1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Stand-alone page-table allocator for hyp stage-1 and guest stage-2.
4 * No bombay mix was harmed in the writing of this file.
5 *
6 * Copyright (C) 2020 Google LLC
7 * Author: Will Deacon <will@kernel.org>
8 */
9
10 #include <linux/bitfield.h>
11 #include <asm/kvm_pgtable.h>
12
13 #define KVM_PGTABLE_MAX_LEVELS 4U
14
15 #define KVM_PTE_VALID BIT(0)
16
17 #define KVM_PTE_TYPE BIT(1)
18 #define KVM_PTE_TYPE_BLOCK 0
19 #define KVM_PTE_TYPE_PAGE 1
20 #define KVM_PTE_TYPE_TABLE 1
21
22 #define KVM_PTE_ADDR_MASK GENMASK(47, PAGE_SHIFT)
23 #define KVM_PTE_ADDR_51_48 GENMASK(15, 12)
24
25 #define KVM_PTE_LEAF_ATTR_LO GENMASK(11, 2)
26
27 #define KVM_PTE_LEAF_ATTR_LO_S1_ATTRIDX GENMASK(4, 2)
28 #define KVM_PTE_LEAF_ATTR_LO_S1_AP GENMASK(7, 6)
29 #define KVM_PTE_LEAF_ATTR_LO_S1_AP_RO 3
30 #define KVM_PTE_LEAF_ATTR_LO_S1_AP_RW 1
31 #define KVM_PTE_LEAF_ATTR_LO_S1_SH GENMASK(9, 8)
32 #define KVM_PTE_LEAF_ATTR_LO_S1_SH_IS 3
33 #define KVM_PTE_LEAF_ATTR_LO_S1_AF BIT(10)
34
35 #define KVM_PTE_LEAF_ATTR_LO_S2_MEMATTR GENMASK(5, 2)
36 #define KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R BIT(6)
37 #define KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W BIT(7)
38 #define KVM_PTE_LEAF_ATTR_LO_S2_SH GENMASK(9, 8)
39 #define KVM_PTE_LEAF_ATTR_LO_S2_SH_IS 3
40 #define KVM_PTE_LEAF_ATTR_LO_S2_AF BIT(10)
41
42 #define KVM_PTE_LEAF_ATTR_HI GENMASK(63, 51)
43
44 #define KVM_PTE_LEAF_ATTR_HI_S1_XN BIT(54)
45
46 #define KVM_PTE_LEAF_ATTR_HI_S2_XN BIT(54)
47
48 struct kvm_pgtable_walk_data {
49 struct kvm_pgtable *pgt;
50 struct kvm_pgtable_walker *walker;
51
52 u64 addr;
53 u64 end;
54 };
55
kvm_granule_shift(u32 level)56 static u64 kvm_granule_shift(u32 level)
57 {
58 /* Assumes KVM_PGTABLE_MAX_LEVELS is 4 */
59 return ARM64_HW_PGTABLE_LEVEL_SHIFT(level);
60 }
61
kvm_granule_size(u32 level)62 static u64 kvm_granule_size(u32 level)
63 {
64 return BIT(kvm_granule_shift(level));
65 }
66
kvm_block_mapping_supported(u64 addr,u64 end,u64 phys,u32 level)67 static bool kvm_block_mapping_supported(u64 addr, u64 end, u64 phys, u32 level)
68 {
69 u64 granule = kvm_granule_size(level);
70
71 /*
72 * Reject invalid block mappings and don't bother with 4TB mappings for
73 * 52-bit PAs.
74 */
75 if (level == 0 || (PAGE_SIZE != SZ_4K && level == 1))
76 return false;
77
78 if (granule > (end - addr))
79 return false;
80
81 return IS_ALIGNED(addr, granule) && IS_ALIGNED(phys, granule);
82 }
83
kvm_pgtable_idx(struct kvm_pgtable_walk_data * data,u32 level)84 static u32 kvm_pgtable_idx(struct kvm_pgtable_walk_data *data, u32 level)
85 {
86 u64 shift = kvm_granule_shift(level);
87 u64 mask = BIT(PAGE_SHIFT - 3) - 1;
88
89 return (data->addr >> shift) & mask;
90 }
91
__kvm_pgd_page_idx(struct kvm_pgtable * pgt,u64 addr)92 static u32 __kvm_pgd_page_idx(struct kvm_pgtable *pgt, u64 addr)
93 {
94 u64 shift = kvm_granule_shift(pgt->start_level - 1); /* May underflow */
95 u64 mask = BIT(pgt->ia_bits) - 1;
96
97 return (addr & mask) >> shift;
98 }
99
kvm_pgd_page_idx(struct kvm_pgtable_walk_data * data)100 static u32 kvm_pgd_page_idx(struct kvm_pgtable_walk_data *data)
101 {
102 return __kvm_pgd_page_idx(data->pgt, data->addr);
103 }
104
kvm_pgd_pages(u32 ia_bits,u32 start_level)105 static u32 kvm_pgd_pages(u32 ia_bits, u32 start_level)
106 {
107 struct kvm_pgtable pgt = {
108 .ia_bits = ia_bits,
109 .start_level = start_level,
110 };
111
112 return __kvm_pgd_page_idx(&pgt, -1ULL) + 1;
113 }
114
kvm_pte_valid(kvm_pte_t pte)115 static bool kvm_pte_valid(kvm_pte_t pte)
116 {
117 return pte & KVM_PTE_VALID;
118 }
119
kvm_pte_table(kvm_pte_t pte,u32 level)120 static bool kvm_pte_table(kvm_pte_t pte, u32 level)
121 {
122 if (level == KVM_PGTABLE_MAX_LEVELS - 1)
123 return false;
124
125 if (!kvm_pte_valid(pte))
126 return false;
127
128 return FIELD_GET(KVM_PTE_TYPE, pte) == KVM_PTE_TYPE_TABLE;
129 }
130
kvm_pte_to_phys(kvm_pte_t pte)131 static u64 kvm_pte_to_phys(kvm_pte_t pte)
132 {
133 u64 pa = pte & KVM_PTE_ADDR_MASK;
134
135 if (PAGE_SHIFT == 16)
136 pa |= FIELD_GET(KVM_PTE_ADDR_51_48, pte) << 48;
137
138 return pa;
139 }
140
kvm_phys_to_pte(u64 pa)141 static kvm_pte_t kvm_phys_to_pte(u64 pa)
142 {
143 kvm_pte_t pte = pa & KVM_PTE_ADDR_MASK;
144
145 if (PAGE_SHIFT == 16)
146 pte |= FIELD_PREP(KVM_PTE_ADDR_51_48, pa >> 48);
147
148 return pte;
149 }
150
kvm_pte_follow(kvm_pte_t pte)151 static kvm_pte_t *kvm_pte_follow(kvm_pte_t pte)
152 {
153 return __va(kvm_pte_to_phys(pte));
154 }
155
kvm_set_invalid_pte(kvm_pte_t * ptep)156 static void kvm_set_invalid_pte(kvm_pte_t *ptep)
157 {
158 kvm_pte_t pte = *ptep;
159 WRITE_ONCE(*ptep, pte & ~KVM_PTE_VALID);
160 }
161
kvm_set_table_pte(kvm_pte_t * ptep,kvm_pte_t * childp)162 static void kvm_set_table_pte(kvm_pte_t *ptep, kvm_pte_t *childp)
163 {
164 kvm_pte_t old = *ptep, pte = kvm_phys_to_pte(__pa(childp));
165
166 pte |= FIELD_PREP(KVM_PTE_TYPE, KVM_PTE_TYPE_TABLE);
167 pte |= KVM_PTE_VALID;
168
169 WARN_ON(kvm_pte_valid(old));
170 smp_store_release(ptep, pte);
171 }
172
kvm_set_valid_leaf_pte(kvm_pte_t * ptep,u64 pa,kvm_pte_t attr,u32 level)173 static bool kvm_set_valid_leaf_pte(kvm_pte_t *ptep, u64 pa, kvm_pte_t attr,
174 u32 level)
175 {
176 kvm_pte_t old = *ptep, pte = kvm_phys_to_pte(pa);
177 u64 type = (level == KVM_PGTABLE_MAX_LEVELS - 1) ? KVM_PTE_TYPE_PAGE :
178 KVM_PTE_TYPE_BLOCK;
179
180 pte |= attr & (KVM_PTE_LEAF_ATTR_LO | KVM_PTE_LEAF_ATTR_HI);
181 pte |= FIELD_PREP(KVM_PTE_TYPE, type);
182 pte |= KVM_PTE_VALID;
183
184 /* Tolerate KVM recreating the exact same mapping. */
185 if (kvm_pte_valid(old))
186 return old == pte;
187
188 smp_store_release(ptep, pte);
189 return true;
190 }
191
kvm_pgtable_visitor_cb(struct kvm_pgtable_walk_data * data,u64 addr,u32 level,kvm_pte_t * ptep,enum kvm_pgtable_walk_flags flag)192 static int kvm_pgtable_visitor_cb(struct kvm_pgtable_walk_data *data, u64 addr,
193 u32 level, kvm_pte_t *ptep,
194 enum kvm_pgtable_walk_flags flag)
195 {
196 struct kvm_pgtable_walker *walker = data->walker;
197 return walker->cb(addr, data->end, level, ptep, flag, walker->arg);
198 }
199
200 static int __kvm_pgtable_walk(struct kvm_pgtable_walk_data *data,
201 kvm_pte_t *pgtable, u32 level);
202
__kvm_pgtable_visit(struct kvm_pgtable_walk_data * data,kvm_pte_t * ptep,u32 level)203 static inline int __kvm_pgtable_visit(struct kvm_pgtable_walk_data *data,
204 kvm_pte_t *ptep, u32 level)
205 {
206 int ret = 0;
207 u64 addr = data->addr;
208 kvm_pte_t *childp, pte = *ptep;
209 bool table = kvm_pte_table(pte, level);
210 enum kvm_pgtable_walk_flags flags = data->walker->flags;
211
212 if (table && (flags & KVM_PGTABLE_WALK_TABLE_PRE)) {
213 ret = kvm_pgtable_visitor_cb(data, addr, level, ptep,
214 KVM_PGTABLE_WALK_TABLE_PRE);
215 }
216
217 if (!table && (flags & KVM_PGTABLE_WALK_LEAF)) {
218 ret = kvm_pgtable_visitor_cb(data, addr, level, ptep,
219 KVM_PGTABLE_WALK_LEAF);
220 pte = *ptep;
221 table = kvm_pte_table(pte, level);
222 }
223
224 if (ret)
225 goto out;
226
227 if (!table) {
228 data->addr += kvm_granule_size(level);
229 goto out;
230 }
231
232 childp = kvm_pte_follow(pte);
233 ret = __kvm_pgtable_walk(data, childp, level + 1);
234 if (ret)
235 goto out;
236
237 if (flags & KVM_PGTABLE_WALK_TABLE_POST) {
238 ret = kvm_pgtable_visitor_cb(data, addr, level, ptep,
239 KVM_PGTABLE_WALK_TABLE_POST);
240 }
241
242 out:
243 return ret;
244 }
245
__kvm_pgtable_walk(struct kvm_pgtable_walk_data * data,kvm_pte_t * pgtable,u32 level)246 static int __kvm_pgtable_walk(struct kvm_pgtable_walk_data *data,
247 kvm_pte_t *pgtable, u32 level)
248 {
249 u32 idx;
250 int ret = 0;
251
252 if (WARN_ON_ONCE(level >= KVM_PGTABLE_MAX_LEVELS))
253 return -EINVAL;
254
255 for (idx = kvm_pgtable_idx(data, level); idx < PTRS_PER_PTE; ++idx) {
256 kvm_pte_t *ptep = &pgtable[idx];
257
258 if (data->addr >= data->end)
259 break;
260
261 ret = __kvm_pgtable_visit(data, ptep, level);
262 if (ret)
263 break;
264 }
265
266 return ret;
267 }
268
_kvm_pgtable_walk(struct kvm_pgtable_walk_data * data)269 static int _kvm_pgtable_walk(struct kvm_pgtable_walk_data *data)
270 {
271 u32 idx;
272 int ret = 0;
273 struct kvm_pgtable *pgt = data->pgt;
274 u64 limit = BIT(pgt->ia_bits);
275
276 if (data->addr > limit || data->end > limit)
277 return -ERANGE;
278
279 if (!pgt->pgd)
280 return -EINVAL;
281
282 for (idx = kvm_pgd_page_idx(data); data->addr < data->end; ++idx) {
283 kvm_pte_t *ptep = &pgt->pgd[idx * PTRS_PER_PTE];
284
285 ret = __kvm_pgtable_walk(data, ptep, pgt->start_level);
286 if (ret)
287 break;
288 }
289
290 return ret;
291 }
292
kvm_pgtable_walk(struct kvm_pgtable * pgt,u64 addr,u64 size,struct kvm_pgtable_walker * walker)293 int kvm_pgtable_walk(struct kvm_pgtable *pgt, u64 addr, u64 size,
294 struct kvm_pgtable_walker *walker)
295 {
296 struct kvm_pgtable_walk_data walk_data = {
297 .pgt = pgt,
298 .addr = ALIGN_DOWN(addr, PAGE_SIZE),
299 .end = PAGE_ALIGN(walk_data.addr + size),
300 .walker = walker,
301 };
302
303 return _kvm_pgtable_walk(&walk_data);
304 }
305
306 struct hyp_map_data {
307 u64 phys;
308 kvm_pte_t attr;
309 };
310
hyp_map_set_prot_attr(enum kvm_pgtable_prot prot,struct hyp_map_data * data)311 static int hyp_map_set_prot_attr(enum kvm_pgtable_prot prot,
312 struct hyp_map_data *data)
313 {
314 bool device = prot & KVM_PGTABLE_PROT_DEVICE;
315 u32 mtype = device ? MT_DEVICE_nGnRE : MT_NORMAL;
316 kvm_pte_t attr = FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_ATTRIDX, mtype);
317 u32 sh = KVM_PTE_LEAF_ATTR_LO_S1_SH_IS;
318 u32 ap = (prot & KVM_PGTABLE_PROT_W) ? KVM_PTE_LEAF_ATTR_LO_S1_AP_RW :
319 KVM_PTE_LEAF_ATTR_LO_S1_AP_RO;
320
321 if (!(prot & KVM_PGTABLE_PROT_R))
322 return -EINVAL;
323
324 if (prot & KVM_PGTABLE_PROT_X) {
325 if (prot & KVM_PGTABLE_PROT_W)
326 return -EINVAL;
327
328 if (device)
329 return -EINVAL;
330 } else {
331 attr |= KVM_PTE_LEAF_ATTR_HI_S1_XN;
332 }
333
334 attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_AP, ap);
335 attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_SH, sh);
336 attr |= KVM_PTE_LEAF_ATTR_LO_S1_AF;
337 data->attr = attr;
338 return 0;
339 }
340
hyp_map_walker_try_leaf(u64 addr,u64 end,u32 level,kvm_pte_t * ptep,struct hyp_map_data * data)341 static bool hyp_map_walker_try_leaf(u64 addr, u64 end, u32 level,
342 kvm_pte_t *ptep, struct hyp_map_data *data)
343 {
344 u64 granule = kvm_granule_size(level), phys = data->phys;
345
346 if (!kvm_block_mapping_supported(addr, end, phys, level))
347 return false;
348
349 WARN_ON(!kvm_set_valid_leaf_pte(ptep, phys, data->attr, level));
350 data->phys += granule;
351 return true;
352 }
353
hyp_map_walker(u64 addr,u64 end,u32 level,kvm_pte_t * ptep,enum kvm_pgtable_walk_flags flag,void * const arg)354 static int hyp_map_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep,
355 enum kvm_pgtable_walk_flags flag, void * const arg)
356 {
357 kvm_pte_t *childp;
358
359 if (hyp_map_walker_try_leaf(addr, end, level, ptep, arg))
360 return 0;
361
362 if (WARN_ON(level == KVM_PGTABLE_MAX_LEVELS - 1))
363 return -EINVAL;
364
365 childp = (kvm_pte_t *)get_zeroed_page(GFP_KERNEL);
366 if (!childp)
367 return -ENOMEM;
368
369 kvm_set_table_pte(ptep, childp);
370 return 0;
371 }
372
kvm_pgtable_hyp_map(struct kvm_pgtable * pgt,u64 addr,u64 size,u64 phys,enum kvm_pgtable_prot prot)373 int kvm_pgtable_hyp_map(struct kvm_pgtable *pgt, u64 addr, u64 size, u64 phys,
374 enum kvm_pgtable_prot prot)
375 {
376 int ret;
377 struct hyp_map_data map_data = {
378 .phys = ALIGN_DOWN(phys, PAGE_SIZE),
379 };
380 struct kvm_pgtable_walker walker = {
381 .cb = hyp_map_walker,
382 .flags = KVM_PGTABLE_WALK_LEAF,
383 .arg = &map_data,
384 };
385
386 ret = hyp_map_set_prot_attr(prot, &map_data);
387 if (ret)
388 return ret;
389
390 ret = kvm_pgtable_walk(pgt, addr, size, &walker);
391 dsb(ishst);
392 isb();
393 return ret;
394 }
395
kvm_pgtable_hyp_init(struct kvm_pgtable * pgt,u32 va_bits)396 int kvm_pgtable_hyp_init(struct kvm_pgtable *pgt, u32 va_bits)
397 {
398 u64 levels = ARM64_HW_PGTABLE_LEVELS(va_bits);
399
400 pgt->pgd = (kvm_pte_t *)get_zeroed_page(GFP_KERNEL);
401 if (!pgt->pgd)
402 return -ENOMEM;
403
404 pgt->ia_bits = va_bits;
405 pgt->start_level = KVM_PGTABLE_MAX_LEVELS - levels;
406 pgt->mmu = NULL;
407 return 0;
408 }
409
hyp_free_walker(u64 addr,u64 end,u32 level,kvm_pte_t * ptep,enum kvm_pgtable_walk_flags flag,void * const arg)410 static int hyp_free_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep,
411 enum kvm_pgtable_walk_flags flag, void * const arg)
412 {
413 free_page((unsigned long)kvm_pte_follow(*ptep));
414 return 0;
415 }
416
kvm_pgtable_hyp_destroy(struct kvm_pgtable * pgt)417 void kvm_pgtable_hyp_destroy(struct kvm_pgtable *pgt)
418 {
419 struct kvm_pgtable_walker walker = {
420 .cb = hyp_free_walker,
421 .flags = KVM_PGTABLE_WALK_TABLE_POST,
422 };
423
424 WARN_ON(kvm_pgtable_walk(pgt, 0, BIT(pgt->ia_bits), &walker));
425 free_page((unsigned long)pgt->pgd);
426 pgt->pgd = NULL;
427 }
428
429 struct stage2_map_data {
430 u64 phys;
431 kvm_pte_t attr;
432
433 kvm_pte_t *anchor;
434
435 struct kvm_s2_mmu *mmu;
436 struct kvm_mmu_memory_cache *memcache;
437 };
438
stage2_map_set_prot_attr(enum kvm_pgtable_prot prot,struct stage2_map_data * data)439 static int stage2_map_set_prot_attr(enum kvm_pgtable_prot prot,
440 struct stage2_map_data *data)
441 {
442 bool device = prot & KVM_PGTABLE_PROT_DEVICE;
443 kvm_pte_t attr = device ? PAGE_S2_MEMATTR(DEVICE_nGnRE) :
444 PAGE_S2_MEMATTR(NORMAL);
445 u32 sh = KVM_PTE_LEAF_ATTR_LO_S2_SH_IS;
446
447 if (!(prot & KVM_PGTABLE_PROT_X))
448 attr |= KVM_PTE_LEAF_ATTR_HI_S2_XN;
449 else if (device)
450 return -EINVAL;
451
452 if (prot & KVM_PGTABLE_PROT_R)
453 attr |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R;
454
455 if (prot & KVM_PGTABLE_PROT_W)
456 attr |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W;
457
458 attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S2_SH, sh);
459 attr |= KVM_PTE_LEAF_ATTR_LO_S2_AF;
460 data->attr = attr;
461 return 0;
462 }
463
stage2_map_walker_try_leaf(u64 addr,u64 end,u32 level,kvm_pte_t * ptep,struct stage2_map_data * data)464 static bool stage2_map_walker_try_leaf(u64 addr, u64 end, u32 level,
465 kvm_pte_t *ptep,
466 struct stage2_map_data *data)
467 {
468 u64 granule = kvm_granule_size(level), phys = data->phys;
469
470 if (!kvm_block_mapping_supported(addr, end, phys, level))
471 return false;
472
473 /*
474 * If the PTE was already valid, drop the refcount on the table
475 * early, as it will be bumped-up again in stage2_map_walk_leaf().
476 * This ensures that the refcount stays constant across a valid to
477 * valid PTE update.
478 */
479 if (kvm_pte_valid(*ptep))
480 put_page(virt_to_page(ptep));
481
482 if (kvm_set_valid_leaf_pte(ptep, phys, data->attr, level))
483 goto out;
484
485 /* There's an existing valid leaf entry, so perform break-before-make */
486 kvm_set_invalid_pte(ptep);
487 kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, data->mmu, addr, level);
488 kvm_set_valid_leaf_pte(ptep, phys, data->attr, level);
489 out:
490 data->phys += granule;
491 return true;
492 }
493
stage2_map_walk_table_pre(u64 addr,u64 end,u32 level,kvm_pte_t * ptep,struct stage2_map_data * data)494 static int stage2_map_walk_table_pre(u64 addr, u64 end, u32 level,
495 kvm_pte_t *ptep,
496 struct stage2_map_data *data)
497 {
498 if (data->anchor)
499 return 0;
500
501 if (!kvm_block_mapping_supported(addr, end, data->phys, level))
502 return 0;
503
504 kvm_set_invalid_pte(ptep);
505
506 /*
507 * Invalidate the whole stage-2, as we may have numerous leaf
508 * entries below us which would otherwise need invalidating
509 * individually.
510 */
511 kvm_call_hyp(__kvm_tlb_flush_vmid, data->mmu);
512 data->anchor = ptep;
513 return 0;
514 }
515
stage2_map_walk_leaf(u64 addr,u64 end,u32 level,kvm_pte_t * ptep,struct stage2_map_data * data)516 static int stage2_map_walk_leaf(u64 addr, u64 end, u32 level, kvm_pte_t *ptep,
517 struct stage2_map_data *data)
518 {
519 kvm_pte_t *childp, pte = *ptep;
520 struct page *page = virt_to_page(ptep);
521
522 if (data->anchor) {
523 if (kvm_pte_valid(pte))
524 put_page(page);
525
526 return 0;
527 }
528
529 if (stage2_map_walker_try_leaf(addr, end, level, ptep, data))
530 goto out_get_page;
531
532 if (WARN_ON(level == KVM_PGTABLE_MAX_LEVELS - 1))
533 return -EINVAL;
534
535 if (!data->memcache)
536 return -ENOMEM;
537
538 childp = kvm_mmu_memory_cache_alloc(data->memcache);
539 if (!childp)
540 return -ENOMEM;
541
542 /*
543 * If we've run into an existing block mapping then replace it with
544 * a table. Accesses beyond 'end' that fall within the new table
545 * will be mapped lazily.
546 */
547 if (kvm_pte_valid(pte)) {
548 kvm_set_invalid_pte(ptep);
549 kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, data->mmu, addr, level);
550 put_page(page);
551 }
552
553 kvm_set_table_pte(ptep, childp);
554
555 out_get_page:
556 get_page(page);
557 return 0;
558 }
559
stage2_map_walk_table_post(u64 addr,u64 end,u32 level,kvm_pte_t * ptep,struct stage2_map_data * data)560 static int stage2_map_walk_table_post(u64 addr, u64 end, u32 level,
561 kvm_pte_t *ptep,
562 struct stage2_map_data *data)
563 {
564 int ret = 0;
565
566 if (!data->anchor)
567 return 0;
568
569 free_page((unsigned long)kvm_pte_follow(*ptep));
570 put_page(virt_to_page(ptep));
571
572 if (data->anchor == ptep) {
573 data->anchor = NULL;
574 ret = stage2_map_walk_leaf(addr, end, level, ptep, data);
575 }
576
577 return ret;
578 }
579
580 /*
581 * This is a little fiddly, as we use all three of the walk flags. The idea
582 * is that the TABLE_PRE callback runs for table entries on the way down,
583 * looking for table entries which we could conceivably replace with a
584 * block entry for this mapping. If it finds one, then it sets the 'anchor'
585 * field in 'struct stage2_map_data' to point at the table entry, before
586 * clearing the entry to zero and descending into the now detached table.
587 *
588 * The behaviour of the LEAF callback then depends on whether or not the
589 * anchor has been set. If not, then we're not using a block mapping higher
590 * up the table and we perform the mapping at the existing leaves instead.
591 * If, on the other hand, the anchor _is_ set, then we drop references to
592 * all valid leaves so that the pages beneath the anchor can be freed.
593 *
594 * Finally, the TABLE_POST callback does nothing if the anchor has not
595 * been set, but otherwise frees the page-table pages while walking back up
596 * the page-table, installing the block entry when it revisits the anchor
597 * pointer and clearing the anchor to NULL.
598 */
stage2_map_walker(u64 addr,u64 end,u32 level,kvm_pte_t * ptep,enum kvm_pgtable_walk_flags flag,void * const arg)599 static int stage2_map_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep,
600 enum kvm_pgtable_walk_flags flag, void * const arg)
601 {
602 struct stage2_map_data *data = arg;
603
604 switch (flag) {
605 case KVM_PGTABLE_WALK_TABLE_PRE:
606 return stage2_map_walk_table_pre(addr, end, level, ptep, data);
607 case KVM_PGTABLE_WALK_LEAF:
608 return stage2_map_walk_leaf(addr, end, level, ptep, data);
609 case KVM_PGTABLE_WALK_TABLE_POST:
610 return stage2_map_walk_table_post(addr, end, level, ptep, data);
611 }
612
613 return -EINVAL;
614 }
615
kvm_pgtable_stage2_map(struct kvm_pgtable * pgt,u64 addr,u64 size,u64 phys,enum kvm_pgtable_prot prot,struct kvm_mmu_memory_cache * mc)616 int kvm_pgtable_stage2_map(struct kvm_pgtable *pgt, u64 addr, u64 size,
617 u64 phys, enum kvm_pgtable_prot prot,
618 struct kvm_mmu_memory_cache *mc)
619 {
620 int ret;
621 struct stage2_map_data map_data = {
622 .phys = ALIGN_DOWN(phys, PAGE_SIZE),
623 .mmu = pgt->mmu,
624 .memcache = mc,
625 };
626 struct kvm_pgtable_walker walker = {
627 .cb = stage2_map_walker,
628 .flags = KVM_PGTABLE_WALK_TABLE_PRE |
629 KVM_PGTABLE_WALK_LEAF |
630 KVM_PGTABLE_WALK_TABLE_POST,
631 .arg = &map_data,
632 };
633
634 ret = stage2_map_set_prot_attr(prot, &map_data);
635 if (ret)
636 return ret;
637
638 ret = kvm_pgtable_walk(pgt, addr, size, &walker);
639 dsb(ishst);
640 return ret;
641 }
642
stage2_flush_dcache(void * addr,u64 size)643 static void stage2_flush_dcache(void *addr, u64 size)
644 {
645 if (cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
646 return;
647
648 __flush_dcache_area(addr, size);
649 }
650
stage2_pte_cacheable(kvm_pte_t pte)651 static bool stage2_pte_cacheable(kvm_pte_t pte)
652 {
653 u64 memattr = pte & KVM_PTE_LEAF_ATTR_LO_S2_MEMATTR;
654 return memattr == PAGE_S2_MEMATTR(NORMAL);
655 }
656
stage2_unmap_walker(u64 addr,u64 end,u32 level,kvm_pte_t * ptep,enum kvm_pgtable_walk_flags flag,void * const arg)657 static int stage2_unmap_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep,
658 enum kvm_pgtable_walk_flags flag,
659 void * const arg)
660 {
661 struct kvm_s2_mmu *mmu = arg;
662 kvm_pte_t pte = *ptep, *childp = NULL;
663 bool need_flush = false;
664
665 if (!kvm_pte_valid(pte))
666 return 0;
667
668 if (kvm_pte_table(pte, level)) {
669 childp = kvm_pte_follow(pte);
670
671 if (page_count(virt_to_page(childp)) != 1)
672 return 0;
673 } else if (stage2_pte_cacheable(pte)) {
674 need_flush = true;
675 }
676
677 /*
678 * This is similar to the map() path in that we unmap the entire
679 * block entry and rely on the remaining portions being faulted
680 * back lazily.
681 */
682 kvm_set_invalid_pte(ptep);
683 kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu, addr, level);
684 put_page(virt_to_page(ptep));
685
686 if (need_flush) {
687 stage2_flush_dcache(kvm_pte_follow(pte),
688 kvm_granule_size(level));
689 }
690
691 if (childp)
692 free_page((unsigned long)childp);
693
694 return 0;
695 }
696
kvm_pgtable_stage2_unmap(struct kvm_pgtable * pgt,u64 addr,u64 size)697 int kvm_pgtable_stage2_unmap(struct kvm_pgtable *pgt, u64 addr, u64 size)
698 {
699 struct kvm_pgtable_walker walker = {
700 .cb = stage2_unmap_walker,
701 .arg = pgt->mmu,
702 .flags = KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST,
703 };
704
705 return kvm_pgtable_walk(pgt, addr, size, &walker);
706 }
707
708 struct stage2_attr_data {
709 kvm_pte_t attr_set;
710 kvm_pte_t attr_clr;
711 kvm_pte_t pte;
712 u32 level;
713 };
714
stage2_attr_walker(u64 addr,u64 end,u32 level,kvm_pte_t * ptep,enum kvm_pgtable_walk_flags flag,void * const arg)715 static int stage2_attr_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep,
716 enum kvm_pgtable_walk_flags flag,
717 void * const arg)
718 {
719 kvm_pte_t pte = *ptep;
720 struct stage2_attr_data *data = arg;
721
722 if (!kvm_pte_valid(pte))
723 return 0;
724
725 data->level = level;
726 data->pte = pte;
727 pte &= ~data->attr_clr;
728 pte |= data->attr_set;
729
730 /*
731 * We may race with the CPU trying to set the access flag here,
732 * but worst-case the access flag update gets lost and will be
733 * set on the next access instead.
734 */
735 if (data->pte != pte)
736 WRITE_ONCE(*ptep, pte);
737
738 return 0;
739 }
740
stage2_update_leaf_attrs(struct kvm_pgtable * pgt,u64 addr,u64 size,kvm_pte_t attr_set,kvm_pte_t attr_clr,kvm_pte_t * orig_pte,u32 * level)741 static int stage2_update_leaf_attrs(struct kvm_pgtable *pgt, u64 addr,
742 u64 size, kvm_pte_t attr_set,
743 kvm_pte_t attr_clr, kvm_pte_t *orig_pte,
744 u32 *level)
745 {
746 int ret;
747 kvm_pte_t attr_mask = KVM_PTE_LEAF_ATTR_LO | KVM_PTE_LEAF_ATTR_HI;
748 struct stage2_attr_data data = {
749 .attr_set = attr_set & attr_mask,
750 .attr_clr = attr_clr & attr_mask,
751 };
752 struct kvm_pgtable_walker walker = {
753 .cb = stage2_attr_walker,
754 .arg = &data,
755 .flags = KVM_PGTABLE_WALK_LEAF,
756 };
757
758 ret = kvm_pgtable_walk(pgt, addr, size, &walker);
759 if (ret)
760 return ret;
761
762 if (orig_pte)
763 *orig_pte = data.pte;
764
765 if (level)
766 *level = data.level;
767 return 0;
768 }
769
kvm_pgtable_stage2_wrprotect(struct kvm_pgtable * pgt,u64 addr,u64 size)770 int kvm_pgtable_stage2_wrprotect(struct kvm_pgtable *pgt, u64 addr, u64 size)
771 {
772 return stage2_update_leaf_attrs(pgt, addr, size, 0,
773 KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W,
774 NULL, NULL);
775 }
776
kvm_pgtable_stage2_mkyoung(struct kvm_pgtable * pgt,u64 addr)777 kvm_pte_t kvm_pgtable_stage2_mkyoung(struct kvm_pgtable *pgt, u64 addr)
778 {
779 kvm_pte_t pte = 0;
780 stage2_update_leaf_attrs(pgt, addr, 1, KVM_PTE_LEAF_ATTR_LO_S2_AF, 0,
781 &pte, NULL);
782 dsb(ishst);
783 return pte;
784 }
785
kvm_pgtable_stage2_mkold(struct kvm_pgtable * pgt,u64 addr)786 kvm_pte_t kvm_pgtable_stage2_mkold(struct kvm_pgtable *pgt, u64 addr)
787 {
788 kvm_pte_t pte = 0;
789 stage2_update_leaf_attrs(pgt, addr, 1, 0, KVM_PTE_LEAF_ATTR_LO_S2_AF,
790 &pte, NULL);
791 /*
792 * "But where's the TLBI?!", you scream.
793 * "Over in the core code", I sigh.
794 *
795 * See the '->clear_flush_young()' callback on the KVM mmu notifier.
796 */
797 return pte;
798 }
799
kvm_pgtable_stage2_is_young(struct kvm_pgtable * pgt,u64 addr)800 bool kvm_pgtable_stage2_is_young(struct kvm_pgtable *pgt, u64 addr)
801 {
802 kvm_pte_t pte = 0;
803 stage2_update_leaf_attrs(pgt, addr, 1, 0, 0, &pte, NULL);
804 return pte & KVM_PTE_LEAF_ATTR_LO_S2_AF;
805 }
806
kvm_pgtable_stage2_relax_perms(struct kvm_pgtable * pgt,u64 addr,enum kvm_pgtable_prot prot)807 int kvm_pgtable_stage2_relax_perms(struct kvm_pgtable *pgt, u64 addr,
808 enum kvm_pgtable_prot prot)
809 {
810 int ret;
811 u32 level;
812 kvm_pte_t set = 0, clr = 0;
813
814 if (prot & KVM_PGTABLE_PROT_R)
815 set |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R;
816
817 if (prot & KVM_PGTABLE_PROT_W)
818 set |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W;
819
820 if (prot & KVM_PGTABLE_PROT_X)
821 clr |= KVM_PTE_LEAF_ATTR_HI_S2_XN;
822
823 ret = stage2_update_leaf_attrs(pgt, addr, 1, set, clr, NULL, &level);
824 if (!ret)
825 kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, pgt->mmu, addr, level);
826 return ret;
827 }
828
stage2_flush_walker(u64 addr,u64 end,u32 level,kvm_pte_t * ptep,enum kvm_pgtable_walk_flags flag,void * const arg)829 static int stage2_flush_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep,
830 enum kvm_pgtable_walk_flags flag,
831 void * const arg)
832 {
833 kvm_pte_t pte = *ptep;
834
835 if (!kvm_pte_valid(pte) || !stage2_pte_cacheable(pte))
836 return 0;
837
838 stage2_flush_dcache(kvm_pte_follow(pte), kvm_granule_size(level));
839 return 0;
840 }
841
kvm_pgtable_stage2_flush(struct kvm_pgtable * pgt,u64 addr,u64 size)842 int kvm_pgtable_stage2_flush(struct kvm_pgtable *pgt, u64 addr, u64 size)
843 {
844 struct kvm_pgtable_walker walker = {
845 .cb = stage2_flush_walker,
846 .flags = KVM_PGTABLE_WALK_LEAF,
847 };
848
849 if (cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
850 return 0;
851
852 return kvm_pgtable_walk(pgt, addr, size, &walker);
853 }
854
kvm_pgtable_stage2_init(struct kvm_pgtable * pgt,struct kvm * kvm)855 int kvm_pgtable_stage2_init(struct kvm_pgtable *pgt, struct kvm *kvm)
856 {
857 size_t pgd_sz;
858 u64 vtcr = kvm->arch.vtcr;
859 u32 ia_bits = VTCR_EL2_IPA(vtcr);
860 u32 sl0 = FIELD_GET(VTCR_EL2_SL0_MASK, vtcr);
861 u32 start_level = VTCR_EL2_TGRAN_SL0_BASE - sl0;
862
863 pgd_sz = kvm_pgd_pages(ia_bits, start_level) * PAGE_SIZE;
864 pgt->pgd = alloc_pages_exact(pgd_sz, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
865 if (!pgt->pgd)
866 return -ENOMEM;
867
868 pgt->ia_bits = ia_bits;
869 pgt->start_level = start_level;
870 pgt->mmu = &kvm->arch.mmu;
871
872 /* Ensure zeroed PGD pages are visible to the hardware walker */
873 dsb(ishst);
874 return 0;
875 }
876
stage2_free_walker(u64 addr,u64 end,u32 level,kvm_pte_t * ptep,enum kvm_pgtable_walk_flags flag,void * const arg)877 static int stage2_free_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep,
878 enum kvm_pgtable_walk_flags flag,
879 void * const arg)
880 {
881 kvm_pte_t pte = *ptep;
882
883 if (!kvm_pte_valid(pte))
884 return 0;
885
886 put_page(virt_to_page(ptep));
887
888 if (kvm_pte_table(pte, level))
889 free_page((unsigned long)kvm_pte_follow(pte));
890
891 return 0;
892 }
893
kvm_pgtable_stage2_destroy(struct kvm_pgtable * pgt)894 void kvm_pgtable_stage2_destroy(struct kvm_pgtable *pgt)
895 {
896 size_t pgd_sz;
897 struct kvm_pgtable_walker walker = {
898 .cb = stage2_free_walker,
899 .flags = KVM_PGTABLE_WALK_LEAF |
900 KVM_PGTABLE_WALK_TABLE_POST,
901 };
902
903 WARN_ON(kvm_pgtable_walk(pgt, 0, BIT(pgt->ia_bits), &walker));
904 pgd_sz = kvm_pgd_pages(pgt->ia_bits, pgt->start_level) * PAGE_SIZE;
905 free_pages_exact(pgt->pgd, pgd_sz);
906 pgt->pgd = NULL;
907 }
908