1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * Copyright (C) 2006 Qumranet, Inc.
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 */
15
16 #include <kvm/iodev.h>
17
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54
55 #include <asm/processor.h>
56 #include <asm/ioctl.h>
57 #include <linux/uaccess.h>
58
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61 #include "vfio.h"
62
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
65
66 /* Worst case buffer size needed for holding an integer. */
67 #define ITOA_MAX_LEN 12
68
69 MODULE_AUTHOR("Qumranet");
70 MODULE_LICENSE("GPL");
71
72 /* Architectures should define their poll value according to the halt latency */
73 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
74 module_param(halt_poll_ns, uint, 0644);
75 EXPORT_SYMBOL_GPL(halt_poll_ns);
76
77 /* Default doubles per-vcpu halt_poll_ns. */
78 unsigned int halt_poll_ns_grow = 2;
79 module_param(halt_poll_ns_grow, uint, 0644);
80 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
81
82 /* The start value to grow halt_poll_ns from */
83 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
84 module_param(halt_poll_ns_grow_start, uint, 0644);
85 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
86
87 /* Default resets per-vcpu halt_poll_ns . */
88 unsigned int halt_poll_ns_shrink;
89 module_param(halt_poll_ns_shrink, uint, 0644);
90 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
91
92 /*
93 * Ordering of locks:
94 *
95 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
96 */
97
98 DEFINE_MUTEX(kvm_lock);
99 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
100 LIST_HEAD(vm_list);
101
102 static cpumask_var_t cpus_hardware_enabled;
103 static int kvm_usage_count;
104 static atomic_t hardware_enable_failed;
105
106 static struct kmem_cache *kvm_vcpu_cache;
107
108 static __read_mostly struct preempt_ops kvm_preempt_ops;
109 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
110
111 struct dentry *kvm_debugfs_dir;
112 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
113
114 static int kvm_debugfs_num_entries;
115 static const struct file_operations stat_fops_per_vm;
116
117 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
118 unsigned long arg);
119 #ifdef CONFIG_KVM_COMPAT
120 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
121 unsigned long arg);
122 #define KVM_COMPAT(c) .compat_ioctl = (c)
123 #else
124 /*
125 * For architectures that don't implement a compat infrastructure,
126 * adopt a double line of defense:
127 * - Prevent a compat task from opening /dev/kvm
128 * - If the open has been done by a 64bit task, and the KVM fd
129 * passed to a compat task, let the ioctls fail.
130 */
kvm_no_compat_ioctl(struct file * file,unsigned int ioctl,unsigned long arg)131 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
132 unsigned long arg) { return -EINVAL; }
133
kvm_no_compat_open(struct inode * inode,struct file * file)134 static int kvm_no_compat_open(struct inode *inode, struct file *file)
135 {
136 return is_compat_task() ? -ENODEV : 0;
137 }
138 #define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl, \
139 .open = kvm_no_compat_open
140 #endif
141 static int hardware_enable_all(void);
142 static void hardware_disable_all(void);
143
144 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
145
146 __visible bool kvm_rebooting;
147 EXPORT_SYMBOL_GPL(kvm_rebooting);
148
149 #define KVM_EVENT_CREATE_VM 0
150 #define KVM_EVENT_DESTROY_VM 1
151 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
152 static unsigned long long kvm_createvm_count;
153 static unsigned long long kvm_active_vms;
154
kvm_arch_mmu_notifier_invalidate_range(struct kvm * kvm,unsigned long start,unsigned long end)155 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
156 unsigned long start, unsigned long end)
157 {
158 }
159
kvm_is_zone_device_pfn(kvm_pfn_t pfn)160 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn)
161 {
162 /*
163 * The metadata used by is_zone_device_page() to determine whether or
164 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
165 * the device has been pinned, e.g. by get_user_pages(). WARN if the
166 * page_count() is zero to help detect bad usage of this helper.
167 */
168 if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn))))
169 return false;
170
171 return is_zone_device_page(pfn_to_page(pfn));
172 }
173
kvm_is_reserved_pfn(kvm_pfn_t pfn)174 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
175 {
176 /*
177 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
178 * perspective they are "normal" pages, albeit with slightly different
179 * usage rules.
180 */
181 if (pfn_valid(pfn))
182 return PageReserved(pfn_to_page(pfn)) &&
183 !is_zero_pfn(pfn) &&
184 !kvm_is_zone_device_pfn(pfn);
185
186 return true;
187 }
188
kvm_is_transparent_hugepage(kvm_pfn_t pfn)189 bool kvm_is_transparent_hugepage(kvm_pfn_t pfn)
190 {
191 struct page *page = pfn_to_page(pfn);
192
193 if (!PageTransCompoundMap(page))
194 return false;
195
196 return is_transparent_hugepage(compound_head(page));
197 }
198
199 /*
200 * Switches to specified vcpu, until a matching vcpu_put()
201 */
vcpu_load(struct kvm_vcpu * vcpu)202 void vcpu_load(struct kvm_vcpu *vcpu)
203 {
204 int cpu = get_cpu();
205
206 __this_cpu_write(kvm_running_vcpu, vcpu);
207 preempt_notifier_register(&vcpu->preempt_notifier);
208 kvm_arch_vcpu_load(vcpu, cpu);
209 put_cpu();
210 }
211 EXPORT_SYMBOL_GPL(vcpu_load);
212
vcpu_put(struct kvm_vcpu * vcpu)213 void vcpu_put(struct kvm_vcpu *vcpu)
214 {
215 preempt_disable();
216 kvm_arch_vcpu_put(vcpu);
217 preempt_notifier_unregister(&vcpu->preempt_notifier);
218 __this_cpu_write(kvm_running_vcpu, NULL);
219 preempt_enable();
220 }
221 EXPORT_SYMBOL_GPL(vcpu_put);
222
223 /* TODO: merge with kvm_arch_vcpu_should_kick */
kvm_request_needs_ipi(struct kvm_vcpu * vcpu,unsigned req)224 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
225 {
226 int mode = kvm_vcpu_exiting_guest_mode(vcpu);
227
228 /*
229 * We need to wait for the VCPU to reenable interrupts and get out of
230 * READING_SHADOW_PAGE_TABLES mode.
231 */
232 if (req & KVM_REQUEST_WAIT)
233 return mode != OUTSIDE_GUEST_MODE;
234
235 /*
236 * Need to kick a running VCPU, but otherwise there is nothing to do.
237 */
238 return mode == IN_GUEST_MODE;
239 }
240
ack_flush(void * _completed)241 static void ack_flush(void *_completed)
242 {
243 }
244
kvm_kick_many_cpus(const struct cpumask * cpus,bool wait)245 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
246 {
247 if (unlikely(!cpus))
248 cpus = cpu_online_mask;
249
250 if (cpumask_empty(cpus))
251 return false;
252
253 smp_call_function_many(cpus, ack_flush, NULL, wait);
254 return true;
255 }
256
kvm_make_vcpus_request_mask(struct kvm * kvm,unsigned int req,struct kvm_vcpu * except,unsigned long * vcpu_bitmap,cpumask_var_t tmp)257 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
258 struct kvm_vcpu *except,
259 unsigned long *vcpu_bitmap, cpumask_var_t tmp)
260 {
261 int i, cpu, me;
262 struct kvm_vcpu *vcpu;
263 bool called;
264
265 me = get_cpu();
266
267 kvm_for_each_vcpu(i, vcpu, kvm) {
268 if ((vcpu_bitmap && !test_bit(i, vcpu_bitmap)) ||
269 vcpu == except)
270 continue;
271
272 kvm_make_request(req, vcpu);
273 cpu = vcpu->cpu;
274
275 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
276 continue;
277
278 if (tmp != NULL && cpu != -1 && cpu != me &&
279 kvm_request_needs_ipi(vcpu, req))
280 __cpumask_set_cpu(cpu, tmp);
281 }
282
283 called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
284 put_cpu();
285
286 return called;
287 }
288
kvm_make_all_cpus_request_except(struct kvm * kvm,unsigned int req,struct kvm_vcpu * except)289 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
290 struct kvm_vcpu *except)
291 {
292 cpumask_var_t cpus;
293 bool called;
294
295 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
296
297 called = kvm_make_vcpus_request_mask(kvm, req, except, NULL, cpus);
298
299 free_cpumask_var(cpus);
300 return called;
301 }
302
kvm_make_all_cpus_request(struct kvm * kvm,unsigned int req)303 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
304 {
305 return kvm_make_all_cpus_request_except(kvm, req, NULL);
306 }
307
308 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
kvm_flush_remote_tlbs(struct kvm * kvm)309 void kvm_flush_remote_tlbs(struct kvm *kvm)
310 {
311 /*
312 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
313 * kvm_make_all_cpus_request.
314 */
315 long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
316
317 /*
318 * We want to publish modifications to the page tables before reading
319 * mode. Pairs with a memory barrier in arch-specific code.
320 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
321 * and smp_mb in walk_shadow_page_lockless_begin/end.
322 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
323 *
324 * There is already an smp_mb__after_atomic() before
325 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
326 * barrier here.
327 */
328 if (!kvm_arch_flush_remote_tlb(kvm)
329 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
330 ++kvm->stat.remote_tlb_flush;
331 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
332 }
333 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
334 #endif
335
kvm_reload_remote_mmus(struct kvm * kvm)336 void kvm_reload_remote_mmus(struct kvm *kvm)
337 {
338 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
339 }
340
341 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache * mc,gfp_t gfp_flags)342 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
343 gfp_t gfp_flags)
344 {
345 gfp_flags |= mc->gfp_zero;
346
347 if (mc->kmem_cache)
348 return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
349 else
350 return (void *)__get_free_page(gfp_flags);
351 }
352
kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache * mc,int min)353 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
354 {
355 void *obj;
356
357 if (mc->nobjs >= min)
358 return 0;
359 while (mc->nobjs < ARRAY_SIZE(mc->objects)) {
360 obj = mmu_memory_cache_alloc_obj(mc, GFP_KERNEL_ACCOUNT);
361 if (!obj)
362 return mc->nobjs >= min ? 0 : -ENOMEM;
363 mc->objects[mc->nobjs++] = obj;
364 }
365 return 0;
366 }
367
kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache * mc)368 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
369 {
370 return mc->nobjs;
371 }
372
kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache * mc)373 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
374 {
375 while (mc->nobjs) {
376 if (mc->kmem_cache)
377 kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
378 else
379 free_page((unsigned long)mc->objects[--mc->nobjs]);
380 }
381 }
382
kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache * mc)383 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
384 {
385 void *p;
386
387 if (WARN_ON(!mc->nobjs))
388 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
389 else
390 p = mc->objects[--mc->nobjs];
391 BUG_ON(!p);
392 return p;
393 }
394 #endif
395
kvm_vcpu_init(struct kvm_vcpu * vcpu,struct kvm * kvm,unsigned id)396 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
397 {
398 mutex_init(&vcpu->mutex);
399 vcpu->cpu = -1;
400 vcpu->kvm = kvm;
401 vcpu->vcpu_id = id;
402 vcpu->pid = NULL;
403 rcuwait_init(&vcpu->wait);
404 kvm_async_pf_vcpu_init(vcpu);
405
406 vcpu->pre_pcpu = -1;
407 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
408
409 kvm_vcpu_set_in_spin_loop(vcpu, false);
410 kvm_vcpu_set_dy_eligible(vcpu, false);
411 vcpu->preempted = false;
412 vcpu->ready = false;
413 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
414 }
415
kvm_vcpu_destroy(struct kvm_vcpu * vcpu)416 void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
417 {
418 kvm_arch_vcpu_destroy(vcpu);
419
420 /*
421 * No need for rcu_read_lock as VCPU_RUN is the only place that changes
422 * the vcpu->pid pointer, and at destruction time all file descriptors
423 * are already gone.
424 */
425 put_pid(rcu_dereference_protected(vcpu->pid, 1));
426
427 free_page((unsigned long)vcpu->run);
428 kmem_cache_free(kvm_vcpu_cache, vcpu);
429 }
430 EXPORT_SYMBOL_GPL(kvm_vcpu_destroy);
431
432 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
mmu_notifier_to_kvm(struct mmu_notifier * mn)433 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
434 {
435 return container_of(mn, struct kvm, mmu_notifier);
436 }
437
kvm_mmu_notifier_invalidate_range(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long start,unsigned long end)438 static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn,
439 struct mm_struct *mm,
440 unsigned long start, unsigned long end)
441 {
442 struct kvm *kvm = mmu_notifier_to_kvm(mn);
443 int idx;
444
445 idx = srcu_read_lock(&kvm->srcu);
446 kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
447 srcu_read_unlock(&kvm->srcu, idx);
448 }
449
kvm_mmu_notifier_change_pte(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long address,pte_t pte)450 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
451 struct mm_struct *mm,
452 unsigned long address,
453 pte_t pte)
454 {
455 struct kvm *kvm = mmu_notifier_to_kvm(mn);
456 int idx;
457
458 idx = srcu_read_lock(&kvm->srcu);
459 spin_lock(&kvm->mmu_lock);
460 kvm->mmu_notifier_seq++;
461
462 if (kvm_set_spte_hva(kvm, address, pte))
463 kvm_flush_remote_tlbs(kvm);
464
465 spin_unlock(&kvm->mmu_lock);
466 srcu_read_unlock(&kvm->srcu, idx);
467 }
468
kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier * mn,const struct mmu_notifier_range * range)469 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
470 const struct mmu_notifier_range *range)
471 {
472 struct kvm *kvm = mmu_notifier_to_kvm(mn);
473 int need_tlb_flush = 0, idx;
474
475 idx = srcu_read_lock(&kvm->srcu);
476 spin_lock(&kvm->mmu_lock);
477 /*
478 * The count increase must become visible at unlock time as no
479 * spte can be established without taking the mmu_lock and
480 * count is also read inside the mmu_lock critical section.
481 */
482 kvm->mmu_notifier_count++;
483 need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end,
484 range->flags);
485 need_tlb_flush |= kvm->tlbs_dirty;
486 /* we've to flush the tlb before the pages can be freed */
487 if (need_tlb_flush)
488 kvm_flush_remote_tlbs(kvm);
489
490 spin_unlock(&kvm->mmu_lock);
491 srcu_read_unlock(&kvm->srcu, idx);
492
493 return 0;
494 }
495
kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier * mn,const struct mmu_notifier_range * range)496 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
497 const struct mmu_notifier_range *range)
498 {
499 struct kvm *kvm = mmu_notifier_to_kvm(mn);
500
501 spin_lock(&kvm->mmu_lock);
502 /*
503 * This sequence increase will notify the kvm page fault that
504 * the page that is going to be mapped in the spte could have
505 * been freed.
506 */
507 kvm->mmu_notifier_seq++;
508 smp_wmb();
509 /*
510 * The above sequence increase must be visible before the
511 * below count decrease, which is ensured by the smp_wmb above
512 * in conjunction with the smp_rmb in mmu_notifier_retry().
513 */
514 kvm->mmu_notifier_count--;
515 spin_unlock(&kvm->mmu_lock);
516
517 BUG_ON(kvm->mmu_notifier_count < 0);
518 }
519
kvm_mmu_notifier_clear_flush_young(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long start,unsigned long end)520 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
521 struct mm_struct *mm,
522 unsigned long start,
523 unsigned long end)
524 {
525 struct kvm *kvm = mmu_notifier_to_kvm(mn);
526 int young, idx;
527
528 idx = srcu_read_lock(&kvm->srcu);
529 spin_lock(&kvm->mmu_lock);
530
531 young = kvm_age_hva(kvm, start, end);
532 if (young)
533 kvm_flush_remote_tlbs(kvm);
534
535 spin_unlock(&kvm->mmu_lock);
536 srcu_read_unlock(&kvm->srcu, idx);
537
538 return young;
539 }
540
kvm_mmu_notifier_clear_young(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long start,unsigned long end)541 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
542 struct mm_struct *mm,
543 unsigned long start,
544 unsigned long end)
545 {
546 struct kvm *kvm = mmu_notifier_to_kvm(mn);
547 int young, idx;
548
549 idx = srcu_read_lock(&kvm->srcu);
550 spin_lock(&kvm->mmu_lock);
551 /*
552 * Even though we do not flush TLB, this will still adversely
553 * affect performance on pre-Haswell Intel EPT, where there is
554 * no EPT Access Bit to clear so that we have to tear down EPT
555 * tables instead. If we find this unacceptable, we can always
556 * add a parameter to kvm_age_hva so that it effectively doesn't
557 * do anything on clear_young.
558 *
559 * Also note that currently we never issue secondary TLB flushes
560 * from clear_young, leaving this job up to the regular system
561 * cadence. If we find this inaccurate, we might come up with a
562 * more sophisticated heuristic later.
563 */
564 young = kvm_age_hva(kvm, start, end);
565 spin_unlock(&kvm->mmu_lock);
566 srcu_read_unlock(&kvm->srcu, idx);
567
568 return young;
569 }
570
kvm_mmu_notifier_test_young(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long address)571 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
572 struct mm_struct *mm,
573 unsigned long address)
574 {
575 struct kvm *kvm = mmu_notifier_to_kvm(mn);
576 int young, idx;
577
578 idx = srcu_read_lock(&kvm->srcu);
579 spin_lock(&kvm->mmu_lock);
580 young = kvm_test_age_hva(kvm, address);
581 spin_unlock(&kvm->mmu_lock);
582 srcu_read_unlock(&kvm->srcu, idx);
583
584 return young;
585 }
586
kvm_mmu_notifier_release(struct mmu_notifier * mn,struct mm_struct * mm)587 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
588 struct mm_struct *mm)
589 {
590 struct kvm *kvm = mmu_notifier_to_kvm(mn);
591 int idx;
592
593 idx = srcu_read_lock(&kvm->srcu);
594 kvm_arch_flush_shadow_all(kvm);
595 srcu_read_unlock(&kvm->srcu, idx);
596 }
597
598 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
599 .invalidate_range = kvm_mmu_notifier_invalidate_range,
600 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
601 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
602 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
603 .clear_young = kvm_mmu_notifier_clear_young,
604 .test_young = kvm_mmu_notifier_test_young,
605 .change_pte = kvm_mmu_notifier_change_pte,
606 .release = kvm_mmu_notifier_release,
607 };
608
kvm_init_mmu_notifier(struct kvm * kvm)609 static int kvm_init_mmu_notifier(struct kvm *kvm)
610 {
611 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
612 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
613 }
614
615 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
616
kvm_init_mmu_notifier(struct kvm * kvm)617 static int kvm_init_mmu_notifier(struct kvm *kvm)
618 {
619 return 0;
620 }
621
622 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
623
kvm_alloc_memslots(void)624 static struct kvm_memslots *kvm_alloc_memslots(void)
625 {
626 int i;
627 struct kvm_memslots *slots;
628
629 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
630 if (!slots)
631 return NULL;
632
633 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
634 slots->id_to_index[i] = -1;
635
636 return slots;
637 }
638
kvm_destroy_dirty_bitmap(struct kvm_memory_slot * memslot)639 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
640 {
641 if (!memslot->dirty_bitmap)
642 return;
643
644 kvfree(memslot->dirty_bitmap);
645 memslot->dirty_bitmap = NULL;
646 }
647
kvm_free_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)648 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
649 {
650 kvm_destroy_dirty_bitmap(slot);
651
652 kvm_arch_free_memslot(kvm, slot);
653
654 slot->flags = 0;
655 slot->npages = 0;
656 }
657
kvm_free_memslots(struct kvm * kvm,struct kvm_memslots * slots)658 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
659 {
660 struct kvm_memory_slot *memslot;
661
662 if (!slots)
663 return;
664
665 kvm_for_each_memslot(memslot, slots)
666 kvm_free_memslot(kvm, memslot);
667
668 kvfree(slots);
669 }
670
kvm_destroy_vm_debugfs(struct kvm * kvm)671 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
672 {
673 int i;
674
675 if (!kvm->debugfs_dentry)
676 return;
677
678 debugfs_remove_recursive(kvm->debugfs_dentry);
679
680 if (kvm->debugfs_stat_data) {
681 for (i = 0; i < kvm_debugfs_num_entries; i++)
682 kfree(kvm->debugfs_stat_data[i]);
683 kfree(kvm->debugfs_stat_data);
684 }
685 }
686
kvm_create_vm_debugfs(struct kvm * kvm,int fd)687 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
688 {
689 char dir_name[ITOA_MAX_LEN * 2];
690 struct kvm_stat_data *stat_data;
691 struct kvm_stats_debugfs_item *p;
692
693 if (!debugfs_initialized())
694 return 0;
695
696 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
697 kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
698
699 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
700 sizeof(*kvm->debugfs_stat_data),
701 GFP_KERNEL_ACCOUNT);
702 if (!kvm->debugfs_stat_data)
703 return -ENOMEM;
704
705 for (p = debugfs_entries; p->name; p++) {
706 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
707 if (!stat_data)
708 return -ENOMEM;
709
710 stat_data->kvm = kvm;
711 stat_data->dbgfs_item = p;
712 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
713 debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p),
714 kvm->debugfs_dentry, stat_data,
715 &stat_fops_per_vm);
716 }
717 return 0;
718 }
719
720 /*
721 * Called after the VM is otherwise initialized, but just before adding it to
722 * the vm_list.
723 */
kvm_arch_post_init_vm(struct kvm * kvm)724 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
725 {
726 return 0;
727 }
728
729 /*
730 * Called just after removing the VM from the vm_list, but before doing any
731 * other destruction.
732 */
kvm_arch_pre_destroy_vm(struct kvm * kvm)733 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
734 {
735 }
736
kvm_create_vm(unsigned long type)737 static struct kvm *kvm_create_vm(unsigned long type)
738 {
739 struct kvm *kvm = kvm_arch_alloc_vm();
740 int r = -ENOMEM;
741 int i;
742
743 if (!kvm)
744 return ERR_PTR(-ENOMEM);
745
746 spin_lock_init(&kvm->mmu_lock);
747 mmgrab(current->mm);
748 kvm->mm = current->mm;
749 kvm_eventfd_init(kvm);
750 mutex_init(&kvm->lock);
751 mutex_init(&kvm->irq_lock);
752 mutex_init(&kvm->slots_lock);
753 INIT_LIST_HEAD(&kvm->devices);
754
755 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
756
757 if (init_srcu_struct(&kvm->srcu))
758 goto out_err_no_srcu;
759 if (init_srcu_struct(&kvm->irq_srcu))
760 goto out_err_no_irq_srcu;
761
762 refcount_set(&kvm->users_count, 1);
763 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
764 struct kvm_memslots *slots = kvm_alloc_memslots();
765
766 if (!slots)
767 goto out_err_no_arch_destroy_vm;
768 /* Generations must be different for each address space. */
769 slots->generation = i;
770 rcu_assign_pointer(kvm->memslots[i], slots);
771 }
772
773 for (i = 0; i < KVM_NR_BUSES; i++) {
774 rcu_assign_pointer(kvm->buses[i],
775 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
776 if (!kvm->buses[i])
777 goto out_err_no_arch_destroy_vm;
778 }
779
780 kvm->max_halt_poll_ns = halt_poll_ns;
781
782 r = kvm_arch_init_vm(kvm, type);
783 if (r)
784 goto out_err_no_arch_destroy_vm;
785
786 r = hardware_enable_all();
787 if (r)
788 goto out_err_no_disable;
789
790 #ifdef CONFIG_HAVE_KVM_IRQFD
791 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
792 #endif
793
794 r = kvm_init_mmu_notifier(kvm);
795 if (r)
796 goto out_err_no_mmu_notifier;
797
798 r = kvm_arch_post_init_vm(kvm);
799 if (r)
800 goto out_err;
801
802 mutex_lock(&kvm_lock);
803 list_add(&kvm->vm_list, &vm_list);
804 mutex_unlock(&kvm_lock);
805
806 preempt_notifier_inc();
807
808 return kvm;
809
810 out_err:
811 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
812 if (kvm->mmu_notifier.ops)
813 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
814 #endif
815 out_err_no_mmu_notifier:
816 hardware_disable_all();
817 out_err_no_disable:
818 kvm_arch_destroy_vm(kvm);
819 out_err_no_arch_destroy_vm:
820 WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
821 for (i = 0; i < KVM_NR_BUSES; i++)
822 kfree(kvm_get_bus(kvm, i));
823 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
824 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
825 cleanup_srcu_struct(&kvm->irq_srcu);
826 out_err_no_irq_srcu:
827 cleanup_srcu_struct(&kvm->srcu);
828 out_err_no_srcu:
829 kvm_arch_free_vm(kvm);
830 mmdrop(current->mm);
831 return ERR_PTR(r);
832 }
833
kvm_destroy_devices(struct kvm * kvm)834 static void kvm_destroy_devices(struct kvm *kvm)
835 {
836 struct kvm_device *dev, *tmp;
837
838 /*
839 * We do not need to take the kvm->lock here, because nobody else
840 * has a reference to the struct kvm at this point and therefore
841 * cannot access the devices list anyhow.
842 */
843 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
844 list_del(&dev->vm_node);
845 dev->ops->destroy(dev);
846 }
847 }
848
kvm_destroy_vm(struct kvm * kvm)849 static void kvm_destroy_vm(struct kvm *kvm)
850 {
851 int i;
852 struct mm_struct *mm = kvm->mm;
853
854 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
855 kvm_destroy_vm_debugfs(kvm);
856 kvm_arch_sync_events(kvm);
857 mutex_lock(&kvm_lock);
858 list_del(&kvm->vm_list);
859 mutex_unlock(&kvm_lock);
860 kvm_arch_pre_destroy_vm(kvm);
861
862 kvm_free_irq_routing(kvm);
863 for (i = 0; i < KVM_NR_BUSES; i++) {
864 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
865
866 if (bus)
867 kvm_io_bus_destroy(bus);
868 kvm->buses[i] = NULL;
869 }
870 kvm_coalesced_mmio_free(kvm);
871 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
872 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
873 #else
874 kvm_arch_flush_shadow_all(kvm);
875 #endif
876 kvm_arch_destroy_vm(kvm);
877 kvm_destroy_devices(kvm);
878 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
879 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
880 cleanup_srcu_struct(&kvm->irq_srcu);
881 cleanup_srcu_struct(&kvm->srcu);
882 kvm_arch_free_vm(kvm);
883 preempt_notifier_dec();
884 hardware_disable_all();
885 mmdrop(mm);
886 }
887
kvm_get_kvm(struct kvm * kvm)888 void kvm_get_kvm(struct kvm *kvm)
889 {
890 refcount_inc(&kvm->users_count);
891 }
892 EXPORT_SYMBOL_GPL(kvm_get_kvm);
893
kvm_put_kvm(struct kvm * kvm)894 void kvm_put_kvm(struct kvm *kvm)
895 {
896 if (refcount_dec_and_test(&kvm->users_count))
897 kvm_destroy_vm(kvm);
898 }
899 EXPORT_SYMBOL_GPL(kvm_put_kvm);
900
901 /*
902 * Used to put a reference that was taken on behalf of an object associated
903 * with a user-visible file descriptor, e.g. a vcpu or device, if installation
904 * of the new file descriptor fails and the reference cannot be transferred to
905 * its final owner. In such cases, the caller is still actively using @kvm and
906 * will fail miserably if the refcount unexpectedly hits zero.
907 */
kvm_put_kvm_no_destroy(struct kvm * kvm)908 void kvm_put_kvm_no_destroy(struct kvm *kvm)
909 {
910 WARN_ON(refcount_dec_and_test(&kvm->users_count));
911 }
912 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
913
kvm_vm_release(struct inode * inode,struct file * filp)914 static int kvm_vm_release(struct inode *inode, struct file *filp)
915 {
916 struct kvm *kvm = filp->private_data;
917
918 kvm_irqfd_release(kvm);
919
920 kvm_put_kvm(kvm);
921 return 0;
922 }
923
924 /*
925 * Allocation size is twice as large as the actual dirty bitmap size.
926 * See kvm_vm_ioctl_get_dirty_log() why this is needed.
927 */
kvm_alloc_dirty_bitmap(struct kvm_memory_slot * memslot)928 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
929 {
930 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
931
932 memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
933 if (!memslot->dirty_bitmap)
934 return -ENOMEM;
935
936 return 0;
937 }
938
939 /*
940 * Delete a memslot by decrementing the number of used slots and shifting all
941 * other entries in the array forward one spot.
942 */
kvm_memslot_delete(struct kvm_memslots * slots,struct kvm_memory_slot * memslot)943 static inline void kvm_memslot_delete(struct kvm_memslots *slots,
944 struct kvm_memory_slot *memslot)
945 {
946 struct kvm_memory_slot *mslots = slots->memslots;
947 int i;
948
949 if (WARN_ON(slots->id_to_index[memslot->id] == -1))
950 return;
951
952 slots->used_slots--;
953
954 if (atomic_read(&slots->lru_slot) >= slots->used_slots)
955 atomic_set(&slots->lru_slot, 0);
956
957 for (i = slots->id_to_index[memslot->id]; i < slots->used_slots; i++) {
958 mslots[i] = mslots[i + 1];
959 slots->id_to_index[mslots[i].id] = i;
960 }
961 mslots[i] = *memslot;
962 slots->id_to_index[memslot->id] = -1;
963 }
964
965 /*
966 * "Insert" a new memslot by incrementing the number of used slots. Returns
967 * the new slot's initial index into the memslots array.
968 */
kvm_memslot_insert_back(struct kvm_memslots * slots)969 static inline int kvm_memslot_insert_back(struct kvm_memslots *slots)
970 {
971 return slots->used_slots++;
972 }
973
974 /*
975 * Move a changed memslot backwards in the array by shifting existing slots
976 * with a higher GFN toward the front of the array. Note, the changed memslot
977 * itself is not preserved in the array, i.e. not swapped at this time, only
978 * its new index into the array is tracked. Returns the changed memslot's
979 * current index into the memslots array.
980 */
kvm_memslot_move_backward(struct kvm_memslots * slots,struct kvm_memory_slot * memslot)981 static inline int kvm_memslot_move_backward(struct kvm_memslots *slots,
982 struct kvm_memory_slot *memslot)
983 {
984 struct kvm_memory_slot *mslots = slots->memslots;
985 int i;
986
987 if (WARN_ON_ONCE(slots->id_to_index[memslot->id] == -1) ||
988 WARN_ON_ONCE(!slots->used_slots))
989 return -1;
990
991 /*
992 * Move the target memslot backward in the array by shifting existing
993 * memslots with a higher GFN (than the target memslot) towards the
994 * front of the array.
995 */
996 for (i = slots->id_to_index[memslot->id]; i < slots->used_slots - 1; i++) {
997 if (memslot->base_gfn > mslots[i + 1].base_gfn)
998 break;
999
1000 WARN_ON_ONCE(memslot->base_gfn == mslots[i + 1].base_gfn);
1001
1002 /* Shift the next memslot forward one and update its index. */
1003 mslots[i] = mslots[i + 1];
1004 slots->id_to_index[mslots[i].id] = i;
1005 }
1006 return i;
1007 }
1008
1009 /*
1010 * Move a changed memslot forwards in the array by shifting existing slots with
1011 * a lower GFN toward the back of the array. Note, the changed memslot itself
1012 * is not preserved in the array, i.e. not swapped at this time, only its new
1013 * index into the array is tracked. Returns the changed memslot's final index
1014 * into the memslots array.
1015 */
kvm_memslot_move_forward(struct kvm_memslots * slots,struct kvm_memory_slot * memslot,int start)1016 static inline int kvm_memslot_move_forward(struct kvm_memslots *slots,
1017 struct kvm_memory_slot *memslot,
1018 int start)
1019 {
1020 struct kvm_memory_slot *mslots = slots->memslots;
1021 int i;
1022
1023 for (i = start; i > 0; i--) {
1024 if (memslot->base_gfn < mslots[i - 1].base_gfn)
1025 break;
1026
1027 WARN_ON_ONCE(memslot->base_gfn == mslots[i - 1].base_gfn);
1028
1029 /* Shift the next memslot back one and update its index. */
1030 mslots[i] = mslots[i - 1];
1031 slots->id_to_index[mslots[i].id] = i;
1032 }
1033 return i;
1034 }
1035
1036 /*
1037 * Re-sort memslots based on their GFN to account for an added, deleted, or
1038 * moved memslot. Sorting memslots by GFN allows using a binary search during
1039 * memslot lookup.
1040 *
1041 * IMPORTANT: Slots are sorted from highest GFN to lowest GFN! I.e. the entry
1042 * at memslots[0] has the highest GFN.
1043 *
1044 * The sorting algorithm takes advantage of having initially sorted memslots
1045 * and knowing the position of the changed memslot. Sorting is also optimized
1046 * by not swapping the updated memslot and instead only shifting other memslots
1047 * and tracking the new index for the update memslot. Only once its final
1048 * index is known is the updated memslot copied into its position in the array.
1049 *
1050 * - When deleting a memslot, the deleted memslot simply needs to be moved to
1051 * the end of the array.
1052 *
1053 * - When creating a memslot, the algorithm "inserts" the new memslot at the
1054 * end of the array and then it forward to its correct location.
1055 *
1056 * - When moving a memslot, the algorithm first moves the updated memslot
1057 * backward to handle the scenario where the memslot's GFN was changed to a
1058 * lower value. update_memslots() then falls through and runs the same flow
1059 * as creating a memslot to move the memslot forward to handle the scenario
1060 * where its GFN was changed to a higher value.
1061 *
1062 * Note, slots are sorted from highest->lowest instead of lowest->highest for
1063 * historical reasons. Originally, invalid memslots where denoted by having
1064 * GFN=0, thus sorting from highest->lowest naturally sorted invalid memslots
1065 * to the end of the array. The current algorithm uses dedicated logic to
1066 * delete a memslot and thus does not rely on invalid memslots having GFN=0.
1067 *
1068 * The other historical motiviation for highest->lowest was to improve the
1069 * performance of memslot lookup. KVM originally used a linear search starting
1070 * at memslots[0]. On x86, the largest memslot usually has one of the highest,
1071 * if not *the* highest, GFN, as the bulk of the guest's RAM is located in a
1072 * single memslot above the 4gb boundary. As the largest memslot is also the
1073 * most likely to be referenced, sorting it to the front of the array was
1074 * advantageous. The current binary search starts from the middle of the array
1075 * and uses an LRU pointer to improve performance for all memslots and GFNs.
1076 */
update_memslots(struct kvm_memslots * slots,struct kvm_memory_slot * memslot,enum kvm_mr_change change)1077 static void update_memslots(struct kvm_memslots *slots,
1078 struct kvm_memory_slot *memslot,
1079 enum kvm_mr_change change)
1080 {
1081 int i;
1082
1083 if (change == KVM_MR_DELETE) {
1084 kvm_memslot_delete(slots, memslot);
1085 } else {
1086 if (change == KVM_MR_CREATE)
1087 i = kvm_memslot_insert_back(slots);
1088 else
1089 i = kvm_memslot_move_backward(slots, memslot);
1090 i = kvm_memslot_move_forward(slots, memslot, i);
1091
1092 /*
1093 * Copy the memslot to its new position in memslots and update
1094 * its index accordingly.
1095 */
1096 slots->memslots[i] = *memslot;
1097 slots->id_to_index[memslot->id] = i;
1098 }
1099 }
1100
check_memory_region_flags(const struct kvm_userspace_memory_region * mem)1101 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
1102 {
1103 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1104
1105 #ifdef __KVM_HAVE_READONLY_MEM
1106 valid_flags |= KVM_MEM_READONLY;
1107 #endif
1108
1109 if (mem->flags & ~valid_flags)
1110 return -EINVAL;
1111
1112 return 0;
1113 }
1114
install_new_memslots(struct kvm * kvm,int as_id,struct kvm_memslots * slots)1115 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
1116 int as_id, struct kvm_memslots *slots)
1117 {
1118 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
1119 u64 gen = old_memslots->generation;
1120
1121 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1122 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1123
1124 rcu_assign_pointer(kvm->memslots[as_id], slots);
1125 synchronize_srcu_expedited(&kvm->srcu);
1126
1127 /*
1128 * Increment the new memslot generation a second time, dropping the
1129 * update in-progress flag and incrementing the generation based on
1130 * the number of address spaces. This provides a unique and easily
1131 * identifiable generation number while the memslots are in flux.
1132 */
1133 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1134
1135 /*
1136 * Generations must be unique even across address spaces. We do not need
1137 * a global counter for that, instead the generation space is evenly split
1138 * across address spaces. For example, with two address spaces, address
1139 * space 0 will use generations 0, 2, 4, ... while address space 1 will
1140 * use generations 1, 3, 5, ...
1141 */
1142 gen += KVM_ADDRESS_SPACE_NUM;
1143
1144 kvm_arch_memslots_updated(kvm, gen);
1145
1146 slots->generation = gen;
1147
1148 return old_memslots;
1149 }
1150
1151 /*
1152 * Note, at a minimum, the current number of used slots must be allocated, even
1153 * when deleting a memslot, as we need a complete duplicate of the memslots for
1154 * use when invalidating a memslot prior to deleting/moving the memslot.
1155 */
kvm_dup_memslots(struct kvm_memslots * old,enum kvm_mr_change change)1156 static struct kvm_memslots *kvm_dup_memslots(struct kvm_memslots *old,
1157 enum kvm_mr_change change)
1158 {
1159 struct kvm_memslots *slots;
1160 size_t old_size, new_size;
1161
1162 old_size = sizeof(struct kvm_memslots) +
1163 (sizeof(struct kvm_memory_slot) * old->used_slots);
1164
1165 if (change == KVM_MR_CREATE)
1166 new_size = old_size + sizeof(struct kvm_memory_slot);
1167 else
1168 new_size = old_size;
1169
1170 slots = kvzalloc(new_size, GFP_KERNEL_ACCOUNT);
1171 if (likely(slots))
1172 memcpy(slots, old, old_size);
1173
1174 return slots;
1175 }
1176
kvm_set_memslot(struct kvm * kvm,const struct kvm_userspace_memory_region * mem,struct kvm_memory_slot * old,struct kvm_memory_slot * new,int as_id,enum kvm_mr_change change)1177 static int kvm_set_memslot(struct kvm *kvm,
1178 const struct kvm_userspace_memory_region *mem,
1179 struct kvm_memory_slot *old,
1180 struct kvm_memory_slot *new, int as_id,
1181 enum kvm_mr_change change)
1182 {
1183 struct kvm_memory_slot *slot;
1184 struct kvm_memslots *slots;
1185 int r;
1186
1187 slots = kvm_dup_memslots(__kvm_memslots(kvm, as_id), change);
1188 if (!slots)
1189 return -ENOMEM;
1190
1191 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1192 /*
1193 * Note, the INVALID flag needs to be in the appropriate entry
1194 * in the freshly allocated memslots, not in @old or @new.
1195 */
1196 slot = id_to_memslot(slots, old->id);
1197 slot->flags |= KVM_MEMSLOT_INVALID;
1198
1199 /*
1200 * We can re-use the old memslots, the only difference from the
1201 * newly installed memslots is the invalid flag, which will get
1202 * dropped by update_memslots anyway. We'll also revert to the
1203 * old memslots if preparing the new memory region fails.
1204 */
1205 slots = install_new_memslots(kvm, as_id, slots);
1206
1207 /* From this point no new shadow pages pointing to a deleted,
1208 * or moved, memslot will be created.
1209 *
1210 * validation of sp->gfn happens in:
1211 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1212 * - kvm_is_visible_gfn (mmu_check_root)
1213 */
1214 kvm_arch_flush_shadow_memslot(kvm, slot);
1215 }
1216
1217 r = kvm_arch_prepare_memory_region(kvm, new, mem, change);
1218 if (r)
1219 goto out_slots;
1220
1221 update_memslots(slots, new, change);
1222 slots = install_new_memslots(kvm, as_id, slots);
1223
1224 kvm_arch_commit_memory_region(kvm, mem, old, new, change);
1225
1226 kvfree(slots);
1227 return 0;
1228
1229 out_slots:
1230 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1231 slots = install_new_memslots(kvm, as_id, slots);
1232 kvfree(slots);
1233 return r;
1234 }
1235
kvm_delete_memslot(struct kvm * kvm,const struct kvm_userspace_memory_region * mem,struct kvm_memory_slot * old,int as_id)1236 static int kvm_delete_memslot(struct kvm *kvm,
1237 const struct kvm_userspace_memory_region *mem,
1238 struct kvm_memory_slot *old, int as_id)
1239 {
1240 struct kvm_memory_slot new;
1241 int r;
1242
1243 if (!old->npages)
1244 return -EINVAL;
1245
1246 memset(&new, 0, sizeof(new));
1247 new.id = old->id;
1248 /*
1249 * This is only for debugging purpose; it should never be referenced
1250 * for a removed memslot.
1251 */
1252 new.as_id = as_id;
1253
1254 r = kvm_set_memslot(kvm, mem, old, &new, as_id, KVM_MR_DELETE);
1255 if (r)
1256 return r;
1257
1258 kvm_free_memslot(kvm, old);
1259 return 0;
1260 }
1261
1262 /*
1263 * Allocate some memory and give it an address in the guest physical address
1264 * space.
1265 *
1266 * Discontiguous memory is allowed, mostly for framebuffers.
1267 *
1268 * Must be called holding kvm->slots_lock for write.
1269 */
__kvm_set_memory_region(struct kvm * kvm,const struct kvm_userspace_memory_region * mem)1270 int __kvm_set_memory_region(struct kvm *kvm,
1271 const struct kvm_userspace_memory_region *mem)
1272 {
1273 struct kvm_memory_slot old, new;
1274 struct kvm_memory_slot *tmp;
1275 enum kvm_mr_change change;
1276 int as_id, id;
1277 int r;
1278
1279 r = check_memory_region_flags(mem);
1280 if (r)
1281 return r;
1282
1283 as_id = mem->slot >> 16;
1284 id = (u16)mem->slot;
1285
1286 /* General sanity checks */
1287 if (mem->memory_size & (PAGE_SIZE - 1))
1288 return -EINVAL;
1289 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1290 return -EINVAL;
1291 /* We can read the guest memory with __xxx_user() later on. */
1292 if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1293 !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1294 mem->memory_size))
1295 return -EINVAL;
1296 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1297 return -EINVAL;
1298 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1299 return -EINVAL;
1300
1301 /*
1302 * Make a full copy of the old memslot, the pointer will become stale
1303 * when the memslots are re-sorted by update_memslots(), and the old
1304 * memslot needs to be referenced after calling update_memslots(), e.g.
1305 * to free its resources and for arch specific behavior.
1306 */
1307 tmp = id_to_memslot(__kvm_memslots(kvm, as_id), id);
1308 if (tmp) {
1309 old = *tmp;
1310 tmp = NULL;
1311 } else {
1312 memset(&old, 0, sizeof(old));
1313 old.id = id;
1314 }
1315
1316 if (!mem->memory_size)
1317 return kvm_delete_memslot(kvm, mem, &old, as_id);
1318
1319 new.as_id = as_id;
1320 new.id = id;
1321 new.base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1322 new.npages = mem->memory_size >> PAGE_SHIFT;
1323 new.flags = mem->flags;
1324 new.userspace_addr = mem->userspace_addr;
1325
1326 if (new.npages > KVM_MEM_MAX_NR_PAGES)
1327 return -EINVAL;
1328
1329 if (!old.npages) {
1330 change = KVM_MR_CREATE;
1331 new.dirty_bitmap = NULL;
1332 memset(&new.arch, 0, sizeof(new.arch));
1333 } else { /* Modify an existing slot. */
1334 if ((new.userspace_addr != old.userspace_addr) ||
1335 (new.npages != old.npages) ||
1336 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
1337 return -EINVAL;
1338
1339 if (new.base_gfn != old.base_gfn)
1340 change = KVM_MR_MOVE;
1341 else if (new.flags != old.flags)
1342 change = KVM_MR_FLAGS_ONLY;
1343 else /* Nothing to change. */
1344 return 0;
1345
1346 /* Copy dirty_bitmap and arch from the current memslot. */
1347 new.dirty_bitmap = old.dirty_bitmap;
1348 memcpy(&new.arch, &old.arch, sizeof(new.arch));
1349 }
1350
1351 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1352 /* Check for overlaps */
1353 kvm_for_each_memslot(tmp, __kvm_memslots(kvm, as_id)) {
1354 if (tmp->id == id)
1355 continue;
1356 if (!((new.base_gfn + new.npages <= tmp->base_gfn) ||
1357 (new.base_gfn >= tmp->base_gfn + tmp->npages)))
1358 return -EEXIST;
1359 }
1360 }
1361
1362 /* Allocate/free page dirty bitmap as needed */
1363 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1364 new.dirty_bitmap = NULL;
1365 else if (!new.dirty_bitmap) {
1366 r = kvm_alloc_dirty_bitmap(&new);
1367 if (r)
1368 return r;
1369
1370 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1371 bitmap_set(new.dirty_bitmap, 0, new.npages);
1372 }
1373
1374 r = kvm_set_memslot(kvm, mem, &old, &new, as_id, change);
1375 if (r)
1376 goto out_bitmap;
1377
1378 if (old.dirty_bitmap && !new.dirty_bitmap)
1379 kvm_destroy_dirty_bitmap(&old);
1380 return 0;
1381
1382 out_bitmap:
1383 if (new.dirty_bitmap && !old.dirty_bitmap)
1384 kvm_destroy_dirty_bitmap(&new);
1385 return r;
1386 }
1387 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1388
kvm_set_memory_region(struct kvm * kvm,const struct kvm_userspace_memory_region * mem)1389 int kvm_set_memory_region(struct kvm *kvm,
1390 const struct kvm_userspace_memory_region *mem)
1391 {
1392 int r;
1393
1394 mutex_lock(&kvm->slots_lock);
1395 r = __kvm_set_memory_region(kvm, mem);
1396 mutex_unlock(&kvm->slots_lock);
1397 return r;
1398 }
1399 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1400
kvm_vm_ioctl_set_memory_region(struct kvm * kvm,struct kvm_userspace_memory_region * mem)1401 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1402 struct kvm_userspace_memory_region *mem)
1403 {
1404 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1405 return -EINVAL;
1406
1407 return kvm_set_memory_region(kvm, mem);
1408 }
1409
1410 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1411 /**
1412 * kvm_get_dirty_log - get a snapshot of dirty pages
1413 * @kvm: pointer to kvm instance
1414 * @log: slot id and address to which we copy the log
1415 * @is_dirty: set to '1' if any dirty pages were found
1416 * @memslot: set to the associated memslot, always valid on success
1417 */
kvm_get_dirty_log(struct kvm * kvm,struct kvm_dirty_log * log,int * is_dirty,struct kvm_memory_slot ** memslot)1418 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1419 int *is_dirty, struct kvm_memory_slot **memslot)
1420 {
1421 struct kvm_memslots *slots;
1422 int i, as_id, id;
1423 unsigned long n;
1424 unsigned long any = 0;
1425
1426 *memslot = NULL;
1427 *is_dirty = 0;
1428
1429 as_id = log->slot >> 16;
1430 id = (u16)log->slot;
1431 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1432 return -EINVAL;
1433
1434 slots = __kvm_memslots(kvm, as_id);
1435 *memslot = id_to_memslot(slots, id);
1436 if (!(*memslot) || !(*memslot)->dirty_bitmap)
1437 return -ENOENT;
1438
1439 kvm_arch_sync_dirty_log(kvm, *memslot);
1440
1441 n = kvm_dirty_bitmap_bytes(*memslot);
1442
1443 for (i = 0; !any && i < n/sizeof(long); ++i)
1444 any = (*memslot)->dirty_bitmap[i];
1445
1446 if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
1447 return -EFAULT;
1448
1449 if (any)
1450 *is_dirty = 1;
1451 return 0;
1452 }
1453 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1454
1455 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1456 /**
1457 * kvm_get_dirty_log_protect - get a snapshot of dirty pages
1458 * and reenable dirty page tracking for the corresponding pages.
1459 * @kvm: pointer to kvm instance
1460 * @log: slot id and address to which we copy the log
1461 *
1462 * We need to keep it in mind that VCPU threads can write to the bitmap
1463 * concurrently. So, to avoid losing track of dirty pages we keep the
1464 * following order:
1465 *
1466 * 1. Take a snapshot of the bit and clear it if needed.
1467 * 2. Write protect the corresponding page.
1468 * 3. Copy the snapshot to the userspace.
1469 * 4. Upon return caller flushes TLB's if needed.
1470 *
1471 * Between 2 and 4, the guest may write to the page using the remaining TLB
1472 * entry. This is not a problem because the page is reported dirty using
1473 * the snapshot taken before and step 4 ensures that writes done after
1474 * exiting to userspace will be logged for the next call.
1475 *
1476 */
kvm_get_dirty_log_protect(struct kvm * kvm,struct kvm_dirty_log * log)1477 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
1478 {
1479 struct kvm_memslots *slots;
1480 struct kvm_memory_slot *memslot;
1481 int i, as_id, id;
1482 unsigned long n;
1483 unsigned long *dirty_bitmap;
1484 unsigned long *dirty_bitmap_buffer;
1485 bool flush;
1486
1487 as_id = log->slot >> 16;
1488 id = (u16)log->slot;
1489 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1490 return -EINVAL;
1491
1492 slots = __kvm_memslots(kvm, as_id);
1493 memslot = id_to_memslot(slots, id);
1494 if (!memslot || !memslot->dirty_bitmap)
1495 return -ENOENT;
1496
1497 dirty_bitmap = memslot->dirty_bitmap;
1498
1499 kvm_arch_sync_dirty_log(kvm, memslot);
1500
1501 n = kvm_dirty_bitmap_bytes(memslot);
1502 flush = false;
1503 if (kvm->manual_dirty_log_protect) {
1504 /*
1505 * Unlike kvm_get_dirty_log, we always return false in *flush,
1506 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There
1507 * is some code duplication between this function and
1508 * kvm_get_dirty_log, but hopefully all architecture
1509 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1510 * can be eliminated.
1511 */
1512 dirty_bitmap_buffer = dirty_bitmap;
1513 } else {
1514 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1515 memset(dirty_bitmap_buffer, 0, n);
1516
1517 spin_lock(&kvm->mmu_lock);
1518 for (i = 0; i < n / sizeof(long); i++) {
1519 unsigned long mask;
1520 gfn_t offset;
1521
1522 if (!dirty_bitmap[i])
1523 continue;
1524
1525 flush = true;
1526 mask = xchg(&dirty_bitmap[i], 0);
1527 dirty_bitmap_buffer[i] = mask;
1528
1529 offset = i * BITS_PER_LONG;
1530 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1531 offset, mask);
1532 }
1533 spin_unlock(&kvm->mmu_lock);
1534 }
1535
1536 if (flush)
1537 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1538
1539 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1540 return -EFAULT;
1541 return 0;
1542 }
1543
1544
1545 /**
1546 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1547 * @kvm: kvm instance
1548 * @log: slot id and address to which we copy the log
1549 *
1550 * Steps 1-4 below provide general overview of dirty page logging. See
1551 * kvm_get_dirty_log_protect() function description for additional details.
1552 *
1553 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1554 * always flush the TLB (step 4) even if previous step failed and the dirty
1555 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1556 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1557 * writes will be marked dirty for next log read.
1558 *
1559 * 1. Take a snapshot of the bit and clear it if needed.
1560 * 2. Write protect the corresponding page.
1561 * 3. Copy the snapshot to the userspace.
1562 * 4. Flush TLB's if needed.
1563 */
kvm_vm_ioctl_get_dirty_log(struct kvm * kvm,struct kvm_dirty_log * log)1564 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1565 struct kvm_dirty_log *log)
1566 {
1567 int r;
1568
1569 mutex_lock(&kvm->slots_lock);
1570
1571 r = kvm_get_dirty_log_protect(kvm, log);
1572
1573 mutex_unlock(&kvm->slots_lock);
1574 return r;
1575 }
1576
1577 /**
1578 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1579 * and reenable dirty page tracking for the corresponding pages.
1580 * @kvm: pointer to kvm instance
1581 * @log: slot id and address from which to fetch the bitmap of dirty pages
1582 */
kvm_clear_dirty_log_protect(struct kvm * kvm,struct kvm_clear_dirty_log * log)1583 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
1584 struct kvm_clear_dirty_log *log)
1585 {
1586 struct kvm_memslots *slots;
1587 struct kvm_memory_slot *memslot;
1588 int as_id, id;
1589 gfn_t offset;
1590 unsigned long i, n;
1591 unsigned long *dirty_bitmap;
1592 unsigned long *dirty_bitmap_buffer;
1593 bool flush;
1594
1595 as_id = log->slot >> 16;
1596 id = (u16)log->slot;
1597 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1598 return -EINVAL;
1599
1600 if (log->first_page & 63)
1601 return -EINVAL;
1602
1603 slots = __kvm_memslots(kvm, as_id);
1604 memslot = id_to_memslot(slots, id);
1605 if (!memslot || !memslot->dirty_bitmap)
1606 return -ENOENT;
1607
1608 dirty_bitmap = memslot->dirty_bitmap;
1609
1610 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
1611
1612 if (log->first_page > memslot->npages ||
1613 log->num_pages > memslot->npages - log->first_page ||
1614 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
1615 return -EINVAL;
1616
1617 kvm_arch_sync_dirty_log(kvm, memslot);
1618
1619 flush = false;
1620 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1621 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
1622 return -EFAULT;
1623
1624 spin_lock(&kvm->mmu_lock);
1625 for (offset = log->first_page, i = offset / BITS_PER_LONG,
1626 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
1627 i++, offset += BITS_PER_LONG) {
1628 unsigned long mask = *dirty_bitmap_buffer++;
1629 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
1630 if (!mask)
1631 continue;
1632
1633 mask &= atomic_long_fetch_andnot(mask, p);
1634
1635 /*
1636 * mask contains the bits that really have been cleared. This
1637 * never includes any bits beyond the length of the memslot (if
1638 * the length is not aligned to 64 pages), therefore it is not
1639 * a problem if userspace sets them in log->dirty_bitmap.
1640 */
1641 if (mask) {
1642 flush = true;
1643 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1644 offset, mask);
1645 }
1646 }
1647 spin_unlock(&kvm->mmu_lock);
1648
1649 if (flush)
1650 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1651
1652 return 0;
1653 }
1654
kvm_vm_ioctl_clear_dirty_log(struct kvm * kvm,struct kvm_clear_dirty_log * log)1655 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
1656 struct kvm_clear_dirty_log *log)
1657 {
1658 int r;
1659
1660 mutex_lock(&kvm->slots_lock);
1661
1662 r = kvm_clear_dirty_log_protect(kvm, log);
1663
1664 mutex_unlock(&kvm->slots_lock);
1665 return r;
1666 }
1667 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1668
gfn_to_memslot(struct kvm * kvm,gfn_t gfn)1669 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1670 {
1671 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1672 }
1673 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1674
kvm_vcpu_gfn_to_memslot(struct kvm_vcpu * vcpu,gfn_t gfn)1675 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1676 {
1677 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1678 }
1679 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_memslot);
1680
kvm_is_visible_gfn(struct kvm * kvm,gfn_t gfn)1681 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1682 {
1683 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1684
1685 return kvm_is_visible_memslot(memslot);
1686 }
1687 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1688
kvm_vcpu_is_visible_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)1689 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1690 {
1691 struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1692
1693 return kvm_is_visible_memslot(memslot);
1694 }
1695 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
1696
kvm_host_page_size(struct kvm_vcpu * vcpu,gfn_t gfn)1697 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
1698 {
1699 struct vm_area_struct *vma;
1700 unsigned long addr, size;
1701
1702 size = PAGE_SIZE;
1703
1704 addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
1705 if (kvm_is_error_hva(addr))
1706 return PAGE_SIZE;
1707
1708 mmap_read_lock(current->mm);
1709 vma = find_vma(current->mm, addr);
1710 if (!vma)
1711 goto out;
1712
1713 size = vma_kernel_pagesize(vma);
1714
1715 out:
1716 mmap_read_unlock(current->mm);
1717
1718 return size;
1719 }
1720
memslot_is_readonly(struct kvm_memory_slot * slot)1721 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1722 {
1723 return slot->flags & KVM_MEM_READONLY;
1724 }
1725
__gfn_to_hva_many(struct kvm_memory_slot * slot,gfn_t gfn,gfn_t * nr_pages,bool write)1726 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1727 gfn_t *nr_pages, bool write)
1728 {
1729 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1730 return KVM_HVA_ERR_BAD;
1731
1732 if (memslot_is_readonly(slot) && write)
1733 return KVM_HVA_ERR_RO_BAD;
1734
1735 if (nr_pages)
1736 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1737
1738 return __gfn_to_hva_memslot(slot, gfn);
1739 }
1740
gfn_to_hva_many(struct kvm_memory_slot * slot,gfn_t gfn,gfn_t * nr_pages)1741 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1742 gfn_t *nr_pages)
1743 {
1744 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1745 }
1746
gfn_to_hva_memslot(struct kvm_memory_slot * slot,gfn_t gfn)1747 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1748 gfn_t gfn)
1749 {
1750 return gfn_to_hva_many(slot, gfn, NULL);
1751 }
1752 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1753
gfn_to_hva(struct kvm * kvm,gfn_t gfn)1754 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1755 {
1756 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1757 }
1758 EXPORT_SYMBOL_GPL(gfn_to_hva);
1759
kvm_vcpu_gfn_to_hva(struct kvm_vcpu * vcpu,gfn_t gfn)1760 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1761 {
1762 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1763 }
1764 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1765
1766 /*
1767 * Return the hva of a @gfn and the R/W attribute if possible.
1768 *
1769 * @slot: the kvm_memory_slot which contains @gfn
1770 * @gfn: the gfn to be translated
1771 * @writable: used to return the read/write attribute of the @slot if the hva
1772 * is valid and @writable is not NULL
1773 */
gfn_to_hva_memslot_prot(struct kvm_memory_slot * slot,gfn_t gfn,bool * writable)1774 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1775 gfn_t gfn, bool *writable)
1776 {
1777 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1778
1779 if (!kvm_is_error_hva(hva) && writable)
1780 *writable = !memslot_is_readonly(slot);
1781
1782 return hva;
1783 }
1784
gfn_to_hva_prot(struct kvm * kvm,gfn_t gfn,bool * writable)1785 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1786 {
1787 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1788
1789 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1790 }
1791
kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu * vcpu,gfn_t gfn,bool * writable)1792 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1793 {
1794 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1795
1796 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1797 }
1798
check_user_page_hwpoison(unsigned long addr)1799 static inline int check_user_page_hwpoison(unsigned long addr)
1800 {
1801 int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1802
1803 rc = get_user_pages(addr, 1, flags, NULL, NULL);
1804 return rc == -EHWPOISON;
1805 }
1806
1807 /*
1808 * The fast path to get the writable pfn which will be stored in @pfn,
1809 * true indicates success, otherwise false is returned. It's also the
1810 * only part that runs if we can in atomic context.
1811 */
hva_to_pfn_fast(unsigned long addr,bool write_fault,bool * writable,kvm_pfn_t * pfn)1812 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
1813 bool *writable, kvm_pfn_t *pfn)
1814 {
1815 struct page *page[1];
1816
1817 /*
1818 * Fast pin a writable pfn only if it is a write fault request
1819 * or the caller allows to map a writable pfn for a read fault
1820 * request.
1821 */
1822 if (!(write_fault || writable))
1823 return false;
1824
1825 if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
1826 *pfn = page_to_pfn(page[0]);
1827
1828 if (writable)
1829 *writable = true;
1830 return true;
1831 }
1832
1833 return false;
1834 }
1835
1836 /*
1837 * The slow path to get the pfn of the specified host virtual address,
1838 * 1 indicates success, -errno is returned if error is detected.
1839 */
hva_to_pfn_slow(unsigned long addr,bool * async,bool write_fault,bool * writable,kvm_pfn_t * pfn)1840 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1841 bool *writable, kvm_pfn_t *pfn)
1842 {
1843 unsigned int flags = FOLL_HWPOISON;
1844 struct page *page;
1845 int npages = 0;
1846
1847 might_sleep();
1848
1849 if (writable)
1850 *writable = write_fault;
1851
1852 if (write_fault)
1853 flags |= FOLL_WRITE;
1854 if (async)
1855 flags |= FOLL_NOWAIT;
1856
1857 npages = get_user_pages_unlocked(addr, 1, &page, flags);
1858 if (npages != 1)
1859 return npages;
1860
1861 /* map read fault as writable if possible */
1862 if (unlikely(!write_fault) && writable) {
1863 struct page *wpage;
1864
1865 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
1866 *writable = true;
1867 put_page(page);
1868 page = wpage;
1869 }
1870 }
1871 *pfn = page_to_pfn(page);
1872 return npages;
1873 }
1874
vma_is_valid(struct vm_area_struct * vma,bool write_fault)1875 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1876 {
1877 if (unlikely(!(vma->vm_flags & VM_READ)))
1878 return false;
1879
1880 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1881 return false;
1882
1883 return true;
1884 }
1885
hva_to_pfn_remapped(struct vm_area_struct * vma,unsigned long addr,bool * async,bool write_fault,bool * writable,kvm_pfn_t * p_pfn)1886 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1887 unsigned long addr, bool *async,
1888 bool write_fault, bool *writable,
1889 kvm_pfn_t *p_pfn)
1890 {
1891 unsigned long pfn;
1892 int r;
1893
1894 r = follow_pfn(vma, addr, &pfn);
1895 if (r) {
1896 /*
1897 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1898 * not call the fault handler, so do it here.
1899 */
1900 bool unlocked = false;
1901 r = fixup_user_fault(current->mm, addr,
1902 (write_fault ? FAULT_FLAG_WRITE : 0),
1903 &unlocked);
1904 if (unlocked)
1905 return -EAGAIN;
1906 if (r)
1907 return r;
1908
1909 r = follow_pfn(vma, addr, &pfn);
1910 if (r)
1911 return r;
1912
1913 }
1914
1915 if (writable)
1916 *writable = true;
1917
1918 /*
1919 * Get a reference here because callers of *hva_to_pfn* and
1920 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1921 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP
1922 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1923 * simply do nothing for reserved pfns.
1924 *
1925 * Whoever called remap_pfn_range is also going to call e.g.
1926 * unmap_mapping_range before the underlying pages are freed,
1927 * causing a call to our MMU notifier.
1928 */
1929 kvm_get_pfn(pfn);
1930
1931 *p_pfn = pfn;
1932 return 0;
1933 }
1934
1935 /*
1936 * Pin guest page in memory and return its pfn.
1937 * @addr: host virtual address which maps memory to the guest
1938 * @atomic: whether this function can sleep
1939 * @async: whether this function need to wait IO complete if the
1940 * host page is not in the memory
1941 * @write_fault: whether we should get a writable host page
1942 * @writable: whether it allows to map a writable host page for !@write_fault
1943 *
1944 * The function will map a writable host page for these two cases:
1945 * 1): @write_fault = true
1946 * 2): @write_fault = false && @writable, @writable will tell the caller
1947 * whether the mapping is writable.
1948 */
hva_to_pfn(unsigned long addr,bool atomic,bool * async,bool write_fault,bool * writable)1949 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1950 bool write_fault, bool *writable)
1951 {
1952 struct vm_area_struct *vma;
1953 kvm_pfn_t pfn = 0;
1954 int npages, r;
1955
1956 /* we can do it either atomically or asynchronously, not both */
1957 BUG_ON(atomic && async);
1958
1959 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
1960 return pfn;
1961
1962 if (atomic)
1963 return KVM_PFN_ERR_FAULT;
1964
1965 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1966 if (npages == 1)
1967 return pfn;
1968
1969 mmap_read_lock(current->mm);
1970 if (npages == -EHWPOISON ||
1971 (!async && check_user_page_hwpoison(addr))) {
1972 pfn = KVM_PFN_ERR_HWPOISON;
1973 goto exit;
1974 }
1975
1976 retry:
1977 vma = find_vma_intersection(current->mm, addr, addr + 1);
1978
1979 if (vma == NULL)
1980 pfn = KVM_PFN_ERR_FAULT;
1981 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1982 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
1983 if (r == -EAGAIN)
1984 goto retry;
1985 if (r < 0)
1986 pfn = KVM_PFN_ERR_FAULT;
1987 } else {
1988 if (async && vma_is_valid(vma, write_fault))
1989 *async = true;
1990 pfn = KVM_PFN_ERR_FAULT;
1991 }
1992 exit:
1993 mmap_read_unlock(current->mm);
1994 return pfn;
1995 }
1996
__gfn_to_pfn_memslot(struct kvm_memory_slot * slot,gfn_t gfn,bool atomic,bool * async,bool write_fault,bool * writable)1997 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1998 bool atomic, bool *async, bool write_fault,
1999 bool *writable)
2000 {
2001 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
2002
2003 if (addr == KVM_HVA_ERR_RO_BAD) {
2004 if (writable)
2005 *writable = false;
2006 return KVM_PFN_ERR_RO_FAULT;
2007 }
2008
2009 if (kvm_is_error_hva(addr)) {
2010 if (writable)
2011 *writable = false;
2012 return KVM_PFN_NOSLOT;
2013 }
2014
2015 /* Do not map writable pfn in the readonly memslot. */
2016 if (writable && memslot_is_readonly(slot)) {
2017 *writable = false;
2018 writable = NULL;
2019 }
2020
2021 return hva_to_pfn(addr, atomic, async, write_fault,
2022 writable);
2023 }
2024 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
2025
gfn_to_pfn_prot(struct kvm * kvm,gfn_t gfn,bool write_fault,bool * writable)2026 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
2027 bool *writable)
2028 {
2029 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
2030 write_fault, writable);
2031 }
2032 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
2033
gfn_to_pfn_memslot(struct kvm_memory_slot * slot,gfn_t gfn)2034 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
2035 {
2036 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
2037 }
2038 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
2039
gfn_to_pfn_memslot_atomic(struct kvm_memory_slot * slot,gfn_t gfn)2040 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
2041 {
2042 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
2043 }
2044 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
2045
kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu * vcpu,gfn_t gfn)2046 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
2047 {
2048 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2049 }
2050 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
2051
gfn_to_pfn(struct kvm * kvm,gfn_t gfn)2052 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
2053 {
2054 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
2055 }
2056 EXPORT_SYMBOL_GPL(gfn_to_pfn);
2057
kvm_vcpu_gfn_to_pfn(struct kvm_vcpu * vcpu,gfn_t gfn)2058 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2059 {
2060 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2061 }
2062 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
2063
gfn_to_page_many_atomic(struct kvm_memory_slot * slot,gfn_t gfn,struct page ** pages,int nr_pages)2064 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2065 struct page **pages, int nr_pages)
2066 {
2067 unsigned long addr;
2068 gfn_t entry = 0;
2069
2070 addr = gfn_to_hva_many(slot, gfn, &entry);
2071 if (kvm_is_error_hva(addr))
2072 return -1;
2073
2074 if (entry < nr_pages)
2075 return 0;
2076
2077 return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
2078 }
2079 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2080
kvm_pfn_to_page(kvm_pfn_t pfn)2081 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
2082 {
2083 if (is_error_noslot_pfn(pfn))
2084 return KVM_ERR_PTR_BAD_PAGE;
2085
2086 if (kvm_is_reserved_pfn(pfn)) {
2087 WARN_ON(1);
2088 return KVM_ERR_PTR_BAD_PAGE;
2089 }
2090
2091 return pfn_to_page(pfn);
2092 }
2093
gfn_to_page(struct kvm * kvm,gfn_t gfn)2094 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2095 {
2096 kvm_pfn_t pfn;
2097
2098 pfn = gfn_to_pfn(kvm, gfn);
2099
2100 return kvm_pfn_to_page(pfn);
2101 }
2102 EXPORT_SYMBOL_GPL(gfn_to_page);
2103
kvm_release_pfn(kvm_pfn_t pfn,bool dirty,struct gfn_to_pfn_cache * cache)2104 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache)
2105 {
2106 if (pfn == 0)
2107 return;
2108
2109 if (cache)
2110 cache->pfn = cache->gfn = 0;
2111
2112 if (dirty)
2113 kvm_release_pfn_dirty(pfn);
2114 else
2115 kvm_release_pfn_clean(pfn);
2116 }
2117
kvm_cache_gfn_to_pfn(struct kvm_memory_slot * slot,gfn_t gfn,struct gfn_to_pfn_cache * cache,u64 gen)2118 static void kvm_cache_gfn_to_pfn(struct kvm_memory_slot *slot, gfn_t gfn,
2119 struct gfn_to_pfn_cache *cache, u64 gen)
2120 {
2121 kvm_release_pfn(cache->pfn, cache->dirty, cache);
2122
2123 cache->pfn = gfn_to_pfn_memslot(slot, gfn);
2124 cache->gfn = gfn;
2125 cache->dirty = false;
2126 cache->generation = gen;
2127 }
2128
__kvm_map_gfn(struct kvm_memslots * slots,gfn_t gfn,struct kvm_host_map * map,struct gfn_to_pfn_cache * cache,bool atomic)2129 static int __kvm_map_gfn(struct kvm_memslots *slots, gfn_t gfn,
2130 struct kvm_host_map *map,
2131 struct gfn_to_pfn_cache *cache,
2132 bool atomic)
2133 {
2134 kvm_pfn_t pfn;
2135 void *hva = NULL;
2136 struct page *page = KVM_UNMAPPED_PAGE;
2137 struct kvm_memory_slot *slot = __gfn_to_memslot(slots, gfn);
2138 u64 gen = slots->generation;
2139
2140 if (!map)
2141 return -EINVAL;
2142
2143 if (cache) {
2144 if (!cache->pfn || cache->gfn != gfn ||
2145 cache->generation != gen) {
2146 if (atomic)
2147 return -EAGAIN;
2148 kvm_cache_gfn_to_pfn(slot, gfn, cache, gen);
2149 }
2150 pfn = cache->pfn;
2151 } else {
2152 if (atomic)
2153 return -EAGAIN;
2154 pfn = gfn_to_pfn_memslot(slot, gfn);
2155 }
2156 if (is_error_noslot_pfn(pfn))
2157 return -EINVAL;
2158
2159 if (pfn_valid(pfn)) {
2160 page = pfn_to_page(pfn);
2161 if (atomic)
2162 hva = kmap_atomic(page);
2163 else
2164 hva = kmap(page);
2165 #ifdef CONFIG_HAS_IOMEM
2166 } else if (!atomic) {
2167 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
2168 } else {
2169 return -EINVAL;
2170 #endif
2171 }
2172
2173 if (!hva)
2174 return -EFAULT;
2175
2176 map->page = page;
2177 map->hva = hva;
2178 map->pfn = pfn;
2179 map->gfn = gfn;
2180
2181 return 0;
2182 }
2183
kvm_map_gfn(struct kvm_vcpu * vcpu,gfn_t gfn,struct kvm_host_map * map,struct gfn_to_pfn_cache * cache,bool atomic)2184 int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
2185 struct gfn_to_pfn_cache *cache, bool atomic)
2186 {
2187 return __kvm_map_gfn(kvm_memslots(vcpu->kvm), gfn, map,
2188 cache, atomic);
2189 }
2190 EXPORT_SYMBOL_GPL(kvm_map_gfn);
2191
kvm_vcpu_map(struct kvm_vcpu * vcpu,gfn_t gfn,struct kvm_host_map * map)2192 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2193 {
2194 return __kvm_map_gfn(kvm_vcpu_memslots(vcpu), gfn, map,
2195 NULL, false);
2196 }
2197 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2198
__kvm_unmap_gfn(struct kvm_memory_slot * memslot,struct kvm_host_map * map,struct gfn_to_pfn_cache * cache,bool dirty,bool atomic)2199 static void __kvm_unmap_gfn(struct kvm_memory_slot *memslot,
2200 struct kvm_host_map *map,
2201 struct gfn_to_pfn_cache *cache,
2202 bool dirty, bool atomic)
2203 {
2204 if (!map)
2205 return;
2206
2207 if (!map->hva)
2208 return;
2209
2210 if (map->page != KVM_UNMAPPED_PAGE) {
2211 if (atomic)
2212 kunmap_atomic(map->hva);
2213 else
2214 kunmap(map->page);
2215 }
2216 #ifdef CONFIG_HAS_IOMEM
2217 else if (!atomic)
2218 memunmap(map->hva);
2219 else
2220 WARN_ONCE(1, "Unexpected unmapping in atomic context");
2221 #endif
2222
2223 if (dirty)
2224 mark_page_dirty_in_slot(memslot, map->gfn);
2225
2226 if (cache)
2227 cache->dirty |= dirty;
2228 else
2229 kvm_release_pfn(map->pfn, dirty, NULL);
2230
2231 map->hva = NULL;
2232 map->page = NULL;
2233 }
2234
kvm_unmap_gfn(struct kvm_vcpu * vcpu,struct kvm_host_map * map,struct gfn_to_pfn_cache * cache,bool dirty,bool atomic)2235 int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map,
2236 struct gfn_to_pfn_cache *cache, bool dirty, bool atomic)
2237 {
2238 __kvm_unmap_gfn(gfn_to_memslot(vcpu->kvm, map->gfn), map,
2239 cache, dirty, atomic);
2240 return 0;
2241 }
2242 EXPORT_SYMBOL_GPL(kvm_unmap_gfn);
2243
kvm_vcpu_unmap(struct kvm_vcpu * vcpu,struct kvm_host_map * map,bool dirty)2244 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2245 {
2246 __kvm_unmap_gfn(kvm_vcpu_gfn_to_memslot(vcpu, map->gfn), map, NULL,
2247 dirty, false);
2248 }
2249 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2250
kvm_vcpu_gfn_to_page(struct kvm_vcpu * vcpu,gfn_t gfn)2251 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
2252 {
2253 kvm_pfn_t pfn;
2254
2255 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
2256
2257 return kvm_pfn_to_page(pfn);
2258 }
2259 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
2260
kvm_release_page_clean(struct page * page)2261 void kvm_release_page_clean(struct page *page)
2262 {
2263 WARN_ON(is_error_page(page));
2264
2265 kvm_release_pfn_clean(page_to_pfn(page));
2266 }
2267 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2268
kvm_release_pfn_clean(kvm_pfn_t pfn)2269 void kvm_release_pfn_clean(kvm_pfn_t pfn)
2270 {
2271 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
2272 put_page(pfn_to_page(pfn));
2273 }
2274 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2275
kvm_release_page_dirty(struct page * page)2276 void kvm_release_page_dirty(struct page *page)
2277 {
2278 WARN_ON(is_error_page(page));
2279
2280 kvm_release_pfn_dirty(page_to_pfn(page));
2281 }
2282 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2283
kvm_release_pfn_dirty(kvm_pfn_t pfn)2284 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2285 {
2286 kvm_set_pfn_dirty(pfn);
2287 kvm_release_pfn_clean(pfn);
2288 }
2289 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2290
kvm_set_pfn_dirty(kvm_pfn_t pfn)2291 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
2292 {
2293 if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2294 SetPageDirty(pfn_to_page(pfn));
2295 }
2296 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2297
kvm_set_pfn_accessed(kvm_pfn_t pfn)2298 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
2299 {
2300 if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2301 mark_page_accessed(pfn_to_page(pfn));
2302 }
2303 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2304
kvm_get_pfn(kvm_pfn_t pfn)2305 void kvm_get_pfn(kvm_pfn_t pfn)
2306 {
2307 if (!kvm_is_reserved_pfn(pfn))
2308 get_page(pfn_to_page(pfn));
2309 }
2310 EXPORT_SYMBOL_GPL(kvm_get_pfn);
2311
next_segment(unsigned long len,int offset)2312 static int next_segment(unsigned long len, int offset)
2313 {
2314 if (len > PAGE_SIZE - offset)
2315 return PAGE_SIZE - offset;
2316 else
2317 return len;
2318 }
2319
__kvm_read_guest_page(struct kvm_memory_slot * slot,gfn_t gfn,void * data,int offset,int len)2320 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
2321 void *data, int offset, int len)
2322 {
2323 int r;
2324 unsigned long addr;
2325
2326 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2327 if (kvm_is_error_hva(addr))
2328 return -EFAULT;
2329 r = __copy_from_user(data, (void __user *)addr + offset, len);
2330 if (r)
2331 return -EFAULT;
2332 return 0;
2333 }
2334
kvm_read_guest_page(struct kvm * kvm,gfn_t gfn,void * data,int offset,int len)2335 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
2336 int len)
2337 {
2338 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2339
2340 return __kvm_read_guest_page(slot, gfn, data, offset, len);
2341 }
2342 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
2343
kvm_vcpu_read_guest_page(struct kvm_vcpu * vcpu,gfn_t gfn,void * data,int offset,int len)2344 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
2345 int offset, int len)
2346 {
2347 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2348
2349 return __kvm_read_guest_page(slot, gfn, data, offset, len);
2350 }
2351 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
2352
kvm_read_guest(struct kvm * kvm,gpa_t gpa,void * data,unsigned long len)2353 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
2354 {
2355 gfn_t gfn = gpa >> PAGE_SHIFT;
2356 int seg;
2357 int offset = offset_in_page(gpa);
2358 int ret;
2359
2360 while ((seg = next_segment(len, offset)) != 0) {
2361 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
2362 if (ret < 0)
2363 return ret;
2364 offset = 0;
2365 len -= seg;
2366 data += seg;
2367 ++gfn;
2368 }
2369 return 0;
2370 }
2371 EXPORT_SYMBOL_GPL(kvm_read_guest);
2372
kvm_vcpu_read_guest(struct kvm_vcpu * vcpu,gpa_t gpa,void * data,unsigned long len)2373 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
2374 {
2375 gfn_t gfn = gpa >> PAGE_SHIFT;
2376 int seg;
2377 int offset = offset_in_page(gpa);
2378 int ret;
2379
2380 while ((seg = next_segment(len, offset)) != 0) {
2381 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
2382 if (ret < 0)
2383 return ret;
2384 offset = 0;
2385 len -= seg;
2386 data += seg;
2387 ++gfn;
2388 }
2389 return 0;
2390 }
2391 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
2392
__kvm_read_guest_atomic(struct kvm_memory_slot * slot,gfn_t gfn,void * data,int offset,unsigned long len)2393 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2394 void *data, int offset, unsigned long len)
2395 {
2396 int r;
2397 unsigned long addr;
2398
2399 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2400 if (kvm_is_error_hva(addr))
2401 return -EFAULT;
2402 pagefault_disable();
2403 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
2404 pagefault_enable();
2405 if (r)
2406 return -EFAULT;
2407 return 0;
2408 }
2409
kvm_vcpu_read_guest_atomic(struct kvm_vcpu * vcpu,gpa_t gpa,void * data,unsigned long len)2410 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
2411 void *data, unsigned long len)
2412 {
2413 gfn_t gfn = gpa >> PAGE_SHIFT;
2414 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2415 int offset = offset_in_page(gpa);
2416
2417 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2418 }
2419 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
2420
__kvm_write_guest_page(struct kvm_memory_slot * memslot,gfn_t gfn,const void * data,int offset,int len)2421 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
2422 const void *data, int offset, int len)
2423 {
2424 int r;
2425 unsigned long addr;
2426
2427 addr = gfn_to_hva_memslot(memslot, gfn);
2428 if (kvm_is_error_hva(addr))
2429 return -EFAULT;
2430 r = __copy_to_user((void __user *)addr + offset, data, len);
2431 if (r)
2432 return -EFAULT;
2433 mark_page_dirty_in_slot(memslot, gfn);
2434 return 0;
2435 }
2436
kvm_write_guest_page(struct kvm * kvm,gfn_t gfn,const void * data,int offset,int len)2437 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2438 const void *data, int offset, int len)
2439 {
2440 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2441
2442 return __kvm_write_guest_page(slot, gfn, data, offset, len);
2443 }
2444 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2445
kvm_vcpu_write_guest_page(struct kvm_vcpu * vcpu,gfn_t gfn,const void * data,int offset,int len)2446 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2447 const void *data, int offset, int len)
2448 {
2449 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2450
2451 return __kvm_write_guest_page(slot, gfn, data, offset, len);
2452 }
2453 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2454
kvm_write_guest(struct kvm * kvm,gpa_t gpa,const void * data,unsigned long len)2455 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2456 unsigned long len)
2457 {
2458 gfn_t gfn = gpa >> PAGE_SHIFT;
2459 int seg;
2460 int offset = offset_in_page(gpa);
2461 int ret;
2462
2463 while ((seg = next_segment(len, offset)) != 0) {
2464 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2465 if (ret < 0)
2466 return ret;
2467 offset = 0;
2468 len -= seg;
2469 data += seg;
2470 ++gfn;
2471 }
2472 return 0;
2473 }
2474 EXPORT_SYMBOL_GPL(kvm_write_guest);
2475
kvm_vcpu_write_guest(struct kvm_vcpu * vcpu,gpa_t gpa,const void * data,unsigned long len)2476 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2477 unsigned long len)
2478 {
2479 gfn_t gfn = gpa >> PAGE_SHIFT;
2480 int seg;
2481 int offset = offset_in_page(gpa);
2482 int ret;
2483
2484 while ((seg = next_segment(len, offset)) != 0) {
2485 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
2486 if (ret < 0)
2487 return ret;
2488 offset = 0;
2489 len -= seg;
2490 data += seg;
2491 ++gfn;
2492 }
2493 return 0;
2494 }
2495 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2496
__kvm_gfn_to_hva_cache_init(struct kvm_memslots * slots,struct gfn_to_hva_cache * ghc,gpa_t gpa,unsigned long len)2497 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2498 struct gfn_to_hva_cache *ghc,
2499 gpa_t gpa, unsigned long len)
2500 {
2501 int offset = offset_in_page(gpa);
2502 gfn_t start_gfn = gpa >> PAGE_SHIFT;
2503 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2504 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2505 gfn_t nr_pages_avail;
2506
2507 /* Update ghc->generation before performing any error checks. */
2508 ghc->generation = slots->generation;
2509
2510 if (start_gfn > end_gfn) {
2511 ghc->hva = KVM_HVA_ERR_BAD;
2512 return -EINVAL;
2513 }
2514
2515 /*
2516 * If the requested region crosses two memslots, we still
2517 * verify that the entire region is valid here.
2518 */
2519 for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
2520 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2521 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2522 &nr_pages_avail);
2523 if (kvm_is_error_hva(ghc->hva))
2524 return -EFAULT;
2525 }
2526
2527 /* Use the slow path for cross page reads and writes. */
2528 if (nr_pages_needed == 1)
2529 ghc->hva += offset;
2530 else
2531 ghc->memslot = NULL;
2532
2533 ghc->gpa = gpa;
2534 ghc->len = len;
2535 return 0;
2536 }
2537
kvm_gfn_to_hva_cache_init(struct kvm * kvm,struct gfn_to_hva_cache * ghc,gpa_t gpa,unsigned long len)2538 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2539 gpa_t gpa, unsigned long len)
2540 {
2541 struct kvm_memslots *slots = kvm_memslots(kvm);
2542 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2543 }
2544 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2545
kvm_write_guest_offset_cached(struct kvm * kvm,struct gfn_to_hva_cache * ghc,void * data,unsigned int offset,unsigned long len)2546 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2547 void *data, unsigned int offset,
2548 unsigned long len)
2549 {
2550 struct kvm_memslots *slots = kvm_memslots(kvm);
2551 int r;
2552 gpa_t gpa = ghc->gpa + offset;
2553
2554 BUG_ON(len + offset > ghc->len);
2555
2556 if (slots->generation != ghc->generation) {
2557 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2558 return -EFAULT;
2559 }
2560
2561 if (kvm_is_error_hva(ghc->hva))
2562 return -EFAULT;
2563
2564 if (unlikely(!ghc->memslot))
2565 return kvm_write_guest(kvm, gpa, data, len);
2566
2567 r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2568 if (r)
2569 return -EFAULT;
2570 mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
2571
2572 return 0;
2573 }
2574 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2575
kvm_write_guest_cached(struct kvm * kvm,struct gfn_to_hva_cache * ghc,void * data,unsigned long len)2576 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2577 void *data, unsigned long len)
2578 {
2579 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2580 }
2581 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2582
kvm_read_guest_offset_cached(struct kvm * kvm,struct gfn_to_hva_cache * ghc,void * data,unsigned int offset,unsigned long len)2583 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2584 void *data, unsigned int offset,
2585 unsigned long len)
2586 {
2587 struct kvm_memslots *slots = kvm_memslots(kvm);
2588 int r;
2589 gpa_t gpa = ghc->gpa + offset;
2590
2591 BUG_ON(len + offset > ghc->len);
2592
2593 if (slots->generation != ghc->generation) {
2594 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2595 return -EFAULT;
2596 }
2597
2598 if (kvm_is_error_hva(ghc->hva))
2599 return -EFAULT;
2600
2601 if (unlikely(!ghc->memslot))
2602 return kvm_read_guest(kvm, gpa, data, len);
2603
2604 r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
2605 if (r)
2606 return -EFAULT;
2607
2608 return 0;
2609 }
2610 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
2611
kvm_read_guest_cached(struct kvm * kvm,struct gfn_to_hva_cache * ghc,void * data,unsigned long len)2612 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2613 void *data, unsigned long len)
2614 {
2615 return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
2616 }
2617 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2618
kvm_clear_guest_page(struct kvm * kvm,gfn_t gfn,int offset,int len)2619 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2620 {
2621 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2622
2623 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2624 }
2625 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2626
kvm_clear_guest(struct kvm * kvm,gpa_t gpa,unsigned long len)2627 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2628 {
2629 gfn_t gfn = gpa >> PAGE_SHIFT;
2630 int seg;
2631 int offset = offset_in_page(gpa);
2632 int ret;
2633
2634 while ((seg = next_segment(len, offset)) != 0) {
2635 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2636 if (ret < 0)
2637 return ret;
2638 offset = 0;
2639 len -= seg;
2640 ++gfn;
2641 }
2642 return 0;
2643 }
2644 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2645
mark_page_dirty_in_slot(struct kvm_memory_slot * memslot,gfn_t gfn)2646 void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn)
2647 {
2648 if (memslot && memslot->dirty_bitmap) {
2649 unsigned long rel_gfn = gfn - memslot->base_gfn;
2650
2651 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2652 }
2653 }
2654 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
2655
mark_page_dirty(struct kvm * kvm,gfn_t gfn)2656 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2657 {
2658 struct kvm_memory_slot *memslot;
2659
2660 memslot = gfn_to_memslot(kvm, gfn);
2661 mark_page_dirty_in_slot(memslot, gfn);
2662 }
2663 EXPORT_SYMBOL_GPL(mark_page_dirty);
2664
kvm_vcpu_mark_page_dirty(struct kvm_vcpu * vcpu,gfn_t gfn)2665 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2666 {
2667 struct kvm_memory_slot *memslot;
2668
2669 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2670 mark_page_dirty_in_slot(memslot, gfn);
2671 }
2672 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2673
kvm_sigset_activate(struct kvm_vcpu * vcpu)2674 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2675 {
2676 if (!vcpu->sigset_active)
2677 return;
2678
2679 /*
2680 * This does a lockless modification of ->real_blocked, which is fine
2681 * because, only current can change ->real_blocked and all readers of
2682 * ->real_blocked don't care as long ->real_blocked is always a subset
2683 * of ->blocked.
2684 */
2685 sigprocmask(SIG_SETMASK, &vcpu->sigset, ¤t->real_blocked);
2686 }
2687
kvm_sigset_deactivate(struct kvm_vcpu * vcpu)2688 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2689 {
2690 if (!vcpu->sigset_active)
2691 return;
2692
2693 sigprocmask(SIG_SETMASK, ¤t->real_blocked, NULL);
2694 sigemptyset(¤t->real_blocked);
2695 }
2696
grow_halt_poll_ns(struct kvm_vcpu * vcpu)2697 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2698 {
2699 unsigned int old, val, grow, grow_start;
2700
2701 old = val = vcpu->halt_poll_ns;
2702 grow_start = READ_ONCE(halt_poll_ns_grow_start);
2703 grow = READ_ONCE(halt_poll_ns_grow);
2704 if (!grow)
2705 goto out;
2706
2707 val *= grow;
2708 if (val < grow_start)
2709 val = grow_start;
2710
2711 if (val > halt_poll_ns)
2712 val = halt_poll_ns;
2713
2714 vcpu->halt_poll_ns = val;
2715 out:
2716 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2717 }
2718
shrink_halt_poll_ns(struct kvm_vcpu * vcpu)2719 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2720 {
2721 unsigned int old, val, shrink;
2722
2723 old = val = vcpu->halt_poll_ns;
2724 shrink = READ_ONCE(halt_poll_ns_shrink);
2725 if (shrink == 0)
2726 val = 0;
2727 else
2728 val /= shrink;
2729
2730 vcpu->halt_poll_ns = val;
2731 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2732 }
2733
kvm_vcpu_check_block(struct kvm_vcpu * vcpu)2734 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2735 {
2736 int ret = -EINTR;
2737 int idx = srcu_read_lock(&vcpu->kvm->srcu);
2738
2739 if (kvm_arch_vcpu_runnable(vcpu)) {
2740 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2741 goto out;
2742 }
2743 if (kvm_cpu_has_pending_timer(vcpu))
2744 goto out;
2745 if (signal_pending(current))
2746 goto out;
2747
2748 ret = 0;
2749 out:
2750 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2751 return ret;
2752 }
2753
2754 static inline void
update_halt_poll_stats(struct kvm_vcpu * vcpu,u64 poll_ns,bool waited)2755 update_halt_poll_stats(struct kvm_vcpu *vcpu, u64 poll_ns, bool waited)
2756 {
2757 if (waited)
2758 vcpu->stat.halt_poll_fail_ns += poll_ns;
2759 else
2760 vcpu->stat.halt_poll_success_ns += poll_ns;
2761 }
2762
2763 /*
2764 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2765 */
kvm_vcpu_block(struct kvm_vcpu * vcpu)2766 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2767 {
2768 ktime_t start, cur, poll_end;
2769 bool waited = false;
2770 u64 block_ns;
2771
2772 kvm_arch_vcpu_blocking(vcpu);
2773
2774 start = cur = poll_end = ktime_get();
2775 if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) {
2776 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2777
2778 ++vcpu->stat.halt_attempted_poll;
2779 do {
2780 /*
2781 * This sets KVM_REQ_UNHALT if an interrupt
2782 * arrives.
2783 */
2784 if (kvm_vcpu_check_block(vcpu) < 0) {
2785 ++vcpu->stat.halt_successful_poll;
2786 if (!vcpu_valid_wakeup(vcpu))
2787 ++vcpu->stat.halt_poll_invalid;
2788 goto out;
2789 }
2790 poll_end = cur = ktime_get();
2791 } while (single_task_running() && ktime_before(cur, stop));
2792 }
2793
2794 prepare_to_rcuwait(&vcpu->wait);
2795 for (;;) {
2796 set_current_state(TASK_INTERRUPTIBLE);
2797
2798 if (kvm_vcpu_check_block(vcpu) < 0)
2799 break;
2800
2801 waited = true;
2802 schedule();
2803 }
2804 finish_rcuwait(&vcpu->wait);
2805 cur = ktime_get();
2806 out:
2807 kvm_arch_vcpu_unblocking(vcpu);
2808 block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2809
2810 update_halt_poll_stats(
2811 vcpu, ktime_to_ns(ktime_sub(poll_end, start)), waited);
2812
2813 if (!kvm_arch_no_poll(vcpu)) {
2814 if (!vcpu_valid_wakeup(vcpu)) {
2815 shrink_halt_poll_ns(vcpu);
2816 } else if (vcpu->kvm->max_halt_poll_ns) {
2817 if (block_ns <= vcpu->halt_poll_ns)
2818 ;
2819 /* we had a long block, shrink polling */
2820 else if (vcpu->halt_poll_ns &&
2821 block_ns > vcpu->kvm->max_halt_poll_ns)
2822 shrink_halt_poll_ns(vcpu);
2823 /* we had a short halt and our poll time is too small */
2824 else if (vcpu->halt_poll_ns < vcpu->kvm->max_halt_poll_ns &&
2825 block_ns < vcpu->kvm->max_halt_poll_ns)
2826 grow_halt_poll_ns(vcpu);
2827 } else {
2828 vcpu->halt_poll_ns = 0;
2829 }
2830 }
2831
2832 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2833 kvm_arch_vcpu_block_finish(vcpu);
2834 }
2835 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2836
kvm_vcpu_wake_up(struct kvm_vcpu * vcpu)2837 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2838 {
2839 struct rcuwait *waitp;
2840
2841 waitp = kvm_arch_vcpu_get_wait(vcpu);
2842 if (rcuwait_wake_up(waitp)) {
2843 WRITE_ONCE(vcpu->ready, true);
2844 ++vcpu->stat.halt_wakeup;
2845 return true;
2846 }
2847
2848 return false;
2849 }
2850 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2851
2852 #ifndef CONFIG_S390
2853 /*
2854 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2855 */
kvm_vcpu_kick(struct kvm_vcpu * vcpu)2856 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2857 {
2858 int me;
2859 int cpu = vcpu->cpu;
2860
2861 if (kvm_vcpu_wake_up(vcpu))
2862 return;
2863
2864 me = get_cpu();
2865 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2866 if (kvm_arch_vcpu_should_kick(vcpu))
2867 smp_send_reschedule(cpu);
2868 put_cpu();
2869 }
2870 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2871 #endif /* !CONFIG_S390 */
2872
kvm_vcpu_yield_to(struct kvm_vcpu * target)2873 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2874 {
2875 struct pid *pid;
2876 struct task_struct *task = NULL;
2877 int ret = 0;
2878
2879 rcu_read_lock();
2880 pid = rcu_dereference(target->pid);
2881 if (pid)
2882 task = get_pid_task(pid, PIDTYPE_PID);
2883 rcu_read_unlock();
2884 if (!task)
2885 return ret;
2886 ret = yield_to(task, 1);
2887 put_task_struct(task);
2888
2889 return ret;
2890 }
2891 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2892
2893 /*
2894 * Helper that checks whether a VCPU is eligible for directed yield.
2895 * Most eligible candidate to yield is decided by following heuristics:
2896 *
2897 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2898 * (preempted lock holder), indicated by @in_spin_loop.
2899 * Set at the beginning and cleared at the end of interception/PLE handler.
2900 *
2901 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2902 * chance last time (mostly it has become eligible now since we have probably
2903 * yielded to lockholder in last iteration. This is done by toggling
2904 * @dy_eligible each time a VCPU checked for eligibility.)
2905 *
2906 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2907 * to preempted lock-holder could result in wrong VCPU selection and CPU
2908 * burning. Giving priority for a potential lock-holder increases lock
2909 * progress.
2910 *
2911 * Since algorithm is based on heuristics, accessing another VCPU data without
2912 * locking does not harm. It may result in trying to yield to same VCPU, fail
2913 * and continue with next VCPU and so on.
2914 */
kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu * vcpu)2915 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2916 {
2917 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2918 bool eligible;
2919
2920 eligible = !vcpu->spin_loop.in_spin_loop ||
2921 vcpu->spin_loop.dy_eligible;
2922
2923 if (vcpu->spin_loop.in_spin_loop)
2924 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2925
2926 return eligible;
2927 #else
2928 return true;
2929 #endif
2930 }
2931
2932 /*
2933 * Unlike kvm_arch_vcpu_runnable, this function is called outside
2934 * a vcpu_load/vcpu_put pair. However, for most architectures
2935 * kvm_arch_vcpu_runnable does not require vcpu_load.
2936 */
kvm_arch_dy_runnable(struct kvm_vcpu * vcpu)2937 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
2938 {
2939 return kvm_arch_vcpu_runnable(vcpu);
2940 }
2941
vcpu_dy_runnable(struct kvm_vcpu * vcpu)2942 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
2943 {
2944 if (kvm_arch_dy_runnable(vcpu))
2945 return true;
2946
2947 #ifdef CONFIG_KVM_ASYNC_PF
2948 if (!list_empty_careful(&vcpu->async_pf.done))
2949 return true;
2950 #endif
2951
2952 return false;
2953 }
2954
kvm_vcpu_on_spin(struct kvm_vcpu * me,bool yield_to_kernel_mode)2955 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2956 {
2957 struct kvm *kvm = me->kvm;
2958 struct kvm_vcpu *vcpu;
2959 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2960 int yielded = 0;
2961 int try = 3;
2962 int pass;
2963 int i;
2964
2965 kvm_vcpu_set_in_spin_loop(me, true);
2966 /*
2967 * We boost the priority of a VCPU that is runnable but not
2968 * currently running, because it got preempted by something
2969 * else and called schedule in __vcpu_run. Hopefully that
2970 * VCPU is holding the lock that we need and will release it.
2971 * We approximate round-robin by starting at the last boosted VCPU.
2972 */
2973 for (pass = 0; pass < 2 && !yielded && try; pass++) {
2974 kvm_for_each_vcpu(i, vcpu, kvm) {
2975 if (!pass && i <= last_boosted_vcpu) {
2976 i = last_boosted_vcpu;
2977 continue;
2978 } else if (pass && i > last_boosted_vcpu)
2979 break;
2980 if (!READ_ONCE(vcpu->ready))
2981 continue;
2982 if (vcpu == me)
2983 continue;
2984 if (rcuwait_active(&vcpu->wait) &&
2985 !vcpu_dy_runnable(vcpu))
2986 continue;
2987 if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
2988 !kvm_arch_vcpu_in_kernel(vcpu))
2989 continue;
2990 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2991 continue;
2992
2993 yielded = kvm_vcpu_yield_to(vcpu);
2994 if (yielded > 0) {
2995 kvm->last_boosted_vcpu = i;
2996 break;
2997 } else if (yielded < 0) {
2998 try--;
2999 if (!try)
3000 break;
3001 }
3002 }
3003 }
3004 kvm_vcpu_set_in_spin_loop(me, false);
3005
3006 /* Ensure vcpu is not eligible during next spinloop */
3007 kvm_vcpu_set_dy_eligible(me, false);
3008 }
3009 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
3010
kvm_vcpu_fault(struct vm_fault * vmf)3011 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
3012 {
3013 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
3014 struct page *page;
3015
3016 if (vmf->pgoff == 0)
3017 page = virt_to_page(vcpu->run);
3018 #ifdef CONFIG_X86
3019 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
3020 page = virt_to_page(vcpu->arch.pio_data);
3021 #endif
3022 #ifdef CONFIG_KVM_MMIO
3023 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
3024 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
3025 #endif
3026 else
3027 return kvm_arch_vcpu_fault(vcpu, vmf);
3028 get_page(page);
3029 vmf->page = page;
3030 return 0;
3031 }
3032
3033 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
3034 .fault = kvm_vcpu_fault,
3035 };
3036
kvm_vcpu_mmap(struct file * file,struct vm_area_struct * vma)3037 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
3038 {
3039 vma->vm_ops = &kvm_vcpu_vm_ops;
3040 return 0;
3041 }
3042
kvm_vcpu_release(struct inode * inode,struct file * filp)3043 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
3044 {
3045 struct kvm_vcpu *vcpu = filp->private_data;
3046
3047 kvm_put_kvm(vcpu->kvm);
3048 return 0;
3049 }
3050
3051 static struct file_operations kvm_vcpu_fops = {
3052 .release = kvm_vcpu_release,
3053 .unlocked_ioctl = kvm_vcpu_ioctl,
3054 .mmap = kvm_vcpu_mmap,
3055 .llseek = noop_llseek,
3056 KVM_COMPAT(kvm_vcpu_compat_ioctl),
3057 };
3058
3059 /*
3060 * Allocates an inode for the vcpu.
3061 */
create_vcpu_fd(struct kvm_vcpu * vcpu)3062 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
3063 {
3064 char name[8 + 1 + ITOA_MAX_LEN + 1];
3065
3066 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
3067 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
3068 }
3069
kvm_create_vcpu_debugfs(struct kvm_vcpu * vcpu)3070 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
3071 {
3072 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
3073 struct dentry *debugfs_dentry;
3074 char dir_name[ITOA_MAX_LEN * 2];
3075
3076 if (!debugfs_initialized())
3077 return;
3078
3079 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
3080 debugfs_dentry = debugfs_create_dir(dir_name,
3081 vcpu->kvm->debugfs_dentry);
3082
3083 kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
3084 #endif
3085 }
3086
3087 /*
3088 * Creates some virtual cpus. Good luck creating more than one.
3089 */
kvm_vm_ioctl_create_vcpu(struct kvm * kvm,u32 id)3090 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
3091 {
3092 int r;
3093 struct kvm_vcpu *vcpu;
3094 struct page *page;
3095
3096 if (id >= KVM_MAX_VCPU_ID)
3097 return -EINVAL;
3098
3099 mutex_lock(&kvm->lock);
3100 if (kvm->created_vcpus == KVM_MAX_VCPUS) {
3101 mutex_unlock(&kvm->lock);
3102 return -EINVAL;
3103 }
3104
3105 kvm->created_vcpus++;
3106 mutex_unlock(&kvm->lock);
3107
3108 r = kvm_arch_vcpu_precreate(kvm, id);
3109 if (r)
3110 goto vcpu_decrement;
3111
3112 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
3113 if (!vcpu) {
3114 r = -ENOMEM;
3115 goto vcpu_decrement;
3116 }
3117
3118 BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
3119 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
3120 if (!page) {
3121 r = -ENOMEM;
3122 goto vcpu_free;
3123 }
3124 vcpu->run = page_address(page);
3125
3126 kvm_vcpu_init(vcpu, kvm, id);
3127
3128 r = kvm_arch_vcpu_create(vcpu);
3129 if (r)
3130 goto vcpu_free_run_page;
3131
3132 mutex_lock(&kvm->lock);
3133 if (kvm_get_vcpu_by_id(kvm, id)) {
3134 r = -EEXIST;
3135 goto unlock_vcpu_destroy;
3136 }
3137
3138 vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
3139 BUG_ON(kvm->vcpus[vcpu->vcpu_idx]);
3140
3141 /* Now it's all set up, let userspace reach it */
3142 kvm_get_kvm(kvm);
3143 r = create_vcpu_fd(vcpu);
3144 if (r < 0) {
3145 kvm_put_kvm_no_destroy(kvm);
3146 goto unlock_vcpu_destroy;
3147 }
3148
3149 kvm->vcpus[vcpu->vcpu_idx] = vcpu;
3150
3151 /*
3152 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus
3153 * before kvm->online_vcpu's incremented value.
3154 */
3155 smp_wmb();
3156 atomic_inc(&kvm->online_vcpus);
3157
3158 mutex_unlock(&kvm->lock);
3159 kvm_arch_vcpu_postcreate(vcpu);
3160 kvm_create_vcpu_debugfs(vcpu);
3161 return r;
3162
3163 unlock_vcpu_destroy:
3164 mutex_unlock(&kvm->lock);
3165 kvm_arch_vcpu_destroy(vcpu);
3166 vcpu_free_run_page:
3167 free_page((unsigned long)vcpu->run);
3168 vcpu_free:
3169 kmem_cache_free(kvm_vcpu_cache, vcpu);
3170 vcpu_decrement:
3171 mutex_lock(&kvm->lock);
3172 kvm->created_vcpus--;
3173 mutex_unlock(&kvm->lock);
3174 return r;
3175 }
3176
kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu * vcpu,sigset_t * sigset)3177 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
3178 {
3179 if (sigset) {
3180 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
3181 vcpu->sigset_active = 1;
3182 vcpu->sigset = *sigset;
3183 } else
3184 vcpu->sigset_active = 0;
3185 return 0;
3186 }
3187
kvm_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)3188 static long kvm_vcpu_ioctl(struct file *filp,
3189 unsigned int ioctl, unsigned long arg)
3190 {
3191 struct kvm_vcpu *vcpu = filp->private_data;
3192 void __user *argp = (void __user *)arg;
3193 int r;
3194 struct kvm_fpu *fpu = NULL;
3195 struct kvm_sregs *kvm_sregs = NULL;
3196
3197 if (vcpu->kvm->mm != current->mm)
3198 return -EIO;
3199
3200 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
3201 return -EINVAL;
3202
3203 /*
3204 * Some architectures have vcpu ioctls that are asynchronous to vcpu
3205 * execution; mutex_lock() would break them.
3206 */
3207 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
3208 if (r != -ENOIOCTLCMD)
3209 return r;
3210
3211 if (mutex_lock_killable(&vcpu->mutex))
3212 return -EINTR;
3213 switch (ioctl) {
3214 case KVM_RUN: {
3215 struct pid *oldpid;
3216 r = -EINVAL;
3217 if (arg)
3218 goto out;
3219 oldpid = rcu_access_pointer(vcpu->pid);
3220 if (unlikely(oldpid != task_pid(current))) {
3221 /* The thread running this VCPU changed. */
3222 struct pid *newpid;
3223
3224 r = kvm_arch_vcpu_run_pid_change(vcpu);
3225 if (r)
3226 break;
3227
3228 newpid = get_task_pid(current, PIDTYPE_PID);
3229 rcu_assign_pointer(vcpu->pid, newpid);
3230 if (oldpid)
3231 synchronize_rcu();
3232 put_pid(oldpid);
3233 }
3234 r = kvm_arch_vcpu_ioctl_run(vcpu);
3235 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
3236 break;
3237 }
3238 case KVM_GET_REGS: {
3239 struct kvm_regs *kvm_regs;
3240
3241 r = -ENOMEM;
3242 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
3243 if (!kvm_regs)
3244 goto out;
3245 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
3246 if (r)
3247 goto out_free1;
3248 r = -EFAULT;
3249 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
3250 goto out_free1;
3251 r = 0;
3252 out_free1:
3253 kfree(kvm_regs);
3254 break;
3255 }
3256 case KVM_SET_REGS: {
3257 struct kvm_regs *kvm_regs;
3258
3259 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
3260 if (IS_ERR(kvm_regs)) {
3261 r = PTR_ERR(kvm_regs);
3262 goto out;
3263 }
3264 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
3265 kfree(kvm_regs);
3266 break;
3267 }
3268 case KVM_GET_SREGS: {
3269 kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
3270 GFP_KERNEL_ACCOUNT);
3271 r = -ENOMEM;
3272 if (!kvm_sregs)
3273 goto out;
3274 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
3275 if (r)
3276 goto out;
3277 r = -EFAULT;
3278 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
3279 goto out;
3280 r = 0;
3281 break;
3282 }
3283 case KVM_SET_SREGS: {
3284 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
3285 if (IS_ERR(kvm_sregs)) {
3286 r = PTR_ERR(kvm_sregs);
3287 kvm_sregs = NULL;
3288 goto out;
3289 }
3290 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
3291 break;
3292 }
3293 case KVM_GET_MP_STATE: {
3294 struct kvm_mp_state mp_state;
3295
3296 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
3297 if (r)
3298 goto out;
3299 r = -EFAULT;
3300 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
3301 goto out;
3302 r = 0;
3303 break;
3304 }
3305 case KVM_SET_MP_STATE: {
3306 struct kvm_mp_state mp_state;
3307
3308 r = -EFAULT;
3309 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
3310 goto out;
3311 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
3312 break;
3313 }
3314 case KVM_TRANSLATE: {
3315 struct kvm_translation tr;
3316
3317 r = -EFAULT;
3318 if (copy_from_user(&tr, argp, sizeof(tr)))
3319 goto out;
3320 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
3321 if (r)
3322 goto out;
3323 r = -EFAULT;
3324 if (copy_to_user(argp, &tr, sizeof(tr)))
3325 goto out;
3326 r = 0;
3327 break;
3328 }
3329 case KVM_SET_GUEST_DEBUG: {
3330 struct kvm_guest_debug dbg;
3331
3332 r = -EFAULT;
3333 if (copy_from_user(&dbg, argp, sizeof(dbg)))
3334 goto out;
3335 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
3336 break;
3337 }
3338 case KVM_SET_SIGNAL_MASK: {
3339 struct kvm_signal_mask __user *sigmask_arg = argp;
3340 struct kvm_signal_mask kvm_sigmask;
3341 sigset_t sigset, *p;
3342
3343 p = NULL;
3344 if (argp) {
3345 r = -EFAULT;
3346 if (copy_from_user(&kvm_sigmask, argp,
3347 sizeof(kvm_sigmask)))
3348 goto out;
3349 r = -EINVAL;
3350 if (kvm_sigmask.len != sizeof(sigset))
3351 goto out;
3352 r = -EFAULT;
3353 if (copy_from_user(&sigset, sigmask_arg->sigset,
3354 sizeof(sigset)))
3355 goto out;
3356 p = &sigset;
3357 }
3358 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
3359 break;
3360 }
3361 case KVM_GET_FPU: {
3362 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
3363 r = -ENOMEM;
3364 if (!fpu)
3365 goto out;
3366 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
3367 if (r)
3368 goto out;
3369 r = -EFAULT;
3370 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
3371 goto out;
3372 r = 0;
3373 break;
3374 }
3375 case KVM_SET_FPU: {
3376 fpu = memdup_user(argp, sizeof(*fpu));
3377 if (IS_ERR(fpu)) {
3378 r = PTR_ERR(fpu);
3379 fpu = NULL;
3380 goto out;
3381 }
3382 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
3383 break;
3384 }
3385 default:
3386 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
3387 }
3388 out:
3389 mutex_unlock(&vcpu->mutex);
3390 kfree(fpu);
3391 kfree(kvm_sregs);
3392 return r;
3393 }
3394
3395 #ifdef CONFIG_KVM_COMPAT
kvm_vcpu_compat_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)3396 static long kvm_vcpu_compat_ioctl(struct file *filp,
3397 unsigned int ioctl, unsigned long arg)
3398 {
3399 struct kvm_vcpu *vcpu = filp->private_data;
3400 void __user *argp = compat_ptr(arg);
3401 int r;
3402
3403 if (vcpu->kvm->mm != current->mm)
3404 return -EIO;
3405
3406 switch (ioctl) {
3407 case KVM_SET_SIGNAL_MASK: {
3408 struct kvm_signal_mask __user *sigmask_arg = argp;
3409 struct kvm_signal_mask kvm_sigmask;
3410 sigset_t sigset;
3411
3412 if (argp) {
3413 r = -EFAULT;
3414 if (copy_from_user(&kvm_sigmask, argp,
3415 sizeof(kvm_sigmask)))
3416 goto out;
3417 r = -EINVAL;
3418 if (kvm_sigmask.len != sizeof(compat_sigset_t))
3419 goto out;
3420 r = -EFAULT;
3421 if (get_compat_sigset(&sigset,
3422 (compat_sigset_t __user *)sigmask_arg->sigset))
3423 goto out;
3424 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
3425 } else
3426 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
3427 break;
3428 }
3429 default:
3430 r = kvm_vcpu_ioctl(filp, ioctl, arg);
3431 }
3432
3433 out:
3434 return r;
3435 }
3436 #endif
3437
kvm_device_mmap(struct file * filp,struct vm_area_struct * vma)3438 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
3439 {
3440 struct kvm_device *dev = filp->private_data;
3441
3442 if (dev->ops->mmap)
3443 return dev->ops->mmap(dev, vma);
3444
3445 return -ENODEV;
3446 }
3447
kvm_device_ioctl_attr(struct kvm_device * dev,int (* accessor)(struct kvm_device * dev,struct kvm_device_attr * attr),unsigned long arg)3448 static int kvm_device_ioctl_attr(struct kvm_device *dev,
3449 int (*accessor)(struct kvm_device *dev,
3450 struct kvm_device_attr *attr),
3451 unsigned long arg)
3452 {
3453 struct kvm_device_attr attr;
3454
3455 if (!accessor)
3456 return -EPERM;
3457
3458 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
3459 return -EFAULT;
3460
3461 return accessor(dev, &attr);
3462 }
3463
kvm_device_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)3464 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
3465 unsigned long arg)
3466 {
3467 struct kvm_device *dev = filp->private_data;
3468
3469 if (dev->kvm->mm != current->mm)
3470 return -EIO;
3471
3472 switch (ioctl) {
3473 case KVM_SET_DEVICE_ATTR:
3474 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
3475 case KVM_GET_DEVICE_ATTR:
3476 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
3477 case KVM_HAS_DEVICE_ATTR:
3478 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
3479 default:
3480 if (dev->ops->ioctl)
3481 return dev->ops->ioctl(dev, ioctl, arg);
3482
3483 return -ENOTTY;
3484 }
3485 }
3486
kvm_device_release(struct inode * inode,struct file * filp)3487 static int kvm_device_release(struct inode *inode, struct file *filp)
3488 {
3489 struct kvm_device *dev = filp->private_data;
3490 struct kvm *kvm = dev->kvm;
3491
3492 if (dev->ops->release) {
3493 mutex_lock(&kvm->lock);
3494 list_del(&dev->vm_node);
3495 dev->ops->release(dev);
3496 mutex_unlock(&kvm->lock);
3497 }
3498
3499 kvm_put_kvm(kvm);
3500 return 0;
3501 }
3502
3503 static const struct file_operations kvm_device_fops = {
3504 .unlocked_ioctl = kvm_device_ioctl,
3505 .release = kvm_device_release,
3506 KVM_COMPAT(kvm_device_ioctl),
3507 .mmap = kvm_device_mmap,
3508 };
3509
kvm_device_from_filp(struct file * filp)3510 struct kvm_device *kvm_device_from_filp(struct file *filp)
3511 {
3512 if (filp->f_op != &kvm_device_fops)
3513 return NULL;
3514
3515 return filp->private_data;
3516 }
3517
3518 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
3519 #ifdef CONFIG_KVM_MPIC
3520 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
3521 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
3522 #endif
3523 };
3524
kvm_register_device_ops(const struct kvm_device_ops * ops,u32 type)3525 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
3526 {
3527 if (type >= ARRAY_SIZE(kvm_device_ops_table))
3528 return -ENOSPC;
3529
3530 if (kvm_device_ops_table[type] != NULL)
3531 return -EEXIST;
3532
3533 kvm_device_ops_table[type] = ops;
3534 return 0;
3535 }
3536
kvm_unregister_device_ops(u32 type)3537 void kvm_unregister_device_ops(u32 type)
3538 {
3539 if (kvm_device_ops_table[type] != NULL)
3540 kvm_device_ops_table[type] = NULL;
3541 }
3542
kvm_ioctl_create_device(struct kvm * kvm,struct kvm_create_device * cd)3543 static int kvm_ioctl_create_device(struct kvm *kvm,
3544 struct kvm_create_device *cd)
3545 {
3546 const struct kvm_device_ops *ops = NULL;
3547 struct kvm_device *dev;
3548 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
3549 int type;
3550 int ret;
3551
3552 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
3553 return -ENODEV;
3554
3555 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
3556 ops = kvm_device_ops_table[type];
3557 if (ops == NULL)
3558 return -ENODEV;
3559
3560 if (test)
3561 return 0;
3562
3563 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
3564 if (!dev)
3565 return -ENOMEM;
3566
3567 dev->ops = ops;
3568 dev->kvm = kvm;
3569
3570 mutex_lock(&kvm->lock);
3571 ret = ops->create(dev, type);
3572 if (ret < 0) {
3573 mutex_unlock(&kvm->lock);
3574 kfree(dev);
3575 return ret;
3576 }
3577 list_add(&dev->vm_node, &kvm->devices);
3578 mutex_unlock(&kvm->lock);
3579
3580 if (ops->init)
3581 ops->init(dev);
3582
3583 kvm_get_kvm(kvm);
3584 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
3585 if (ret < 0) {
3586 kvm_put_kvm_no_destroy(kvm);
3587 mutex_lock(&kvm->lock);
3588 list_del(&dev->vm_node);
3589 mutex_unlock(&kvm->lock);
3590 ops->destroy(dev);
3591 return ret;
3592 }
3593
3594 cd->fd = ret;
3595 return 0;
3596 }
3597
kvm_vm_ioctl_check_extension_generic(struct kvm * kvm,long arg)3598 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
3599 {
3600 switch (arg) {
3601 case KVM_CAP_USER_MEMORY:
3602 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
3603 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
3604 case KVM_CAP_INTERNAL_ERROR_DATA:
3605 #ifdef CONFIG_HAVE_KVM_MSI
3606 case KVM_CAP_SIGNAL_MSI:
3607 #endif
3608 #ifdef CONFIG_HAVE_KVM_IRQFD
3609 case KVM_CAP_IRQFD:
3610 case KVM_CAP_IRQFD_RESAMPLE:
3611 #endif
3612 case KVM_CAP_IOEVENTFD_ANY_LENGTH:
3613 case KVM_CAP_CHECK_EXTENSION_VM:
3614 case KVM_CAP_ENABLE_CAP_VM:
3615 case KVM_CAP_HALT_POLL:
3616 return 1;
3617 #ifdef CONFIG_KVM_MMIO
3618 case KVM_CAP_COALESCED_MMIO:
3619 return KVM_COALESCED_MMIO_PAGE_OFFSET;
3620 case KVM_CAP_COALESCED_PIO:
3621 return 1;
3622 #endif
3623 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3624 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3625 return KVM_DIRTY_LOG_MANUAL_CAPS;
3626 #endif
3627 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3628 case KVM_CAP_IRQ_ROUTING:
3629 return KVM_MAX_IRQ_ROUTES;
3630 #endif
3631 #if KVM_ADDRESS_SPACE_NUM > 1
3632 case KVM_CAP_MULTI_ADDRESS_SPACE:
3633 return KVM_ADDRESS_SPACE_NUM;
3634 #endif
3635 case KVM_CAP_NR_MEMSLOTS:
3636 return KVM_USER_MEM_SLOTS;
3637 default:
3638 break;
3639 }
3640 return kvm_vm_ioctl_check_extension(kvm, arg);
3641 }
3642
kvm_vm_ioctl_enable_cap(struct kvm * kvm,struct kvm_enable_cap * cap)3643 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3644 struct kvm_enable_cap *cap)
3645 {
3646 return -EINVAL;
3647 }
3648
kvm_vm_ioctl_enable_cap_generic(struct kvm * kvm,struct kvm_enable_cap * cap)3649 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
3650 struct kvm_enable_cap *cap)
3651 {
3652 switch (cap->cap) {
3653 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3654 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
3655 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
3656
3657 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
3658 allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
3659
3660 if (cap->flags || (cap->args[0] & ~allowed_options))
3661 return -EINVAL;
3662 kvm->manual_dirty_log_protect = cap->args[0];
3663 return 0;
3664 }
3665 #endif
3666 case KVM_CAP_HALT_POLL: {
3667 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
3668 return -EINVAL;
3669
3670 kvm->max_halt_poll_ns = cap->args[0];
3671 return 0;
3672 }
3673 default:
3674 return kvm_vm_ioctl_enable_cap(kvm, cap);
3675 }
3676 }
3677
kvm_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)3678 static long kvm_vm_ioctl(struct file *filp,
3679 unsigned int ioctl, unsigned long arg)
3680 {
3681 struct kvm *kvm = filp->private_data;
3682 void __user *argp = (void __user *)arg;
3683 int r;
3684
3685 if (kvm->mm != current->mm)
3686 return -EIO;
3687 switch (ioctl) {
3688 case KVM_CREATE_VCPU:
3689 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
3690 break;
3691 case KVM_ENABLE_CAP: {
3692 struct kvm_enable_cap cap;
3693
3694 r = -EFAULT;
3695 if (copy_from_user(&cap, argp, sizeof(cap)))
3696 goto out;
3697 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
3698 break;
3699 }
3700 case KVM_SET_USER_MEMORY_REGION: {
3701 struct kvm_userspace_memory_region kvm_userspace_mem;
3702
3703 r = -EFAULT;
3704 if (copy_from_user(&kvm_userspace_mem, argp,
3705 sizeof(kvm_userspace_mem)))
3706 goto out;
3707
3708 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
3709 break;
3710 }
3711 case KVM_GET_DIRTY_LOG: {
3712 struct kvm_dirty_log log;
3713
3714 r = -EFAULT;
3715 if (copy_from_user(&log, argp, sizeof(log)))
3716 goto out;
3717 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3718 break;
3719 }
3720 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3721 case KVM_CLEAR_DIRTY_LOG: {
3722 struct kvm_clear_dirty_log log;
3723
3724 r = -EFAULT;
3725 if (copy_from_user(&log, argp, sizeof(log)))
3726 goto out;
3727 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
3728 break;
3729 }
3730 #endif
3731 #ifdef CONFIG_KVM_MMIO
3732 case KVM_REGISTER_COALESCED_MMIO: {
3733 struct kvm_coalesced_mmio_zone zone;
3734
3735 r = -EFAULT;
3736 if (copy_from_user(&zone, argp, sizeof(zone)))
3737 goto out;
3738 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3739 break;
3740 }
3741 case KVM_UNREGISTER_COALESCED_MMIO: {
3742 struct kvm_coalesced_mmio_zone zone;
3743
3744 r = -EFAULT;
3745 if (copy_from_user(&zone, argp, sizeof(zone)))
3746 goto out;
3747 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3748 break;
3749 }
3750 #endif
3751 case KVM_IRQFD: {
3752 struct kvm_irqfd data;
3753
3754 r = -EFAULT;
3755 if (copy_from_user(&data, argp, sizeof(data)))
3756 goto out;
3757 r = kvm_irqfd(kvm, &data);
3758 break;
3759 }
3760 case KVM_IOEVENTFD: {
3761 struct kvm_ioeventfd data;
3762
3763 r = -EFAULT;
3764 if (copy_from_user(&data, argp, sizeof(data)))
3765 goto out;
3766 r = kvm_ioeventfd(kvm, &data);
3767 break;
3768 }
3769 #ifdef CONFIG_HAVE_KVM_MSI
3770 case KVM_SIGNAL_MSI: {
3771 struct kvm_msi msi;
3772
3773 r = -EFAULT;
3774 if (copy_from_user(&msi, argp, sizeof(msi)))
3775 goto out;
3776 r = kvm_send_userspace_msi(kvm, &msi);
3777 break;
3778 }
3779 #endif
3780 #ifdef __KVM_HAVE_IRQ_LINE
3781 case KVM_IRQ_LINE_STATUS:
3782 case KVM_IRQ_LINE: {
3783 struct kvm_irq_level irq_event;
3784
3785 r = -EFAULT;
3786 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3787 goto out;
3788
3789 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3790 ioctl == KVM_IRQ_LINE_STATUS);
3791 if (r)
3792 goto out;
3793
3794 r = -EFAULT;
3795 if (ioctl == KVM_IRQ_LINE_STATUS) {
3796 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3797 goto out;
3798 }
3799
3800 r = 0;
3801 break;
3802 }
3803 #endif
3804 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3805 case KVM_SET_GSI_ROUTING: {
3806 struct kvm_irq_routing routing;
3807 struct kvm_irq_routing __user *urouting;
3808 struct kvm_irq_routing_entry *entries = NULL;
3809
3810 r = -EFAULT;
3811 if (copy_from_user(&routing, argp, sizeof(routing)))
3812 goto out;
3813 r = -EINVAL;
3814 if (!kvm_arch_can_set_irq_routing(kvm))
3815 goto out;
3816 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3817 goto out;
3818 if (routing.flags)
3819 goto out;
3820 if (routing.nr) {
3821 urouting = argp;
3822 entries = vmemdup_user(urouting->entries,
3823 array_size(sizeof(*entries),
3824 routing.nr));
3825 if (IS_ERR(entries)) {
3826 r = PTR_ERR(entries);
3827 goto out;
3828 }
3829 }
3830 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3831 routing.flags);
3832 kvfree(entries);
3833 break;
3834 }
3835 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3836 case KVM_CREATE_DEVICE: {
3837 struct kvm_create_device cd;
3838
3839 r = -EFAULT;
3840 if (copy_from_user(&cd, argp, sizeof(cd)))
3841 goto out;
3842
3843 r = kvm_ioctl_create_device(kvm, &cd);
3844 if (r)
3845 goto out;
3846
3847 r = -EFAULT;
3848 if (copy_to_user(argp, &cd, sizeof(cd)))
3849 goto out;
3850
3851 r = 0;
3852 break;
3853 }
3854 case KVM_CHECK_EXTENSION:
3855 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3856 break;
3857 default:
3858 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3859 }
3860 out:
3861 return r;
3862 }
3863
3864 #ifdef CONFIG_KVM_COMPAT
3865 struct compat_kvm_dirty_log {
3866 __u32 slot;
3867 __u32 padding1;
3868 union {
3869 compat_uptr_t dirty_bitmap; /* one bit per page */
3870 __u64 padding2;
3871 };
3872 };
3873
kvm_vm_compat_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)3874 static long kvm_vm_compat_ioctl(struct file *filp,
3875 unsigned int ioctl, unsigned long arg)
3876 {
3877 struct kvm *kvm = filp->private_data;
3878 int r;
3879
3880 if (kvm->mm != current->mm)
3881 return -EIO;
3882 switch (ioctl) {
3883 case KVM_GET_DIRTY_LOG: {
3884 struct compat_kvm_dirty_log compat_log;
3885 struct kvm_dirty_log log;
3886
3887 if (copy_from_user(&compat_log, (void __user *)arg,
3888 sizeof(compat_log)))
3889 return -EFAULT;
3890 log.slot = compat_log.slot;
3891 log.padding1 = compat_log.padding1;
3892 log.padding2 = compat_log.padding2;
3893 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3894
3895 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3896 break;
3897 }
3898 default:
3899 r = kvm_vm_ioctl(filp, ioctl, arg);
3900 }
3901 return r;
3902 }
3903 #endif
3904
3905 static struct file_operations kvm_vm_fops = {
3906 .release = kvm_vm_release,
3907 .unlocked_ioctl = kvm_vm_ioctl,
3908 .llseek = noop_llseek,
3909 KVM_COMPAT(kvm_vm_compat_ioctl),
3910 };
3911
kvm_dev_ioctl_create_vm(unsigned long type)3912 static int kvm_dev_ioctl_create_vm(unsigned long type)
3913 {
3914 int r;
3915 struct kvm *kvm;
3916 struct file *file;
3917
3918 kvm = kvm_create_vm(type);
3919 if (IS_ERR(kvm))
3920 return PTR_ERR(kvm);
3921 #ifdef CONFIG_KVM_MMIO
3922 r = kvm_coalesced_mmio_init(kvm);
3923 if (r < 0)
3924 goto put_kvm;
3925 #endif
3926 r = get_unused_fd_flags(O_CLOEXEC);
3927 if (r < 0)
3928 goto put_kvm;
3929
3930 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3931 if (IS_ERR(file)) {
3932 put_unused_fd(r);
3933 r = PTR_ERR(file);
3934 goto put_kvm;
3935 }
3936
3937 /*
3938 * Don't call kvm_put_kvm anymore at this point; file->f_op is
3939 * already set, with ->release() being kvm_vm_release(). In error
3940 * cases it will be called by the final fput(file) and will take
3941 * care of doing kvm_put_kvm(kvm).
3942 */
3943 if (kvm_create_vm_debugfs(kvm, r) < 0) {
3944 put_unused_fd(r);
3945 fput(file);
3946 return -ENOMEM;
3947 }
3948 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3949
3950 fd_install(r, file);
3951 return r;
3952
3953 put_kvm:
3954 kvm_put_kvm(kvm);
3955 return r;
3956 }
3957
kvm_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)3958 static long kvm_dev_ioctl(struct file *filp,
3959 unsigned int ioctl, unsigned long arg)
3960 {
3961 long r = -EINVAL;
3962
3963 switch (ioctl) {
3964 case KVM_GET_API_VERSION:
3965 if (arg)
3966 goto out;
3967 r = KVM_API_VERSION;
3968 break;
3969 case KVM_CREATE_VM:
3970 r = kvm_dev_ioctl_create_vm(arg);
3971 break;
3972 case KVM_CHECK_EXTENSION:
3973 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3974 break;
3975 case KVM_GET_VCPU_MMAP_SIZE:
3976 if (arg)
3977 goto out;
3978 r = PAGE_SIZE; /* struct kvm_run */
3979 #ifdef CONFIG_X86
3980 r += PAGE_SIZE; /* pio data page */
3981 #endif
3982 #ifdef CONFIG_KVM_MMIO
3983 r += PAGE_SIZE; /* coalesced mmio ring page */
3984 #endif
3985 break;
3986 case KVM_TRACE_ENABLE:
3987 case KVM_TRACE_PAUSE:
3988 case KVM_TRACE_DISABLE:
3989 r = -EOPNOTSUPP;
3990 break;
3991 default:
3992 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3993 }
3994 out:
3995 return r;
3996 }
3997
3998 static struct file_operations kvm_chardev_ops = {
3999 .unlocked_ioctl = kvm_dev_ioctl,
4000 .llseek = noop_llseek,
4001 KVM_COMPAT(kvm_dev_ioctl),
4002 };
4003
4004 static struct miscdevice kvm_dev = {
4005 KVM_MINOR,
4006 "kvm",
4007 &kvm_chardev_ops,
4008 };
4009
hardware_enable_nolock(void * junk)4010 static void hardware_enable_nolock(void *junk)
4011 {
4012 int cpu = raw_smp_processor_id();
4013 int r;
4014
4015 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
4016 return;
4017
4018 cpumask_set_cpu(cpu, cpus_hardware_enabled);
4019
4020 r = kvm_arch_hardware_enable();
4021
4022 if (r) {
4023 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4024 atomic_inc(&hardware_enable_failed);
4025 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
4026 }
4027 }
4028
kvm_starting_cpu(unsigned int cpu)4029 static int kvm_starting_cpu(unsigned int cpu)
4030 {
4031 raw_spin_lock(&kvm_count_lock);
4032 if (kvm_usage_count)
4033 hardware_enable_nolock(NULL);
4034 raw_spin_unlock(&kvm_count_lock);
4035 return 0;
4036 }
4037
hardware_disable_nolock(void * junk)4038 static void hardware_disable_nolock(void *junk)
4039 {
4040 int cpu = raw_smp_processor_id();
4041
4042 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
4043 return;
4044 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4045 kvm_arch_hardware_disable();
4046 }
4047
kvm_dying_cpu(unsigned int cpu)4048 static int kvm_dying_cpu(unsigned int cpu)
4049 {
4050 raw_spin_lock(&kvm_count_lock);
4051 if (kvm_usage_count)
4052 hardware_disable_nolock(NULL);
4053 raw_spin_unlock(&kvm_count_lock);
4054 return 0;
4055 }
4056
hardware_disable_all_nolock(void)4057 static void hardware_disable_all_nolock(void)
4058 {
4059 BUG_ON(!kvm_usage_count);
4060
4061 kvm_usage_count--;
4062 if (!kvm_usage_count)
4063 on_each_cpu(hardware_disable_nolock, NULL, 1);
4064 }
4065
hardware_disable_all(void)4066 static void hardware_disable_all(void)
4067 {
4068 raw_spin_lock(&kvm_count_lock);
4069 hardware_disable_all_nolock();
4070 raw_spin_unlock(&kvm_count_lock);
4071 }
4072
hardware_enable_all(void)4073 static int hardware_enable_all(void)
4074 {
4075 int r = 0;
4076
4077 raw_spin_lock(&kvm_count_lock);
4078
4079 kvm_usage_count++;
4080 if (kvm_usage_count == 1) {
4081 atomic_set(&hardware_enable_failed, 0);
4082 on_each_cpu(hardware_enable_nolock, NULL, 1);
4083
4084 if (atomic_read(&hardware_enable_failed)) {
4085 hardware_disable_all_nolock();
4086 r = -EBUSY;
4087 }
4088 }
4089
4090 raw_spin_unlock(&kvm_count_lock);
4091
4092 return r;
4093 }
4094
kvm_reboot(struct notifier_block * notifier,unsigned long val,void * v)4095 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
4096 void *v)
4097 {
4098 /*
4099 * Some (well, at least mine) BIOSes hang on reboot if
4100 * in vmx root mode.
4101 *
4102 * And Intel TXT required VMX off for all cpu when system shutdown.
4103 */
4104 pr_info("kvm: exiting hardware virtualization\n");
4105 kvm_rebooting = true;
4106 on_each_cpu(hardware_disable_nolock, NULL, 1);
4107 return NOTIFY_OK;
4108 }
4109
4110 static struct notifier_block kvm_reboot_notifier = {
4111 .notifier_call = kvm_reboot,
4112 .priority = 0,
4113 };
4114
kvm_io_bus_destroy(struct kvm_io_bus * bus)4115 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
4116 {
4117 int i;
4118
4119 for (i = 0; i < bus->dev_count; i++) {
4120 struct kvm_io_device *pos = bus->range[i].dev;
4121
4122 kvm_iodevice_destructor(pos);
4123 }
4124 kfree(bus);
4125 }
4126
kvm_io_bus_cmp(const struct kvm_io_range * r1,const struct kvm_io_range * r2)4127 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
4128 const struct kvm_io_range *r2)
4129 {
4130 gpa_t addr1 = r1->addr;
4131 gpa_t addr2 = r2->addr;
4132
4133 if (addr1 < addr2)
4134 return -1;
4135
4136 /* If r2->len == 0, match the exact address. If r2->len != 0,
4137 * accept any overlapping write. Any order is acceptable for
4138 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
4139 * we process all of them.
4140 */
4141 if (r2->len) {
4142 addr1 += r1->len;
4143 addr2 += r2->len;
4144 }
4145
4146 if (addr1 > addr2)
4147 return 1;
4148
4149 return 0;
4150 }
4151
kvm_io_bus_sort_cmp(const void * p1,const void * p2)4152 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
4153 {
4154 return kvm_io_bus_cmp(p1, p2);
4155 }
4156
kvm_io_bus_get_first_dev(struct kvm_io_bus * bus,gpa_t addr,int len)4157 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
4158 gpa_t addr, int len)
4159 {
4160 struct kvm_io_range *range, key;
4161 int off;
4162
4163 key = (struct kvm_io_range) {
4164 .addr = addr,
4165 .len = len,
4166 };
4167
4168 range = bsearch(&key, bus->range, bus->dev_count,
4169 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
4170 if (range == NULL)
4171 return -ENOENT;
4172
4173 off = range - bus->range;
4174
4175 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
4176 off--;
4177
4178 return off;
4179 }
4180
__kvm_io_bus_write(struct kvm_vcpu * vcpu,struct kvm_io_bus * bus,struct kvm_io_range * range,const void * val)4181 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4182 struct kvm_io_range *range, const void *val)
4183 {
4184 int idx;
4185
4186 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4187 if (idx < 0)
4188 return -EOPNOTSUPP;
4189
4190 while (idx < bus->dev_count &&
4191 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4192 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
4193 range->len, val))
4194 return idx;
4195 idx++;
4196 }
4197
4198 return -EOPNOTSUPP;
4199 }
4200
4201 /* kvm_io_bus_write - called under kvm->slots_lock */
kvm_io_bus_write(struct kvm_vcpu * vcpu,enum kvm_bus bus_idx,gpa_t addr,int len,const void * val)4202 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4203 int len, const void *val)
4204 {
4205 struct kvm_io_bus *bus;
4206 struct kvm_io_range range;
4207 int r;
4208
4209 range = (struct kvm_io_range) {
4210 .addr = addr,
4211 .len = len,
4212 };
4213
4214 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4215 if (!bus)
4216 return -ENOMEM;
4217 r = __kvm_io_bus_write(vcpu, bus, &range, val);
4218 return r < 0 ? r : 0;
4219 }
4220 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
4221
4222 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
kvm_io_bus_write_cookie(struct kvm_vcpu * vcpu,enum kvm_bus bus_idx,gpa_t addr,int len,const void * val,long cookie)4223 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
4224 gpa_t addr, int len, const void *val, long cookie)
4225 {
4226 struct kvm_io_bus *bus;
4227 struct kvm_io_range range;
4228
4229 range = (struct kvm_io_range) {
4230 .addr = addr,
4231 .len = len,
4232 };
4233
4234 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4235 if (!bus)
4236 return -ENOMEM;
4237
4238 /* First try the device referenced by cookie. */
4239 if ((cookie >= 0) && (cookie < bus->dev_count) &&
4240 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
4241 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
4242 val))
4243 return cookie;
4244
4245 /*
4246 * cookie contained garbage; fall back to search and return the
4247 * correct cookie value.
4248 */
4249 return __kvm_io_bus_write(vcpu, bus, &range, val);
4250 }
4251
__kvm_io_bus_read(struct kvm_vcpu * vcpu,struct kvm_io_bus * bus,struct kvm_io_range * range,void * val)4252 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4253 struct kvm_io_range *range, void *val)
4254 {
4255 int idx;
4256
4257 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4258 if (idx < 0)
4259 return -EOPNOTSUPP;
4260
4261 while (idx < bus->dev_count &&
4262 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4263 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
4264 range->len, val))
4265 return idx;
4266 idx++;
4267 }
4268
4269 return -EOPNOTSUPP;
4270 }
4271
4272 /* kvm_io_bus_read - called under kvm->slots_lock */
kvm_io_bus_read(struct kvm_vcpu * vcpu,enum kvm_bus bus_idx,gpa_t addr,int len,void * val)4273 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4274 int len, void *val)
4275 {
4276 struct kvm_io_bus *bus;
4277 struct kvm_io_range range;
4278 int r;
4279
4280 range = (struct kvm_io_range) {
4281 .addr = addr,
4282 .len = len,
4283 };
4284
4285 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4286 if (!bus)
4287 return -ENOMEM;
4288 r = __kvm_io_bus_read(vcpu, bus, &range, val);
4289 return r < 0 ? r : 0;
4290 }
4291
4292 /* Caller must hold slots_lock. */
kvm_io_bus_register_dev(struct kvm * kvm,enum kvm_bus bus_idx,gpa_t addr,int len,struct kvm_io_device * dev)4293 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
4294 int len, struct kvm_io_device *dev)
4295 {
4296 int i;
4297 struct kvm_io_bus *new_bus, *bus;
4298 struct kvm_io_range range;
4299
4300 bus = kvm_get_bus(kvm, bus_idx);
4301 if (!bus)
4302 return -ENOMEM;
4303
4304 /* exclude ioeventfd which is limited by maximum fd */
4305 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
4306 return -ENOSPC;
4307
4308 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
4309 GFP_KERNEL_ACCOUNT);
4310 if (!new_bus)
4311 return -ENOMEM;
4312
4313 range = (struct kvm_io_range) {
4314 .addr = addr,
4315 .len = len,
4316 .dev = dev,
4317 };
4318
4319 for (i = 0; i < bus->dev_count; i++)
4320 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
4321 break;
4322
4323 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
4324 new_bus->dev_count++;
4325 new_bus->range[i] = range;
4326 memcpy(new_bus->range + i + 1, bus->range + i,
4327 (bus->dev_count - i) * sizeof(struct kvm_io_range));
4328 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4329 synchronize_srcu_expedited(&kvm->srcu);
4330 kfree(bus);
4331
4332 return 0;
4333 }
4334
4335 /* Caller must hold slots_lock. */
kvm_io_bus_unregister_dev(struct kvm * kvm,enum kvm_bus bus_idx,struct kvm_io_device * dev)4336 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4337 struct kvm_io_device *dev)
4338 {
4339 int i, j;
4340 struct kvm_io_bus *new_bus, *bus;
4341
4342 bus = kvm_get_bus(kvm, bus_idx);
4343 if (!bus)
4344 return;
4345
4346 for (i = 0; i < bus->dev_count; i++)
4347 if (bus->range[i].dev == dev) {
4348 break;
4349 }
4350
4351 if (i == bus->dev_count)
4352 return;
4353
4354 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
4355 GFP_KERNEL_ACCOUNT);
4356 if (new_bus) {
4357 memcpy(new_bus, bus, struct_size(bus, range, i));
4358 new_bus->dev_count--;
4359 memcpy(new_bus->range + i, bus->range + i + 1,
4360 flex_array_size(new_bus, range, new_bus->dev_count - i));
4361 } else {
4362 pr_err("kvm: failed to shrink bus, removing it completely\n");
4363 for (j = 0; j < bus->dev_count; j++) {
4364 if (j == i)
4365 continue;
4366 kvm_iodevice_destructor(bus->range[j].dev);
4367 }
4368 }
4369
4370 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4371 synchronize_srcu_expedited(&kvm->srcu);
4372 kfree(bus);
4373 return;
4374 }
4375
kvm_io_bus_get_dev(struct kvm * kvm,enum kvm_bus bus_idx,gpa_t addr)4376 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4377 gpa_t addr)
4378 {
4379 struct kvm_io_bus *bus;
4380 int dev_idx, srcu_idx;
4381 struct kvm_io_device *iodev = NULL;
4382
4383 srcu_idx = srcu_read_lock(&kvm->srcu);
4384
4385 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
4386 if (!bus)
4387 goto out_unlock;
4388
4389 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
4390 if (dev_idx < 0)
4391 goto out_unlock;
4392
4393 iodev = bus->range[dev_idx].dev;
4394
4395 out_unlock:
4396 srcu_read_unlock(&kvm->srcu, srcu_idx);
4397
4398 return iodev;
4399 }
4400 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
4401
kvm_debugfs_open(struct inode * inode,struct file * file,int (* get)(void *,u64 *),int (* set)(void *,u64),const char * fmt)4402 static int kvm_debugfs_open(struct inode *inode, struct file *file,
4403 int (*get)(void *, u64 *), int (*set)(void *, u64),
4404 const char *fmt)
4405 {
4406 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4407 inode->i_private;
4408
4409 /* The debugfs files are a reference to the kvm struct which
4410 * is still valid when kvm_destroy_vm is called.
4411 * To avoid the race between open and the removal of the debugfs
4412 * directory we test against the users count.
4413 */
4414 if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
4415 return -ENOENT;
4416
4417 if (simple_attr_open(inode, file, get,
4418 KVM_DBGFS_GET_MODE(stat_data->dbgfs_item) & 0222
4419 ? set : NULL,
4420 fmt)) {
4421 kvm_put_kvm(stat_data->kvm);
4422 return -ENOMEM;
4423 }
4424
4425 return 0;
4426 }
4427
kvm_debugfs_release(struct inode * inode,struct file * file)4428 static int kvm_debugfs_release(struct inode *inode, struct file *file)
4429 {
4430 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4431 inode->i_private;
4432
4433 simple_attr_release(inode, file);
4434 kvm_put_kvm(stat_data->kvm);
4435
4436 return 0;
4437 }
4438
kvm_get_stat_per_vm(struct kvm * kvm,size_t offset,u64 * val)4439 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
4440 {
4441 *val = *(ulong *)((void *)kvm + offset);
4442
4443 return 0;
4444 }
4445
kvm_clear_stat_per_vm(struct kvm * kvm,size_t offset)4446 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
4447 {
4448 *(ulong *)((void *)kvm + offset) = 0;
4449
4450 return 0;
4451 }
4452
kvm_get_stat_per_vcpu(struct kvm * kvm,size_t offset,u64 * val)4453 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
4454 {
4455 int i;
4456 struct kvm_vcpu *vcpu;
4457
4458 *val = 0;
4459
4460 kvm_for_each_vcpu(i, vcpu, kvm)
4461 *val += *(u64 *)((void *)vcpu + offset);
4462
4463 return 0;
4464 }
4465
kvm_clear_stat_per_vcpu(struct kvm * kvm,size_t offset)4466 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
4467 {
4468 int i;
4469 struct kvm_vcpu *vcpu;
4470
4471 kvm_for_each_vcpu(i, vcpu, kvm)
4472 *(u64 *)((void *)vcpu + offset) = 0;
4473
4474 return 0;
4475 }
4476
kvm_stat_data_get(void * data,u64 * val)4477 static int kvm_stat_data_get(void *data, u64 *val)
4478 {
4479 int r = -EFAULT;
4480 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4481
4482 switch (stat_data->dbgfs_item->kind) {
4483 case KVM_STAT_VM:
4484 r = kvm_get_stat_per_vm(stat_data->kvm,
4485 stat_data->dbgfs_item->offset, val);
4486 break;
4487 case KVM_STAT_VCPU:
4488 r = kvm_get_stat_per_vcpu(stat_data->kvm,
4489 stat_data->dbgfs_item->offset, val);
4490 break;
4491 }
4492
4493 return r;
4494 }
4495
kvm_stat_data_clear(void * data,u64 val)4496 static int kvm_stat_data_clear(void *data, u64 val)
4497 {
4498 int r = -EFAULT;
4499 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4500
4501 if (val)
4502 return -EINVAL;
4503
4504 switch (stat_data->dbgfs_item->kind) {
4505 case KVM_STAT_VM:
4506 r = kvm_clear_stat_per_vm(stat_data->kvm,
4507 stat_data->dbgfs_item->offset);
4508 break;
4509 case KVM_STAT_VCPU:
4510 r = kvm_clear_stat_per_vcpu(stat_data->kvm,
4511 stat_data->dbgfs_item->offset);
4512 break;
4513 }
4514
4515 return r;
4516 }
4517
kvm_stat_data_open(struct inode * inode,struct file * file)4518 static int kvm_stat_data_open(struct inode *inode, struct file *file)
4519 {
4520 __simple_attr_check_format("%llu\n", 0ull);
4521 return kvm_debugfs_open(inode, file, kvm_stat_data_get,
4522 kvm_stat_data_clear, "%llu\n");
4523 }
4524
4525 static const struct file_operations stat_fops_per_vm = {
4526 .owner = THIS_MODULE,
4527 .open = kvm_stat_data_open,
4528 .release = kvm_debugfs_release,
4529 .read = simple_attr_read,
4530 .write = simple_attr_write,
4531 .llseek = no_llseek,
4532 };
4533
vm_stat_get(void * _offset,u64 * val)4534 static int vm_stat_get(void *_offset, u64 *val)
4535 {
4536 unsigned offset = (long)_offset;
4537 struct kvm *kvm;
4538 u64 tmp_val;
4539
4540 *val = 0;
4541 mutex_lock(&kvm_lock);
4542 list_for_each_entry(kvm, &vm_list, vm_list) {
4543 kvm_get_stat_per_vm(kvm, offset, &tmp_val);
4544 *val += tmp_val;
4545 }
4546 mutex_unlock(&kvm_lock);
4547 return 0;
4548 }
4549
vm_stat_clear(void * _offset,u64 val)4550 static int vm_stat_clear(void *_offset, u64 val)
4551 {
4552 unsigned offset = (long)_offset;
4553 struct kvm *kvm;
4554
4555 if (val)
4556 return -EINVAL;
4557
4558 mutex_lock(&kvm_lock);
4559 list_for_each_entry(kvm, &vm_list, vm_list) {
4560 kvm_clear_stat_per_vm(kvm, offset);
4561 }
4562 mutex_unlock(&kvm_lock);
4563
4564 return 0;
4565 }
4566
4567 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
4568
vcpu_stat_get(void * _offset,u64 * val)4569 static int vcpu_stat_get(void *_offset, u64 *val)
4570 {
4571 unsigned offset = (long)_offset;
4572 struct kvm *kvm;
4573 u64 tmp_val;
4574
4575 *val = 0;
4576 mutex_lock(&kvm_lock);
4577 list_for_each_entry(kvm, &vm_list, vm_list) {
4578 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
4579 *val += tmp_val;
4580 }
4581 mutex_unlock(&kvm_lock);
4582 return 0;
4583 }
4584
vcpu_stat_clear(void * _offset,u64 val)4585 static int vcpu_stat_clear(void *_offset, u64 val)
4586 {
4587 unsigned offset = (long)_offset;
4588 struct kvm *kvm;
4589
4590 if (val)
4591 return -EINVAL;
4592
4593 mutex_lock(&kvm_lock);
4594 list_for_each_entry(kvm, &vm_list, vm_list) {
4595 kvm_clear_stat_per_vcpu(kvm, offset);
4596 }
4597 mutex_unlock(&kvm_lock);
4598
4599 return 0;
4600 }
4601
4602 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
4603 "%llu\n");
4604
4605 static const struct file_operations *stat_fops[] = {
4606 [KVM_STAT_VCPU] = &vcpu_stat_fops,
4607 [KVM_STAT_VM] = &vm_stat_fops,
4608 };
4609
kvm_uevent_notify_change(unsigned int type,struct kvm * kvm)4610 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
4611 {
4612 struct kobj_uevent_env *env;
4613 unsigned long long created, active;
4614
4615 if (!kvm_dev.this_device || !kvm)
4616 return;
4617
4618 mutex_lock(&kvm_lock);
4619 if (type == KVM_EVENT_CREATE_VM) {
4620 kvm_createvm_count++;
4621 kvm_active_vms++;
4622 } else if (type == KVM_EVENT_DESTROY_VM) {
4623 kvm_active_vms--;
4624 }
4625 created = kvm_createvm_count;
4626 active = kvm_active_vms;
4627 mutex_unlock(&kvm_lock);
4628
4629 env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
4630 if (!env)
4631 return;
4632
4633 add_uevent_var(env, "CREATED=%llu", created);
4634 add_uevent_var(env, "COUNT=%llu", active);
4635
4636 if (type == KVM_EVENT_CREATE_VM) {
4637 add_uevent_var(env, "EVENT=create");
4638 kvm->userspace_pid = task_pid_nr(current);
4639 } else if (type == KVM_EVENT_DESTROY_VM) {
4640 add_uevent_var(env, "EVENT=destroy");
4641 }
4642 add_uevent_var(env, "PID=%d", kvm->userspace_pid);
4643
4644 if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) {
4645 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
4646
4647 if (p) {
4648 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
4649 if (!IS_ERR(tmp))
4650 add_uevent_var(env, "STATS_PATH=%s", tmp);
4651 kfree(p);
4652 }
4653 }
4654 /* no need for checks, since we are adding at most only 5 keys */
4655 env->envp[env->envp_idx++] = NULL;
4656 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
4657 kfree(env);
4658 }
4659
kvm_init_debug(void)4660 static void kvm_init_debug(void)
4661 {
4662 struct kvm_stats_debugfs_item *p;
4663
4664 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
4665
4666 kvm_debugfs_num_entries = 0;
4667 for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
4668 debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p),
4669 kvm_debugfs_dir, (void *)(long)p->offset,
4670 stat_fops[p->kind]);
4671 }
4672 }
4673
kvm_suspend(void)4674 static int kvm_suspend(void)
4675 {
4676 if (kvm_usage_count)
4677 hardware_disable_nolock(NULL);
4678 return 0;
4679 }
4680
kvm_resume(void)4681 static void kvm_resume(void)
4682 {
4683 if (kvm_usage_count) {
4684 #ifdef CONFIG_LOCKDEP
4685 WARN_ON(lockdep_is_held(&kvm_count_lock));
4686 #endif
4687 hardware_enable_nolock(NULL);
4688 }
4689 }
4690
4691 static struct syscore_ops kvm_syscore_ops = {
4692 .suspend = kvm_suspend,
4693 .resume = kvm_resume,
4694 };
4695
4696 static inline
preempt_notifier_to_vcpu(struct preempt_notifier * pn)4697 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
4698 {
4699 return container_of(pn, struct kvm_vcpu, preempt_notifier);
4700 }
4701
kvm_sched_in(struct preempt_notifier * pn,int cpu)4702 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
4703 {
4704 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4705
4706 WRITE_ONCE(vcpu->preempted, false);
4707 WRITE_ONCE(vcpu->ready, false);
4708
4709 __this_cpu_write(kvm_running_vcpu, vcpu);
4710 kvm_arch_sched_in(vcpu, cpu);
4711 kvm_arch_vcpu_load(vcpu, cpu);
4712 }
4713
kvm_sched_out(struct preempt_notifier * pn,struct task_struct * next)4714 static void kvm_sched_out(struct preempt_notifier *pn,
4715 struct task_struct *next)
4716 {
4717 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4718
4719 if (current->state == TASK_RUNNING) {
4720 WRITE_ONCE(vcpu->preempted, true);
4721 WRITE_ONCE(vcpu->ready, true);
4722 }
4723 kvm_arch_vcpu_put(vcpu);
4724 __this_cpu_write(kvm_running_vcpu, NULL);
4725 }
4726
4727 /**
4728 * kvm_get_running_vcpu - get the vcpu running on the current CPU.
4729 *
4730 * We can disable preemption locally around accessing the per-CPU variable,
4731 * and use the resolved vcpu pointer after enabling preemption again,
4732 * because even if the current thread is migrated to another CPU, reading
4733 * the per-CPU value later will give us the same value as we update the
4734 * per-CPU variable in the preempt notifier handlers.
4735 */
kvm_get_running_vcpu(void)4736 struct kvm_vcpu *kvm_get_running_vcpu(void)
4737 {
4738 struct kvm_vcpu *vcpu;
4739
4740 preempt_disable();
4741 vcpu = __this_cpu_read(kvm_running_vcpu);
4742 preempt_enable();
4743
4744 return vcpu;
4745 }
4746 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
4747
4748 /**
4749 * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
4750 */
kvm_get_running_vcpus(void)4751 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
4752 {
4753 return &kvm_running_vcpu;
4754 }
4755
4756 struct kvm_cpu_compat_check {
4757 void *opaque;
4758 int *ret;
4759 };
4760
check_processor_compat(void * data)4761 static void check_processor_compat(void *data)
4762 {
4763 struct kvm_cpu_compat_check *c = data;
4764
4765 *c->ret = kvm_arch_check_processor_compat(c->opaque);
4766 }
4767
kvm_init(void * opaque,unsigned vcpu_size,unsigned vcpu_align,struct module * module)4768 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
4769 struct module *module)
4770 {
4771 struct kvm_cpu_compat_check c;
4772 int r;
4773 int cpu;
4774
4775 r = kvm_arch_init(opaque);
4776 if (r)
4777 goto out_fail;
4778
4779 /*
4780 * kvm_arch_init makes sure there's at most one caller
4781 * for architectures that support multiple implementations,
4782 * like intel and amd on x86.
4783 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4784 * conflicts in case kvm is already setup for another implementation.
4785 */
4786 r = kvm_irqfd_init();
4787 if (r)
4788 goto out_irqfd;
4789
4790 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4791 r = -ENOMEM;
4792 goto out_free_0;
4793 }
4794
4795 r = kvm_arch_hardware_setup(opaque);
4796 if (r < 0)
4797 goto out_free_1;
4798
4799 c.ret = &r;
4800 c.opaque = opaque;
4801 for_each_online_cpu(cpu) {
4802 smp_call_function_single(cpu, check_processor_compat, &c, 1);
4803 if (r < 0)
4804 goto out_free_2;
4805 }
4806
4807 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4808 kvm_starting_cpu, kvm_dying_cpu);
4809 if (r)
4810 goto out_free_2;
4811 register_reboot_notifier(&kvm_reboot_notifier);
4812
4813 /* A kmem cache lets us meet the alignment requirements of fx_save. */
4814 if (!vcpu_align)
4815 vcpu_align = __alignof__(struct kvm_vcpu);
4816 kvm_vcpu_cache =
4817 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4818 SLAB_ACCOUNT,
4819 offsetof(struct kvm_vcpu, arch),
4820 sizeof_field(struct kvm_vcpu, arch),
4821 NULL);
4822 if (!kvm_vcpu_cache) {
4823 r = -ENOMEM;
4824 goto out_free_3;
4825 }
4826
4827 r = kvm_async_pf_init();
4828 if (r)
4829 goto out_free;
4830
4831 kvm_chardev_ops.owner = module;
4832 kvm_vm_fops.owner = module;
4833 kvm_vcpu_fops.owner = module;
4834
4835 r = misc_register(&kvm_dev);
4836 if (r) {
4837 pr_err("kvm: misc device register failed\n");
4838 goto out_unreg;
4839 }
4840
4841 register_syscore_ops(&kvm_syscore_ops);
4842
4843 kvm_preempt_ops.sched_in = kvm_sched_in;
4844 kvm_preempt_ops.sched_out = kvm_sched_out;
4845
4846 kvm_init_debug();
4847
4848 r = kvm_vfio_ops_init();
4849 WARN_ON(r);
4850
4851 return 0;
4852
4853 out_unreg:
4854 kvm_async_pf_deinit();
4855 out_free:
4856 kmem_cache_destroy(kvm_vcpu_cache);
4857 out_free_3:
4858 unregister_reboot_notifier(&kvm_reboot_notifier);
4859 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4860 out_free_2:
4861 kvm_arch_hardware_unsetup();
4862 out_free_1:
4863 free_cpumask_var(cpus_hardware_enabled);
4864 out_free_0:
4865 kvm_irqfd_exit();
4866 out_irqfd:
4867 kvm_arch_exit();
4868 out_fail:
4869 return r;
4870 }
4871 EXPORT_SYMBOL_GPL(kvm_init);
4872
kvm_exit(void)4873 void kvm_exit(void)
4874 {
4875 debugfs_remove_recursive(kvm_debugfs_dir);
4876 misc_deregister(&kvm_dev);
4877 kmem_cache_destroy(kvm_vcpu_cache);
4878 kvm_async_pf_deinit();
4879 unregister_syscore_ops(&kvm_syscore_ops);
4880 unregister_reboot_notifier(&kvm_reboot_notifier);
4881 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4882 on_each_cpu(hardware_disable_nolock, NULL, 1);
4883 kvm_arch_hardware_unsetup();
4884 kvm_arch_exit();
4885 kvm_irqfd_exit();
4886 free_cpumask_var(cpus_hardware_enabled);
4887 kvm_vfio_ops_exit();
4888 }
4889 EXPORT_SYMBOL_GPL(kvm_exit);
4890
4891 struct kvm_vm_worker_thread_context {
4892 struct kvm *kvm;
4893 struct task_struct *parent;
4894 struct completion init_done;
4895 kvm_vm_thread_fn_t thread_fn;
4896 uintptr_t data;
4897 int err;
4898 };
4899
kvm_vm_worker_thread(void * context)4900 static int kvm_vm_worker_thread(void *context)
4901 {
4902 /*
4903 * The init_context is allocated on the stack of the parent thread, so
4904 * we have to locally copy anything that is needed beyond initialization
4905 */
4906 struct kvm_vm_worker_thread_context *init_context = context;
4907 struct kvm *kvm = init_context->kvm;
4908 kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
4909 uintptr_t data = init_context->data;
4910 int err;
4911
4912 err = kthread_park(current);
4913 /* kthread_park(current) is never supposed to return an error */
4914 WARN_ON(err != 0);
4915 if (err)
4916 goto init_complete;
4917
4918 err = cgroup_attach_task_all(init_context->parent, current);
4919 if (err) {
4920 kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
4921 __func__, err);
4922 goto init_complete;
4923 }
4924
4925 set_user_nice(current, task_nice(init_context->parent));
4926
4927 init_complete:
4928 init_context->err = err;
4929 complete(&init_context->init_done);
4930 init_context = NULL;
4931
4932 if (err)
4933 return err;
4934
4935 /* Wait to be woken up by the spawner before proceeding. */
4936 kthread_parkme();
4937
4938 if (!kthread_should_stop())
4939 err = thread_fn(kvm, data);
4940
4941 return err;
4942 }
4943
kvm_vm_create_worker_thread(struct kvm * kvm,kvm_vm_thread_fn_t thread_fn,uintptr_t data,const char * name,struct task_struct ** thread_ptr)4944 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
4945 uintptr_t data, const char *name,
4946 struct task_struct **thread_ptr)
4947 {
4948 struct kvm_vm_worker_thread_context init_context = {};
4949 struct task_struct *thread;
4950
4951 *thread_ptr = NULL;
4952 init_context.kvm = kvm;
4953 init_context.parent = current;
4954 init_context.thread_fn = thread_fn;
4955 init_context.data = data;
4956 init_completion(&init_context.init_done);
4957
4958 thread = kthread_run(kvm_vm_worker_thread, &init_context,
4959 "%s-%d", name, task_pid_nr(current));
4960 if (IS_ERR(thread))
4961 return PTR_ERR(thread);
4962
4963 /* kthread_run is never supposed to return NULL */
4964 WARN_ON(thread == NULL);
4965
4966 wait_for_completion(&init_context.init_done);
4967
4968 if (!init_context.err)
4969 *thread_ptr = thread;
4970
4971 return init_context.err;
4972 }
4973