773 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
8774 kvm_mmu_load_pgd(vcpu);
8775 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
8776 kvm_vcpu_flush_tlb_all(vcpu);
8777
8778 /* Flushing all ASIDs flushes the current ASID... */
8779 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
8780 }
8781 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
8782 kvm_vcpu_flush_tlb_current(vcpu);
8783 if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu))
8784 kvm_vcpu_flush_tlb_guest(vcpu);
8785
8786 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
8787 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
8788 r = 0;
8789 goto out;
8790 }
8791 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
8792 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
8793 vcpu->mmio_needed = 0;
8794 r = 0;
8795 goto out;
8796 }
8797 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
8798 /* Page is swapped out. Do synthetic halt */
8799 vcpu->arch.apf.halted = true;
8800 r = 1;
8801 goto out;
8802 }
8803 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
8804 record_steal_time(vcpu);
8805 if (kvm_check_request(KVM_REQ_SMI, vcpu))
8806 process_smi(vcpu);
8807 if (kvm_check_request(KVM_REQ_NMI, vcpu))
8808 process_nmi(vcpu);
8809 if (kvm_check_request(KVM_REQ_PMU, vcpu))
8810 kvm_pmu_handle_event(vcpu);
8811 if (kvm_check_request(KVM_REQ_PMI, vcpu))
8812 kvm_pmu_deliver_pmi(vcpu);
8813 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
8814 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
8815 if (test_bit(vcpu->arch.pending_ioapic_eoi,
8816 vcpu->arch.ioapic_handled_vectors)) {
8817 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
8818 vcpu->run->eoi.vector =
8819 vcpu->arch.pending_ioapic_eoi;
8820 r = 0;
8821 goto out;
8822 }
8823 }
8824 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
8825 vcpu_scan_ioapic(vcpu);
8826 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
8827 vcpu_load_eoi_exitmap(vcpu);
8828 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
8829 kvm_vcpu_reload_apic_access_page(vcpu);
8830 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
8831 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
8832 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
8833 r = 0;
8834 goto out;
8835 }
8836 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
8837 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
8838 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
8839 r = 0;
8840 goto out;
8841 }
8842 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
8843 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
8844 vcpu->run->hyperv = vcpu->arch.hyperv.exit;
8845 r = 0;
8846 goto out;
8847 }
8848
8849 /*
8850 * KVM_REQ_HV_STIMER has to be processed after
8851 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
8852 * depend on the guest clock being up-to-date
8853 */
8854 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
8855 kvm_hv_process_stimers(vcpu);
8856 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
8857 kvm_vcpu_update_apicv(vcpu);
8858 if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
8859 kvm_check_async_pf_completion(vcpu);
8860 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
8861 kvm_x86_ops.msr_filter_changed(vcpu);
8862 }
8863
8864 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
8865 ++vcpu->stat.req_event;
8866 kvm_apic_accept_events(vcpu);
8867 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
8868 r = 1;
8869 goto out;
8870 }
8871
8872 inject_pending_event(vcpu, &req_immediate_exit);
8873 if (req_int_win)
8874 kvm_x86_ops.enable_irq_window(vcpu);
8875
8876 if (kvm_lapic_enabled(vcpu)) {
8877 update_cr8_intercept(vcpu);
8878 kvm_lapic_sync_to_vapic(vcpu);
8879 }
8880 }
8881
8882 r = kvm_mmu_reload(vcpu);
8883 if (unlikely(r)) {
8884 goto cancel_injection;
8885 }
8886
8887 preempt_disable();
8888
8889 kvm_x86_ops.prepare_guest_switch(vcpu);
8890
8891 /*
8892 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt
8893 * IPI are then delayed after guest entry, which ensures that they
8894 * result in virtual interrupt delivery.
8895 */
8896 local_irq_disable();
8897 vcpu->mode = IN_GUEST_MODE;
8898
8899 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
8900
8901 /*
8902 * 1) We should set ->mode before checking ->requests. Please see
8903 * the comment in kvm_vcpu_exiting_guest_mode().
8904 *
8905 * 2) For APICv, we should set ->mode before checking PID.ON. This
8906 * pairs with the memory barrier implicit in pi_test_and_set_on
8907 * (see vmx_deliver_posted_interrupt).
8908 *
8909 * 3) This also orders the write to mode from any reads to the page
8910 * tables done while the VCPU is running. Please see the comment
8911 * in kvm_flush_remote_tlbs.
8912 */
8913 smp_mb__after_srcu_read_unlock();
8914
8915 /*
8916 * This handles the case where a posted interrupt was
8917 * notified with kvm_vcpu_kick.
8918 */
8919 if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
8920 kvm_x86_ops.sync_pir_to_irr(vcpu);
8921
8922 if (kvm_vcpu_exit_request(vcpu)) {
8923 vcpu->mode = OUTSIDE_GUEST_MODE;
8924 smp_wmb();
8925 local_irq_enable();
8926 preempt_enable();
8927 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8928 r = 1;
8929 goto cancel_injection;
8930 }
8931
8932 if (req_immediate_exit) {
8933 kvm_make_request(KVM_REQ_EVENT, vcpu);
8934 kvm_x86_ops.request_immediate_exit(vcpu);
8935 }
8936
8937 trace_kvm_entry(vcpu);
8938
8939 fpregs_assert_state_consistent();
8940 if (test_thread_flag(TIF_NEED_FPU_LOAD))
8941 switch_fpu_return();
8942
8943 if (unlikely(vcpu->arch.switch_db_regs)) {
8944 set_debugreg(0, 7);
8945 set_debugreg(vcpu->arch.eff_db[0], 0);
8946 set_debugreg(vcpu->arch.eff_db[1], 1);
8947 set_debugreg(vcpu->arch.eff_db[2], 2);
8948 set_debugreg(vcpu->arch.eff_db[3], 3);
8949 set_debugreg(vcpu->arch.dr6, 6);
8950 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
8951 }
8952
8953 exit_fastpath = kvm_x86_ops.run(vcpu);
8954
8955 /*
8956 * Do this here before restoring debug registers on the host. And
8957 * since we do this before handling the vmexit, a DR access vmexit
8958 * can (a) read the correct value of the debug registers, (b) set
8959 * KVM_DEBUGREG_WONT_EXIT again.
8960 */
8961 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
8962 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
8963 kvm_x86_ops.sync_dirty_debug_regs(vcpu);
8964 kvm_update_dr0123(vcpu);
8965 kvm_update_dr7(vcpu);
8966 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
8967 }
8968
8969 /*
8970 * If the guest has used debug registers, at least dr7
8971 * will be disabled while returning to the host.
8972 * If we don't have active breakpoints in the host, we don't
8973 * care about the messed up debug address registers. But if
8974 * we have some of them active, restore the old state.
8975 */
8976 if (hw_breakpoint_active())
8977 hw_breakpoint_restore();
8978
8979 vcpu->arch.last_vmentry_cpu = vcpu->cpu;
8980 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
8981
8982 vcpu->mode = OUTSIDE_GUEST_MODE;
8983 smp_wmb();
8984
8985 kvm_x86_ops.handle_exit_irqoff(vcpu);
8986
8987 /*
8988 * Consume any pending interrupts, including the possible source of
8989 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
8990 * An instruction is required after local_irq_enable() to fully unblock
8991 * interrupts on processors that implement an interrupt shadow, the
8992 * stat.exits increment will do nicely.
8993 */
8994 kvm_before_interrupt(vcpu);
8995 local_irq_enable();
8996 ++vcpu->stat.exits;
8997 local_irq_disable();
8998 kvm_after_interrupt(vcpu);
8999
9000 if (lapic_in_kernel(vcpu)) {
9001 s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta;
9002 if (delta != S64_MIN) {
9003 trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta);
9004 vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN;
9005 }
9006 }
9007
9008 local_irq_enable();
9009 preempt_enable();
9010
9011 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9012
9013 /*
9014 * Profile KVM exit RIPs:
9015 */
9016 if (unlikely(prof_on == KVM_PROFILING)) {
9017 unsigned long rip = kvm_rip_read(vcpu);
9018 profile_hit(KVM_PROFILING, (void *)rip);
9019 }
9020
9021 if (unlikely(vcpu->arch.tsc_always_catchup))
9022 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9023
9024 if (vcpu->arch.apic_attention)
9025 kvm_lapic_sync_from_vapic(vcpu);
9026
9027 r = kvm_x86_ops.handle_exit(vcpu, exit_fastpath);
9028 return r;
9029
9030 cancel_injection:
9031 if (req_immediate_exit)
9032 kvm_make_request(KVM_REQ_EVENT, vcpu);
9033 kvm_x86_ops.cancel_injection(vcpu);
9034 if (unlikely(vcpu->arch.apic_attention))
9035 kvm_lapic_sync_from_vapic(vcpu);
9036 out:
9037 return r;
9038 }
9039
vcpu_block(struct kvm * kvm,struct kvm_vcpu * vcpu)9040 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
9041 {
9042 if (!kvm_arch_vcpu_runnable(vcpu) &&
9043 (!kvm_x86_ops.pre_block || kvm_x86_ops.pre_block(vcpu) == 0)) {
9044 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9045 kvm_vcpu_block(vcpu);
9046 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9047
9048 if (kvm_x86_ops.post_block)
9049 kvm_x86_ops.post_block(vcpu);
9050
9051 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
9052 return 1;
9053 }
9054
9055 kvm_apic_accept_events(vcpu);
9056 switch(vcpu->arch.mp_state) {
9057 case KVM_MP_STATE_HALTED:
9058 vcpu->arch.pv.pv_unhalted = false;
9059 vcpu->arch.mp_state =
9060 KVM_MP_STATE_RUNNABLE;
9061 fallthrough;
9062 case KVM_MP_STATE_RUNNABLE:
9063 vcpu->arch.apf.halted = false;
9064 break;
9065 case KVM_MP_STATE_INIT_RECEIVED:
9066 break;
9067 default:
9068 return -EINTR;
9069 }
9070 return 1;
9071 }
9072
kvm_vcpu_running(struct kvm_vcpu * vcpu)9073 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
9074 {
9075 if (is_guest_mode(vcpu))
9076 kvm_x86_ops.nested_ops->check_events(vcpu);
9077
9078 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
9079 !vcpu->arch.apf.halted);
9080 }
9081
vcpu_run(struct kvm_vcpu * vcpu)9082 static int vcpu_run(struct kvm_vcpu *vcpu)
9083 {
9084 int r;
9085 struct kvm *kvm = vcpu->kvm;
9086
9087 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9088 vcpu->arch.l1tf_flush_l1d = true;
9089
9090 for (;;) {
9091 if (kvm_vcpu_running(vcpu)) {
9092 r = vcpu_enter_guest(vcpu);
9093 } else {
9094 r = vcpu_block(kvm, vcpu);
9095 }
9096
9097 if (r <= 0)
9098 break;
9099
9100 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
9101 if (kvm_cpu_has_pending_timer(vcpu))
9102 kvm_inject_pending_timer_irqs(vcpu);
9103
9104 if (dm_request_for_irq_injection(vcpu) &&
9105 kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
9106 r = 0;
9107 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
9108 ++vcpu->stat.request_irq_exits;
9109 break;
9110 }
9111
9112 if (__xfer_to_guest_mode_work_pending()) {
9113 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9114 r = xfer_to_guest_mode_handle_work(vcpu);
9115 if (r)
9116 return r;
9117 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9118 }
9119 }
9120
9121 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9122
9123 return r;
9124 }
9125
complete_emulated_io(struct kvm_vcpu * vcpu)9126 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
9127 {
9128 int r;
9129
9130 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9131 r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
9132 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
9133 return r;
9134 }
9135
complete_emulated_pio(struct kvm_vcpu * vcpu)9136 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
9137 {
9138 BUG_ON(!vcpu->arch.pio.count);
9139
9140 return complete_emulated_io(vcpu);
9141 }
9142
9143 /*
9144 * Implements the following, as a state machine:
9145 *
9146 * read:
9147 * for each fragment
9148 * for each mmio piece in the fragment
9149 * write gpa, len
9150 * exit
9151 * copy data
9152 * execute insn
9153 *
9154 * write:
9155 * for each fragment
9156 * for each mmio piece in the fragment
9157 * write gpa, len
9158 * copy data
9159 * exit
9160 */
complete_emulated_mmio(struct kvm_vcpu * vcpu)9161 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
9162 {
9163 struct kvm_run *run = vcpu->run;
9164 struct kvm_mmio_fragment *frag;
9165 unsigned len;
9166
9167 BUG_ON(!vcpu->mmio_needed);
9168
9169 /* Complete previous fragment */
9170 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
9171 len = min(8u, frag->len);
9172 if (!vcpu->mmio_is_write)
9173 memcpy(frag->data, run->mmio.data, len);
9174
9175 if (frag->len <= 8) {
9176 /* Switch to the next fragment. */
9177 frag++;
9178 vcpu->mmio_cur_fragment++;
9179 } else {
9180 /* Go forward to the next mmio piece. */
9181 frag->data += len;
9182 frag->gpa += len;
9183 frag->len -= len;
9184 }
9185
9186 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
9187 vcpu->mmio_needed = 0;
9188
9189 /* FIXME: return into emulator if single-stepping. */
9190 if (vcpu->mmio_is_write)
9191 return 1;
9192 vcpu->mmio_read_completed = 1;
9193 return complete_emulated_io(vcpu);
9194 }
9195
9196 run->exit_reason = KVM_EXIT_MMIO;
9197 run->mmio.phys_addr = frag->gpa;
9198 if (vcpu->mmio_is_write)
9199 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
9200 run->mmio.len = min(8u, frag->len);
9201 run->mmio.is_write = vcpu->mmio_is_write;
9202 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
9203 return 0;
9204 }
9205
kvm_save_current_fpu(struct fpu * fpu)9206 static void kvm_save_current_fpu(struct fpu *fpu)
9207 {
9208 /*
9209 * If the target FPU state is not resident in the CPU registers, just
9210 * memcpy() from current, else save CPU state directly to the target.
9211 */
9212 if (test_thread_flag(TIF_NEED_FPU_LOAD))
9213 memcpy(&fpu->state, ¤t->thread.fpu.state,
9214 fpu_kernel_xstate_size);
9215 else
9216 copy_fpregs_to_fpstate(fpu);
9217 }
9218
9219 /* Swap (qemu) user FPU context for the guest FPU context. */
kvm_load_guest_fpu(struct kvm_vcpu * vcpu)9220 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
9221 {
9222 fpregs_lock();
9223
9224 kvm_save_current_fpu(vcpu->arch.user_fpu);
9225
9226 /* PKRU is separately restored in kvm_x86_ops.run. */
9227 __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu->state,
9228 ~XFEATURE_MASK_PKRU);
9229
9230 fpregs_mark_activate();
9231 fpregs_unlock();
9232
9233 trace_kvm_fpu(1);
9234 }
9235
9236 /* When vcpu_run ends, restore user space FPU context. */
kvm_put_guest_fpu(struct kvm_vcpu * vcpu)9237 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
9238 {
9239 fpregs_lock();
9240
9241 kvm_save_current_fpu(vcpu->arch.guest_fpu);
9242
9243 copy_kernel_to_fpregs(&vcpu->arch.user_fpu->state);
9244
9245 fpregs_mark_activate();
9246 fpregs_unlock();
9247
9248 ++vcpu->stat.fpu_reload;
9249 trace_kvm_fpu(0);
9250 }
9251
kvm_arch_vcpu_ioctl_run(struct kvm_vcpu * vcpu)9252 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
9253 {
9254 struct kvm_run *kvm_run = vcpu->run;
9255 int r;
9256
9257 vcpu_load(vcpu);
9258 kvm_sigset_activate(vcpu);
9259 kvm_load_guest_fpu(vcpu);
9260
9261 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
9262 if (kvm_run->immediate_exit) {
9263 r = -EINTR;
9264 goto out;
9265 }
9266 kvm_vcpu_block(vcpu);
9267 kvm_apic_accept_events(vcpu);
9268 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
9269 r = -EAGAIN;
9270 if (signal_pending(current)) {
9271 r = -EINTR;
9272 kvm_run->exit_reason = KVM_EXIT_INTR;
9273 ++vcpu->stat.signal_exits;
9274 }
9275 goto out;
9276 }
9277
9278 if (kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) {
9279 r = -EINVAL;
9280 goto out;
9281 }
9282
9283 if (kvm_run->kvm_dirty_regs) {
9284 r = sync_regs(vcpu);
9285 if (r != 0)
9286 goto out;
9287 }
9288
9289 /* re-sync apic's tpr */
9290 if (!lapic_in_kernel(vcpu)) {
9291 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
9292 r = -EINVAL;
9293 goto out;
9294 }
9295 }
9296
9297 if (unlikely(vcpu->arch.complete_userspace_io)) {
9298 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
9299 vcpu->arch.complete_userspace_io = NULL;
9300 r = cui(vcpu);
9301 if (r <= 0)
9302 goto out;
9303 } else
9304 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
9305
9306 if (kvm_run->immediate_exit)
9307 r = -EINTR;
9308 else
9309 r = vcpu_run(vcpu);
9310
9311 out:
9312 kvm_put_guest_fpu(vcpu);
9313 if (kvm_run->kvm_valid_regs)
9314 store_regs(vcpu);
9315 post_kvm_run_save(vcpu);
9316 kvm_sigset_deactivate(vcpu);
9317
9318 vcpu_put(vcpu);
9319 return r;
9320 }
9321
__get_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)9322 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9323 {
9324 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
9325 /*
9326 * We are here if userspace calls get_regs() in the middle of
9327 * instruction emulation. Registers state needs to be copied
9328 * back from emulation context to vcpu. Userspace shouldn't do
9329 * that usually, but some bad designed PV devices (vmware
9330 * backdoor interface) need this to work
9331 */
9332 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
9333 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9334 }
9335 regs->rax = kvm_rax_read(vcpu);
9336 regs->rbx = kvm_rbx_read(vcpu);
9337 regs->rcx = kvm_rcx_read(vcpu);
9338 regs->rdx = kvm_rdx_read(vcpu);
9339 regs->rsi = kvm_rsi_read(vcpu);
9340 regs->rdi = kvm_rdi_read(vcpu);
9341 regs->rsp = kvm_rsp_read(vcpu);
9342 regs->rbp = kvm_rbp_read(vcpu);
9343 #ifdef CONFIG_X86_64
9344 regs->r8 = kvm_r8_read(vcpu);
9345 regs->r9 = kvm_r9_read(vcpu);
9346 regs->r10 = kvm_r10_read(vcpu);
9347 regs->r11 = kvm_r11_read(vcpu);
9348 regs->r12 = kvm_r12_read(vcpu);
9349 regs->r13 = kvm_r13_read(vcpu);
9350 regs->r14 = kvm_r14_read(vcpu);
9351 regs->r15 = kvm_r15_read(vcpu);
9352 #endif
9353
9354 regs->rip = kvm_rip_read(vcpu);
9355 regs->rflags = kvm_get_rflags(vcpu);
9356 }
9357
kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)9358 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9359 {
9360 vcpu_load(vcpu);
9361 __get_regs(vcpu, regs);
9362 vcpu_put(vcpu);
9363 return 0;
9364 }
9365
__set_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)9366 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9367 {
9368 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
9369 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9370
9371 kvm_rax_write(vcpu, regs->rax);
9372 kvm_rbx_write(vcpu, regs->rbx);
9373 kvm_rcx_write(vcpu, regs->rcx);
9374 kvm_rdx_write(vcpu, regs->rdx);
9375 kvm_rsi_write(vcpu, regs->rsi);
9376 kvm_rdi_write(vcpu, regs->rdi);
9377 kvm_rsp_write(vcpu, regs->rsp);
9378 kvm_rbp_write(vcpu, regs->rbp);
9379 #ifdef CONFIG_X86_64
9380 kvm_r8_write(vcpu, regs->r8);
9381 kvm_r9_write(vcpu, regs->r9);
9382 kvm_r10_write(vcpu, regs->r10);
9383 kvm_r11_write(vcpu, regs->r11);
9384 kvm_r12_write(vcpu, regs->r12);
9385 kvm_r13_write(vcpu, regs->r13);
9386 kvm_r14_write(vcpu, regs->r14);
9387 kvm_r15_write(vcpu, regs->r15);
9388 #endif
9389
9390 kvm_rip_write(vcpu, regs->rip);
9391 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
9392
9393 vcpu->arch.exception.pending = false;
9394
9395 kvm_make_request(KVM_REQ_EVENT, vcpu);
9396 }
9397
kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)9398 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9399 {
9400 vcpu_load(vcpu);
9401 __set_regs(vcpu, regs);
9402 vcpu_put(vcpu);
9403 return 0;
9404 }
9405
kvm_get_cs_db_l_bits(struct kvm_vcpu * vcpu,int * db,int * l)9406 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
9407 {
9408 struct kvm_segment cs;
9409
9410 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
9411 *db = cs.db;
9412 *l = cs.l;
9413 }
9414 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
9415
__get_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)9416 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9417 {
9418 struct desc_ptr dt;
9419
9420 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
9421 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
9422 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
9423 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
9424 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
9425 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
9426
9427 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
9428 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
9429
9430 kvm_x86_ops.get_idt(vcpu, &dt);
9431 sregs->idt.limit = dt.size;
9432 sregs->idt.base = dt.address;
9433 kvm_x86_ops.get_gdt(vcpu, &dt);
9434 sregs->gdt.limit = dt.size;
9435 sregs->gdt.base = dt.address;
9436
9437 sregs->cr0 = kvm_read_cr0(vcpu);
9438 sregs->cr2 = vcpu->arch.cr2;
9439 sregs->cr3 = kvm_read_cr3(vcpu);
9440 sregs->cr4 = kvm_read_cr4(vcpu);
9441 sregs->cr8 = kvm_get_cr8(vcpu);
9442 sregs->efer = vcpu->arch.efer;
9443 sregs->apic_base = kvm_get_apic_base(vcpu);
9444
9445 memset(sregs->interrupt_bitmap, 0, sizeof(sregs->interrupt_bitmap));
9446
9447 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
9448 set_bit(vcpu->arch.interrupt.nr,
9449 (unsigned long *)sregs->interrupt_bitmap);
9450 }
9451
kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)9452 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
9453 struct kvm_sregs *sregs)
9454 {
9455 vcpu_load(vcpu);
9456 __get_sregs(vcpu, sregs);
9457 vcpu_put(vcpu);
9458 return 0;
9459 }
9460
kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)9461 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
9462 struct kvm_mp_state *mp_state)
9463 {
9464 vcpu_load(vcpu);
9465 if (kvm_mpx_supported())
9466 kvm_load_guest_fpu(vcpu);
9467
9468 kvm_apic_accept_events(vcpu);
9469 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
9470 vcpu->arch.pv.pv_unhalted)
9471 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
9472 else
9473 mp_state->mp_state = vcpu->arch.mp_state;
9474
9475 if (kvm_mpx_supported())
9476 kvm_put_guest_fpu(vcpu);
9477 vcpu_put(vcpu);
9478 return 0;
9479 }
9480
kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)9481 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
9482 struct kvm_mp_state *mp_state)
9483 {
9484 int ret = -EINVAL;
9485
9486 vcpu_load(vcpu);
9487
9488 if (!lapic_in_kernel(vcpu) &&
9489 mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
9490 goto out;
9491
9492 /*
9493 * KVM_MP_STATE_INIT_RECEIVED means the processor is in
9494 * INIT state; latched init should be reported using
9495 * KVM_SET_VCPU_EVENTS, so reject it here.
9496 */
9497 if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) &&
9498 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
9499 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
9500 goto out;
9501
9502 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
9503 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
9504 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
9505 } else
9506 vcpu->arch.mp_state = mp_state->mp_state;
9507 kvm_make_request(KVM_REQ_EVENT, vcpu);
9508
9509 ret = 0;
9510 out:
9511 vcpu_put(vcpu);
9512 return ret;
9513 }
9514
kvm_task_switch(struct kvm_vcpu * vcpu,u16 tss_selector,int idt_index,int reason,bool has_error_code,u32 error_code)9515 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
9516 int reason, bool has_error_code, u32 error_code)
9517 {
9518 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9519 int ret;
9520
9521 init_emulate_ctxt(vcpu);
9522
9523 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
9524 has_error_code, error_code);
9525 if (ret) {
9526 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
9527 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
9528 vcpu->run->internal.ndata = 0;
9529 return 0;
9530 }
9531
9532 kvm_rip_write(vcpu, ctxt->eip);
9533 kvm_set_rflags(vcpu, ctxt->eflags);
9534 return 1;
9535 }
9536 EXPORT_SYMBOL_GPL(kvm_task_switch);
9537
kvm_valid_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)9538 static int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9539 {
9540 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
9541 /*
9542 * When EFER.LME and CR0.PG are set, the processor is in
9543 * 64-bit mode (though maybe in a 32-bit code segment).
9544 * CR4.PAE and EFER.LMA must be set.
9545 */
9546 if (!(sregs->cr4 & X86_CR4_PAE)
9547 || !(sregs->efer & EFER_LMA))
9548 return -EINVAL;
9549 } else {
9550 /*
9551 * Not in 64-bit mode: EFER.LMA is clear and the code
9552 * segment cannot be 64-bit.
9553 */
9554 if (sregs->efer & EFER_LMA || sregs->cs.l)
9555 return -EINVAL;
9556 }
9557
9558 return kvm_valid_cr4(vcpu, sregs->cr4);
9559 }
9560
__set_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)9561 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9562 {
9563 struct msr_data apic_base_msr;
9564 int mmu_reset_needed = 0;
9565 int cpuid_update_needed = 0;
9566 int pending_vec, max_bits, idx;
9567 struct desc_ptr dt;
9568 int ret = -EINVAL;
9569
9570 if (kvm_valid_sregs(vcpu, sregs))
9571 goto out;
9572
9573 apic_base_msr.data = sregs->apic_base;
9574 apic_base_msr.host_initiated = true;
9575 if (kvm_set_apic_base(vcpu, &apic_base_msr))
9576 goto out;
9577
9578 dt.size = sregs->idt.limit;
9579 dt.address = sregs->idt.base;
9580 kvm_x86_ops.set_idt(vcpu, &dt);
9581 dt.size = sregs->gdt.limit;
9582 dt.address = sregs->gdt.base;
9583 kvm_x86_ops.set_gdt(vcpu, &dt);
9584
9585 vcpu->arch.cr2 = sregs->cr2;
9586 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
9587 vcpu->arch.cr3 = sregs->cr3;
9588 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
9589
9590 kvm_set_cr8(vcpu, sregs->cr8);
9591
9592 mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
9593 kvm_x86_ops.set_efer(vcpu, sregs->efer);
9594
9595 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
9596 kvm_x86_ops.set_cr0(vcpu, sregs->cr0);
9597 vcpu->arch.cr0 = sregs->cr0;
9598
9599 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
9600 cpuid_update_needed |= ((kvm_read_cr4(vcpu) ^ sregs->cr4) &
9601 (X86_CR4_OSXSAVE | X86_CR4_PKE));
9602 kvm_x86_ops.set_cr4(vcpu, sregs->cr4);
9603 if (cpuid_update_needed)
9604 kvm_update_cpuid_runtime(vcpu);
9605
9606 idx = srcu_read_lock(&vcpu->kvm->srcu);
9607 if (is_pae_paging(vcpu)) {
9608 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
9609 mmu_reset_needed = 1;
9610 }
9611 srcu_read_unlock(&vcpu->kvm->srcu, idx);
9612
9613 if (mmu_reset_needed)
9614 kvm_mmu_reset_context(vcpu);
9615
9616 max_bits = KVM_NR_INTERRUPTS;
9617 pending_vec = find_first_bit(
9618 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
9619 if (pending_vec < max_bits) {
9620 kvm_queue_interrupt(vcpu, pending_vec, false);
9621 pr_debug("Set back pending irq %d\n", pending_vec);
9622 }
9623
9624 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
9625 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
9626 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
9627 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
9628 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
9629 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
9630
9631 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
9632 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
9633
9634 update_cr8_intercept(vcpu);
9635
9636 /* Older userspace won't unhalt the vcpu on reset. */
9637 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
9638 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
9639 !is_protmode(vcpu))
9640 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9641
9642 kvm_make_request(KVM_REQ_EVENT, vcpu);
9643
9644 ret = 0;
9645 out:
9646 return ret;
9647 }
9648
kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)9649 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
9650 struct kvm_sregs *sregs)
9651 {
9652 int ret;
9653
9654 vcpu_load(vcpu);
9655 ret = __set_sregs(vcpu, sregs);
9656 vcpu_put(vcpu);
9657 return ret;
9658 }
9659
kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu * vcpu,struct kvm_guest_debug * dbg)9660 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
9661 struct kvm_guest_debug *dbg)
9662 {
9663 unsigned long rflags;
9664 int i, r;
9665
9666 vcpu_load(vcpu);
9667
9668 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
9669 r = -EBUSY;
9670 if (vcpu->arch.exception.pending)
9671 goto out;
9672 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
9673 kvm_queue_exception(vcpu, DB_VECTOR);
9674 else
9675 kvm_queue_exception(vcpu, BP_VECTOR);
9676 }
9677
9678 /*
9679 * Read rflags as long as potentially injected trace flags are still
9680 * filtered out.
9681 */
9682 rflags = kvm_get_rflags(vcpu);
9683
9684 vcpu->guest_debug = dbg->control;
9685 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
9686 vcpu->guest_debug = 0;
9687
9688 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
9689 for (i = 0; i < KVM_NR_DB_REGS; ++i)
9690 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
9691 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
9692 } else {
9693 for (i = 0; i < KVM_NR_DB_REGS; i++)
9694 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
9695 }
9696 kvm_update_dr7(vcpu);
9697
9698 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9699 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
9700 get_segment_base(vcpu, VCPU_SREG_CS);
9701
9702 /*
9703 * Trigger an rflags update that will inject or remove the trace
9704 * flags.
9705 */
9706 kvm_set_rflags(vcpu, rflags);
9707
9708 kvm_x86_ops.update_exception_bitmap(vcpu);
9709
9710 r = 0;
9711
9712 out:
9713 vcpu_put(vcpu);
9714 return r;
9715 }
9716
9717 /*
9718 * Translate a guest virtual address to a guest physical address.
9719 */
kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu * vcpu,struct kvm_translation * tr)9720 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
9721 struct kvm_translation *tr)
9722 {
9723 unsigned long vaddr = tr->linear_address;
9724 gpa_t gpa;
9725 int idx;
9726
9727 vcpu_load(vcpu);
9728
9729 idx = srcu_read_lock(&vcpu->kvm->srcu);
9730 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
9731 srcu_read_unlock(&vcpu->kvm->srcu, idx);
9732 tr->physical_address = gpa;
9733 tr->valid = gpa != UNMAPPED_GVA;
9734 tr->writeable = 1;
9735 tr->usermode = 0;
9736
9737 vcpu_put(vcpu);
9738 return 0;
9739 }
9740
kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)9741 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
9742 {
9743 struct fxregs_state *fxsave;
9744
9745 vcpu_load(vcpu);
9746
9747 fxsave = &vcpu->arch.guest_fpu->state.fxsave;
9748 memcpy(fpu->fpr, fxsave->st_space, 128);
9749 fpu->fcw = fxsave->cwd;
9750 fpu->fsw = fxsave->swd;
9751 fpu->ftwx = fxsave->twd;
9752 fpu->last_opcode = fxsave->fop;
9753 fpu->last_ip = fxsave->rip;
9754 fpu->last_dp = fxsave->rdp;
9755 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
9756
9757 vcpu_put(vcpu);
9758 return 0;
9759 }
9760
kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)9761 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
9762 {
9763 struct fxregs_state *fxsave;
9764
9765 vcpu_load(vcpu);
9766
9767 fxsave = &vcpu->arch.guest_fpu->state.fxsave;
9768
9769 memcpy(fxsave->st_space, fpu->fpr, 128);
9770 fxsave->cwd = fpu->fcw;
9771 fxsave->swd = fpu->fsw;
9772 fxsave->twd = fpu->ftwx;
9773 fxsave->fop = fpu->last_opcode;
9774 fxsave->rip = fpu->last_ip;
9775 fxsave->rdp = fpu->last_dp;
9776 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
9777
9778 vcpu_put(vcpu);
9779 return 0;
9780 }
9781
store_regs(struct kvm_vcpu * vcpu)9782 static void store_regs(struct kvm_vcpu *vcpu)
9783 {
9784 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
9785
9786 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
9787 __get_regs(vcpu, &vcpu->run->s.regs.regs);
9788
9789 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
9790 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
9791
9792 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
9793 kvm_vcpu_ioctl_x86_get_vcpu_events(
9794 vcpu, &vcpu->run->s.regs.events);
9795 }
9796
sync_regs(struct kvm_vcpu * vcpu)9797 static int sync_regs(struct kvm_vcpu *vcpu)
9798 {
9799 if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)
9800 return -EINVAL;
9801
9802 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
9803 __set_regs(vcpu, &vcpu->run->s.regs.regs);
9804 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
9805 }
9806 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
9807 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
9808 return -EINVAL;
9809 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
9810 }
9811 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
9812 if (kvm_vcpu_ioctl_x86_set_vcpu_events(
9813 vcpu, &vcpu->run->s.regs.events))
9814 return -EINVAL;
9815 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
9816 }
9817
9818 return 0;
9819 }
9820
fx_init(struct kvm_vcpu * vcpu)9821 static void fx_init(struct kvm_vcpu *vcpu)
9822 {
9823 fpstate_init(&vcpu->arch.guest_fpu->state);
9824 if (boot_cpu_has(X86_FEATURE_XSAVES))
9825 vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv =
9826 host_xcr0 | XSTATE_COMPACTION_ENABLED;
9827
9828 /*
9829 * Ensure guest xcr0 is valid for loading
9830 */
9831 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
9832
9833 vcpu->arch.cr0 |= X86_CR0_ET;
9834 }
9835
kvm_arch_vcpu_precreate(struct kvm * kvm,unsigned int id)9836 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
9837 {
9838 if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
9839 pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
9840 "guest TSC will not be reliable\n");
9841
9842 return 0;
9843 }
9844
kvm_arch_vcpu_create(struct kvm_vcpu * vcpu)9845 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
9846 {
9847 struct page *page;
9848 int r;
9849
9850 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
9851 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9852 else
9853 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
9854
9855 kvm_set_tsc_khz(vcpu, max_tsc_khz);
9856
9857 r = kvm_mmu_create(vcpu);
9858 if (r < 0)
9859 return r;
9860
9861 if (irqchip_in_kernel(vcpu->kvm)) {
9862 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
9863 if (r < 0)
9864 goto fail_mmu_destroy;
9865 if (kvm_apicv_activated(vcpu->kvm))
9866 vcpu->arch.apicv_active = true;
9867 } else
9868 static_key_slow_inc(&kvm_no_apic_vcpu);
9869
9870 r = -ENOMEM;
9871
9872 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
9873 if (!page)
9874 goto fail_free_lapic;
9875 vcpu->arch.pio_data = page_address(page);
9876
9877 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
9878 GFP_KERNEL_ACCOUNT);
9879 if (!vcpu->arch.mce_banks)
9880 goto fail_free_pio_data;
9881 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
9882
9883 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
9884 GFP_KERNEL_ACCOUNT))
9885 goto fail_free_mce_banks;
9886
9887 if (!alloc_emulate_ctxt(vcpu))
9888 goto free_wbinvd_dirty_mask;
9889
9890 vcpu->arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache,
9891 GFP_KERNEL_ACCOUNT);
9892 if (!vcpu->arch.user_fpu) {
9893 pr_err("kvm: failed to allocate userspace's fpu\n");
9894 goto free_emulate_ctxt;
9895 }
9896
9897 vcpu->arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache,
9898 GFP_KERNEL_ACCOUNT);
9899 if (!vcpu->arch.guest_fpu) {
9900 pr_err("kvm: failed to allocate vcpu's fpu\n");
9901 goto free_user_fpu;
9902 }
9903 fx_init(vcpu);
9904
9905 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
9906
9907 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
9908
9909 kvm_async_pf_hash_reset(vcpu);
9910 kvm_pmu_init(vcpu);
9911
9912 vcpu->arch.pending_external_vector = -1;
9913 vcpu->arch.preempted_in_kernel = false;
9914
9915 kvm_hv_vcpu_init(vcpu);
9916
9917 r = kvm_x86_ops.vcpu_create(vcpu);
9918 if (r)
9919 goto free_guest_fpu;
9920
9921 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
9922 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
9923 kvm_vcpu_mtrr_init(vcpu);
9924 vcpu_load(vcpu);
9925 kvm_vcpu_reset(vcpu, false);
9926 kvm_init_mmu(vcpu, false);
9927 vcpu_put(vcpu);
9928 return 0;
9929
9930 free_guest_fpu:
9931 kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu);
9932 free_user_fpu:
9933 kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
9934 free_emulate_ctxt:
9935 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
9936 free_wbinvd_dirty_mask:
9937 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
9938 fail_free_mce_banks:
9939 kfree(vcpu->arch.mce_banks);
9940 fail_free_pio_data:
9941 free_page((unsigned long)vcpu->arch.pio_data);
9942 fail_free_lapic:
9943 kvm_free_lapic(vcpu);
9944 fail_mmu_destroy:
9945 kvm_mmu_destroy(vcpu);
9946 return r;
9947 }
9948
kvm_arch_vcpu_postcreate(struct kvm_vcpu * vcpu)9949 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
9950 {
9951 struct kvm *kvm = vcpu->kvm;
9952
9953 kvm_hv_vcpu_postcreate(vcpu);
9954
9955 if (mutex_lock_killable(&vcpu->mutex))
9956 return;
9957 vcpu_load(vcpu);
9958 kvm_synchronize_tsc(vcpu, 0);
9959 vcpu_put(vcpu);
9960
9961 /* poll control enabled by default */
9962 vcpu->arch.msr_kvm_poll_control = 1;
9963
9964 mutex_unlock(&vcpu->mutex);
9965
9966 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
9967 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
9968 KVMCLOCK_SYNC_PERIOD);
9969 }
9970
kvm_arch_vcpu_destroy(struct kvm_vcpu * vcpu)9971 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
9972 {
9973 struct gfn_to_pfn_cache *cache = &vcpu->arch.st.cache;
9974 int idx;
9975
9976 kvm_release_pfn(cache->pfn, cache->dirty, cache);
9977
9978 kvmclock_reset(vcpu);
9979
9980 kvm_x86_ops.vcpu_free(vcpu);
9981
9982 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
9983 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
9984 kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
9985 kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu);
9986
9987 kvm_hv_vcpu_uninit(vcpu);
9988 kvm_pmu_destroy(vcpu);
9989 kfree(vcpu->arch.mce_banks);
9990 kvm_free_lapic(vcpu);
9991 idx = srcu_read_lock(&vcpu->kvm->srcu);
9992 kvm_mmu_destroy(vcpu);
9993 srcu_read_unlock(&vcpu->kvm->srcu, idx);
9994 free_page((unsigned long)vcpu->arch.pio_data);
9995 kvfree(vcpu->arch.cpuid_entries);
9996 if (!lapic_in_kernel(vcpu))
9997 static_key_slow_dec(&kvm_no_apic_vcpu);
9998 }
9999
kvm_vcpu_reset(struct kvm_vcpu * vcpu,bool init_event)10000 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
10001 {
10002 kvm_lapic_reset(vcpu, init_event);
10003
10004 vcpu->arch.hflags = 0;
10005
10006 vcpu->arch.smi_pending = 0;
10007 vcpu->arch.smi_count = 0;
10008 atomic_set(&vcpu->arch.nmi_queued, 0);
10009 vcpu->arch.nmi_pending = 0;
10010 vcpu->arch.nmi_injected = false;
10011 kvm_clear_interrupt_queue(vcpu);
10012 kvm_clear_exception_queue(vcpu);
10013
10014 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
10015 kvm_update_dr0123(vcpu);
10016 vcpu->arch.dr6 = DR6_INIT;
10017 vcpu->arch.dr7 = DR7_FIXED_1;
10018 kvm_update_dr7(vcpu);
10019
10020 vcpu->arch.cr2 = 0;
10021
10022 kvm_make_request(KVM_REQ_EVENT, vcpu);
10023 vcpu->arch.apf.msr_en_val = 0;
10024 vcpu->arch.apf.msr_int_val = 0;
10025 vcpu->arch.st.msr_val = 0;
10026
10027 kvmclock_reset(vcpu);
10028
10029 kvm_clear_async_pf_completion_queue(vcpu);
10030 kvm_async_pf_hash_reset(vcpu);
10031 vcpu->arch.apf.halted = false;
10032
10033 if (kvm_mpx_supported()) {
10034 void *mpx_state_buffer;
10035
10036 /*
10037 * To avoid have the INIT path from kvm_apic_has_events() that be
10038 * called with loaded FPU and does not let userspace fix the state.
10039 */
10040 if (init_event)
10041 kvm_put_guest_fpu(vcpu);
10042 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
10043 XFEATURE_BNDREGS);
10044 if (mpx_state_buffer)
10045 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
10046 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
10047 XFEATURE_BNDCSR);
10048 if (mpx_state_buffer)
10049 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
10050 if (init_event)
10051 kvm_load_guest_fpu(vcpu);
10052 }
10053
10054 if (!init_event) {
10055 kvm_pmu_reset(vcpu);
10056 vcpu->arch.smbase = 0x30000;
10057
10058 vcpu->arch.msr_misc_features_enables = 0;
10059
10060 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
10061 }
10062
10063 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
10064 vcpu->arch.regs_avail = ~0;
10065 vcpu->arch.regs_dirty = ~0;
10066
10067 vcpu->arch.ia32_xss = 0;
10068
10069 kvm_x86_ops.vcpu_reset(vcpu, init_event);
10070 }
10071
kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu * vcpu,u8 vector)10072 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
10073 {
10074 struct kvm_segment cs;
10075
10076 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
10077 cs.selector = vector << 8;
10078 cs.base = vector << 12;
10079 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
10080 kvm_rip_write(vcpu, 0);
10081 }
10082
kvm_arch_hardware_enable(void)10083 int kvm_arch_hardware_enable(void)
10084 {
10085 struct kvm *kvm;
10086 struct kvm_vcpu *vcpu;
10087 int i;
10088 int ret;
10089 u64 local_tsc;
10090 u64 max_tsc = 0;
10091 bool stable, backwards_tsc = false;
10092
10093 kvm_user_return_msr_cpu_online();
10094 ret = kvm_x86_ops.hardware_enable();
10095 if (ret != 0)
10096 return ret;
10097
10098 local_tsc = rdtsc();
10099 stable = !kvm_check_tsc_unstable();
10100 list_for_each_entry(kvm, &vm_list, vm_list) {
10101 kvm_for_each_vcpu(i, vcpu, kvm) {
10102 if (!stable && vcpu->cpu == smp_processor_id())
10103 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
10104 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
10105 backwards_tsc = true;
10106 if (vcpu->arch.last_host_tsc > max_tsc)
10107 max_tsc = vcpu->arch.last_host_tsc;
10108 }
10109 }
10110 }
10111
10112 /*
10113 * Sometimes, even reliable TSCs go backwards. This happens on
10114 * platforms that reset TSC during suspend or hibernate actions, but
10115 * maintain synchronization. We must compensate. Fortunately, we can
10116 * detect that condition here, which happens early in CPU bringup,
10117 * before any KVM threads can be running. Unfortunately, we can't
10118 * bring the TSCs fully up to date with real time, as we aren't yet far
10119 * enough into CPU bringup that we know how much real time has actually
10120 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
10121 * variables that haven't been updated yet.
10122 *
10123 * So we simply find the maximum observed TSC above, then record the
10124 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
10125 * the adjustment will be applied. Note that we accumulate
10126 * adjustments, in case multiple suspend cycles happen before some VCPU
10127 * gets a chance to run again. In the event that no KVM threads get a
10128 * chance to run, we will miss the entire elapsed period, as we'll have
10129 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
10130 * loose cycle time. This isn't too big a deal, since the loss will be
10131 * uniform across all VCPUs (not to mention the scenario is extremely
10132 * unlikely). It is possible that a second hibernate recovery happens
10133 * much faster than a first, causing the observed TSC here to be
10134 * smaller; this would require additional padding adjustment, which is
10135 * why we set last_host_tsc to the local tsc observed here.
10136 *
10137 * N.B. - this code below runs only on platforms with reliable TSC,
10138 * as that is the only way backwards_tsc is set above. Also note
10139 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
10140 * have the same delta_cyc adjustment applied if backwards_tsc
10141 * is detected. Note further, this adjustment is only done once,
10142 * as we reset last_host_tsc on all VCPUs to stop this from being
10143 * called multiple times (one for each physical CPU bringup).
10144 *
10145 * Platforms with unreliable TSCs don't have to deal with this, they
10146 * will be compensated by the logic in vcpu_load, which sets the TSC to
10147 * catchup mode. This will catchup all VCPUs to real time, but cannot
10148 * guarantee that they stay in perfect synchronization.
10149 */
10150 if (backwards_tsc) {
10151 u64 delta_cyc = max_tsc - local_tsc;
10152 list_for_each_entry(kvm, &vm_list, vm_list) {
10153 kvm->arch.backwards_tsc_observed = true;
10154 kvm_for_each_vcpu(i, vcpu, kvm) {
10155 vcpu->arch.tsc_offset_adjustment += delta_cyc;
10156 vcpu->arch.last_host_tsc = local_tsc;
10157 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
10158 }
10159
10160 /*
10161 * We have to disable TSC offset matching.. if you were
10162 * booting a VM while issuing an S4 host suspend....
10163 * you may have some problem. Solving this issue is
10164 * left as an exercise to the reader.
10165 */
10166 kvm->arch.last_tsc_nsec = 0;
10167 kvm->arch.last_tsc_write = 0;
10168 }
10169
10170 }
10171 return 0;
10172 }
10173
kvm_arch_hardware_disable(void)10174 void kvm_arch_hardware_disable(void)
10175 {
10176 kvm_x86_ops.hardware_disable();
10177 drop_user_return_notifiers();
10178 }
10179
kvm_arch_hardware_setup(void * opaque)10180 int kvm_arch_hardware_setup(void *opaque)
10181 {
10182 struct kvm_x86_init_ops *ops = opaque;
10183 int r;
10184
10185 rdmsrl_safe(MSR_EFER, &host_efer);
10186
10187 if (boot_cpu_has(X86_FEATURE_XSAVES))
10188 rdmsrl(MSR_IA32_XSS, host_xss);
10189
10190 r = ops->hardware_setup();
10191 if (r != 0)
10192 return r;
10193
10194 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
10195
10196 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
10197 supported_xss = 0;
10198
10199 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
10200 cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
10201 #undef __kvm_cpu_cap_has
10202
10203 if (kvm_has_tsc_control) {
10204 /*
10205 * Make sure the user can only configure tsc_khz values that
10206 * fit into a signed integer.
10207 * A min value is not calculated because it will always
10208 * be 1 on all machines.
10209 */
10210 u64 max = min(0x7fffffffULL,
10211 __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
10212 kvm_max_guest_tsc_khz = max;
10213
10214 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
10215 }
10216
10217 kvm_init_msr_list();
10218 return 0;
10219 }
10220
kvm_arch_hardware_unsetup(void)10221 void kvm_arch_hardware_unsetup(void)
10222 {
10223 kvm_x86_ops.hardware_unsetup();
10224 }
10225
kvm_arch_check_processor_compat(void * opaque)10226 int kvm_arch_check_processor_compat(void *opaque)
10227 {
10228 struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
10229 struct kvm_x86_init_ops *ops = opaque;
10230
10231 WARN_ON(!irqs_disabled());
10232
10233 if (__cr4_reserved_bits(cpu_has, c) !=
10234 __cr4_reserved_bits(cpu_has, &boot_cpu_data))
10235 return -EIO;
10236
10237 return ops->check_processor_compatibility();
10238 }
10239
kvm_vcpu_is_reset_bsp(struct kvm_vcpu * vcpu)10240 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
10241 {
10242 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
10243 }
10244 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
10245
kvm_vcpu_is_bsp(struct kvm_vcpu * vcpu)10246 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
10247 {
10248 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
10249 }
10250
10251 struct static_key kvm_no_apic_vcpu __read_mostly;
10252 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
10253
kvm_arch_sched_in(struct kvm_vcpu * vcpu,int cpu)10254 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
10255 {
10256 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
10257
10258 vcpu->arch.l1tf_flush_l1d = true;
10259 if (pmu->version && unlikely(pmu->event_count)) {
10260 pmu->need_cleanup = true;
10261 kvm_make_request(KVM_REQ_PMU, vcpu);
10262 }
10263 kvm_x86_ops.sched_in(vcpu, cpu);
10264 }
10265
kvm_arch_free_vm(struct kvm * kvm)10266 void kvm_arch_free_vm(struct kvm *kvm)
10267 {
10268 kfree(kvm->arch.hyperv.hv_pa_pg);
10269 vfree(kvm);
10270 }
10271
10272
kvm_arch_init_vm(struct kvm * kvm,unsigned long type)10273 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
10274 {
10275 if (type)
10276 return -EINVAL;
10277
10278 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
10279 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
10280 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
10281 INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages);
10282 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
10283 atomic_set(&kvm->arch.noncoherent_dma_count, 0);
10284
10285 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
10286 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
10287 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
10288 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
10289 &kvm->arch.irq_sources_bitmap);
10290
10291 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
10292 mutex_init(&kvm->arch.apic_map_lock);
10293 spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
10294
10295 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
10296 pvclock_update_vm_gtod_copy(kvm);
10297
10298 kvm->arch.guest_can_read_msr_platform_info = true;
10299
10300 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
10301 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
10302
10303 kvm_hv_init_vm(kvm);
10304 kvm_page_track_init(kvm);
10305 kvm_mmu_init_vm(kvm);
10306
10307 return kvm_x86_ops.vm_init(kvm);
10308 }
10309
kvm_arch_post_init_vm(struct kvm * kvm)10310 int kvm_arch_post_init_vm(struct kvm *kvm)
10311 {
10312 return kvm_mmu_post_init_vm(kvm);
10313 }
10314
kvm_unload_vcpu_mmu(struct kvm_vcpu * vcpu)10315 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
10316 {
10317 vcpu_load(vcpu);
10318 kvm_mmu_unload(vcpu);
10319 vcpu_put(vcpu);
10320 }
10321
kvm_free_vcpus(struct kvm * kvm)10322 static void kvm_free_vcpus(struct kvm *kvm)
10323 {
10324 unsigned int i;
10325 struct kvm_vcpu *vcpu;
10326
10327 /*
10328 * Unpin any mmu pages first.
10329 */
10330 kvm_for_each_vcpu(i, vcpu, kvm) {
10331 kvm_clear_async_pf_completion_queue(vcpu);
10332 kvm_unload_vcpu_mmu(vcpu);
10333 }
10334 kvm_for_each_vcpu(i, vcpu, kvm)
10335 kvm_vcpu_destroy(vcpu);
10336
10337 mutex_lock(&kvm->lock);
10338 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
10339 kvm->vcpus[i] = NULL;
10340
10341 atomic_set(&kvm->online_vcpus, 0);
10342 mutex_unlock(&kvm->lock);
10343 }
10344
kvm_arch_sync_events(struct kvm * kvm)10345 void kvm_arch_sync_events(struct kvm *kvm)
10346 {
10347 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
10348 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
10349 kvm_free_pit(kvm);
10350 }
10351
__x86_set_memory_region(struct kvm * kvm,int id,gpa_t gpa,u32 size)10352 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
10353 {
10354 int i, r;
10355 unsigned long hva, old_npages;
10356 struct kvm_memslots *slots = kvm_memslots(kvm);
10357 struct kvm_memory_slot *slot;
10358
10359 /* Called with kvm->slots_lock held. */
10360 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
10361 return -EINVAL;
10362
10363 slot = id_to_memslot(slots, id);
10364 if (size) {
10365 if (slot && slot->npages)
10366 return -EEXIST;
10367
10368 /*
10369 * MAP_SHARED to prevent internal slot pages from being moved
10370 * by fork()/COW.
10371 */
10372 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
10373 MAP_SHARED | MAP_ANONYMOUS, 0);
10374 if (IS_ERR((void *)hva))
10375 return PTR_ERR((void *)hva);
10376 } else {
10377 if (!slot || !slot->npages)
10378 return 0;
10379
10380 old_npages = slot->npages;
10381 hva = 0;
10382 }
10383
10384 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
10385 struct kvm_userspace_memory_region m;
10386
10387 m.slot = id | (i << 16);
10388 m.flags = 0;
10389 m.guest_phys_addr = gpa;
10390 m.userspace_addr = hva;
10391 m.memory_size = size;
10392 r = __kvm_set_memory_region(kvm, &m);
10393 if (r < 0)
10394 return r;
10395 }
10396
10397 if (!size)
10398 vm_munmap(hva, old_npages * PAGE_SIZE);
10399
10400 return 0;
10401 }
10402 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
10403
kvm_arch_pre_destroy_vm(struct kvm * kvm)10404 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
10405 {
10406 kvm_mmu_pre_destroy_vm(kvm);
10407 }
10408
kvm_arch_destroy_vm(struct kvm * kvm)10409 void kvm_arch_destroy_vm(struct kvm *kvm)
10410 {
10411 u32 i;
10412
10413 if (current->mm == kvm->mm) {
10414 /*
10415 * Free memory regions allocated on behalf of userspace,
10416 * unless the the memory map has changed due to process exit
10417 * or fd copying.
10418 */
10419 mutex_lock(&kvm->slots_lock);
10420 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
10421 0, 0);
10422 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
10423 0, 0);
10424 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
10425 mutex_unlock(&kvm->slots_lock);
10426 }
10427 if (kvm_x86_ops.vm_destroy)
10428 kvm_x86_ops.vm_destroy(kvm);
10429 for (i = 0; i < kvm->arch.msr_filter.count; i++)
10430 kfree(kvm->arch.msr_filter.ranges[i].bitmap);
10431 kvm_pic_destroy(kvm);
10432 kvm_ioapic_destroy(kvm);
10433 kvm_free_vcpus(kvm);
10434 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
10435 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
10436 kvm_mmu_uninit_vm(kvm);
10437 kvm_page_track_cleanup(kvm);
10438 kvm_hv_destroy_vm(kvm);
10439 }
10440
kvm_arch_free_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)10441 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
10442 {
10443 int i;
10444
10445 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10446 kvfree(slot->arch.rmap[i]);
10447 slot->arch.rmap[i] = NULL;
10448
10449 if (i == 0)
10450 continue;
10451
10452 kvfree(slot->arch.lpage_info[i - 1]);
10453 slot->arch.lpage_info[i - 1] = NULL;
10454 }
10455
10456 kvm_page_track_free_memslot(slot);
10457 }
10458
kvm_alloc_memslot_metadata(struct kvm_memory_slot * slot,unsigned long npages)10459 static int kvm_alloc_memslot_metadata(struct kvm_memory_slot *slot,
10460 unsigned long npages)
10461 {
10462 int i;
10463
10464 /*
10465 * Clear out the previous array pointers for the KVM_MR_MOVE case. The
10466 * old arrays will be freed by __kvm_set_memory_region() if installing
10467 * the new memslot is successful.
10468 */
10469 memset(&slot->arch, 0, sizeof(slot->arch));
10470
10471 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10472 struct kvm_lpage_info *linfo;
10473 unsigned long ugfn;
10474 int lpages;
10475 int level = i + 1;
10476
10477 lpages = gfn_to_index(slot->base_gfn + npages - 1,
10478 slot->base_gfn, level) + 1;
10479
10480 slot->arch.rmap[i] =
10481 kvcalloc(lpages, sizeof(*slot->arch.rmap[i]),
10482 GFP_KERNEL_ACCOUNT);
10483 if (!slot->arch.rmap[i])
10484 goto out_free;
10485 if (i == 0)
10486 continue;
10487
10488 linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
10489 if (!linfo)
10490 goto out_free;
10491
10492 slot->arch.lpage_info[i - 1] = linfo;
10493
10494 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
10495 linfo[0].disallow_lpage = 1;
10496 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
10497 linfo[lpages - 1].disallow_lpage = 1;
10498 ugfn = slot->userspace_addr >> PAGE_SHIFT;
10499 /*
10500 * If the gfn and userspace address are not aligned wrt each
10501 * other, disable large page support for this slot.
10502 */
10503 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
10504 unsigned long j;
10505
10506 for (j = 0; j < lpages; ++j)
10507 linfo[j].disallow_lpage = 1;
10508 }
10509 }
10510
10511 if (kvm_page_track_create_memslot(slot, npages))
10512 goto out_free;
10513
10514 return 0;
10515
10516 out_free:
10517 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10518 kvfree(slot->arch.rmap[i]);
10519 slot->arch.rmap[i] = NULL;
10520 if (i == 0)
10521 continue;
10522
10523 kvfree(slot->arch.lpage_info[i - 1]);
10524 slot->arch.lpage_info[i - 1] = NULL;
10525 }
10526 return -ENOMEM;
10527 }
10528
kvm_arch_memslots_updated(struct kvm * kvm,u64 gen)10529 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
10530 {
10531 struct kvm_vcpu *vcpu;
10532 int i;
10533
10534 /*
10535 * memslots->generation has been incremented.
10536 * mmio generation may have reached its maximum value.
10537 */
10538 kvm_mmu_invalidate_mmio_sptes(kvm, gen);
10539
10540 /* Force re-initialization of steal_time cache */
10541 kvm_for_each_vcpu(i, vcpu, kvm)
10542 kvm_vcpu_kick(vcpu);
10543 }
10544
kvm_arch_prepare_memory_region(struct kvm * kvm,struct kvm_memory_slot * memslot,const struct kvm_userspace_memory_region * mem,enum kvm_mr_change change)10545 int kvm_arch_prepare_memory_region(struct kvm *kvm,
10546 struct kvm_memory_slot *memslot,
10547 const struct kvm_userspace_memory_region *mem,
10548 enum kvm_mr_change change)
10549 {
10550 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE)
10551 return kvm_alloc_memslot_metadata(memslot,
10552 mem->memory_size >> PAGE_SHIFT);
10553 return 0;
10554 }
10555
kvm_mmu_slot_apply_flags(struct kvm * kvm,struct kvm_memory_slot * old,struct kvm_memory_slot * new,enum kvm_mr_change change)10556 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
10557 struct kvm_memory_slot *old,
10558 struct kvm_memory_slot *new,
10559 enum kvm_mr_change change)
10560 {
10561 /*
10562 * Nothing to do for RO slots or CREATE/MOVE/DELETE of a slot.
10563 * See comments below.
10564 */
10565 if ((change != KVM_MR_FLAGS_ONLY) || (new->flags & KVM_MEM_READONLY))
10566 return;
10567
10568 /*
10569 * Dirty logging tracks sptes in 4k granularity, meaning that large
10570 * sptes have to be split. If live migration is successful, the guest
10571 * in the source machine will be destroyed and large sptes will be
10572 * created in the destination. However, if the guest continues to run
10573 * in the source machine (for example if live migration fails), small
10574 * sptes will remain around and cause bad performance.
10575 *
10576 * Scan sptes if dirty logging has been stopped, dropping those
10577 * which can be collapsed into a single large-page spte. Later
10578 * page faults will create the large-page sptes.
10579 *
10580 * There is no need to do this in any of the following cases:
10581 * CREATE: No dirty mappings will already exist.
10582 * MOVE/DELETE: The old mappings will already have been cleaned up by
10583 * kvm_arch_flush_shadow_memslot()
10584 */
10585 if ((old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
10586 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
10587 kvm_mmu_zap_collapsible_sptes(kvm, new);
10588
10589 /*
10590 * Enable or disable dirty logging for the slot.
10591 *
10592 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of the old
10593 * slot have been zapped so no dirty logging updates are needed for
10594 * the old slot.
10595 * For KVM_MR_CREATE and KVM_MR_MOVE, once the new slot is visible
10596 * any mappings that might be created in it will consume the
10597 * properties of the new slot and do not need to be updated here.
10598 *
10599 * When PML is enabled, the kvm_x86_ops dirty logging hooks are
10600 * called to enable/disable dirty logging.
10601 *
10602 * When disabling dirty logging with PML enabled, the D-bit is set
10603 * for sptes in the slot in order to prevent unnecessary GPA
10604 * logging in the PML buffer (and potential PML buffer full VMEXIT).
10605 * This guarantees leaving PML enabled for the guest's lifetime
10606 * won't have any additional overhead from PML when the guest is
10607 * running with dirty logging disabled.
10608 *
10609 * When enabling dirty logging, large sptes are write-protected
10610 * so they can be split on first write. New large sptes cannot
10611 * be created for this slot until the end of the logging.
10612 * See the comments in fast_page_fault().
10613 * For small sptes, nothing is done if the dirty log is in the
10614 * initial-all-set state. Otherwise, depending on whether pml
10615 * is enabled the D-bit or the W-bit will be cleared.
10616 */
10617 if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
10618 if (kvm_x86_ops.slot_enable_log_dirty) {
10619 kvm_x86_ops.slot_enable_log_dirty(kvm, new);
10620 } else {
10621 int level =
10622 kvm_dirty_log_manual_protect_and_init_set(kvm) ?
10623 PG_LEVEL_2M : PG_LEVEL_4K;
10624
10625 /*
10626 * If we're with initial-all-set, we don't need
10627 * to write protect any small page because
10628 * they're reported as dirty already. However
10629 * we still need to write-protect huge pages
10630 * so that the page split can happen lazily on
10631 * the first write to the huge page.
10632 */
10633 kvm_mmu_slot_remove_write_access(kvm, new, level);
10634 }
10635 } else {
10636 if (kvm_x86_ops.slot_disable_log_dirty)
10637 kvm_x86_ops.slot_disable_log_dirty(kvm, new);
10638 }
10639 }
10640
kvm_arch_commit_memory_region(struct kvm * kvm,const struct kvm_userspace_memory_region * mem,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)10641 void kvm_arch_commit_memory_region(struct kvm *kvm,
10642 const struct kvm_userspace_memory_region *mem,
10643 struct kvm_memory_slot *old,
10644 const struct kvm_memory_slot *new,
10645 enum kvm_mr_change change)
10646 {
10647 if (!kvm->arch.n_requested_mmu_pages)
10648 kvm_mmu_change_mmu_pages(kvm,
10649 kvm_mmu_calculate_default_mmu_pages(kvm));
10650
10651 /*
10652 * FIXME: const-ify all uses of struct kvm_memory_slot.
10653 */
10654 kvm_mmu_slot_apply_flags(kvm, old, (struct kvm_memory_slot *) new, change);
10655
10656 /* Free the arrays associated with the old memslot. */
10657 if (change == KVM_MR_MOVE)
10658 kvm_arch_free_memslot(kvm, old);
10659 }
10660
kvm_arch_flush_shadow_all(struct kvm * kvm)10661 void kvm_arch_flush_shadow_all(struct kvm *kvm)
10662 {
10663 kvm_mmu_zap_all(kvm);
10664 }
10665
kvm_arch_flush_shadow_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)10666 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
10667 struct kvm_memory_slot *slot)
10668 {
10669 kvm_page_track_flush_slot(kvm, slot);
10670 }
10671
kvm_guest_apic_has_interrupt(struct kvm_vcpu * vcpu)10672 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
10673 {
10674 return (is_guest_mode(vcpu) &&
10675 kvm_x86_ops.guest_apic_has_interrupt &&
10676 kvm_x86_ops.guest_apic_has_interrupt(vcpu));
10677 }
10678
kvm_vcpu_has_events(struct kvm_vcpu * vcpu)10679 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
10680 {
10681 if (!list_empty_careful(&vcpu->async_pf.done))
10682 return true;
10683
10684 if (kvm_apic_has_events(vcpu))
10685 return true;
10686
10687 if (vcpu->arch.pv.pv_unhalted)
10688 return true;
10689
10690 if (vcpu->arch.exception.pending)
10691 return true;
10692
10693 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
10694 (vcpu->arch.nmi_pending &&
10695 kvm_x86_ops.nmi_allowed(vcpu, false)))
10696 return true;
10697
10698 if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
10699 (vcpu->arch.smi_pending &&
10700 kvm_x86_ops.smi_allowed(vcpu, false)))
10701 return true;
10702
10703 if (kvm_arch_interrupt_allowed(vcpu) &&
10704 (kvm_cpu_has_interrupt(vcpu) ||
10705 kvm_guest_apic_has_interrupt(vcpu)))
10706 return true;
10707
10708 if (kvm_hv_has_stimer_pending(vcpu))
10709 return true;
10710
10711 if (is_guest_mode(vcpu) &&
10712 kvm_x86_ops.nested_ops->hv_timer_pending &&
10713 kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
10714 return true;
10715
10716 return false;
10717 }
10718
kvm_arch_vcpu_runnable(struct kvm_vcpu * vcpu)10719 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
10720 {
10721 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
10722 }
10723
kvm_arch_dy_runnable(struct kvm_vcpu * vcpu)10724 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
10725 {
10726 if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
10727 return true;
10728
10729 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
10730 kvm_test_request(KVM_REQ_SMI, vcpu) ||
10731 kvm_test_request(KVM_REQ_EVENT, vcpu))
10732 return true;
10733
10734 if (vcpu->arch.apicv_active && kvm_x86_ops.dy_apicv_has_pending_interrupt(vcpu))
10735 return true;
10736
10737 return false;
10738 }
10739
kvm_arch_vcpu_in_kernel(struct kvm_vcpu * vcpu)10740 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
10741 {
10742 return vcpu->arch.preempted_in_kernel;
10743 }
10744
kvm_arch_vcpu_should_kick(struct kvm_vcpu * vcpu)10745 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
10746 {
10747 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
10748 }
10749
kvm_arch_interrupt_allowed(struct kvm_vcpu * vcpu)10750 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
10751 {
10752 return kvm_x86_ops.interrupt_allowed(vcpu, false);
10753 }
10754
kvm_get_linear_rip(struct kvm_vcpu * vcpu)10755 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
10756 {
10757 if (is_64_bit_mode(vcpu))
10758 return kvm_rip_read(vcpu);
10759 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
10760 kvm_rip_read(vcpu));
10761 }
10762 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
10763
kvm_is_linear_rip(struct kvm_vcpu * vcpu,unsigned long linear_rip)10764 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
10765 {
10766 return kvm_get_linear_rip(vcpu) == linear_rip;
10767 }
10768 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
10769
kvm_get_rflags(struct kvm_vcpu * vcpu)10770 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
10771 {
10772 unsigned long rflags;
10773
10774 rflags = kvm_x86_ops.get_rflags(vcpu);
10775 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
10776 rflags &= ~X86_EFLAGS_TF;
10777 return rflags;
10778 }
10779 EXPORT_SYMBOL_GPL(kvm_get_rflags);
10780
__kvm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)10781 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
10782 {
10783 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
10784 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
10785 rflags |= X86_EFLAGS_TF;
10786 kvm_x86_ops.set_rflags(vcpu, rflags);
10787 }
10788
kvm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)10789 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
10790 {
10791 __kvm_set_rflags(vcpu, rflags);
10792 kvm_make_request(KVM_REQ_EVENT, vcpu);
10793 }
10794 EXPORT_SYMBOL_GPL(kvm_set_rflags);
10795
kvm_arch_async_page_ready(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)10796 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
10797 {
10798 int r;
10799
10800 if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
10801 work->wakeup_all)
10802 return;
10803
10804 r = kvm_mmu_reload(vcpu);
10805 if (unlikely(r))
10806 return;
10807
10808 if (!vcpu->arch.mmu->direct_map &&
10809 work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu))
10810 return;
10811
10812 kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true);
10813 }
10814
kvm_async_pf_hash_fn(gfn_t gfn)10815 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
10816 {
10817 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
10818
10819 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
10820 }
10821
kvm_async_pf_next_probe(u32 key)10822 static inline u32 kvm_async_pf_next_probe(u32 key)
10823 {
10824 return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
10825 }
10826
kvm_add_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)10827 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10828 {
10829 u32 key = kvm_async_pf_hash_fn(gfn);
10830
10831 while (vcpu->arch.apf.gfns[key] != ~0)
10832 key = kvm_async_pf_next_probe(key);
10833
10834 vcpu->arch.apf.gfns[key] = gfn;
10835 }
10836
kvm_async_pf_gfn_slot(struct kvm_vcpu * vcpu,gfn_t gfn)10837 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
10838 {
10839 int i;
10840 u32 key = kvm_async_pf_hash_fn(gfn);
10841
10842 for (i = 0; i < ASYNC_PF_PER_VCPU &&
10843 (vcpu->arch.apf.gfns[key] != gfn &&
10844 vcpu->arch.apf.gfns[key] != ~0); i++)
10845 key = kvm_async_pf_next_probe(key);
10846
10847 return key;
10848 }
10849
kvm_find_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)10850 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10851 {
10852 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
10853 }
10854
kvm_del_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)10855 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10856 {
10857 u32 i, j, k;
10858
10859 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
10860
10861 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
10862 return;
10863
10864 while (true) {
10865 vcpu->arch.apf.gfns[i] = ~0;
10866 do {
10867 j = kvm_async_pf_next_probe(j);
10868 if (vcpu->arch.apf.gfns[j] == ~0)
10869 return;
10870 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
10871 /*
10872 * k lies cyclically in ]i,j]
10873 * | i.k.j |
10874 * |....j i.k.| or |.k..j i...|
10875 */
10876 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
10877 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
10878 i = j;
10879 }
10880 }
10881
apf_put_user_notpresent(struct kvm_vcpu * vcpu)10882 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
10883 {
10884 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
10885
10886 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
10887 sizeof(reason));
10888 }
10889
apf_put_user_ready(struct kvm_vcpu * vcpu,u32 token)10890 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
10891 {
10892 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
10893
10894 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
10895 &token, offset, sizeof(token));
10896 }
10897
apf_pageready_slot_free(struct kvm_vcpu * vcpu)10898 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
10899 {
10900 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
10901 u32 val;
10902
10903 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
10904 &val, offset, sizeof(val)))
10905 return false;
10906
10907 return !val;
10908 }
10909
kvm_can_deliver_async_pf(struct kvm_vcpu * vcpu)10910 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
10911 {
10912 if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
10913 return false;
10914
10915 if (!kvm_pv_async_pf_enabled(vcpu) ||
10916 (vcpu->arch.apf.send_user_only && kvm_x86_ops.get_cpl(vcpu) == 0))
10917 return false;
10918
10919 return true;
10920 }
10921
kvm_can_do_async_pf(struct kvm_vcpu * vcpu)10922 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
10923 {
10924 if (unlikely(!lapic_in_kernel(vcpu) ||
10925 kvm_event_needs_reinjection(vcpu) ||
10926 vcpu->arch.exception.pending))
10927 return false;
10928
10929 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
10930 return false;
10931
10932 /*
10933 * If interrupts are off we cannot even use an artificial
10934 * halt state.
10935 */
10936 return kvm_arch_interrupt_allowed(vcpu);
10937 }
10938
kvm_arch_async_page_not_present(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)10939 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
10940 struct kvm_async_pf *work)
10941 {
10942 struct x86_exception fault;
10943
10944 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
10945 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
10946
10947 if (kvm_can_deliver_async_pf(vcpu) &&
10948 !apf_put_user_notpresent(vcpu)) {
10949 fault.vector = PF_VECTOR;
10950 fault.error_code_valid = true;
10951 fault.error_code = 0;
10952 fault.nested_page_fault = false;
10953 fault.address = work->arch.token;
10954 fault.async_page_fault = true;
10955 kvm_inject_page_fault(vcpu, &fault);
10956 return true;
10957 } else {
10958 /*
10959 * It is not possible to deliver a paravirtualized asynchronous
10960 * page fault, but putting the guest in an artificial halt state
10961 * can be beneficial nevertheless: if an interrupt arrives, we
10962 * can deliver it timely and perhaps the guest will schedule
10963 * another process. When the instruction that triggered a page
10964 * fault is retried, hopefully the page will be ready in the host.
10965 */
10966 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
10967 return false;
10968 }
10969 }
10970
kvm_arch_async_page_present(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)10971 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
10972 struct kvm_async_pf *work)
10973 {
10974 struct kvm_lapic_irq irq = {
10975 .delivery_mode = APIC_DM_FIXED,
10976 .vector = vcpu->arch.apf.vec
10977 };
10978
10979 if (work->wakeup_all)
10980 work->arch.token = ~0; /* broadcast wakeup */
10981 else
10982 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
10983 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
10984
10985 if ((work->wakeup_all || work->notpresent_injected) &&
10986 kvm_pv_async_pf_enabled(vcpu) &&
10987 !apf_put_user_ready(vcpu, work->arch.token)) {
10988 vcpu->arch.apf.pageready_pending = true;
10989 kvm_apic_set_irq(vcpu, &irq, NULL);
10990 }
10991
10992 vcpu->arch.apf.halted = false;
10993 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10994 }
10995
kvm_arch_async_page_present_queued(struct kvm_vcpu * vcpu)10996 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
10997 {
10998 kvm_make_request(KVM_REQ_APF_READY, vcpu);
10999 if (!vcpu->arch.apf.pageready_pending)
11000 kvm_vcpu_kick(vcpu);
11001 }
11002
kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu * vcpu)11003 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
11004 {
11005 if (!kvm_pv_async_pf_enabled(vcpu))
11006 return true;
11007 else
11008 return apf_pageready_slot_free(vcpu);
11009 }
11010
kvm_arch_start_assignment(struct kvm * kvm)11011 void kvm_arch_start_assignment(struct kvm *kvm)
11012 {
11013 atomic_inc(&kvm->arch.assigned_device_count);
11014 }
11015 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
11016
kvm_arch_end_assignment(struct kvm * kvm)11017 void kvm_arch_end_assignment(struct kvm *kvm)
11018 {
11019 atomic_dec(&kvm->arch.assigned_device_count);
11020 }
11021 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
11022
kvm_arch_has_assigned_device(struct kvm * kvm)11023 bool kvm_arch_has_assigned_device(struct kvm *kvm)
11024 {
11025 return atomic_read(&kvm->arch.assigned_device_count);
11026 }
11027 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
11028
kvm_arch_register_noncoherent_dma(struct kvm * kvm)11029 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
11030 {
11031 atomic_inc(&kvm->arch.noncoherent_dma_count);
11032 }
11033 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
11034
kvm_arch_unregister_noncoherent_dma(struct kvm * kvm)11035 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
11036 {
11037 atomic_dec(&kvm->arch.noncoherent_dma_count);
11038 }
11039 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
11040
kvm_arch_has_noncoherent_dma(struct kvm * kvm)11041 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
11042 {
11043 return atomic_read(&kvm->arch.noncoherent_dma_count);
11044 }
11045 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
11046
kvm_arch_has_irq_bypass(void)11047 bool kvm_arch_has_irq_bypass(void)
11048 {
11049 return true;
11050 }
11051
kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)11052 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
11053 struct irq_bypass_producer *prod)
11054 {
11055 struct kvm_kernel_irqfd *irqfd =
11056 container_of(cons, struct kvm_kernel_irqfd, consumer);
11057 int ret;
11058
11059 irqfd->producer = prod;
11060 kvm_arch_start_assignment(irqfd->kvm);
11061 ret = kvm_x86_ops.update_pi_irte(irqfd->kvm,
11062 prod->irq, irqfd->gsi, 1);
11063
11064 if (ret)
11065 kvm_arch_end_assignment(irqfd->kvm);
11066
11067 return ret;
11068 }
11069
kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)11070 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
11071 struct irq_bypass_producer *prod)
11072 {
11073 int ret;
11074 struct kvm_kernel_irqfd *irqfd =
11075 container_of(cons, struct kvm_kernel_irqfd, consumer);
11076
11077 WARN_ON(irqfd->producer != prod);
11078 irqfd->producer = NULL;
11079
11080 /*
11081 * When producer of consumer is unregistered, we change back to
11082 * remapped mode, so we can re-use the current implementation
11083 * when the irq is masked/disabled or the consumer side (KVM
11084 * int this case doesn't want to receive the interrupts.
11085 */
11086 ret = kvm_x86_ops.update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
11087 if (ret)
11088 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
11089 " fails: %d\n", irqfd->consumer.token, ret);
11090
11091 kvm_arch_end_assignment(irqfd->kvm);
11092 }
11093
kvm_arch_update_irqfd_routing(struct kvm * kvm,unsigned int host_irq,uint32_t guest_irq,bool set)11094 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
11095 uint32_t guest_irq, bool set)
11096 {
11097 return kvm_x86_ops.update_pi_irte(kvm, host_irq, guest_irq, set);
11098 }
11099
kvm_vector_hashing_enabled(void)11100 bool kvm_vector_hashing_enabled(void)
11101 {
11102 return vector_hashing;
11103 }
11104
kvm_arch_no_poll(struct kvm_vcpu * vcpu)11105 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
11106 {
11107 return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
11108 }
11109 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
11110
11111
kvm_spec_ctrl_test_value(u64 value)11112 int kvm_spec_ctrl_test_value(u64 value)
11113 {
11114 /*
11115 * test that setting IA32_SPEC_CTRL to given value
11116 * is allowed by the host processor
11117 */
11118
11119 u64 saved_value;
11120 unsigned long flags;
11121 int ret = 0;
11122
11123 local_irq_save(flags);
11124
11125 if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
11126 ret = 1;
11127 else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
11128 ret = 1;
11129 else
11130 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
11131
11132 local_irq_restore(flags);
11133
11134 return ret;
11135 }
11136 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
11137
kvm_fixup_and_inject_pf_error(struct kvm_vcpu * vcpu,gva_t gva,u16 error_code)11138 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
11139 {
11140 struct x86_exception fault;
11141 u32 access = error_code &
11142 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
11143
11144 if (!(error_code & PFERR_PRESENT_MASK) ||
11145 vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, &fault) != UNMAPPED_GVA) {
11146 /*
11147 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
11148 * tables probably do not match the TLB. Just proceed
11149 * with the error code that the processor gave.
11150 */
11151 fault.vector = PF_VECTOR;
11152 fault.error_code_valid = true;
11153 fault.error_code = error_code;
11154 fault.nested_page_fault = false;
11155 fault.address = gva;
11156 }
11157 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
11158 }
11159 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
11160
11161 /*
11162 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
11163 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
11164 * indicates whether exit to userspace is needed.
11165 */
kvm_handle_memory_failure(struct kvm_vcpu * vcpu,int r,struct x86_exception * e)11166 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
11167 struct x86_exception *e)
11168 {
11169 if (r == X86EMUL_PROPAGATE_FAULT) {
11170 kvm_inject_emulated_page_fault(vcpu, e);
11171 return 1;
11172 }
11173
11174 /*
11175 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
11176 * while handling a VMX instruction KVM could've handled the request
11177 * correctly by exiting to userspace and performing I/O but there
11178 * doesn't seem to be a real use-case behind such requests, just return
11179 * KVM_EXIT_INTERNAL_ERROR for now.
11180 */
11181 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
11182 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
11183 vcpu->run->internal.ndata = 0;
11184
11185 return 0;
11186 }
11187 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
11188
kvm_handle_invpcid(struct kvm_vcpu * vcpu,unsigned long type,gva_t gva)11189 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
11190 {
11191 bool pcid_enabled;
11192 struct x86_exception e;
11193 unsigned i;
11194 unsigned long roots_to_free = 0;
11195 struct {
11196 u64 pcid;
11197 u64 gla;
11198 } operand;
11199 int r;
11200
11201 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
11202 if (r != X86EMUL_CONTINUE)
11203 return kvm_handle_memory_failure(vcpu, r, &e);
11204
11205 if (operand.pcid >> 12 != 0) {
11206 kvm_inject_gp(vcpu, 0);
11207 return 1;
11208 }
11209
11210 pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
11211
11212 switch (type) {
11213 case INVPCID_TYPE_INDIV_ADDR:
11214 if ((!pcid_enabled && (operand.pcid != 0)) ||
11215 is_noncanonical_address(operand.gla, vcpu)) {
11216 kvm_inject_gp(vcpu, 0);
11217 return 1;
11218 }
11219 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
11220 return kvm_skip_emulated_instruction(vcpu);
11221
11222 case INVPCID_TYPE_SINGLE_CTXT:
11223 if (!pcid_enabled && (operand.pcid != 0)) {
11224 kvm_inject_gp(vcpu, 0);
11225 return 1;
11226 }
11227
11228 if (kvm_get_active_pcid(vcpu) == operand.pcid) {
11229 kvm_mmu_sync_roots(vcpu);
11230 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
11231 }
11232
11233 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
11234 if (kvm_get_pcid(vcpu, vcpu->arch.mmu->prev_roots[i].pgd)
11235 == operand.pcid)
11236 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
11237
11238 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, roots_to_free);
11239 /*
11240 * If neither the current cr3 nor any of the prev_roots use the
11241 * given PCID, then nothing needs to be done here because a
11242 * resync will happen anyway before switching to any other CR3.
11243 */
11244
11245 return kvm_skip_emulated_instruction(vcpu);
11246
11247 case INVPCID_TYPE_ALL_NON_GLOBAL:
11248 /*
11249 * Currently, KVM doesn't mark global entries in the shadow
11250 * page tables, so a non-global flush just degenerates to a
11251 * global flush. If needed, we could optimize this later by
11252 * keeping track of global entries in shadow page tables.
11253 */
11254
11255 fallthrough;
11256 case INVPCID_TYPE_ALL_INCL_GLOBAL:
11257 kvm_mmu_unload(vcpu);
11258 return kvm_skip_emulated_instruction(vcpu);
11259
11260 default:
11261 BUG(); /* We have already checked above that type <= 3 */
11262 }
11263 }
11264 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
11265
11266 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
11267 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
11268 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
11269 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
11270 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
11271 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
11272 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
11273 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
11274 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
11275 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
11276 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
11277 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
11278 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
11279 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
11280 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
11281 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
11282 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
11283 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
11284 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
11285 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
11286 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
11287 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_update_request);
11288