1 // SPDX-License-Identifier: GPL-2.0
2
3 #include "mmu.h"
4 #include "mmu_internal.h"
5 #include "mmutrace.h"
6 #include "tdp_iter.h"
7 #include "tdp_mmu.h"
8 #include "spte.h"
9
10 #ifdef CONFIG_X86_64
11 static bool __read_mostly tdp_mmu_enabled = false;
12 module_param_named(tdp_mmu, tdp_mmu_enabled, bool, 0644);
13 #endif
14
is_tdp_mmu_enabled(void)15 static bool is_tdp_mmu_enabled(void)
16 {
17 #ifdef CONFIG_X86_64
18 return tdp_enabled && READ_ONCE(tdp_mmu_enabled);
19 #else
20 return false;
21 #endif /* CONFIG_X86_64 */
22 }
23
24 /* Initializes the TDP MMU for the VM, if enabled. */
kvm_mmu_init_tdp_mmu(struct kvm * kvm)25 void kvm_mmu_init_tdp_mmu(struct kvm *kvm)
26 {
27 if (!is_tdp_mmu_enabled())
28 return;
29
30 /* This should not be changed for the lifetime of the VM. */
31 kvm->arch.tdp_mmu_enabled = true;
32
33 INIT_LIST_HEAD(&kvm->arch.tdp_mmu_roots);
34 INIT_LIST_HEAD(&kvm->arch.tdp_mmu_pages);
35 }
36
kvm_mmu_uninit_tdp_mmu(struct kvm * kvm)37 void kvm_mmu_uninit_tdp_mmu(struct kvm *kvm)
38 {
39 if (!kvm->arch.tdp_mmu_enabled)
40 return;
41
42 WARN_ON(!list_empty(&kvm->arch.tdp_mmu_roots));
43 }
44
45 #define for_each_tdp_mmu_root(_kvm, _root) \
46 list_for_each_entry(_root, &_kvm->arch.tdp_mmu_roots, link)
47
is_tdp_mmu_root(struct kvm * kvm,hpa_t hpa)48 bool is_tdp_mmu_root(struct kvm *kvm, hpa_t hpa)
49 {
50 struct kvm_mmu_page *sp;
51
52 if (!kvm->arch.tdp_mmu_enabled)
53 return false;
54 if (WARN_ON(!VALID_PAGE(hpa)))
55 return false;
56
57 sp = to_shadow_page(hpa);
58 if (WARN_ON(!sp))
59 return false;
60
61 return sp->tdp_mmu_page && sp->root_count;
62 }
63
64 static bool zap_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root,
65 gfn_t start, gfn_t end, bool can_yield);
66
kvm_tdp_mmu_free_root(struct kvm * kvm,struct kvm_mmu_page * root)67 void kvm_tdp_mmu_free_root(struct kvm *kvm, struct kvm_mmu_page *root)
68 {
69 gfn_t max_gfn = 1ULL << (shadow_phys_bits - PAGE_SHIFT);
70
71 lockdep_assert_held(&kvm->mmu_lock);
72
73 WARN_ON(root->root_count);
74 WARN_ON(!root->tdp_mmu_page);
75
76 list_del(&root->link);
77
78 zap_gfn_range(kvm, root, 0, max_gfn, false);
79
80 free_page((unsigned long)root->spt);
81 kmem_cache_free(mmu_page_header_cache, root);
82 }
83
page_role_for_level(struct kvm_vcpu * vcpu,int level)84 static union kvm_mmu_page_role page_role_for_level(struct kvm_vcpu *vcpu,
85 int level)
86 {
87 union kvm_mmu_page_role role;
88
89 role = vcpu->arch.mmu->mmu_role.base;
90 role.level = level;
91 role.direct = true;
92 role.gpte_is_8_bytes = true;
93 role.access = ACC_ALL;
94
95 return role;
96 }
97
alloc_tdp_mmu_page(struct kvm_vcpu * vcpu,gfn_t gfn,int level)98 static struct kvm_mmu_page *alloc_tdp_mmu_page(struct kvm_vcpu *vcpu, gfn_t gfn,
99 int level)
100 {
101 struct kvm_mmu_page *sp;
102
103 sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
104 sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
105 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
106
107 sp->role.word = page_role_for_level(vcpu, level).word;
108 sp->gfn = gfn;
109 sp->tdp_mmu_page = true;
110
111 return sp;
112 }
113
get_tdp_mmu_vcpu_root(struct kvm_vcpu * vcpu)114 static struct kvm_mmu_page *get_tdp_mmu_vcpu_root(struct kvm_vcpu *vcpu)
115 {
116 union kvm_mmu_page_role role;
117 struct kvm *kvm = vcpu->kvm;
118 struct kvm_mmu_page *root;
119
120 role = page_role_for_level(vcpu, vcpu->arch.mmu->shadow_root_level);
121
122 spin_lock(&kvm->mmu_lock);
123
124 /* Check for an existing root before allocating a new one. */
125 for_each_tdp_mmu_root(kvm, root) {
126 if (root->role.word == role.word) {
127 kvm_mmu_get_root(kvm, root);
128 spin_unlock(&kvm->mmu_lock);
129 return root;
130 }
131 }
132
133 root = alloc_tdp_mmu_page(vcpu, 0, vcpu->arch.mmu->shadow_root_level);
134 root->root_count = 1;
135
136 list_add(&root->link, &kvm->arch.tdp_mmu_roots);
137
138 spin_unlock(&kvm->mmu_lock);
139
140 return root;
141 }
142
kvm_tdp_mmu_get_vcpu_root_hpa(struct kvm_vcpu * vcpu)143 hpa_t kvm_tdp_mmu_get_vcpu_root_hpa(struct kvm_vcpu *vcpu)
144 {
145 struct kvm_mmu_page *root;
146
147 root = get_tdp_mmu_vcpu_root(vcpu);
148 if (!root)
149 return INVALID_PAGE;
150
151 return __pa(root->spt);
152 }
153
154 static void handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn,
155 u64 old_spte, u64 new_spte, int level);
156
kvm_mmu_page_as_id(struct kvm_mmu_page * sp)157 static int kvm_mmu_page_as_id(struct kvm_mmu_page *sp)
158 {
159 return sp->role.smm ? 1 : 0;
160 }
161
handle_changed_spte_acc_track(u64 old_spte,u64 new_spte,int level)162 static void handle_changed_spte_acc_track(u64 old_spte, u64 new_spte, int level)
163 {
164 bool pfn_changed = spte_to_pfn(old_spte) != spte_to_pfn(new_spte);
165
166 if (!is_shadow_present_pte(old_spte) || !is_last_spte(old_spte, level))
167 return;
168
169 if (is_accessed_spte(old_spte) &&
170 (!is_accessed_spte(new_spte) || pfn_changed))
171 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
172 }
173
handle_changed_spte_dirty_log(struct kvm * kvm,int as_id,gfn_t gfn,u64 old_spte,u64 new_spte,int level)174 static void handle_changed_spte_dirty_log(struct kvm *kvm, int as_id, gfn_t gfn,
175 u64 old_spte, u64 new_spte, int level)
176 {
177 bool pfn_changed;
178 struct kvm_memory_slot *slot;
179
180 if (level > PG_LEVEL_4K)
181 return;
182
183 pfn_changed = spte_to_pfn(old_spte) != spte_to_pfn(new_spte);
184
185 if ((!is_writable_pte(old_spte) || pfn_changed) &&
186 is_writable_pte(new_spte)) {
187 slot = __gfn_to_memslot(__kvm_memslots(kvm, as_id), gfn);
188 mark_page_dirty_in_slot(slot, gfn);
189 }
190 }
191
192 /**
193 * handle_changed_spte - handle bookkeeping associated with an SPTE change
194 * @kvm: kvm instance
195 * @as_id: the address space of the paging structure the SPTE was a part of
196 * @gfn: the base GFN that was mapped by the SPTE
197 * @old_spte: The value of the SPTE before the change
198 * @new_spte: The value of the SPTE after the change
199 * @level: the level of the PT the SPTE is part of in the paging structure
200 *
201 * Handle bookkeeping that might result from the modification of a SPTE.
202 * This function must be called for all TDP SPTE modifications.
203 */
__handle_changed_spte(struct kvm * kvm,int as_id,gfn_t gfn,u64 old_spte,u64 new_spte,int level)204 static void __handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn,
205 u64 old_spte, u64 new_spte, int level)
206 {
207 bool was_present = is_shadow_present_pte(old_spte);
208 bool is_present = is_shadow_present_pte(new_spte);
209 bool was_leaf = was_present && is_last_spte(old_spte, level);
210 bool is_leaf = is_present && is_last_spte(new_spte, level);
211 bool pfn_changed = spte_to_pfn(old_spte) != spte_to_pfn(new_spte);
212 u64 *pt;
213 struct kvm_mmu_page *sp;
214 u64 old_child_spte;
215 int i;
216
217 WARN_ON(level > PT64_ROOT_MAX_LEVEL);
218 WARN_ON(level < PG_LEVEL_4K);
219 WARN_ON(gfn & (KVM_PAGES_PER_HPAGE(level) - 1));
220
221 /*
222 * If this warning were to trigger it would indicate that there was a
223 * missing MMU notifier or a race with some notifier handler.
224 * A present, leaf SPTE should never be directly replaced with another
225 * present leaf SPTE pointing to a differnt PFN. A notifier handler
226 * should be zapping the SPTE before the main MM's page table is
227 * changed, or the SPTE should be zeroed, and the TLBs flushed by the
228 * thread before replacement.
229 */
230 if (was_leaf && is_leaf && pfn_changed) {
231 pr_err("Invalid SPTE change: cannot replace a present leaf\n"
232 "SPTE with another present leaf SPTE mapping a\n"
233 "different PFN!\n"
234 "as_id: %d gfn: %llx old_spte: %llx new_spte: %llx level: %d",
235 as_id, gfn, old_spte, new_spte, level);
236
237 /*
238 * Crash the host to prevent error propagation and guest data
239 * courruption.
240 */
241 BUG();
242 }
243
244 if (old_spte == new_spte)
245 return;
246
247 /*
248 * The only times a SPTE should be changed from a non-present to
249 * non-present state is when an MMIO entry is installed/modified/
250 * removed. In that case, there is nothing to do here.
251 */
252 if (!was_present && !is_present) {
253 /*
254 * If this change does not involve a MMIO SPTE, it is
255 * unexpected. Log the change, though it should not impact the
256 * guest since both the former and current SPTEs are nonpresent.
257 */
258 if (WARN_ON(!is_mmio_spte(old_spte) && !is_mmio_spte(new_spte)))
259 pr_err("Unexpected SPTE change! Nonpresent SPTEs\n"
260 "should not be replaced with another,\n"
261 "different nonpresent SPTE, unless one or both\n"
262 "are MMIO SPTEs.\n"
263 "as_id: %d gfn: %llx old_spte: %llx new_spte: %llx level: %d",
264 as_id, gfn, old_spte, new_spte, level);
265 return;
266 }
267
268
269 if (was_leaf && is_dirty_spte(old_spte) &&
270 (!is_dirty_spte(new_spte) || pfn_changed))
271 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
272
273 /*
274 * Recursively handle child PTs if the change removed a subtree from
275 * the paging structure.
276 */
277 if (was_present && !was_leaf && (pfn_changed || !is_present)) {
278 pt = spte_to_child_pt(old_spte, level);
279 sp = sptep_to_sp(pt);
280
281 list_del(&sp->link);
282
283 if (sp->lpage_disallowed)
284 unaccount_huge_nx_page(kvm, sp);
285
286 for (i = 0; i < PT64_ENT_PER_PAGE; i++) {
287 old_child_spte = READ_ONCE(*(pt + i));
288 WRITE_ONCE(*(pt + i), 0);
289 handle_changed_spte(kvm, as_id,
290 gfn + (i * KVM_PAGES_PER_HPAGE(level - 1)),
291 old_child_spte, 0, level - 1);
292 }
293
294 kvm_flush_remote_tlbs_with_address(kvm, gfn,
295 KVM_PAGES_PER_HPAGE(level));
296
297 free_page((unsigned long)pt);
298 kmem_cache_free(mmu_page_header_cache, sp);
299 }
300 }
301
handle_changed_spte(struct kvm * kvm,int as_id,gfn_t gfn,u64 old_spte,u64 new_spte,int level)302 static void handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn,
303 u64 old_spte, u64 new_spte, int level)
304 {
305 __handle_changed_spte(kvm, as_id, gfn, old_spte, new_spte, level);
306 handle_changed_spte_acc_track(old_spte, new_spte, level);
307 handle_changed_spte_dirty_log(kvm, as_id, gfn, old_spte,
308 new_spte, level);
309 }
310
__tdp_mmu_set_spte(struct kvm * kvm,struct tdp_iter * iter,u64 new_spte,bool record_acc_track,bool record_dirty_log)311 static inline void __tdp_mmu_set_spte(struct kvm *kvm, struct tdp_iter *iter,
312 u64 new_spte, bool record_acc_track,
313 bool record_dirty_log)
314 {
315 u64 *root_pt = tdp_iter_root_pt(iter);
316 struct kvm_mmu_page *root = sptep_to_sp(root_pt);
317 int as_id = kvm_mmu_page_as_id(root);
318
319 WRITE_ONCE(*iter->sptep, new_spte);
320
321 __handle_changed_spte(kvm, as_id, iter->gfn, iter->old_spte, new_spte,
322 iter->level);
323 if (record_acc_track)
324 handle_changed_spte_acc_track(iter->old_spte, new_spte,
325 iter->level);
326 if (record_dirty_log)
327 handle_changed_spte_dirty_log(kvm, as_id, iter->gfn,
328 iter->old_spte, new_spte,
329 iter->level);
330 }
331
tdp_mmu_set_spte(struct kvm * kvm,struct tdp_iter * iter,u64 new_spte)332 static inline void tdp_mmu_set_spte(struct kvm *kvm, struct tdp_iter *iter,
333 u64 new_spte)
334 {
335 __tdp_mmu_set_spte(kvm, iter, new_spte, true, true);
336 }
337
tdp_mmu_set_spte_no_acc_track(struct kvm * kvm,struct tdp_iter * iter,u64 new_spte)338 static inline void tdp_mmu_set_spte_no_acc_track(struct kvm *kvm,
339 struct tdp_iter *iter,
340 u64 new_spte)
341 {
342 __tdp_mmu_set_spte(kvm, iter, new_spte, false, true);
343 }
344
tdp_mmu_set_spte_no_dirty_log(struct kvm * kvm,struct tdp_iter * iter,u64 new_spte)345 static inline void tdp_mmu_set_spte_no_dirty_log(struct kvm *kvm,
346 struct tdp_iter *iter,
347 u64 new_spte)
348 {
349 __tdp_mmu_set_spte(kvm, iter, new_spte, true, false);
350 }
351
352 #define tdp_root_for_each_pte(_iter, _root, _start, _end) \
353 for_each_tdp_pte(_iter, _root->spt, _root->role.level, _start, _end)
354
355 #define tdp_root_for_each_leaf_pte(_iter, _root, _start, _end) \
356 tdp_root_for_each_pte(_iter, _root, _start, _end) \
357 if (!is_shadow_present_pte(_iter.old_spte) || \
358 !is_last_spte(_iter.old_spte, _iter.level)) \
359 continue; \
360 else
361
362 #define tdp_mmu_for_each_pte(_iter, _mmu, _start, _end) \
363 for_each_tdp_pte(_iter, __va(_mmu->root_hpa), \
364 _mmu->shadow_root_level, _start, _end)
365
366 /*
367 * Flush the TLB if the process should drop kvm->mmu_lock.
368 * Return whether the caller still needs to flush the tlb.
369 */
tdp_mmu_iter_flush_cond_resched(struct kvm * kvm,struct tdp_iter * iter)370 static bool tdp_mmu_iter_flush_cond_resched(struct kvm *kvm, struct tdp_iter *iter)
371 {
372 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
373 kvm_flush_remote_tlbs(kvm);
374 cond_resched_lock(&kvm->mmu_lock);
375 tdp_iter_refresh_walk(iter);
376 return false;
377 } else {
378 return true;
379 }
380 }
381
tdp_mmu_iter_cond_resched(struct kvm * kvm,struct tdp_iter * iter)382 static void tdp_mmu_iter_cond_resched(struct kvm *kvm, struct tdp_iter *iter)
383 {
384 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
385 cond_resched_lock(&kvm->mmu_lock);
386 tdp_iter_refresh_walk(iter);
387 }
388 }
389
390 /*
391 * Tears down the mappings for the range of gfns, [start, end), and frees the
392 * non-root pages mapping GFNs strictly within that range. Returns true if
393 * SPTEs have been cleared and a TLB flush is needed before releasing the
394 * MMU lock.
395 * If can_yield is true, will release the MMU lock and reschedule if the
396 * scheduler needs the CPU or there is contention on the MMU lock. If this
397 * function cannot yield, it will not release the MMU lock or reschedule and
398 * the caller must ensure it does not supply too large a GFN range, or the
399 * operation can cause a soft lockup.
400 */
zap_gfn_range(struct kvm * kvm,struct kvm_mmu_page * root,gfn_t start,gfn_t end,bool can_yield)401 static bool zap_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root,
402 gfn_t start, gfn_t end, bool can_yield)
403 {
404 struct tdp_iter iter;
405 bool flush_needed = false;
406
407 tdp_root_for_each_pte(iter, root, start, end) {
408 if (!is_shadow_present_pte(iter.old_spte))
409 continue;
410
411 /*
412 * If this is a non-last-level SPTE that covers a larger range
413 * than should be zapped, continue, and zap the mappings at a
414 * lower level.
415 */
416 if ((iter.gfn < start ||
417 iter.gfn + KVM_PAGES_PER_HPAGE(iter.level) > end) &&
418 !is_last_spte(iter.old_spte, iter.level))
419 continue;
420
421 tdp_mmu_set_spte(kvm, &iter, 0);
422
423 if (can_yield)
424 flush_needed = tdp_mmu_iter_flush_cond_resched(kvm, &iter);
425 else
426 flush_needed = true;
427 }
428 return flush_needed;
429 }
430
431 /*
432 * Tears down the mappings for the range of gfns, [start, end), and frees the
433 * non-root pages mapping GFNs strictly within that range. Returns true if
434 * SPTEs have been cleared and a TLB flush is needed before releasing the
435 * MMU lock.
436 */
kvm_tdp_mmu_zap_gfn_range(struct kvm * kvm,gfn_t start,gfn_t end)437 bool kvm_tdp_mmu_zap_gfn_range(struct kvm *kvm, gfn_t start, gfn_t end)
438 {
439 struct kvm_mmu_page *root;
440 bool flush = false;
441
442 for_each_tdp_mmu_root(kvm, root) {
443 /*
444 * Take a reference on the root so that it cannot be freed if
445 * this thread releases the MMU lock and yields in this loop.
446 */
447 kvm_mmu_get_root(kvm, root);
448
449 flush |= zap_gfn_range(kvm, root, start, end, true);
450
451 kvm_mmu_put_root(kvm, root);
452 }
453
454 return flush;
455 }
456
kvm_tdp_mmu_zap_all(struct kvm * kvm)457 void kvm_tdp_mmu_zap_all(struct kvm *kvm)
458 {
459 gfn_t max_gfn = 1ULL << (shadow_phys_bits - PAGE_SHIFT);
460 bool flush;
461
462 flush = kvm_tdp_mmu_zap_gfn_range(kvm, 0, max_gfn);
463 if (flush)
464 kvm_flush_remote_tlbs(kvm);
465 }
466
467 /*
468 * Installs a last-level SPTE to handle a TDP page fault.
469 * (NPT/EPT violation/misconfiguration)
470 */
tdp_mmu_map_handle_target_level(struct kvm_vcpu * vcpu,int write,int map_writable,struct tdp_iter * iter,kvm_pfn_t pfn,bool prefault)471 static int tdp_mmu_map_handle_target_level(struct kvm_vcpu *vcpu, int write,
472 int map_writable,
473 struct tdp_iter *iter,
474 kvm_pfn_t pfn, bool prefault)
475 {
476 u64 new_spte;
477 int ret = 0;
478 int make_spte_ret = 0;
479
480 if (unlikely(is_noslot_pfn(pfn))) {
481 new_spte = make_mmio_spte(vcpu, iter->gfn, ACC_ALL);
482 trace_mark_mmio_spte(iter->sptep, iter->gfn, new_spte);
483 } else
484 make_spte_ret = make_spte(vcpu, ACC_ALL, iter->level, iter->gfn,
485 pfn, iter->old_spte, prefault, true,
486 map_writable, !shadow_accessed_mask,
487 &new_spte);
488
489 if (new_spte == iter->old_spte)
490 ret = RET_PF_SPURIOUS;
491 else
492 tdp_mmu_set_spte(vcpu->kvm, iter, new_spte);
493
494 /*
495 * If the page fault was caused by a write but the page is write
496 * protected, emulation is needed. If the emulation was skipped,
497 * the vCPU would have the same fault again.
498 */
499 if (make_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
500 if (write)
501 ret = RET_PF_EMULATE;
502 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
503 }
504
505 /* If a MMIO SPTE is installed, the MMIO will need to be emulated. */
506 if (unlikely(is_mmio_spte(new_spte)))
507 ret = RET_PF_EMULATE;
508
509 trace_kvm_mmu_set_spte(iter->level, iter->gfn, iter->sptep);
510 if (!prefault)
511 vcpu->stat.pf_fixed++;
512
513 return ret;
514 }
515
516 /*
517 * Handle a TDP page fault (NPT/EPT violation/misconfiguration) by installing
518 * page tables and SPTEs to translate the faulting guest physical address.
519 */
kvm_tdp_mmu_map(struct kvm_vcpu * vcpu,gpa_t gpa,u32 error_code,int map_writable,int max_level,kvm_pfn_t pfn,bool prefault)520 int kvm_tdp_mmu_map(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
521 int map_writable, int max_level, kvm_pfn_t pfn,
522 bool prefault)
523 {
524 bool nx_huge_page_workaround_enabled = is_nx_huge_page_enabled();
525 bool write = error_code & PFERR_WRITE_MASK;
526 bool exec = error_code & PFERR_FETCH_MASK;
527 bool huge_page_disallowed = exec && nx_huge_page_workaround_enabled;
528 struct kvm_mmu *mmu = vcpu->arch.mmu;
529 struct tdp_iter iter;
530 struct kvm_mmu_page *sp;
531 u64 *child_pt;
532 u64 new_spte;
533 int ret;
534 gfn_t gfn = gpa >> PAGE_SHIFT;
535 int level;
536 int req_level;
537
538 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
539 return RET_PF_RETRY;
540 if (WARN_ON(!is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa)))
541 return RET_PF_RETRY;
542
543 level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn,
544 huge_page_disallowed, &req_level);
545
546 trace_kvm_mmu_spte_requested(gpa, level, pfn);
547 tdp_mmu_for_each_pte(iter, mmu, gfn, gfn + 1) {
548 if (nx_huge_page_workaround_enabled)
549 disallowed_hugepage_adjust(iter.old_spte, gfn,
550 iter.level, &pfn, &level);
551
552 if (iter.level == level)
553 break;
554
555 /*
556 * If there is an SPTE mapping a large page at a higher level
557 * than the target, that SPTE must be cleared and replaced
558 * with a non-leaf SPTE.
559 */
560 if (is_shadow_present_pte(iter.old_spte) &&
561 is_large_pte(iter.old_spte)) {
562 tdp_mmu_set_spte(vcpu->kvm, &iter, 0);
563
564 kvm_flush_remote_tlbs_with_address(vcpu->kvm, iter.gfn,
565 KVM_PAGES_PER_HPAGE(iter.level));
566
567 /*
568 * The iter must explicitly re-read the spte here
569 * because the new value informs the !present
570 * path below.
571 */
572 iter.old_spte = READ_ONCE(*iter.sptep);
573 }
574
575 if (!is_shadow_present_pte(iter.old_spte)) {
576 sp = alloc_tdp_mmu_page(vcpu, iter.gfn, iter.level);
577 list_add(&sp->link, &vcpu->kvm->arch.tdp_mmu_pages);
578 child_pt = sp->spt;
579 clear_page(child_pt);
580 new_spte = make_nonleaf_spte(child_pt,
581 !shadow_accessed_mask);
582
583 trace_kvm_mmu_get_page(sp, true);
584 if (huge_page_disallowed && req_level >= iter.level)
585 account_huge_nx_page(vcpu->kvm, sp);
586
587 tdp_mmu_set_spte(vcpu->kvm, &iter, new_spte);
588 }
589 }
590
591 if (WARN_ON(iter.level != level))
592 return RET_PF_RETRY;
593
594 ret = tdp_mmu_map_handle_target_level(vcpu, write, map_writable, &iter,
595 pfn, prefault);
596
597 return ret;
598 }
599
kvm_tdp_mmu_handle_hva_range(struct kvm * kvm,unsigned long start,unsigned long end,unsigned long data,int (* handler)(struct kvm * kvm,struct kvm_memory_slot * slot,struct kvm_mmu_page * root,gfn_t start,gfn_t end,unsigned long data))600 static int kvm_tdp_mmu_handle_hva_range(struct kvm *kvm, unsigned long start,
601 unsigned long end, unsigned long data,
602 int (*handler)(struct kvm *kvm, struct kvm_memory_slot *slot,
603 struct kvm_mmu_page *root, gfn_t start,
604 gfn_t end, unsigned long data))
605 {
606 struct kvm_memslots *slots;
607 struct kvm_memory_slot *memslot;
608 struct kvm_mmu_page *root;
609 int ret = 0;
610 int as_id;
611
612 for_each_tdp_mmu_root(kvm, root) {
613 /*
614 * Take a reference on the root so that it cannot be freed if
615 * this thread releases the MMU lock and yields in this loop.
616 */
617 kvm_mmu_get_root(kvm, root);
618
619 as_id = kvm_mmu_page_as_id(root);
620 slots = __kvm_memslots(kvm, as_id);
621 kvm_for_each_memslot(memslot, slots) {
622 unsigned long hva_start, hva_end;
623 gfn_t gfn_start, gfn_end;
624
625 hva_start = max(start, memslot->userspace_addr);
626 hva_end = min(end, memslot->userspace_addr +
627 (memslot->npages << PAGE_SHIFT));
628 if (hva_start >= hva_end)
629 continue;
630 /*
631 * {gfn(page) | page intersects with [hva_start, hva_end)} =
632 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
633 */
634 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
635 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
636
637 ret |= handler(kvm, memslot, root, gfn_start,
638 gfn_end, data);
639 }
640
641 kvm_mmu_put_root(kvm, root);
642 }
643
644 return ret;
645 }
646
zap_gfn_range_hva_wrapper(struct kvm * kvm,struct kvm_memory_slot * slot,struct kvm_mmu_page * root,gfn_t start,gfn_t end,unsigned long unused)647 static int zap_gfn_range_hva_wrapper(struct kvm *kvm,
648 struct kvm_memory_slot *slot,
649 struct kvm_mmu_page *root, gfn_t start,
650 gfn_t end, unsigned long unused)
651 {
652 return zap_gfn_range(kvm, root, start, end, false);
653 }
654
kvm_tdp_mmu_zap_hva_range(struct kvm * kvm,unsigned long start,unsigned long end)655 int kvm_tdp_mmu_zap_hva_range(struct kvm *kvm, unsigned long start,
656 unsigned long end)
657 {
658 return kvm_tdp_mmu_handle_hva_range(kvm, start, end, 0,
659 zap_gfn_range_hva_wrapper);
660 }
661
662 /*
663 * Mark the SPTEs range of GFNs [start, end) unaccessed and return non-zero
664 * if any of the GFNs in the range have been accessed.
665 */
age_gfn_range(struct kvm * kvm,struct kvm_memory_slot * slot,struct kvm_mmu_page * root,gfn_t start,gfn_t end,unsigned long unused)666 static int age_gfn_range(struct kvm *kvm, struct kvm_memory_slot *slot,
667 struct kvm_mmu_page *root, gfn_t start, gfn_t end,
668 unsigned long unused)
669 {
670 struct tdp_iter iter;
671 int young = 0;
672 u64 new_spte = 0;
673
674 tdp_root_for_each_leaf_pte(iter, root, start, end) {
675 /*
676 * If we have a non-accessed entry we don't need to change the
677 * pte.
678 */
679 if (!is_accessed_spte(iter.old_spte))
680 continue;
681
682 new_spte = iter.old_spte;
683
684 if (spte_ad_enabled(new_spte)) {
685 clear_bit((ffs(shadow_accessed_mask) - 1),
686 (unsigned long *)&new_spte);
687 } else {
688 /*
689 * Capture the dirty status of the page, so that it doesn't get
690 * lost when the SPTE is marked for access tracking.
691 */
692 if (is_writable_pte(new_spte))
693 kvm_set_pfn_dirty(spte_to_pfn(new_spte));
694
695 new_spte = mark_spte_for_access_track(new_spte);
696 }
697 new_spte &= ~shadow_dirty_mask;
698
699 tdp_mmu_set_spte_no_acc_track(kvm, &iter, new_spte);
700 young = 1;
701 }
702
703 return young;
704 }
705
kvm_tdp_mmu_age_hva_range(struct kvm * kvm,unsigned long start,unsigned long end)706 int kvm_tdp_mmu_age_hva_range(struct kvm *kvm, unsigned long start,
707 unsigned long end)
708 {
709 return kvm_tdp_mmu_handle_hva_range(kvm, start, end, 0,
710 age_gfn_range);
711 }
712
test_age_gfn(struct kvm * kvm,struct kvm_memory_slot * slot,struct kvm_mmu_page * root,gfn_t gfn,gfn_t unused,unsigned long unused2)713 static int test_age_gfn(struct kvm *kvm, struct kvm_memory_slot *slot,
714 struct kvm_mmu_page *root, gfn_t gfn, gfn_t unused,
715 unsigned long unused2)
716 {
717 struct tdp_iter iter;
718
719 tdp_root_for_each_leaf_pte(iter, root, gfn, gfn + 1)
720 if (is_accessed_spte(iter.old_spte))
721 return 1;
722
723 return 0;
724 }
725
kvm_tdp_mmu_test_age_hva(struct kvm * kvm,unsigned long hva)726 int kvm_tdp_mmu_test_age_hva(struct kvm *kvm, unsigned long hva)
727 {
728 return kvm_tdp_mmu_handle_hva_range(kvm, hva, hva + 1, 0,
729 test_age_gfn);
730 }
731
732 /*
733 * Handle the changed_pte MMU notifier for the TDP MMU.
734 * data is a pointer to the new pte_t mapping the HVA specified by the MMU
735 * notifier.
736 * Returns non-zero if a flush is needed before releasing the MMU lock.
737 */
set_tdp_spte(struct kvm * kvm,struct kvm_memory_slot * slot,struct kvm_mmu_page * root,gfn_t gfn,gfn_t unused,unsigned long data)738 static int set_tdp_spte(struct kvm *kvm, struct kvm_memory_slot *slot,
739 struct kvm_mmu_page *root, gfn_t gfn, gfn_t unused,
740 unsigned long data)
741 {
742 struct tdp_iter iter;
743 pte_t *ptep = (pte_t *)data;
744 kvm_pfn_t new_pfn;
745 u64 new_spte;
746 int need_flush = 0;
747
748 WARN_ON(pte_huge(*ptep));
749
750 new_pfn = pte_pfn(*ptep);
751
752 tdp_root_for_each_pte(iter, root, gfn, gfn + 1) {
753 if (iter.level != PG_LEVEL_4K)
754 continue;
755
756 if (!is_shadow_present_pte(iter.old_spte))
757 break;
758
759 tdp_mmu_set_spte(kvm, &iter, 0);
760
761 kvm_flush_remote_tlbs_with_address(kvm, iter.gfn, 1);
762
763 if (!pte_write(*ptep)) {
764 new_spte = kvm_mmu_changed_pte_notifier_make_spte(
765 iter.old_spte, new_pfn);
766
767 tdp_mmu_set_spte(kvm, &iter, new_spte);
768 }
769
770 need_flush = 1;
771 }
772
773 if (need_flush)
774 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
775
776 return 0;
777 }
778
kvm_tdp_mmu_set_spte_hva(struct kvm * kvm,unsigned long address,pte_t * host_ptep)779 int kvm_tdp_mmu_set_spte_hva(struct kvm *kvm, unsigned long address,
780 pte_t *host_ptep)
781 {
782 return kvm_tdp_mmu_handle_hva_range(kvm, address, address + 1,
783 (unsigned long)host_ptep,
784 set_tdp_spte);
785 }
786
787 /*
788 * Remove write access from all the SPTEs mapping GFNs [start, end). If
789 * skip_4k is set, SPTEs that map 4k pages, will not be write-protected.
790 * Returns true if an SPTE has been changed and the TLBs need to be flushed.
791 */
wrprot_gfn_range(struct kvm * kvm,struct kvm_mmu_page * root,gfn_t start,gfn_t end,int min_level)792 static bool wrprot_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root,
793 gfn_t start, gfn_t end, int min_level)
794 {
795 struct tdp_iter iter;
796 u64 new_spte;
797 bool spte_set = false;
798
799 BUG_ON(min_level > KVM_MAX_HUGEPAGE_LEVEL);
800
801 for_each_tdp_pte_min_level(iter, root->spt, root->role.level,
802 min_level, start, end) {
803 if (!is_shadow_present_pte(iter.old_spte) ||
804 !is_last_spte(iter.old_spte, iter.level))
805 continue;
806
807 new_spte = iter.old_spte & ~PT_WRITABLE_MASK;
808
809 tdp_mmu_set_spte_no_dirty_log(kvm, &iter, new_spte);
810 spte_set = true;
811
812 tdp_mmu_iter_cond_resched(kvm, &iter);
813 }
814 return spte_set;
815 }
816
817 /*
818 * Remove write access from all the SPTEs mapping GFNs in the memslot. Will
819 * only affect leaf SPTEs down to min_level.
820 * Returns true if an SPTE has been changed and the TLBs need to be flushed.
821 */
kvm_tdp_mmu_wrprot_slot(struct kvm * kvm,struct kvm_memory_slot * slot,int min_level)822 bool kvm_tdp_mmu_wrprot_slot(struct kvm *kvm, struct kvm_memory_slot *slot,
823 int min_level)
824 {
825 struct kvm_mmu_page *root;
826 int root_as_id;
827 bool spte_set = false;
828
829 for_each_tdp_mmu_root(kvm, root) {
830 root_as_id = kvm_mmu_page_as_id(root);
831 if (root_as_id != slot->as_id)
832 continue;
833
834 /*
835 * Take a reference on the root so that it cannot be freed if
836 * this thread releases the MMU lock and yields in this loop.
837 */
838 kvm_mmu_get_root(kvm, root);
839
840 spte_set |= wrprot_gfn_range(kvm, root, slot->base_gfn,
841 slot->base_gfn + slot->npages, min_level);
842
843 kvm_mmu_put_root(kvm, root);
844 }
845
846 return spte_set;
847 }
848
849 /*
850 * Clear the dirty status of all the SPTEs mapping GFNs in the memslot. If
851 * AD bits are enabled, this will involve clearing the dirty bit on each SPTE.
852 * If AD bits are not enabled, this will require clearing the writable bit on
853 * each SPTE. Returns true if an SPTE has been changed and the TLBs need to
854 * be flushed.
855 */
clear_dirty_gfn_range(struct kvm * kvm,struct kvm_mmu_page * root,gfn_t start,gfn_t end)856 static bool clear_dirty_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root,
857 gfn_t start, gfn_t end)
858 {
859 struct tdp_iter iter;
860 u64 new_spte;
861 bool spte_set = false;
862
863 tdp_root_for_each_leaf_pte(iter, root, start, end) {
864 if (spte_ad_need_write_protect(iter.old_spte)) {
865 if (is_writable_pte(iter.old_spte))
866 new_spte = iter.old_spte & ~PT_WRITABLE_MASK;
867 else
868 continue;
869 } else {
870 if (iter.old_spte & shadow_dirty_mask)
871 new_spte = iter.old_spte & ~shadow_dirty_mask;
872 else
873 continue;
874 }
875
876 tdp_mmu_set_spte_no_dirty_log(kvm, &iter, new_spte);
877 spte_set = true;
878
879 tdp_mmu_iter_cond_resched(kvm, &iter);
880 }
881 return spte_set;
882 }
883
884 /*
885 * Clear the dirty status of all the SPTEs mapping GFNs in the memslot. If
886 * AD bits are enabled, this will involve clearing the dirty bit on each SPTE.
887 * If AD bits are not enabled, this will require clearing the writable bit on
888 * each SPTE. Returns true if an SPTE has been changed and the TLBs need to
889 * be flushed.
890 */
kvm_tdp_mmu_clear_dirty_slot(struct kvm * kvm,struct kvm_memory_slot * slot)891 bool kvm_tdp_mmu_clear_dirty_slot(struct kvm *kvm, struct kvm_memory_slot *slot)
892 {
893 struct kvm_mmu_page *root;
894 int root_as_id;
895 bool spte_set = false;
896
897 for_each_tdp_mmu_root(kvm, root) {
898 root_as_id = kvm_mmu_page_as_id(root);
899 if (root_as_id != slot->as_id)
900 continue;
901
902 /*
903 * Take a reference on the root so that it cannot be freed if
904 * this thread releases the MMU lock and yields in this loop.
905 */
906 kvm_mmu_get_root(kvm, root);
907
908 spte_set |= clear_dirty_gfn_range(kvm, root, slot->base_gfn,
909 slot->base_gfn + slot->npages);
910
911 kvm_mmu_put_root(kvm, root);
912 }
913
914 return spte_set;
915 }
916
917 /*
918 * Clears the dirty status of all the 4k SPTEs mapping GFNs for which a bit is
919 * set in mask, starting at gfn. The given memslot is expected to contain all
920 * the GFNs represented by set bits in the mask. If AD bits are enabled,
921 * clearing the dirty status will involve clearing the dirty bit on each SPTE
922 * or, if AD bits are not enabled, clearing the writable bit on each SPTE.
923 */
clear_dirty_pt_masked(struct kvm * kvm,struct kvm_mmu_page * root,gfn_t gfn,unsigned long mask,bool wrprot)924 static void clear_dirty_pt_masked(struct kvm *kvm, struct kvm_mmu_page *root,
925 gfn_t gfn, unsigned long mask, bool wrprot)
926 {
927 struct tdp_iter iter;
928 u64 new_spte;
929
930 tdp_root_for_each_leaf_pte(iter, root, gfn + __ffs(mask),
931 gfn + BITS_PER_LONG) {
932 if (!mask)
933 break;
934
935 if (iter.level > PG_LEVEL_4K ||
936 !(mask & (1UL << (iter.gfn - gfn))))
937 continue;
938
939 if (wrprot || spte_ad_need_write_protect(iter.old_spte)) {
940 if (is_writable_pte(iter.old_spte))
941 new_spte = iter.old_spte & ~PT_WRITABLE_MASK;
942 else
943 continue;
944 } else {
945 if (iter.old_spte & shadow_dirty_mask)
946 new_spte = iter.old_spte & ~shadow_dirty_mask;
947 else
948 continue;
949 }
950
951 tdp_mmu_set_spte_no_dirty_log(kvm, &iter, new_spte);
952
953 mask &= ~(1UL << (iter.gfn - gfn));
954 }
955 }
956
957 /*
958 * Clears the dirty status of all the 4k SPTEs mapping GFNs for which a bit is
959 * set in mask, starting at gfn. The given memslot is expected to contain all
960 * the GFNs represented by set bits in the mask. If AD bits are enabled,
961 * clearing the dirty status will involve clearing the dirty bit on each SPTE
962 * or, if AD bits are not enabled, clearing the writable bit on each SPTE.
963 */
kvm_tdp_mmu_clear_dirty_pt_masked(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn,unsigned long mask,bool wrprot)964 void kvm_tdp_mmu_clear_dirty_pt_masked(struct kvm *kvm,
965 struct kvm_memory_slot *slot,
966 gfn_t gfn, unsigned long mask,
967 bool wrprot)
968 {
969 struct kvm_mmu_page *root;
970 int root_as_id;
971
972 lockdep_assert_held(&kvm->mmu_lock);
973 for_each_tdp_mmu_root(kvm, root) {
974 root_as_id = kvm_mmu_page_as_id(root);
975 if (root_as_id != slot->as_id)
976 continue;
977
978 clear_dirty_pt_masked(kvm, root, gfn, mask, wrprot);
979 }
980 }
981
982 /*
983 * Set the dirty status of all the SPTEs mapping GFNs in the memslot. This is
984 * only used for PML, and so will involve setting the dirty bit on each SPTE.
985 * Returns true if an SPTE has been changed and the TLBs need to be flushed.
986 */
set_dirty_gfn_range(struct kvm * kvm,struct kvm_mmu_page * root,gfn_t start,gfn_t end)987 static bool set_dirty_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root,
988 gfn_t start, gfn_t end)
989 {
990 struct tdp_iter iter;
991 u64 new_spte;
992 bool spte_set = false;
993
994 tdp_root_for_each_pte(iter, root, start, end) {
995 if (!is_shadow_present_pte(iter.old_spte))
996 continue;
997
998 new_spte = iter.old_spte | shadow_dirty_mask;
999
1000 tdp_mmu_set_spte(kvm, &iter, new_spte);
1001 spte_set = true;
1002
1003 tdp_mmu_iter_cond_resched(kvm, &iter);
1004 }
1005
1006 return spte_set;
1007 }
1008
1009 /*
1010 * Set the dirty status of all the SPTEs mapping GFNs in the memslot. This is
1011 * only used for PML, and so will involve setting the dirty bit on each SPTE.
1012 * Returns true if an SPTE has been changed and the TLBs need to be flushed.
1013 */
kvm_tdp_mmu_slot_set_dirty(struct kvm * kvm,struct kvm_memory_slot * slot)1014 bool kvm_tdp_mmu_slot_set_dirty(struct kvm *kvm, struct kvm_memory_slot *slot)
1015 {
1016 struct kvm_mmu_page *root;
1017 int root_as_id;
1018 bool spte_set = false;
1019
1020 for_each_tdp_mmu_root(kvm, root) {
1021 root_as_id = kvm_mmu_page_as_id(root);
1022 if (root_as_id != slot->as_id)
1023 continue;
1024
1025 /*
1026 * Take a reference on the root so that it cannot be freed if
1027 * this thread releases the MMU lock and yields in this loop.
1028 */
1029 kvm_mmu_get_root(kvm, root);
1030
1031 spte_set |= set_dirty_gfn_range(kvm, root, slot->base_gfn,
1032 slot->base_gfn + slot->npages);
1033
1034 kvm_mmu_put_root(kvm, root);
1035 }
1036 return spte_set;
1037 }
1038
1039 /*
1040 * Clear non-leaf entries (and free associated page tables) which could
1041 * be replaced by large mappings, for GFNs within the slot.
1042 */
zap_collapsible_spte_range(struct kvm * kvm,struct kvm_mmu_page * root,gfn_t start,gfn_t end)1043 static void zap_collapsible_spte_range(struct kvm *kvm,
1044 struct kvm_mmu_page *root,
1045 gfn_t start, gfn_t end)
1046 {
1047 struct tdp_iter iter;
1048 kvm_pfn_t pfn;
1049 bool spte_set = false;
1050
1051 tdp_root_for_each_pte(iter, root, start, end) {
1052 if (!is_shadow_present_pte(iter.old_spte) ||
1053 is_last_spte(iter.old_spte, iter.level))
1054 continue;
1055
1056 pfn = spte_to_pfn(iter.old_spte);
1057 if (kvm_is_reserved_pfn(pfn) ||
1058 !PageTransCompoundMap(pfn_to_page(pfn)))
1059 continue;
1060
1061 tdp_mmu_set_spte(kvm, &iter, 0);
1062
1063 spte_set = tdp_mmu_iter_flush_cond_resched(kvm, &iter);
1064 }
1065
1066 if (spte_set)
1067 kvm_flush_remote_tlbs(kvm);
1068 }
1069
1070 /*
1071 * Clear non-leaf entries (and free associated page tables) which could
1072 * be replaced by large mappings, for GFNs within the slot.
1073 */
kvm_tdp_mmu_zap_collapsible_sptes(struct kvm * kvm,const struct kvm_memory_slot * slot)1074 void kvm_tdp_mmu_zap_collapsible_sptes(struct kvm *kvm,
1075 const struct kvm_memory_slot *slot)
1076 {
1077 struct kvm_mmu_page *root;
1078 int root_as_id;
1079
1080 for_each_tdp_mmu_root(kvm, root) {
1081 root_as_id = kvm_mmu_page_as_id(root);
1082 if (root_as_id != slot->as_id)
1083 continue;
1084
1085 /*
1086 * Take a reference on the root so that it cannot be freed if
1087 * this thread releases the MMU lock and yields in this loop.
1088 */
1089 kvm_mmu_get_root(kvm, root);
1090
1091 zap_collapsible_spte_range(kvm, root, slot->base_gfn,
1092 slot->base_gfn + slot->npages);
1093
1094 kvm_mmu_put_root(kvm, root);
1095 }
1096 }
1097
1098 /*
1099 * Removes write access on the last level SPTE mapping this GFN and unsets the
1100 * SPTE_MMU_WRITABLE bit to ensure future writes continue to be intercepted.
1101 * Returns true if an SPTE was set and a TLB flush is needed.
1102 */
write_protect_gfn(struct kvm * kvm,struct kvm_mmu_page * root,gfn_t gfn)1103 static bool write_protect_gfn(struct kvm *kvm, struct kvm_mmu_page *root,
1104 gfn_t gfn)
1105 {
1106 struct tdp_iter iter;
1107 u64 new_spte;
1108 bool spte_set = false;
1109
1110 tdp_root_for_each_leaf_pte(iter, root, gfn, gfn + 1) {
1111 if (!is_writable_pte(iter.old_spte))
1112 break;
1113
1114 new_spte = iter.old_spte &
1115 ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
1116
1117 tdp_mmu_set_spte(kvm, &iter, new_spte);
1118 spte_set = true;
1119 }
1120
1121 return spte_set;
1122 }
1123
1124 /*
1125 * Removes write access on the last level SPTE mapping this GFN and unsets the
1126 * SPTE_MMU_WRITABLE bit to ensure future writes continue to be intercepted.
1127 * Returns true if an SPTE was set and a TLB flush is needed.
1128 */
kvm_tdp_mmu_write_protect_gfn(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn)1129 bool kvm_tdp_mmu_write_protect_gfn(struct kvm *kvm,
1130 struct kvm_memory_slot *slot, gfn_t gfn)
1131 {
1132 struct kvm_mmu_page *root;
1133 int root_as_id;
1134 bool spte_set = false;
1135
1136 lockdep_assert_held(&kvm->mmu_lock);
1137 for_each_tdp_mmu_root(kvm, root) {
1138 root_as_id = kvm_mmu_page_as_id(root);
1139 if (root_as_id != slot->as_id)
1140 continue;
1141
1142 spte_set |= write_protect_gfn(kvm, root, gfn);
1143 }
1144 return spte_set;
1145 }
1146
1147 /*
1148 * Return the level of the lowest level SPTE added to sptes.
1149 * That SPTE may be non-present.
1150 */
kvm_tdp_mmu_get_walk(struct kvm_vcpu * vcpu,u64 addr,u64 * sptes)1151 int kvm_tdp_mmu_get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes)
1152 {
1153 struct tdp_iter iter;
1154 struct kvm_mmu *mmu = vcpu->arch.mmu;
1155 int leaf = vcpu->arch.mmu->shadow_root_level;
1156 gfn_t gfn = addr >> PAGE_SHIFT;
1157
1158 tdp_mmu_for_each_pte(iter, mmu, gfn, gfn + 1) {
1159 leaf = iter.level;
1160 sptes[leaf - 1] = iter.old_spte;
1161 }
1162
1163 return leaf;
1164 }
1165