1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5 */
6
7 #include <linux/bug.h>
8 #include <linux/cpu_pm.h>
9 #include <linux/entry-kvm.h>
10 #include <linux/errno.h>
11 #include <linux/err.h>
12 #include <linux/kvm_host.h>
13 #include <linux/list.h>
14 #include <linux/module.h>
15 #include <linux/vmalloc.h>
16 #include <linux/fs.h>
17 #include <linux/mman.h>
18 #include <linux/sched.h>
19 #include <linux/kmemleak.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_irqfd.h>
22 #include <linux/irqbypass.h>
23 #include <linux/sched/stat.h>
24 #include <linux/psci.h>
25 #include <trace/events/kvm.h>
26
27 #define CREATE_TRACE_POINTS
28 #include "trace_arm.h"
29
30 #include <linux/uaccess.h>
31 #include <asm/ptrace.h>
32 #include <asm/mman.h>
33 #include <asm/tlbflush.h>
34 #include <asm/cacheflush.h>
35 #include <asm/cpufeature.h>
36 #include <asm/virt.h>
37 #include <asm/kvm_arm.h>
38 #include <asm/kvm_asm.h>
39 #include <asm/kvm_mmu.h>
40 #include <asm/kvm_emulate.h>
41 #include <asm/sections.h>
42
43 #include <kvm/arm_hypercalls.h>
44 #include <kvm/arm_pmu.h>
45 #include <kvm/arm_psci.h>
46
47 static enum kvm_mode kvm_mode = KVM_MODE_DEFAULT;
48 DEFINE_STATIC_KEY_FALSE(kvm_protected_mode_initialized);
49
50 DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector);
51
52 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
53 unsigned long kvm_arm_hyp_percpu_base[NR_CPUS];
54 DECLARE_KVM_NVHE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params);
55
56 /* The VMID used in the VTTBR */
57 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
58 static u32 kvm_next_vmid;
59 static DEFINE_SPINLOCK(kvm_vmid_lock);
60
61 static bool vgic_present;
62
63 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
64 DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
65
kvm_arch_vcpu_should_kick(struct kvm_vcpu * vcpu)66 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
67 {
68 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
69 }
70
kvm_arch_hardware_setup(void * opaque)71 int kvm_arch_hardware_setup(void *opaque)
72 {
73 return 0;
74 }
75
kvm_arch_check_processor_compat(void * opaque)76 int kvm_arch_check_processor_compat(void *opaque)
77 {
78 return 0;
79 }
80
kvm_vm_ioctl_enable_cap(struct kvm * kvm,struct kvm_enable_cap * cap)81 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
82 struct kvm_enable_cap *cap)
83 {
84 int r;
85
86 if (cap->flags)
87 return -EINVAL;
88
89 switch (cap->cap) {
90 case KVM_CAP_ARM_NISV_TO_USER:
91 r = 0;
92 kvm->arch.return_nisv_io_abort_to_user = true;
93 break;
94 case KVM_CAP_ARM_MTE:
95 mutex_lock(&kvm->lock);
96 if (!system_supports_mte() || kvm->created_vcpus) {
97 r = -EINVAL;
98 } else {
99 r = 0;
100 kvm->arch.mte_enabled = true;
101 }
102 mutex_unlock(&kvm->lock);
103 break;
104 default:
105 r = -EINVAL;
106 break;
107 }
108
109 return r;
110 }
111
kvm_arm_default_max_vcpus(void)112 static int kvm_arm_default_max_vcpus(void)
113 {
114 return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
115 }
116
set_default_spectre(struct kvm * kvm)117 static void set_default_spectre(struct kvm *kvm)
118 {
119 /*
120 * The default is to expose CSV2 == 1 if the HW isn't affected.
121 * Although this is a per-CPU feature, we make it global because
122 * asymmetric systems are just a nuisance.
123 *
124 * Userspace can override this as long as it doesn't promise
125 * the impossible.
126 */
127 if (arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED)
128 kvm->arch.pfr0_csv2 = 1;
129 if (arm64_get_meltdown_state() == SPECTRE_UNAFFECTED)
130 kvm->arch.pfr0_csv3 = 1;
131 }
132
133 /**
134 * kvm_arch_init_vm - initializes a VM data structure
135 * @kvm: pointer to the KVM struct
136 */
kvm_arch_init_vm(struct kvm * kvm,unsigned long type)137 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
138 {
139 int ret;
140
141 ret = kvm_arm_setup_stage2(kvm, type);
142 if (ret)
143 return ret;
144
145 ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu);
146 if (ret)
147 return ret;
148
149 ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
150 if (ret)
151 goto out_free_stage2_pgd;
152
153 kvm_vgic_early_init(kvm);
154
155 /* The maximum number of VCPUs is limited by the host's GIC model */
156 kvm->arch.max_vcpus = kvm_arm_default_max_vcpus();
157
158 set_default_spectre(kvm);
159
160 return ret;
161 out_free_stage2_pgd:
162 kvm_free_stage2_pgd(&kvm->arch.mmu);
163 return ret;
164 }
165
kvm_arch_vcpu_fault(struct kvm_vcpu * vcpu,struct vm_fault * vmf)166 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
167 {
168 return VM_FAULT_SIGBUS;
169 }
170
171
172 /**
173 * kvm_arch_destroy_vm - destroy the VM data structure
174 * @kvm: pointer to the KVM struct
175 */
kvm_arch_destroy_vm(struct kvm * kvm)176 void kvm_arch_destroy_vm(struct kvm *kvm)
177 {
178 int i;
179
180 bitmap_free(kvm->arch.pmu_filter);
181
182 kvm_vgic_destroy(kvm);
183
184 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
185 if (kvm->vcpus[i]) {
186 kvm_vcpu_destroy(kvm->vcpus[i]);
187 kvm->vcpus[i] = NULL;
188 }
189 }
190 atomic_set(&kvm->online_vcpus, 0);
191 }
192
kvm_vm_ioctl_check_extension(struct kvm * kvm,long ext)193 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
194 {
195 int r;
196 switch (ext) {
197 case KVM_CAP_IRQCHIP:
198 r = vgic_present;
199 break;
200 case KVM_CAP_IOEVENTFD:
201 case KVM_CAP_DEVICE_CTRL:
202 case KVM_CAP_USER_MEMORY:
203 case KVM_CAP_SYNC_MMU:
204 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
205 case KVM_CAP_ONE_REG:
206 case KVM_CAP_ARM_PSCI:
207 case KVM_CAP_ARM_PSCI_0_2:
208 case KVM_CAP_READONLY_MEM:
209 case KVM_CAP_MP_STATE:
210 case KVM_CAP_IMMEDIATE_EXIT:
211 case KVM_CAP_VCPU_EVENTS:
212 case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
213 case KVM_CAP_ARM_NISV_TO_USER:
214 case KVM_CAP_ARM_INJECT_EXT_DABT:
215 case KVM_CAP_SET_GUEST_DEBUG:
216 case KVM_CAP_VCPU_ATTRIBUTES:
217 case KVM_CAP_PTP_KVM:
218 r = 1;
219 break;
220 case KVM_CAP_SET_GUEST_DEBUG2:
221 return KVM_GUESTDBG_VALID_MASK;
222 case KVM_CAP_ARM_SET_DEVICE_ADDR:
223 r = 1;
224 break;
225 case KVM_CAP_NR_VCPUS:
226 r = num_online_cpus();
227 break;
228 case KVM_CAP_MAX_VCPUS:
229 case KVM_CAP_MAX_VCPU_ID:
230 if (kvm)
231 r = kvm->arch.max_vcpus;
232 else
233 r = kvm_arm_default_max_vcpus();
234 break;
235 case KVM_CAP_MSI_DEVID:
236 if (!kvm)
237 r = -EINVAL;
238 else
239 r = kvm->arch.vgic.msis_require_devid;
240 break;
241 case KVM_CAP_ARM_USER_IRQ:
242 /*
243 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
244 * (bump this number if adding more devices)
245 */
246 r = 1;
247 break;
248 case KVM_CAP_ARM_MTE:
249 r = system_supports_mte();
250 break;
251 case KVM_CAP_STEAL_TIME:
252 r = kvm_arm_pvtime_supported();
253 break;
254 case KVM_CAP_ARM_EL1_32BIT:
255 r = cpus_have_const_cap(ARM64_HAS_32BIT_EL1);
256 break;
257 case KVM_CAP_GUEST_DEBUG_HW_BPS:
258 r = get_num_brps();
259 break;
260 case KVM_CAP_GUEST_DEBUG_HW_WPS:
261 r = get_num_wrps();
262 break;
263 case KVM_CAP_ARM_PMU_V3:
264 r = kvm_arm_support_pmu_v3();
265 break;
266 case KVM_CAP_ARM_INJECT_SERROR_ESR:
267 r = cpus_have_const_cap(ARM64_HAS_RAS_EXTN);
268 break;
269 case KVM_CAP_ARM_VM_IPA_SIZE:
270 r = get_kvm_ipa_limit();
271 break;
272 case KVM_CAP_ARM_SVE:
273 r = system_supports_sve();
274 break;
275 case KVM_CAP_ARM_PTRAUTH_ADDRESS:
276 case KVM_CAP_ARM_PTRAUTH_GENERIC:
277 r = system_has_full_ptr_auth();
278 break;
279 default:
280 r = 0;
281 }
282
283 return r;
284 }
285
kvm_arch_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)286 long kvm_arch_dev_ioctl(struct file *filp,
287 unsigned int ioctl, unsigned long arg)
288 {
289 return -EINVAL;
290 }
291
kvm_arch_alloc_vm(void)292 struct kvm *kvm_arch_alloc_vm(void)
293 {
294 if (!has_vhe())
295 return kzalloc(sizeof(struct kvm), GFP_KERNEL);
296
297 return vzalloc(sizeof(struct kvm));
298 }
299
kvm_arch_free_vm(struct kvm * kvm)300 void kvm_arch_free_vm(struct kvm *kvm)
301 {
302 if (!has_vhe())
303 kfree(kvm);
304 else
305 vfree(kvm);
306 }
307
kvm_arch_vcpu_precreate(struct kvm * kvm,unsigned int id)308 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
309 {
310 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
311 return -EBUSY;
312
313 if (id >= kvm->arch.max_vcpus)
314 return -EINVAL;
315
316 return 0;
317 }
318
kvm_arch_vcpu_create(struct kvm_vcpu * vcpu)319 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
320 {
321 int err;
322
323 /* Force users to call KVM_ARM_VCPU_INIT */
324 vcpu->arch.target = -1;
325 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
326
327 vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO;
328
329 /* Set up the timer */
330 kvm_timer_vcpu_init(vcpu);
331
332 kvm_pmu_vcpu_init(vcpu);
333
334 kvm_arm_reset_debug_ptr(vcpu);
335
336 kvm_arm_pvtime_vcpu_init(&vcpu->arch);
337
338 vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;
339
340 err = kvm_vgic_vcpu_init(vcpu);
341 if (err)
342 return err;
343
344 return create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
345 }
346
kvm_arch_vcpu_postcreate(struct kvm_vcpu * vcpu)347 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
348 {
349 }
350
kvm_arch_vcpu_destroy(struct kvm_vcpu * vcpu)351 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
352 {
353 if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
354 static_branch_dec(&userspace_irqchip_in_use);
355
356 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
357 kvm_timer_vcpu_terminate(vcpu);
358 kvm_pmu_vcpu_destroy(vcpu);
359
360 kvm_arm_vcpu_destroy(vcpu);
361 }
362
kvm_cpu_has_pending_timer(struct kvm_vcpu * vcpu)363 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
364 {
365 return kvm_timer_is_pending(vcpu);
366 }
367
kvm_arch_vcpu_blocking(struct kvm_vcpu * vcpu)368 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
369 {
370 /*
371 * If we're about to block (most likely because we've just hit a
372 * WFI), we need to sync back the state of the GIC CPU interface
373 * so that we have the latest PMR and group enables. This ensures
374 * that kvm_arch_vcpu_runnable has up-to-date data to decide
375 * whether we have pending interrupts.
376 *
377 * For the same reason, we want to tell GICv4 that we need
378 * doorbells to be signalled, should an interrupt become pending.
379 */
380 preempt_disable();
381 kvm_vgic_vmcr_sync(vcpu);
382 vgic_v4_put(vcpu, true);
383 preempt_enable();
384 }
385
kvm_arch_vcpu_unblocking(struct kvm_vcpu * vcpu)386 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
387 {
388 preempt_disable();
389 vgic_v4_load(vcpu);
390 preempt_enable();
391 }
392
kvm_arch_vcpu_load(struct kvm_vcpu * vcpu,int cpu)393 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
394 {
395 struct kvm_s2_mmu *mmu;
396 int *last_ran;
397
398 mmu = vcpu->arch.hw_mmu;
399 last_ran = this_cpu_ptr(mmu->last_vcpu_ran);
400
401 /*
402 * We guarantee that both TLBs and I-cache are private to each
403 * vcpu. If detecting that a vcpu from the same VM has
404 * previously run on the same physical CPU, call into the
405 * hypervisor code to nuke the relevant contexts.
406 *
407 * We might get preempted before the vCPU actually runs, but
408 * over-invalidation doesn't affect correctness.
409 */
410 if (*last_ran != vcpu->vcpu_id) {
411 kvm_call_hyp(__kvm_flush_cpu_context, mmu);
412 *last_ran = vcpu->vcpu_id;
413 }
414
415 vcpu->cpu = cpu;
416
417 kvm_vgic_load(vcpu);
418 kvm_timer_vcpu_load(vcpu);
419 if (has_vhe())
420 kvm_vcpu_load_sysregs_vhe(vcpu);
421 kvm_arch_vcpu_load_fp(vcpu);
422 kvm_vcpu_pmu_restore_guest(vcpu);
423 if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
424 kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu);
425
426 if (single_task_running())
427 vcpu_clear_wfx_traps(vcpu);
428 else
429 vcpu_set_wfx_traps(vcpu);
430
431 if (vcpu_has_ptrauth(vcpu))
432 vcpu_ptrauth_disable(vcpu);
433 kvm_arch_vcpu_load_debug_state_flags(vcpu);
434 }
435
kvm_arch_vcpu_put(struct kvm_vcpu * vcpu)436 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
437 {
438 kvm_arch_vcpu_put_debug_state_flags(vcpu);
439 kvm_arch_vcpu_put_fp(vcpu);
440 if (has_vhe())
441 kvm_vcpu_put_sysregs_vhe(vcpu);
442 kvm_timer_vcpu_put(vcpu);
443 kvm_vgic_put(vcpu);
444 kvm_vcpu_pmu_restore_host(vcpu);
445
446 vcpu->cpu = -1;
447 }
448
vcpu_power_off(struct kvm_vcpu * vcpu)449 static void vcpu_power_off(struct kvm_vcpu *vcpu)
450 {
451 vcpu->arch.power_off = true;
452 kvm_make_request(KVM_REQ_SLEEP, vcpu);
453 kvm_vcpu_kick(vcpu);
454 }
455
kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)456 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
457 struct kvm_mp_state *mp_state)
458 {
459 if (vcpu->arch.power_off)
460 mp_state->mp_state = KVM_MP_STATE_STOPPED;
461 else
462 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
463
464 return 0;
465 }
466
kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)467 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
468 struct kvm_mp_state *mp_state)
469 {
470 int ret = 0;
471
472 switch (mp_state->mp_state) {
473 case KVM_MP_STATE_RUNNABLE:
474 vcpu->arch.power_off = false;
475 break;
476 case KVM_MP_STATE_STOPPED:
477 vcpu_power_off(vcpu);
478 break;
479 default:
480 ret = -EINVAL;
481 }
482
483 return ret;
484 }
485
486 /**
487 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
488 * @v: The VCPU pointer
489 *
490 * If the guest CPU is not waiting for interrupts or an interrupt line is
491 * asserted, the CPU is by definition runnable.
492 */
kvm_arch_vcpu_runnable(struct kvm_vcpu * v)493 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
494 {
495 bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
496 return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
497 && !v->arch.power_off && !v->arch.pause);
498 }
499
kvm_arch_vcpu_in_kernel(struct kvm_vcpu * vcpu)500 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
501 {
502 return vcpu_mode_priv(vcpu);
503 }
504
505 /* Just ensure a guest exit from a particular CPU */
exit_vm_noop(void * info)506 static void exit_vm_noop(void *info)
507 {
508 }
509
force_vm_exit(const cpumask_t * mask)510 void force_vm_exit(const cpumask_t *mask)
511 {
512 preempt_disable();
513 smp_call_function_many(mask, exit_vm_noop, NULL, true);
514 preempt_enable();
515 }
516
517 /**
518 * need_new_vmid_gen - check that the VMID is still valid
519 * @vmid: The VMID to check
520 *
521 * return true if there is a new generation of VMIDs being used
522 *
523 * The hardware supports a limited set of values with the value zero reserved
524 * for the host, so we check if an assigned value belongs to a previous
525 * generation, which requires us to assign a new value. If we're the first to
526 * use a VMID for the new generation, we must flush necessary caches and TLBs
527 * on all CPUs.
528 */
need_new_vmid_gen(struct kvm_vmid * vmid)529 static bool need_new_vmid_gen(struct kvm_vmid *vmid)
530 {
531 u64 current_vmid_gen = atomic64_read(&kvm_vmid_gen);
532 smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */
533 return unlikely(READ_ONCE(vmid->vmid_gen) != current_vmid_gen);
534 }
535
536 /**
537 * update_vmid - Update the vmid with a valid VMID for the current generation
538 * @vmid: The stage-2 VMID information struct
539 */
update_vmid(struct kvm_vmid * vmid)540 static void update_vmid(struct kvm_vmid *vmid)
541 {
542 if (!need_new_vmid_gen(vmid))
543 return;
544
545 spin_lock(&kvm_vmid_lock);
546
547 /*
548 * We need to re-check the vmid_gen here to ensure that if another vcpu
549 * already allocated a valid vmid for this vm, then this vcpu should
550 * use the same vmid.
551 */
552 if (!need_new_vmid_gen(vmid)) {
553 spin_unlock(&kvm_vmid_lock);
554 return;
555 }
556
557 /* First user of a new VMID generation? */
558 if (unlikely(kvm_next_vmid == 0)) {
559 atomic64_inc(&kvm_vmid_gen);
560 kvm_next_vmid = 1;
561
562 /*
563 * On SMP we know no other CPUs can use this CPU's or each
564 * other's VMID after force_vm_exit returns since the
565 * kvm_vmid_lock blocks them from reentry to the guest.
566 */
567 force_vm_exit(cpu_all_mask);
568 /*
569 * Now broadcast TLB + ICACHE invalidation over the inner
570 * shareable domain to make sure all data structures are
571 * clean.
572 */
573 kvm_call_hyp(__kvm_flush_vm_context);
574 }
575
576 WRITE_ONCE(vmid->vmid, kvm_next_vmid);
577 kvm_next_vmid++;
578 kvm_next_vmid &= (1 << kvm_get_vmid_bits()) - 1;
579
580 smp_wmb();
581 WRITE_ONCE(vmid->vmid_gen, atomic64_read(&kvm_vmid_gen));
582
583 spin_unlock(&kvm_vmid_lock);
584 }
585
kvm_vcpu_first_run_init(struct kvm_vcpu * vcpu)586 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
587 {
588 struct kvm *kvm = vcpu->kvm;
589 int ret = 0;
590
591 if (likely(vcpu->arch.has_run_once))
592 return 0;
593
594 if (!kvm_arm_vcpu_is_finalized(vcpu))
595 return -EPERM;
596
597 vcpu->arch.has_run_once = true;
598
599 kvm_arm_vcpu_init_debug(vcpu);
600
601 if (likely(irqchip_in_kernel(kvm))) {
602 /*
603 * Map the VGIC hardware resources before running a vcpu the
604 * first time on this VM.
605 */
606 ret = kvm_vgic_map_resources(kvm);
607 if (ret)
608 return ret;
609 } else {
610 /*
611 * Tell the rest of the code that there are userspace irqchip
612 * VMs in the wild.
613 */
614 static_branch_inc(&userspace_irqchip_in_use);
615 }
616
617 ret = kvm_timer_enable(vcpu);
618 if (ret)
619 return ret;
620
621 ret = kvm_arm_pmu_v3_enable(vcpu);
622
623 return ret;
624 }
625
kvm_arch_intc_initialized(struct kvm * kvm)626 bool kvm_arch_intc_initialized(struct kvm *kvm)
627 {
628 return vgic_initialized(kvm);
629 }
630
kvm_arm_halt_guest(struct kvm * kvm)631 void kvm_arm_halt_guest(struct kvm *kvm)
632 {
633 int i;
634 struct kvm_vcpu *vcpu;
635
636 kvm_for_each_vcpu(i, vcpu, kvm)
637 vcpu->arch.pause = true;
638 kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
639 }
640
kvm_arm_resume_guest(struct kvm * kvm)641 void kvm_arm_resume_guest(struct kvm *kvm)
642 {
643 int i;
644 struct kvm_vcpu *vcpu;
645
646 kvm_for_each_vcpu(i, vcpu, kvm) {
647 vcpu->arch.pause = false;
648 rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu));
649 }
650 }
651
vcpu_req_sleep(struct kvm_vcpu * vcpu)652 static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
653 {
654 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
655
656 rcuwait_wait_event(wait,
657 (!vcpu->arch.power_off) &&(!vcpu->arch.pause),
658 TASK_INTERRUPTIBLE);
659
660 if (vcpu->arch.power_off || vcpu->arch.pause) {
661 /* Awaken to handle a signal, request we sleep again later. */
662 kvm_make_request(KVM_REQ_SLEEP, vcpu);
663 }
664
665 /*
666 * Make sure we will observe a potential reset request if we've
667 * observed a change to the power state. Pairs with the smp_wmb() in
668 * kvm_psci_vcpu_on().
669 */
670 smp_rmb();
671 }
672
kvm_vcpu_initialized(struct kvm_vcpu * vcpu)673 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
674 {
675 return vcpu->arch.target >= 0;
676 }
677
check_vcpu_requests(struct kvm_vcpu * vcpu)678 static void check_vcpu_requests(struct kvm_vcpu *vcpu)
679 {
680 if (kvm_request_pending(vcpu)) {
681 if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
682 vcpu_req_sleep(vcpu);
683
684 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
685 kvm_reset_vcpu(vcpu);
686
687 /*
688 * Clear IRQ_PENDING requests that were made to guarantee
689 * that a VCPU sees new virtual interrupts.
690 */
691 kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
692
693 if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu))
694 kvm_update_stolen_time(vcpu);
695
696 if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) {
697 /* The distributor enable bits were changed */
698 preempt_disable();
699 vgic_v4_put(vcpu, false);
700 vgic_v4_load(vcpu);
701 preempt_enable();
702 }
703
704 if (kvm_check_request(KVM_REQ_RELOAD_PMU, vcpu))
705 kvm_pmu_handle_pmcr(vcpu,
706 __vcpu_sys_reg(vcpu, PMCR_EL0));
707 }
708 }
709
vcpu_mode_is_bad_32bit(struct kvm_vcpu * vcpu)710 static bool vcpu_mode_is_bad_32bit(struct kvm_vcpu *vcpu)
711 {
712 if (likely(!vcpu_mode_is_32bit(vcpu)))
713 return false;
714
715 return !system_supports_32bit_el0() ||
716 static_branch_unlikely(&arm64_mismatched_32bit_el0);
717 }
718
719 /**
720 * kvm_vcpu_exit_request - returns true if the VCPU should *not* enter the guest
721 * @vcpu: The VCPU pointer
722 * @ret: Pointer to write optional return code
723 *
724 * Returns: true if the VCPU needs to return to a preemptible + interruptible
725 * and skip guest entry.
726 *
727 * This function disambiguates between two different types of exits: exits to a
728 * preemptible + interruptible kernel context and exits to userspace. For an
729 * exit to userspace, this function will write the return code to ret and return
730 * true. For an exit to preemptible + interruptible kernel context (i.e. check
731 * for pending work and re-enter), return true without writing to ret.
732 */
kvm_vcpu_exit_request(struct kvm_vcpu * vcpu,int * ret)733 static bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu, int *ret)
734 {
735 struct kvm_run *run = vcpu->run;
736
737 /*
738 * If we're using a userspace irqchip, then check if we need
739 * to tell a userspace irqchip about timer or PMU level
740 * changes and if so, exit to userspace (the actual level
741 * state gets updated in kvm_timer_update_run and
742 * kvm_pmu_update_run below).
743 */
744 if (static_branch_unlikely(&userspace_irqchip_in_use)) {
745 if (kvm_timer_should_notify_user(vcpu) ||
746 kvm_pmu_should_notify_user(vcpu)) {
747 *ret = -EINTR;
748 run->exit_reason = KVM_EXIT_INTR;
749 return true;
750 }
751 }
752
753 return kvm_request_pending(vcpu) ||
754 need_new_vmid_gen(&vcpu->arch.hw_mmu->vmid) ||
755 xfer_to_guest_mode_work_pending();
756 }
757
758 /**
759 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
760 * @vcpu: The VCPU pointer
761 *
762 * This function is called through the VCPU_RUN ioctl called from user space. It
763 * will execute VM code in a loop until the time slice for the process is used
764 * or some emulation is needed from user space in which case the function will
765 * return with return value 0 and with the kvm_run structure filled in with the
766 * required data for the requested emulation.
767 */
kvm_arch_vcpu_ioctl_run(struct kvm_vcpu * vcpu)768 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
769 {
770 struct kvm_run *run = vcpu->run;
771 int ret;
772
773 if (unlikely(!kvm_vcpu_initialized(vcpu)))
774 return -ENOEXEC;
775
776 ret = kvm_vcpu_first_run_init(vcpu);
777 if (ret)
778 return ret;
779
780 if (run->exit_reason == KVM_EXIT_MMIO) {
781 ret = kvm_handle_mmio_return(vcpu);
782 if (ret)
783 return ret;
784 }
785
786 vcpu_load(vcpu);
787
788 if (run->immediate_exit) {
789 ret = -EINTR;
790 goto out;
791 }
792
793 kvm_sigset_activate(vcpu);
794
795 ret = 1;
796 run->exit_reason = KVM_EXIT_UNKNOWN;
797 while (ret > 0) {
798 /*
799 * Check conditions before entering the guest
800 */
801 ret = xfer_to_guest_mode_handle_work(vcpu);
802 if (!ret)
803 ret = 1;
804
805 update_vmid(&vcpu->arch.hw_mmu->vmid);
806
807 check_vcpu_requests(vcpu);
808
809 /*
810 * Preparing the interrupts to be injected also
811 * involves poking the GIC, which must be done in a
812 * non-preemptible context.
813 */
814 preempt_disable();
815
816 kvm_pmu_flush_hwstate(vcpu);
817
818 local_irq_disable();
819
820 kvm_vgic_flush_hwstate(vcpu);
821
822 /*
823 * Ensure we set mode to IN_GUEST_MODE after we disable
824 * interrupts and before the final VCPU requests check.
825 * See the comment in kvm_vcpu_exiting_guest_mode() and
826 * Documentation/virt/kvm/vcpu-requests.rst
827 */
828 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
829
830 if (ret <= 0 || kvm_vcpu_exit_request(vcpu, &ret)) {
831 vcpu->mode = OUTSIDE_GUEST_MODE;
832 isb(); /* Ensure work in x_flush_hwstate is committed */
833 kvm_pmu_sync_hwstate(vcpu);
834 if (static_branch_unlikely(&userspace_irqchip_in_use))
835 kvm_timer_sync_user(vcpu);
836 kvm_vgic_sync_hwstate(vcpu);
837 local_irq_enable();
838 preempt_enable();
839 continue;
840 }
841
842 kvm_arm_setup_debug(vcpu);
843
844 /**************************************************************
845 * Enter the guest
846 */
847 trace_kvm_entry(*vcpu_pc(vcpu));
848 guest_enter_irqoff();
849
850 ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu);
851
852 vcpu->mode = OUTSIDE_GUEST_MODE;
853 vcpu->stat.exits++;
854 /*
855 * Back from guest
856 *************************************************************/
857
858 kvm_arm_clear_debug(vcpu);
859
860 /*
861 * We must sync the PMU state before the vgic state so
862 * that the vgic can properly sample the updated state of the
863 * interrupt line.
864 */
865 kvm_pmu_sync_hwstate(vcpu);
866
867 /*
868 * Sync the vgic state before syncing the timer state because
869 * the timer code needs to know if the virtual timer
870 * interrupts are active.
871 */
872 kvm_vgic_sync_hwstate(vcpu);
873
874 /*
875 * Sync the timer hardware state before enabling interrupts as
876 * we don't want vtimer interrupts to race with syncing the
877 * timer virtual interrupt state.
878 */
879 if (static_branch_unlikely(&userspace_irqchip_in_use))
880 kvm_timer_sync_user(vcpu);
881
882 kvm_arch_vcpu_ctxsync_fp(vcpu);
883
884 /*
885 * We may have taken a host interrupt in HYP mode (ie
886 * while executing the guest). This interrupt is still
887 * pending, as we haven't serviced it yet!
888 *
889 * We're now back in SVC mode, with interrupts
890 * disabled. Enabling the interrupts now will have
891 * the effect of taking the interrupt again, in SVC
892 * mode this time.
893 */
894 local_irq_enable();
895
896 /*
897 * We do local_irq_enable() before calling guest_exit() so
898 * that if a timer interrupt hits while running the guest we
899 * account that tick as being spent in the guest. We enable
900 * preemption after calling guest_exit() so that if we get
901 * preempted we make sure ticks after that is not counted as
902 * guest time.
903 */
904 guest_exit();
905 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
906
907 /* Exit types that need handling before we can be preempted */
908 handle_exit_early(vcpu, ret);
909
910 preempt_enable();
911
912 /*
913 * The ARMv8 architecture doesn't give the hypervisor
914 * a mechanism to prevent a guest from dropping to AArch32 EL0
915 * if implemented by the CPU. If we spot the guest in such
916 * state and that we decided it wasn't supposed to do so (like
917 * with the asymmetric AArch32 case), return to userspace with
918 * a fatal error.
919 */
920 if (vcpu_mode_is_bad_32bit(vcpu)) {
921 /*
922 * As we have caught the guest red-handed, decide that
923 * it isn't fit for purpose anymore by making the vcpu
924 * invalid. The VMM can try and fix it by issuing a
925 * KVM_ARM_VCPU_INIT if it really wants to.
926 */
927 vcpu->arch.target = -1;
928 ret = ARM_EXCEPTION_IL;
929 }
930
931 ret = handle_exit(vcpu, ret);
932 }
933
934 /* Tell userspace about in-kernel device output levels */
935 if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
936 kvm_timer_update_run(vcpu);
937 kvm_pmu_update_run(vcpu);
938 }
939
940 kvm_sigset_deactivate(vcpu);
941
942 out:
943 /*
944 * In the unlikely event that we are returning to userspace
945 * with pending exceptions or PC adjustment, commit these
946 * adjustments in order to give userspace a consistent view of
947 * the vcpu state. Note that this relies on __kvm_adjust_pc()
948 * being preempt-safe on VHE.
949 */
950 if (unlikely(vcpu->arch.flags & (KVM_ARM64_PENDING_EXCEPTION |
951 KVM_ARM64_INCREMENT_PC)))
952 kvm_call_hyp(__kvm_adjust_pc, vcpu);
953
954 vcpu_put(vcpu);
955 return ret;
956 }
957
vcpu_interrupt_line(struct kvm_vcpu * vcpu,int number,bool level)958 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
959 {
960 int bit_index;
961 bool set;
962 unsigned long *hcr;
963
964 if (number == KVM_ARM_IRQ_CPU_IRQ)
965 bit_index = __ffs(HCR_VI);
966 else /* KVM_ARM_IRQ_CPU_FIQ */
967 bit_index = __ffs(HCR_VF);
968
969 hcr = vcpu_hcr(vcpu);
970 if (level)
971 set = test_and_set_bit(bit_index, hcr);
972 else
973 set = test_and_clear_bit(bit_index, hcr);
974
975 /*
976 * If we didn't change anything, no need to wake up or kick other CPUs
977 */
978 if (set == level)
979 return 0;
980
981 /*
982 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
983 * trigger a world-switch round on the running physical CPU to set the
984 * virtual IRQ/FIQ fields in the HCR appropriately.
985 */
986 kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
987 kvm_vcpu_kick(vcpu);
988
989 return 0;
990 }
991
kvm_vm_ioctl_irq_line(struct kvm * kvm,struct kvm_irq_level * irq_level,bool line_status)992 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
993 bool line_status)
994 {
995 u32 irq = irq_level->irq;
996 unsigned int irq_type, vcpu_idx, irq_num;
997 int nrcpus = atomic_read(&kvm->online_vcpus);
998 struct kvm_vcpu *vcpu = NULL;
999 bool level = irq_level->level;
1000
1001 irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
1002 vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
1003 vcpu_idx += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
1004 irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
1005
1006 trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
1007
1008 switch (irq_type) {
1009 case KVM_ARM_IRQ_TYPE_CPU:
1010 if (irqchip_in_kernel(kvm))
1011 return -ENXIO;
1012
1013 if (vcpu_idx >= nrcpus)
1014 return -EINVAL;
1015
1016 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
1017 if (!vcpu)
1018 return -EINVAL;
1019
1020 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
1021 return -EINVAL;
1022
1023 return vcpu_interrupt_line(vcpu, irq_num, level);
1024 case KVM_ARM_IRQ_TYPE_PPI:
1025 if (!irqchip_in_kernel(kvm))
1026 return -ENXIO;
1027
1028 if (vcpu_idx >= nrcpus)
1029 return -EINVAL;
1030
1031 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
1032 if (!vcpu)
1033 return -EINVAL;
1034
1035 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
1036 return -EINVAL;
1037
1038 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
1039 case KVM_ARM_IRQ_TYPE_SPI:
1040 if (!irqchip_in_kernel(kvm))
1041 return -ENXIO;
1042
1043 if (irq_num < VGIC_NR_PRIVATE_IRQS)
1044 return -EINVAL;
1045
1046 return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
1047 }
1048
1049 return -EINVAL;
1050 }
1051
kvm_vcpu_set_target(struct kvm_vcpu * vcpu,const struct kvm_vcpu_init * init)1052 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
1053 const struct kvm_vcpu_init *init)
1054 {
1055 unsigned int i, ret;
1056 u32 phys_target = kvm_target_cpu();
1057
1058 if (init->target != phys_target)
1059 return -EINVAL;
1060
1061 /*
1062 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
1063 * use the same target.
1064 */
1065 if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
1066 return -EINVAL;
1067
1068 /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
1069 for (i = 0; i < sizeof(init->features) * 8; i++) {
1070 bool set = (init->features[i / 32] & (1 << (i % 32)));
1071
1072 if (set && i >= KVM_VCPU_MAX_FEATURES)
1073 return -ENOENT;
1074
1075 /*
1076 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
1077 * use the same feature set.
1078 */
1079 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
1080 test_bit(i, vcpu->arch.features) != set)
1081 return -EINVAL;
1082
1083 if (set)
1084 set_bit(i, vcpu->arch.features);
1085 }
1086
1087 vcpu->arch.target = phys_target;
1088
1089 /* Now we know what it is, we can reset it. */
1090 ret = kvm_reset_vcpu(vcpu);
1091 if (ret) {
1092 vcpu->arch.target = -1;
1093 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
1094 }
1095
1096 return ret;
1097 }
1098
kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu * vcpu,struct kvm_vcpu_init * init)1099 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
1100 struct kvm_vcpu_init *init)
1101 {
1102 int ret;
1103
1104 ret = kvm_vcpu_set_target(vcpu, init);
1105 if (ret)
1106 return ret;
1107
1108 /*
1109 * Ensure a rebooted VM will fault in RAM pages and detect if the
1110 * guest MMU is turned off and flush the caches as needed.
1111 *
1112 * S2FWB enforces all memory accesses to RAM being cacheable,
1113 * ensuring that the data side is always coherent. We still
1114 * need to invalidate the I-cache though, as FWB does *not*
1115 * imply CTR_EL0.DIC.
1116 */
1117 if (vcpu->arch.has_run_once) {
1118 if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
1119 stage2_unmap_vm(vcpu->kvm);
1120 else
1121 icache_inval_all_pou();
1122 }
1123
1124 vcpu_reset_hcr(vcpu);
1125 vcpu->arch.cptr_el2 = CPTR_EL2_DEFAULT;
1126
1127 /*
1128 * Handle the "start in power-off" case.
1129 */
1130 if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
1131 vcpu_power_off(vcpu);
1132 else
1133 vcpu->arch.power_off = false;
1134
1135 return 0;
1136 }
1137
kvm_arm_vcpu_set_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)1138 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
1139 struct kvm_device_attr *attr)
1140 {
1141 int ret = -ENXIO;
1142
1143 switch (attr->group) {
1144 default:
1145 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1146 break;
1147 }
1148
1149 return ret;
1150 }
1151
kvm_arm_vcpu_get_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)1152 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
1153 struct kvm_device_attr *attr)
1154 {
1155 int ret = -ENXIO;
1156
1157 switch (attr->group) {
1158 default:
1159 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1160 break;
1161 }
1162
1163 return ret;
1164 }
1165
kvm_arm_vcpu_has_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)1166 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
1167 struct kvm_device_attr *attr)
1168 {
1169 int ret = -ENXIO;
1170
1171 switch (attr->group) {
1172 default:
1173 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1174 break;
1175 }
1176
1177 return ret;
1178 }
1179
kvm_arm_vcpu_get_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)1180 static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
1181 struct kvm_vcpu_events *events)
1182 {
1183 memset(events, 0, sizeof(*events));
1184
1185 return __kvm_arm_vcpu_get_events(vcpu, events);
1186 }
1187
kvm_arm_vcpu_set_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)1188 static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
1189 struct kvm_vcpu_events *events)
1190 {
1191 int i;
1192
1193 /* check whether the reserved field is zero */
1194 for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
1195 if (events->reserved[i])
1196 return -EINVAL;
1197
1198 /* check whether the pad field is zero */
1199 for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
1200 if (events->exception.pad[i])
1201 return -EINVAL;
1202
1203 return __kvm_arm_vcpu_set_events(vcpu, events);
1204 }
1205
kvm_arch_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)1206 long kvm_arch_vcpu_ioctl(struct file *filp,
1207 unsigned int ioctl, unsigned long arg)
1208 {
1209 struct kvm_vcpu *vcpu = filp->private_data;
1210 void __user *argp = (void __user *)arg;
1211 struct kvm_device_attr attr;
1212 long r;
1213
1214 switch (ioctl) {
1215 case KVM_ARM_VCPU_INIT: {
1216 struct kvm_vcpu_init init;
1217
1218 r = -EFAULT;
1219 if (copy_from_user(&init, argp, sizeof(init)))
1220 break;
1221
1222 r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1223 break;
1224 }
1225 case KVM_SET_ONE_REG:
1226 case KVM_GET_ONE_REG: {
1227 struct kvm_one_reg reg;
1228
1229 r = -ENOEXEC;
1230 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1231 break;
1232
1233 r = -EFAULT;
1234 if (copy_from_user(®, argp, sizeof(reg)))
1235 break;
1236
1237 /*
1238 * We could owe a reset due to PSCI. Handle the pending reset
1239 * here to ensure userspace register accesses are ordered after
1240 * the reset.
1241 */
1242 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
1243 kvm_reset_vcpu(vcpu);
1244
1245 if (ioctl == KVM_SET_ONE_REG)
1246 r = kvm_arm_set_reg(vcpu, ®);
1247 else
1248 r = kvm_arm_get_reg(vcpu, ®);
1249 break;
1250 }
1251 case KVM_GET_REG_LIST: {
1252 struct kvm_reg_list __user *user_list = argp;
1253 struct kvm_reg_list reg_list;
1254 unsigned n;
1255
1256 r = -ENOEXEC;
1257 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1258 break;
1259
1260 r = -EPERM;
1261 if (!kvm_arm_vcpu_is_finalized(vcpu))
1262 break;
1263
1264 r = -EFAULT;
1265 if (copy_from_user(®_list, user_list, sizeof(reg_list)))
1266 break;
1267 n = reg_list.n;
1268 reg_list.n = kvm_arm_num_regs(vcpu);
1269 if (copy_to_user(user_list, ®_list, sizeof(reg_list)))
1270 break;
1271 r = -E2BIG;
1272 if (n < reg_list.n)
1273 break;
1274 r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1275 break;
1276 }
1277 case KVM_SET_DEVICE_ATTR: {
1278 r = -EFAULT;
1279 if (copy_from_user(&attr, argp, sizeof(attr)))
1280 break;
1281 r = kvm_arm_vcpu_set_attr(vcpu, &attr);
1282 break;
1283 }
1284 case KVM_GET_DEVICE_ATTR: {
1285 r = -EFAULT;
1286 if (copy_from_user(&attr, argp, sizeof(attr)))
1287 break;
1288 r = kvm_arm_vcpu_get_attr(vcpu, &attr);
1289 break;
1290 }
1291 case KVM_HAS_DEVICE_ATTR: {
1292 r = -EFAULT;
1293 if (copy_from_user(&attr, argp, sizeof(attr)))
1294 break;
1295 r = kvm_arm_vcpu_has_attr(vcpu, &attr);
1296 break;
1297 }
1298 case KVM_GET_VCPU_EVENTS: {
1299 struct kvm_vcpu_events events;
1300
1301 if (kvm_arm_vcpu_get_events(vcpu, &events))
1302 return -EINVAL;
1303
1304 if (copy_to_user(argp, &events, sizeof(events)))
1305 return -EFAULT;
1306
1307 return 0;
1308 }
1309 case KVM_SET_VCPU_EVENTS: {
1310 struct kvm_vcpu_events events;
1311
1312 if (copy_from_user(&events, argp, sizeof(events)))
1313 return -EFAULT;
1314
1315 return kvm_arm_vcpu_set_events(vcpu, &events);
1316 }
1317 case KVM_ARM_VCPU_FINALIZE: {
1318 int what;
1319
1320 if (!kvm_vcpu_initialized(vcpu))
1321 return -ENOEXEC;
1322
1323 if (get_user(what, (const int __user *)argp))
1324 return -EFAULT;
1325
1326 return kvm_arm_vcpu_finalize(vcpu, what);
1327 }
1328 default:
1329 r = -EINVAL;
1330 }
1331
1332 return r;
1333 }
1334
kvm_arch_sync_dirty_log(struct kvm * kvm,struct kvm_memory_slot * memslot)1335 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
1336 {
1337
1338 }
1339
kvm_arch_flush_remote_tlbs_memslot(struct kvm * kvm,const struct kvm_memory_slot * memslot)1340 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
1341 const struct kvm_memory_slot *memslot)
1342 {
1343 kvm_flush_remote_tlbs(kvm);
1344 }
1345
kvm_vm_ioctl_set_device_addr(struct kvm * kvm,struct kvm_arm_device_addr * dev_addr)1346 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1347 struct kvm_arm_device_addr *dev_addr)
1348 {
1349 unsigned long dev_id, type;
1350
1351 dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
1352 KVM_ARM_DEVICE_ID_SHIFT;
1353 type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
1354 KVM_ARM_DEVICE_TYPE_SHIFT;
1355
1356 switch (dev_id) {
1357 case KVM_ARM_DEVICE_VGIC_V2:
1358 if (!vgic_present)
1359 return -ENXIO;
1360 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1361 default:
1362 return -ENODEV;
1363 }
1364 }
1365
kvm_arch_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)1366 long kvm_arch_vm_ioctl(struct file *filp,
1367 unsigned int ioctl, unsigned long arg)
1368 {
1369 struct kvm *kvm = filp->private_data;
1370 void __user *argp = (void __user *)arg;
1371
1372 switch (ioctl) {
1373 case KVM_CREATE_IRQCHIP: {
1374 int ret;
1375 if (!vgic_present)
1376 return -ENXIO;
1377 mutex_lock(&kvm->lock);
1378 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1379 mutex_unlock(&kvm->lock);
1380 return ret;
1381 }
1382 case KVM_ARM_SET_DEVICE_ADDR: {
1383 struct kvm_arm_device_addr dev_addr;
1384
1385 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1386 return -EFAULT;
1387 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1388 }
1389 case KVM_ARM_PREFERRED_TARGET: {
1390 int err;
1391 struct kvm_vcpu_init init;
1392
1393 err = kvm_vcpu_preferred_target(&init);
1394 if (err)
1395 return err;
1396
1397 if (copy_to_user(argp, &init, sizeof(init)))
1398 return -EFAULT;
1399
1400 return 0;
1401 }
1402 case KVM_ARM_MTE_COPY_TAGS: {
1403 struct kvm_arm_copy_mte_tags copy_tags;
1404
1405 if (copy_from_user(©_tags, argp, sizeof(copy_tags)))
1406 return -EFAULT;
1407 return kvm_vm_ioctl_mte_copy_tags(kvm, ©_tags);
1408 }
1409 default:
1410 return -EINVAL;
1411 }
1412 }
1413
nvhe_percpu_size(void)1414 static unsigned long nvhe_percpu_size(void)
1415 {
1416 return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) -
1417 (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start);
1418 }
1419
nvhe_percpu_order(void)1420 static unsigned long nvhe_percpu_order(void)
1421 {
1422 unsigned long size = nvhe_percpu_size();
1423
1424 return size ? get_order(size) : 0;
1425 }
1426
1427 /* A lookup table holding the hypervisor VA for each vector slot */
1428 static void *hyp_spectre_vector_selector[BP_HARDEN_EL2_SLOTS];
1429
kvm_init_vector_slot(void * base,enum arm64_hyp_spectre_vector slot)1430 static void kvm_init_vector_slot(void *base, enum arm64_hyp_spectre_vector slot)
1431 {
1432 hyp_spectre_vector_selector[slot] = __kvm_vector_slot2addr(base, slot);
1433 }
1434
kvm_init_vector_slots(void)1435 static int kvm_init_vector_slots(void)
1436 {
1437 int err;
1438 void *base;
1439
1440 base = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
1441 kvm_init_vector_slot(base, HYP_VECTOR_DIRECT);
1442
1443 base = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs));
1444 kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_DIRECT);
1445
1446 if (!cpus_have_const_cap(ARM64_SPECTRE_V3A))
1447 return 0;
1448
1449 if (!has_vhe()) {
1450 err = create_hyp_exec_mappings(__pa_symbol(__bp_harden_hyp_vecs),
1451 __BP_HARDEN_HYP_VECS_SZ, &base);
1452 if (err)
1453 return err;
1454 }
1455
1456 kvm_init_vector_slot(base, HYP_VECTOR_INDIRECT);
1457 kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_INDIRECT);
1458 return 0;
1459 }
1460
cpu_prepare_hyp_mode(int cpu)1461 static void cpu_prepare_hyp_mode(int cpu)
1462 {
1463 struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
1464 unsigned long tcr;
1465
1466 /*
1467 * Calculate the raw per-cpu offset without a translation from the
1468 * kernel's mapping to the linear mapping, and store it in tpidr_el2
1469 * so that we can use adr_l to access per-cpu variables in EL2.
1470 * Also drop the KASAN tag which gets in the way...
1471 */
1472 params->tpidr_el2 = (unsigned long)kasan_reset_tag(per_cpu_ptr_nvhe_sym(__per_cpu_start, cpu)) -
1473 (unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start));
1474
1475 params->mair_el2 = read_sysreg(mair_el1);
1476
1477 /*
1478 * The ID map may be configured to use an extended virtual address
1479 * range. This is only the case if system RAM is out of range for the
1480 * currently configured page size and VA_BITS, in which case we will
1481 * also need the extended virtual range for the HYP ID map, or we won't
1482 * be able to enable the EL2 MMU.
1483 *
1484 * However, at EL2, there is only one TTBR register, and we can't switch
1485 * between translation tables *and* update TCR_EL2.T0SZ at the same
1486 * time. Bottom line: we need to use the extended range with *both* our
1487 * translation tables.
1488 *
1489 * So use the same T0SZ value we use for the ID map.
1490 */
1491 tcr = (read_sysreg(tcr_el1) & TCR_EL2_MASK) | TCR_EL2_RES1;
1492 tcr &= ~TCR_T0SZ_MASK;
1493 tcr |= (idmap_t0sz & GENMASK(TCR_TxSZ_WIDTH - 1, 0)) << TCR_T0SZ_OFFSET;
1494 params->tcr_el2 = tcr;
1495
1496 params->stack_hyp_va = kern_hyp_va(per_cpu(kvm_arm_hyp_stack_page, cpu) + PAGE_SIZE);
1497 params->pgd_pa = kvm_mmu_get_httbr();
1498 if (is_protected_kvm_enabled())
1499 params->hcr_el2 = HCR_HOST_NVHE_PROTECTED_FLAGS;
1500 else
1501 params->hcr_el2 = HCR_HOST_NVHE_FLAGS;
1502 params->vttbr = params->vtcr = 0;
1503
1504 /*
1505 * Flush the init params from the data cache because the struct will
1506 * be read while the MMU is off.
1507 */
1508 kvm_flush_dcache_to_poc(params, sizeof(*params));
1509 }
1510
hyp_install_host_vector(void)1511 static void hyp_install_host_vector(void)
1512 {
1513 struct kvm_nvhe_init_params *params;
1514 struct arm_smccc_res res;
1515
1516 /* Switch from the HYP stub to our own HYP init vector */
1517 __hyp_set_vectors(kvm_get_idmap_vector());
1518
1519 /*
1520 * Call initialization code, and switch to the full blown HYP code.
1521 * If the cpucaps haven't been finalized yet, something has gone very
1522 * wrong, and hyp will crash and burn when it uses any
1523 * cpus_have_const_cap() wrapper.
1524 */
1525 BUG_ON(!system_capabilities_finalized());
1526 params = this_cpu_ptr_nvhe_sym(kvm_init_params);
1527 arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init), virt_to_phys(params), &res);
1528 WARN_ON(res.a0 != SMCCC_RET_SUCCESS);
1529 }
1530
cpu_init_hyp_mode(void)1531 static void cpu_init_hyp_mode(void)
1532 {
1533 hyp_install_host_vector();
1534
1535 /*
1536 * Disabling SSBD on a non-VHE system requires us to enable SSBS
1537 * at EL2.
1538 */
1539 if (this_cpu_has_cap(ARM64_SSBS) &&
1540 arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) {
1541 kvm_call_hyp_nvhe(__kvm_enable_ssbs);
1542 }
1543 }
1544
cpu_hyp_reset(void)1545 static void cpu_hyp_reset(void)
1546 {
1547 if (!is_kernel_in_hyp_mode())
1548 __hyp_reset_vectors();
1549 }
1550
1551 /*
1552 * EL2 vectors can be mapped and rerouted in a number of ways,
1553 * depending on the kernel configuration and CPU present:
1554 *
1555 * - If the CPU is affected by Spectre-v2, the hardening sequence is
1556 * placed in one of the vector slots, which is executed before jumping
1557 * to the real vectors.
1558 *
1559 * - If the CPU also has the ARM64_SPECTRE_V3A cap, the slot
1560 * containing the hardening sequence is mapped next to the idmap page,
1561 * and executed before jumping to the real vectors.
1562 *
1563 * - If the CPU only has the ARM64_SPECTRE_V3A cap, then an
1564 * empty slot is selected, mapped next to the idmap page, and
1565 * executed before jumping to the real vectors.
1566 *
1567 * Note that ARM64_SPECTRE_V3A is somewhat incompatible with
1568 * VHE, as we don't have hypervisor-specific mappings. If the system
1569 * is VHE and yet selects this capability, it will be ignored.
1570 */
cpu_set_hyp_vector(void)1571 static void cpu_set_hyp_vector(void)
1572 {
1573 struct bp_hardening_data *data = this_cpu_ptr(&bp_hardening_data);
1574 void *vector = hyp_spectre_vector_selector[data->slot];
1575
1576 if (!is_protected_kvm_enabled())
1577 *this_cpu_ptr_hyp_sym(kvm_hyp_vector) = (unsigned long)vector;
1578 else
1579 kvm_call_hyp_nvhe(__pkvm_cpu_set_vector, data->slot);
1580 }
1581
cpu_hyp_reinit(void)1582 static void cpu_hyp_reinit(void)
1583 {
1584 kvm_init_host_cpu_context(&this_cpu_ptr_hyp_sym(kvm_host_data)->host_ctxt);
1585
1586 cpu_hyp_reset();
1587
1588 if (is_kernel_in_hyp_mode())
1589 kvm_timer_init_vhe();
1590 else
1591 cpu_init_hyp_mode();
1592
1593 cpu_set_hyp_vector();
1594
1595 kvm_arm_init_debug();
1596
1597 if (vgic_present)
1598 kvm_vgic_init_cpu_hardware();
1599 }
1600
_kvm_arch_hardware_enable(void * discard)1601 static void _kvm_arch_hardware_enable(void *discard)
1602 {
1603 if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1604 cpu_hyp_reinit();
1605 __this_cpu_write(kvm_arm_hardware_enabled, 1);
1606 }
1607 }
1608
kvm_arch_hardware_enable(void)1609 int kvm_arch_hardware_enable(void)
1610 {
1611 _kvm_arch_hardware_enable(NULL);
1612 return 0;
1613 }
1614
_kvm_arch_hardware_disable(void * discard)1615 static void _kvm_arch_hardware_disable(void *discard)
1616 {
1617 if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1618 cpu_hyp_reset();
1619 __this_cpu_write(kvm_arm_hardware_enabled, 0);
1620 }
1621 }
1622
kvm_arch_hardware_disable(void)1623 void kvm_arch_hardware_disable(void)
1624 {
1625 if (!is_protected_kvm_enabled())
1626 _kvm_arch_hardware_disable(NULL);
1627 }
1628
1629 #ifdef CONFIG_CPU_PM
hyp_init_cpu_pm_notifier(struct notifier_block * self,unsigned long cmd,void * v)1630 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1631 unsigned long cmd,
1632 void *v)
1633 {
1634 /*
1635 * kvm_arm_hardware_enabled is left with its old value over
1636 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1637 * re-enable hyp.
1638 */
1639 switch (cmd) {
1640 case CPU_PM_ENTER:
1641 if (__this_cpu_read(kvm_arm_hardware_enabled))
1642 /*
1643 * don't update kvm_arm_hardware_enabled here
1644 * so that the hardware will be re-enabled
1645 * when we resume. See below.
1646 */
1647 cpu_hyp_reset();
1648
1649 return NOTIFY_OK;
1650 case CPU_PM_ENTER_FAILED:
1651 case CPU_PM_EXIT:
1652 if (__this_cpu_read(kvm_arm_hardware_enabled))
1653 /* The hardware was enabled before suspend. */
1654 cpu_hyp_reinit();
1655
1656 return NOTIFY_OK;
1657
1658 default:
1659 return NOTIFY_DONE;
1660 }
1661 }
1662
1663 static struct notifier_block hyp_init_cpu_pm_nb = {
1664 .notifier_call = hyp_init_cpu_pm_notifier,
1665 };
1666
hyp_cpu_pm_init(void)1667 static void hyp_cpu_pm_init(void)
1668 {
1669 if (!is_protected_kvm_enabled())
1670 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1671 }
hyp_cpu_pm_exit(void)1672 static void hyp_cpu_pm_exit(void)
1673 {
1674 if (!is_protected_kvm_enabled())
1675 cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1676 }
1677 #else
hyp_cpu_pm_init(void)1678 static inline void hyp_cpu_pm_init(void)
1679 {
1680 }
hyp_cpu_pm_exit(void)1681 static inline void hyp_cpu_pm_exit(void)
1682 {
1683 }
1684 #endif
1685
init_cpu_logical_map(void)1686 static void init_cpu_logical_map(void)
1687 {
1688 unsigned int cpu;
1689
1690 /*
1691 * Copy the MPIDR <-> logical CPU ID mapping to hyp.
1692 * Only copy the set of online CPUs whose features have been chacked
1693 * against the finalized system capabilities. The hypervisor will not
1694 * allow any other CPUs from the `possible` set to boot.
1695 */
1696 for_each_online_cpu(cpu)
1697 hyp_cpu_logical_map[cpu] = cpu_logical_map(cpu);
1698 }
1699
1700 #define init_psci_0_1_impl_state(config, what) \
1701 config.psci_0_1_ ## what ## _implemented = psci_ops.what
1702
init_psci_relay(void)1703 static bool init_psci_relay(void)
1704 {
1705 /*
1706 * If PSCI has not been initialized, protected KVM cannot install
1707 * itself on newly booted CPUs.
1708 */
1709 if (!psci_ops.get_version) {
1710 kvm_err("Cannot initialize protected mode without PSCI\n");
1711 return false;
1712 }
1713
1714 kvm_host_psci_config.version = psci_ops.get_version();
1715
1716 if (kvm_host_psci_config.version == PSCI_VERSION(0, 1)) {
1717 kvm_host_psci_config.function_ids_0_1 = get_psci_0_1_function_ids();
1718 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_suspend);
1719 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_on);
1720 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_off);
1721 init_psci_0_1_impl_state(kvm_host_psci_config, migrate);
1722 }
1723 return true;
1724 }
1725
init_subsystems(void)1726 static int init_subsystems(void)
1727 {
1728 int err = 0;
1729
1730 /*
1731 * Enable hardware so that subsystem initialisation can access EL2.
1732 */
1733 on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1734
1735 /*
1736 * Register CPU lower-power notifier
1737 */
1738 hyp_cpu_pm_init();
1739
1740 /*
1741 * Init HYP view of VGIC
1742 */
1743 err = kvm_vgic_hyp_init();
1744 switch (err) {
1745 case 0:
1746 vgic_present = true;
1747 break;
1748 case -ENODEV:
1749 case -ENXIO:
1750 vgic_present = false;
1751 err = 0;
1752 break;
1753 default:
1754 goto out;
1755 }
1756
1757 /*
1758 * Init HYP architected timer support
1759 */
1760 err = kvm_timer_hyp_init(vgic_present);
1761 if (err)
1762 goto out;
1763
1764 kvm_perf_init();
1765 kvm_sys_reg_table_init();
1766
1767 out:
1768 if (err || !is_protected_kvm_enabled())
1769 on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1770
1771 return err;
1772 }
1773
teardown_hyp_mode(void)1774 static void teardown_hyp_mode(void)
1775 {
1776 int cpu;
1777
1778 free_hyp_pgds();
1779 for_each_possible_cpu(cpu) {
1780 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1781 free_pages(kvm_arm_hyp_percpu_base[cpu], nvhe_percpu_order());
1782 }
1783 }
1784
do_pkvm_init(u32 hyp_va_bits)1785 static int do_pkvm_init(u32 hyp_va_bits)
1786 {
1787 void *per_cpu_base = kvm_ksym_ref(kvm_arm_hyp_percpu_base);
1788 int ret;
1789
1790 preempt_disable();
1791 hyp_install_host_vector();
1792 ret = kvm_call_hyp_nvhe(__pkvm_init, hyp_mem_base, hyp_mem_size,
1793 num_possible_cpus(), kern_hyp_va(per_cpu_base),
1794 hyp_va_bits);
1795 preempt_enable();
1796
1797 return ret;
1798 }
1799
kvm_hyp_init_protection(u32 hyp_va_bits)1800 static int kvm_hyp_init_protection(u32 hyp_va_bits)
1801 {
1802 void *addr = phys_to_virt(hyp_mem_base);
1803 int ret;
1804
1805 kvm_nvhe_sym(id_aa64mmfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
1806 kvm_nvhe_sym(id_aa64mmfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
1807
1808 ret = create_hyp_mappings(addr, addr + hyp_mem_size, PAGE_HYP);
1809 if (ret)
1810 return ret;
1811
1812 ret = do_pkvm_init(hyp_va_bits);
1813 if (ret)
1814 return ret;
1815
1816 free_hyp_pgds();
1817
1818 return 0;
1819 }
1820
1821 /**
1822 * Inits Hyp-mode on all online CPUs
1823 */
init_hyp_mode(void)1824 static int init_hyp_mode(void)
1825 {
1826 u32 hyp_va_bits;
1827 int cpu;
1828 int err = -ENOMEM;
1829
1830 /*
1831 * The protected Hyp-mode cannot be initialized if the memory pool
1832 * allocation has failed.
1833 */
1834 if (is_protected_kvm_enabled() && !hyp_mem_base)
1835 goto out_err;
1836
1837 /*
1838 * Allocate Hyp PGD and setup Hyp identity mapping
1839 */
1840 err = kvm_mmu_init(&hyp_va_bits);
1841 if (err)
1842 goto out_err;
1843
1844 /*
1845 * Allocate stack pages for Hypervisor-mode
1846 */
1847 for_each_possible_cpu(cpu) {
1848 unsigned long stack_page;
1849
1850 stack_page = __get_free_page(GFP_KERNEL);
1851 if (!stack_page) {
1852 err = -ENOMEM;
1853 goto out_err;
1854 }
1855
1856 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1857 }
1858
1859 /*
1860 * Allocate and initialize pages for Hypervisor-mode percpu regions.
1861 */
1862 for_each_possible_cpu(cpu) {
1863 struct page *page;
1864 void *page_addr;
1865
1866 page = alloc_pages(GFP_KERNEL, nvhe_percpu_order());
1867 if (!page) {
1868 err = -ENOMEM;
1869 goto out_err;
1870 }
1871
1872 page_addr = page_address(page);
1873 memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size());
1874 kvm_arm_hyp_percpu_base[cpu] = (unsigned long)page_addr;
1875 }
1876
1877 /*
1878 * Map the Hyp-code called directly from the host
1879 */
1880 err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1881 kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1882 if (err) {
1883 kvm_err("Cannot map world-switch code\n");
1884 goto out_err;
1885 }
1886
1887 err = create_hyp_mappings(kvm_ksym_ref(__hyp_rodata_start),
1888 kvm_ksym_ref(__hyp_rodata_end), PAGE_HYP_RO);
1889 if (err) {
1890 kvm_err("Cannot map .hyp.rodata section\n");
1891 goto out_err;
1892 }
1893
1894 err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1895 kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1896 if (err) {
1897 kvm_err("Cannot map rodata section\n");
1898 goto out_err;
1899 }
1900
1901 /*
1902 * .hyp.bss is guaranteed to be placed at the beginning of the .bss
1903 * section thanks to an assertion in the linker script. Map it RW and
1904 * the rest of .bss RO.
1905 */
1906 err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_start),
1907 kvm_ksym_ref(__hyp_bss_end), PAGE_HYP);
1908 if (err) {
1909 kvm_err("Cannot map hyp bss section: %d\n", err);
1910 goto out_err;
1911 }
1912
1913 err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_end),
1914 kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
1915 if (err) {
1916 kvm_err("Cannot map bss section\n");
1917 goto out_err;
1918 }
1919
1920 /*
1921 * Map the Hyp stack pages
1922 */
1923 for_each_possible_cpu(cpu) {
1924 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1925 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
1926 PAGE_HYP);
1927
1928 if (err) {
1929 kvm_err("Cannot map hyp stack\n");
1930 goto out_err;
1931 }
1932 }
1933
1934 for_each_possible_cpu(cpu) {
1935 char *percpu_begin = (char *)kvm_arm_hyp_percpu_base[cpu];
1936 char *percpu_end = percpu_begin + nvhe_percpu_size();
1937
1938 /* Map Hyp percpu pages */
1939 err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP);
1940 if (err) {
1941 kvm_err("Cannot map hyp percpu region\n");
1942 goto out_err;
1943 }
1944
1945 /* Prepare the CPU initialization parameters */
1946 cpu_prepare_hyp_mode(cpu);
1947 }
1948
1949 if (is_protected_kvm_enabled()) {
1950 init_cpu_logical_map();
1951
1952 if (!init_psci_relay()) {
1953 err = -ENODEV;
1954 goto out_err;
1955 }
1956 }
1957
1958 if (is_protected_kvm_enabled()) {
1959 err = kvm_hyp_init_protection(hyp_va_bits);
1960 if (err) {
1961 kvm_err("Failed to init hyp memory protection\n");
1962 goto out_err;
1963 }
1964 }
1965
1966 return 0;
1967
1968 out_err:
1969 teardown_hyp_mode();
1970 kvm_err("error initializing Hyp mode: %d\n", err);
1971 return err;
1972 }
1973
_kvm_host_prot_finalize(void * discard)1974 static void _kvm_host_prot_finalize(void *discard)
1975 {
1976 WARN_ON(kvm_call_hyp_nvhe(__pkvm_prot_finalize));
1977 }
1978
finalize_hyp_mode(void)1979 static int finalize_hyp_mode(void)
1980 {
1981 if (!is_protected_kvm_enabled())
1982 return 0;
1983
1984 /*
1985 * Exclude HYP BSS from kmemleak so that it doesn't get peeked
1986 * at, which would end badly once the section is inaccessible.
1987 * None of other sections should ever be introspected.
1988 */
1989 kmemleak_free_part(__hyp_bss_start, __hyp_bss_end - __hyp_bss_start);
1990
1991 /*
1992 * Flip the static key upfront as that may no longer be possible
1993 * once the host stage 2 is installed.
1994 */
1995 static_branch_enable(&kvm_protected_mode_initialized);
1996 on_each_cpu(_kvm_host_prot_finalize, NULL, 1);
1997
1998 return 0;
1999 }
2000
kvm_mpidr_to_vcpu(struct kvm * kvm,unsigned long mpidr)2001 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
2002 {
2003 struct kvm_vcpu *vcpu;
2004 int i;
2005
2006 mpidr &= MPIDR_HWID_BITMASK;
2007 kvm_for_each_vcpu(i, vcpu, kvm) {
2008 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
2009 return vcpu;
2010 }
2011 return NULL;
2012 }
2013
kvm_arch_has_irq_bypass(void)2014 bool kvm_arch_has_irq_bypass(void)
2015 {
2016 return true;
2017 }
2018
kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)2019 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
2020 struct irq_bypass_producer *prod)
2021 {
2022 struct kvm_kernel_irqfd *irqfd =
2023 container_of(cons, struct kvm_kernel_irqfd, consumer);
2024
2025 return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
2026 &irqfd->irq_entry);
2027 }
kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)2028 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
2029 struct irq_bypass_producer *prod)
2030 {
2031 struct kvm_kernel_irqfd *irqfd =
2032 container_of(cons, struct kvm_kernel_irqfd, consumer);
2033
2034 kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
2035 &irqfd->irq_entry);
2036 }
2037
kvm_arch_irq_bypass_stop(struct irq_bypass_consumer * cons)2038 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
2039 {
2040 struct kvm_kernel_irqfd *irqfd =
2041 container_of(cons, struct kvm_kernel_irqfd, consumer);
2042
2043 kvm_arm_halt_guest(irqfd->kvm);
2044 }
2045
kvm_arch_irq_bypass_start(struct irq_bypass_consumer * cons)2046 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
2047 {
2048 struct kvm_kernel_irqfd *irqfd =
2049 container_of(cons, struct kvm_kernel_irqfd, consumer);
2050
2051 kvm_arm_resume_guest(irqfd->kvm);
2052 }
2053
2054 /**
2055 * Initialize Hyp-mode and memory mappings on all CPUs.
2056 */
kvm_arch_init(void * opaque)2057 int kvm_arch_init(void *opaque)
2058 {
2059 int err;
2060 bool in_hyp_mode;
2061
2062 if (!is_hyp_mode_available()) {
2063 kvm_info("HYP mode not available\n");
2064 return -ENODEV;
2065 }
2066
2067 in_hyp_mode = is_kernel_in_hyp_mode();
2068
2069 if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) ||
2070 cpus_have_final_cap(ARM64_WORKAROUND_1508412))
2071 kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \
2072 "Only trusted guests should be used on this system.\n");
2073
2074 err = kvm_set_ipa_limit();
2075 if (err)
2076 return err;
2077
2078 err = kvm_arm_init_sve();
2079 if (err)
2080 return err;
2081
2082 if (!in_hyp_mode) {
2083 err = init_hyp_mode();
2084 if (err)
2085 goto out_err;
2086 }
2087
2088 err = kvm_init_vector_slots();
2089 if (err) {
2090 kvm_err("Cannot initialise vector slots\n");
2091 goto out_err;
2092 }
2093
2094 err = init_subsystems();
2095 if (err)
2096 goto out_hyp;
2097
2098 if (!in_hyp_mode) {
2099 err = finalize_hyp_mode();
2100 if (err) {
2101 kvm_err("Failed to finalize Hyp protection\n");
2102 goto out_hyp;
2103 }
2104 }
2105
2106 if (is_protected_kvm_enabled()) {
2107 kvm_info("Protected nVHE mode initialized successfully\n");
2108 } else if (in_hyp_mode) {
2109 kvm_info("VHE mode initialized successfully\n");
2110 } else {
2111 kvm_info("Hyp mode initialized successfully\n");
2112 }
2113
2114 return 0;
2115
2116 out_hyp:
2117 hyp_cpu_pm_exit();
2118 if (!in_hyp_mode)
2119 teardown_hyp_mode();
2120 out_err:
2121 return err;
2122 }
2123
2124 /* NOP: Compiling as a module not supported */
kvm_arch_exit(void)2125 void kvm_arch_exit(void)
2126 {
2127 kvm_perf_teardown();
2128 }
2129
early_kvm_mode_cfg(char * arg)2130 static int __init early_kvm_mode_cfg(char *arg)
2131 {
2132 if (!arg)
2133 return -EINVAL;
2134
2135 if (strcmp(arg, "protected") == 0) {
2136 kvm_mode = KVM_MODE_PROTECTED;
2137 return 0;
2138 }
2139
2140 if (strcmp(arg, "nvhe") == 0 && !WARN_ON(is_kernel_in_hyp_mode()))
2141 return 0;
2142
2143 return -EINVAL;
2144 }
2145 early_param("kvm-arm.mode", early_kvm_mode_cfg);
2146
kvm_get_mode(void)2147 enum kvm_mode kvm_get_mode(void)
2148 {
2149 return kvm_mode;
2150 }
2151
arm_init(void)2152 static int arm_init(void)
2153 {
2154 int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
2155 return rc;
2156 }
2157
2158 module_init(arm_init);
2159