1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include <kvm/iodev.h>
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/stat.h>
38 #include <linux/cpumask.h>
39 #include <linux/smp.h>
40 #include <linux/anon_inodes.h>
41 #include <linux/profile.h>
42 #include <linux/kvm_para.h>
43 #include <linux/pagemap.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/bitops.h>
47 #include <linux/spinlock.h>
48 #include <linux/compat.h>
49 #include <linux/srcu.h>
50 #include <linux/hugetlb.h>
51 #include <linux/slab.h>
52 #include <linux/sort.h>
53 #include <linux/bsearch.h>
54
55 #include <asm/processor.h>
56 #include <asm/io.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59 #include <asm/pgtable.h>
60
61 #include "coalesced_mmio.h"
62 #include "async_pf.h"
63 #include "vfio.h"
64
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
67
68 /* Worst case buffer size needed for holding an integer. */
69 #define ITOA_MAX_LEN 12
70
71 MODULE_AUTHOR("Qumranet");
72 MODULE_LICENSE("GPL");
73
74 /* Architectures should define their poll value according to the halt latency */
75 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
76 module_param(halt_poll_ns, uint, 0644);
77 EXPORT_SYMBOL_GPL(halt_poll_ns);
78
79 /* Default doubles per-vcpu halt_poll_ns. */
80 unsigned int halt_poll_ns_grow = 2;
81 module_param(halt_poll_ns_grow, uint, 0644);
82 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
83
84 /* Default resets per-vcpu halt_poll_ns . */
85 unsigned int halt_poll_ns_shrink;
86 module_param(halt_poll_ns_shrink, uint, 0644);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
88
89 /*
90 * Ordering of locks:
91 *
92 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
93 */
94
95 DEFINE_SPINLOCK(kvm_lock);
96 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
97 LIST_HEAD(vm_list);
98
99 static cpumask_var_t cpus_hardware_enabled;
100 static int kvm_usage_count;
101 static atomic_t hardware_enable_failed;
102
103 struct kmem_cache *kvm_vcpu_cache;
104 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
105
106 static __read_mostly struct preempt_ops kvm_preempt_ops;
107
108 struct dentry *kvm_debugfs_dir;
109 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
110
111 static int kvm_debugfs_num_entries;
112 static const struct file_operations *stat_fops_per_vm[];
113
114 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
115 unsigned long arg);
116 #ifdef CONFIG_KVM_COMPAT
117 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
118 unsigned long arg);
119 #define KVM_COMPAT(c) .compat_ioctl = (c)
120 #else
kvm_no_compat_ioctl(struct file * file,unsigned int ioctl,unsigned long arg)121 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
122 unsigned long arg) { return -EINVAL; }
123 #define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl
124 #endif
125 static int hardware_enable_all(void);
126 static void hardware_disable_all(void);
127
128 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
129
130 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
131
132 __visible bool kvm_rebooting;
133 EXPORT_SYMBOL_GPL(kvm_rebooting);
134
135 static bool largepages_enabled = true;
136
137 #define KVM_EVENT_CREATE_VM 0
138 #define KVM_EVENT_DESTROY_VM 1
139 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
140 static unsigned long long kvm_createvm_count;
141 static unsigned long long kvm_active_vms;
142
kvm_arch_mmu_notifier_invalidate_range(struct kvm * kvm,unsigned long start,unsigned long end,bool blockable)143 __weak int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
144 unsigned long start, unsigned long end, bool blockable)
145 {
146 return 0;
147 }
148
kvm_is_reserved_pfn(kvm_pfn_t pfn)149 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
150 {
151 if (pfn_valid(pfn))
152 return PageReserved(pfn_to_page(pfn));
153
154 return true;
155 }
156
157 /*
158 * Switches to specified vcpu, until a matching vcpu_put()
159 */
vcpu_load(struct kvm_vcpu * vcpu)160 void vcpu_load(struct kvm_vcpu *vcpu)
161 {
162 int cpu = get_cpu();
163 preempt_notifier_register(&vcpu->preempt_notifier);
164 kvm_arch_vcpu_load(vcpu, cpu);
165 put_cpu();
166 }
167 EXPORT_SYMBOL_GPL(vcpu_load);
168
vcpu_put(struct kvm_vcpu * vcpu)169 void vcpu_put(struct kvm_vcpu *vcpu)
170 {
171 preempt_disable();
172 kvm_arch_vcpu_put(vcpu);
173 preempt_notifier_unregister(&vcpu->preempt_notifier);
174 preempt_enable();
175 }
176 EXPORT_SYMBOL_GPL(vcpu_put);
177
178 /* TODO: merge with kvm_arch_vcpu_should_kick */
kvm_request_needs_ipi(struct kvm_vcpu * vcpu,unsigned req)179 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
180 {
181 int mode = kvm_vcpu_exiting_guest_mode(vcpu);
182
183 /*
184 * We need to wait for the VCPU to reenable interrupts and get out of
185 * READING_SHADOW_PAGE_TABLES mode.
186 */
187 if (req & KVM_REQUEST_WAIT)
188 return mode != OUTSIDE_GUEST_MODE;
189
190 /*
191 * Need to kick a running VCPU, but otherwise there is nothing to do.
192 */
193 return mode == IN_GUEST_MODE;
194 }
195
ack_flush(void * _completed)196 static void ack_flush(void *_completed)
197 {
198 }
199
kvm_kick_many_cpus(const struct cpumask * cpus,bool wait)200 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
201 {
202 if (unlikely(!cpus))
203 cpus = cpu_online_mask;
204
205 if (cpumask_empty(cpus))
206 return false;
207
208 smp_call_function_many(cpus, ack_flush, NULL, wait);
209 return true;
210 }
211
kvm_make_vcpus_request_mask(struct kvm * kvm,unsigned int req,unsigned long * vcpu_bitmap,cpumask_var_t tmp)212 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
213 unsigned long *vcpu_bitmap, cpumask_var_t tmp)
214 {
215 int i, cpu, me;
216 struct kvm_vcpu *vcpu;
217 bool called;
218
219 me = get_cpu();
220
221 kvm_for_each_vcpu(i, vcpu, kvm) {
222 if (!test_bit(i, vcpu_bitmap))
223 continue;
224
225 kvm_make_request(req, vcpu);
226 cpu = vcpu->cpu;
227
228 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
229 continue;
230
231 if (tmp != NULL && cpu != -1 && cpu != me &&
232 kvm_request_needs_ipi(vcpu, req))
233 __cpumask_set_cpu(cpu, tmp);
234 }
235
236 called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
237 put_cpu();
238
239 return called;
240 }
241
kvm_make_all_cpus_request(struct kvm * kvm,unsigned int req)242 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
243 {
244 cpumask_var_t cpus;
245 bool called;
246 static unsigned long vcpu_bitmap[BITS_TO_LONGS(KVM_MAX_VCPUS)]
247 = {[0 ... BITS_TO_LONGS(KVM_MAX_VCPUS)-1] = ULONG_MAX};
248
249 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
250
251 called = kvm_make_vcpus_request_mask(kvm, req, vcpu_bitmap, cpus);
252
253 free_cpumask_var(cpus);
254 return called;
255 }
256
257 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
kvm_flush_remote_tlbs(struct kvm * kvm)258 void kvm_flush_remote_tlbs(struct kvm *kvm)
259 {
260 /*
261 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
262 * kvm_make_all_cpus_request.
263 */
264 long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
265
266 /*
267 * We want to publish modifications to the page tables before reading
268 * mode. Pairs with a memory barrier in arch-specific code.
269 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
270 * and smp_mb in walk_shadow_page_lockless_begin/end.
271 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
272 *
273 * There is already an smp_mb__after_atomic() before
274 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
275 * barrier here.
276 */
277 if (!kvm_arch_flush_remote_tlb(kvm)
278 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
279 ++kvm->stat.remote_tlb_flush;
280 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
281 }
282 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
283 #endif
284
kvm_reload_remote_mmus(struct kvm * kvm)285 void kvm_reload_remote_mmus(struct kvm *kvm)
286 {
287 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
288 }
289
kvm_vcpu_init(struct kvm_vcpu * vcpu,struct kvm * kvm,unsigned id)290 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
291 {
292 struct page *page;
293 int r;
294
295 mutex_init(&vcpu->mutex);
296 vcpu->cpu = -1;
297 vcpu->kvm = kvm;
298 vcpu->vcpu_id = id;
299 vcpu->pid = NULL;
300 init_swait_queue_head(&vcpu->wq);
301 kvm_async_pf_vcpu_init(vcpu);
302
303 vcpu->pre_pcpu = -1;
304 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
305
306 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
307 if (!page) {
308 r = -ENOMEM;
309 goto fail;
310 }
311 vcpu->run = page_address(page);
312
313 kvm_vcpu_set_in_spin_loop(vcpu, false);
314 kvm_vcpu_set_dy_eligible(vcpu, false);
315 vcpu->preempted = false;
316
317 r = kvm_arch_vcpu_init(vcpu);
318 if (r < 0)
319 goto fail_free_run;
320 return 0;
321
322 fail_free_run:
323 free_page((unsigned long)vcpu->run);
324 fail:
325 return r;
326 }
327 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
328
kvm_vcpu_uninit(struct kvm_vcpu * vcpu)329 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
330 {
331 /*
332 * no need for rcu_read_lock as VCPU_RUN is the only place that
333 * will change the vcpu->pid pointer and on uninit all file
334 * descriptors are already gone.
335 */
336 put_pid(rcu_dereference_protected(vcpu->pid, 1));
337 kvm_arch_vcpu_uninit(vcpu);
338 free_page((unsigned long)vcpu->run);
339 }
340 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
341
342 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
mmu_notifier_to_kvm(struct mmu_notifier * mn)343 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
344 {
345 return container_of(mn, struct kvm, mmu_notifier);
346 }
347
kvm_mmu_notifier_change_pte(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long address,pte_t pte)348 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
349 struct mm_struct *mm,
350 unsigned long address,
351 pte_t pte)
352 {
353 struct kvm *kvm = mmu_notifier_to_kvm(mn);
354 int idx;
355
356 idx = srcu_read_lock(&kvm->srcu);
357 spin_lock(&kvm->mmu_lock);
358 kvm->mmu_notifier_seq++;
359 kvm_set_spte_hva(kvm, address, pte);
360 spin_unlock(&kvm->mmu_lock);
361 srcu_read_unlock(&kvm->srcu, idx);
362 }
363
kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long start,unsigned long end,bool blockable)364 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
365 struct mm_struct *mm,
366 unsigned long start,
367 unsigned long end,
368 bool blockable)
369 {
370 struct kvm *kvm = mmu_notifier_to_kvm(mn);
371 int need_tlb_flush = 0, idx;
372 int ret;
373
374 idx = srcu_read_lock(&kvm->srcu);
375 spin_lock(&kvm->mmu_lock);
376 /*
377 * The count increase must become visible at unlock time as no
378 * spte can be established without taking the mmu_lock and
379 * count is also read inside the mmu_lock critical section.
380 */
381 kvm->mmu_notifier_count++;
382 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
383 need_tlb_flush |= kvm->tlbs_dirty;
384 /* we've to flush the tlb before the pages can be freed */
385 if (need_tlb_flush)
386 kvm_flush_remote_tlbs(kvm);
387
388 spin_unlock(&kvm->mmu_lock);
389
390 ret = kvm_arch_mmu_notifier_invalidate_range(kvm, start, end, blockable);
391
392 srcu_read_unlock(&kvm->srcu, idx);
393
394 return ret;
395 }
396
kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long start,unsigned long end)397 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
398 struct mm_struct *mm,
399 unsigned long start,
400 unsigned long end)
401 {
402 struct kvm *kvm = mmu_notifier_to_kvm(mn);
403
404 spin_lock(&kvm->mmu_lock);
405 /*
406 * This sequence increase will notify the kvm page fault that
407 * the page that is going to be mapped in the spte could have
408 * been freed.
409 */
410 kvm->mmu_notifier_seq++;
411 smp_wmb();
412 /*
413 * The above sequence increase must be visible before the
414 * below count decrease, which is ensured by the smp_wmb above
415 * in conjunction with the smp_rmb in mmu_notifier_retry().
416 */
417 kvm->mmu_notifier_count--;
418 spin_unlock(&kvm->mmu_lock);
419
420 BUG_ON(kvm->mmu_notifier_count < 0);
421 }
422
kvm_mmu_notifier_clear_flush_young(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long start,unsigned long end)423 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
424 struct mm_struct *mm,
425 unsigned long start,
426 unsigned long end)
427 {
428 struct kvm *kvm = mmu_notifier_to_kvm(mn);
429 int young, idx;
430
431 idx = srcu_read_lock(&kvm->srcu);
432 spin_lock(&kvm->mmu_lock);
433
434 young = kvm_age_hva(kvm, start, end);
435 if (young)
436 kvm_flush_remote_tlbs(kvm);
437
438 spin_unlock(&kvm->mmu_lock);
439 srcu_read_unlock(&kvm->srcu, idx);
440
441 return young;
442 }
443
kvm_mmu_notifier_clear_young(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long start,unsigned long end)444 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
445 struct mm_struct *mm,
446 unsigned long start,
447 unsigned long end)
448 {
449 struct kvm *kvm = mmu_notifier_to_kvm(mn);
450 int young, idx;
451
452 idx = srcu_read_lock(&kvm->srcu);
453 spin_lock(&kvm->mmu_lock);
454 /*
455 * Even though we do not flush TLB, this will still adversely
456 * affect performance on pre-Haswell Intel EPT, where there is
457 * no EPT Access Bit to clear so that we have to tear down EPT
458 * tables instead. If we find this unacceptable, we can always
459 * add a parameter to kvm_age_hva so that it effectively doesn't
460 * do anything on clear_young.
461 *
462 * Also note that currently we never issue secondary TLB flushes
463 * from clear_young, leaving this job up to the regular system
464 * cadence. If we find this inaccurate, we might come up with a
465 * more sophisticated heuristic later.
466 */
467 young = kvm_age_hva(kvm, start, end);
468 spin_unlock(&kvm->mmu_lock);
469 srcu_read_unlock(&kvm->srcu, idx);
470
471 return young;
472 }
473
kvm_mmu_notifier_test_young(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long address)474 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
475 struct mm_struct *mm,
476 unsigned long address)
477 {
478 struct kvm *kvm = mmu_notifier_to_kvm(mn);
479 int young, idx;
480
481 idx = srcu_read_lock(&kvm->srcu);
482 spin_lock(&kvm->mmu_lock);
483 young = kvm_test_age_hva(kvm, address);
484 spin_unlock(&kvm->mmu_lock);
485 srcu_read_unlock(&kvm->srcu, idx);
486
487 return young;
488 }
489
kvm_mmu_notifier_release(struct mmu_notifier * mn,struct mm_struct * mm)490 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
491 struct mm_struct *mm)
492 {
493 struct kvm *kvm = mmu_notifier_to_kvm(mn);
494 int idx;
495
496 idx = srcu_read_lock(&kvm->srcu);
497 kvm_arch_flush_shadow_all(kvm);
498 srcu_read_unlock(&kvm->srcu, idx);
499 }
500
501 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
502 .flags = MMU_INVALIDATE_DOES_NOT_BLOCK,
503 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
504 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
505 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
506 .clear_young = kvm_mmu_notifier_clear_young,
507 .test_young = kvm_mmu_notifier_test_young,
508 .change_pte = kvm_mmu_notifier_change_pte,
509 .release = kvm_mmu_notifier_release,
510 };
511
kvm_init_mmu_notifier(struct kvm * kvm)512 static int kvm_init_mmu_notifier(struct kvm *kvm)
513 {
514 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
515 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
516 }
517
518 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
519
kvm_init_mmu_notifier(struct kvm * kvm)520 static int kvm_init_mmu_notifier(struct kvm *kvm)
521 {
522 return 0;
523 }
524
525 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
526
kvm_alloc_memslots(void)527 static struct kvm_memslots *kvm_alloc_memslots(void)
528 {
529 int i;
530 struct kvm_memslots *slots;
531
532 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
533 if (!slots)
534 return NULL;
535
536 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
537 slots->id_to_index[i] = slots->memslots[i].id = i;
538
539 return slots;
540 }
541
kvm_destroy_dirty_bitmap(struct kvm_memory_slot * memslot)542 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
543 {
544 if (!memslot->dirty_bitmap)
545 return;
546
547 kvfree(memslot->dirty_bitmap);
548 memslot->dirty_bitmap = NULL;
549 }
550
551 /*
552 * Free any memory in @free but not in @dont.
553 */
kvm_free_memslot(struct kvm * kvm,struct kvm_memory_slot * free,struct kvm_memory_slot * dont)554 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
555 struct kvm_memory_slot *dont)
556 {
557 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
558 kvm_destroy_dirty_bitmap(free);
559
560 kvm_arch_free_memslot(kvm, free, dont);
561
562 free->npages = 0;
563 }
564
kvm_free_memslots(struct kvm * kvm,struct kvm_memslots * slots)565 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
566 {
567 struct kvm_memory_slot *memslot;
568
569 if (!slots)
570 return;
571
572 kvm_for_each_memslot(memslot, slots)
573 kvm_free_memslot(kvm, memslot, NULL);
574
575 kvfree(slots);
576 }
577
kvm_destroy_vm_debugfs(struct kvm * kvm)578 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
579 {
580 int i;
581
582 if (!kvm->debugfs_dentry)
583 return;
584
585 debugfs_remove_recursive(kvm->debugfs_dentry);
586
587 if (kvm->debugfs_stat_data) {
588 for (i = 0; i < kvm_debugfs_num_entries; i++)
589 kfree(kvm->debugfs_stat_data[i]);
590 kfree(kvm->debugfs_stat_data);
591 }
592 }
593
kvm_create_vm_debugfs(struct kvm * kvm,int fd)594 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
595 {
596 char dir_name[ITOA_MAX_LEN * 2];
597 struct kvm_stat_data *stat_data;
598 struct kvm_stats_debugfs_item *p;
599
600 if (!debugfs_initialized())
601 return 0;
602
603 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
604 kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
605
606 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
607 sizeof(*kvm->debugfs_stat_data),
608 GFP_KERNEL);
609 if (!kvm->debugfs_stat_data)
610 return -ENOMEM;
611
612 for (p = debugfs_entries; p->name; p++) {
613 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
614 if (!stat_data)
615 return -ENOMEM;
616
617 stat_data->kvm = kvm;
618 stat_data->offset = p->offset;
619 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
620 debugfs_create_file(p->name, 0644, kvm->debugfs_dentry,
621 stat_data, stat_fops_per_vm[p->kind]);
622 }
623 return 0;
624 }
625
kvm_create_vm(unsigned long type)626 static struct kvm *kvm_create_vm(unsigned long type)
627 {
628 int r, i;
629 struct kvm *kvm = kvm_arch_alloc_vm();
630
631 if (!kvm)
632 return ERR_PTR(-ENOMEM);
633
634 spin_lock_init(&kvm->mmu_lock);
635 mmgrab(current->mm);
636 kvm->mm = current->mm;
637 kvm_eventfd_init(kvm);
638 mutex_init(&kvm->lock);
639 mutex_init(&kvm->irq_lock);
640 mutex_init(&kvm->slots_lock);
641 refcount_set(&kvm->users_count, 1);
642 INIT_LIST_HEAD(&kvm->devices);
643
644 r = kvm_arch_init_vm(kvm, type);
645 if (r)
646 goto out_err_no_disable;
647
648 r = hardware_enable_all();
649 if (r)
650 goto out_err_no_disable;
651
652 #ifdef CONFIG_HAVE_KVM_IRQFD
653 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
654 #endif
655
656 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
657
658 r = -ENOMEM;
659 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
660 struct kvm_memslots *slots = kvm_alloc_memslots();
661 if (!slots)
662 goto out_err_no_srcu;
663 /*
664 * Generations must be different for each address space.
665 * Init kvm generation close to the maximum to easily test the
666 * code of handling generation number wrap-around.
667 */
668 slots->generation = i * 2 - 150;
669 rcu_assign_pointer(kvm->memslots[i], slots);
670 }
671
672 if (init_srcu_struct(&kvm->srcu))
673 goto out_err_no_srcu;
674 if (init_srcu_struct(&kvm->irq_srcu))
675 goto out_err_no_irq_srcu;
676 for (i = 0; i < KVM_NR_BUSES; i++) {
677 rcu_assign_pointer(kvm->buses[i],
678 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL));
679 if (!kvm->buses[i])
680 goto out_err;
681 }
682
683 r = kvm_init_mmu_notifier(kvm);
684 if (r)
685 goto out_err;
686
687 spin_lock(&kvm_lock);
688 list_add(&kvm->vm_list, &vm_list);
689 spin_unlock(&kvm_lock);
690
691 preempt_notifier_inc();
692
693 return kvm;
694
695 out_err:
696 cleanup_srcu_struct(&kvm->irq_srcu);
697 out_err_no_irq_srcu:
698 cleanup_srcu_struct(&kvm->srcu);
699 out_err_no_srcu:
700 hardware_disable_all();
701 out_err_no_disable:
702 refcount_set(&kvm->users_count, 0);
703 for (i = 0; i < KVM_NR_BUSES; i++)
704 kfree(kvm_get_bus(kvm, i));
705 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
706 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
707 kvm_arch_free_vm(kvm);
708 mmdrop(current->mm);
709 return ERR_PTR(r);
710 }
711
kvm_destroy_devices(struct kvm * kvm)712 static void kvm_destroy_devices(struct kvm *kvm)
713 {
714 struct kvm_device *dev, *tmp;
715
716 /*
717 * We do not need to take the kvm->lock here, because nobody else
718 * has a reference to the struct kvm at this point and therefore
719 * cannot access the devices list anyhow.
720 */
721 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
722 list_del(&dev->vm_node);
723 dev->ops->destroy(dev);
724 }
725 }
726
kvm_destroy_vm(struct kvm * kvm)727 static void kvm_destroy_vm(struct kvm *kvm)
728 {
729 int i;
730 struct mm_struct *mm = kvm->mm;
731
732 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
733 kvm_destroy_vm_debugfs(kvm);
734 kvm_arch_sync_events(kvm);
735 spin_lock(&kvm_lock);
736 list_del(&kvm->vm_list);
737 spin_unlock(&kvm_lock);
738 kvm_free_irq_routing(kvm);
739 for (i = 0; i < KVM_NR_BUSES; i++) {
740 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
741
742 if (bus)
743 kvm_io_bus_destroy(bus);
744 kvm->buses[i] = NULL;
745 }
746 kvm_coalesced_mmio_free(kvm);
747 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
748 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
749 #else
750 kvm_arch_flush_shadow_all(kvm);
751 #endif
752 kvm_arch_destroy_vm(kvm);
753 kvm_destroy_devices(kvm);
754 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
755 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
756 cleanup_srcu_struct(&kvm->irq_srcu);
757 cleanup_srcu_struct(&kvm->srcu);
758 kvm_arch_free_vm(kvm);
759 preempt_notifier_dec();
760 hardware_disable_all();
761 mmdrop(mm);
762 }
763
kvm_get_kvm(struct kvm * kvm)764 void kvm_get_kvm(struct kvm *kvm)
765 {
766 refcount_inc(&kvm->users_count);
767 }
768 EXPORT_SYMBOL_GPL(kvm_get_kvm);
769
kvm_put_kvm(struct kvm * kvm)770 void kvm_put_kvm(struct kvm *kvm)
771 {
772 if (refcount_dec_and_test(&kvm->users_count))
773 kvm_destroy_vm(kvm);
774 }
775 EXPORT_SYMBOL_GPL(kvm_put_kvm);
776
777
kvm_vm_release(struct inode * inode,struct file * filp)778 static int kvm_vm_release(struct inode *inode, struct file *filp)
779 {
780 struct kvm *kvm = filp->private_data;
781
782 kvm_irqfd_release(kvm);
783
784 kvm_put_kvm(kvm);
785 return 0;
786 }
787
788 /*
789 * Allocation size is twice as large as the actual dirty bitmap size.
790 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
791 */
kvm_create_dirty_bitmap(struct kvm_memory_slot * memslot)792 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
793 {
794 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
795
796 memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL);
797 if (!memslot->dirty_bitmap)
798 return -ENOMEM;
799
800 return 0;
801 }
802
803 /*
804 * Insert memslot and re-sort memslots based on their GFN,
805 * so binary search could be used to lookup GFN.
806 * Sorting algorithm takes advantage of having initially
807 * sorted array and known changed memslot position.
808 */
update_memslots(struct kvm_memslots * slots,struct kvm_memory_slot * new)809 static void update_memslots(struct kvm_memslots *slots,
810 struct kvm_memory_slot *new)
811 {
812 int id = new->id;
813 int i = slots->id_to_index[id];
814 struct kvm_memory_slot *mslots = slots->memslots;
815
816 WARN_ON(mslots[i].id != id);
817 if (!new->npages) {
818 WARN_ON(!mslots[i].npages);
819 if (mslots[i].npages)
820 slots->used_slots--;
821 } else {
822 if (!mslots[i].npages)
823 slots->used_slots++;
824 }
825
826 while (i < KVM_MEM_SLOTS_NUM - 1 &&
827 new->base_gfn <= mslots[i + 1].base_gfn) {
828 if (!mslots[i + 1].npages)
829 break;
830 mslots[i] = mslots[i + 1];
831 slots->id_to_index[mslots[i].id] = i;
832 i++;
833 }
834
835 /*
836 * The ">=" is needed when creating a slot with base_gfn == 0,
837 * so that it moves before all those with base_gfn == npages == 0.
838 *
839 * On the other hand, if new->npages is zero, the above loop has
840 * already left i pointing to the beginning of the empty part of
841 * mslots, and the ">=" would move the hole backwards in this
842 * case---which is wrong. So skip the loop when deleting a slot.
843 */
844 if (new->npages) {
845 while (i > 0 &&
846 new->base_gfn >= mslots[i - 1].base_gfn) {
847 mslots[i] = mslots[i - 1];
848 slots->id_to_index[mslots[i].id] = i;
849 i--;
850 }
851 } else
852 WARN_ON_ONCE(i != slots->used_slots);
853
854 mslots[i] = *new;
855 slots->id_to_index[mslots[i].id] = i;
856 }
857
check_memory_region_flags(const struct kvm_userspace_memory_region * mem)858 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
859 {
860 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
861
862 #ifdef __KVM_HAVE_READONLY_MEM
863 valid_flags |= KVM_MEM_READONLY;
864 #endif
865
866 if (mem->flags & ~valid_flags)
867 return -EINVAL;
868
869 return 0;
870 }
871
install_new_memslots(struct kvm * kvm,int as_id,struct kvm_memslots * slots)872 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
873 int as_id, struct kvm_memslots *slots)
874 {
875 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
876
877 /*
878 * Set the low bit in the generation, which disables SPTE caching
879 * until the end of synchronize_srcu_expedited.
880 */
881 WARN_ON(old_memslots->generation & 1);
882 slots->generation = old_memslots->generation + 1;
883
884 rcu_assign_pointer(kvm->memslots[as_id], slots);
885 synchronize_srcu_expedited(&kvm->srcu);
886
887 /*
888 * Increment the new memslot generation a second time. This prevents
889 * vm exits that race with memslot updates from caching a memslot
890 * generation that will (potentially) be valid forever.
891 *
892 * Generations must be unique even across address spaces. We do not need
893 * a global counter for that, instead the generation space is evenly split
894 * across address spaces. For example, with two address spaces, address
895 * space 0 will use generations 0, 4, 8, ... while * address space 1 will
896 * use generations 2, 6, 10, 14, ...
897 */
898 slots->generation += KVM_ADDRESS_SPACE_NUM * 2 - 1;
899
900 kvm_arch_memslots_updated(kvm, slots);
901
902 return old_memslots;
903 }
904
905 /*
906 * Allocate some memory and give it an address in the guest physical address
907 * space.
908 *
909 * Discontiguous memory is allowed, mostly for framebuffers.
910 *
911 * Must be called holding kvm->slots_lock for write.
912 */
__kvm_set_memory_region(struct kvm * kvm,const struct kvm_userspace_memory_region * mem)913 int __kvm_set_memory_region(struct kvm *kvm,
914 const struct kvm_userspace_memory_region *mem)
915 {
916 int r;
917 gfn_t base_gfn;
918 unsigned long npages;
919 struct kvm_memory_slot *slot;
920 struct kvm_memory_slot old, new;
921 struct kvm_memslots *slots = NULL, *old_memslots;
922 int as_id, id;
923 enum kvm_mr_change change;
924
925 r = check_memory_region_flags(mem);
926 if (r)
927 goto out;
928
929 r = -EINVAL;
930 as_id = mem->slot >> 16;
931 id = (u16)mem->slot;
932
933 /* General sanity checks */
934 if (mem->memory_size & (PAGE_SIZE - 1))
935 goto out;
936 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
937 goto out;
938 /* We can read the guest memory with __xxx_user() later on. */
939 if ((id < KVM_USER_MEM_SLOTS) &&
940 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
941 !access_ok(VERIFY_WRITE,
942 (void __user *)(unsigned long)mem->userspace_addr,
943 mem->memory_size)))
944 goto out;
945 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
946 goto out;
947 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
948 goto out;
949
950 slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
951 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
952 npages = mem->memory_size >> PAGE_SHIFT;
953
954 if (npages > KVM_MEM_MAX_NR_PAGES)
955 goto out;
956
957 new = old = *slot;
958
959 new.id = id;
960 new.base_gfn = base_gfn;
961 new.npages = npages;
962 new.flags = mem->flags;
963
964 if (npages) {
965 if (!old.npages)
966 change = KVM_MR_CREATE;
967 else { /* Modify an existing slot. */
968 if ((mem->userspace_addr != old.userspace_addr) ||
969 (npages != old.npages) ||
970 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
971 goto out;
972
973 if (base_gfn != old.base_gfn)
974 change = KVM_MR_MOVE;
975 else if (new.flags != old.flags)
976 change = KVM_MR_FLAGS_ONLY;
977 else { /* Nothing to change. */
978 r = 0;
979 goto out;
980 }
981 }
982 } else {
983 if (!old.npages)
984 goto out;
985
986 change = KVM_MR_DELETE;
987 new.base_gfn = 0;
988 new.flags = 0;
989 }
990
991 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
992 /* Check for overlaps */
993 r = -EEXIST;
994 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
995 if (slot->id == id)
996 continue;
997 if (!((base_gfn + npages <= slot->base_gfn) ||
998 (base_gfn >= slot->base_gfn + slot->npages)))
999 goto out;
1000 }
1001 }
1002
1003 /* Free page dirty bitmap if unneeded */
1004 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1005 new.dirty_bitmap = NULL;
1006
1007 r = -ENOMEM;
1008 if (change == KVM_MR_CREATE) {
1009 new.userspace_addr = mem->userspace_addr;
1010
1011 if (kvm_arch_create_memslot(kvm, &new, npages))
1012 goto out_free;
1013 }
1014
1015 /* Allocate page dirty bitmap if needed */
1016 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1017 if (kvm_create_dirty_bitmap(&new) < 0)
1018 goto out_free;
1019 }
1020
1021 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
1022 if (!slots)
1023 goto out_free;
1024 memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1025
1026 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1027 slot = id_to_memslot(slots, id);
1028 slot->flags |= KVM_MEMSLOT_INVALID;
1029
1030 old_memslots = install_new_memslots(kvm, as_id, slots);
1031
1032 /* From this point no new shadow pages pointing to a deleted,
1033 * or moved, memslot will be created.
1034 *
1035 * validation of sp->gfn happens in:
1036 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1037 * - kvm_is_visible_gfn (mmu_check_roots)
1038 */
1039 kvm_arch_flush_shadow_memslot(kvm, slot);
1040
1041 /*
1042 * We can re-use the old_memslots from above, the only difference
1043 * from the currently installed memslots is the invalid flag. This
1044 * will get overwritten by update_memslots anyway.
1045 */
1046 slots = old_memslots;
1047 }
1048
1049 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1050 if (r)
1051 goto out_slots;
1052
1053 /* actual memory is freed via old in kvm_free_memslot below */
1054 if (change == KVM_MR_DELETE) {
1055 new.dirty_bitmap = NULL;
1056 memset(&new.arch, 0, sizeof(new.arch));
1057 }
1058
1059 update_memslots(slots, &new);
1060 old_memslots = install_new_memslots(kvm, as_id, slots);
1061
1062 kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1063
1064 kvm_free_memslot(kvm, &old, &new);
1065 kvfree(old_memslots);
1066 return 0;
1067
1068 out_slots:
1069 kvfree(slots);
1070 out_free:
1071 kvm_free_memslot(kvm, &new, &old);
1072 out:
1073 return r;
1074 }
1075 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1076
kvm_set_memory_region(struct kvm * kvm,const struct kvm_userspace_memory_region * mem)1077 int kvm_set_memory_region(struct kvm *kvm,
1078 const struct kvm_userspace_memory_region *mem)
1079 {
1080 int r;
1081
1082 mutex_lock(&kvm->slots_lock);
1083 r = __kvm_set_memory_region(kvm, mem);
1084 mutex_unlock(&kvm->slots_lock);
1085 return r;
1086 }
1087 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1088
kvm_vm_ioctl_set_memory_region(struct kvm * kvm,struct kvm_userspace_memory_region * mem)1089 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1090 struct kvm_userspace_memory_region *mem)
1091 {
1092 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1093 return -EINVAL;
1094
1095 return kvm_set_memory_region(kvm, mem);
1096 }
1097
kvm_get_dirty_log(struct kvm * kvm,struct kvm_dirty_log * log,int * is_dirty)1098 int kvm_get_dirty_log(struct kvm *kvm,
1099 struct kvm_dirty_log *log, int *is_dirty)
1100 {
1101 struct kvm_memslots *slots;
1102 struct kvm_memory_slot *memslot;
1103 int i, as_id, id;
1104 unsigned long n;
1105 unsigned long any = 0;
1106
1107 as_id = log->slot >> 16;
1108 id = (u16)log->slot;
1109 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1110 return -EINVAL;
1111
1112 slots = __kvm_memslots(kvm, as_id);
1113 memslot = id_to_memslot(slots, id);
1114 if (!memslot->dirty_bitmap)
1115 return -ENOENT;
1116
1117 n = kvm_dirty_bitmap_bytes(memslot);
1118
1119 for (i = 0; !any && i < n/sizeof(long); ++i)
1120 any = memslot->dirty_bitmap[i];
1121
1122 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1123 return -EFAULT;
1124
1125 if (any)
1126 *is_dirty = 1;
1127 return 0;
1128 }
1129 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1130
1131 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1132 /**
1133 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1134 * are dirty write protect them for next write.
1135 * @kvm: pointer to kvm instance
1136 * @log: slot id and address to which we copy the log
1137 * @is_dirty: flag set if any page is dirty
1138 *
1139 * We need to keep it in mind that VCPU threads can write to the bitmap
1140 * concurrently. So, to avoid losing track of dirty pages we keep the
1141 * following order:
1142 *
1143 * 1. Take a snapshot of the bit and clear it if needed.
1144 * 2. Write protect the corresponding page.
1145 * 3. Copy the snapshot to the userspace.
1146 * 4. Upon return caller flushes TLB's if needed.
1147 *
1148 * Between 2 and 4, the guest may write to the page using the remaining TLB
1149 * entry. This is not a problem because the page is reported dirty using
1150 * the snapshot taken before and step 4 ensures that writes done after
1151 * exiting to userspace will be logged for the next call.
1152 *
1153 */
kvm_get_dirty_log_protect(struct kvm * kvm,struct kvm_dirty_log * log,bool * is_dirty)1154 int kvm_get_dirty_log_protect(struct kvm *kvm,
1155 struct kvm_dirty_log *log, bool *is_dirty)
1156 {
1157 struct kvm_memslots *slots;
1158 struct kvm_memory_slot *memslot;
1159 int i, as_id, id;
1160 unsigned long n;
1161 unsigned long *dirty_bitmap;
1162 unsigned long *dirty_bitmap_buffer;
1163
1164 as_id = log->slot >> 16;
1165 id = (u16)log->slot;
1166 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1167 return -EINVAL;
1168
1169 slots = __kvm_memslots(kvm, as_id);
1170 memslot = id_to_memslot(slots, id);
1171
1172 dirty_bitmap = memslot->dirty_bitmap;
1173 if (!dirty_bitmap)
1174 return -ENOENT;
1175
1176 n = kvm_dirty_bitmap_bytes(memslot);
1177
1178 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1179 memset(dirty_bitmap_buffer, 0, n);
1180
1181 spin_lock(&kvm->mmu_lock);
1182 *is_dirty = false;
1183 for (i = 0; i < n / sizeof(long); i++) {
1184 unsigned long mask;
1185 gfn_t offset;
1186
1187 if (!dirty_bitmap[i])
1188 continue;
1189
1190 *is_dirty = true;
1191
1192 mask = xchg(&dirty_bitmap[i], 0);
1193 dirty_bitmap_buffer[i] = mask;
1194
1195 if (mask) {
1196 offset = i * BITS_PER_LONG;
1197 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1198 offset, mask);
1199 }
1200 }
1201
1202 spin_unlock(&kvm->mmu_lock);
1203 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1204 return -EFAULT;
1205 return 0;
1206 }
1207 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1208 #endif
1209
kvm_largepages_enabled(void)1210 bool kvm_largepages_enabled(void)
1211 {
1212 return largepages_enabled;
1213 }
1214
kvm_disable_largepages(void)1215 void kvm_disable_largepages(void)
1216 {
1217 largepages_enabled = false;
1218 }
1219 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1220
gfn_to_memslot(struct kvm * kvm,gfn_t gfn)1221 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1222 {
1223 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1224 }
1225 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1226
kvm_vcpu_gfn_to_memslot(struct kvm_vcpu * vcpu,gfn_t gfn)1227 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1228 {
1229 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1230 }
1231
kvm_is_visible_gfn(struct kvm * kvm,gfn_t gfn)1232 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1233 {
1234 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1235
1236 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1237 memslot->flags & KVM_MEMSLOT_INVALID)
1238 return false;
1239
1240 return true;
1241 }
1242 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1243
kvm_host_page_size(struct kvm * kvm,gfn_t gfn)1244 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1245 {
1246 struct vm_area_struct *vma;
1247 unsigned long addr, size;
1248
1249 size = PAGE_SIZE;
1250
1251 addr = gfn_to_hva(kvm, gfn);
1252 if (kvm_is_error_hva(addr))
1253 return PAGE_SIZE;
1254
1255 down_read(¤t->mm->mmap_sem);
1256 vma = find_vma(current->mm, addr);
1257 if (!vma)
1258 goto out;
1259
1260 size = vma_kernel_pagesize(vma);
1261
1262 out:
1263 up_read(¤t->mm->mmap_sem);
1264
1265 return size;
1266 }
1267
memslot_is_readonly(struct kvm_memory_slot * slot)1268 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1269 {
1270 return slot->flags & KVM_MEM_READONLY;
1271 }
1272
__gfn_to_hva_many(struct kvm_memory_slot * slot,gfn_t gfn,gfn_t * nr_pages,bool write)1273 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1274 gfn_t *nr_pages, bool write)
1275 {
1276 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1277 return KVM_HVA_ERR_BAD;
1278
1279 if (memslot_is_readonly(slot) && write)
1280 return KVM_HVA_ERR_RO_BAD;
1281
1282 if (nr_pages)
1283 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1284
1285 return __gfn_to_hva_memslot(slot, gfn);
1286 }
1287
gfn_to_hva_many(struct kvm_memory_slot * slot,gfn_t gfn,gfn_t * nr_pages)1288 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1289 gfn_t *nr_pages)
1290 {
1291 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1292 }
1293
gfn_to_hva_memslot(struct kvm_memory_slot * slot,gfn_t gfn)1294 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1295 gfn_t gfn)
1296 {
1297 return gfn_to_hva_many(slot, gfn, NULL);
1298 }
1299 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1300
gfn_to_hva(struct kvm * kvm,gfn_t gfn)1301 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1302 {
1303 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1304 }
1305 EXPORT_SYMBOL_GPL(gfn_to_hva);
1306
kvm_vcpu_gfn_to_hva(struct kvm_vcpu * vcpu,gfn_t gfn)1307 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1308 {
1309 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1310 }
1311 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1312
1313 /*
1314 * If writable is set to false, the hva returned by this function is only
1315 * allowed to be read.
1316 */
gfn_to_hva_memslot_prot(struct kvm_memory_slot * slot,gfn_t gfn,bool * writable)1317 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1318 gfn_t gfn, bool *writable)
1319 {
1320 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1321
1322 if (!kvm_is_error_hva(hva) && writable)
1323 *writable = !memslot_is_readonly(slot);
1324
1325 return hva;
1326 }
1327
gfn_to_hva_prot(struct kvm * kvm,gfn_t gfn,bool * writable)1328 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1329 {
1330 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1331
1332 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1333 }
1334
kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu * vcpu,gfn_t gfn,bool * writable)1335 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1336 {
1337 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1338
1339 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1340 }
1341
check_user_page_hwpoison(unsigned long addr)1342 static inline int check_user_page_hwpoison(unsigned long addr)
1343 {
1344 int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1345
1346 rc = get_user_pages(addr, 1, flags, NULL, NULL);
1347 return rc == -EHWPOISON;
1348 }
1349
1350 /*
1351 * The fast path to get the writable pfn which will be stored in @pfn,
1352 * true indicates success, otherwise false is returned. It's also the
1353 * only part that runs if we can are in atomic context.
1354 */
hva_to_pfn_fast(unsigned long addr,bool write_fault,bool * writable,kvm_pfn_t * pfn)1355 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
1356 bool *writable, kvm_pfn_t *pfn)
1357 {
1358 struct page *page[1];
1359 int npages;
1360
1361 /*
1362 * Fast pin a writable pfn only if it is a write fault request
1363 * or the caller allows to map a writable pfn for a read fault
1364 * request.
1365 */
1366 if (!(write_fault || writable))
1367 return false;
1368
1369 npages = __get_user_pages_fast(addr, 1, 1, page);
1370 if (npages == 1) {
1371 *pfn = page_to_pfn(page[0]);
1372
1373 if (writable)
1374 *writable = true;
1375 return true;
1376 }
1377
1378 return false;
1379 }
1380
1381 /*
1382 * The slow path to get the pfn of the specified host virtual address,
1383 * 1 indicates success, -errno is returned if error is detected.
1384 */
hva_to_pfn_slow(unsigned long addr,bool * async,bool write_fault,bool * writable,kvm_pfn_t * pfn)1385 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1386 bool *writable, kvm_pfn_t *pfn)
1387 {
1388 unsigned int flags = FOLL_HWPOISON;
1389 struct page *page;
1390 int npages = 0;
1391
1392 might_sleep();
1393
1394 if (writable)
1395 *writable = write_fault;
1396
1397 if (write_fault)
1398 flags |= FOLL_WRITE;
1399 if (async)
1400 flags |= FOLL_NOWAIT;
1401
1402 npages = get_user_pages_unlocked(addr, 1, &page, flags);
1403 if (npages != 1)
1404 return npages;
1405
1406 /* map read fault as writable if possible */
1407 if (unlikely(!write_fault) && writable) {
1408 struct page *wpage;
1409
1410 if (__get_user_pages_fast(addr, 1, 1, &wpage) == 1) {
1411 *writable = true;
1412 put_page(page);
1413 page = wpage;
1414 }
1415 }
1416 *pfn = page_to_pfn(page);
1417 return npages;
1418 }
1419
vma_is_valid(struct vm_area_struct * vma,bool write_fault)1420 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1421 {
1422 if (unlikely(!(vma->vm_flags & VM_READ)))
1423 return false;
1424
1425 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1426 return false;
1427
1428 return true;
1429 }
1430
hva_to_pfn_remapped(struct vm_area_struct * vma,unsigned long addr,bool * async,bool write_fault,bool * writable,kvm_pfn_t * p_pfn)1431 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1432 unsigned long addr, bool *async,
1433 bool write_fault, bool *writable,
1434 kvm_pfn_t *p_pfn)
1435 {
1436 unsigned long pfn;
1437 int r;
1438
1439 r = follow_pfn(vma, addr, &pfn);
1440 if (r) {
1441 /*
1442 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1443 * not call the fault handler, so do it here.
1444 */
1445 bool unlocked = false;
1446 r = fixup_user_fault(current, current->mm, addr,
1447 (write_fault ? FAULT_FLAG_WRITE : 0),
1448 &unlocked);
1449 if (unlocked)
1450 return -EAGAIN;
1451 if (r)
1452 return r;
1453
1454 r = follow_pfn(vma, addr, &pfn);
1455 if (r)
1456 return r;
1457
1458 }
1459
1460 if (writable)
1461 *writable = true;
1462
1463 /*
1464 * Get a reference here because callers of *hva_to_pfn* and
1465 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1466 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP
1467 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1468 * simply do nothing for reserved pfns.
1469 *
1470 * Whoever called remap_pfn_range is also going to call e.g.
1471 * unmap_mapping_range before the underlying pages are freed,
1472 * causing a call to our MMU notifier.
1473 */
1474 kvm_get_pfn(pfn);
1475
1476 *p_pfn = pfn;
1477 return 0;
1478 }
1479
1480 /*
1481 * Pin guest page in memory and return its pfn.
1482 * @addr: host virtual address which maps memory to the guest
1483 * @atomic: whether this function can sleep
1484 * @async: whether this function need to wait IO complete if the
1485 * host page is not in the memory
1486 * @write_fault: whether we should get a writable host page
1487 * @writable: whether it allows to map a writable host page for !@write_fault
1488 *
1489 * The function will map a writable host page for these two cases:
1490 * 1): @write_fault = true
1491 * 2): @write_fault = false && @writable, @writable will tell the caller
1492 * whether the mapping is writable.
1493 */
hva_to_pfn(unsigned long addr,bool atomic,bool * async,bool write_fault,bool * writable)1494 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1495 bool write_fault, bool *writable)
1496 {
1497 struct vm_area_struct *vma;
1498 kvm_pfn_t pfn = 0;
1499 int npages, r;
1500
1501 /* we can do it either atomically or asynchronously, not both */
1502 BUG_ON(atomic && async);
1503
1504 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
1505 return pfn;
1506
1507 if (atomic)
1508 return KVM_PFN_ERR_FAULT;
1509
1510 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1511 if (npages == 1)
1512 return pfn;
1513
1514 down_read(¤t->mm->mmap_sem);
1515 if (npages == -EHWPOISON ||
1516 (!async && check_user_page_hwpoison(addr))) {
1517 pfn = KVM_PFN_ERR_HWPOISON;
1518 goto exit;
1519 }
1520
1521 retry:
1522 vma = find_vma_intersection(current->mm, addr, addr + 1);
1523
1524 if (vma == NULL)
1525 pfn = KVM_PFN_ERR_FAULT;
1526 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1527 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
1528 if (r == -EAGAIN)
1529 goto retry;
1530 if (r < 0)
1531 pfn = KVM_PFN_ERR_FAULT;
1532 } else {
1533 if (async && vma_is_valid(vma, write_fault))
1534 *async = true;
1535 pfn = KVM_PFN_ERR_FAULT;
1536 }
1537 exit:
1538 up_read(¤t->mm->mmap_sem);
1539 return pfn;
1540 }
1541
__gfn_to_pfn_memslot(struct kvm_memory_slot * slot,gfn_t gfn,bool atomic,bool * async,bool write_fault,bool * writable)1542 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1543 bool atomic, bool *async, bool write_fault,
1544 bool *writable)
1545 {
1546 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1547
1548 if (addr == KVM_HVA_ERR_RO_BAD) {
1549 if (writable)
1550 *writable = false;
1551 return KVM_PFN_ERR_RO_FAULT;
1552 }
1553
1554 if (kvm_is_error_hva(addr)) {
1555 if (writable)
1556 *writable = false;
1557 return KVM_PFN_NOSLOT;
1558 }
1559
1560 /* Do not map writable pfn in the readonly memslot. */
1561 if (writable && memslot_is_readonly(slot)) {
1562 *writable = false;
1563 writable = NULL;
1564 }
1565
1566 return hva_to_pfn(addr, atomic, async, write_fault,
1567 writable);
1568 }
1569 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1570
gfn_to_pfn_prot(struct kvm * kvm,gfn_t gfn,bool write_fault,bool * writable)1571 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1572 bool *writable)
1573 {
1574 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1575 write_fault, writable);
1576 }
1577 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1578
gfn_to_pfn_memslot(struct kvm_memory_slot * slot,gfn_t gfn)1579 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1580 {
1581 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1582 }
1583 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1584
gfn_to_pfn_memslot_atomic(struct kvm_memory_slot * slot,gfn_t gfn)1585 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1586 {
1587 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1588 }
1589 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1590
gfn_to_pfn_atomic(struct kvm * kvm,gfn_t gfn)1591 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1592 {
1593 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1594 }
1595 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1596
kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu * vcpu,gfn_t gfn)1597 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1598 {
1599 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1600 }
1601 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1602
gfn_to_pfn(struct kvm * kvm,gfn_t gfn)1603 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1604 {
1605 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1606 }
1607 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1608
kvm_vcpu_gfn_to_pfn(struct kvm_vcpu * vcpu,gfn_t gfn)1609 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1610 {
1611 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1612 }
1613 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1614
gfn_to_page_many_atomic(struct kvm_memory_slot * slot,gfn_t gfn,struct page ** pages,int nr_pages)1615 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1616 struct page **pages, int nr_pages)
1617 {
1618 unsigned long addr;
1619 gfn_t entry = 0;
1620
1621 addr = gfn_to_hva_many(slot, gfn, &entry);
1622 if (kvm_is_error_hva(addr))
1623 return -1;
1624
1625 if (entry < nr_pages)
1626 return 0;
1627
1628 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1629 }
1630 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1631
kvm_pfn_to_page(kvm_pfn_t pfn)1632 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1633 {
1634 if (is_error_noslot_pfn(pfn))
1635 return KVM_ERR_PTR_BAD_PAGE;
1636
1637 if (kvm_is_reserved_pfn(pfn)) {
1638 WARN_ON(1);
1639 return KVM_ERR_PTR_BAD_PAGE;
1640 }
1641
1642 return pfn_to_page(pfn);
1643 }
1644
gfn_to_page(struct kvm * kvm,gfn_t gfn)1645 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1646 {
1647 kvm_pfn_t pfn;
1648
1649 pfn = gfn_to_pfn(kvm, gfn);
1650
1651 return kvm_pfn_to_page(pfn);
1652 }
1653 EXPORT_SYMBOL_GPL(gfn_to_page);
1654
kvm_vcpu_gfn_to_page(struct kvm_vcpu * vcpu,gfn_t gfn)1655 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1656 {
1657 kvm_pfn_t pfn;
1658
1659 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1660
1661 return kvm_pfn_to_page(pfn);
1662 }
1663 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1664
kvm_release_page_clean(struct page * page)1665 void kvm_release_page_clean(struct page *page)
1666 {
1667 WARN_ON(is_error_page(page));
1668
1669 kvm_release_pfn_clean(page_to_pfn(page));
1670 }
1671 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1672
kvm_release_pfn_clean(kvm_pfn_t pfn)1673 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1674 {
1675 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1676 put_page(pfn_to_page(pfn));
1677 }
1678 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1679
kvm_release_page_dirty(struct page * page)1680 void kvm_release_page_dirty(struct page *page)
1681 {
1682 WARN_ON(is_error_page(page));
1683
1684 kvm_release_pfn_dirty(page_to_pfn(page));
1685 }
1686 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1687
kvm_release_pfn_dirty(kvm_pfn_t pfn)1688 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1689 {
1690 kvm_set_pfn_dirty(pfn);
1691 kvm_release_pfn_clean(pfn);
1692 }
1693 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1694
kvm_set_pfn_dirty(kvm_pfn_t pfn)1695 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1696 {
1697 if (!kvm_is_reserved_pfn(pfn)) {
1698 struct page *page = pfn_to_page(pfn);
1699
1700 if (!PageReserved(page))
1701 SetPageDirty(page);
1702 }
1703 }
1704 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1705
kvm_set_pfn_accessed(kvm_pfn_t pfn)1706 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1707 {
1708 if (!kvm_is_reserved_pfn(pfn))
1709 mark_page_accessed(pfn_to_page(pfn));
1710 }
1711 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1712
kvm_get_pfn(kvm_pfn_t pfn)1713 void kvm_get_pfn(kvm_pfn_t pfn)
1714 {
1715 if (!kvm_is_reserved_pfn(pfn))
1716 get_page(pfn_to_page(pfn));
1717 }
1718 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1719
next_segment(unsigned long len,int offset)1720 static int next_segment(unsigned long len, int offset)
1721 {
1722 if (len > PAGE_SIZE - offset)
1723 return PAGE_SIZE - offset;
1724 else
1725 return len;
1726 }
1727
__kvm_read_guest_page(struct kvm_memory_slot * slot,gfn_t gfn,void * data,int offset,int len)1728 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1729 void *data, int offset, int len)
1730 {
1731 int r;
1732 unsigned long addr;
1733
1734 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1735 if (kvm_is_error_hva(addr))
1736 return -EFAULT;
1737 r = __copy_from_user(data, (void __user *)addr + offset, len);
1738 if (r)
1739 return -EFAULT;
1740 return 0;
1741 }
1742
kvm_read_guest_page(struct kvm * kvm,gfn_t gfn,void * data,int offset,int len)1743 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1744 int len)
1745 {
1746 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1747
1748 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1749 }
1750 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1751
kvm_vcpu_read_guest_page(struct kvm_vcpu * vcpu,gfn_t gfn,void * data,int offset,int len)1752 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1753 int offset, int len)
1754 {
1755 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1756
1757 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1758 }
1759 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1760
kvm_read_guest(struct kvm * kvm,gpa_t gpa,void * data,unsigned long len)1761 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1762 {
1763 gfn_t gfn = gpa >> PAGE_SHIFT;
1764 int seg;
1765 int offset = offset_in_page(gpa);
1766 int ret;
1767
1768 while ((seg = next_segment(len, offset)) != 0) {
1769 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1770 if (ret < 0)
1771 return ret;
1772 offset = 0;
1773 len -= seg;
1774 data += seg;
1775 ++gfn;
1776 }
1777 return 0;
1778 }
1779 EXPORT_SYMBOL_GPL(kvm_read_guest);
1780
kvm_vcpu_read_guest(struct kvm_vcpu * vcpu,gpa_t gpa,void * data,unsigned long len)1781 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1782 {
1783 gfn_t gfn = gpa >> PAGE_SHIFT;
1784 int seg;
1785 int offset = offset_in_page(gpa);
1786 int ret;
1787
1788 while ((seg = next_segment(len, offset)) != 0) {
1789 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1790 if (ret < 0)
1791 return ret;
1792 offset = 0;
1793 len -= seg;
1794 data += seg;
1795 ++gfn;
1796 }
1797 return 0;
1798 }
1799 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1800
__kvm_read_guest_atomic(struct kvm_memory_slot * slot,gfn_t gfn,void * data,int offset,unsigned long len)1801 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1802 void *data, int offset, unsigned long len)
1803 {
1804 int r;
1805 unsigned long addr;
1806
1807 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1808 if (kvm_is_error_hva(addr))
1809 return -EFAULT;
1810 pagefault_disable();
1811 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1812 pagefault_enable();
1813 if (r)
1814 return -EFAULT;
1815 return 0;
1816 }
1817
kvm_read_guest_atomic(struct kvm * kvm,gpa_t gpa,void * data,unsigned long len)1818 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1819 unsigned long len)
1820 {
1821 gfn_t gfn = gpa >> PAGE_SHIFT;
1822 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1823 int offset = offset_in_page(gpa);
1824
1825 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1826 }
1827 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1828
kvm_vcpu_read_guest_atomic(struct kvm_vcpu * vcpu,gpa_t gpa,void * data,unsigned long len)1829 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1830 void *data, unsigned long len)
1831 {
1832 gfn_t gfn = gpa >> PAGE_SHIFT;
1833 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1834 int offset = offset_in_page(gpa);
1835
1836 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1837 }
1838 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1839
__kvm_write_guest_page(struct kvm_memory_slot * memslot,gfn_t gfn,const void * data,int offset,int len)1840 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1841 const void *data, int offset, int len)
1842 {
1843 int r;
1844 unsigned long addr;
1845
1846 addr = gfn_to_hva_memslot(memslot, gfn);
1847 if (kvm_is_error_hva(addr))
1848 return -EFAULT;
1849 r = __copy_to_user((void __user *)addr + offset, data, len);
1850 if (r)
1851 return -EFAULT;
1852 mark_page_dirty_in_slot(memslot, gfn);
1853 return 0;
1854 }
1855
kvm_write_guest_page(struct kvm * kvm,gfn_t gfn,const void * data,int offset,int len)1856 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1857 const void *data, int offset, int len)
1858 {
1859 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1860
1861 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1862 }
1863 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1864
kvm_vcpu_write_guest_page(struct kvm_vcpu * vcpu,gfn_t gfn,const void * data,int offset,int len)1865 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1866 const void *data, int offset, int len)
1867 {
1868 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1869
1870 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1871 }
1872 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1873
kvm_write_guest(struct kvm * kvm,gpa_t gpa,const void * data,unsigned long len)1874 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1875 unsigned long len)
1876 {
1877 gfn_t gfn = gpa >> PAGE_SHIFT;
1878 int seg;
1879 int offset = offset_in_page(gpa);
1880 int ret;
1881
1882 while ((seg = next_segment(len, offset)) != 0) {
1883 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1884 if (ret < 0)
1885 return ret;
1886 offset = 0;
1887 len -= seg;
1888 data += seg;
1889 ++gfn;
1890 }
1891 return 0;
1892 }
1893 EXPORT_SYMBOL_GPL(kvm_write_guest);
1894
kvm_vcpu_write_guest(struct kvm_vcpu * vcpu,gpa_t gpa,const void * data,unsigned long len)1895 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1896 unsigned long len)
1897 {
1898 gfn_t gfn = gpa >> PAGE_SHIFT;
1899 int seg;
1900 int offset = offset_in_page(gpa);
1901 int ret;
1902
1903 while ((seg = next_segment(len, offset)) != 0) {
1904 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1905 if (ret < 0)
1906 return ret;
1907 offset = 0;
1908 len -= seg;
1909 data += seg;
1910 ++gfn;
1911 }
1912 return 0;
1913 }
1914 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1915
__kvm_gfn_to_hva_cache_init(struct kvm_memslots * slots,struct gfn_to_hva_cache * ghc,gpa_t gpa,unsigned long len)1916 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
1917 struct gfn_to_hva_cache *ghc,
1918 gpa_t gpa, unsigned long len)
1919 {
1920 int offset = offset_in_page(gpa);
1921 gfn_t start_gfn = gpa >> PAGE_SHIFT;
1922 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1923 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1924 gfn_t nr_pages_avail;
1925
1926 ghc->gpa = gpa;
1927 ghc->generation = slots->generation;
1928 ghc->len = len;
1929 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1930 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1931 if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1932 ghc->hva += offset;
1933 } else {
1934 /*
1935 * If the requested region crosses two memslots, we still
1936 * verify that the entire region is valid here.
1937 */
1938 while (start_gfn <= end_gfn) {
1939 nr_pages_avail = 0;
1940 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1941 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1942 &nr_pages_avail);
1943 if (kvm_is_error_hva(ghc->hva))
1944 return -EFAULT;
1945 start_gfn += nr_pages_avail;
1946 }
1947 /* Use the slow path for cross page reads and writes. */
1948 ghc->memslot = NULL;
1949 }
1950 return 0;
1951 }
1952
kvm_gfn_to_hva_cache_init(struct kvm * kvm,struct gfn_to_hva_cache * ghc,gpa_t gpa,unsigned long len)1953 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1954 gpa_t gpa, unsigned long len)
1955 {
1956 struct kvm_memslots *slots = kvm_memslots(kvm);
1957 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
1958 }
1959 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1960
kvm_write_guest_offset_cached(struct kvm * kvm,struct gfn_to_hva_cache * ghc,void * data,int offset,unsigned long len)1961 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1962 void *data, int offset, unsigned long len)
1963 {
1964 struct kvm_memslots *slots = kvm_memslots(kvm);
1965 int r;
1966 gpa_t gpa = ghc->gpa + offset;
1967
1968 BUG_ON(len + offset > ghc->len);
1969
1970 if (slots->generation != ghc->generation)
1971 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
1972
1973 if (unlikely(!ghc->memslot))
1974 return kvm_write_guest(kvm, gpa, data, len);
1975
1976 if (kvm_is_error_hva(ghc->hva))
1977 return -EFAULT;
1978
1979 r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
1980 if (r)
1981 return -EFAULT;
1982 mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
1983
1984 return 0;
1985 }
1986 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
1987
kvm_write_guest_cached(struct kvm * kvm,struct gfn_to_hva_cache * ghc,void * data,unsigned long len)1988 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1989 void *data, unsigned long len)
1990 {
1991 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
1992 }
1993 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1994
kvm_read_guest_cached(struct kvm * kvm,struct gfn_to_hva_cache * ghc,void * data,unsigned long len)1995 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1996 void *data, unsigned long len)
1997 {
1998 struct kvm_memslots *slots = kvm_memslots(kvm);
1999 int r;
2000
2001 BUG_ON(len > ghc->len);
2002
2003 if (slots->generation != ghc->generation)
2004 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2005
2006 if (unlikely(!ghc->memslot))
2007 return kvm_read_guest(kvm, ghc->gpa, data, len);
2008
2009 if (kvm_is_error_hva(ghc->hva))
2010 return -EFAULT;
2011
2012 r = __copy_from_user(data, (void __user *)ghc->hva, len);
2013 if (r)
2014 return -EFAULT;
2015
2016 return 0;
2017 }
2018 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2019
kvm_clear_guest_page(struct kvm * kvm,gfn_t gfn,int offset,int len)2020 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2021 {
2022 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2023
2024 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2025 }
2026 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2027
kvm_clear_guest(struct kvm * kvm,gpa_t gpa,unsigned long len)2028 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2029 {
2030 gfn_t gfn = gpa >> PAGE_SHIFT;
2031 int seg;
2032 int offset = offset_in_page(gpa);
2033 int ret;
2034
2035 while ((seg = next_segment(len, offset)) != 0) {
2036 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2037 if (ret < 0)
2038 return ret;
2039 offset = 0;
2040 len -= seg;
2041 ++gfn;
2042 }
2043 return 0;
2044 }
2045 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2046
mark_page_dirty_in_slot(struct kvm_memory_slot * memslot,gfn_t gfn)2047 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2048 gfn_t gfn)
2049 {
2050 if (memslot && memslot->dirty_bitmap) {
2051 unsigned long rel_gfn = gfn - memslot->base_gfn;
2052
2053 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2054 }
2055 }
2056
mark_page_dirty(struct kvm * kvm,gfn_t gfn)2057 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2058 {
2059 struct kvm_memory_slot *memslot;
2060
2061 memslot = gfn_to_memslot(kvm, gfn);
2062 mark_page_dirty_in_slot(memslot, gfn);
2063 }
2064 EXPORT_SYMBOL_GPL(mark_page_dirty);
2065
kvm_vcpu_mark_page_dirty(struct kvm_vcpu * vcpu,gfn_t gfn)2066 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2067 {
2068 struct kvm_memory_slot *memslot;
2069
2070 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2071 mark_page_dirty_in_slot(memslot, gfn);
2072 }
2073 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2074
kvm_sigset_activate(struct kvm_vcpu * vcpu)2075 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2076 {
2077 if (!vcpu->sigset_active)
2078 return;
2079
2080 /*
2081 * This does a lockless modification of ->real_blocked, which is fine
2082 * because, only current can change ->real_blocked and all readers of
2083 * ->real_blocked don't care as long ->real_blocked is always a subset
2084 * of ->blocked.
2085 */
2086 sigprocmask(SIG_SETMASK, &vcpu->sigset, ¤t->real_blocked);
2087 }
2088
kvm_sigset_deactivate(struct kvm_vcpu * vcpu)2089 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2090 {
2091 if (!vcpu->sigset_active)
2092 return;
2093
2094 sigprocmask(SIG_SETMASK, ¤t->real_blocked, NULL);
2095 sigemptyset(¤t->real_blocked);
2096 }
2097
grow_halt_poll_ns(struct kvm_vcpu * vcpu)2098 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2099 {
2100 unsigned int old, val, grow;
2101
2102 old = val = vcpu->halt_poll_ns;
2103 grow = READ_ONCE(halt_poll_ns_grow);
2104 /* 10us base */
2105 if (val == 0 && grow)
2106 val = 10000;
2107 else
2108 val *= grow;
2109
2110 if (val > halt_poll_ns)
2111 val = halt_poll_ns;
2112
2113 vcpu->halt_poll_ns = val;
2114 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2115 }
2116
shrink_halt_poll_ns(struct kvm_vcpu * vcpu)2117 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2118 {
2119 unsigned int old, val, shrink;
2120
2121 old = val = vcpu->halt_poll_ns;
2122 shrink = READ_ONCE(halt_poll_ns_shrink);
2123 if (shrink == 0)
2124 val = 0;
2125 else
2126 val /= shrink;
2127
2128 vcpu->halt_poll_ns = val;
2129 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2130 }
2131
kvm_vcpu_check_block(struct kvm_vcpu * vcpu)2132 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2133 {
2134 int ret = -EINTR;
2135 int idx = srcu_read_lock(&vcpu->kvm->srcu);
2136
2137 if (kvm_arch_vcpu_runnable(vcpu)) {
2138 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2139 goto out;
2140 }
2141 if (kvm_cpu_has_pending_timer(vcpu))
2142 goto out;
2143 if (signal_pending(current))
2144 goto out;
2145
2146 ret = 0;
2147 out:
2148 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2149 return ret;
2150 }
2151
2152 /*
2153 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2154 */
kvm_vcpu_block(struct kvm_vcpu * vcpu)2155 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2156 {
2157 ktime_t start, cur;
2158 DECLARE_SWAITQUEUE(wait);
2159 bool waited = false;
2160 u64 block_ns;
2161
2162 start = cur = ktime_get();
2163 if (vcpu->halt_poll_ns) {
2164 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2165
2166 ++vcpu->stat.halt_attempted_poll;
2167 do {
2168 /*
2169 * This sets KVM_REQ_UNHALT if an interrupt
2170 * arrives.
2171 */
2172 if (kvm_vcpu_check_block(vcpu) < 0) {
2173 ++vcpu->stat.halt_successful_poll;
2174 if (!vcpu_valid_wakeup(vcpu))
2175 ++vcpu->stat.halt_poll_invalid;
2176 goto out;
2177 }
2178 cur = ktime_get();
2179 } while (single_task_running() && ktime_before(cur, stop));
2180 }
2181
2182 kvm_arch_vcpu_blocking(vcpu);
2183
2184 for (;;) {
2185 prepare_to_swait_exclusive(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2186
2187 if (kvm_vcpu_check_block(vcpu) < 0)
2188 break;
2189
2190 waited = true;
2191 schedule();
2192 }
2193
2194 finish_swait(&vcpu->wq, &wait);
2195 cur = ktime_get();
2196
2197 kvm_arch_vcpu_unblocking(vcpu);
2198 out:
2199 block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2200
2201 if (!vcpu_valid_wakeup(vcpu))
2202 shrink_halt_poll_ns(vcpu);
2203 else if (halt_poll_ns) {
2204 if (block_ns <= vcpu->halt_poll_ns)
2205 ;
2206 /* we had a long block, shrink polling */
2207 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2208 shrink_halt_poll_ns(vcpu);
2209 /* we had a short halt and our poll time is too small */
2210 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2211 block_ns < halt_poll_ns)
2212 grow_halt_poll_ns(vcpu);
2213 } else
2214 vcpu->halt_poll_ns = 0;
2215
2216 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2217 kvm_arch_vcpu_block_finish(vcpu);
2218 }
2219 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2220
kvm_vcpu_wake_up(struct kvm_vcpu * vcpu)2221 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2222 {
2223 struct swait_queue_head *wqp;
2224
2225 wqp = kvm_arch_vcpu_wq(vcpu);
2226 if (swq_has_sleeper(wqp)) {
2227 swake_up_one(wqp);
2228 ++vcpu->stat.halt_wakeup;
2229 return true;
2230 }
2231
2232 return false;
2233 }
2234 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2235
2236 #ifndef CONFIG_S390
2237 /*
2238 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2239 */
kvm_vcpu_kick(struct kvm_vcpu * vcpu)2240 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2241 {
2242 int me;
2243 int cpu = vcpu->cpu;
2244
2245 if (kvm_vcpu_wake_up(vcpu))
2246 return;
2247
2248 me = get_cpu();
2249 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2250 if (kvm_arch_vcpu_should_kick(vcpu))
2251 smp_send_reschedule(cpu);
2252 put_cpu();
2253 }
2254 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2255 #endif /* !CONFIG_S390 */
2256
kvm_vcpu_yield_to(struct kvm_vcpu * target)2257 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2258 {
2259 struct pid *pid;
2260 struct task_struct *task = NULL;
2261 int ret = 0;
2262
2263 rcu_read_lock();
2264 pid = rcu_dereference(target->pid);
2265 if (pid)
2266 task = get_pid_task(pid, PIDTYPE_PID);
2267 rcu_read_unlock();
2268 if (!task)
2269 return ret;
2270 ret = yield_to(task, 1);
2271 put_task_struct(task);
2272
2273 return ret;
2274 }
2275 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2276
2277 /*
2278 * Helper that checks whether a VCPU is eligible for directed yield.
2279 * Most eligible candidate to yield is decided by following heuristics:
2280 *
2281 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2282 * (preempted lock holder), indicated by @in_spin_loop.
2283 * Set at the beiginning and cleared at the end of interception/PLE handler.
2284 *
2285 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2286 * chance last time (mostly it has become eligible now since we have probably
2287 * yielded to lockholder in last iteration. This is done by toggling
2288 * @dy_eligible each time a VCPU checked for eligibility.)
2289 *
2290 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2291 * to preempted lock-holder could result in wrong VCPU selection and CPU
2292 * burning. Giving priority for a potential lock-holder increases lock
2293 * progress.
2294 *
2295 * Since algorithm is based on heuristics, accessing another VCPU data without
2296 * locking does not harm. It may result in trying to yield to same VCPU, fail
2297 * and continue with next VCPU and so on.
2298 */
kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu * vcpu)2299 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2300 {
2301 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2302 bool eligible;
2303
2304 eligible = !vcpu->spin_loop.in_spin_loop ||
2305 vcpu->spin_loop.dy_eligible;
2306
2307 if (vcpu->spin_loop.in_spin_loop)
2308 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2309
2310 return eligible;
2311 #else
2312 return true;
2313 #endif
2314 }
2315
kvm_vcpu_on_spin(struct kvm_vcpu * me,bool yield_to_kernel_mode)2316 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2317 {
2318 struct kvm *kvm = me->kvm;
2319 struct kvm_vcpu *vcpu;
2320 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2321 int yielded = 0;
2322 int try = 3;
2323 int pass;
2324 int i;
2325
2326 kvm_vcpu_set_in_spin_loop(me, true);
2327 /*
2328 * We boost the priority of a VCPU that is runnable but not
2329 * currently running, because it got preempted by something
2330 * else and called schedule in __vcpu_run. Hopefully that
2331 * VCPU is holding the lock that we need and will release it.
2332 * We approximate round-robin by starting at the last boosted VCPU.
2333 */
2334 for (pass = 0; pass < 2 && !yielded && try; pass++) {
2335 kvm_for_each_vcpu(i, vcpu, kvm) {
2336 if (!pass && i <= last_boosted_vcpu) {
2337 i = last_boosted_vcpu;
2338 continue;
2339 } else if (pass && i > last_boosted_vcpu)
2340 break;
2341 if (!READ_ONCE(vcpu->preempted))
2342 continue;
2343 if (vcpu == me)
2344 continue;
2345 if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2346 continue;
2347 if (yield_to_kernel_mode && !kvm_arch_vcpu_in_kernel(vcpu))
2348 continue;
2349 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2350 continue;
2351
2352 yielded = kvm_vcpu_yield_to(vcpu);
2353 if (yielded > 0) {
2354 kvm->last_boosted_vcpu = i;
2355 break;
2356 } else if (yielded < 0) {
2357 try--;
2358 if (!try)
2359 break;
2360 }
2361 }
2362 }
2363 kvm_vcpu_set_in_spin_loop(me, false);
2364
2365 /* Ensure vcpu is not eligible during next spinloop */
2366 kvm_vcpu_set_dy_eligible(me, false);
2367 }
2368 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2369
kvm_vcpu_fault(struct vm_fault * vmf)2370 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
2371 {
2372 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2373 struct page *page;
2374
2375 if (vmf->pgoff == 0)
2376 page = virt_to_page(vcpu->run);
2377 #ifdef CONFIG_X86
2378 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2379 page = virt_to_page(vcpu->arch.pio_data);
2380 #endif
2381 #ifdef CONFIG_KVM_MMIO
2382 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2383 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2384 #endif
2385 else
2386 return kvm_arch_vcpu_fault(vcpu, vmf);
2387 get_page(page);
2388 vmf->page = page;
2389 return 0;
2390 }
2391
2392 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2393 .fault = kvm_vcpu_fault,
2394 };
2395
kvm_vcpu_mmap(struct file * file,struct vm_area_struct * vma)2396 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2397 {
2398 vma->vm_ops = &kvm_vcpu_vm_ops;
2399 return 0;
2400 }
2401
kvm_vcpu_release(struct inode * inode,struct file * filp)2402 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2403 {
2404 struct kvm_vcpu *vcpu = filp->private_data;
2405
2406 debugfs_remove_recursive(vcpu->debugfs_dentry);
2407 kvm_put_kvm(vcpu->kvm);
2408 return 0;
2409 }
2410
2411 static struct file_operations kvm_vcpu_fops = {
2412 .release = kvm_vcpu_release,
2413 .unlocked_ioctl = kvm_vcpu_ioctl,
2414 .mmap = kvm_vcpu_mmap,
2415 .llseek = noop_llseek,
2416 KVM_COMPAT(kvm_vcpu_compat_ioctl),
2417 };
2418
2419 /*
2420 * Allocates an inode for the vcpu.
2421 */
create_vcpu_fd(struct kvm_vcpu * vcpu)2422 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2423 {
2424 char name[8 + 1 + ITOA_MAX_LEN + 1];
2425
2426 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
2427 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2428 }
2429
kvm_create_vcpu_debugfs(struct kvm_vcpu * vcpu)2430 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2431 {
2432 char dir_name[ITOA_MAX_LEN * 2];
2433 int ret;
2434
2435 if (!kvm_arch_has_vcpu_debugfs())
2436 return 0;
2437
2438 if (!debugfs_initialized())
2439 return 0;
2440
2441 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2442 vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2443 vcpu->kvm->debugfs_dentry);
2444 if (!vcpu->debugfs_dentry)
2445 return -ENOMEM;
2446
2447 ret = kvm_arch_create_vcpu_debugfs(vcpu);
2448 if (ret < 0) {
2449 debugfs_remove_recursive(vcpu->debugfs_dentry);
2450 return ret;
2451 }
2452
2453 return 0;
2454 }
2455
2456 /*
2457 * Creates some virtual cpus. Good luck creating more than one.
2458 */
kvm_vm_ioctl_create_vcpu(struct kvm * kvm,u32 id)2459 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2460 {
2461 int r;
2462 struct kvm_vcpu *vcpu;
2463
2464 if (id >= KVM_MAX_VCPU_ID)
2465 return -EINVAL;
2466
2467 mutex_lock(&kvm->lock);
2468 if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2469 mutex_unlock(&kvm->lock);
2470 return -EINVAL;
2471 }
2472
2473 kvm->created_vcpus++;
2474 mutex_unlock(&kvm->lock);
2475
2476 vcpu = kvm_arch_vcpu_create(kvm, id);
2477 if (IS_ERR(vcpu)) {
2478 r = PTR_ERR(vcpu);
2479 goto vcpu_decrement;
2480 }
2481
2482 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2483
2484 r = kvm_arch_vcpu_setup(vcpu);
2485 if (r)
2486 goto vcpu_destroy;
2487
2488 r = kvm_create_vcpu_debugfs(vcpu);
2489 if (r)
2490 goto vcpu_destroy;
2491
2492 mutex_lock(&kvm->lock);
2493 if (kvm_get_vcpu_by_id(kvm, id)) {
2494 r = -EEXIST;
2495 goto unlock_vcpu_destroy;
2496 }
2497
2498 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2499
2500 /* Now it's all set up, let userspace reach it */
2501 kvm_get_kvm(kvm);
2502 r = create_vcpu_fd(vcpu);
2503 if (r < 0) {
2504 kvm_put_kvm(kvm);
2505 goto unlock_vcpu_destroy;
2506 }
2507
2508 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2509
2510 /*
2511 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus
2512 * before kvm->online_vcpu's incremented value.
2513 */
2514 smp_wmb();
2515 atomic_inc(&kvm->online_vcpus);
2516
2517 mutex_unlock(&kvm->lock);
2518 kvm_arch_vcpu_postcreate(vcpu);
2519 return r;
2520
2521 unlock_vcpu_destroy:
2522 mutex_unlock(&kvm->lock);
2523 debugfs_remove_recursive(vcpu->debugfs_dentry);
2524 vcpu_destroy:
2525 kvm_arch_vcpu_destroy(vcpu);
2526 vcpu_decrement:
2527 mutex_lock(&kvm->lock);
2528 kvm->created_vcpus--;
2529 mutex_unlock(&kvm->lock);
2530 return r;
2531 }
2532
kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu * vcpu,sigset_t * sigset)2533 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2534 {
2535 if (sigset) {
2536 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2537 vcpu->sigset_active = 1;
2538 vcpu->sigset = *sigset;
2539 } else
2540 vcpu->sigset_active = 0;
2541 return 0;
2542 }
2543
kvm_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)2544 static long kvm_vcpu_ioctl(struct file *filp,
2545 unsigned int ioctl, unsigned long arg)
2546 {
2547 struct kvm_vcpu *vcpu = filp->private_data;
2548 void __user *argp = (void __user *)arg;
2549 int r;
2550 struct kvm_fpu *fpu = NULL;
2551 struct kvm_sregs *kvm_sregs = NULL;
2552
2553 if (vcpu->kvm->mm != current->mm)
2554 return -EIO;
2555
2556 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2557 return -EINVAL;
2558
2559 /*
2560 * Some architectures have vcpu ioctls that are asynchronous to vcpu
2561 * execution; mutex_lock() would break them.
2562 */
2563 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
2564 if (r != -ENOIOCTLCMD)
2565 return r;
2566
2567 if (mutex_lock_killable(&vcpu->mutex))
2568 return -EINTR;
2569 switch (ioctl) {
2570 case KVM_RUN: {
2571 struct pid *oldpid;
2572 r = -EINVAL;
2573 if (arg)
2574 goto out;
2575 oldpid = rcu_access_pointer(vcpu->pid);
2576 if (unlikely(oldpid != task_pid(current))) {
2577 /* The thread running this VCPU changed. */
2578 struct pid *newpid;
2579
2580 r = kvm_arch_vcpu_run_pid_change(vcpu);
2581 if (r)
2582 break;
2583
2584 newpid = get_task_pid(current, PIDTYPE_PID);
2585 rcu_assign_pointer(vcpu->pid, newpid);
2586 if (oldpid)
2587 synchronize_rcu();
2588 put_pid(oldpid);
2589 }
2590 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2591 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2592 break;
2593 }
2594 case KVM_GET_REGS: {
2595 struct kvm_regs *kvm_regs;
2596
2597 r = -ENOMEM;
2598 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2599 if (!kvm_regs)
2600 goto out;
2601 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2602 if (r)
2603 goto out_free1;
2604 r = -EFAULT;
2605 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2606 goto out_free1;
2607 r = 0;
2608 out_free1:
2609 kfree(kvm_regs);
2610 break;
2611 }
2612 case KVM_SET_REGS: {
2613 struct kvm_regs *kvm_regs;
2614
2615 r = -ENOMEM;
2616 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2617 if (IS_ERR(kvm_regs)) {
2618 r = PTR_ERR(kvm_regs);
2619 goto out;
2620 }
2621 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2622 kfree(kvm_regs);
2623 break;
2624 }
2625 case KVM_GET_SREGS: {
2626 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2627 r = -ENOMEM;
2628 if (!kvm_sregs)
2629 goto out;
2630 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2631 if (r)
2632 goto out;
2633 r = -EFAULT;
2634 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2635 goto out;
2636 r = 0;
2637 break;
2638 }
2639 case KVM_SET_SREGS: {
2640 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2641 if (IS_ERR(kvm_sregs)) {
2642 r = PTR_ERR(kvm_sregs);
2643 kvm_sregs = NULL;
2644 goto out;
2645 }
2646 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2647 break;
2648 }
2649 case KVM_GET_MP_STATE: {
2650 struct kvm_mp_state mp_state;
2651
2652 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2653 if (r)
2654 goto out;
2655 r = -EFAULT;
2656 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2657 goto out;
2658 r = 0;
2659 break;
2660 }
2661 case KVM_SET_MP_STATE: {
2662 struct kvm_mp_state mp_state;
2663
2664 r = -EFAULT;
2665 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2666 goto out;
2667 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2668 break;
2669 }
2670 case KVM_TRANSLATE: {
2671 struct kvm_translation tr;
2672
2673 r = -EFAULT;
2674 if (copy_from_user(&tr, argp, sizeof(tr)))
2675 goto out;
2676 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2677 if (r)
2678 goto out;
2679 r = -EFAULT;
2680 if (copy_to_user(argp, &tr, sizeof(tr)))
2681 goto out;
2682 r = 0;
2683 break;
2684 }
2685 case KVM_SET_GUEST_DEBUG: {
2686 struct kvm_guest_debug dbg;
2687
2688 r = -EFAULT;
2689 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2690 goto out;
2691 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2692 break;
2693 }
2694 case KVM_SET_SIGNAL_MASK: {
2695 struct kvm_signal_mask __user *sigmask_arg = argp;
2696 struct kvm_signal_mask kvm_sigmask;
2697 sigset_t sigset, *p;
2698
2699 p = NULL;
2700 if (argp) {
2701 r = -EFAULT;
2702 if (copy_from_user(&kvm_sigmask, argp,
2703 sizeof(kvm_sigmask)))
2704 goto out;
2705 r = -EINVAL;
2706 if (kvm_sigmask.len != sizeof(sigset))
2707 goto out;
2708 r = -EFAULT;
2709 if (copy_from_user(&sigset, sigmask_arg->sigset,
2710 sizeof(sigset)))
2711 goto out;
2712 p = &sigset;
2713 }
2714 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2715 break;
2716 }
2717 case KVM_GET_FPU: {
2718 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2719 r = -ENOMEM;
2720 if (!fpu)
2721 goto out;
2722 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2723 if (r)
2724 goto out;
2725 r = -EFAULT;
2726 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2727 goto out;
2728 r = 0;
2729 break;
2730 }
2731 case KVM_SET_FPU: {
2732 fpu = memdup_user(argp, sizeof(*fpu));
2733 if (IS_ERR(fpu)) {
2734 r = PTR_ERR(fpu);
2735 fpu = NULL;
2736 goto out;
2737 }
2738 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2739 break;
2740 }
2741 default:
2742 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2743 }
2744 out:
2745 mutex_unlock(&vcpu->mutex);
2746 kfree(fpu);
2747 kfree(kvm_sregs);
2748 return r;
2749 }
2750
2751 #ifdef CONFIG_KVM_COMPAT
kvm_vcpu_compat_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)2752 static long kvm_vcpu_compat_ioctl(struct file *filp,
2753 unsigned int ioctl, unsigned long arg)
2754 {
2755 struct kvm_vcpu *vcpu = filp->private_data;
2756 void __user *argp = compat_ptr(arg);
2757 int r;
2758
2759 if (vcpu->kvm->mm != current->mm)
2760 return -EIO;
2761
2762 switch (ioctl) {
2763 case KVM_SET_SIGNAL_MASK: {
2764 struct kvm_signal_mask __user *sigmask_arg = argp;
2765 struct kvm_signal_mask kvm_sigmask;
2766 sigset_t sigset;
2767
2768 if (argp) {
2769 r = -EFAULT;
2770 if (copy_from_user(&kvm_sigmask, argp,
2771 sizeof(kvm_sigmask)))
2772 goto out;
2773 r = -EINVAL;
2774 if (kvm_sigmask.len != sizeof(compat_sigset_t))
2775 goto out;
2776 r = -EFAULT;
2777 if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset))
2778 goto out;
2779 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2780 } else
2781 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2782 break;
2783 }
2784 default:
2785 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2786 }
2787
2788 out:
2789 return r;
2790 }
2791 #endif
2792
kvm_device_ioctl_attr(struct kvm_device * dev,int (* accessor)(struct kvm_device * dev,struct kvm_device_attr * attr),unsigned long arg)2793 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2794 int (*accessor)(struct kvm_device *dev,
2795 struct kvm_device_attr *attr),
2796 unsigned long arg)
2797 {
2798 struct kvm_device_attr attr;
2799
2800 if (!accessor)
2801 return -EPERM;
2802
2803 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2804 return -EFAULT;
2805
2806 return accessor(dev, &attr);
2807 }
2808
kvm_device_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)2809 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2810 unsigned long arg)
2811 {
2812 struct kvm_device *dev = filp->private_data;
2813
2814 switch (ioctl) {
2815 case KVM_SET_DEVICE_ATTR:
2816 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2817 case KVM_GET_DEVICE_ATTR:
2818 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2819 case KVM_HAS_DEVICE_ATTR:
2820 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2821 default:
2822 if (dev->ops->ioctl)
2823 return dev->ops->ioctl(dev, ioctl, arg);
2824
2825 return -ENOTTY;
2826 }
2827 }
2828
kvm_device_release(struct inode * inode,struct file * filp)2829 static int kvm_device_release(struct inode *inode, struct file *filp)
2830 {
2831 struct kvm_device *dev = filp->private_data;
2832 struct kvm *kvm = dev->kvm;
2833
2834 kvm_put_kvm(kvm);
2835 return 0;
2836 }
2837
2838 static const struct file_operations kvm_device_fops = {
2839 .unlocked_ioctl = kvm_device_ioctl,
2840 .release = kvm_device_release,
2841 KVM_COMPAT(kvm_device_ioctl),
2842 };
2843
kvm_device_from_filp(struct file * filp)2844 struct kvm_device *kvm_device_from_filp(struct file *filp)
2845 {
2846 if (filp->f_op != &kvm_device_fops)
2847 return NULL;
2848
2849 return filp->private_data;
2850 }
2851
2852 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2853 #ifdef CONFIG_KVM_MPIC
2854 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
2855 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
2856 #endif
2857 };
2858
kvm_register_device_ops(struct kvm_device_ops * ops,u32 type)2859 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2860 {
2861 if (type >= ARRAY_SIZE(kvm_device_ops_table))
2862 return -ENOSPC;
2863
2864 if (kvm_device_ops_table[type] != NULL)
2865 return -EEXIST;
2866
2867 kvm_device_ops_table[type] = ops;
2868 return 0;
2869 }
2870
kvm_unregister_device_ops(u32 type)2871 void kvm_unregister_device_ops(u32 type)
2872 {
2873 if (kvm_device_ops_table[type] != NULL)
2874 kvm_device_ops_table[type] = NULL;
2875 }
2876
kvm_ioctl_create_device(struct kvm * kvm,struct kvm_create_device * cd)2877 static int kvm_ioctl_create_device(struct kvm *kvm,
2878 struct kvm_create_device *cd)
2879 {
2880 struct kvm_device_ops *ops = NULL;
2881 struct kvm_device *dev;
2882 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2883 int ret;
2884
2885 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2886 return -ENODEV;
2887
2888 ops = kvm_device_ops_table[cd->type];
2889 if (ops == NULL)
2890 return -ENODEV;
2891
2892 if (test)
2893 return 0;
2894
2895 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2896 if (!dev)
2897 return -ENOMEM;
2898
2899 dev->ops = ops;
2900 dev->kvm = kvm;
2901
2902 mutex_lock(&kvm->lock);
2903 ret = ops->create(dev, cd->type);
2904 if (ret < 0) {
2905 mutex_unlock(&kvm->lock);
2906 kfree(dev);
2907 return ret;
2908 }
2909 list_add(&dev->vm_node, &kvm->devices);
2910 mutex_unlock(&kvm->lock);
2911
2912 if (ops->init)
2913 ops->init(dev);
2914
2915 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2916 if (ret < 0) {
2917 mutex_lock(&kvm->lock);
2918 list_del(&dev->vm_node);
2919 mutex_unlock(&kvm->lock);
2920 ops->destroy(dev);
2921 return ret;
2922 }
2923
2924 kvm_get_kvm(kvm);
2925 cd->fd = ret;
2926 return 0;
2927 }
2928
kvm_vm_ioctl_check_extension_generic(struct kvm * kvm,long arg)2929 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2930 {
2931 switch (arg) {
2932 case KVM_CAP_USER_MEMORY:
2933 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2934 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2935 case KVM_CAP_INTERNAL_ERROR_DATA:
2936 #ifdef CONFIG_HAVE_KVM_MSI
2937 case KVM_CAP_SIGNAL_MSI:
2938 #endif
2939 #ifdef CONFIG_HAVE_KVM_IRQFD
2940 case KVM_CAP_IRQFD:
2941 case KVM_CAP_IRQFD_RESAMPLE:
2942 #endif
2943 case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2944 case KVM_CAP_CHECK_EXTENSION_VM:
2945 return 1;
2946 #ifdef CONFIG_KVM_MMIO
2947 case KVM_CAP_COALESCED_MMIO:
2948 return KVM_COALESCED_MMIO_PAGE_OFFSET;
2949 #endif
2950 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2951 case KVM_CAP_IRQ_ROUTING:
2952 return KVM_MAX_IRQ_ROUTES;
2953 #endif
2954 #if KVM_ADDRESS_SPACE_NUM > 1
2955 case KVM_CAP_MULTI_ADDRESS_SPACE:
2956 return KVM_ADDRESS_SPACE_NUM;
2957 #endif
2958 case KVM_CAP_MAX_VCPU_ID:
2959 return KVM_MAX_VCPU_ID;
2960 default:
2961 break;
2962 }
2963 return kvm_vm_ioctl_check_extension(kvm, arg);
2964 }
2965
kvm_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)2966 static long kvm_vm_ioctl(struct file *filp,
2967 unsigned int ioctl, unsigned long arg)
2968 {
2969 struct kvm *kvm = filp->private_data;
2970 void __user *argp = (void __user *)arg;
2971 int r;
2972
2973 if (kvm->mm != current->mm)
2974 return -EIO;
2975 switch (ioctl) {
2976 case KVM_CREATE_VCPU:
2977 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2978 break;
2979 case KVM_SET_USER_MEMORY_REGION: {
2980 struct kvm_userspace_memory_region kvm_userspace_mem;
2981
2982 r = -EFAULT;
2983 if (copy_from_user(&kvm_userspace_mem, argp,
2984 sizeof(kvm_userspace_mem)))
2985 goto out;
2986
2987 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2988 break;
2989 }
2990 case KVM_GET_DIRTY_LOG: {
2991 struct kvm_dirty_log log;
2992
2993 r = -EFAULT;
2994 if (copy_from_user(&log, argp, sizeof(log)))
2995 goto out;
2996 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2997 break;
2998 }
2999 #ifdef CONFIG_KVM_MMIO
3000 case KVM_REGISTER_COALESCED_MMIO: {
3001 struct kvm_coalesced_mmio_zone zone;
3002
3003 r = -EFAULT;
3004 if (copy_from_user(&zone, argp, sizeof(zone)))
3005 goto out;
3006 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3007 break;
3008 }
3009 case KVM_UNREGISTER_COALESCED_MMIO: {
3010 struct kvm_coalesced_mmio_zone zone;
3011
3012 r = -EFAULT;
3013 if (copy_from_user(&zone, argp, sizeof(zone)))
3014 goto out;
3015 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3016 break;
3017 }
3018 #endif
3019 case KVM_IRQFD: {
3020 struct kvm_irqfd data;
3021
3022 r = -EFAULT;
3023 if (copy_from_user(&data, argp, sizeof(data)))
3024 goto out;
3025 r = kvm_irqfd(kvm, &data);
3026 break;
3027 }
3028 case KVM_IOEVENTFD: {
3029 struct kvm_ioeventfd data;
3030
3031 r = -EFAULT;
3032 if (copy_from_user(&data, argp, sizeof(data)))
3033 goto out;
3034 r = kvm_ioeventfd(kvm, &data);
3035 break;
3036 }
3037 #ifdef CONFIG_HAVE_KVM_MSI
3038 case KVM_SIGNAL_MSI: {
3039 struct kvm_msi msi;
3040
3041 r = -EFAULT;
3042 if (copy_from_user(&msi, argp, sizeof(msi)))
3043 goto out;
3044 r = kvm_send_userspace_msi(kvm, &msi);
3045 break;
3046 }
3047 #endif
3048 #ifdef __KVM_HAVE_IRQ_LINE
3049 case KVM_IRQ_LINE_STATUS:
3050 case KVM_IRQ_LINE: {
3051 struct kvm_irq_level irq_event;
3052
3053 r = -EFAULT;
3054 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3055 goto out;
3056
3057 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3058 ioctl == KVM_IRQ_LINE_STATUS);
3059 if (r)
3060 goto out;
3061
3062 r = -EFAULT;
3063 if (ioctl == KVM_IRQ_LINE_STATUS) {
3064 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3065 goto out;
3066 }
3067
3068 r = 0;
3069 break;
3070 }
3071 #endif
3072 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3073 case KVM_SET_GSI_ROUTING: {
3074 struct kvm_irq_routing routing;
3075 struct kvm_irq_routing __user *urouting;
3076 struct kvm_irq_routing_entry *entries = NULL;
3077
3078 r = -EFAULT;
3079 if (copy_from_user(&routing, argp, sizeof(routing)))
3080 goto out;
3081 r = -EINVAL;
3082 if (!kvm_arch_can_set_irq_routing(kvm))
3083 goto out;
3084 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3085 goto out;
3086 if (routing.flags)
3087 goto out;
3088 if (routing.nr) {
3089 r = -ENOMEM;
3090 entries = vmalloc(array_size(sizeof(*entries),
3091 routing.nr));
3092 if (!entries)
3093 goto out;
3094 r = -EFAULT;
3095 urouting = argp;
3096 if (copy_from_user(entries, urouting->entries,
3097 routing.nr * sizeof(*entries)))
3098 goto out_free_irq_routing;
3099 }
3100 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3101 routing.flags);
3102 out_free_irq_routing:
3103 vfree(entries);
3104 break;
3105 }
3106 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3107 case KVM_CREATE_DEVICE: {
3108 struct kvm_create_device cd;
3109
3110 r = -EFAULT;
3111 if (copy_from_user(&cd, argp, sizeof(cd)))
3112 goto out;
3113
3114 r = kvm_ioctl_create_device(kvm, &cd);
3115 if (r)
3116 goto out;
3117
3118 r = -EFAULT;
3119 if (copy_to_user(argp, &cd, sizeof(cd)))
3120 goto out;
3121
3122 r = 0;
3123 break;
3124 }
3125 case KVM_CHECK_EXTENSION:
3126 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3127 break;
3128 default:
3129 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3130 }
3131 out:
3132 return r;
3133 }
3134
3135 #ifdef CONFIG_KVM_COMPAT
3136 struct compat_kvm_dirty_log {
3137 __u32 slot;
3138 __u32 padding1;
3139 union {
3140 compat_uptr_t dirty_bitmap; /* one bit per page */
3141 __u64 padding2;
3142 };
3143 };
3144
kvm_vm_compat_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)3145 static long kvm_vm_compat_ioctl(struct file *filp,
3146 unsigned int ioctl, unsigned long arg)
3147 {
3148 struct kvm *kvm = filp->private_data;
3149 int r;
3150
3151 if (kvm->mm != current->mm)
3152 return -EIO;
3153 switch (ioctl) {
3154 case KVM_GET_DIRTY_LOG: {
3155 struct compat_kvm_dirty_log compat_log;
3156 struct kvm_dirty_log log;
3157
3158 if (copy_from_user(&compat_log, (void __user *)arg,
3159 sizeof(compat_log)))
3160 return -EFAULT;
3161 log.slot = compat_log.slot;
3162 log.padding1 = compat_log.padding1;
3163 log.padding2 = compat_log.padding2;
3164 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3165
3166 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3167 break;
3168 }
3169 default:
3170 r = kvm_vm_ioctl(filp, ioctl, arg);
3171 }
3172 return r;
3173 }
3174 #endif
3175
3176 static struct file_operations kvm_vm_fops = {
3177 .release = kvm_vm_release,
3178 .unlocked_ioctl = kvm_vm_ioctl,
3179 .llseek = noop_llseek,
3180 KVM_COMPAT(kvm_vm_compat_ioctl),
3181 };
3182
kvm_dev_ioctl_create_vm(unsigned long type)3183 static int kvm_dev_ioctl_create_vm(unsigned long type)
3184 {
3185 int r;
3186 struct kvm *kvm;
3187 struct file *file;
3188
3189 kvm = kvm_create_vm(type);
3190 if (IS_ERR(kvm))
3191 return PTR_ERR(kvm);
3192 #ifdef CONFIG_KVM_MMIO
3193 r = kvm_coalesced_mmio_init(kvm);
3194 if (r < 0)
3195 goto put_kvm;
3196 #endif
3197 r = get_unused_fd_flags(O_CLOEXEC);
3198 if (r < 0)
3199 goto put_kvm;
3200
3201 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3202 if (IS_ERR(file)) {
3203 put_unused_fd(r);
3204 r = PTR_ERR(file);
3205 goto put_kvm;
3206 }
3207
3208 /*
3209 * Don't call kvm_put_kvm anymore at this point; file->f_op is
3210 * already set, with ->release() being kvm_vm_release(). In error
3211 * cases it will be called by the final fput(file) and will take
3212 * care of doing kvm_put_kvm(kvm).
3213 */
3214 if (kvm_create_vm_debugfs(kvm, r) < 0) {
3215 put_unused_fd(r);
3216 fput(file);
3217 return -ENOMEM;
3218 }
3219 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3220
3221 fd_install(r, file);
3222 return r;
3223
3224 put_kvm:
3225 kvm_put_kvm(kvm);
3226 return r;
3227 }
3228
kvm_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)3229 static long kvm_dev_ioctl(struct file *filp,
3230 unsigned int ioctl, unsigned long arg)
3231 {
3232 long r = -EINVAL;
3233
3234 switch (ioctl) {
3235 case KVM_GET_API_VERSION:
3236 if (arg)
3237 goto out;
3238 r = KVM_API_VERSION;
3239 break;
3240 case KVM_CREATE_VM:
3241 r = kvm_dev_ioctl_create_vm(arg);
3242 break;
3243 case KVM_CHECK_EXTENSION:
3244 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3245 break;
3246 case KVM_GET_VCPU_MMAP_SIZE:
3247 if (arg)
3248 goto out;
3249 r = PAGE_SIZE; /* struct kvm_run */
3250 #ifdef CONFIG_X86
3251 r += PAGE_SIZE; /* pio data page */
3252 #endif
3253 #ifdef CONFIG_KVM_MMIO
3254 r += PAGE_SIZE; /* coalesced mmio ring page */
3255 #endif
3256 break;
3257 case KVM_TRACE_ENABLE:
3258 case KVM_TRACE_PAUSE:
3259 case KVM_TRACE_DISABLE:
3260 r = -EOPNOTSUPP;
3261 break;
3262 default:
3263 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3264 }
3265 out:
3266 return r;
3267 }
3268
3269 static struct file_operations kvm_chardev_ops = {
3270 .unlocked_ioctl = kvm_dev_ioctl,
3271 .llseek = noop_llseek,
3272 KVM_COMPAT(kvm_dev_ioctl),
3273 };
3274
3275 static struct miscdevice kvm_dev = {
3276 KVM_MINOR,
3277 "kvm",
3278 &kvm_chardev_ops,
3279 };
3280
hardware_enable_nolock(void * junk)3281 static void hardware_enable_nolock(void *junk)
3282 {
3283 int cpu = raw_smp_processor_id();
3284 int r;
3285
3286 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3287 return;
3288
3289 cpumask_set_cpu(cpu, cpus_hardware_enabled);
3290
3291 r = kvm_arch_hardware_enable();
3292
3293 if (r) {
3294 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3295 atomic_inc(&hardware_enable_failed);
3296 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3297 }
3298 }
3299
kvm_starting_cpu(unsigned int cpu)3300 static int kvm_starting_cpu(unsigned int cpu)
3301 {
3302 raw_spin_lock(&kvm_count_lock);
3303 if (kvm_usage_count)
3304 hardware_enable_nolock(NULL);
3305 raw_spin_unlock(&kvm_count_lock);
3306 return 0;
3307 }
3308
hardware_disable_nolock(void * junk)3309 static void hardware_disable_nolock(void *junk)
3310 {
3311 int cpu = raw_smp_processor_id();
3312
3313 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3314 return;
3315 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3316 kvm_arch_hardware_disable();
3317 }
3318
kvm_dying_cpu(unsigned int cpu)3319 static int kvm_dying_cpu(unsigned int cpu)
3320 {
3321 raw_spin_lock(&kvm_count_lock);
3322 if (kvm_usage_count)
3323 hardware_disable_nolock(NULL);
3324 raw_spin_unlock(&kvm_count_lock);
3325 return 0;
3326 }
3327
hardware_disable_all_nolock(void)3328 static void hardware_disable_all_nolock(void)
3329 {
3330 BUG_ON(!kvm_usage_count);
3331
3332 kvm_usage_count--;
3333 if (!kvm_usage_count)
3334 on_each_cpu(hardware_disable_nolock, NULL, 1);
3335 }
3336
hardware_disable_all(void)3337 static void hardware_disable_all(void)
3338 {
3339 raw_spin_lock(&kvm_count_lock);
3340 hardware_disable_all_nolock();
3341 raw_spin_unlock(&kvm_count_lock);
3342 }
3343
hardware_enable_all(void)3344 static int hardware_enable_all(void)
3345 {
3346 int r = 0;
3347
3348 raw_spin_lock(&kvm_count_lock);
3349
3350 kvm_usage_count++;
3351 if (kvm_usage_count == 1) {
3352 atomic_set(&hardware_enable_failed, 0);
3353 on_each_cpu(hardware_enable_nolock, NULL, 1);
3354
3355 if (atomic_read(&hardware_enable_failed)) {
3356 hardware_disable_all_nolock();
3357 r = -EBUSY;
3358 }
3359 }
3360
3361 raw_spin_unlock(&kvm_count_lock);
3362
3363 return r;
3364 }
3365
kvm_reboot(struct notifier_block * notifier,unsigned long val,void * v)3366 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3367 void *v)
3368 {
3369 /*
3370 * Some (well, at least mine) BIOSes hang on reboot if
3371 * in vmx root mode.
3372 *
3373 * And Intel TXT required VMX off for all cpu when system shutdown.
3374 */
3375 pr_info("kvm: exiting hardware virtualization\n");
3376 kvm_rebooting = true;
3377 on_each_cpu(hardware_disable_nolock, NULL, 1);
3378 return NOTIFY_OK;
3379 }
3380
3381 static struct notifier_block kvm_reboot_notifier = {
3382 .notifier_call = kvm_reboot,
3383 .priority = 0,
3384 };
3385
kvm_io_bus_destroy(struct kvm_io_bus * bus)3386 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3387 {
3388 int i;
3389
3390 for (i = 0; i < bus->dev_count; i++) {
3391 struct kvm_io_device *pos = bus->range[i].dev;
3392
3393 kvm_iodevice_destructor(pos);
3394 }
3395 kfree(bus);
3396 }
3397
kvm_io_bus_cmp(const struct kvm_io_range * r1,const struct kvm_io_range * r2)3398 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3399 const struct kvm_io_range *r2)
3400 {
3401 gpa_t addr1 = r1->addr;
3402 gpa_t addr2 = r2->addr;
3403
3404 if (addr1 < addr2)
3405 return -1;
3406
3407 /* If r2->len == 0, match the exact address. If r2->len != 0,
3408 * accept any overlapping write. Any order is acceptable for
3409 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3410 * we process all of them.
3411 */
3412 if (r2->len) {
3413 addr1 += r1->len;
3414 addr2 += r2->len;
3415 }
3416
3417 if (addr1 > addr2)
3418 return 1;
3419
3420 return 0;
3421 }
3422
kvm_io_bus_sort_cmp(const void * p1,const void * p2)3423 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3424 {
3425 return kvm_io_bus_cmp(p1, p2);
3426 }
3427
kvm_io_bus_get_first_dev(struct kvm_io_bus * bus,gpa_t addr,int len)3428 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3429 gpa_t addr, int len)
3430 {
3431 struct kvm_io_range *range, key;
3432 int off;
3433
3434 key = (struct kvm_io_range) {
3435 .addr = addr,
3436 .len = len,
3437 };
3438
3439 range = bsearch(&key, bus->range, bus->dev_count,
3440 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3441 if (range == NULL)
3442 return -ENOENT;
3443
3444 off = range - bus->range;
3445
3446 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3447 off--;
3448
3449 return off;
3450 }
3451
__kvm_io_bus_write(struct kvm_vcpu * vcpu,struct kvm_io_bus * bus,struct kvm_io_range * range,const void * val)3452 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3453 struct kvm_io_range *range, const void *val)
3454 {
3455 int idx;
3456
3457 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3458 if (idx < 0)
3459 return -EOPNOTSUPP;
3460
3461 while (idx < bus->dev_count &&
3462 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3463 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3464 range->len, val))
3465 return idx;
3466 idx++;
3467 }
3468
3469 return -EOPNOTSUPP;
3470 }
3471
3472 /* kvm_io_bus_write - called under kvm->slots_lock */
kvm_io_bus_write(struct kvm_vcpu * vcpu,enum kvm_bus bus_idx,gpa_t addr,int len,const void * val)3473 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3474 int len, const void *val)
3475 {
3476 struct kvm_io_bus *bus;
3477 struct kvm_io_range range;
3478 int r;
3479
3480 range = (struct kvm_io_range) {
3481 .addr = addr,
3482 .len = len,
3483 };
3484
3485 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3486 if (!bus)
3487 return -ENOMEM;
3488 r = __kvm_io_bus_write(vcpu, bus, &range, val);
3489 return r < 0 ? r : 0;
3490 }
3491
3492 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
kvm_io_bus_write_cookie(struct kvm_vcpu * vcpu,enum kvm_bus bus_idx,gpa_t addr,int len,const void * val,long cookie)3493 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3494 gpa_t addr, int len, const void *val, long cookie)
3495 {
3496 struct kvm_io_bus *bus;
3497 struct kvm_io_range range;
3498
3499 range = (struct kvm_io_range) {
3500 .addr = addr,
3501 .len = len,
3502 };
3503
3504 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3505 if (!bus)
3506 return -ENOMEM;
3507
3508 /* First try the device referenced by cookie. */
3509 if ((cookie >= 0) && (cookie < bus->dev_count) &&
3510 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3511 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3512 val))
3513 return cookie;
3514
3515 /*
3516 * cookie contained garbage; fall back to search and return the
3517 * correct cookie value.
3518 */
3519 return __kvm_io_bus_write(vcpu, bus, &range, val);
3520 }
3521
__kvm_io_bus_read(struct kvm_vcpu * vcpu,struct kvm_io_bus * bus,struct kvm_io_range * range,void * val)3522 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3523 struct kvm_io_range *range, void *val)
3524 {
3525 int idx;
3526
3527 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3528 if (idx < 0)
3529 return -EOPNOTSUPP;
3530
3531 while (idx < bus->dev_count &&
3532 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3533 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3534 range->len, val))
3535 return idx;
3536 idx++;
3537 }
3538
3539 return -EOPNOTSUPP;
3540 }
3541 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3542
3543 /* kvm_io_bus_read - called under kvm->slots_lock */
kvm_io_bus_read(struct kvm_vcpu * vcpu,enum kvm_bus bus_idx,gpa_t addr,int len,void * val)3544 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3545 int len, void *val)
3546 {
3547 struct kvm_io_bus *bus;
3548 struct kvm_io_range range;
3549 int r;
3550
3551 range = (struct kvm_io_range) {
3552 .addr = addr,
3553 .len = len,
3554 };
3555
3556 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3557 if (!bus)
3558 return -ENOMEM;
3559 r = __kvm_io_bus_read(vcpu, bus, &range, val);
3560 return r < 0 ? r : 0;
3561 }
3562
3563
3564 /* Caller must hold slots_lock. */
kvm_io_bus_register_dev(struct kvm * kvm,enum kvm_bus bus_idx,gpa_t addr,int len,struct kvm_io_device * dev)3565 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3566 int len, struct kvm_io_device *dev)
3567 {
3568 int i;
3569 struct kvm_io_bus *new_bus, *bus;
3570 struct kvm_io_range range;
3571
3572 bus = kvm_get_bus(kvm, bus_idx);
3573 if (!bus)
3574 return -ENOMEM;
3575
3576 /* exclude ioeventfd which is limited by maximum fd */
3577 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3578 return -ENOSPC;
3579
3580 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3581 sizeof(struct kvm_io_range)), GFP_KERNEL);
3582 if (!new_bus)
3583 return -ENOMEM;
3584
3585 range = (struct kvm_io_range) {
3586 .addr = addr,
3587 .len = len,
3588 .dev = dev,
3589 };
3590
3591 for (i = 0; i < bus->dev_count; i++)
3592 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
3593 break;
3594
3595 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3596 new_bus->dev_count++;
3597 new_bus->range[i] = range;
3598 memcpy(new_bus->range + i + 1, bus->range + i,
3599 (bus->dev_count - i) * sizeof(struct kvm_io_range));
3600 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3601 synchronize_srcu_expedited(&kvm->srcu);
3602 kfree(bus);
3603
3604 return 0;
3605 }
3606
3607 /* Caller must hold slots_lock. */
kvm_io_bus_unregister_dev(struct kvm * kvm,enum kvm_bus bus_idx,struct kvm_io_device * dev)3608 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3609 struct kvm_io_device *dev)
3610 {
3611 int i;
3612 struct kvm_io_bus *new_bus, *bus;
3613
3614 bus = kvm_get_bus(kvm, bus_idx);
3615 if (!bus)
3616 return;
3617
3618 for (i = 0; i < bus->dev_count; i++)
3619 if (bus->range[i].dev == dev) {
3620 break;
3621 }
3622
3623 if (i == bus->dev_count)
3624 return;
3625
3626 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3627 sizeof(struct kvm_io_range)), GFP_KERNEL);
3628 if (!new_bus) {
3629 pr_err("kvm: failed to shrink bus, removing it completely\n");
3630 goto broken;
3631 }
3632
3633 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3634 new_bus->dev_count--;
3635 memcpy(new_bus->range + i, bus->range + i + 1,
3636 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3637
3638 broken:
3639 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3640 synchronize_srcu_expedited(&kvm->srcu);
3641 kfree(bus);
3642 return;
3643 }
3644
kvm_io_bus_get_dev(struct kvm * kvm,enum kvm_bus bus_idx,gpa_t addr)3645 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3646 gpa_t addr)
3647 {
3648 struct kvm_io_bus *bus;
3649 int dev_idx, srcu_idx;
3650 struct kvm_io_device *iodev = NULL;
3651
3652 srcu_idx = srcu_read_lock(&kvm->srcu);
3653
3654 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3655 if (!bus)
3656 goto out_unlock;
3657
3658 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3659 if (dev_idx < 0)
3660 goto out_unlock;
3661
3662 iodev = bus->range[dev_idx].dev;
3663
3664 out_unlock:
3665 srcu_read_unlock(&kvm->srcu, srcu_idx);
3666
3667 return iodev;
3668 }
3669 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3670
kvm_debugfs_open(struct inode * inode,struct file * file,int (* get)(void *,u64 *),int (* set)(void *,u64),const char * fmt)3671 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3672 int (*get)(void *, u64 *), int (*set)(void *, u64),
3673 const char *fmt)
3674 {
3675 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3676 inode->i_private;
3677
3678 /* The debugfs files are a reference to the kvm struct which
3679 * is still valid when kvm_destroy_vm is called.
3680 * To avoid the race between open and the removal of the debugfs
3681 * directory we test against the users count.
3682 */
3683 if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
3684 return -ENOENT;
3685
3686 if (simple_attr_open(inode, file, get, set, fmt)) {
3687 kvm_put_kvm(stat_data->kvm);
3688 return -ENOMEM;
3689 }
3690
3691 return 0;
3692 }
3693
kvm_debugfs_release(struct inode * inode,struct file * file)3694 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3695 {
3696 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3697 inode->i_private;
3698
3699 simple_attr_release(inode, file);
3700 kvm_put_kvm(stat_data->kvm);
3701
3702 return 0;
3703 }
3704
vm_stat_get_per_vm(void * data,u64 * val)3705 static int vm_stat_get_per_vm(void *data, u64 *val)
3706 {
3707 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3708
3709 *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3710
3711 return 0;
3712 }
3713
vm_stat_clear_per_vm(void * data,u64 val)3714 static int vm_stat_clear_per_vm(void *data, u64 val)
3715 {
3716 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3717
3718 if (val)
3719 return -EINVAL;
3720
3721 *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
3722
3723 return 0;
3724 }
3725
vm_stat_get_per_vm_open(struct inode * inode,struct file * file)3726 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3727 {
3728 __simple_attr_check_format("%llu\n", 0ull);
3729 return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3730 vm_stat_clear_per_vm, "%llu\n");
3731 }
3732
3733 static const struct file_operations vm_stat_get_per_vm_fops = {
3734 .owner = THIS_MODULE,
3735 .open = vm_stat_get_per_vm_open,
3736 .release = kvm_debugfs_release,
3737 .read = simple_attr_read,
3738 .write = simple_attr_write,
3739 .llseek = no_llseek,
3740 };
3741
vcpu_stat_get_per_vm(void * data,u64 * val)3742 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3743 {
3744 int i;
3745 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3746 struct kvm_vcpu *vcpu;
3747
3748 *val = 0;
3749
3750 kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3751 *val += *(u64 *)((void *)vcpu + stat_data->offset);
3752
3753 return 0;
3754 }
3755
vcpu_stat_clear_per_vm(void * data,u64 val)3756 static int vcpu_stat_clear_per_vm(void *data, u64 val)
3757 {
3758 int i;
3759 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3760 struct kvm_vcpu *vcpu;
3761
3762 if (val)
3763 return -EINVAL;
3764
3765 kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3766 *(u64 *)((void *)vcpu + stat_data->offset) = 0;
3767
3768 return 0;
3769 }
3770
vcpu_stat_get_per_vm_open(struct inode * inode,struct file * file)3771 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3772 {
3773 __simple_attr_check_format("%llu\n", 0ull);
3774 return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3775 vcpu_stat_clear_per_vm, "%llu\n");
3776 }
3777
3778 static const struct file_operations vcpu_stat_get_per_vm_fops = {
3779 .owner = THIS_MODULE,
3780 .open = vcpu_stat_get_per_vm_open,
3781 .release = kvm_debugfs_release,
3782 .read = simple_attr_read,
3783 .write = simple_attr_write,
3784 .llseek = no_llseek,
3785 };
3786
3787 static const struct file_operations *stat_fops_per_vm[] = {
3788 [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3789 [KVM_STAT_VM] = &vm_stat_get_per_vm_fops,
3790 };
3791
vm_stat_get(void * _offset,u64 * val)3792 static int vm_stat_get(void *_offset, u64 *val)
3793 {
3794 unsigned offset = (long)_offset;
3795 struct kvm *kvm;
3796 struct kvm_stat_data stat_tmp = {.offset = offset};
3797 u64 tmp_val;
3798
3799 *val = 0;
3800 spin_lock(&kvm_lock);
3801 list_for_each_entry(kvm, &vm_list, vm_list) {
3802 stat_tmp.kvm = kvm;
3803 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3804 *val += tmp_val;
3805 }
3806 spin_unlock(&kvm_lock);
3807 return 0;
3808 }
3809
vm_stat_clear(void * _offset,u64 val)3810 static int vm_stat_clear(void *_offset, u64 val)
3811 {
3812 unsigned offset = (long)_offset;
3813 struct kvm *kvm;
3814 struct kvm_stat_data stat_tmp = {.offset = offset};
3815
3816 if (val)
3817 return -EINVAL;
3818
3819 spin_lock(&kvm_lock);
3820 list_for_each_entry(kvm, &vm_list, vm_list) {
3821 stat_tmp.kvm = kvm;
3822 vm_stat_clear_per_vm((void *)&stat_tmp, 0);
3823 }
3824 spin_unlock(&kvm_lock);
3825
3826 return 0;
3827 }
3828
3829 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
3830
vcpu_stat_get(void * _offset,u64 * val)3831 static int vcpu_stat_get(void *_offset, u64 *val)
3832 {
3833 unsigned offset = (long)_offset;
3834 struct kvm *kvm;
3835 struct kvm_stat_data stat_tmp = {.offset = offset};
3836 u64 tmp_val;
3837
3838 *val = 0;
3839 spin_lock(&kvm_lock);
3840 list_for_each_entry(kvm, &vm_list, vm_list) {
3841 stat_tmp.kvm = kvm;
3842 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3843 *val += tmp_val;
3844 }
3845 spin_unlock(&kvm_lock);
3846 return 0;
3847 }
3848
vcpu_stat_clear(void * _offset,u64 val)3849 static int vcpu_stat_clear(void *_offset, u64 val)
3850 {
3851 unsigned offset = (long)_offset;
3852 struct kvm *kvm;
3853 struct kvm_stat_data stat_tmp = {.offset = offset};
3854
3855 if (val)
3856 return -EINVAL;
3857
3858 spin_lock(&kvm_lock);
3859 list_for_each_entry(kvm, &vm_list, vm_list) {
3860 stat_tmp.kvm = kvm;
3861 vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
3862 }
3863 spin_unlock(&kvm_lock);
3864
3865 return 0;
3866 }
3867
3868 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
3869 "%llu\n");
3870
3871 static const struct file_operations *stat_fops[] = {
3872 [KVM_STAT_VCPU] = &vcpu_stat_fops,
3873 [KVM_STAT_VM] = &vm_stat_fops,
3874 };
3875
kvm_uevent_notify_change(unsigned int type,struct kvm * kvm)3876 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
3877 {
3878 struct kobj_uevent_env *env;
3879 unsigned long long created, active;
3880
3881 if (!kvm_dev.this_device || !kvm)
3882 return;
3883
3884 spin_lock(&kvm_lock);
3885 if (type == KVM_EVENT_CREATE_VM) {
3886 kvm_createvm_count++;
3887 kvm_active_vms++;
3888 } else if (type == KVM_EVENT_DESTROY_VM) {
3889 kvm_active_vms--;
3890 }
3891 created = kvm_createvm_count;
3892 active = kvm_active_vms;
3893 spin_unlock(&kvm_lock);
3894
3895 env = kzalloc(sizeof(*env), GFP_KERNEL);
3896 if (!env)
3897 return;
3898
3899 add_uevent_var(env, "CREATED=%llu", created);
3900 add_uevent_var(env, "COUNT=%llu", active);
3901
3902 if (type == KVM_EVENT_CREATE_VM) {
3903 add_uevent_var(env, "EVENT=create");
3904 kvm->userspace_pid = task_pid_nr(current);
3905 } else if (type == KVM_EVENT_DESTROY_VM) {
3906 add_uevent_var(env, "EVENT=destroy");
3907 }
3908 add_uevent_var(env, "PID=%d", kvm->userspace_pid);
3909
3910 if (kvm->debugfs_dentry) {
3911 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL);
3912
3913 if (p) {
3914 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
3915 if (!IS_ERR(tmp))
3916 add_uevent_var(env, "STATS_PATH=%s", tmp);
3917 kfree(p);
3918 }
3919 }
3920 /* no need for checks, since we are adding at most only 5 keys */
3921 env->envp[env->envp_idx++] = NULL;
3922 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
3923 kfree(env);
3924 }
3925
kvm_init_debug(void)3926 static void kvm_init_debug(void)
3927 {
3928 struct kvm_stats_debugfs_item *p;
3929
3930 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3931
3932 kvm_debugfs_num_entries = 0;
3933 for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
3934 debugfs_create_file(p->name, 0644, kvm_debugfs_dir,
3935 (void *)(long)p->offset,
3936 stat_fops[p->kind]);
3937 }
3938 }
3939
kvm_suspend(void)3940 static int kvm_suspend(void)
3941 {
3942 if (kvm_usage_count)
3943 hardware_disable_nolock(NULL);
3944 return 0;
3945 }
3946
kvm_resume(void)3947 static void kvm_resume(void)
3948 {
3949 if (kvm_usage_count) {
3950 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3951 hardware_enable_nolock(NULL);
3952 }
3953 }
3954
3955 static struct syscore_ops kvm_syscore_ops = {
3956 .suspend = kvm_suspend,
3957 .resume = kvm_resume,
3958 };
3959
3960 static inline
preempt_notifier_to_vcpu(struct preempt_notifier * pn)3961 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3962 {
3963 return container_of(pn, struct kvm_vcpu, preempt_notifier);
3964 }
3965
kvm_sched_in(struct preempt_notifier * pn,int cpu)3966 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3967 {
3968 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3969
3970 if (vcpu->preempted)
3971 vcpu->preempted = false;
3972
3973 kvm_arch_sched_in(vcpu, cpu);
3974
3975 kvm_arch_vcpu_load(vcpu, cpu);
3976 }
3977
kvm_sched_out(struct preempt_notifier * pn,struct task_struct * next)3978 static void kvm_sched_out(struct preempt_notifier *pn,
3979 struct task_struct *next)
3980 {
3981 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3982
3983 if (current->state == TASK_RUNNING)
3984 vcpu->preempted = true;
3985 kvm_arch_vcpu_put(vcpu);
3986 }
3987
kvm_init(void * opaque,unsigned vcpu_size,unsigned vcpu_align,struct module * module)3988 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3989 struct module *module)
3990 {
3991 int r;
3992 int cpu;
3993
3994 r = kvm_arch_init(opaque);
3995 if (r)
3996 goto out_fail;
3997
3998 /*
3999 * kvm_arch_init makes sure there's at most one caller
4000 * for architectures that support multiple implementations,
4001 * like intel and amd on x86.
4002 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4003 * conflicts in case kvm is already setup for another implementation.
4004 */
4005 r = kvm_irqfd_init();
4006 if (r)
4007 goto out_irqfd;
4008
4009 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4010 r = -ENOMEM;
4011 goto out_free_0;
4012 }
4013
4014 r = kvm_arch_hardware_setup();
4015 if (r < 0)
4016 goto out_free_0a;
4017
4018 for_each_online_cpu(cpu) {
4019 smp_call_function_single(cpu,
4020 kvm_arch_check_processor_compat,
4021 &r, 1);
4022 if (r < 0)
4023 goto out_free_1;
4024 }
4025
4026 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4027 kvm_starting_cpu, kvm_dying_cpu);
4028 if (r)
4029 goto out_free_2;
4030 register_reboot_notifier(&kvm_reboot_notifier);
4031
4032 /* A kmem cache lets us meet the alignment requirements of fx_save. */
4033 if (!vcpu_align)
4034 vcpu_align = __alignof__(struct kvm_vcpu);
4035 kvm_vcpu_cache =
4036 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4037 SLAB_ACCOUNT,
4038 offsetof(struct kvm_vcpu, arch),
4039 sizeof_field(struct kvm_vcpu, arch),
4040 NULL);
4041 if (!kvm_vcpu_cache) {
4042 r = -ENOMEM;
4043 goto out_free_3;
4044 }
4045
4046 r = kvm_async_pf_init();
4047 if (r)
4048 goto out_free;
4049
4050 kvm_chardev_ops.owner = module;
4051 kvm_vm_fops.owner = module;
4052 kvm_vcpu_fops.owner = module;
4053
4054 r = misc_register(&kvm_dev);
4055 if (r) {
4056 pr_err("kvm: misc device register failed\n");
4057 goto out_unreg;
4058 }
4059
4060 register_syscore_ops(&kvm_syscore_ops);
4061
4062 kvm_preempt_ops.sched_in = kvm_sched_in;
4063 kvm_preempt_ops.sched_out = kvm_sched_out;
4064
4065 kvm_init_debug();
4066
4067 r = kvm_vfio_ops_init();
4068 WARN_ON(r);
4069
4070 return 0;
4071
4072 out_unreg:
4073 kvm_async_pf_deinit();
4074 out_free:
4075 kmem_cache_destroy(kvm_vcpu_cache);
4076 out_free_3:
4077 unregister_reboot_notifier(&kvm_reboot_notifier);
4078 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4079 out_free_2:
4080 out_free_1:
4081 kvm_arch_hardware_unsetup();
4082 out_free_0a:
4083 free_cpumask_var(cpus_hardware_enabled);
4084 out_free_0:
4085 kvm_irqfd_exit();
4086 out_irqfd:
4087 kvm_arch_exit();
4088 out_fail:
4089 return r;
4090 }
4091 EXPORT_SYMBOL_GPL(kvm_init);
4092
kvm_exit(void)4093 void kvm_exit(void)
4094 {
4095 debugfs_remove_recursive(kvm_debugfs_dir);
4096 misc_deregister(&kvm_dev);
4097 kmem_cache_destroy(kvm_vcpu_cache);
4098 kvm_async_pf_deinit();
4099 unregister_syscore_ops(&kvm_syscore_ops);
4100 unregister_reboot_notifier(&kvm_reboot_notifier);
4101 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4102 on_each_cpu(hardware_disable_nolock, NULL, 1);
4103 kvm_arch_hardware_unsetup();
4104 kvm_arch_exit();
4105 kvm_irqfd_exit();
4106 free_cpumask_var(cpus_hardware_enabled);
4107 kvm_vfio_ops_exit();
4108 }
4109 EXPORT_SYMBOL_GPL(kvm_exit);
4110