1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * KVM/MIPS: MIPS specific KVM APIs
7 *
8 * Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved.
9 * Authors: Sanjay Lal <sanjayl@kymasys.com>
10 */
11
12 #include <linux/bitops.h>
13 #include <linux/errno.h>
14 #include <linux/err.h>
15 #include <linux/kdebug.h>
16 #include <linux/module.h>
17 #include <linux/uaccess.h>
18 #include <linux/vmalloc.h>
19 #include <linux/sched/signal.h>
20 #include <linux/fs.h>
21 #include <linux/memblock.h>
22
23 #include <asm/fpu.h>
24 #include <asm/page.h>
25 #include <asm/cacheflush.h>
26 #include <asm/mmu_context.h>
27 #include <asm/pgalloc.h>
28 #include <asm/pgtable.h>
29
30 #include <linux/kvm_host.h>
31
32 #include "interrupt.h"
33 #include "commpage.h"
34
35 #define CREATE_TRACE_POINTS
36 #include "trace.h"
37
38 #ifndef VECTORSPACING
39 #define VECTORSPACING 0x100 /* for EI/VI mode */
40 #endif
41
42 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x)
43 struct kvm_stats_debugfs_item debugfs_entries[] = {
44 { "wait", VCPU_STAT(wait_exits), KVM_STAT_VCPU },
45 { "cache", VCPU_STAT(cache_exits), KVM_STAT_VCPU },
46 { "signal", VCPU_STAT(signal_exits), KVM_STAT_VCPU },
47 { "interrupt", VCPU_STAT(int_exits), KVM_STAT_VCPU },
48 { "cop_unusable", VCPU_STAT(cop_unusable_exits), KVM_STAT_VCPU },
49 { "tlbmod", VCPU_STAT(tlbmod_exits), KVM_STAT_VCPU },
50 { "tlbmiss_ld", VCPU_STAT(tlbmiss_ld_exits), KVM_STAT_VCPU },
51 { "tlbmiss_st", VCPU_STAT(tlbmiss_st_exits), KVM_STAT_VCPU },
52 { "addrerr_st", VCPU_STAT(addrerr_st_exits), KVM_STAT_VCPU },
53 { "addrerr_ld", VCPU_STAT(addrerr_ld_exits), KVM_STAT_VCPU },
54 { "syscall", VCPU_STAT(syscall_exits), KVM_STAT_VCPU },
55 { "resvd_inst", VCPU_STAT(resvd_inst_exits), KVM_STAT_VCPU },
56 { "break_inst", VCPU_STAT(break_inst_exits), KVM_STAT_VCPU },
57 { "trap_inst", VCPU_STAT(trap_inst_exits), KVM_STAT_VCPU },
58 { "msa_fpe", VCPU_STAT(msa_fpe_exits), KVM_STAT_VCPU },
59 { "fpe", VCPU_STAT(fpe_exits), KVM_STAT_VCPU },
60 { "msa_disabled", VCPU_STAT(msa_disabled_exits), KVM_STAT_VCPU },
61 { "flush_dcache", VCPU_STAT(flush_dcache_exits), KVM_STAT_VCPU },
62 #ifdef CONFIG_KVM_MIPS_VZ
63 { "vz_gpsi", VCPU_STAT(vz_gpsi_exits), KVM_STAT_VCPU },
64 { "vz_gsfc", VCPU_STAT(vz_gsfc_exits), KVM_STAT_VCPU },
65 { "vz_hc", VCPU_STAT(vz_hc_exits), KVM_STAT_VCPU },
66 { "vz_grr", VCPU_STAT(vz_grr_exits), KVM_STAT_VCPU },
67 { "vz_gva", VCPU_STAT(vz_gva_exits), KVM_STAT_VCPU },
68 { "vz_ghfc", VCPU_STAT(vz_ghfc_exits), KVM_STAT_VCPU },
69 { "vz_gpa", VCPU_STAT(vz_gpa_exits), KVM_STAT_VCPU },
70 { "vz_resvd", VCPU_STAT(vz_resvd_exits), KVM_STAT_VCPU },
71 #endif
72 { "halt_successful_poll", VCPU_STAT(halt_successful_poll), KVM_STAT_VCPU },
73 { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll), KVM_STAT_VCPU },
74 { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid), KVM_STAT_VCPU },
75 { "halt_wakeup", VCPU_STAT(halt_wakeup), KVM_STAT_VCPU },
76 {NULL}
77 };
78
79 bool kvm_trace_guest_mode_change;
80
kvm_guest_mode_change_trace_reg(void)81 int kvm_guest_mode_change_trace_reg(void)
82 {
83 kvm_trace_guest_mode_change = 1;
84 return 0;
85 }
86
kvm_guest_mode_change_trace_unreg(void)87 void kvm_guest_mode_change_trace_unreg(void)
88 {
89 kvm_trace_guest_mode_change = 0;
90 }
91
92 /*
93 * XXXKYMA: We are simulatoring a processor that has the WII bit set in
94 * Config7, so we are "runnable" if interrupts are pending
95 */
kvm_arch_vcpu_runnable(struct kvm_vcpu * vcpu)96 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
97 {
98 return !!(vcpu->arch.pending_exceptions);
99 }
100
kvm_arch_vcpu_in_kernel(struct kvm_vcpu * vcpu)101 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
102 {
103 return false;
104 }
105
kvm_arch_vcpu_should_kick(struct kvm_vcpu * vcpu)106 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
107 {
108 return 1;
109 }
110
kvm_arch_hardware_enable(void)111 int kvm_arch_hardware_enable(void)
112 {
113 return kvm_mips_callbacks->hardware_enable();
114 }
115
kvm_arch_hardware_disable(void)116 void kvm_arch_hardware_disable(void)
117 {
118 kvm_mips_callbacks->hardware_disable();
119 }
120
kvm_arch_hardware_setup(void)121 int kvm_arch_hardware_setup(void)
122 {
123 return 0;
124 }
125
kvm_arch_check_processor_compat(void)126 int kvm_arch_check_processor_compat(void)
127 {
128 return 0;
129 }
130
kvm_arch_init_vm(struct kvm * kvm,unsigned long type)131 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
132 {
133 switch (type) {
134 #ifdef CONFIG_KVM_MIPS_VZ
135 case KVM_VM_MIPS_VZ:
136 #else
137 case KVM_VM_MIPS_TE:
138 #endif
139 break;
140 default:
141 /* Unsupported KVM type */
142 return -EINVAL;
143 };
144
145 /* Allocate page table to map GPA -> RPA */
146 kvm->arch.gpa_mm.pgd = kvm_pgd_alloc();
147 if (!kvm->arch.gpa_mm.pgd)
148 return -ENOMEM;
149
150 return 0;
151 }
152
kvm_mips_free_vcpus(struct kvm * kvm)153 void kvm_mips_free_vcpus(struct kvm *kvm)
154 {
155 unsigned int i;
156 struct kvm_vcpu *vcpu;
157
158 kvm_for_each_vcpu(i, vcpu, kvm) {
159 kvm_arch_vcpu_free(vcpu);
160 }
161
162 mutex_lock(&kvm->lock);
163
164 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
165 kvm->vcpus[i] = NULL;
166
167 atomic_set(&kvm->online_vcpus, 0);
168
169 mutex_unlock(&kvm->lock);
170 }
171
kvm_mips_free_gpa_pt(struct kvm * kvm)172 static void kvm_mips_free_gpa_pt(struct kvm *kvm)
173 {
174 /* It should always be safe to remove after flushing the whole range */
175 WARN_ON(!kvm_mips_flush_gpa_pt(kvm, 0, ~0));
176 pgd_free(NULL, kvm->arch.gpa_mm.pgd);
177 }
178
kvm_arch_destroy_vm(struct kvm * kvm)179 void kvm_arch_destroy_vm(struct kvm *kvm)
180 {
181 kvm_mips_free_vcpus(kvm);
182 kvm_mips_free_gpa_pt(kvm);
183 }
184
kvm_arch_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)185 long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl,
186 unsigned long arg)
187 {
188 return -ENOIOCTLCMD;
189 }
190
kvm_arch_create_memslot(struct kvm * kvm,struct kvm_memory_slot * slot,unsigned long npages)191 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
192 unsigned long npages)
193 {
194 return 0;
195 }
196
kvm_arch_flush_shadow_all(struct kvm * kvm)197 void kvm_arch_flush_shadow_all(struct kvm *kvm)
198 {
199 /* Flush whole GPA */
200 kvm_mips_flush_gpa_pt(kvm, 0, ~0);
201
202 /* Let implementation do the rest */
203 kvm_mips_callbacks->flush_shadow_all(kvm);
204 }
205
kvm_arch_flush_shadow_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)206 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
207 struct kvm_memory_slot *slot)
208 {
209 /*
210 * The slot has been made invalid (ready for moving or deletion), so we
211 * need to ensure that it can no longer be accessed by any guest VCPUs.
212 */
213
214 spin_lock(&kvm->mmu_lock);
215 /* Flush slot from GPA */
216 kvm_mips_flush_gpa_pt(kvm, slot->base_gfn,
217 slot->base_gfn + slot->npages - 1);
218 /* Let implementation do the rest */
219 kvm_mips_callbacks->flush_shadow_memslot(kvm, slot);
220 spin_unlock(&kvm->mmu_lock);
221 }
222
kvm_arch_prepare_memory_region(struct kvm * kvm,struct kvm_memory_slot * memslot,const struct kvm_userspace_memory_region * mem,enum kvm_mr_change change)223 int kvm_arch_prepare_memory_region(struct kvm *kvm,
224 struct kvm_memory_slot *memslot,
225 const struct kvm_userspace_memory_region *mem,
226 enum kvm_mr_change change)
227 {
228 return 0;
229 }
230
kvm_arch_commit_memory_region(struct kvm * kvm,const struct kvm_userspace_memory_region * mem,const struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)231 void kvm_arch_commit_memory_region(struct kvm *kvm,
232 const struct kvm_userspace_memory_region *mem,
233 const struct kvm_memory_slot *old,
234 const struct kvm_memory_slot *new,
235 enum kvm_mr_change change)
236 {
237 int needs_flush;
238
239 kvm_debug("%s: kvm: %p slot: %d, GPA: %llx, size: %llx, QVA: %llx\n",
240 __func__, kvm, mem->slot, mem->guest_phys_addr,
241 mem->memory_size, mem->userspace_addr);
242
243 /*
244 * If dirty page logging is enabled, write protect all pages in the slot
245 * ready for dirty logging.
246 *
247 * There is no need to do this in any of the following cases:
248 * CREATE: No dirty mappings will already exist.
249 * MOVE/DELETE: The old mappings will already have been cleaned up by
250 * kvm_arch_flush_shadow_memslot()
251 */
252 if (change == KVM_MR_FLAGS_ONLY &&
253 (!(old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
254 new->flags & KVM_MEM_LOG_DIRTY_PAGES)) {
255 spin_lock(&kvm->mmu_lock);
256 /* Write protect GPA page table entries */
257 needs_flush = kvm_mips_mkclean_gpa_pt(kvm, new->base_gfn,
258 new->base_gfn + new->npages - 1);
259 /* Let implementation do the rest */
260 if (needs_flush)
261 kvm_mips_callbacks->flush_shadow_memslot(kvm, new);
262 spin_unlock(&kvm->mmu_lock);
263 }
264 }
265
dump_handler(const char * symbol,void * start,void * end)266 static inline void dump_handler(const char *symbol, void *start, void *end)
267 {
268 u32 *p;
269
270 pr_debug("LEAF(%s)\n", symbol);
271
272 pr_debug("\t.set push\n");
273 pr_debug("\t.set noreorder\n");
274
275 for (p = start; p < (u32 *)end; ++p)
276 pr_debug("\t.word\t0x%08x\t\t# %p\n", *p, p);
277
278 pr_debug("\t.set\tpop\n");
279
280 pr_debug("\tEND(%s)\n", symbol);
281 }
282
kvm_arch_vcpu_create(struct kvm * kvm,unsigned int id)283 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
284 {
285 int err, size;
286 void *gebase, *p, *handler, *refill_start, *refill_end;
287 int i;
288
289 struct kvm_vcpu *vcpu = kzalloc(sizeof(struct kvm_vcpu), GFP_KERNEL);
290
291 if (!vcpu) {
292 err = -ENOMEM;
293 goto out;
294 }
295
296 err = kvm_vcpu_init(vcpu, kvm, id);
297
298 if (err)
299 goto out_free_cpu;
300
301 kvm_debug("kvm @ %p: create cpu %d at %p\n", kvm, id, vcpu);
302
303 /*
304 * Allocate space for host mode exception handlers that handle
305 * guest mode exits
306 */
307 if (cpu_has_veic || cpu_has_vint)
308 size = 0x200 + VECTORSPACING * 64;
309 else
310 size = 0x4000;
311
312 gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL);
313
314 if (!gebase) {
315 err = -ENOMEM;
316 goto out_uninit_cpu;
317 }
318 kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n",
319 ALIGN(size, PAGE_SIZE), gebase);
320
321 /*
322 * Check new ebase actually fits in CP0_EBase. The lack of a write gate
323 * limits us to the low 512MB of physical address space. If the memory
324 * we allocate is out of range, just give up now.
325 */
326 if (!cpu_has_ebase_wg && virt_to_phys(gebase) >= 0x20000000) {
327 kvm_err("CP0_EBase.WG required for guest exception base %pK\n",
328 gebase);
329 err = -ENOMEM;
330 goto out_free_gebase;
331 }
332
333 /* Save new ebase */
334 vcpu->arch.guest_ebase = gebase;
335
336 /* Build guest exception vectors dynamically in unmapped memory */
337 handler = gebase + 0x2000;
338
339 /* TLB refill (or XTLB refill on 64-bit VZ where KX=1) */
340 refill_start = gebase;
341 if (IS_ENABLED(CONFIG_KVM_MIPS_VZ) && IS_ENABLED(CONFIG_64BIT))
342 refill_start += 0x080;
343 refill_end = kvm_mips_build_tlb_refill_exception(refill_start, handler);
344
345 /* General Exception Entry point */
346 kvm_mips_build_exception(gebase + 0x180, handler);
347
348 /* For vectored interrupts poke the exception code @ all offsets 0-7 */
349 for (i = 0; i < 8; i++) {
350 kvm_debug("L1 Vectored handler @ %p\n",
351 gebase + 0x200 + (i * VECTORSPACING));
352 kvm_mips_build_exception(gebase + 0x200 + i * VECTORSPACING,
353 handler);
354 }
355
356 /* General exit handler */
357 p = handler;
358 p = kvm_mips_build_exit(p);
359
360 /* Guest entry routine */
361 vcpu->arch.vcpu_run = p;
362 p = kvm_mips_build_vcpu_run(p);
363
364 /* Dump the generated code */
365 pr_debug("#include <asm/asm.h>\n");
366 pr_debug("#include <asm/regdef.h>\n");
367 pr_debug("\n");
368 dump_handler("kvm_vcpu_run", vcpu->arch.vcpu_run, p);
369 dump_handler("kvm_tlb_refill", refill_start, refill_end);
370 dump_handler("kvm_gen_exc", gebase + 0x180, gebase + 0x200);
371 dump_handler("kvm_exit", gebase + 0x2000, vcpu->arch.vcpu_run);
372
373 /* Invalidate the icache for these ranges */
374 flush_icache_range((unsigned long)gebase,
375 (unsigned long)gebase + ALIGN(size, PAGE_SIZE));
376
377 /*
378 * Allocate comm page for guest kernel, a TLB will be reserved for
379 * mapping GVA @ 0xFFFF8000 to this page
380 */
381 vcpu->arch.kseg0_commpage = kzalloc(PAGE_SIZE << 1, GFP_KERNEL);
382
383 if (!vcpu->arch.kseg0_commpage) {
384 err = -ENOMEM;
385 goto out_free_gebase;
386 }
387
388 kvm_debug("Allocated COMM page @ %p\n", vcpu->arch.kseg0_commpage);
389 kvm_mips_commpage_init(vcpu);
390
391 /* Init */
392 vcpu->arch.last_sched_cpu = -1;
393 vcpu->arch.last_exec_cpu = -1;
394
395 return vcpu;
396
397 out_free_gebase:
398 kfree(gebase);
399
400 out_uninit_cpu:
401 kvm_vcpu_uninit(vcpu);
402
403 out_free_cpu:
404 kfree(vcpu);
405
406 out:
407 return ERR_PTR(err);
408 }
409
kvm_arch_vcpu_free(struct kvm_vcpu * vcpu)410 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
411 {
412 hrtimer_cancel(&vcpu->arch.comparecount_timer);
413
414 kvm_vcpu_uninit(vcpu);
415
416 kvm_mips_dump_stats(vcpu);
417
418 kvm_mmu_free_memory_caches(vcpu);
419 kfree(vcpu->arch.guest_ebase);
420 kfree(vcpu->arch.kseg0_commpage);
421 kfree(vcpu);
422 }
423
kvm_arch_vcpu_destroy(struct kvm_vcpu * vcpu)424 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
425 {
426 kvm_arch_vcpu_free(vcpu);
427 }
428
kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu * vcpu,struct kvm_guest_debug * dbg)429 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
430 struct kvm_guest_debug *dbg)
431 {
432 return -ENOIOCTLCMD;
433 }
434
kvm_arch_vcpu_ioctl_run(struct kvm_vcpu * vcpu,struct kvm_run * run)435 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
436 {
437 int r = -EINTR;
438
439 vcpu_load(vcpu);
440
441 kvm_sigset_activate(vcpu);
442
443 if (vcpu->mmio_needed) {
444 if (!vcpu->mmio_is_write)
445 kvm_mips_complete_mmio_load(vcpu, run);
446 vcpu->mmio_needed = 0;
447 }
448
449 if (run->immediate_exit)
450 goto out;
451
452 lose_fpu(1);
453
454 local_irq_disable();
455 guest_enter_irqoff();
456 trace_kvm_enter(vcpu);
457
458 /*
459 * Make sure the read of VCPU requests in vcpu_run() callback is not
460 * reordered ahead of the write to vcpu->mode, or we could miss a TLB
461 * flush request while the requester sees the VCPU as outside of guest
462 * mode and not needing an IPI.
463 */
464 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
465
466 r = kvm_mips_callbacks->vcpu_run(run, vcpu);
467
468 trace_kvm_out(vcpu);
469 guest_exit_irqoff();
470 local_irq_enable();
471
472 out:
473 kvm_sigset_deactivate(vcpu);
474
475 vcpu_put(vcpu);
476 return r;
477 }
478
kvm_vcpu_ioctl_interrupt(struct kvm_vcpu * vcpu,struct kvm_mips_interrupt * irq)479 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
480 struct kvm_mips_interrupt *irq)
481 {
482 int intr = (int)irq->irq;
483 struct kvm_vcpu *dvcpu = NULL;
484
485 if (intr == 3 || intr == -3 || intr == 4 || intr == -4)
486 kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu,
487 (int)intr);
488
489 if (irq->cpu == -1)
490 dvcpu = vcpu;
491 else
492 dvcpu = vcpu->kvm->vcpus[irq->cpu];
493
494 if (intr == 2 || intr == 3 || intr == 4) {
495 kvm_mips_callbacks->queue_io_int(dvcpu, irq);
496
497 } else if (intr == -2 || intr == -3 || intr == -4) {
498 kvm_mips_callbacks->dequeue_io_int(dvcpu, irq);
499 } else {
500 kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__,
501 irq->cpu, irq->irq);
502 return -EINVAL;
503 }
504
505 dvcpu->arch.wait = 0;
506
507 if (swq_has_sleeper(&dvcpu->wq))
508 swake_up_one(&dvcpu->wq);
509
510 return 0;
511 }
512
kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)513 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
514 struct kvm_mp_state *mp_state)
515 {
516 return -ENOIOCTLCMD;
517 }
518
kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)519 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
520 struct kvm_mp_state *mp_state)
521 {
522 return -ENOIOCTLCMD;
523 }
524
525 static u64 kvm_mips_get_one_regs[] = {
526 KVM_REG_MIPS_R0,
527 KVM_REG_MIPS_R1,
528 KVM_REG_MIPS_R2,
529 KVM_REG_MIPS_R3,
530 KVM_REG_MIPS_R4,
531 KVM_REG_MIPS_R5,
532 KVM_REG_MIPS_R6,
533 KVM_REG_MIPS_R7,
534 KVM_REG_MIPS_R8,
535 KVM_REG_MIPS_R9,
536 KVM_REG_MIPS_R10,
537 KVM_REG_MIPS_R11,
538 KVM_REG_MIPS_R12,
539 KVM_REG_MIPS_R13,
540 KVM_REG_MIPS_R14,
541 KVM_REG_MIPS_R15,
542 KVM_REG_MIPS_R16,
543 KVM_REG_MIPS_R17,
544 KVM_REG_MIPS_R18,
545 KVM_REG_MIPS_R19,
546 KVM_REG_MIPS_R20,
547 KVM_REG_MIPS_R21,
548 KVM_REG_MIPS_R22,
549 KVM_REG_MIPS_R23,
550 KVM_REG_MIPS_R24,
551 KVM_REG_MIPS_R25,
552 KVM_REG_MIPS_R26,
553 KVM_REG_MIPS_R27,
554 KVM_REG_MIPS_R28,
555 KVM_REG_MIPS_R29,
556 KVM_REG_MIPS_R30,
557 KVM_REG_MIPS_R31,
558
559 #ifndef CONFIG_CPU_MIPSR6
560 KVM_REG_MIPS_HI,
561 KVM_REG_MIPS_LO,
562 #endif
563 KVM_REG_MIPS_PC,
564 };
565
566 static u64 kvm_mips_get_one_regs_fpu[] = {
567 KVM_REG_MIPS_FCR_IR,
568 KVM_REG_MIPS_FCR_CSR,
569 };
570
571 static u64 kvm_mips_get_one_regs_msa[] = {
572 KVM_REG_MIPS_MSA_IR,
573 KVM_REG_MIPS_MSA_CSR,
574 };
575
kvm_mips_num_regs(struct kvm_vcpu * vcpu)576 static unsigned long kvm_mips_num_regs(struct kvm_vcpu *vcpu)
577 {
578 unsigned long ret;
579
580 ret = ARRAY_SIZE(kvm_mips_get_one_regs);
581 if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
582 ret += ARRAY_SIZE(kvm_mips_get_one_regs_fpu) + 48;
583 /* odd doubles */
584 if (boot_cpu_data.fpu_id & MIPS_FPIR_F64)
585 ret += 16;
586 }
587 if (kvm_mips_guest_can_have_msa(&vcpu->arch))
588 ret += ARRAY_SIZE(kvm_mips_get_one_regs_msa) + 32;
589 ret += kvm_mips_callbacks->num_regs(vcpu);
590
591 return ret;
592 }
593
kvm_mips_copy_reg_indices(struct kvm_vcpu * vcpu,u64 __user * indices)594 static int kvm_mips_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices)
595 {
596 u64 index;
597 unsigned int i;
598
599 if (copy_to_user(indices, kvm_mips_get_one_regs,
600 sizeof(kvm_mips_get_one_regs)))
601 return -EFAULT;
602 indices += ARRAY_SIZE(kvm_mips_get_one_regs);
603
604 if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
605 if (copy_to_user(indices, kvm_mips_get_one_regs_fpu,
606 sizeof(kvm_mips_get_one_regs_fpu)))
607 return -EFAULT;
608 indices += ARRAY_SIZE(kvm_mips_get_one_regs_fpu);
609
610 for (i = 0; i < 32; ++i) {
611 index = KVM_REG_MIPS_FPR_32(i);
612 if (copy_to_user(indices, &index, sizeof(index)))
613 return -EFAULT;
614 ++indices;
615
616 /* skip odd doubles if no F64 */
617 if (i & 1 && !(boot_cpu_data.fpu_id & MIPS_FPIR_F64))
618 continue;
619
620 index = KVM_REG_MIPS_FPR_64(i);
621 if (copy_to_user(indices, &index, sizeof(index)))
622 return -EFAULT;
623 ++indices;
624 }
625 }
626
627 if (kvm_mips_guest_can_have_msa(&vcpu->arch)) {
628 if (copy_to_user(indices, kvm_mips_get_one_regs_msa,
629 sizeof(kvm_mips_get_one_regs_msa)))
630 return -EFAULT;
631 indices += ARRAY_SIZE(kvm_mips_get_one_regs_msa);
632
633 for (i = 0; i < 32; ++i) {
634 index = KVM_REG_MIPS_VEC_128(i);
635 if (copy_to_user(indices, &index, sizeof(index)))
636 return -EFAULT;
637 ++indices;
638 }
639 }
640
641 return kvm_mips_callbacks->copy_reg_indices(vcpu, indices);
642 }
643
kvm_mips_get_reg(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)644 static int kvm_mips_get_reg(struct kvm_vcpu *vcpu,
645 const struct kvm_one_reg *reg)
646 {
647 struct mips_coproc *cop0 = vcpu->arch.cop0;
648 struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
649 int ret;
650 s64 v;
651 s64 vs[2];
652 unsigned int idx;
653
654 switch (reg->id) {
655 /* General purpose registers */
656 case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31:
657 v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0];
658 break;
659 #ifndef CONFIG_CPU_MIPSR6
660 case KVM_REG_MIPS_HI:
661 v = (long)vcpu->arch.hi;
662 break;
663 case KVM_REG_MIPS_LO:
664 v = (long)vcpu->arch.lo;
665 break;
666 #endif
667 case KVM_REG_MIPS_PC:
668 v = (long)vcpu->arch.pc;
669 break;
670
671 /* Floating point registers */
672 case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
673 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
674 return -EINVAL;
675 idx = reg->id - KVM_REG_MIPS_FPR_32(0);
676 /* Odd singles in top of even double when FR=0 */
677 if (kvm_read_c0_guest_status(cop0) & ST0_FR)
678 v = get_fpr32(&fpu->fpr[idx], 0);
679 else
680 v = get_fpr32(&fpu->fpr[idx & ~1], idx & 1);
681 break;
682 case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
683 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
684 return -EINVAL;
685 idx = reg->id - KVM_REG_MIPS_FPR_64(0);
686 /* Can't access odd doubles in FR=0 mode */
687 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
688 return -EINVAL;
689 v = get_fpr64(&fpu->fpr[idx], 0);
690 break;
691 case KVM_REG_MIPS_FCR_IR:
692 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
693 return -EINVAL;
694 v = boot_cpu_data.fpu_id;
695 break;
696 case KVM_REG_MIPS_FCR_CSR:
697 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
698 return -EINVAL;
699 v = fpu->fcr31;
700 break;
701
702 /* MIPS SIMD Architecture (MSA) registers */
703 case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
704 if (!kvm_mips_guest_has_msa(&vcpu->arch))
705 return -EINVAL;
706 /* Can't access MSA registers in FR=0 mode */
707 if (!(kvm_read_c0_guest_status(cop0) & ST0_FR))
708 return -EINVAL;
709 idx = reg->id - KVM_REG_MIPS_VEC_128(0);
710 #ifdef CONFIG_CPU_LITTLE_ENDIAN
711 /* least significant byte first */
712 vs[0] = get_fpr64(&fpu->fpr[idx], 0);
713 vs[1] = get_fpr64(&fpu->fpr[idx], 1);
714 #else
715 /* most significant byte first */
716 vs[0] = get_fpr64(&fpu->fpr[idx], 1);
717 vs[1] = get_fpr64(&fpu->fpr[idx], 0);
718 #endif
719 break;
720 case KVM_REG_MIPS_MSA_IR:
721 if (!kvm_mips_guest_has_msa(&vcpu->arch))
722 return -EINVAL;
723 v = boot_cpu_data.msa_id;
724 break;
725 case KVM_REG_MIPS_MSA_CSR:
726 if (!kvm_mips_guest_has_msa(&vcpu->arch))
727 return -EINVAL;
728 v = fpu->msacsr;
729 break;
730
731 /* registers to be handled specially */
732 default:
733 ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v);
734 if (ret)
735 return ret;
736 break;
737 }
738 if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
739 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
740
741 return put_user(v, uaddr64);
742 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
743 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
744 u32 v32 = (u32)v;
745
746 return put_user(v32, uaddr32);
747 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
748 void __user *uaddr = (void __user *)(long)reg->addr;
749
750 return copy_to_user(uaddr, vs, 16) ? -EFAULT : 0;
751 } else {
752 return -EINVAL;
753 }
754 }
755
kvm_mips_set_reg(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)756 static int kvm_mips_set_reg(struct kvm_vcpu *vcpu,
757 const struct kvm_one_reg *reg)
758 {
759 struct mips_coproc *cop0 = vcpu->arch.cop0;
760 struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
761 s64 v;
762 s64 vs[2];
763 unsigned int idx;
764
765 if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
766 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
767
768 if (get_user(v, uaddr64) != 0)
769 return -EFAULT;
770 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
771 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
772 s32 v32;
773
774 if (get_user(v32, uaddr32) != 0)
775 return -EFAULT;
776 v = (s64)v32;
777 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
778 void __user *uaddr = (void __user *)(long)reg->addr;
779
780 return copy_from_user(vs, uaddr, 16) ? -EFAULT : 0;
781 } else {
782 return -EINVAL;
783 }
784
785 switch (reg->id) {
786 /* General purpose registers */
787 case KVM_REG_MIPS_R0:
788 /* Silently ignore requests to set $0 */
789 break;
790 case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31:
791 vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v;
792 break;
793 #ifndef CONFIG_CPU_MIPSR6
794 case KVM_REG_MIPS_HI:
795 vcpu->arch.hi = v;
796 break;
797 case KVM_REG_MIPS_LO:
798 vcpu->arch.lo = v;
799 break;
800 #endif
801 case KVM_REG_MIPS_PC:
802 vcpu->arch.pc = v;
803 break;
804
805 /* Floating point registers */
806 case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
807 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
808 return -EINVAL;
809 idx = reg->id - KVM_REG_MIPS_FPR_32(0);
810 /* Odd singles in top of even double when FR=0 */
811 if (kvm_read_c0_guest_status(cop0) & ST0_FR)
812 set_fpr32(&fpu->fpr[idx], 0, v);
813 else
814 set_fpr32(&fpu->fpr[idx & ~1], idx & 1, v);
815 break;
816 case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
817 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
818 return -EINVAL;
819 idx = reg->id - KVM_REG_MIPS_FPR_64(0);
820 /* Can't access odd doubles in FR=0 mode */
821 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
822 return -EINVAL;
823 set_fpr64(&fpu->fpr[idx], 0, v);
824 break;
825 case KVM_REG_MIPS_FCR_IR:
826 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
827 return -EINVAL;
828 /* Read-only */
829 break;
830 case KVM_REG_MIPS_FCR_CSR:
831 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
832 return -EINVAL;
833 fpu->fcr31 = v;
834 break;
835
836 /* MIPS SIMD Architecture (MSA) registers */
837 case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
838 if (!kvm_mips_guest_has_msa(&vcpu->arch))
839 return -EINVAL;
840 idx = reg->id - KVM_REG_MIPS_VEC_128(0);
841 #ifdef CONFIG_CPU_LITTLE_ENDIAN
842 /* least significant byte first */
843 set_fpr64(&fpu->fpr[idx], 0, vs[0]);
844 set_fpr64(&fpu->fpr[idx], 1, vs[1]);
845 #else
846 /* most significant byte first */
847 set_fpr64(&fpu->fpr[idx], 1, vs[0]);
848 set_fpr64(&fpu->fpr[idx], 0, vs[1]);
849 #endif
850 break;
851 case KVM_REG_MIPS_MSA_IR:
852 if (!kvm_mips_guest_has_msa(&vcpu->arch))
853 return -EINVAL;
854 /* Read-only */
855 break;
856 case KVM_REG_MIPS_MSA_CSR:
857 if (!kvm_mips_guest_has_msa(&vcpu->arch))
858 return -EINVAL;
859 fpu->msacsr = v;
860 break;
861
862 /* registers to be handled specially */
863 default:
864 return kvm_mips_callbacks->set_one_reg(vcpu, reg, v);
865 }
866 return 0;
867 }
868
kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu * vcpu,struct kvm_enable_cap * cap)869 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
870 struct kvm_enable_cap *cap)
871 {
872 int r = 0;
873
874 if (!kvm_vm_ioctl_check_extension(vcpu->kvm, cap->cap))
875 return -EINVAL;
876 if (cap->flags)
877 return -EINVAL;
878 if (cap->args[0])
879 return -EINVAL;
880
881 switch (cap->cap) {
882 case KVM_CAP_MIPS_FPU:
883 vcpu->arch.fpu_enabled = true;
884 break;
885 case KVM_CAP_MIPS_MSA:
886 vcpu->arch.msa_enabled = true;
887 break;
888 default:
889 r = -EINVAL;
890 break;
891 }
892
893 return r;
894 }
895
kvm_arch_vcpu_async_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)896 long kvm_arch_vcpu_async_ioctl(struct file *filp, unsigned int ioctl,
897 unsigned long arg)
898 {
899 struct kvm_vcpu *vcpu = filp->private_data;
900 void __user *argp = (void __user *)arg;
901
902 if (ioctl == KVM_INTERRUPT) {
903 struct kvm_mips_interrupt irq;
904
905 if (copy_from_user(&irq, argp, sizeof(irq)))
906 return -EFAULT;
907 kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__,
908 irq.irq);
909
910 return kvm_vcpu_ioctl_interrupt(vcpu, &irq);
911 }
912
913 return -ENOIOCTLCMD;
914 }
915
kvm_arch_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)916 long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl,
917 unsigned long arg)
918 {
919 struct kvm_vcpu *vcpu = filp->private_data;
920 void __user *argp = (void __user *)arg;
921 long r;
922
923 vcpu_load(vcpu);
924
925 switch (ioctl) {
926 case KVM_SET_ONE_REG:
927 case KVM_GET_ONE_REG: {
928 struct kvm_one_reg reg;
929
930 r = -EFAULT;
931 if (copy_from_user(®, argp, sizeof(reg)))
932 break;
933 if (ioctl == KVM_SET_ONE_REG)
934 r = kvm_mips_set_reg(vcpu, ®);
935 else
936 r = kvm_mips_get_reg(vcpu, ®);
937 break;
938 }
939 case KVM_GET_REG_LIST: {
940 struct kvm_reg_list __user *user_list = argp;
941 struct kvm_reg_list reg_list;
942 unsigned n;
943
944 r = -EFAULT;
945 if (copy_from_user(®_list, user_list, sizeof(reg_list)))
946 break;
947 n = reg_list.n;
948 reg_list.n = kvm_mips_num_regs(vcpu);
949 if (copy_to_user(user_list, ®_list, sizeof(reg_list)))
950 break;
951 r = -E2BIG;
952 if (n < reg_list.n)
953 break;
954 r = kvm_mips_copy_reg_indices(vcpu, user_list->reg);
955 break;
956 }
957 case KVM_ENABLE_CAP: {
958 struct kvm_enable_cap cap;
959
960 r = -EFAULT;
961 if (copy_from_user(&cap, argp, sizeof(cap)))
962 break;
963 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
964 break;
965 }
966 default:
967 r = -ENOIOCTLCMD;
968 }
969
970 vcpu_put(vcpu);
971 return r;
972 }
973
974 /**
975 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
976 * @kvm: kvm instance
977 * @log: slot id and address to which we copy the log
978 *
979 * Steps 1-4 below provide general overview of dirty page logging. See
980 * kvm_get_dirty_log_protect() function description for additional details.
981 *
982 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
983 * always flush the TLB (step 4) even if previous step failed and the dirty
984 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
985 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
986 * writes will be marked dirty for next log read.
987 *
988 * 1. Take a snapshot of the bit and clear it if needed.
989 * 2. Write protect the corresponding page.
990 * 3. Copy the snapshot to the userspace.
991 * 4. Flush TLB's if needed.
992 */
kvm_vm_ioctl_get_dirty_log(struct kvm * kvm,struct kvm_dirty_log * log)993 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
994 {
995 struct kvm_memslots *slots;
996 struct kvm_memory_slot *memslot;
997 bool flush = false;
998 int r;
999
1000 mutex_lock(&kvm->slots_lock);
1001
1002 r = kvm_get_dirty_log_protect(kvm, log, &flush);
1003
1004 if (flush) {
1005 slots = kvm_memslots(kvm);
1006 memslot = id_to_memslot(slots, log->slot);
1007
1008 /* Let implementation handle TLB/GVA invalidation */
1009 kvm_mips_callbacks->flush_shadow_memslot(kvm, memslot);
1010 }
1011
1012 mutex_unlock(&kvm->slots_lock);
1013 return r;
1014 }
1015
kvm_vm_ioctl_clear_dirty_log(struct kvm * kvm,struct kvm_clear_dirty_log * log)1016 int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, struct kvm_clear_dirty_log *log)
1017 {
1018 struct kvm_memslots *slots;
1019 struct kvm_memory_slot *memslot;
1020 bool flush = false;
1021 int r;
1022
1023 mutex_lock(&kvm->slots_lock);
1024
1025 r = kvm_clear_dirty_log_protect(kvm, log, &flush);
1026
1027 if (flush) {
1028 slots = kvm_memslots(kvm);
1029 memslot = id_to_memslot(slots, log->slot);
1030
1031 /* Let implementation handle TLB/GVA invalidation */
1032 kvm_mips_callbacks->flush_shadow_memslot(kvm, memslot);
1033 }
1034
1035 mutex_unlock(&kvm->slots_lock);
1036 return r;
1037 }
1038
kvm_arch_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)1039 long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
1040 {
1041 long r;
1042
1043 switch (ioctl) {
1044 default:
1045 r = -ENOIOCTLCMD;
1046 }
1047
1048 return r;
1049 }
1050
kvm_arch_init(void * opaque)1051 int kvm_arch_init(void *opaque)
1052 {
1053 if (kvm_mips_callbacks) {
1054 kvm_err("kvm: module already exists\n");
1055 return -EEXIST;
1056 }
1057
1058 return kvm_mips_emulation_init(&kvm_mips_callbacks);
1059 }
1060
kvm_arch_exit(void)1061 void kvm_arch_exit(void)
1062 {
1063 kvm_mips_callbacks = NULL;
1064 }
1065
kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)1066 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1067 struct kvm_sregs *sregs)
1068 {
1069 return -ENOIOCTLCMD;
1070 }
1071
kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)1072 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1073 struct kvm_sregs *sregs)
1074 {
1075 return -ENOIOCTLCMD;
1076 }
1077
kvm_arch_vcpu_postcreate(struct kvm_vcpu * vcpu)1078 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1079 {
1080 }
1081
kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)1082 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1083 {
1084 return -ENOIOCTLCMD;
1085 }
1086
kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)1087 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1088 {
1089 return -ENOIOCTLCMD;
1090 }
1091
kvm_arch_vcpu_fault(struct kvm_vcpu * vcpu,struct vm_fault * vmf)1092 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1093 {
1094 return VM_FAULT_SIGBUS;
1095 }
1096
kvm_vm_ioctl_check_extension(struct kvm * kvm,long ext)1097 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
1098 {
1099 int r;
1100
1101 switch (ext) {
1102 case KVM_CAP_ONE_REG:
1103 case KVM_CAP_ENABLE_CAP:
1104 case KVM_CAP_READONLY_MEM:
1105 case KVM_CAP_SYNC_MMU:
1106 case KVM_CAP_IMMEDIATE_EXIT:
1107 r = 1;
1108 break;
1109 case KVM_CAP_NR_VCPUS:
1110 r = num_online_cpus();
1111 break;
1112 case KVM_CAP_MAX_VCPUS:
1113 r = KVM_MAX_VCPUS;
1114 break;
1115 case KVM_CAP_MAX_VCPU_ID:
1116 r = KVM_MAX_VCPU_ID;
1117 break;
1118 case KVM_CAP_MIPS_FPU:
1119 /* We don't handle systems with inconsistent cpu_has_fpu */
1120 r = !!raw_cpu_has_fpu;
1121 break;
1122 case KVM_CAP_MIPS_MSA:
1123 /*
1124 * We don't support MSA vector partitioning yet:
1125 * 1) It would require explicit support which can't be tested
1126 * yet due to lack of support in current hardware.
1127 * 2) It extends the state that would need to be saved/restored
1128 * by e.g. QEMU for migration.
1129 *
1130 * When vector partitioning hardware becomes available, support
1131 * could be added by requiring a flag when enabling
1132 * KVM_CAP_MIPS_MSA capability to indicate that userland knows
1133 * to save/restore the appropriate extra state.
1134 */
1135 r = cpu_has_msa && !(boot_cpu_data.msa_id & MSA_IR_WRPF);
1136 break;
1137 default:
1138 r = kvm_mips_callbacks->check_extension(kvm, ext);
1139 break;
1140 }
1141 return r;
1142 }
1143
kvm_cpu_has_pending_timer(struct kvm_vcpu * vcpu)1144 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1145 {
1146 return kvm_mips_pending_timer(vcpu) ||
1147 kvm_read_c0_guest_cause(vcpu->arch.cop0) & C_TI;
1148 }
1149
kvm_arch_vcpu_dump_regs(struct kvm_vcpu * vcpu)1150 int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
1151 {
1152 int i;
1153 struct mips_coproc *cop0;
1154
1155 if (!vcpu)
1156 return -1;
1157
1158 kvm_debug("VCPU Register Dump:\n");
1159 kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc);
1160 kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions);
1161
1162 for (i = 0; i < 32; i += 4) {
1163 kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i,
1164 vcpu->arch.gprs[i],
1165 vcpu->arch.gprs[i + 1],
1166 vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
1167 }
1168 kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi);
1169 kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo);
1170
1171 cop0 = vcpu->arch.cop0;
1172 kvm_debug("\tStatus: 0x%08x, Cause: 0x%08x\n",
1173 kvm_read_c0_guest_status(cop0),
1174 kvm_read_c0_guest_cause(cop0));
1175
1176 kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0));
1177
1178 return 0;
1179 }
1180
kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)1181 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1182 {
1183 int i;
1184
1185 vcpu_load(vcpu);
1186
1187 for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1188 vcpu->arch.gprs[i] = regs->gpr[i];
1189 vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
1190 vcpu->arch.hi = regs->hi;
1191 vcpu->arch.lo = regs->lo;
1192 vcpu->arch.pc = regs->pc;
1193
1194 vcpu_put(vcpu);
1195 return 0;
1196 }
1197
kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)1198 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1199 {
1200 int i;
1201
1202 vcpu_load(vcpu);
1203
1204 for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1205 regs->gpr[i] = vcpu->arch.gprs[i];
1206
1207 regs->hi = vcpu->arch.hi;
1208 regs->lo = vcpu->arch.lo;
1209 regs->pc = vcpu->arch.pc;
1210
1211 vcpu_put(vcpu);
1212 return 0;
1213 }
1214
kvm_mips_comparecount_func(unsigned long data)1215 static void kvm_mips_comparecount_func(unsigned long data)
1216 {
1217 struct kvm_vcpu *vcpu = (struct kvm_vcpu *)data;
1218
1219 kvm_mips_callbacks->queue_timer_int(vcpu);
1220
1221 vcpu->arch.wait = 0;
1222 if (swq_has_sleeper(&vcpu->wq))
1223 swake_up_one(&vcpu->wq);
1224 }
1225
1226 /* low level hrtimer wake routine */
kvm_mips_comparecount_wakeup(struct hrtimer * timer)1227 static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer)
1228 {
1229 struct kvm_vcpu *vcpu;
1230
1231 vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer);
1232 kvm_mips_comparecount_func((unsigned long) vcpu);
1233 return kvm_mips_count_timeout(vcpu);
1234 }
1235
kvm_arch_vcpu_init(struct kvm_vcpu * vcpu)1236 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
1237 {
1238 int err;
1239
1240 err = kvm_mips_callbacks->vcpu_init(vcpu);
1241 if (err)
1242 return err;
1243
1244 hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC,
1245 HRTIMER_MODE_REL);
1246 vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup;
1247 return 0;
1248 }
1249
kvm_arch_vcpu_uninit(struct kvm_vcpu * vcpu)1250 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
1251 {
1252 kvm_mips_callbacks->vcpu_uninit(vcpu);
1253 }
1254
kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu * vcpu,struct kvm_translation * tr)1255 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1256 struct kvm_translation *tr)
1257 {
1258 return 0;
1259 }
1260
1261 /* Initial guest state */
kvm_arch_vcpu_setup(struct kvm_vcpu * vcpu)1262 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
1263 {
1264 return kvm_mips_callbacks->vcpu_setup(vcpu);
1265 }
1266
kvm_mips_set_c0_status(void)1267 static void kvm_mips_set_c0_status(void)
1268 {
1269 u32 status = read_c0_status();
1270
1271 if (cpu_has_dsp)
1272 status |= (ST0_MX);
1273
1274 write_c0_status(status);
1275 ehb();
1276 }
1277
1278 /*
1279 * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
1280 */
kvm_mips_handle_exit(struct kvm_run * run,struct kvm_vcpu * vcpu)1281 int kvm_mips_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
1282 {
1283 u32 cause = vcpu->arch.host_cp0_cause;
1284 u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
1285 u32 __user *opc = (u32 __user *) vcpu->arch.pc;
1286 unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
1287 enum emulation_result er = EMULATE_DONE;
1288 u32 inst;
1289 int ret = RESUME_GUEST;
1290
1291 vcpu->mode = OUTSIDE_GUEST_MODE;
1292
1293 /* re-enable HTW before enabling interrupts */
1294 if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ))
1295 htw_start();
1296
1297 /* Set a default exit reason */
1298 run->exit_reason = KVM_EXIT_UNKNOWN;
1299 run->ready_for_interrupt_injection = 1;
1300
1301 /*
1302 * Set the appropriate status bits based on host CPU features,
1303 * before we hit the scheduler
1304 */
1305 kvm_mips_set_c0_status();
1306
1307 local_irq_enable();
1308
1309 kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
1310 cause, opc, run, vcpu);
1311 trace_kvm_exit(vcpu, exccode);
1312
1313 if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ)) {
1314 /*
1315 * Do a privilege check, if in UM most of these exit conditions
1316 * end up causing an exception to be delivered to the Guest
1317 * Kernel
1318 */
1319 er = kvm_mips_check_privilege(cause, opc, run, vcpu);
1320 if (er == EMULATE_PRIV_FAIL) {
1321 goto skip_emul;
1322 } else if (er == EMULATE_FAIL) {
1323 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1324 ret = RESUME_HOST;
1325 goto skip_emul;
1326 }
1327 }
1328
1329 switch (exccode) {
1330 case EXCCODE_INT:
1331 kvm_debug("[%d]EXCCODE_INT @ %p\n", vcpu->vcpu_id, opc);
1332
1333 ++vcpu->stat.int_exits;
1334
1335 if (need_resched())
1336 cond_resched();
1337
1338 ret = RESUME_GUEST;
1339 break;
1340
1341 case EXCCODE_CPU:
1342 kvm_debug("EXCCODE_CPU: @ PC: %p\n", opc);
1343
1344 ++vcpu->stat.cop_unusable_exits;
1345 ret = kvm_mips_callbacks->handle_cop_unusable(vcpu);
1346 /* XXXKYMA: Might need to return to user space */
1347 if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN)
1348 ret = RESUME_HOST;
1349 break;
1350
1351 case EXCCODE_MOD:
1352 ++vcpu->stat.tlbmod_exits;
1353 ret = kvm_mips_callbacks->handle_tlb_mod(vcpu);
1354 break;
1355
1356 case EXCCODE_TLBS:
1357 kvm_debug("TLB ST fault: cause %#x, status %#x, PC: %p, BadVaddr: %#lx\n",
1358 cause, kvm_read_c0_guest_status(vcpu->arch.cop0), opc,
1359 badvaddr);
1360
1361 ++vcpu->stat.tlbmiss_st_exits;
1362 ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu);
1363 break;
1364
1365 case EXCCODE_TLBL:
1366 kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
1367 cause, opc, badvaddr);
1368
1369 ++vcpu->stat.tlbmiss_ld_exits;
1370 ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu);
1371 break;
1372
1373 case EXCCODE_ADES:
1374 ++vcpu->stat.addrerr_st_exits;
1375 ret = kvm_mips_callbacks->handle_addr_err_st(vcpu);
1376 break;
1377
1378 case EXCCODE_ADEL:
1379 ++vcpu->stat.addrerr_ld_exits;
1380 ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu);
1381 break;
1382
1383 case EXCCODE_SYS:
1384 ++vcpu->stat.syscall_exits;
1385 ret = kvm_mips_callbacks->handle_syscall(vcpu);
1386 break;
1387
1388 case EXCCODE_RI:
1389 ++vcpu->stat.resvd_inst_exits;
1390 ret = kvm_mips_callbacks->handle_res_inst(vcpu);
1391 break;
1392
1393 case EXCCODE_BP:
1394 ++vcpu->stat.break_inst_exits;
1395 ret = kvm_mips_callbacks->handle_break(vcpu);
1396 break;
1397
1398 case EXCCODE_TR:
1399 ++vcpu->stat.trap_inst_exits;
1400 ret = kvm_mips_callbacks->handle_trap(vcpu);
1401 break;
1402
1403 case EXCCODE_MSAFPE:
1404 ++vcpu->stat.msa_fpe_exits;
1405 ret = kvm_mips_callbacks->handle_msa_fpe(vcpu);
1406 break;
1407
1408 case EXCCODE_FPE:
1409 ++vcpu->stat.fpe_exits;
1410 ret = kvm_mips_callbacks->handle_fpe(vcpu);
1411 break;
1412
1413 case EXCCODE_MSADIS:
1414 ++vcpu->stat.msa_disabled_exits;
1415 ret = kvm_mips_callbacks->handle_msa_disabled(vcpu);
1416 break;
1417
1418 case EXCCODE_GE:
1419 /* defer exit accounting to handler */
1420 ret = kvm_mips_callbacks->handle_guest_exit(vcpu);
1421 break;
1422
1423 default:
1424 if (cause & CAUSEF_BD)
1425 opc += 1;
1426 inst = 0;
1427 kvm_get_badinstr(opc, vcpu, &inst);
1428 kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x BadVaddr: %#lx Status: %#x\n",
1429 exccode, opc, inst, badvaddr,
1430 kvm_read_c0_guest_status(vcpu->arch.cop0));
1431 kvm_arch_vcpu_dump_regs(vcpu);
1432 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1433 ret = RESUME_HOST;
1434 break;
1435
1436 }
1437
1438 skip_emul:
1439 local_irq_disable();
1440
1441 if (ret == RESUME_GUEST)
1442 kvm_vz_acquire_htimer(vcpu);
1443
1444 if (er == EMULATE_DONE && !(ret & RESUME_HOST))
1445 kvm_mips_deliver_interrupts(vcpu, cause);
1446
1447 if (!(ret & RESUME_HOST)) {
1448 /* Only check for signals if not already exiting to userspace */
1449 if (signal_pending(current)) {
1450 run->exit_reason = KVM_EXIT_INTR;
1451 ret = (-EINTR << 2) | RESUME_HOST;
1452 ++vcpu->stat.signal_exits;
1453 trace_kvm_exit(vcpu, KVM_TRACE_EXIT_SIGNAL);
1454 }
1455 }
1456
1457 if (ret == RESUME_GUEST) {
1458 trace_kvm_reenter(vcpu);
1459
1460 /*
1461 * Make sure the read of VCPU requests in vcpu_reenter()
1462 * callback is not reordered ahead of the write to vcpu->mode,
1463 * or we could miss a TLB flush request while the requester sees
1464 * the VCPU as outside of guest mode and not needing an IPI.
1465 */
1466 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
1467
1468 kvm_mips_callbacks->vcpu_reenter(run, vcpu);
1469
1470 /*
1471 * If FPU / MSA are enabled (i.e. the guest's FPU / MSA context
1472 * is live), restore FCR31 / MSACSR.
1473 *
1474 * This should be before returning to the guest exception
1475 * vector, as it may well cause an [MSA] FP exception if there
1476 * are pending exception bits unmasked. (see
1477 * kvm_mips_csr_die_notifier() for how that is handled).
1478 */
1479 if (kvm_mips_guest_has_fpu(&vcpu->arch) &&
1480 read_c0_status() & ST0_CU1)
1481 __kvm_restore_fcsr(&vcpu->arch);
1482
1483 if (kvm_mips_guest_has_msa(&vcpu->arch) &&
1484 read_c0_config5() & MIPS_CONF5_MSAEN)
1485 __kvm_restore_msacsr(&vcpu->arch);
1486 }
1487
1488 /* Disable HTW before returning to guest or host */
1489 if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ))
1490 htw_stop();
1491
1492 return ret;
1493 }
1494
1495 /* Enable FPU for guest and restore context */
kvm_own_fpu(struct kvm_vcpu * vcpu)1496 void kvm_own_fpu(struct kvm_vcpu *vcpu)
1497 {
1498 struct mips_coproc *cop0 = vcpu->arch.cop0;
1499 unsigned int sr, cfg5;
1500
1501 preempt_disable();
1502
1503 sr = kvm_read_c0_guest_status(cop0);
1504
1505 /*
1506 * If MSA state is already live, it is undefined how it interacts with
1507 * FR=0 FPU state, and we don't want to hit reserved instruction
1508 * exceptions trying to save the MSA state later when CU=1 && FR=1, so
1509 * play it safe and save it first.
1510 *
1511 * In theory we shouldn't ever hit this case since kvm_lose_fpu() should
1512 * get called when guest CU1 is set, however we can't trust the guest
1513 * not to clobber the status register directly via the commpage.
1514 */
1515 if (cpu_has_msa && sr & ST0_CU1 && !(sr & ST0_FR) &&
1516 vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1517 kvm_lose_fpu(vcpu);
1518
1519 /*
1520 * Enable FPU for guest
1521 * We set FR and FRE according to guest context
1522 */
1523 change_c0_status(ST0_CU1 | ST0_FR, sr);
1524 if (cpu_has_fre) {
1525 cfg5 = kvm_read_c0_guest_config5(cop0);
1526 change_c0_config5(MIPS_CONF5_FRE, cfg5);
1527 }
1528 enable_fpu_hazard();
1529
1530 /* If guest FPU state not active, restore it now */
1531 if (!(vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)) {
1532 __kvm_restore_fpu(&vcpu->arch);
1533 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1534 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_FPU);
1535 } else {
1536 trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_FPU);
1537 }
1538
1539 preempt_enable();
1540 }
1541
1542 #ifdef CONFIG_CPU_HAS_MSA
1543 /* Enable MSA for guest and restore context */
kvm_own_msa(struct kvm_vcpu * vcpu)1544 void kvm_own_msa(struct kvm_vcpu *vcpu)
1545 {
1546 struct mips_coproc *cop0 = vcpu->arch.cop0;
1547 unsigned int sr, cfg5;
1548
1549 preempt_disable();
1550
1551 /*
1552 * Enable FPU if enabled in guest, since we're restoring FPU context
1553 * anyway. We set FR and FRE according to guest context.
1554 */
1555 if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
1556 sr = kvm_read_c0_guest_status(cop0);
1557
1558 /*
1559 * If FR=0 FPU state is already live, it is undefined how it
1560 * interacts with MSA state, so play it safe and save it first.
1561 */
1562 if (!(sr & ST0_FR) &&
1563 (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU |
1564 KVM_MIPS_AUX_MSA)) == KVM_MIPS_AUX_FPU)
1565 kvm_lose_fpu(vcpu);
1566
1567 change_c0_status(ST0_CU1 | ST0_FR, sr);
1568 if (sr & ST0_CU1 && cpu_has_fre) {
1569 cfg5 = kvm_read_c0_guest_config5(cop0);
1570 change_c0_config5(MIPS_CONF5_FRE, cfg5);
1571 }
1572 }
1573
1574 /* Enable MSA for guest */
1575 set_c0_config5(MIPS_CONF5_MSAEN);
1576 enable_fpu_hazard();
1577
1578 switch (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA)) {
1579 case KVM_MIPS_AUX_FPU:
1580 /*
1581 * Guest FPU state already loaded, only restore upper MSA state
1582 */
1583 __kvm_restore_msa_upper(&vcpu->arch);
1584 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1585 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_MSA);
1586 break;
1587 case 0:
1588 /* Neither FPU or MSA already active, restore full MSA state */
1589 __kvm_restore_msa(&vcpu->arch);
1590 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1591 if (kvm_mips_guest_has_fpu(&vcpu->arch))
1592 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1593 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE,
1594 KVM_TRACE_AUX_FPU_MSA);
1595 break;
1596 default:
1597 trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_MSA);
1598 break;
1599 }
1600
1601 preempt_enable();
1602 }
1603 #endif
1604
1605 /* Drop FPU & MSA without saving it */
kvm_drop_fpu(struct kvm_vcpu * vcpu)1606 void kvm_drop_fpu(struct kvm_vcpu *vcpu)
1607 {
1608 preempt_disable();
1609 if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1610 disable_msa();
1611 trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_MSA);
1612 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_MSA;
1613 }
1614 if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1615 clear_c0_status(ST0_CU1 | ST0_FR);
1616 trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_FPU);
1617 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1618 }
1619 preempt_enable();
1620 }
1621
1622 /* Save and disable FPU & MSA */
kvm_lose_fpu(struct kvm_vcpu * vcpu)1623 void kvm_lose_fpu(struct kvm_vcpu *vcpu)
1624 {
1625 /*
1626 * With T&E, FPU & MSA get disabled in root context (hardware) when it
1627 * is disabled in guest context (software), but the register state in
1628 * the hardware may still be in use.
1629 * This is why we explicitly re-enable the hardware before saving.
1630 */
1631
1632 preempt_disable();
1633 if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1634 if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ)) {
1635 set_c0_config5(MIPS_CONF5_MSAEN);
1636 enable_fpu_hazard();
1637 }
1638
1639 __kvm_save_msa(&vcpu->arch);
1640 trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU_MSA);
1641
1642 /* Disable MSA & FPU */
1643 disable_msa();
1644 if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1645 clear_c0_status(ST0_CU1 | ST0_FR);
1646 disable_fpu_hazard();
1647 }
1648 vcpu->arch.aux_inuse &= ~(KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA);
1649 } else if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1650 if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ)) {
1651 set_c0_status(ST0_CU1);
1652 enable_fpu_hazard();
1653 }
1654
1655 __kvm_save_fpu(&vcpu->arch);
1656 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1657 trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU);
1658
1659 /* Disable FPU */
1660 clear_c0_status(ST0_CU1 | ST0_FR);
1661 disable_fpu_hazard();
1662 }
1663 preempt_enable();
1664 }
1665
1666 /*
1667 * Step over a specific ctc1 to FCSR and a specific ctcmsa to MSACSR which are
1668 * used to restore guest FCSR/MSACSR state and may trigger a "harmless" FP/MSAFP
1669 * exception if cause bits are set in the value being written.
1670 */
kvm_mips_csr_die_notify(struct notifier_block * self,unsigned long cmd,void * ptr)1671 static int kvm_mips_csr_die_notify(struct notifier_block *self,
1672 unsigned long cmd, void *ptr)
1673 {
1674 struct die_args *args = (struct die_args *)ptr;
1675 struct pt_regs *regs = args->regs;
1676 unsigned long pc;
1677
1678 /* Only interested in FPE and MSAFPE */
1679 if (cmd != DIE_FP && cmd != DIE_MSAFP)
1680 return NOTIFY_DONE;
1681
1682 /* Return immediately if guest context isn't active */
1683 if (!(current->flags & PF_VCPU))
1684 return NOTIFY_DONE;
1685
1686 /* Should never get here from user mode */
1687 BUG_ON(user_mode(regs));
1688
1689 pc = instruction_pointer(regs);
1690 switch (cmd) {
1691 case DIE_FP:
1692 /* match 2nd instruction in __kvm_restore_fcsr */
1693 if (pc != (unsigned long)&__kvm_restore_fcsr + 4)
1694 return NOTIFY_DONE;
1695 break;
1696 case DIE_MSAFP:
1697 /* match 2nd/3rd instruction in __kvm_restore_msacsr */
1698 if (!cpu_has_msa ||
1699 pc < (unsigned long)&__kvm_restore_msacsr + 4 ||
1700 pc > (unsigned long)&__kvm_restore_msacsr + 8)
1701 return NOTIFY_DONE;
1702 break;
1703 }
1704
1705 /* Move PC forward a little and continue executing */
1706 instruction_pointer(regs) += 4;
1707
1708 return NOTIFY_STOP;
1709 }
1710
1711 static struct notifier_block kvm_mips_csr_die_notifier = {
1712 .notifier_call = kvm_mips_csr_die_notify,
1713 };
1714
kvm_mips_init(void)1715 static int __init kvm_mips_init(void)
1716 {
1717 int ret;
1718
1719 if (cpu_has_mmid) {
1720 pr_warn("KVM does not yet support MMIDs. KVM Disabled\n");
1721 return -EOPNOTSUPP;
1722 }
1723
1724 ret = kvm_mips_entry_setup();
1725 if (ret)
1726 return ret;
1727
1728 ret = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1729
1730 if (ret)
1731 return ret;
1732
1733 register_die_notifier(&kvm_mips_csr_die_notifier);
1734
1735 return 0;
1736 }
1737
kvm_mips_exit(void)1738 static void __exit kvm_mips_exit(void)
1739 {
1740 kvm_exit();
1741
1742 unregister_die_notifier(&kvm_mips_csr_die_notifier);
1743 }
1744
1745 module_init(kvm_mips_init);
1746 module_exit(kvm_mips_exit);
1747
1748 EXPORT_TRACEPOINT_SYMBOL(kvm_exit);
1749