1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * MMU support
9 *
10 * Copyright (C) 2006 Qumranet, Inc.
11 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12 *
13 * Authors:
14 * Yaniv Kamay <yaniv@qumranet.com>
15 * Avi Kivity <avi@qumranet.com>
16 */
17
18 #include "irq.h"
19 #include "ioapic.h"
20 #include "mmu.h"
21 #include "mmu_internal.h"
22 #include "tdp_mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "kvm_emulate.h"
26 #include "cpuid.h"
27 #include "spte.h"
28
29 #include <linux/kvm_host.h>
30 #include <linux/types.h>
31 #include <linux/string.h>
32 #include <linux/mm.h>
33 #include <linux/highmem.h>
34 #include <linux/moduleparam.h>
35 #include <linux/export.h>
36 #include <linux/swap.h>
37 #include <linux/hugetlb.h>
38 #include <linux/compiler.h>
39 #include <linux/srcu.h>
40 #include <linux/slab.h>
41 #include <linux/sched/signal.h>
42 #include <linux/uaccess.h>
43 #include <linux/hash.h>
44 #include <linux/kern_levels.h>
45 #include <linux/kthread.h>
46
47 #include <asm/page.h>
48 #include <asm/memtype.h>
49 #include <asm/cmpxchg.h>
50 #include <asm/io.h>
51 #include <asm/vmx.h>
52 #include <asm/kvm_page_track.h>
53 #include "trace.h"
54
55 extern bool itlb_multihit_kvm_mitigation;
56
57 static int __read_mostly nx_huge_pages = -1;
58 #ifdef CONFIG_PREEMPT_RT
59 /* Recovery can cause latency spikes, disable it for PREEMPT_RT. */
60 static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
61 #else
62 static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
63 #endif
64
65 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
66 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp);
67
68 static const struct kernel_param_ops nx_huge_pages_ops = {
69 .set = set_nx_huge_pages,
70 .get = param_get_bool,
71 };
72
73 static const struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = {
74 .set = set_nx_huge_pages_recovery_ratio,
75 .get = param_get_uint,
76 };
77
78 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
79 __MODULE_PARM_TYPE(nx_huge_pages, "bool");
80 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops,
81 &nx_huge_pages_recovery_ratio, 0644);
82 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
83
84 static bool __read_mostly force_flush_and_sync_on_reuse;
85 module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);
86
87 /*
88 * When setting this variable to true it enables Two-Dimensional-Paging
89 * where the hardware walks 2 page tables:
90 * 1. the guest-virtual to guest-physical
91 * 2. while doing 1. it walks guest-physical to host-physical
92 * If the hardware supports that we don't need to do shadow paging.
93 */
94 bool tdp_enabled = false;
95
96 static int max_huge_page_level __read_mostly;
97 static int max_tdp_level __read_mostly;
98
99 enum {
100 AUDIT_PRE_PAGE_FAULT,
101 AUDIT_POST_PAGE_FAULT,
102 AUDIT_PRE_PTE_WRITE,
103 AUDIT_POST_PTE_WRITE,
104 AUDIT_PRE_SYNC,
105 AUDIT_POST_SYNC
106 };
107
108 #ifdef MMU_DEBUG
109 bool dbg = 0;
110 module_param(dbg, bool, 0644);
111 #endif
112
113 #define PTE_PREFETCH_NUM 8
114
115 #define PT32_LEVEL_BITS 10
116
117 #define PT32_LEVEL_SHIFT(level) \
118 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
119
120 #define PT32_LVL_OFFSET_MASK(level) \
121 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
122 * PT32_LEVEL_BITS))) - 1))
123
124 #define PT32_INDEX(address, level)\
125 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
126
127
128 #define PT32_BASE_ADDR_MASK PAGE_MASK
129 #define PT32_DIR_BASE_ADDR_MASK \
130 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
131 #define PT32_LVL_ADDR_MASK(level) \
132 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
133 * PT32_LEVEL_BITS))) - 1))
134
135 #include <trace/events/kvm.h>
136
137 /* make pte_list_desc fit well in cache line */
138 #define PTE_LIST_EXT 3
139
140 struct pte_list_desc {
141 u64 *sptes[PTE_LIST_EXT];
142 struct pte_list_desc *more;
143 };
144
145 struct kvm_shadow_walk_iterator {
146 u64 addr;
147 hpa_t shadow_addr;
148 u64 *sptep;
149 int level;
150 unsigned index;
151 };
152
153 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker) \
154 for (shadow_walk_init_using_root(&(_walker), (_vcpu), \
155 (_root), (_addr)); \
156 shadow_walk_okay(&(_walker)); \
157 shadow_walk_next(&(_walker)))
158
159 #define for_each_shadow_entry(_vcpu, _addr, _walker) \
160 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
161 shadow_walk_okay(&(_walker)); \
162 shadow_walk_next(&(_walker)))
163
164 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
165 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
166 shadow_walk_okay(&(_walker)) && \
167 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
168 __shadow_walk_next(&(_walker), spte))
169
170 static struct kmem_cache *pte_list_desc_cache;
171 struct kmem_cache *mmu_page_header_cache;
172 static struct percpu_counter kvm_total_used_mmu_pages;
173
174 static void mmu_spte_set(u64 *sptep, u64 spte);
175 static union kvm_mmu_page_role
176 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
177
178 #define CREATE_TRACE_POINTS
179 #include "mmutrace.h"
180
181
kvm_available_flush_tlb_with_range(void)182 static inline bool kvm_available_flush_tlb_with_range(void)
183 {
184 return kvm_x86_ops.tlb_remote_flush_with_range;
185 }
186
kvm_flush_remote_tlbs_with_range(struct kvm * kvm,struct kvm_tlb_range * range)187 static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
188 struct kvm_tlb_range *range)
189 {
190 int ret = -ENOTSUPP;
191
192 if (range && kvm_x86_ops.tlb_remote_flush_with_range)
193 ret = kvm_x86_ops.tlb_remote_flush_with_range(kvm, range);
194
195 if (ret)
196 kvm_flush_remote_tlbs(kvm);
197 }
198
kvm_flush_remote_tlbs_with_address(struct kvm * kvm,u64 start_gfn,u64 pages)199 void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
200 u64 start_gfn, u64 pages)
201 {
202 struct kvm_tlb_range range;
203
204 range.start_gfn = start_gfn;
205 range.pages = pages;
206
207 kvm_flush_remote_tlbs_with_range(kvm, &range);
208 }
209
is_nx_huge_page_enabled(void)210 bool is_nx_huge_page_enabled(void)
211 {
212 return READ_ONCE(nx_huge_pages);
213 }
214
mark_mmio_spte(struct kvm_vcpu * vcpu,u64 * sptep,u64 gfn,unsigned int access)215 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
216 unsigned int access)
217 {
218 u64 mask = make_mmio_spte(vcpu, gfn, access);
219
220 trace_mark_mmio_spte(sptep, gfn, mask);
221 mmu_spte_set(sptep, mask);
222 }
223
get_mmio_spte_gfn(u64 spte)224 static gfn_t get_mmio_spte_gfn(u64 spte)
225 {
226 u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
227
228 gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)
229 & shadow_nonpresent_or_rsvd_mask;
230
231 return gpa >> PAGE_SHIFT;
232 }
233
get_mmio_spte_access(u64 spte)234 static unsigned get_mmio_spte_access(u64 spte)
235 {
236 return spte & shadow_mmio_access_mask;
237 }
238
set_mmio_spte(struct kvm_vcpu * vcpu,u64 * sptep,gfn_t gfn,kvm_pfn_t pfn,unsigned int access)239 static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
240 kvm_pfn_t pfn, unsigned int access)
241 {
242 if (unlikely(is_noslot_pfn(pfn))) {
243 mark_mmio_spte(vcpu, sptep, gfn, access);
244 return true;
245 }
246
247 return false;
248 }
249
check_mmio_spte(struct kvm_vcpu * vcpu,u64 spte)250 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
251 {
252 u64 kvm_gen, spte_gen, gen;
253
254 gen = kvm_vcpu_memslots(vcpu)->generation;
255 if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
256 return false;
257
258 kvm_gen = gen & MMIO_SPTE_GEN_MASK;
259 spte_gen = get_mmio_spte_generation(spte);
260
261 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
262 return likely(kvm_gen == spte_gen);
263 }
264
translate_gpa(struct kvm_vcpu * vcpu,gpa_t gpa,u32 access,struct x86_exception * exception)265 static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
266 struct x86_exception *exception)
267 {
268 /* Check if guest physical address doesn't exceed guest maximum */
269 if (kvm_vcpu_is_illegal_gpa(vcpu, gpa)) {
270 exception->error_code |= PFERR_RSVD_MASK;
271 return UNMAPPED_GVA;
272 }
273
274 return gpa;
275 }
276
is_cpuid_PSE36(void)277 static int is_cpuid_PSE36(void)
278 {
279 return 1;
280 }
281
is_nx(struct kvm_vcpu * vcpu)282 static int is_nx(struct kvm_vcpu *vcpu)
283 {
284 return vcpu->arch.efer & EFER_NX;
285 }
286
pse36_gfn_delta(u32 gpte)287 static gfn_t pse36_gfn_delta(u32 gpte)
288 {
289 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
290
291 return (gpte & PT32_DIR_PSE36_MASK) << shift;
292 }
293
294 #ifdef CONFIG_X86_64
__set_spte(u64 * sptep,u64 spte)295 static void __set_spte(u64 *sptep, u64 spte)
296 {
297 WRITE_ONCE(*sptep, spte);
298 }
299
__update_clear_spte_fast(u64 * sptep,u64 spte)300 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
301 {
302 WRITE_ONCE(*sptep, spte);
303 }
304
__update_clear_spte_slow(u64 * sptep,u64 spte)305 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
306 {
307 return xchg(sptep, spte);
308 }
309
__get_spte_lockless(u64 * sptep)310 static u64 __get_spte_lockless(u64 *sptep)
311 {
312 return READ_ONCE(*sptep);
313 }
314 #else
315 union split_spte {
316 struct {
317 u32 spte_low;
318 u32 spte_high;
319 };
320 u64 spte;
321 };
322
count_spte_clear(u64 * sptep,u64 spte)323 static void count_spte_clear(u64 *sptep, u64 spte)
324 {
325 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
326
327 if (is_shadow_present_pte(spte))
328 return;
329
330 /* Ensure the spte is completely set before we increase the count */
331 smp_wmb();
332 sp->clear_spte_count++;
333 }
334
__set_spte(u64 * sptep,u64 spte)335 static void __set_spte(u64 *sptep, u64 spte)
336 {
337 union split_spte *ssptep, sspte;
338
339 ssptep = (union split_spte *)sptep;
340 sspte = (union split_spte)spte;
341
342 ssptep->spte_high = sspte.spte_high;
343
344 /*
345 * If we map the spte from nonpresent to present, We should store
346 * the high bits firstly, then set present bit, so cpu can not
347 * fetch this spte while we are setting the spte.
348 */
349 smp_wmb();
350
351 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
352 }
353
__update_clear_spte_fast(u64 * sptep,u64 spte)354 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
355 {
356 union split_spte *ssptep, sspte;
357
358 ssptep = (union split_spte *)sptep;
359 sspte = (union split_spte)spte;
360
361 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
362
363 /*
364 * If we map the spte from present to nonpresent, we should clear
365 * present bit firstly to avoid vcpu fetch the old high bits.
366 */
367 smp_wmb();
368
369 ssptep->spte_high = sspte.spte_high;
370 count_spte_clear(sptep, spte);
371 }
372
__update_clear_spte_slow(u64 * sptep,u64 spte)373 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
374 {
375 union split_spte *ssptep, sspte, orig;
376
377 ssptep = (union split_spte *)sptep;
378 sspte = (union split_spte)spte;
379
380 /* xchg acts as a barrier before the setting of the high bits */
381 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
382 orig.spte_high = ssptep->spte_high;
383 ssptep->spte_high = sspte.spte_high;
384 count_spte_clear(sptep, spte);
385
386 return orig.spte;
387 }
388
389 /*
390 * The idea using the light way get the spte on x86_32 guest is from
391 * gup_get_pte (mm/gup.c).
392 *
393 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
394 * coalesces them and we are running out of the MMU lock. Therefore
395 * we need to protect against in-progress updates of the spte.
396 *
397 * Reading the spte while an update is in progress may get the old value
398 * for the high part of the spte. The race is fine for a present->non-present
399 * change (because the high part of the spte is ignored for non-present spte),
400 * but for a present->present change we must reread the spte.
401 *
402 * All such changes are done in two steps (present->non-present and
403 * non-present->present), hence it is enough to count the number of
404 * present->non-present updates: if it changed while reading the spte,
405 * we might have hit the race. This is done using clear_spte_count.
406 */
__get_spte_lockless(u64 * sptep)407 static u64 __get_spte_lockless(u64 *sptep)
408 {
409 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
410 union split_spte spte, *orig = (union split_spte *)sptep;
411 int count;
412
413 retry:
414 count = sp->clear_spte_count;
415 smp_rmb();
416
417 spte.spte_low = orig->spte_low;
418 smp_rmb();
419
420 spte.spte_high = orig->spte_high;
421 smp_rmb();
422
423 if (unlikely(spte.spte_low != orig->spte_low ||
424 count != sp->clear_spte_count))
425 goto retry;
426
427 return spte.spte;
428 }
429 #endif
430
spte_has_volatile_bits(u64 spte)431 static bool spte_has_volatile_bits(u64 spte)
432 {
433 if (!is_shadow_present_pte(spte))
434 return false;
435
436 /*
437 * Always atomically update spte if it can be updated
438 * out of mmu-lock, it can ensure dirty bit is not lost,
439 * also, it can help us to get a stable is_writable_pte()
440 * to ensure tlb flush is not missed.
441 */
442 if (spte_can_locklessly_be_made_writable(spte) ||
443 is_access_track_spte(spte))
444 return true;
445
446 if (spte_ad_enabled(spte)) {
447 if ((spte & shadow_accessed_mask) == 0 ||
448 (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
449 return true;
450 }
451
452 return false;
453 }
454
455 /* Rules for using mmu_spte_set:
456 * Set the sptep from nonpresent to present.
457 * Note: the sptep being assigned *must* be either not present
458 * or in a state where the hardware will not attempt to update
459 * the spte.
460 */
mmu_spte_set(u64 * sptep,u64 new_spte)461 static void mmu_spte_set(u64 *sptep, u64 new_spte)
462 {
463 WARN_ON(is_shadow_present_pte(*sptep));
464 __set_spte(sptep, new_spte);
465 }
466
467 /*
468 * Update the SPTE (excluding the PFN), but do not track changes in its
469 * accessed/dirty status.
470 */
mmu_spte_update_no_track(u64 * sptep,u64 new_spte)471 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
472 {
473 u64 old_spte = *sptep;
474
475 WARN_ON(!is_shadow_present_pte(new_spte));
476
477 if (!is_shadow_present_pte(old_spte)) {
478 mmu_spte_set(sptep, new_spte);
479 return old_spte;
480 }
481
482 if (!spte_has_volatile_bits(old_spte))
483 __update_clear_spte_fast(sptep, new_spte);
484 else
485 old_spte = __update_clear_spte_slow(sptep, new_spte);
486
487 WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
488
489 return old_spte;
490 }
491
492 /* Rules for using mmu_spte_update:
493 * Update the state bits, it means the mapped pfn is not changed.
494 *
495 * Whenever we overwrite a writable spte with a read-only one we
496 * should flush remote TLBs. Otherwise rmap_write_protect
497 * will find a read-only spte, even though the writable spte
498 * might be cached on a CPU's TLB, the return value indicates this
499 * case.
500 *
501 * Returns true if the TLB needs to be flushed
502 */
mmu_spte_update(u64 * sptep,u64 new_spte)503 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
504 {
505 bool flush = false;
506 u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
507
508 if (!is_shadow_present_pte(old_spte))
509 return false;
510
511 /*
512 * For the spte updated out of mmu-lock is safe, since
513 * we always atomically update it, see the comments in
514 * spte_has_volatile_bits().
515 */
516 if (spte_can_locklessly_be_made_writable(old_spte) &&
517 !is_writable_pte(new_spte))
518 flush = true;
519
520 /*
521 * Flush TLB when accessed/dirty states are changed in the page tables,
522 * to guarantee consistency between TLB and page tables.
523 */
524
525 if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
526 flush = true;
527 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
528 }
529
530 if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
531 flush = true;
532 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
533 }
534
535 return flush;
536 }
537
538 /*
539 * Rules for using mmu_spte_clear_track_bits:
540 * It sets the sptep from present to nonpresent, and track the
541 * state bits, it is used to clear the last level sptep.
542 * Returns non-zero if the PTE was previously valid.
543 */
mmu_spte_clear_track_bits(u64 * sptep)544 static int mmu_spte_clear_track_bits(u64 *sptep)
545 {
546 kvm_pfn_t pfn;
547 u64 old_spte = *sptep;
548
549 if (!spte_has_volatile_bits(old_spte))
550 __update_clear_spte_fast(sptep, 0ull);
551 else
552 old_spte = __update_clear_spte_slow(sptep, 0ull);
553
554 if (!is_shadow_present_pte(old_spte))
555 return 0;
556
557 pfn = spte_to_pfn(old_spte);
558
559 /*
560 * KVM does not hold the refcount of the page used by
561 * kvm mmu, before reclaiming the page, we should
562 * unmap it from mmu first.
563 */
564 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
565
566 if (is_accessed_spte(old_spte))
567 kvm_set_pfn_accessed(pfn);
568
569 if (is_dirty_spte(old_spte))
570 kvm_set_pfn_dirty(pfn);
571
572 return 1;
573 }
574
575 /*
576 * Rules for using mmu_spte_clear_no_track:
577 * Directly clear spte without caring the state bits of sptep,
578 * it is used to set the upper level spte.
579 */
mmu_spte_clear_no_track(u64 * sptep)580 static void mmu_spte_clear_no_track(u64 *sptep)
581 {
582 __update_clear_spte_fast(sptep, 0ull);
583 }
584
mmu_spte_get_lockless(u64 * sptep)585 static u64 mmu_spte_get_lockless(u64 *sptep)
586 {
587 return __get_spte_lockless(sptep);
588 }
589
590 /* Restore an acc-track PTE back to a regular PTE */
restore_acc_track_spte(u64 spte)591 static u64 restore_acc_track_spte(u64 spte)
592 {
593 u64 new_spte = spte;
594 u64 saved_bits = (spte >> SHADOW_ACC_TRACK_SAVED_BITS_SHIFT)
595 & SHADOW_ACC_TRACK_SAVED_BITS_MASK;
596
597 WARN_ON_ONCE(spte_ad_enabled(spte));
598 WARN_ON_ONCE(!is_access_track_spte(spte));
599
600 new_spte &= ~shadow_acc_track_mask;
601 new_spte &= ~(SHADOW_ACC_TRACK_SAVED_BITS_MASK <<
602 SHADOW_ACC_TRACK_SAVED_BITS_SHIFT);
603 new_spte |= saved_bits;
604
605 return new_spte;
606 }
607
608 /* Returns the Accessed status of the PTE and resets it at the same time. */
mmu_spte_age(u64 * sptep)609 static bool mmu_spte_age(u64 *sptep)
610 {
611 u64 spte = mmu_spte_get_lockless(sptep);
612
613 if (!is_accessed_spte(spte))
614 return false;
615
616 if (spte_ad_enabled(spte)) {
617 clear_bit((ffs(shadow_accessed_mask) - 1),
618 (unsigned long *)sptep);
619 } else {
620 /*
621 * Capture the dirty status of the page, so that it doesn't get
622 * lost when the SPTE is marked for access tracking.
623 */
624 if (is_writable_pte(spte))
625 kvm_set_pfn_dirty(spte_to_pfn(spte));
626
627 spte = mark_spte_for_access_track(spte);
628 mmu_spte_update_no_track(sptep, spte);
629 }
630
631 return true;
632 }
633
walk_shadow_page_lockless_begin(struct kvm_vcpu * vcpu)634 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
635 {
636 /*
637 * Prevent page table teardown by making any free-er wait during
638 * kvm_flush_remote_tlbs() IPI to all active vcpus.
639 */
640 local_irq_disable();
641
642 /*
643 * Make sure a following spte read is not reordered ahead of the write
644 * to vcpu->mode.
645 */
646 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
647 }
648
walk_shadow_page_lockless_end(struct kvm_vcpu * vcpu)649 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
650 {
651 /*
652 * Make sure the write to vcpu->mode is not reordered in front of
653 * reads to sptes. If it does, kvm_mmu_commit_zap_page() can see us
654 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
655 */
656 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
657 local_irq_enable();
658 }
659
mmu_topup_memory_caches(struct kvm_vcpu * vcpu,bool maybe_indirect)660 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect)
661 {
662 int r;
663
664 /* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */
665 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
666 1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM);
667 if (r)
668 return r;
669 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache,
670 PT64_ROOT_MAX_LEVEL);
671 if (r)
672 return r;
673 if (maybe_indirect) {
674 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_gfn_array_cache,
675 PT64_ROOT_MAX_LEVEL);
676 if (r)
677 return r;
678 }
679 return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
680 PT64_ROOT_MAX_LEVEL);
681 }
682
mmu_free_memory_caches(struct kvm_vcpu * vcpu)683 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
684 {
685 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache);
686 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache);
687 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_gfn_array_cache);
688 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
689 }
690
mmu_alloc_pte_list_desc(struct kvm_vcpu * vcpu)691 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
692 {
693 return kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
694 }
695
mmu_free_pte_list_desc(struct pte_list_desc * pte_list_desc)696 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
697 {
698 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
699 }
700
kvm_mmu_page_get_gfn(struct kvm_mmu_page * sp,int index)701 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
702 {
703 if (!sp->role.direct)
704 return sp->gfns[index];
705
706 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
707 }
708
kvm_mmu_page_set_gfn(struct kvm_mmu_page * sp,int index,gfn_t gfn)709 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
710 {
711 if (!sp->role.direct) {
712 sp->gfns[index] = gfn;
713 return;
714 }
715
716 if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
717 pr_err_ratelimited("gfn mismatch under direct page %llx "
718 "(expected %llx, got %llx)\n",
719 sp->gfn,
720 kvm_mmu_page_get_gfn(sp, index), gfn);
721 }
722
723 /*
724 * Return the pointer to the large page information for a given gfn,
725 * handling slots that are not large page aligned.
726 */
lpage_info_slot(gfn_t gfn,struct kvm_memory_slot * slot,int level)727 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
728 struct kvm_memory_slot *slot,
729 int level)
730 {
731 unsigned long idx;
732
733 idx = gfn_to_index(gfn, slot->base_gfn, level);
734 return &slot->arch.lpage_info[level - 2][idx];
735 }
736
update_gfn_disallow_lpage_count(struct kvm_memory_slot * slot,gfn_t gfn,int count)737 static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
738 gfn_t gfn, int count)
739 {
740 struct kvm_lpage_info *linfo;
741 int i;
742
743 for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
744 linfo = lpage_info_slot(gfn, slot, i);
745 linfo->disallow_lpage += count;
746 WARN_ON(linfo->disallow_lpage < 0);
747 }
748 }
749
kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot * slot,gfn_t gfn)750 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
751 {
752 update_gfn_disallow_lpage_count(slot, gfn, 1);
753 }
754
kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot * slot,gfn_t gfn)755 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
756 {
757 update_gfn_disallow_lpage_count(slot, gfn, -1);
758 }
759
account_shadowed(struct kvm * kvm,struct kvm_mmu_page * sp)760 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
761 {
762 struct kvm_memslots *slots;
763 struct kvm_memory_slot *slot;
764 gfn_t gfn;
765
766 kvm->arch.indirect_shadow_pages++;
767 gfn = sp->gfn;
768 slots = kvm_memslots_for_spte_role(kvm, sp->role);
769 slot = __gfn_to_memslot(slots, gfn);
770
771 /* the non-leaf shadow pages are keeping readonly. */
772 if (sp->role.level > PG_LEVEL_4K)
773 return kvm_slot_page_track_add_page(kvm, slot, gfn,
774 KVM_PAGE_TRACK_WRITE);
775
776 kvm_mmu_gfn_disallow_lpage(slot, gfn);
777 }
778
account_huge_nx_page(struct kvm * kvm,struct kvm_mmu_page * sp)779 void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
780 {
781 if (sp->lpage_disallowed)
782 return;
783
784 ++kvm->stat.nx_lpage_splits;
785 list_add_tail(&sp->lpage_disallowed_link,
786 &kvm->arch.lpage_disallowed_mmu_pages);
787 sp->lpage_disallowed = true;
788 }
789
unaccount_shadowed(struct kvm * kvm,struct kvm_mmu_page * sp)790 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
791 {
792 struct kvm_memslots *slots;
793 struct kvm_memory_slot *slot;
794 gfn_t gfn;
795
796 kvm->arch.indirect_shadow_pages--;
797 gfn = sp->gfn;
798 slots = kvm_memslots_for_spte_role(kvm, sp->role);
799 slot = __gfn_to_memslot(slots, gfn);
800 if (sp->role.level > PG_LEVEL_4K)
801 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
802 KVM_PAGE_TRACK_WRITE);
803
804 kvm_mmu_gfn_allow_lpage(slot, gfn);
805 }
806
unaccount_huge_nx_page(struct kvm * kvm,struct kvm_mmu_page * sp)807 void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
808 {
809 --kvm->stat.nx_lpage_splits;
810 sp->lpage_disallowed = false;
811 list_del(&sp->lpage_disallowed_link);
812 }
813
814 static struct kvm_memory_slot *
gfn_to_memslot_dirty_bitmap(struct kvm_vcpu * vcpu,gfn_t gfn,bool no_dirty_log)815 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
816 bool no_dirty_log)
817 {
818 struct kvm_memory_slot *slot;
819
820 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
821 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
822 return NULL;
823 if (no_dirty_log && slot->dirty_bitmap)
824 return NULL;
825
826 return slot;
827 }
828
829 /*
830 * About rmap_head encoding:
831 *
832 * If the bit zero of rmap_head->val is clear, then it points to the only spte
833 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
834 * pte_list_desc containing more mappings.
835 */
836
837 /*
838 * Returns the number of pointers in the rmap chain, not counting the new one.
839 */
pte_list_add(struct kvm_vcpu * vcpu,u64 * spte,struct kvm_rmap_head * rmap_head)840 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
841 struct kvm_rmap_head *rmap_head)
842 {
843 struct pte_list_desc *desc;
844 int i, count = 0;
845
846 if (!rmap_head->val) {
847 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
848 rmap_head->val = (unsigned long)spte;
849 } else if (!(rmap_head->val & 1)) {
850 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
851 desc = mmu_alloc_pte_list_desc(vcpu);
852 desc->sptes[0] = (u64 *)rmap_head->val;
853 desc->sptes[1] = spte;
854 rmap_head->val = (unsigned long)desc | 1;
855 ++count;
856 } else {
857 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
858 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
859 while (desc->sptes[PTE_LIST_EXT-1]) {
860 count += PTE_LIST_EXT;
861
862 if (!desc->more) {
863 desc->more = mmu_alloc_pte_list_desc(vcpu);
864 desc = desc->more;
865 break;
866 }
867 desc = desc->more;
868 }
869 for (i = 0; desc->sptes[i]; ++i)
870 ++count;
871 desc->sptes[i] = spte;
872 }
873 return count;
874 }
875
876 static void
pte_list_desc_remove_entry(struct kvm_rmap_head * rmap_head,struct pte_list_desc * desc,int i,struct pte_list_desc * prev_desc)877 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
878 struct pte_list_desc *desc, int i,
879 struct pte_list_desc *prev_desc)
880 {
881 int j;
882
883 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
884 ;
885 desc->sptes[i] = desc->sptes[j];
886 desc->sptes[j] = NULL;
887 if (j != 0)
888 return;
889 if (!prev_desc && !desc->more)
890 rmap_head->val = 0;
891 else
892 if (prev_desc)
893 prev_desc->more = desc->more;
894 else
895 rmap_head->val = (unsigned long)desc->more | 1;
896 mmu_free_pte_list_desc(desc);
897 }
898
__pte_list_remove(u64 * spte,struct kvm_rmap_head * rmap_head)899 static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
900 {
901 struct pte_list_desc *desc;
902 struct pte_list_desc *prev_desc;
903 int i;
904
905 if (!rmap_head->val) {
906 pr_err("%s: %p 0->BUG\n", __func__, spte);
907 BUG();
908 } else if (!(rmap_head->val & 1)) {
909 rmap_printk("%s: %p 1->0\n", __func__, spte);
910 if ((u64 *)rmap_head->val != spte) {
911 pr_err("%s: %p 1->BUG\n", __func__, spte);
912 BUG();
913 }
914 rmap_head->val = 0;
915 } else {
916 rmap_printk("%s: %p many->many\n", __func__, spte);
917 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
918 prev_desc = NULL;
919 while (desc) {
920 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
921 if (desc->sptes[i] == spte) {
922 pte_list_desc_remove_entry(rmap_head,
923 desc, i, prev_desc);
924 return;
925 }
926 }
927 prev_desc = desc;
928 desc = desc->more;
929 }
930 pr_err("%s: %p many->many\n", __func__, spte);
931 BUG();
932 }
933 }
934
pte_list_remove(struct kvm_rmap_head * rmap_head,u64 * sptep)935 static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
936 {
937 mmu_spte_clear_track_bits(sptep);
938 __pte_list_remove(sptep, rmap_head);
939 }
940
__gfn_to_rmap(gfn_t gfn,int level,struct kvm_memory_slot * slot)941 static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
942 struct kvm_memory_slot *slot)
943 {
944 unsigned long idx;
945
946 idx = gfn_to_index(gfn, slot->base_gfn, level);
947 return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
948 }
949
gfn_to_rmap(struct kvm * kvm,gfn_t gfn,struct kvm_mmu_page * sp)950 static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
951 struct kvm_mmu_page *sp)
952 {
953 struct kvm_memslots *slots;
954 struct kvm_memory_slot *slot;
955
956 slots = kvm_memslots_for_spte_role(kvm, sp->role);
957 slot = __gfn_to_memslot(slots, gfn);
958 return __gfn_to_rmap(gfn, sp->role.level, slot);
959 }
960
rmap_can_add(struct kvm_vcpu * vcpu)961 static bool rmap_can_add(struct kvm_vcpu *vcpu)
962 {
963 struct kvm_mmu_memory_cache *mc;
964
965 mc = &vcpu->arch.mmu_pte_list_desc_cache;
966 return kvm_mmu_memory_cache_nr_free_objects(mc);
967 }
968
rmap_add(struct kvm_vcpu * vcpu,u64 * spte,gfn_t gfn)969 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
970 {
971 struct kvm_mmu_page *sp;
972 struct kvm_rmap_head *rmap_head;
973
974 sp = sptep_to_sp(spte);
975 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
976 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
977 return pte_list_add(vcpu, spte, rmap_head);
978 }
979
rmap_remove(struct kvm * kvm,u64 * spte)980 static void rmap_remove(struct kvm *kvm, u64 *spte)
981 {
982 struct kvm_mmu_page *sp;
983 gfn_t gfn;
984 struct kvm_rmap_head *rmap_head;
985
986 sp = sptep_to_sp(spte);
987 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
988 rmap_head = gfn_to_rmap(kvm, gfn, sp);
989 __pte_list_remove(spte, rmap_head);
990 }
991
992 /*
993 * Used by the following functions to iterate through the sptes linked by a
994 * rmap. All fields are private and not assumed to be used outside.
995 */
996 struct rmap_iterator {
997 /* private fields */
998 struct pte_list_desc *desc; /* holds the sptep if not NULL */
999 int pos; /* index of the sptep */
1000 };
1001
1002 /*
1003 * Iteration must be started by this function. This should also be used after
1004 * removing/dropping sptes from the rmap link because in such cases the
1005 * information in the iterator may not be valid.
1006 *
1007 * Returns sptep if found, NULL otherwise.
1008 */
rmap_get_first(struct kvm_rmap_head * rmap_head,struct rmap_iterator * iter)1009 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1010 struct rmap_iterator *iter)
1011 {
1012 u64 *sptep;
1013
1014 if (!rmap_head->val)
1015 return NULL;
1016
1017 if (!(rmap_head->val & 1)) {
1018 iter->desc = NULL;
1019 sptep = (u64 *)rmap_head->val;
1020 goto out;
1021 }
1022
1023 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1024 iter->pos = 0;
1025 sptep = iter->desc->sptes[iter->pos];
1026 out:
1027 BUG_ON(!is_shadow_present_pte(*sptep));
1028 return sptep;
1029 }
1030
1031 /*
1032 * Must be used with a valid iterator: e.g. after rmap_get_first().
1033 *
1034 * Returns sptep if found, NULL otherwise.
1035 */
rmap_get_next(struct rmap_iterator * iter)1036 static u64 *rmap_get_next(struct rmap_iterator *iter)
1037 {
1038 u64 *sptep;
1039
1040 if (iter->desc) {
1041 if (iter->pos < PTE_LIST_EXT - 1) {
1042 ++iter->pos;
1043 sptep = iter->desc->sptes[iter->pos];
1044 if (sptep)
1045 goto out;
1046 }
1047
1048 iter->desc = iter->desc->more;
1049
1050 if (iter->desc) {
1051 iter->pos = 0;
1052 /* desc->sptes[0] cannot be NULL */
1053 sptep = iter->desc->sptes[iter->pos];
1054 goto out;
1055 }
1056 }
1057
1058 return NULL;
1059 out:
1060 BUG_ON(!is_shadow_present_pte(*sptep));
1061 return sptep;
1062 }
1063
1064 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \
1065 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \
1066 _spte_; _spte_ = rmap_get_next(_iter_))
1067
drop_spte(struct kvm * kvm,u64 * sptep)1068 static void drop_spte(struct kvm *kvm, u64 *sptep)
1069 {
1070 if (mmu_spte_clear_track_bits(sptep))
1071 rmap_remove(kvm, sptep);
1072 }
1073
1074
__drop_large_spte(struct kvm * kvm,u64 * sptep)1075 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1076 {
1077 if (is_large_pte(*sptep)) {
1078 WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K);
1079 drop_spte(kvm, sptep);
1080 --kvm->stat.lpages;
1081 return true;
1082 }
1083
1084 return false;
1085 }
1086
drop_large_spte(struct kvm_vcpu * vcpu,u64 * sptep)1087 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1088 {
1089 if (__drop_large_spte(vcpu->kvm, sptep)) {
1090 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
1091
1092 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1093 KVM_PAGES_PER_HPAGE(sp->role.level));
1094 }
1095 }
1096
1097 /*
1098 * Write-protect on the specified @sptep, @pt_protect indicates whether
1099 * spte write-protection is caused by protecting shadow page table.
1100 *
1101 * Note: write protection is difference between dirty logging and spte
1102 * protection:
1103 * - for dirty logging, the spte can be set to writable at anytime if
1104 * its dirty bitmap is properly set.
1105 * - for spte protection, the spte can be writable only after unsync-ing
1106 * shadow page.
1107 *
1108 * Return true if tlb need be flushed.
1109 */
spte_write_protect(u64 * sptep,bool pt_protect)1110 static bool spte_write_protect(u64 *sptep, bool pt_protect)
1111 {
1112 u64 spte = *sptep;
1113
1114 if (!is_writable_pte(spte) &&
1115 !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1116 return false;
1117
1118 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1119
1120 if (pt_protect)
1121 spte &= ~SPTE_MMU_WRITEABLE;
1122 spte = spte & ~PT_WRITABLE_MASK;
1123
1124 return mmu_spte_update(sptep, spte);
1125 }
1126
__rmap_write_protect(struct kvm * kvm,struct kvm_rmap_head * rmap_head,bool pt_protect)1127 static bool __rmap_write_protect(struct kvm *kvm,
1128 struct kvm_rmap_head *rmap_head,
1129 bool pt_protect)
1130 {
1131 u64 *sptep;
1132 struct rmap_iterator iter;
1133 bool flush = false;
1134
1135 for_each_rmap_spte(rmap_head, &iter, sptep)
1136 flush |= spte_write_protect(sptep, pt_protect);
1137
1138 return flush;
1139 }
1140
spte_clear_dirty(u64 * sptep)1141 static bool spte_clear_dirty(u64 *sptep)
1142 {
1143 u64 spte = *sptep;
1144
1145 rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1146
1147 MMU_WARN_ON(!spte_ad_enabled(spte));
1148 spte &= ~shadow_dirty_mask;
1149 return mmu_spte_update(sptep, spte);
1150 }
1151
spte_wrprot_for_clear_dirty(u64 * sptep)1152 static bool spte_wrprot_for_clear_dirty(u64 *sptep)
1153 {
1154 bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1155 (unsigned long *)sptep);
1156 if (was_writable && !spte_ad_enabled(*sptep))
1157 kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1158
1159 return was_writable;
1160 }
1161
1162 /*
1163 * Gets the GFN ready for another round of dirty logging by clearing the
1164 * - D bit on ad-enabled SPTEs, and
1165 * - W bit on ad-disabled SPTEs.
1166 * Returns true iff any D or W bits were cleared.
1167 */
__rmap_clear_dirty(struct kvm * kvm,struct kvm_rmap_head * rmap_head)1168 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1169 {
1170 u64 *sptep;
1171 struct rmap_iterator iter;
1172 bool flush = false;
1173
1174 for_each_rmap_spte(rmap_head, &iter, sptep)
1175 if (spte_ad_need_write_protect(*sptep))
1176 flush |= spte_wrprot_for_clear_dirty(sptep);
1177 else
1178 flush |= spte_clear_dirty(sptep);
1179
1180 return flush;
1181 }
1182
spte_set_dirty(u64 * sptep)1183 static bool spte_set_dirty(u64 *sptep)
1184 {
1185 u64 spte = *sptep;
1186
1187 rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1188
1189 /*
1190 * Similar to the !kvm_x86_ops.slot_disable_log_dirty case,
1191 * do not bother adding back write access to pages marked
1192 * SPTE_AD_WRPROT_ONLY_MASK.
1193 */
1194 spte |= shadow_dirty_mask;
1195
1196 return mmu_spte_update(sptep, spte);
1197 }
1198
__rmap_set_dirty(struct kvm * kvm,struct kvm_rmap_head * rmap_head)1199 static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1200 {
1201 u64 *sptep;
1202 struct rmap_iterator iter;
1203 bool flush = false;
1204
1205 for_each_rmap_spte(rmap_head, &iter, sptep)
1206 if (spte_ad_enabled(*sptep))
1207 flush |= spte_set_dirty(sptep);
1208
1209 return flush;
1210 }
1211
1212 /**
1213 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1214 * @kvm: kvm instance
1215 * @slot: slot to protect
1216 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1217 * @mask: indicates which pages we should protect
1218 *
1219 * Used when we do not need to care about huge page mappings: e.g. during dirty
1220 * logging we do not have any such mappings.
1221 */
kvm_mmu_write_protect_pt_masked(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn_offset,unsigned long mask)1222 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1223 struct kvm_memory_slot *slot,
1224 gfn_t gfn_offset, unsigned long mask)
1225 {
1226 struct kvm_rmap_head *rmap_head;
1227
1228 if (kvm->arch.tdp_mmu_enabled)
1229 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1230 slot->base_gfn + gfn_offset, mask, true);
1231 while (mask) {
1232 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1233 PG_LEVEL_4K, slot);
1234 __rmap_write_protect(kvm, rmap_head, false);
1235
1236 /* clear the first set bit */
1237 mask &= mask - 1;
1238 }
1239 }
1240
1241 /**
1242 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1243 * protect the page if the D-bit isn't supported.
1244 * @kvm: kvm instance
1245 * @slot: slot to clear D-bit
1246 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1247 * @mask: indicates which pages we should clear D-bit
1248 *
1249 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1250 */
kvm_mmu_clear_dirty_pt_masked(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn_offset,unsigned long mask)1251 void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1252 struct kvm_memory_slot *slot,
1253 gfn_t gfn_offset, unsigned long mask)
1254 {
1255 struct kvm_rmap_head *rmap_head;
1256
1257 if (kvm->arch.tdp_mmu_enabled)
1258 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1259 slot->base_gfn + gfn_offset, mask, false);
1260 while (mask) {
1261 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1262 PG_LEVEL_4K, slot);
1263 __rmap_clear_dirty(kvm, rmap_head);
1264
1265 /* clear the first set bit */
1266 mask &= mask - 1;
1267 }
1268 }
1269 EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1270
1271 /**
1272 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1273 * PT level pages.
1274 *
1275 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1276 * enable dirty logging for them.
1277 *
1278 * Used when we do not need to care about huge page mappings: e.g. during dirty
1279 * logging we do not have any such mappings.
1280 */
kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn_offset,unsigned long mask)1281 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1282 struct kvm_memory_slot *slot,
1283 gfn_t gfn_offset, unsigned long mask)
1284 {
1285 if (kvm_x86_ops.enable_log_dirty_pt_masked)
1286 kvm_x86_ops.enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1287 mask);
1288 else
1289 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1290 }
1291
kvm_mmu_slot_gfn_write_protect(struct kvm * kvm,struct kvm_memory_slot * slot,u64 gfn)1292 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1293 struct kvm_memory_slot *slot, u64 gfn)
1294 {
1295 struct kvm_rmap_head *rmap_head;
1296 int i;
1297 bool write_protected = false;
1298
1299 for (i = PG_LEVEL_4K; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
1300 rmap_head = __gfn_to_rmap(gfn, i, slot);
1301 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1302 }
1303
1304 if (kvm->arch.tdp_mmu_enabled)
1305 write_protected |=
1306 kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn);
1307
1308 return write_protected;
1309 }
1310
rmap_write_protect(struct kvm_vcpu * vcpu,u64 gfn)1311 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1312 {
1313 struct kvm_memory_slot *slot;
1314
1315 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1316 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1317 }
1318
kvm_zap_rmapp(struct kvm * kvm,struct kvm_rmap_head * rmap_head)1319 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1320 {
1321 u64 *sptep;
1322 struct rmap_iterator iter;
1323 bool flush = false;
1324
1325 while ((sptep = rmap_get_first(rmap_head, &iter))) {
1326 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1327
1328 pte_list_remove(rmap_head, sptep);
1329 flush = true;
1330 }
1331
1332 return flush;
1333 }
1334
kvm_unmap_rmapp(struct kvm * kvm,struct kvm_rmap_head * rmap_head,struct kvm_memory_slot * slot,gfn_t gfn,int level,unsigned long data)1335 static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1336 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1337 unsigned long data)
1338 {
1339 return kvm_zap_rmapp(kvm, rmap_head);
1340 }
1341
kvm_set_pte_rmapp(struct kvm * kvm,struct kvm_rmap_head * rmap_head,struct kvm_memory_slot * slot,gfn_t gfn,int level,unsigned long data)1342 static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1343 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1344 unsigned long data)
1345 {
1346 u64 *sptep;
1347 struct rmap_iterator iter;
1348 int need_flush = 0;
1349 u64 new_spte;
1350 pte_t *ptep = (pte_t *)data;
1351 kvm_pfn_t new_pfn;
1352
1353 WARN_ON(pte_huge(*ptep));
1354 new_pfn = pte_pfn(*ptep);
1355
1356 restart:
1357 for_each_rmap_spte(rmap_head, &iter, sptep) {
1358 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1359 sptep, *sptep, gfn, level);
1360
1361 need_flush = 1;
1362
1363 if (pte_write(*ptep)) {
1364 pte_list_remove(rmap_head, sptep);
1365 goto restart;
1366 } else {
1367 new_spte = kvm_mmu_changed_pte_notifier_make_spte(
1368 *sptep, new_pfn);
1369
1370 mmu_spte_clear_track_bits(sptep);
1371 mmu_spte_set(sptep, new_spte);
1372 }
1373 }
1374
1375 if (need_flush && kvm_available_flush_tlb_with_range()) {
1376 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
1377 return 0;
1378 }
1379
1380 return need_flush;
1381 }
1382
1383 struct slot_rmap_walk_iterator {
1384 /* input fields. */
1385 struct kvm_memory_slot *slot;
1386 gfn_t start_gfn;
1387 gfn_t end_gfn;
1388 int start_level;
1389 int end_level;
1390
1391 /* output fields. */
1392 gfn_t gfn;
1393 struct kvm_rmap_head *rmap;
1394 int level;
1395
1396 /* private field. */
1397 struct kvm_rmap_head *end_rmap;
1398 };
1399
1400 static void
rmap_walk_init_level(struct slot_rmap_walk_iterator * iterator,int level)1401 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1402 {
1403 iterator->level = level;
1404 iterator->gfn = iterator->start_gfn;
1405 iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1406 iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1407 iterator->slot);
1408 }
1409
1410 static void
slot_rmap_walk_init(struct slot_rmap_walk_iterator * iterator,struct kvm_memory_slot * slot,int start_level,int end_level,gfn_t start_gfn,gfn_t end_gfn)1411 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1412 struct kvm_memory_slot *slot, int start_level,
1413 int end_level, gfn_t start_gfn, gfn_t end_gfn)
1414 {
1415 iterator->slot = slot;
1416 iterator->start_level = start_level;
1417 iterator->end_level = end_level;
1418 iterator->start_gfn = start_gfn;
1419 iterator->end_gfn = end_gfn;
1420
1421 rmap_walk_init_level(iterator, iterator->start_level);
1422 }
1423
slot_rmap_walk_okay(struct slot_rmap_walk_iterator * iterator)1424 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1425 {
1426 return !!iterator->rmap;
1427 }
1428
slot_rmap_walk_next(struct slot_rmap_walk_iterator * iterator)1429 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1430 {
1431 if (++iterator->rmap <= iterator->end_rmap) {
1432 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1433 return;
1434 }
1435
1436 if (++iterator->level > iterator->end_level) {
1437 iterator->rmap = NULL;
1438 return;
1439 }
1440
1441 rmap_walk_init_level(iterator, iterator->level);
1442 }
1443
1444 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
1445 _start_gfn, _end_gfn, _iter_) \
1446 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
1447 _end_level_, _start_gfn, _end_gfn); \
1448 slot_rmap_walk_okay(_iter_); \
1449 slot_rmap_walk_next(_iter_))
1450
kvm_handle_hva_range(struct kvm * kvm,unsigned long start,unsigned long end,unsigned long data,int (* handler)(struct kvm * kvm,struct kvm_rmap_head * rmap_head,struct kvm_memory_slot * slot,gfn_t gfn,int level,unsigned long data))1451 static int kvm_handle_hva_range(struct kvm *kvm,
1452 unsigned long start,
1453 unsigned long end,
1454 unsigned long data,
1455 int (*handler)(struct kvm *kvm,
1456 struct kvm_rmap_head *rmap_head,
1457 struct kvm_memory_slot *slot,
1458 gfn_t gfn,
1459 int level,
1460 unsigned long data))
1461 {
1462 struct kvm_memslots *slots;
1463 struct kvm_memory_slot *memslot;
1464 struct slot_rmap_walk_iterator iterator;
1465 int ret = 0;
1466 int i;
1467
1468 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1469 slots = __kvm_memslots(kvm, i);
1470 kvm_for_each_memslot(memslot, slots) {
1471 unsigned long hva_start, hva_end;
1472 gfn_t gfn_start, gfn_end;
1473
1474 hva_start = max(start, memslot->userspace_addr);
1475 hva_end = min(end, memslot->userspace_addr +
1476 (memslot->npages << PAGE_SHIFT));
1477 if (hva_start >= hva_end)
1478 continue;
1479 /*
1480 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1481 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1482 */
1483 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1484 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1485
1486 for_each_slot_rmap_range(memslot, PG_LEVEL_4K,
1487 KVM_MAX_HUGEPAGE_LEVEL,
1488 gfn_start, gfn_end - 1,
1489 &iterator)
1490 ret |= handler(kvm, iterator.rmap, memslot,
1491 iterator.gfn, iterator.level, data);
1492 }
1493 }
1494
1495 return ret;
1496 }
1497
kvm_handle_hva(struct kvm * kvm,unsigned long hva,unsigned long data,int (* handler)(struct kvm * kvm,struct kvm_rmap_head * rmap_head,struct kvm_memory_slot * slot,gfn_t gfn,int level,unsigned long data))1498 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1499 unsigned long data,
1500 int (*handler)(struct kvm *kvm,
1501 struct kvm_rmap_head *rmap_head,
1502 struct kvm_memory_slot *slot,
1503 gfn_t gfn, int level,
1504 unsigned long data))
1505 {
1506 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1507 }
1508
kvm_unmap_hva_range(struct kvm * kvm,unsigned long start,unsigned long end,unsigned flags)1509 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end,
1510 unsigned flags)
1511 {
1512 int r;
1513
1514 r = kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1515
1516 if (kvm->arch.tdp_mmu_enabled)
1517 r |= kvm_tdp_mmu_zap_hva_range(kvm, start, end);
1518
1519 return r;
1520 }
1521
kvm_set_spte_hva(struct kvm * kvm,unsigned long hva,pte_t pte)1522 int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1523 {
1524 int r;
1525
1526 r = kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1527
1528 if (kvm->arch.tdp_mmu_enabled)
1529 r |= kvm_tdp_mmu_set_spte_hva(kvm, hva, &pte);
1530
1531 return r;
1532 }
1533
kvm_age_rmapp(struct kvm * kvm,struct kvm_rmap_head * rmap_head,struct kvm_memory_slot * slot,gfn_t gfn,int level,unsigned long data)1534 static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1535 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1536 unsigned long data)
1537 {
1538 u64 *sptep;
1539 struct rmap_iterator iter;
1540 int young = 0;
1541
1542 for_each_rmap_spte(rmap_head, &iter, sptep)
1543 young |= mmu_spte_age(sptep);
1544
1545 trace_kvm_age_page(gfn, level, slot, young);
1546 return young;
1547 }
1548
kvm_test_age_rmapp(struct kvm * kvm,struct kvm_rmap_head * rmap_head,struct kvm_memory_slot * slot,gfn_t gfn,int level,unsigned long data)1549 static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1550 struct kvm_memory_slot *slot, gfn_t gfn,
1551 int level, unsigned long data)
1552 {
1553 u64 *sptep;
1554 struct rmap_iterator iter;
1555
1556 for_each_rmap_spte(rmap_head, &iter, sptep)
1557 if (is_accessed_spte(*sptep))
1558 return 1;
1559 return 0;
1560 }
1561
1562 #define RMAP_RECYCLE_THRESHOLD 1000
1563
rmap_recycle(struct kvm_vcpu * vcpu,u64 * spte,gfn_t gfn)1564 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1565 {
1566 struct kvm_rmap_head *rmap_head;
1567 struct kvm_mmu_page *sp;
1568
1569 sp = sptep_to_sp(spte);
1570
1571 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1572
1573 kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
1574 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1575 KVM_PAGES_PER_HPAGE(sp->role.level));
1576 }
1577
kvm_age_hva(struct kvm * kvm,unsigned long start,unsigned long end)1578 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1579 {
1580 int young = false;
1581
1582 young = kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1583 if (kvm->arch.tdp_mmu_enabled)
1584 young |= kvm_tdp_mmu_age_hva_range(kvm, start, end);
1585
1586 return young;
1587 }
1588
kvm_test_age_hva(struct kvm * kvm,unsigned long hva)1589 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1590 {
1591 int young = false;
1592
1593 young = kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1594 if (kvm->arch.tdp_mmu_enabled)
1595 young |= kvm_tdp_mmu_test_age_hva(kvm, hva);
1596
1597 return young;
1598 }
1599
1600 #ifdef MMU_DEBUG
is_empty_shadow_page(u64 * spt)1601 static int is_empty_shadow_page(u64 *spt)
1602 {
1603 u64 *pos;
1604 u64 *end;
1605
1606 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1607 if (is_shadow_present_pte(*pos)) {
1608 printk(KERN_ERR "%s: %p %llx\n", __func__,
1609 pos, *pos);
1610 return 0;
1611 }
1612 return 1;
1613 }
1614 #endif
1615
1616 /*
1617 * This value is the sum of all of the kvm instances's
1618 * kvm->arch.n_used_mmu_pages values. We need a global,
1619 * aggregate version in order to make the slab shrinker
1620 * faster
1621 */
kvm_mod_used_mmu_pages(struct kvm * kvm,unsigned long nr)1622 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, unsigned long nr)
1623 {
1624 kvm->arch.n_used_mmu_pages += nr;
1625 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1626 }
1627
kvm_mmu_free_page(struct kvm_mmu_page * sp)1628 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1629 {
1630 MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1631 hlist_del(&sp->hash_link);
1632 list_del(&sp->link);
1633 free_page((unsigned long)sp->spt);
1634 if (!sp->role.direct)
1635 free_page((unsigned long)sp->gfns);
1636 kmem_cache_free(mmu_page_header_cache, sp);
1637 }
1638
kvm_page_table_hashfn(gfn_t gfn)1639 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1640 {
1641 return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1642 }
1643
mmu_page_add_parent_pte(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,u64 * parent_pte)1644 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1645 struct kvm_mmu_page *sp, u64 *parent_pte)
1646 {
1647 if (!parent_pte)
1648 return;
1649
1650 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1651 }
1652
mmu_page_remove_parent_pte(struct kvm_mmu_page * sp,u64 * parent_pte)1653 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1654 u64 *parent_pte)
1655 {
1656 __pte_list_remove(parent_pte, &sp->parent_ptes);
1657 }
1658
drop_parent_pte(struct kvm_mmu_page * sp,u64 * parent_pte)1659 static void drop_parent_pte(struct kvm_mmu_page *sp,
1660 u64 *parent_pte)
1661 {
1662 mmu_page_remove_parent_pte(sp, parent_pte);
1663 mmu_spte_clear_no_track(parent_pte);
1664 }
1665
kvm_mmu_alloc_page(struct kvm_vcpu * vcpu,int direct)1666 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
1667 {
1668 struct kvm_mmu_page *sp;
1669
1670 sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1671 sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
1672 if (!direct)
1673 sp->gfns = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_gfn_array_cache);
1674 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1675
1676 /*
1677 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
1678 * depends on valid pages being added to the head of the list. See
1679 * comments in kvm_zap_obsolete_pages().
1680 */
1681 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
1682 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1683 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1684 return sp;
1685 }
1686
1687 static void mark_unsync(u64 *spte);
kvm_mmu_mark_parents_unsync(struct kvm_mmu_page * sp)1688 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1689 {
1690 u64 *sptep;
1691 struct rmap_iterator iter;
1692
1693 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1694 mark_unsync(sptep);
1695 }
1696 }
1697
mark_unsync(u64 * spte)1698 static void mark_unsync(u64 *spte)
1699 {
1700 struct kvm_mmu_page *sp;
1701 unsigned int index;
1702
1703 sp = sptep_to_sp(spte);
1704 index = spte - sp->spt;
1705 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1706 return;
1707 if (sp->unsync_children++)
1708 return;
1709 kvm_mmu_mark_parents_unsync(sp);
1710 }
1711
nonpaging_sync_page(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp)1712 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1713 struct kvm_mmu_page *sp)
1714 {
1715 return 0;
1716 }
1717
nonpaging_update_pte(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,u64 * spte,const void * pte)1718 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1719 struct kvm_mmu_page *sp, u64 *spte,
1720 const void *pte)
1721 {
1722 WARN_ON(1);
1723 }
1724
1725 #define KVM_PAGE_ARRAY_NR 16
1726
1727 struct kvm_mmu_pages {
1728 struct mmu_page_and_offset {
1729 struct kvm_mmu_page *sp;
1730 unsigned int idx;
1731 } page[KVM_PAGE_ARRAY_NR];
1732 unsigned int nr;
1733 };
1734
mmu_pages_add(struct kvm_mmu_pages * pvec,struct kvm_mmu_page * sp,int idx)1735 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1736 int idx)
1737 {
1738 int i;
1739
1740 if (sp->unsync)
1741 for (i=0; i < pvec->nr; i++)
1742 if (pvec->page[i].sp == sp)
1743 return 0;
1744
1745 pvec->page[pvec->nr].sp = sp;
1746 pvec->page[pvec->nr].idx = idx;
1747 pvec->nr++;
1748 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1749 }
1750
clear_unsync_child_bit(struct kvm_mmu_page * sp,int idx)1751 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
1752 {
1753 --sp->unsync_children;
1754 WARN_ON((int)sp->unsync_children < 0);
1755 __clear_bit(idx, sp->unsync_child_bitmap);
1756 }
1757
__mmu_unsync_walk(struct kvm_mmu_page * sp,struct kvm_mmu_pages * pvec)1758 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1759 struct kvm_mmu_pages *pvec)
1760 {
1761 int i, ret, nr_unsync_leaf = 0;
1762
1763 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1764 struct kvm_mmu_page *child;
1765 u64 ent = sp->spt[i];
1766
1767 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
1768 clear_unsync_child_bit(sp, i);
1769 continue;
1770 }
1771
1772 child = to_shadow_page(ent & PT64_BASE_ADDR_MASK);
1773
1774 if (child->unsync_children) {
1775 if (mmu_pages_add(pvec, child, i))
1776 return -ENOSPC;
1777
1778 ret = __mmu_unsync_walk(child, pvec);
1779 if (!ret) {
1780 clear_unsync_child_bit(sp, i);
1781 continue;
1782 } else if (ret > 0) {
1783 nr_unsync_leaf += ret;
1784 } else
1785 return ret;
1786 } else if (child->unsync) {
1787 nr_unsync_leaf++;
1788 if (mmu_pages_add(pvec, child, i))
1789 return -ENOSPC;
1790 } else
1791 clear_unsync_child_bit(sp, i);
1792 }
1793
1794 return nr_unsync_leaf;
1795 }
1796
1797 #define INVALID_INDEX (-1)
1798
mmu_unsync_walk(struct kvm_mmu_page * sp,struct kvm_mmu_pages * pvec)1799 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1800 struct kvm_mmu_pages *pvec)
1801 {
1802 pvec->nr = 0;
1803 if (!sp->unsync_children)
1804 return 0;
1805
1806 mmu_pages_add(pvec, sp, INVALID_INDEX);
1807 return __mmu_unsync_walk(sp, pvec);
1808 }
1809
kvm_unlink_unsync_page(struct kvm * kvm,struct kvm_mmu_page * sp)1810 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1811 {
1812 WARN_ON(!sp->unsync);
1813 trace_kvm_mmu_sync_page(sp);
1814 sp->unsync = 0;
1815 --kvm->stat.mmu_unsync;
1816 }
1817
1818 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1819 struct list_head *invalid_list);
1820 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1821 struct list_head *invalid_list);
1822
1823 #define for_each_valid_sp(_kvm, _sp, _list) \
1824 hlist_for_each_entry(_sp, _list, hash_link) \
1825 if (is_obsolete_sp((_kvm), (_sp))) { \
1826 } else
1827
1828 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
1829 for_each_valid_sp(_kvm, _sp, \
1830 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)]) \
1831 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
1832
is_ept_sp(struct kvm_mmu_page * sp)1833 static inline bool is_ept_sp(struct kvm_mmu_page *sp)
1834 {
1835 return sp->role.cr0_wp && sp->role.smap_andnot_wp;
1836 }
1837
1838 /* @sp->gfn should be write-protected at the call site */
__kvm_sync_page(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,struct list_head * invalid_list)1839 static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1840 struct list_head *invalid_list)
1841 {
1842 if ((!is_ept_sp(sp) && sp->role.gpte_is_8_bytes != !!is_pae(vcpu)) ||
1843 vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
1844 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1845 return false;
1846 }
1847
1848 return true;
1849 }
1850
kvm_mmu_remote_flush_or_zap(struct kvm * kvm,struct list_head * invalid_list,bool remote_flush)1851 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
1852 struct list_head *invalid_list,
1853 bool remote_flush)
1854 {
1855 if (!remote_flush && list_empty(invalid_list))
1856 return false;
1857
1858 if (!list_empty(invalid_list))
1859 kvm_mmu_commit_zap_page(kvm, invalid_list);
1860 else
1861 kvm_flush_remote_tlbs(kvm);
1862 return true;
1863 }
1864
kvm_mmu_flush_or_zap(struct kvm_vcpu * vcpu,struct list_head * invalid_list,bool remote_flush,bool local_flush)1865 static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
1866 struct list_head *invalid_list,
1867 bool remote_flush, bool local_flush)
1868 {
1869 if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
1870 return;
1871
1872 if (local_flush)
1873 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1874 }
1875
1876 #ifdef CONFIG_KVM_MMU_AUDIT
1877 #include "mmu_audit.c"
1878 #else
kvm_mmu_audit(struct kvm_vcpu * vcpu,int point)1879 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
mmu_audit_disable(void)1880 static void mmu_audit_disable(void) { }
1881 #endif
1882
is_obsolete_sp(struct kvm * kvm,struct kvm_mmu_page * sp)1883 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
1884 {
1885 return sp->role.invalid ||
1886 unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1887 }
1888
kvm_sync_page(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,struct list_head * invalid_list)1889 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1890 struct list_head *invalid_list)
1891 {
1892 kvm_unlink_unsync_page(vcpu->kvm, sp);
1893 return __kvm_sync_page(vcpu, sp, invalid_list);
1894 }
1895
1896 /* @gfn should be write-protected at the call site */
kvm_sync_pages(struct kvm_vcpu * vcpu,gfn_t gfn,struct list_head * invalid_list)1897 static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
1898 struct list_head *invalid_list)
1899 {
1900 struct kvm_mmu_page *s;
1901 bool ret = false;
1902
1903 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1904 if (!s->unsync)
1905 continue;
1906
1907 WARN_ON(s->role.level != PG_LEVEL_4K);
1908 ret |= kvm_sync_page(vcpu, s, invalid_list);
1909 }
1910
1911 return ret;
1912 }
1913
1914 struct mmu_page_path {
1915 struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
1916 unsigned int idx[PT64_ROOT_MAX_LEVEL];
1917 };
1918
1919 #define for_each_sp(pvec, sp, parents, i) \
1920 for (i = mmu_pages_first(&pvec, &parents); \
1921 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1922 i = mmu_pages_next(&pvec, &parents, i))
1923
mmu_pages_next(struct kvm_mmu_pages * pvec,struct mmu_page_path * parents,int i)1924 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1925 struct mmu_page_path *parents,
1926 int i)
1927 {
1928 int n;
1929
1930 for (n = i+1; n < pvec->nr; n++) {
1931 struct kvm_mmu_page *sp = pvec->page[n].sp;
1932 unsigned idx = pvec->page[n].idx;
1933 int level = sp->role.level;
1934
1935 parents->idx[level-1] = idx;
1936 if (level == PG_LEVEL_4K)
1937 break;
1938
1939 parents->parent[level-2] = sp;
1940 }
1941
1942 return n;
1943 }
1944
mmu_pages_first(struct kvm_mmu_pages * pvec,struct mmu_page_path * parents)1945 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
1946 struct mmu_page_path *parents)
1947 {
1948 struct kvm_mmu_page *sp;
1949 int level;
1950
1951 if (pvec->nr == 0)
1952 return 0;
1953
1954 WARN_ON(pvec->page[0].idx != INVALID_INDEX);
1955
1956 sp = pvec->page[0].sp;
1957 level = sp->role.level;
1958 WARN_ON(level == PG_LEVEL_4K);
1959
1960 parents->parent[level-2] = sp;
1961
1962 /* Also set up a sentinel. Further entries in pvec are all
1963 * children of sp, so this element is never overwritten.
1964 */
1965 parents->parent[level-1] = NULL;
1966 return mmu_pages_next(pvec, parents, 0);
1967 }
1968
mmu_pages_clear_parents(struct mmu_page_path * parents)1969 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1970 {
1971 struct kvm_mmu_page *sp;
1972 unsigned int level = 0;
1973
1974 do {
1975 unsigned int idx = parents->idx[level];
1976 sp = parents->parent[level];
1977 if (!sp)
1978 return;
1979
1980 WARN_ON(idx == INVALID_INDEX);
1981 clear_unsync_child_bit(sp, idx);
1982 level++;
1983 } while (!sp->unsync_children);
1984 }
1985
mmu_sync_children(struct kvm_vcpu * vcpu,struct kvm_mmu_page * parent)1986 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1987 struct kvm_mmu_page *parent)
1988 {
1989 int i;
1990 struct kvm_mmu_page *sp;
1991 struct mmu_page_path parents;
1992 struct kvm_mmu_pages pages;
1993 LIST_HEAD(invalid_list);
1994 bool flush = false;
1995
1996 while (mmu_unsync_walk(parent, &pages)) {
1997 bool protected = false;
1998
1999 for_each_sp(pages, sp, parents, i)
2000 protected |= rmap_write_protect(vcpu, sp->gfn);
2001
2002 if (protected) {
2003 kvm_flush_remote_tlbs(vcpu->kvm);
2004 flush = false;
2005 }
2006
2007 for_each_sp(pages, sp, parents, i) {
2008 flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2009 mmu_pages_clear_parents(&parents);
2010 }
2011 if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
2012 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2013 cond_resched_lock(&vcpu->kvm->mmu_lock);
2014 flush = false;
2015 }
2016 }
2017
2018 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2019 }
2020
__clear_sp_write_flooding_count(struct kvm_mmu_page * sp)2021 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2022 {
2023 atomic_set(&sp->write_flooding_count, 0);
2024 }
2025
clear_sp_write_flooding_count(u64 * spte)2026 static void clear_sp_write_flooding_count(u64 *spte)
2027 {
2028 __clear_sp_write_flooding_count(sptep_to_sp(spte));
2029 }
2030
kvm_mmu_get_page(struct kvm_vcpu * vcpu,gfn_t gfn,gva_t gaddr,unsigned level,int direct,unsigned int access)2031 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2032 gfn_t gfn,
2033 gva_t gaddr,
2034 unsigned level,
2035 int direct,
2036 unsigned int access)
2037 {
2038 bool direct_mmu = vcpu->arch.mmu->direct_map;
2039 union kvm_mmu_page_role role;
2040 struct hlist_head *sp_list;
2041 unsigned quadrant;
2042 struct kvm_mmu_page *sp;
2043 bool need_sync = false;
2044 bool flush = false;
2045 int collisions = 0;
2046 LIST_HEAD(invalid_list);
2047
2048 role = vcpu->arch.mmu->mmu_role.base;
2049 role.level = level;
2050 role.direct = direct;
2051 if (role.direct)
2052 role.gpte_is_8_bytes = true;
2053 role.access = access;
2054 if (!direct_mmu && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
2055 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2056 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2057 role.quadrant = quadrant;
2058 }
2059
2060 sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
2061 for_each_valid_sp(vcpu->kvm, sp, sp_list) {
2062 if (sp->gfn != gfn) {
2063 collisions++;
2064 continue;
2065 }
2066
2067 if (!need_sync && sp->unsync)
2068 need_sync = true;
2069
2070 if (sp->role.word != role.word)
2071 continue;
2072
2073 if (direct_mmu)
2074 goto trace_get_page;
2075
2076 if (sp->unsync) {
2077 /* The page is good, but __kvm_sync_page might still end
2078 * up zapping it. If so, break in order to rebuild it.
2079 */
2080 if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2081 break;
2082
2083 WARN_ON(!list_empty(&invalid_list));
2084 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2085 }
2086
2087 if (sp->unsync_children)
2088 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2089
2090 __clear_sp_write_flooding_count(sp);
2091
2092 trace_get_page:
2093 trace_kvm_mmu_get_page(sp, false);
2094 goto out;
2095 }
2096
2097 ++vcpu->kvm->stat.mmu_cache_miss;
2098
2099 sp = kvm_mmu_alloc_page(vcpu, direct);
2100
2101 sp->gfn = gfn;
2102 sp->role = role;
2103 hlist_add_head(&sp->hash_link, sp_list);
2104 if (!direct) {
2105 /*
2106 * we should do write protection before syncing pages
2107 * otherwise the content of the synced shadow page may
2108 * be inconsistent with guest page table.
2109 */
2110 account_shadowed(vcpu->kvm, sp);
2111 if (level == PG_LEVEL_4K && rmap_write_protect(vcpu, gfn))
2112 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
2113
2114 if (level > PG_LEVEL_4K && need_sync)
2115 flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2116 }
2117 trace_kvm_mmu_get_page(sp, true);
2118
2119 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2120 out:
2121 if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2122 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2123 return sp;
2124 }
2125
shadow_walk_init_using_root(struct kvm_shadow_walk_iterator * iterator,struct kvm_vcpu * vcpu,hpa_t root,u64 addr)2126 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2127 struct kvm_vcpu *vcpu, hpa_t root,
2128 u64 addr)
2129 {
2130 iterator->addr = addr;
2131 iterator->shadow_addr = root;
2132 iterator->level = vcpu->arch.mmu->shadow_root_level;
2133
2134 if (iterator->level == PT64_ROOT_4LEVEL &&
2135 vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
2136 !vcpu->arch.mmu->direct_map)
2137 --iterator->level;
2138
2139 if (iterator->level == PT32E_ROOT_LEVEL) {
2140 /*
2141 * prev_root is currently only used for 64-bit hosts. So only
2142 * the active root_hpa is valid here.
2143 */
2144 BUG_ON(root != vcpu->arch.mmu->root_hpa);
2145
2146 iterator->shadow_addr
2147 = vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2148 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2149 --iterator->level;
2150 if (!iterator->shadow_addr)
2151 iterator->level = 0;
2152 }
2153 }
2154
shadow_walk_init(struct kvm_shadow_walk_iterator * iterator,struct kvm_vcpu * vcpu,u64 addr)2155 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2156 struct kvm_vcpu *vcpu, u64 addr)
2157 {
2158 shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
2159 addr);
2160 }
2161
shadow_walk_okay(struct kvm_shadow_walk_iterator * iterator)2162 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2163 {
2164 if (iterator->level < PG_LEVEL_4K)
2165 return false;
2166
2167 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2168 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2169 return true;
2170 }
2171
__shadow_walk_next(struct kvm_shadow_walk_iterator * iterator,u64 spte)2172 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2173 u64 spte)
2174 {
2175 if (is_last_spte(spte, iterator->level)) {
2176 iterator->level = 0;
2177 return;
2178 }
2179
2180 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2181 --iterator->level;
2182 }
2183
shadow_walk_next(struct kvm_shadow_walk_iterator * iterator)2184 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2185 {
2186 __shadow_walk_next(iterator, *iterator->sptep);
2187 }
2188
link_shadow_page(struct kvm_vcpu * vcpu,u64 * sptep,struct kvm_mmu_page * sp)2189 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2190 struct kvm_mmu_page *sp)
2191 {
2192 u64 spte;
2193
2194 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2195
2196 spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp));
2197
2198 mmu_spte_set(sptep, spte);
2199
2200 mmu_page_add_parent_pte(vcpu, sp, sptep);
2201
2202 if (sp->unsync_children || sp->unsync)
2203 mark_unsync(sptep);
2204 }
2205
validate_direct_spte(struct kvm_vcpu * vcpu,u64 * sptep,unsigned direct_access)2206 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2207 unsigned direct_access)
2208 {
2209 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2210 struct kvm_mmu_page *child;
2211
2212 /*
2213 * For the direct sp, if the guest pte's dirty bit
2214 * changed form clean to dirty, it will corrupt the
2215 * sp's access: allow writable in the read-only sp,
2216 * so we should update the spte at this point to get
2217 * a new sp with the correct access.
2218 */
2219 child = to_shadow_page(*sptep & PT64_BASE_ADDR_MASK);
2220 if (child->role.access == direct_access)
2221 return;
2222
2223 drop_parent_pte(child, sptep);
2224 kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
2225 }
2226 }
2227
2228 /* Returns the number of zapped non-leaf child shadow pages. */
mmu_page_zap_pte(struct kvm * kvm,struct kvm_mmu_page * sp,u64 * spte,struct list_head * invalid_list)2229 static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2230 u64 *spte, struct list_head *invalid_list)
2231 {
2232 u64 pte;
2233 struct kvm_mmu_page *child;
2234
2235 pte = *spte;
2236 if (is_shadow_present_pte(pte)) {
2237 if (is_last_spte(pte, sp->role.level)) {
2238 drop_spte(kvm, spte);
2239 if (is_large_pte(pte))
2240 --kvm->stat.lpages;
2241 } else {
2242 child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2243 drop_parent_pte(child, spte);
2244
2245 /*
2246 * Recursively zap nested TDP SPs, parentless SPs are
2247 * unlikely to be used again in the near future. This
2248 * avoids retaining a large number of stale nested SPs.
2249 */
2250 if (tdp_enabled && invalid_list &&
2251 child->role.guest_mode && !child->parent_ptes.val)
2252 return kvm_mmu_prepare_zap_page(kvm, child,
2253 invalid_list);
2254 }
2255 } else if (is_mmio_spte(pte)) {
2256 mmu_spte_clear_no_track(spte);
2257 }
2258 return 0;
2259 }
2260
kvm_mmu_page_unlink_children(struct kvm * kvm,struct kvm_mmu_page * sp,struct list_head * invalid_list)2261 static int kvm_mmu_page_unlink_children(struct kvm *kvm,
2262 struct kvm_mmu_page *sp,
2263 struct list_head *invalid_list)
2264 {
2265 int zapped = 0;
2266 unsigned i;
2267
2268 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2269 zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list);
2270
2271 return zapped;
2272 }
2273
kvm_mmu_unlink_parents(struct kvm * kvm,struct kvm_mmu_page * sp)2274 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2275 {
2276 u64 *sptep;
2277 struct rmap_iterator iter;
2278
2279 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2280 drop_parent_pte(sp, sptep);
2281 }
2282
mmu_zap_unsync_children(struct kvm * kvm,struct kvm_mmu_page * parent,struct list_head * invalid_list)2283 static int mmu_zap_unsync_children(struct kvm *kvm,
2284 struct kvm_mmu_page *parent,
2285 struct list_head *invalid_list)
2286 {
2287 int i, zapped = 0;
2288 struct mmu_page_path parents;
2289 struct kvm_mmu_pages pages;
2290
2291 if (parent->role.level == PG_LEVEL_4K)
2292 return 0;
2293
2294 while (mmu_unsync_walk(parent, &pages)) {
2295 struct kvm_mmu_page *sp;
2296
2297 for_each_sp(pages, sp, parents, i) {
2298 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2299 mmu_pages_clear_parents(&parents);
2300 zapped++;
2301 }
2302 }
2303
2304 return zapped;
2305 }
2306
__kvm_mmu_prepare_zap_page(struct kvm * kvm,struct kvm_mmu_page * sp,struct list_head * invalid_list,int * nr_zapped)2307 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
2308 struct kvm_mmu_page *sp,
2309 struct list_head *invalid_list,
2310 int *nr_zapped)
2311 {
2312 bool list_unstable;
2313
2314 trace_kvm_mmu_prepare_zap_page(sp);
2315 ++kvm->stat.mmu_shadow_zapped;
2316 *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2317 *nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list);
2318 kvm_mmu_unlink_parents(kvm, sp);
2319
2320 /* Zapping children means active_mmu_pages has become unstable. */
2321 list_unstable = *nr_zapped;
2322
2323 if (!sp->role.invalid && !sp->role.direct)
2324 unaccount_shadowed(kvm, sp);
2325
2326 if (sp->unsync)
2327 kvm_unlink_unsync_page(kvm, sp);
2328 if (!sp->root_count) {
2329 /* Count self */
2330 (*nr_zapped)++;
2331
2332 /*
2333 * Already invalid pages (previously active roots) are not on
2334 * the active page list. See list_del() in the "else" case of
2335 * !sp->root_count.
2336 */
2337 if (sp->role.invalid)
2338 list_add(&sp->link, invalid_list);
2339 else
2340 list_move(&sp->link, invalid_list);
2341 kvm_mod_used_mmu_pages(kvm, -1);
2342 } else {
2343 /*
2344 * Remove the active root from the active page list, the root
2345 * will be explicitly freed when the root_count hits zero.
2346 */
2347 list_del(&sp->link);
2348
2349 /*
2350 * Obsolete pages cannot be used on any vCPUs, see the comment
2351 * in kvm_mmu_zap_all_fast(). Note, is_obsolete_sp() also
2352 * treats invalid shadow pages as being obsolete.
2353 */
2354 if (!is_obsolete_sp(kvm, sp))
2355 kvm_reload_remote_mmus(kvm);
2356 }
2357
2358 if (sp->lpage_disallowed)
2359 unaccount_huge_nx_page(kvm, sp);
2360
2361 sp->role.invalid = 1;
2362 return list_unstable;
2363 }
2364
kvm_mmu_prepare_zap_page(struct kvm * kvm,struct kvm_mmu_page * sp,struct list_head * invalid_list)2365 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2366 struct list_head *invalid_list)
2367 {
2368 int nr_zapped;
2369
2370 __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
2371 return nr_zapped;
2372 }
2373
kvm_mmu_commit_zap_page(struct kvm * kvm,struct list_head * invalid_list)2374 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2375 struct list_head *invalid_list)
2376 {
2377 struct kvm_mmu_page *sp, *nsp;
2378
2379 if (list_empty(invalid_list))
2380 return;
2381
2382 /*
2383 * We need to make sure everyone sees our modifications to
2384 * the page tables and see changes to vcpu->mode here. The barrier
2385 * in the kvm_flush_remote_tlbs() achieves this. This pairs
2386 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2387 *
2388 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2389 * guest mode and/or lockless shadow page table walks.
2390 */
2391 kvm_flush_remote_tlbs(kvm);
2392
2393 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2394 WARN_ON(!sp->role.invalid || sp->root_count);
2395 kvm_mmu_free_page(sp);
2396 }
2397 }
2398
kvm_mmu_zap_oldest_mmu_pages(struct kvm * kvm,unsigned long nr_to_zap)2399 static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
2400 unsigned long nr_to_zap)
2401 {
2402 unsigned long total_zapped = 0;
2403 struct kvm_mmu_page *sp, *tmp;
2404 LIST_HEAD(invalid_list);
2405 bool unstable;
2406 int nr_zapped;
2407
2408 if (list_empty(&kvm->arch.active_mmu_pages))
2409 return 0;
2410
2411 restart:
2412 list_for_each_entry_safe(sp, tmp, &kvm->arch.active_mmu_pages, link) {
2413 /*
2414 * Don't zap active root pages, the page itself can't be freed
2415 * and zapping it will just force vCPUs to realloc and reload.
2416 */
2417 if (sp->root_count)
2418 continue;
2419
2420 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
2421 &nr_zapped);
2422 total_zapped += nr_zapped;
2423 if (total_zapped >= nr_to_zap)
2424 break;
2425
2426 if (unstable)
2427 goto restart;
2428 }
2429
2430 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2431
2432 kvm->stat.mmu_recycled += total_zapped;
2433 return total_zapped;
2434 }
2435
kvm_mmu_available_pages(struct kvm * kvm)2436 static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
2437 {
2438 if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
2439 return kvm->arch.n_max_mmu_pages -
2440 kvm->arch.n_used_mmu_pages;
2441
2442 return 0;
2443 }
2444
make_mmu_pages_available(struct kvm_vcpu * vcpu)2445 static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
2446 {
2447 unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
2448
2449 if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
2450 return 0;
2451
2452 kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
2453
2454 if (!kvm_mmu_available_pages(vcpu->kvm))
2455 return -ENOSPC;
2456 return 0;
2457 }
2458
2459 /*
2460 * Changing the number of mmu pages allocated to the vm
2461 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2462 */
kvm_mmu_change_mmu_pages(struct kvm * kvm,unsigned long goal_nr_mmu_pages)2463 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2464 {
2465 spin_lock(&kvm->mmu_lock);
2466
2467 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2468 kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
2469 goal_nr_mmu_pages);
2470
2471 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2472 }
2473
2474 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2475
2476 spin_unlock(&kvm->mmu_lock);
2477 }
2478
kvm_mmu_unprotect_page(struct kvm * kvm,gfn_t gfn)2479 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2480 {
2481 struct kvm_mmu_page *sp;
2482 LIST_HEAD(invalid_list);
2483 int r;
2484
2485 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2486 r = 0;
2487 spin_lock(&kvm->mmu_lock);
2488 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2489 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2490 sp->role.word);
2491 r = 1;
2492 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2493 }
2494 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2495 spin_unlock(&kvm->mmu_lock);
2496
2497 return r;
2498 }
2499 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2500
kvm_unsync_page(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp)2501 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2502 {
2503 trace_kvm_mmu_unsync_page(sp);
2504 ++vcpu->kvm->stat.mmu_unsync;
2505 sp->unsync = 1;
2506
2507 kvm_mmu_mark_parents_unsync(sp);
2508 }
2509
mmu_need_write_protect(struct kvm_vcpu * vcpu,gfn_t gfn,bool can_unsync)2510 bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2511 bool can_unsync)
2512 {
2513 struct kvm_mmu_page *sp;
2514
2515 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2516 return true;
2517
2518 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2519 if (!can_unsync)
2520 return true;
2521
2522 if (sp->unsync)
2523 continue;
2524
2525 WARN_ON(sp->role.level != PG_LEVEL_4K);
2526 kvm_unsync_page(vcpu, sp);
2527 }
2528
2529 /*
2530 * We need to ensure that the marking of unsync pages is visible
2531 * before the SPTE is updated to allow writes because
2532 * kvm_mmu_sync_roots() checks the unsync flags without holding
2533 * the MMU lock and so can race with this. If the SPTE was updated
2534 * before the page had been marked as unsync-ed, something like the
2535 * following could happen:
2536 *
2537 * CPU 1 CPU 2
2538 * ---------------------------------------------------------------------
2539 * 1.2 Host updates SPTE
2540 * to be writable
2541 * 2.1 Guest writes a GPTE for GVA X.
2542 * (GPTE being in the guest page table shadowed
2543 * by the SP from CPU 1.)
2544 * This reads SPTE during the page table walk.
2545 * Since SPTE.W is read as 1, there is no
2546 * fault.
2547 *
2548 * 2.2 Guest issues TLB flush.
2549 * That causes a VM Exit.
2550 *
2551 * 2.3 kvm_mmu_sync_pages() reads sp->unsync.
2552 * Since it is false, so it just returns.
2553 *
2554 * 2.4 Guest accesses GVA X.
2555 * Since the mapping in the SP was not updated,
2556 * so the old mapping for GVA X incorrectly
2557 * gets used.
2558 * 1.1 Host marks SP
2559 * as unsync
2560 * (sp->unsync = true)
2561 *
2562 * The write barrier below ensures that 1.1 happens before 1.2 and thus
2563 * the situation in 2.4 does not arise. The implicit barrier in 2.2
2564 * pairs with this write barrier.
2565 */
2566 smp_wmb();
2567
2568 return false;
2569 }
2570
set_spte(struct kvm_vcpu * vcpu,u64 * sptep,unsigned int pte_access,int level,gfn_t gfn,kvm_pfn_t pfn,bool speculative,bool can_unsync,bool host_writable)2571 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2572 unsigned int pte_access, int level,
2573 gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2574 bool can_unsync, bool host_writable)
2575 {
2576 u64 spte;
2577 struct kvm_mmu_page *sp;
2578 int ret;
2579
2580 if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
2581 return 0;
2582
2583 sp = sptep_to_sp(sptep);
2584
2585 ret = make_spte(vcpu, pte_access, level, gfn, pfn, *sptep, speculative,
2586 can_unsync, host_writable, sp_ad_disabled(sp), &spte);
2587
2588 if (spte & PT_WRITABLE_MASK)
2589 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2590
2591 if (*sptep == spte)
2592 ret |= SET_SPTE_SPURIOUS;
2593 else if (mmu_spte_update(sptep, spte))
2594 ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
2595 return ret;
2596 }
2597
mmu_set_spte(struct kvm_vcpu * vcpu,u64 * sptep,unsigned int pte_access,bool write_fault,int level,gfn_t gfn,kvm_pfn_t pfn,bool speculative,bool host_writable)2598 static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2599 unsigned int pte_access, bool write_fault, int level,
2600 gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2601 bool host_writable)
2602 {
2603 int was_rmapped = 0;
2604 int rmap_count;
2605 int set_spte_ret;
2606 int ret = RET_PF_FIXED;
2607 bool flush = false;
2608
2609 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2610 *sptep, write_fault, gfn);
2611
2612 if (is_shadow_present_pte(*sptep)) {
2613 /*
2614 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2615 * the parent of the now unreachable PTE.
2616 */
2617 if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
2618 struct kvm_mmu_page *child;
2619 u64 pte = *sptep;
2620
2621 child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2622 drop_parent_pte(child, sptep);
2623 flush = true;
2624 } else if (pfn != spte_to_pfn(*sptep)) {
2625 pgprintk("hfn old %llx new %llx\n",
2626 spte_to_pfn(*sptep), pfn);
2627 drop_spte(vcpu->kvm, sptep);
2628 flush = true;
2629 } else
2630 was_rmapped = 1;
2631 }
2632
2633 set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
2634 speculative, true, host_writable);
2635 if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
2636 if (write_fault)
2637 ret = RET_PF_EMULATE;
2638 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2639 }
2640
2641 if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
2642 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
2643 KVM_PAGES_PER_HPAGE(level));
2644
2645 if (unlikely(is_mmio_spte(*sptep)))
2646 ret = RET_PF_EMULATE;
2647
2648 /*
2649 * The fault is fully spurious if and only if the new SPTE and old SPTE
2650 * are identical, and emulation is not required.
2651 */
2652 if ((set_spte_ret & SET_SPTE_SPURIOUS) && ret == RET_PF_FIXED) {
2653 WARN_ON_ONCE(!was_rmapped);
2654 return RET_PF_SPURIOUS;
2655 }
2656
2657 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2658 trace_kvm_mmu_set_spte(level, gfn, sptep);
2659 if (!was_rmapped && is_large_pte(*sptep))
2660 ++vcpu->kvm->stat.lpages;
2661
2662 if (is_shadow_present_pte(*sptep)) {
2663 if (!was_rmapped) {
2664 rmap_count = rmap_add(vcpu, sptep, gfn);
2665 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2666 rmap_recycle(vcpu, sptep, gfn);
2667 }
2668 }
2669
2670 return ret;
2671 }
2672
pte_prefetch_gfn_to_pfn(struct kvm_vcpu * vcpu,gfn_t gfn,bool no_dirty_log)2673 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2674 bool no_dirty_log)
2675 {
2676 struct kvm_memory_slot *slot;
2677
2678 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2679 if (!slot)
2680 return KVM_PFN_ERR_FAULT;
2681
2682 return gfn_to_pfn_memslot_atomic(slot, gfn);
2683 }
2684
direct_pte_prefetch_many(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,u64 * start,u64 * end)2685 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2686 struct kvm_mmu_page *sp,
2687 u64 *start, u64 *end)
2688 {
2689 struct page *pages[PTE_PREFETCH_NUM];
2690 struct kvm_memory_slot *slot;
2691 unsigned int access = sp->role.access;
2692 int i, ret;
2693 gfn_t gfn;
2694
2695 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2696 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2697 if (!slot)
2698 return -1;
2699
2700 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2701 if (ret <= 0)
2702 return -1;
2703
2704 for (i = 0; i < ret; i++, gfn++, start++) {
2705 mmu_set_spte(vcpu, start, access, false, sp->role.level, gfn,
2706 page_to_pfn(pages[i]), true, true);
2707 put_page(pages[i]);
2708 }
2709
2710 return 0;
2711 }
2712
__direct_pte_prefetch(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,u64 * sptep)2713 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2714 struct kvm_mmu_page *sp, u64 *sptep)
2715 {
2716 u64 *spte, *start = NULL;
2717 int i;
2718
2719 WARN_ON(!sp->role.direct);
2720
2721 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2722 spte = sp->spt + i;
2723
2724 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2725 if (is_shadow_present_pte(*spte) || spte == sptep) {
2726 if (!start)
2727 continue;
2728 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2729 break;
2730 start = NULL;
2731 } else if (!start)
2732 start = spte;
2733 }
2734 }
2735
direct_pte_prefetch(struct kvm_vcpu * vcpu,u64 * sptep)2736 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2737 {
2738 struct kvm_mmu_page *sp;
2739
2740 sp = sptep_to_sp(sptep);
2741
2742 /*
2743 * Without accessed bits, there's no way to distinguish between
2744 * actually accessed translations and prefetched, so disable pte
2745 * prefetch if accessed bits aren't available.
2746 */
2747 if (sp_ad_disabled(sp))
2748 return;
2749
2750 if (sp->role.level > PG_LEVEL_4K)
2751 return;
2752
2753 __direct_pte_prefetch(vcpu, sp, sptep);
2754 }
2755
host_pfn_mapping_level(struct kvm_vcpu * vcpu,gfn_t gfn,kvm_pfn_t pfn,struct kvm_memory_slot * slot)2756 static int host_pfn_mapping_level(struct kvm_vcpu *vcpu, gfn_t gfn,
2757 kvm_pfn_t pfn, struct kvm_memory_slot *slot)
2758 {
2759 unsigned long hva;
2760 pte_t *pte;
2761 int level;
2762
2763 if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn))
2764 return PG_LEVEL_4K;
2765
2766 /*
2767 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
2768 * is not solely for performance, it's also necessary to avoid the
2769 * "writable" check in __gfn_to_hva_many(), which will always fail on
2770 * read-only memslots due to gfn_to_hva() assuming writes. Earlier
2771 * page fault steps have already verified the guest isn't writing a
2772 * read-only memslot.
2773 */
2774 hva = __gfn_to_hva_memslot(slot, gfn);
2775
2776 pte = lookup_address_in_mm(vcpu->kvm->mm, hva, &level);
2777 if (unlikely(!pte))
2778 return PG_LEVEL_4K;
2779
2780 return level;
2781 }
2782
kvm_mmu_hugepage_adjust(struct kvm_vcpu * vcpu,gfn_t gfn,int max_level,kvm_pfn_t * pfnp,bool huge_page_disallowed,int * req_level)2783 int kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn,
2784 int max_level, kvm_pfn_t *pfnp,
2785 bool huge_page_disallowed, int *req_level)
2786 {
2787 struct kvm_memory_slot *slot;
2788 struct kvm_lpage_info *linfo;
2789 kvm_pfn_t pfn = *pfnp;
2790 kvm_pfn_t mask;
2791 int level;
2792
2793 *req_level = PG_LEVEL_4K;
2794
2795 if (unlikely(max_level == PG_LEVEL_4K))
2796 return PG_LEVEL_4K;
2797
2798 if (is_error_noslot_pfn(pfn) || kvm_is_reserved_pfn(pfn))
2799 return PG_LEVEL_4K;
2800
2801 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, true);
2802 if (!slot)
2803 return PG_LEVEL_4K;
2804
2805 max_level = min(max_level, max_huge_page_level);
2806 for ( ; max_level > PG_LEVEL_4K; max_level--) {
2807 linfo = lpage_info_slot(gfn, slot, max_level);
2808 if (!linfo->disallow_lpage)
2809 break;
2810 }
2811
2812 if (max_level == PG_LEVEL_4K)
2813 return PG_LEVEL_4K;
2814
2815 level = host_pfn_mapping_level(vcpu, gfn, pfn, slot);
2816 if (level == PG_LEVEL_4K)
2817 return level;
2818
2819 *req_level = level = min(level, max_level);
2820
2821 /*
2822 * Enforce the iTLB multihit workaround after capturing the requested
2823 * level, which will be used to do precise, accurate accounting.
2824 */
2825 if (huge_page_disallowed)
2826 return PG_LEVEL_4K;
2827
2828 /*
2829 * mmu_notifier_retry() was successful and mmu_lock is held, so
2830 * the pmd can't be split from under us.
2831 */
2832 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2833 VM_BUG_ON((gfn & mask) != (pfn & mask));
2834 *pfnp = pfn & ~mask;
2835
2836 return level;
2837 }
2838
disallowed_hugepage_adjust(u64 spte,gfn_t gfn,int cur_level,kvm_pfn_t * pfnp,int * goal_levelp)2839 void disallowed_hugepage_adjust(u64 spte, gfn_t gfn, int cur_level,
2840 kvm_pfn_t *pfnp, int *goal_levelp)
2841 {
2842 int level = *goal_levelp;
2843
2844 if (cur_level == level && level > PG_LEVEL_4K &&
2845 is_shadow_present_pte(spte) &&
2846 !is_large_pte(spte)) {
2847 /*
2848 * A small SPTE exists for this pfn, but FNAME(fetch)
2849 * and __direct_map would like to create a large PTE
2850 * instead: just force them to go down another level,
2851 * patching back for them into pfn the next 9 bits of
2852 * the address.
2853 */
2854 u64 page_mask = KVM_PAGES_PER_HPAGE(level) -
2855 KVM_PAGES_PER_HPAGE(level - 1);
2856 *pfnp |= gfn & page_mask;
2857 (*goal_levelp)--;
2858 }
2859 }
2860
__direct_map(struct kvm_vcpu * vcpu,gpa_t gpa,u32 error_code,int map_writable,int max_level,kvm_pfn_t pfn,bool prefault,bool is_tdp)2861 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
2862 int map_writable, int max_level, kvm_pfn_t pfn,
2863 bool prefault, bool is_tdp)
2864 {
2865 bool nx_huge_page_workaround_enabled = is_nx_huge_page_enabled();
2866 bool write = error_code & PFERR_WRITE_MASK;
2867 bool exec = error_code & PFERR_FETCH_MASK;
2868 bool huge_page_disallowed = exec && nx_huge_page_workaround_enabled;
2869 struct kvm_shadow_walk_iterator it;
2870 struct kvm_mmu_page *sp;
2871 int level, req_level, ret;
2872 gfn_t gfn = gpa >> PAGE_SHIFT;
2873 gfn_t base_gfn = gfn;
2874
2875 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
2876 return RET_PF_RETRY;
2877
2878 level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn,
2879 huge_page_disallowed, &req_level);
2880
2881 trace_kvm_mmu_spte_requested(gpa, level, pfn);
2882 for_each_shadow_entry(vcpu, gpa, it) {
2883 /*
2884 * We cannot overwrite existing page tables with an NX
2885 * large page, as the leaf could be executable.
2886 */
2887 if (nx_huge_page_workaround_enabled)
2888 disallowed_hugepage_adjust(*it.sptep, gfn, it.level,
2889 &pfn, &level);
2890
2891 base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
2892 if (it.level == level)
2893 break;
2894
2895 drop_large_spte(vcpu, it.sptep);
2896 if (!is_shadow_present_pte(*it.sptep)) {
2897 sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
2898 it.level - 1, true, ACC_ALL);
2899
2900 link_shadow_page(vcpu, it.sptep, sp);
2901 if (is_tdp && huge_page_disallowed &&
2902 req_level >= it.level)
2903 account_huge_nx_page(vcpu->kvm, sp);
2904 }
2905 }
2906
2907 ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
2908 write, level, base_gfn, pfn, prefault,
2909 map_writable);
2910 if (ret == RET_PF_SPURIOUS)
2911 return ret;
2912
2913 direct_pte_prefetch(vcpu, it.sptep);
2914 ++vcpu->stat.pf_fixed;
2915 return ret;
2916 }
2917
kvm_send_hwpoison_signal(unsigned long address,struct task_struct * tsk)2918 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2919 {
2920 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
2921 }
2922
kvm_handle_bad_page(struct kvm_vcpu * vcpu,gfn_t gfn,kvm_pfn_t pfn)2923 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
2924 {
2925 /*
2926 * Do not cache the mmio info caused by writing the readonly gfn
2927 * into the spte otherwise read access on readonly gfn also can
2928 * caused mmio page fault and treat it as mmio access.
2929 */
2930 if (pfn == KVM_PFN_ERR_RO_FAULT)
2931 return RET_PF_EMULATE;
2932
2933 if (pfn == KVM_PFN_ERR_HWPOISON) {
2934 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
2935 return RET_PF_RETRY;
2936 }
2937
2938 return -EFAULT;
2939 }
2940
handle_abnormal_pfn(struct kvm_vcpu * vcpu,gva_t gva,gfn_t gfn,kvm_pfn_t pfn,unsigned int access,int * ret_val)2941 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2942 kvm_pfn_t pfn, unsigned int access,
2943 int *ret_val)
2944 {
2945 /* The pfn is invalid, report the error! */
2946 if (unlikely(is_error_pfn(pfn))) {
2947 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2948 return true;
2949 }
2950
2951 if (unlikely(is_noslot_pfn(pfn)))
2952 vcpu_cache_mmio_info(vcpu, gva, gfn,
2953 access & shadow_mmio_access_mask);
2954
2955 return false;
2956 }
2957
page_fault_can_be_fast(u32 error_code)2958 static bool page_fault_can_be_fast(u32 error_code)
2959 {
2960 /*
2961 * Do not fix the mmio spte with invalid generation number which
2962 * need to be updated by slow page fault path.
2963 */
2964 if (unlikely(error_code & PFERR_RSVD_MASK))
2965 return false;
2966
2967 /* See if the page fault is due to an NX violation */
2968 if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
2969 == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
2970 return false;
2971
2972 /*
2973 * #PF can be fast if:
2974 * 1. The shadow page table entry is not present, which could mean that
2975 * the fault is potentially caused by access tracking (if enabled).
2976 * 2. The shadow page table entry is present and the fault
2977 * is caused by write-protect, that means we just need change the W
2978 * bit of the spte which can be done out of mmu-lock.
2979 *
2980 * However, if access tracking is disabled we know that a non-present
2981 * page must be a genuine page fault where we have to create a new SPTE.
2982 * So, if access tracking is disabled, we return true only for write
2983 * accesses to a present page.
2984 */
2985
2986 return shadow_acc_track_mask != 0 ||
2987 ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
2988 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
2989 }
2990
2991 /*
2992 * Returns true if the SPTE was fixed successfully. Otherwise,
2993 * someone else modified the SPTE from its original value.
2994 */
2995 static bool
fast_pf_fix_direct_spte(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,u64 * sptep,u64 old_spte,u64 new_spte)2996 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2997 u64 *sptep, u64 old_spte, u64 new_spte)
2998 {
2999 gfn_t gfn;
3000
3001 WARN_ON(!sp->role.direct);
3002
3003 /*
3004 * Theoretically we could also set dirty bit (and flush TLB) here in
3005 * order to eliminate unnecessary PML logging. See comments in
3006 * set_spte. But fast_page_fault is very unlikely to happen with PML
3007 * enabled, so we do not do this. This might result in the same GPA
3008 * to be logged in PML buffer again when the write really happens, and
3009 * eventually to be called by mark_page_dirty twice. But it's also no
3010 * harm. This also avoids the TLB flush needed after setting dirty bit
3011 * so non-PML cases won't be impacted.
3012 *
3013 * Compare with set_spte where instead shadow_dirty_mask is set.
3014 */
3015 if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3016 return false;
3017
3018 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3019 /*
3020 * The gfn of direct spte is stable since it is
3021 * calculated by sp->gfn.
3022 */
3023 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3024 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3025 }
3026
3027 return true;
3028 }
3029
is_access_allowed(u32 fault_err_code,u64 spte)3030 static bool is_access_allowed(u32 fault_err_code, u64 spte)
3031 {
3032 if (fault_err_code & PFERR_FETCH_MASK)
3033 return is_executable_pte(spte);
3034
3035 if (fault_err_code & PFERR_WRITE_MASK)
3036 return is_writable_pte(spte);
3037
3038 /* Fault was on Read access */
3039 return spte & PT_PRESENT_MASK;
3040 }
3041
3042 /*
3043 * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS.
3044 */
fast_page_fault(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,u32 error_code)3045 static int fast_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3046 u32 error_code)
3047 {
3048 struct kvm_shadow_walk_iterator iterator;
3049 struct kvm_mmu_page *sp;
3050 int ret = RET_PF_INVALID;
3051 u64 spte = 0ull;
3052 uint retry_count = 0;
3053
3054 if (!page_fault_can_be_fast(error_code))
3055 return ret;
3056
3057 walk_shadow_page_lockless_begin(vcpu);
3058
3059 do {
3060 u64 new_spte;
3061
3062 for_each_shadow_entry_lockless(vcpu, cr2_or_gpa, iterator, spte)
3063 if (!is_shadow_present_pte(spte))
3064 break;
3065
3066 sp = sptep_to_sp(iterator.sptep);
3067 if (!is_last_spte(spte, sp->role.level))
3068 break;
3069
3070 /*
3071 * Check whether the memory access that caused the fault would
3072 * still cause it if it were to be performed right now. If not,
3073 * then this is a spurious fault caused by TLB lazily flushed,
3074 * or some other CPU has already fixed the PTE after the
3075 * current CPU took the fault.
3076 *
3077 * Need not check the access of upper level table entries since
3078 * they are always ACC_ALL.
3079 */
3080 if (is_access_allowed(error_code, spte)) {
3081 ret = RET_PF_SPURIOUS;
3082 break;
3083 }
3084
3085 new_spte = spte;
3086
3087 if (is_access_track_spte(spte))
3088 new_spte = restore_acc_track_spte(new_spte);
3089
3090 /*
3091 * Currently, to simplify the code, write-protection can
3092 * be removed in the fast path only if the SPTE was
3093 * write-protected for dirty-logging or access tracking.
3094 */
3095 if ((error_code & PFERR_WRITE_MASK) &&
3096 spte_can_locklessly_be_made_writable(spte)) {
3097 new_spte |= PT_WRITABLE_MASK;
3098
3099 /*
3100 * Do not fix write-permission on the large spte. Since
3101 * we only dirty the first page into the dirty-bitmap in
3102 * fast_pf_fix_direct_spte(), other pages are missed
3103 * if its slot has dirty logging enabled.
3104 *
3105 * Instead, we let the slow page fault path create a
3106 * normal spte to fix the access.
3107 *
3108 * See the comments in kvm_arch_commit_memory_region().
3109 */
3110 if (sp->role.level > PG_LEVEL_4K)
3111 break;
3112 }
3113
3114 /* Verify that the fault can be handled in the fast path */
3115 if (new_spte == spte ||
3116 !is_access_allowed(error_code, new_spte))
3117 break;
3118
3119 /*
3120 * Currently, fast page fault only works for direct mapping
3121 * since the gfn is not stable for indirect shadow page. See
3122 * Documentation/virt/kvm/locking.rst to get more detail.
3123 */
3124 if (fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte,
3125 new_spte)) {
3126 ret = RET_PF_FIXED;
3127 break;
3128 }
3129
3130 if (++retry_count > 4) {
3131 printk_once(KERN_WARNING
3132 "kvm: Fast #PF retrying more than 4 times.\n");
3133 break;
3134 }
3135
3136 } while (true);
3137
3138 trace_fast_page_fault(vcpu, cr2_or_gpa, error_code, iterator.sptep,
3139 spte, ret);
3140 walk_shadow_page_lockless_end(vcpu);
3141
3142 return ret;
3143 }
3144
mmu_free_root_page(struct kvm * kvm,hpa_t * root_hpa,struct list_head * invalid_list)3145 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3146 struct list_head *invalid_list)
3147 {
3148 struct kvm_mmu_page *sp;
3149
3150 if (!VALID_PAGE(*root_hpa))
3151 return;
3152
3153 sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK);
3154
3155 if (kvm_mmu_put_root(kvm, sp)) {
3156 if (sp->tdp_mmu_page)
3157 kvm_tdp_mmu_free_root(kvm, sp);
3158 else if (sp->role.invalid)
3159 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3160 }
3161
3162 *root_hpa = INVALID_PAGE;
3163 }
3164
3165 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
kvm_mmu_free_roots(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu,ulong roots_to_free)3166 void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3167 ulong roots_to_free)
3168 {
3169 struct kvm *kvm = vcpu->kvm;
3170 int i;
3171 LIST_HEAD(invalid_list);
3172 bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
3173
3174 BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3175
3176 /* Before acquiring the MMU lock, see if we need to do any real work. */
3177 if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
3178 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3179 if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3180 VALID_PAGE(mmu->prev_roots[i].hpa))
3181 break;
3182
3183 if (i == KVM_MMU_NUM_PREV_ROOTS)
3184 return;
3185 }
3186
3187 spin_lock(&kvm->mmu_lock);
3188
3189 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3190 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3191 mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa,
3192 &invalid_list);
3193
3194 if (free_active_root) {
3195 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3196 (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3197 mmu_free_root_page(kvm, &mmu->root_hpa, &invalid_list);
3198 } else {
3199 for (i = 0; i < 4; ++i)
3200 if (mmu->pae_root[i] != 0)
3201 mmu_free_root_page(kvm,
3202 &mmu->pae_root[i],
3203 &invalid_list);
3204 mmu->root_hpa = INVALID_PAGE;
3205 }
3206 mmu->root_pgd = 0;
3207 }
3208
3209 kvm_mmu_commit_zap_page(kvm, &invalid_list);
3210 spin_unlock(&kvm->mmu_lock);
3211 }
3212 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3213
mmu_check_root(struct kvm_vcpu * vcpu,gfn_t root_gfn)3214 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3215 {
3216 int ret = 0;
3217
3218 if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
3219 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3220 ret = 1;
3221 }
3222
3223 return ret;
3224 }
3225
mmu_alloc_root(struct kvm_vcpu * vcpu,gfn_t gfn,gva_t gva,u8 level,bool direct)3226 static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva,
3227 u8 level, bool direct)
3228 {
3229 struct kvm_mmu_page *sp;
3230
3231 spin_lock(&vcpu->kvm->mmu_lock);
3232
3233 if (make_mmu_pages_available(vcpu)) {
3234 spin_unlock(&vcpu->kvm->mmu_lock);
3235 return INVALID_PAGE;
3236 }
3237 sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL);
3238 ++sp->root_count;
3239
3240 spin_unlock(&vcpu->kvm->mmu_lock);
3241 return __pa(sp->spt);
3242 }
3243
mmu_alloc_direct_roots(struct kvm_vcpu * vcpu)3244 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3245 {
3246 u8 shadow_root_level = vcpu->arch.mmu->shadow_root_level;
3247 hpa_t root;
3248 unsigned i;
3249
3250 if (vcpu->kvm->arch.tdp_mmu_enabled) {
3251 root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu);
3252
3253 if (!VALID_PAGE(root))
3254 return -ENOSPC;
3255 vcpu->arch.mmu->root_hpa = root;
3256 } else if (shadow_root_level >= PT64_ROOT_4LEVEL) {
3257 root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level,
3258 true);
3259
3260 if (!VALID_PAGE(root))
3261 return -ENOSPC;
3262 vcpu->arch.mmu->root_hpa = root;
3263 } else if (shadow_root_level == PT32E_ROOT_LEVEL) {
3264 for (i = 0; i < 4; ++i) {
3265 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->pae_root[i]));
3266
3267 root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT),
3268 i << 30, PT32_ROOT_LEVEL, true);
3269 if (!VALID_PAGE(root))
3270 return -ENOSPC;
3271 vcpu->arch.mmu->pae_root[i] = root | PT_PRESENT_MASK;
3272 }
3273 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3274 } else
3275 BUG();
3276
3277 /* root_pgd is ignored for direct MMUs. */
3278 vcpu->arch.mmu->root_pgd = 0;
3279
3280 return 0;
3281 }
3282
mmu_alloc_shadow_roots(struct kvm_vcpu * vcpu)3283 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3284 {
3285 u64 pdptr, pm_mask;
3286 gfn_t root_gfn, root_pgd;
3287 hpa_t root;
3288 int i;
3289
3290 root_pgd = vcpu->arch.mmu->get_guest_pgd(vcpu);
3291 root_gfn = root_pgd >> PAGE_SHIFT;
3292
3293 if (mmu_check_root(vcpu, root_gfn))
3294 return 1;
3295
3296 /*
3297 * Do we shadow a long mode page table? If so we need to
3298 * write-protect the guests page table root.
3299 */
3300 if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3301 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->root_hpa));
3302
3303 root = mmu_alloc_root(vcpu, root_gfn, 0,
3304 vcpu->arch.mmu->shadow_root_level, false);
3305 if (!VALID_PAGE(root))
3306 return -ENOSPC;
3307 vcpu->arch.mmu->root_hpa = root;
3308 goto set_root_pgd;
3309 }
3310
3311 /*
3312 * We shadow a 32 bit page table. This may be a legacy 2-level
3313 * or a PAE 3-level page table. In either case we need to be aware that
3314 * the shadow page table may be a PAE or a long mode page table.
3315 */
3316 pm_mask = PT_PRESENT_MASK;
3317 if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL)
3318 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3319
3320 for (i = 0; i < 4; ++i) {
3321 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->pae_root[i]));
3322 if (vcpu->arch.mmu->root_level == PT32E_ROOT_LEVEL) {
3323 pdptr = vcpu->arch.mmu->get_pdptr(vcpu, i);
3324 if (!(pdptr & PT_PRESENT_MASK)) {
3325 vcpu->arch.mmu->pae_root[i] = 0;
3326 continue;
3327 }
3328 root_gfn = pdptr >> PAGE_SHIFT;
3329 if (mmu_check_root(vcpu, root_gfn))
3330 return 1;
3331 }
3332
3333 root = mmu_alloc_root(vcpu, root_gfn, i << 30,
3334 PT32_ROOT_LEVEL, false);
3335 if (!VALID_PAGE(root))
3336 return -ENOSPC;
3337 vcpu->arch.mmu->pae_root[i] = root | pm_mask;
3338 }
3339 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3340
3341 /*
3342 * If we shadow a 32 bit page table with a long mode page
3343 * table we enter this path.
3344 */
3345 if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
3346 if (vcpu->arch.mmu->lm_root == NULL) {
3347 /*
3348 * The additional page necessary for this is only
3349 * allocated on demand.
3350 */
3351
3352 u64 *lm_root;
3353
3354 lm_root = (void*)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3355 if (lm_root == NULL)
3356 return 1;
3357
3358 lm_root[0] = __pa(vcpu->arch.mmu->pae_root) | pm_mask;
3359
3360 vcpu->arch.mmu->lm_root = lm_root;
3361 }
3362
3363 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->lm_root);
3364 }
3365
3366 set_root_pgd:
3367 vcpu->arch.mmu->root_pgd = root_pgd;
3368
3369 return 0;
3370 }
3371
mmu_alloc_roots(struct kvm_vcpu * vcpu)3372 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3373 {
3374 if (vcpu->arch.mmu->direct_map)
3375 return mmu_alloc_direct_roots(vcpu);
3376 else
3377 return mmu_alloc_shadow_roots(vcpu);
3378 }
3379
kvm_mmu_sync_roots(struct kvm_vcpu * vcpu)3380 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3381 {
3382 int i;
3383 struct kvm_mmu_page *sp;
3384
3385 if (vcpu->arch.mmu->direct_map)
3386 return;
3387
3388 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3389 return;
3390
3391 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3392
3393 if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3394 hpa_t root = vcpu->arch.mmu->root_hpa;
3395 sp = to_shadow_page(root);
3396
3397 /*
3398 * Even if another CPU was marking the SP as unsync-ed
3399 * simultaneously, any guest page table changes are not
3400 * guaranteed to be visible anyway until this VCPU issues a TLB
3401 * flush strictly after those changes are made. We only need to
3402 * ensure that the other CPU sets these flags before any actual
3403 * changes to the page tables are made. The comments in
3404 * mmu_need_write_protect() describe what could go wrong if this
3405 * requirement isn't satisfied.
3406 */
3407 if (!smp_load_acquire(&sp->unsync) &&
3408 !smp_load_acquire(&sp->unsync_children))
3409 return;
3410
3411 spin_lock(&vcpu->kvm->mmu_lock);
3412 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3413
3414 mmu_sync_children(vcpu, sp);
3415
3416 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3417 spin_unlock(&vcpu->kvm->mmu_lock);
3418 return;
3419 }
3420
3421 spin_lock(&vcpu->kvm->mmu_lock);
3422 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3423
3424 for (i = 0; i < 4; ++i) {
3425 hpa_t root = vcpu->arch.mmu->pae_root[i];
3426
3427 if (root && VALID_PAGE(root)) {
3428 root &= PT64_BASE_ADDR_MASK;
3429 sp = to_shadow_page(root);
3430 mmu_sync_children(vcpu, sp);
3431 }
3432 }
3433
3434 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3435 spin_unlock(&vcpu->kvm->mmu_lock);
3436 }
3437 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3438
nonpaging_gva_to_gpa(struct kvm_vcpu * vcpu,gpa_t vaddr,u32 access,struct x86_exception * exception)3439 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr,
3440 u32 access, struct x86_exception *exception)
3441 {
3442 if (exception)
3443 exception->error_code = 0;
3444 return vaddr;
3445 }
3446
nonpaging_gva_to_gpa_nested(struct kvm_vcpu * vcpu,gpa_t vaddr,u32 access,struct x86_exception * exception)3447 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr,
3448 u32 access,
3449 struct x86_exception *exception)
3450 {
3451 if (exception)
3452 exception->error_code = 0;
3453 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3454 }
3455
3456 static bool
__is_rsvd_bits_set(struct rsvd_bits_validate * rsvd_check,u64 pte,int level)3457 __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3458 {
3459 int bit7 = (pte >> 7) & 1;
3460
3461 return pte & rsvd_check->rsvd_bits_mask[bit7][level-1];
3462 }
3463
__is_bad_mt_xwr(struct rsvd_bits_validate * rsvd_check,u64 pte)3464 static bool __is_bad_mt_xwr(struct rsvd_bits_validate *rsvd_check, u64 pte)
3465 {
3466 return rsvd_check->bad_mt_xwr & BIT_ULL(pte & 0x3f);
3467 }
3468
mmio_info_in_cache(struct kvm_vcpu * vcpu,u64 addr,bool direct)3469 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3470 {
3471 /*
3472 * A nested guest cannot use the MMIO cache if it is using nested
3473 * page tables, because cr2 is a nGPA while the cache stores GPAs.
3474 */
3475 if (mmu_is_nested(vcpu))
3476 return false;
3477
3478 if (direct)
3479 return vcpu_match_mmio_gpa(vcpu, addr);
3480
3481 return vcpu_match_mmio_gva(vcpu, addr);
3482 }
3483
3484 /*
3485 * Return the level of the lowest level SPTE added to sptes.
3486 * That SPTE may be non-present.
3487 */
get_walk(struct kvm_vcpu * vcpu,u64 addr,u64 * sptes)3488 static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes)
3489 {
3490 struct kvm_shadow_walk_iterator iterator;
3491 int leaf = vcpu->arch.mmu->root_level;
3492 u64 spte;
3493
3494
3495 walk_shadow_page_lockless_begin(vcpu);
3496
3497 for (shadow_walk_init(&iterator, vcpu, addr);
3498 shadow_walk_okay(&iterator);
3499 __shadow_walk_next(&iterator, spte)) {
3500 leaf = iterator.level;
3501 spte = mmu_spte_get_lockless(iterator.sptep);
3502
3503 sptes[leaf - 1] = spte;
3504
3505 if (!is_shadow_present_pte(spte))
3506 break;
3507
3508 }
3509
3510 walk_shadow_page_lockless_end(vcpu);
3511
3512 return leaf;
3513 }
3514
3515 /* return true if reserved bit is detected on spte. */
get_mmio_spte(struct kvm_vcpu * vcpu,u64 addr,u64 * sptep)3516 static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3517 {
3518 u64 sptes[PT64_ROOT_MAX_LEVEL];
3519 struct rsvd_bits_validate *rsvd_check;
3520 int root = vcpu->arch.mmu->shadow_root_level;
3521 int leaf;
3522 int level;
3523 bool reserved = false;
3524
3525 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa)) {
3526 *sptep = 0ull;
3527 return reserved;
3528 }
3529
3530 if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
3531 leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes);
3532 else
3533 leaf = get_walk(vcpu, addr, sptes);
3534
3535 rsvd_check = &vcpu->arch.mmu->shadow_zero_check;
3536
3537 for (level = root; level >= leaf; level--) {
3538 if (!is_shadow_present_pte(sptes[level - 1]))
3539 break;
3540 /*
3541 * Use a bitwise-OR instead of a logical-OR to aggregate the
3542 * reserved bit and EPT's invalid memtype/XWR checks to avoid
3543 * adding a Jcc in the loop.
3544 */
3545 reserved |= __is_bad_mt_xwr(rsvd_check, sptes[level - 1]) |
3546 __is_rsvd_bits_set(rsvd_check, sptes[level - 1],
3547 level);
3548 }
3549
3550 if (reserved) {
3551 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3552 __func__, addr);
3553 for (level = root; level >= leaf; level--)
3554 pr_err("------ spte 0x%llx level %d.\n",
3555 sptes[level - 1], level);
3556 }
3557
3558 *sptep = sptes[leaf - 1];
3559
3560 return reserved;
3561 }
3562
handle_mmio_page_fault(struct kvm_vcpu * vcpu,u64 addr,bool direct)3563 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3564 {
3565 u64 spte;
3566 bool reserved;
3567
3568 if (mmio_info_in_cache(vcpu, addr, direct))
3569 return RET_PF_EMULATE;
3570
3571 reserved = get_mmio_spte(vcpu, addr, &spte);
3572 if (WARN_ON(reserved))
3573 return -EINVAL;
3574
3575 if (is_mmio_spte(spte)) {
3576 gfn_t gfn = get_mmio_spte_gfn(spte);
3577 unsigned int access = get_mmio_spte_access(spte);
3578
3579 if (!check_mmio_spte(vcpu, spte))
3580 return RET_PF_INVALID;
3581
3582 if (direct)
3583 addr = 0;
3584
3585 trace_handle_mmio_page_fault(addr, gfn, access);
3586 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3587 return RET_PF_EMULATE;
3588 }
3589
3590 /*
3591 * If the page table is zapped by other cpus, let CPU fault again on
3592 * the address.
3593 */
3594 return RET_PF_RETRY;
3595 }
3596
page_fault_handle_page_track(struct kvm_vcpu * vcpu,u32 error_code,gfn_t gfn)3597 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3598 u32 error_code, gfn_t gfn)
3599 {
3600 if (unlikely(error_code & PFERR_RSVD_MASK))
3601 return false;
3602
3603 if (!(error_code & PFERR_PRESENT_MASK) ||
3604 !(error_code & PFERR_WRITE_MASK))
3605 return false;
3606
3607 /*
3608 * guest is writing the page which is write tracked which can
3609 * not be fixed by page fault handler.
3610 */
3611 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3612 return true;
3613
3614 return false;
3615 }
3616
shadow_page_table_clear_flood(struct kvm_vcpu * vcpu,gva_t addr)3617 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3618 {
3619 struct kvm_shadow_walk_iterator iterator;
3620 u64 spte;
3621
3622 walk_shadow_page_lockless_begin(vcpu);
3623 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3624 clear_sp_write_flooding_count(iterator.sptep);
3625 if (!is_shadow_present_pte(spte))
3626 break;
3627 }
3628 walk_shadow_page_lockless_end(vcpu);
3629 }
3630
kvm_arch_setup_async_pf(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,gfn_t gfn)3631 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3632 gfn_t gfn)
3633 {
3634 struct kvm_arch_async_pf arch;
3635
3636 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3637 arch.gfn = gfn;
3638 arch.direct_map = vcpu->arch.mmu->direct_map;
3639 arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
3640
3641 return kvm_setup_async_pf(vcpu, cr2_or_gpa,
3642 kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3643 }
3644
try_async_pf(struct kvm_vcpu * vcpu,bool prefault,gfn_t gfn,gpa_t cr2_or_gpa,kvm_pfn_t * pfn,bool write,bool * writable)3645 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3646 gpa_t cr2_or_gpa, kvm_pfn_t *pfn, bool write,
3647 bool *writable)
3648 {
3649 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3650 bool async;
3651
3652 /* Don't expose private memslots to L2. */
3653 if (is_guest_mode(vcpu) && !kvm_is_visible_memslot(slot)) {
3654 *pfn = KVM_PFN_NOSLOT;
3655 *writable = false;
3656 return false;
3657 }
3658
3659 async = false;
3660 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
3661 if (!async)
3662 return false; /* *pfn has correct page already */
3663
3664 if (!prefault && kvm_can_do_async_pf(vcpu)) {
3665 trace_kvm_try_async_get_page(cr2_or_gpa, gfn);
3666 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3667 trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn);
3668 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3669 return true;
3670 } else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn))
3671 return true;
3672 }
3673
3674 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
3675 return false;
3676 }
3677
direct_page_fault(struct kvm_vcpu * vcpu,gpa_t gpa,u32 error_code,bool prefault,int max_level,bool is_tdp)3678 static int direct_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
3679 bool prefault, int max_level, bool is_tdp)
3680 {
3681 bool write = error_code & PFERR_WRITE_MASK;
3682 bool map_writable;
3683
3684 gfn_t gfn = gpa >> PAGE_SHIFT;
3685 unsigned long mmu_seq;
3686 kvm_pfn_t pfn;
3687 int r;
3688
3689 if (page_fault_handle_page_track(vcpu, error_code, gfn))
3690 return RET_PF_EMULATE;
3691
3692 if (!is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa)) {
3693 r = fast_page_fault(vcpu, gpa, error_code);
3694 if (r != RET_PF_INVALID)
3695 return r;
3696 }
3697
3698 r = mmu_topup_memory_caches(vcpu, false);
3699 if (r)
3700 return r;
3701
3702 mmu_seq = vcpu->kvm->mmu_notifier_seq;
3703 smp_rmb();
3704
3705 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3706 return RET_PF_RETRY;
3707
3708 if (handle_abnormal_pfn(vcpu, is_tdp ? 0 : gpa, gfn, pfn, ACC_ALL, &r))
3709 return r;
3710
3711 r = RET_PF_RETRY;
3712 spin_lock(&vcpu->kvm->mmu_lock);
3713 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3714 goto out_unlock;
3715 r = make_mmu_pages_available(vcpu);
3716 if (r)
3717 goto out_unlock;
3718
3719 if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
3720 r = kvm_tdp_mmu_map(vcpu, gpa, error_code, map_writable, max_level,
3721 pfn, prefault);
3722 else
3723 r = __direct_map(vcpu, gpa, error_code, map_writable, max_level, pfn,
3724 prefault, is_tdp);
3725
3726 out_unlock:
3727 spin_unlock(&vcpu->kvm->mmu_lock);
3728 kvm_release_pfn_clean(pfn);
3729 return r;
3730 }
3731
nonpaging_page_fault(struct kvm_vcpu * vcpu,gpa_t gpa,u32 error_code,bool prefault)3732 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa,
3733 u32 error_code, bool prefault)
3734 {
3735 pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code);
3736
3737 /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
3738 return direct_page_fault(vcpu, gpa & PAGE_MASK, error_code, prefault,
3739 PG_LEVEL_2M, false);
3740 }
3741
kvm_handle_page_fault(struct kvm_vcpu * vcpu,u64 error_code,u64 fault_address,char * insn,int insn_len)3742 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
3743 u64 fault_address, char *insn, int insn_len)
3744 {
3745 int r = 1;
3746 u32 flags = vcpu->arch.apf.host_apf_flags;
3747
3748 #ifndef CONFIG_X86_64
3749 /* A 64-bit CR2 should be impossible on 32-bit KVM. */
3750 if (WARN_ON_ONCE(fault_address >> 32))
3751 return -EFAULT;
3752 #endif
3753
3754 vcpu->arch.l1tf_flush_l1d = true;
3755 if (!flags) {
3756 trace_kvm_page_fault(fault_address, error_code);
3757
3758 if (kvm_event_needs_reinjection(vcpu))
3759 kvm_mmu_unprotect_page_virt(vcpu, fault_address);
3760 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
3761 insn_len);
3762 } else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
3763 vcpu->arch.apf.host_apf_flags = 0;
3764 local_irq_disable();
3765 kvm_async_pf_task_wait_schedule(fault_address);
3766 local_irq_enable();
3767 } else {
3768 WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
3769 }
3770
3771 return r;
3772 }
3773 EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
3774
kvm_tdp_page_fault(struct kvm_vcpu * vcpu,gpa_t gpa,u32 error_code,bool prefault)3775 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
3776 bool prefault)
3777 {
3778 int max_level;
3779
3780 for (max_level = KVM_MAX_HUGEPAGE_LEVEL;
3781 max_level > PG_LEVEL_4K;
3782 max_level--) {
3783 int page_num = KVM_PAGES_PER_HPAGE(max_level);
3784 gfn_t base = (gpa >> PAGE_SHIFT) & ~(page_num - 1);
3785
3786 if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
3787 break;
3788 }
3789
3790 return direct_page_fault(vcpu, gpa, error_code, prefault,
3791 max_level, true);
3792 }
3793
nonpaging_init_context(struct kvm_vcpu * vcpu,struct kvm_mmu * context)3794 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3795 struct kvm_mmu *context)
3796 {
3797 context->page_fault = nonpaging_page_fault;
3798 context->gva_to_gpa = nonpaging_gva_to_gpa;
3799 context->sync_page = nonpaging_sync_page;
3800 context->invlpg = NULL;
3801 context->update_pte = nonpaging_update_pte;
3802 context->root_level = 0;
3803 context->shadow_root_level = PT32E_ROOT_LEVEL;
3804 context->direct_map = true;
3805 context->nx = false;
3806 }
3807
is_root_usable(struct kvm_mmu_root_info * root,gpa_t pgd,union kvm_mmu_page_role role)3808 static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
3809 union kvm_mmu_page_role role)
3810 {
3811 return (role.direct || pgd == root->pgd) &&
3812 VALID_PAGE(root->hpa) && to_shadow_page(root->hpa) &&
3813 role.word == to_shadow_page(root->hpa)->role.word;
3814 }
3815
3816 /*
3817 * Find out if a previously cached root matching the new pgd/role is available.
3818 * The current root is also inserted into the cache.
3819 * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
3820 * returned.
3821 * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
3822 * false is returned. This root should now be freed by the caller.
3823 */
cached_root_available(struct kvm_vcpu * vcpu,gpa_t new_pgd,union kvm_mmu_page_role new_role)3824 static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3825 union kvm_mmu_page_role new_role)
3826 {
3827 uint i;
3828 struct kvm_mmu_root_info root;
3829 struct kvm_mmu *mmu = vcpu->arch.mmu;
3830
3831 root.pgd = mmu->root_pgd;
3832 root.hpa = mmu->root_hpa;
3833
3834 if (is_root_usable(&root, new_pgd, new_role))
3835 return true;
3836
3837 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
3838 swap(root, mmu->prev_roots[i]);
3839
3840 if (is_root_usable(&root, new_pgd, new_role))
3841 break;
3842 }
3843
3844 mmu->root_hpa = root.hpa;
3845 mmu->root_pgd = root.pgd;
3846
3847 return i < KVM_MMU_NUM_PREV_ROOTS;
3848 }
3849
fast_pgd_switch(struct kvm_vcpu * vcpu,gpa_t new_pgd,union kvm_mmu_page_role new_role)3850 static bool fast_pgd_switch(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3851 union kvm_mmu_page_role new_role)
3852 {
3853 struct kvm_mmu *mmu = vcpu->arch.mmu;
3854
3855 /*
3856 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
3857 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
3858 * later if necessary.
3859 */
3860 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3861 mmu->root_level >= PT64_ROOT_4LEVEL)
3862 return cached_root_available(vcpu, new_pgd, new_role);
3863
3864 return false;
3865 }
3866
__kvm_mmu_new_pgd(struct kvm_vcpu * vcpu,gpa_t new_pgd,union kvm_mmu_page_role new_role,bool skip_tlb_flush,bool skip_mmu_sync)3867 static void __kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3868 union kvm_mmu_page_role new_role,
3869 bool skip_tlb_flush, bool skip_mmu_sync)
3870 {
3871 if (!fast_pgd_switch(vcpu, new_pgd, new_role)) {
3872 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, KVM_MMU_ROOT_CURRENT);
3873 return;
3874 }
3875
3876 /*
3877 * It's possible that the cached previous root page is obsolete because
3878 * of a change in the MMU generation number. However, changing the
3879 * generation number is accompanied by KVM_REQ_MMU_RELOAD, which will
3880 * free the root set here and allocate a new one.
3881 */
3882 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
3883
3884 if (!skip_mmu_sync || force_flush_and_sync_on_reuse)
3885 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
3886 if (!skip_tlb_flush || force_flush_and_sync_on_reuse)
3887 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
3888
3889 /*
3890 * The last MMIO access's GVA and GPA are cached in the VCPU. When
3891 * switching to a new CR3, that GVA->GPA mapping may no longer be
3892 * valid. So clear any cached MMIO info even when we don't need to sync
3893 * the shadow page tables.
3894 */
3895 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3896
3897 /*
3898 * If this is a direct root page, it doesn't have a write flooding
3899 * count. Otherwise, clear the write flooding count.
3900 */
3901 if (!new_role.direct)
3902 __clear_sp_write_flooding_count(
3903 to_shadow_page(vcpu->arch.mmu->root_hpa));
3904 }
3905
kvm_mmu_new_pgd(struct kvm_vcpu * vcpu,gpa_t new_pgd,bool skip_tlb_flush,bool skip_mmu_sync)3906 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd, bool skip_tlb_flush,
3907 bool skip_mmu_sync)
3908 {
3909 __kvm_mmu_new_pgd(vcpu, new_pgd, kvm_mmu_calc_root_page_role(vcpu),
3910 skip_tlb_flush, skip_mmu_sync);
3911 }
3912 EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
3913
get_cr3(struct kvm_vcpu * vcpu)3914 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3915 {
3916 return kvm_read_cr3(vcpu);
3917 }
3918
sync_mmio_spte(struct kvm_vcpu * vcpu,u64 * sptep,gfn_t gfn,unsigned int access,int * nr_present)3919 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
3920 unsigned int access, int *nr_present)
3921 {
3922 if (unlikely(is_mmio_spte(*sptep))) {
3923 if (gfn != get_mmio_spte_gfn(*sptep)) {
3924 mmu_spte_clear_no_track(sptep);
3925 return true;
3926 }
3927
3928 (*nr_present)++;
3929 mark_mmio_spte(vcpu, sptep, gfn, access);
3930 return true;
3931 }
3932
3933 return false;
3934 }
3935
is_last_gpte(struct kvm_mmu * mmu,unsigned level,unsigned gpte)3936 static inline bool is_last_gpte(struct kvm_mmu *mmu,
3937 unsigned level, unsigned gpte)
3938 {
3939 /*
3940 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
3941 * If it is clear, there are no large pages at this level, so clear
3942 * PT_PAGE_SIZE_MASK in gpte if that is the case.
3943 */
3944 gpte &= level - mmu->last_nonleaf_level;
3945
3946 /*
3947 * PG_LEVEL_4K always terminates. The RHS has bit 7 set
3948 * iff level <= PG_LEVEL_4K, which for our purpose means
3949 * level == PG_LEVEL_4K; set PT_PAGE_SIZE_MASK in gpte then.
3950 */
3951 gpte |= level - PG_LEVEL_4K - 1;
3952
3953 return gpte & PT_PAGE_SIZE_MASK;
3954 }
3955
3956 #define PTTYPE_EPT 18 /* arbitrary */
3957 #define PTTYPE PTTYPE_EPT
3958 #include "paging_tmpl.h"
3959 #undef PTTYPE
3960
3961 #define PTTYPE 64
3962 #include "paging_tmpl.h"
3963 #undef PTTYPE
3964
3965 #define PTTYPE 32
3966 #include "paging_tmpl.h"
3967 #undef PTTYPE
3968
3969 static void
__reset_rsvds_bits_mask(struct kvm_vcpu * vcpu,struct rsvd_bits_validate * rsvd_check,int maxphyaddr,int level,bool nx,bool gbpages,bool pse,bool amd)3970 __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3971 struct rsvd_bits_validate *rsvd_check,
3972 int maxphyaddr, int level, bool nx, bool gbpages,
3973 bool pse, bool amd)
3974 {
3975 u64 exb_bit_rsvd = 0;
3976 u64 gbpages_bit_rsvd = 0;
3977 u64 nonleaf_bit8_rsvd = 0;
3978
3979 rsvd_check->bad_mt_xwr = 0;
3980
3981 if (!nx)
3982 exb_bit_rsvd = rsvd_bits(63, 63);
3983 if (!gbpages)
3984 gbpages_bit_rsvd = rsvd_bits(7, 7);
3985
3986 /*
3987 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
3988 * leaf entries) on AMD CPUs only.
3989 */
3990 if (amd)
3991 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
3992
3993 switch (level) {
3994 case PT32_ROOT_LEVEL:
3995 /* no rsvd bits for 2 level 4K page table entries */
3996 rsvd_check->rsvd_bits_mask[0][1] = 0;
3997 rsvd_check->rsvd_bits_mask[0][0] = 0;
3998 rsvd_check->rsvd_bits_mask[1][0] =
3999 rsvd_check->rsvd_bits_mask[0][0];
4000
4001 if (!pse) {
4002 rsvd_check->rsvd_bits_mask[1][1] = 0;
4003 break;
4004 }
4005
4006 if (is_cpuid_PSE36())
4007 /* 36bits PSE 4MB page */
4008 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4009 else
4010 /* 32 bits PSE 4MB page */
4011 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4012 break;
4013 case PT32E_ROOT_LEVEL:
4014 rsvd_check->rsvd_bits_mask[0][2] =
4015 rsvd_bits(maxphyaddr, 63) |
4016 rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */
4017 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4018 rsvd_bits(maxphyaddr, 62); /* PDE */
4019 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4020 rsvd_bits(maxphyaddr, 62); /* PTE */
4021 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4022 rsvd_bits(maxphyaddr, 62) |
4023 rsvd_bits(13, 20); /* large page */
4024 rsvd_check->rsvd_bits_mask[1][0] =
4025 rsvd_check->rsvd_bits_mask[0][0];
4026 break;
4027 case PT64_ROOT_5LEVEL:
4028 rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd |
4029 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4030 rsvd_bits(maxphyaddr, 51);
4031 rsvd_check->rsvd_bits_mask[1][4] =
4032 rsvd_check->rsvd_bits_mask[0][4];
4033 fallthrough;
4034 case PT64_ROOT_4LEVEL:
4035 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
4036 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4037 rsvd_bits(maxphyaddr, 51);
4038 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
4039 gbpages_bit_rsvd |
4040 rsvd_bits(maxphyaddr, 51);
4041 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4042 rsvd_bits(maxphyaddr, 51);
4043 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4044 rsvd_bits(maxphyaddr, 51);
4045 rsvd_check->rsvd_bits_mask[1][3] =
4046 rsvd_check->rsvd_bits_mask[0][3];
4047 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
4048 gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
4049 rsvd_bits(13, 29);
4050 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4051 rsvd_bits(maxphyaddr, 51) |
4052 rsvd_bits(13, 20); /* large page */
4053 rsvd_check->rsvd_bits_mask[1][0] =
4054 rsvd_check->rsvd_bits_mask[0][0];
4055 break;
4056 }
4057 }
4058
reset_rsvds_bits_mask(struct kvm_vcpu * vcpu,struct kvm_mmu * context)4059 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4060 struct kvm_mmu *context)
4061 {
4062 __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
4063 cpuid_maxphyaddr(vcpu), context->root_level,
4064 context->nx,
4065 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4066 is_pse(vcpu),
4067 guest_cpuid_is_amd_or_hygon(vcpu));
4068 }
4069
4070 static void
__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate * rsvd_check,int maxphyaddr,bool execonly)4071 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4072 int maxphyaddr, bool execonly)
4073 {
4074 u64 bad_mt_xwr;
4075
4076 rsvd_check->rsvd_bits_mask[0][4] =
4077 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4078 rsvd_check->rsvd_bits_mask[0][3] =
4079 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4080 rsvd_check->rsvd_bits_mask[0][2] =
4081 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4082 rsvd_check->rsvd_bits_mask[0][1] =
4083 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4084 rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
4085
4086 /* large page */
4087 rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4088 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4089 rsvd_check->rsvd_bits_mask[1][2] =
4090 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
4091 rsvd_check->rsvd_bits_mask[1][1] =
4092 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
4093 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4094
4095 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */
4096 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */
4097 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */
4098 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */
4099 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */
4100 if (!execonly) {
4101 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
4102 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4103 }
4104 rsvd_check->bad_mt_xwr = bad_mt_xwr;
4105 }
4106
reset_rsvds_bits_mask_ept(struct kvm_vcpu * vcpu,struct kvm_mmu * context,bool execonly)4107 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4108 struct kvm_mmu *context, bool execonly)
4109 {
4110 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4111 cpuid_maxphyaddr(vcpu), execonly);
4112 }
4113
4114 /*
4115 * the page table on host is the shadow page table for the page
4116 * table in guest or amd nested guest, its mmu features completely
4117 * follow the features in guest.
4118 */
4119 void
reset_shadow_zero_bits_mask(struct kvm_vcpu * vcpu,struct kvm_mmu * context)4120 reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4121 {
4122 bool uses_nx = context->nx ||
4123 context->mmu_role.base.smep_andnot_wp;
4124 struct rsvd_bits_validate *shadow_zero_check;
4125 int i;
4126
4127 /*
4128 * Passing "true" to the last argument is okay; it adds a check
4129 * on bit 8 of the SPTEs which KVM doesn't use anyway.
4130 */
4131 shadow_zero_check = &context->shadow_zero_check;
4132 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4133 shadow_phys_bits,
4134 context->shadow_root_level, uses_nx,
4135 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4136 is_pse(vcpu), true);
4137
4138 if (!shadow_me_mask)
4139 return;
4140
4141 for (i = context->shadow_root_level; --i >= 0;) {
4142 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4143 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4144 }
4145
4146 }
4147 EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4148
boot_cpu_is_amd(void)4149 static inline bool boot_cpu_is_amd(void)
4150 {
4151 WARN_ON_ONCE(!tdp_enabled);
4152 return shadow_x_mask == 0;
4153 }
4154
4155 /*
4156 * the direct page table on host, use as much mmu features as
4157 * possible, however, kvm currently does not do execution-protection.
4158 */
4159 static void
reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu * vcpu,struct kvm_mmu * context)4160 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4161 struct kvm_mmu *context)
4162 {
4163 struct rsvd_bits_validate *shadow_zero_check;
4164 int i;
4165
4166 shadow_zero_check = &context->shadow_zero_check;
4167
4168 if (boot_cpu_is_amd())
4169 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4170 shadow_phys_bits,
4171 context->shadow_root_level, false,
4172 boot_cpu_has(X86_FEATURE_GBPAGES),
4173 true, true);
4174 else
4175 __reset_rsvds_bits_mask_ept(shadow_zero_check,
4176 shadow_phys_bits,
4177 false);
4178
4179 if (!shadow_me_mask)
4180 return;
4181
4182 for (i = context->shadow_root_level; --i >= 0;) {
4183 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4184 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4185 }
4186 }
4187
4188 /*
4189 * as the comments in reset_shadow_zero_bits_mask() except it
4190 * is the shadow page table for intel nested guest.
4191 */
4192 static void
reset_ept_shadow_zero_bits_mask(struct kvm_vcpu * vcpu,struct kvm_mmu * context,bool execonly)4193 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4194 struct kvm_mmu *context, bool execonly)
4195 {
4196 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4197 shadow_phys_bits, execonly);
4198 }
4199
4200 #define BYTE_MASK(access) \
4201 ((1 & (access) ? 2 : 0) | \
4202 (2 & (access) ? 4 : 0) | \
4203 (3 & (access) ? 8 : 0) | \
4204 (4 & (access) ? 16 : 0) | \
4205 (5 & (access) ? 32 : 0) | \
4206 (6 & (access) ? 64 : 0) | \
4207 (7 & (access) ? 128 : 0))
4208
4209
update_permission_bitmask(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu,bool ept)4210 static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4211 struct kvm_mmu *mmu, bool ept)
4212 {
4213 unsigned byte;
4214
4215 const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4216 const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4217 const u8 u = BYTE_MASK(ACC_USER_MASK);
4218
4219 bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
4220 bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
4221 bool cr0_wp = is_write_protection(vcpu);
4222
4223 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4224 unsigned pfec = byte << 1;
4225
4226 /*
4227 * Each "*f" variable has a 1 bit for each UWX value
4228 * that causes a fault with the given PFEC.
4229 */
4230
4231 /* Faults from writes to non-writable pages */
4232 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
4233 /* Faults from user mode accesses to supervisor pages */
4234 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
4235 /* Faults from fetches of non-executable pages*/
4236 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
4237 /* Faults from kernel mode fetches of user pages */
4238 u8 smepf = 0;
4239 /* Faults from kernel mode accesses of user pages */
4240 u8 smapf = 0;
4241
4242 if (!ept) {
4243 /* Faults from kernel mode accesses to user pages */
4244 u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4245
4246 /* Not really needed: !nx will cause pte.nx to fault */
4247 if (!mmu->nx)
4248 ff = 0;
4249
4250 /* Allow supervisor writes if !cr0.wp */
4251 if (!cr0_wp)
4252 wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4253
4254 /* Disallow supervisor fetches of user code if cr4.smep */
4255 if (cr4_smep)
4256 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4257
4258 /*
4259 * SMAP:kernel-mode data accesses from user-mode
4260 * mappings should fault. A fault is considered
4261 * as a SMAP violation if all of the following
4262 * conditions are true:
4263 * - X86_CR4_SMAP is set in CR4
4264 * - A user page is accessed
4265 * - The access is not a fetch
4266 * - Page fault in kernel mode
4267 * - if CPL = 3 or X86_EFLAGS_AC is clear
4268 *
4269 * Here, we cover the first three conditions.
4270 * The fourth is computed dynamically in permission_fault();
4271 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4272 * *not* subject to SMAP restrictions.
4273 */
4274 if (cr4_smap)
4275 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4276 }
4277
4278 mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4279 }
4280 }
4281
4282 /*
4283 * PKU is an additional mechanism by which the paging controls access to
4284 * user-mode addresses based on the value in the PKRU register. Protection
4285 * key violations are reported through a bit in the page fault error code.
4286 * Unlike other bits of the error code, the PK bit is not known at the
4287 * call site of e.g. gva_to_gpa; it must be computed directly in
4288 * permission_fault based on two bits of PKRU, on some machine state (CR4,
4289 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
4290 *
4291 * In particular the following conditions come from the error code, the
4292 * page tables and the machine state:
4293 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4294 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4295 * - PK is always zero if U=0 in the page tables
4296 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4297 *
4298 * The PKRU bitmask caches the result of these four conditions. The error
4299 * code (minus the P bit) and the page table's U bit form an index into the
4300 * PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed
4301 * with the two bits of the PKRU register corresponding to the protection key.
4302 * For the first three conditions above the bits will be 00, thus masking
4303 * away both AD and WD. For all reads or if the last condition holds, WD
4304 * only will be masked away.
4305 */
update_pkru_bitmask(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu,bool ept)4306 static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4307 bool ept)
4308 {
4309 unsigned bit;
4310 bool wp;
4311
4312 if (ept) {
4313 mmu->pkru_mask = 0;
4314 return;
4315 }
4316
4317 /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4318 if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4319 mmu->pkru_mask = 0;
4320 return;
4321 }
4322
4323 wp = is_write_protection(vcpu);
4324
4325 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4326 unsigned pfec, pkey_bits;
4327 bool check_pkey, check_write, ff, uf, wf, pte_user;
4328
4329 pfec = bit << 1;
4330 ff = pfec & PFERR_FETCH_MASK;
4331 uf = pfec & PFERR_USER_MASK;
4332 wf = pfec & PFERR_WRITE_MASK;
4333
4334 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4335 pte_user = pfec & PFERR_RSVD_MASK;
4336
4337 /*
4338 * Only need to check the access which is not an
4339 * instruction fetch and is to a user page.
4340 */
4341 check_pkey = (!ff && pte_user);
4342 /*
4343 * write access is controlled by PKRU if it is a
4344 * user access or CR0.WP = 1.
4345 */
4346 check_write = check_pkey && wf && (uf || wp);
4347
4348 /* PKRU.AD stops both read and write access. */
4349 pkey_bits = !!check_pkey;
4350 /* PKRU.WD stops write access. */
4351 pkey_bits |= (!!check_write) << 1;
4352
4353 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4354 }
4355 }
4356
update_last_nonleaf_level(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu)4357 static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
4358 {
4359 unsigned root_level = mmu->root_level;
4360
4361 mmu->last_nonleaf_level = root_level;
4362 if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4363 mmu->last_nonleaf_level++;
4364 }
4365
paging64_init_context_common(struct kvm_vcpu * vcpu,struct kvm_mmu * context,int level)4366 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4367 struct kvm_mmu *context,
4368 int level)
4369 {
4370 context->nx = is_nx(vcpu);
4371 context->root_level = level;
4372
4373 reset_rsvds_bits_mask(vcpu, context);
4374 update_permission_bitmask(vcpu, context, false);
4375 update_pkru_bitmask(vcpu, context, false);
4376 update_last_nonleaf_level(vcpu, context);
4377
4378 MMU_WARN_ON(!is_pae(vcpu));
4379 context->page_fault = paging64_page_fault;
4380 context->gva_to_gpa = paging64_gva_to_gpa;
4381 context->sync_page = paging64_sync_page;
4382 context->invlpg = paging64_invlpg;
4383 context->update_pte = paging64_update_pte;
4384 context->shadow_root_level = level;
4385 context->direct_map = false;
4386 }
4387
paging64_init_context(struct kvm_vcpu * vcpu,struct kvm_mmu * context)4388 static void paging64_init_context(struct kvm_vcpu *vcpu,
4389 struct kvm_mmu *context)
4390 {
4391 int root_level = is_la57_mode(vcpu) ?
4392 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4393
4394 paging64_init_context_common(vcpu, context, root_level);
4395 }
4396
paging32_init_context(struct kvm_vcpu * vcpu,struct kvm_mmu * context)4397 static void paging32_init_context(struct kvm_vcpu *vcpu,
4398 struct kvm_mmu *context)
4399 {
4400 context->nx = false;
4401 context->root_level = PT32_ROOT_LEVEL;
4402
4403 reset_rsvds_bits_mask(vcpu, context);
4404 update_permission_bitmask(vcpu, context, false);
4405 update_pkru_bitmask(vcpu, context, false);
4406 update_last_nonleaf_level(vcpu, context);
4407
4408 context->page_fault = paging32_page_fault;
4409 context->gva_to_gpa = paging32_gva_to_gpa;
4410 context->sync_page = paging32_sync_page;
4411 context->invlpg = paging32_invlpg;
4412 context->update_pte = paging32_update_pte;
4413 context->shadow_root_level = PT32E_ROOT_LEVEL;
4414 context->direct_map = false;
4415 }
4416
paging32E_init_context(struct kvm_vcpu * vcpu,struct kvm_mmu * context)4417 static void paging32E_init_context(struct kvm_vcpu *vcpu,
4418 struct kvm_mmu *context)
4419 {
4420 paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
4421 }
4422
kvm_calc_mmu_role_ext(struct kvm_vcpu * vcpu)4423 static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu)
4424 {
4425 union kvm_mmu_extended_role ext = {0};
4426
4427 ext.cr0_pg = !!is_paging(vcpu);
4428 ext.cr4_pae = !!is_pae(vcpu);
4429 ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4430 ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4431 ext.cr4_pse = !!is_pse(vcpu);
4432 ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE);
4433 ext.maxphyaddr = cpuid_maxphyaddr(vcpu);
4434
4435 ext.valid = 1;
4436
4437 return ext;
4438 }
4439
kvm_calc_mmu_role_common(struct kvm_vcpu * vcpu,bool base_only)4440 static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4441 bool base_only)
4442 {
4443 union kvm_mmu_role role = {0};
4444
4445 role.base.access = ACC_ALL;
4446 role.base.nxe = !!is_nx(vcpu);
4447 role.base.cr0_wp = is_write_protection(vcpu);
4448 role.base.smm = is_smm(vcpu);
4449 role.base.guest_mode = is_guest_mode(vcpu);
4450
4451 if (base_only)
4452 return role;
4453
4454 role.ext = kvm_calc_mmu_role_ext(vcpu);
4455
4456 return role;
4457 }
4458
kvm_mmu_get_tdp_level(struct kvm_vcpu * vcpu)4459 static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu)
4460 {
4461 /* Use 5-level TDP if and only if it's useful/necessary. */
4462 if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48)
4463 return 4;
4464
4465 return max_tdp_level;
4466 }
4467
4468 static union kvm_mmu_role
kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu * vcpu,bool base_only)4469 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4470 {
4471 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4472
4473 role.base.ad_disabled = (shadow_accessed_mask == 0);
4474 role.base.level = kvm_mmu_get_tdp_level(vcpu);
4475 role.base.direct = true;
4476 role.base.gpte_is_8_bytes = true;
4477
4478 return role;
4479 }
4480
init_kvm_tdp_mmu(struct kvm_vcpu * vcpu)4481 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4482 {
4483 struct kvm_mmu *context = &vcpu->arch.root_mmu;
4484 union kvm_mmu_role new_role =
4485 kvm_calc_tdp_mmu_root_page_role(vcpu, false);
4486
4487 if (new_role.as_u64 == context->mmu_role.as_u64)
4488 return;
4489
4490 context->mmu_role.as_u64 = new_role.as_u64;
4491 context->page_fault = kvm_tdp_page_fault;
4492 context->sync_page = nonpaging_sync_page;
4493 context->invlpg = NULL;
4494 context->update_pte = nonpaging_update_pte;
4495 context->shadow_root_level = kvm_mmu_get_tdp_level(vcpu);
4496 context->direct_map = true;
4497 context->get_guest_pgd = get_cr3;
4498 context->get_pdptr = kvm_pdptr_read;
4499 context->inject_page_fault = kvm_inject_page_fault;
4500
4501 if (!is_paging(vcpu)) {
4502 context->nx = false;
4503 context->gva_to_gpa = nonpaging_gva_to_gpa;
4504 context->root_level = 0;
4505 } else if (is_long_mode(vcpu)) {
4506 context->nx = is_nx(vcpu);
4507 context->root_level = is_la57_mode(vcpu) ?
4508 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4509 reset_rsvds_bits_mask(vcpu, context);
4510 context->gva_to_gpa = paging64_gva_to_gpa;
4511 } else if (is_pae(vcpu)) {
4512 context->nx = is_nx(vcpu);
4513 context->root_level = PT32E_ROOT_LEVEL;
4514 reset_rsvds_bits_mask(vcpu, context);
4515 context->gva_to_gpa = paging64_gva_to_gpa;
4516 } else {
4517 context->nx = false;
4518 context->root_level = PT32_ROOT_LEVEL;
4519 reset_rsvds_bits_mask(vcpu, context);
4520 context->gva_to_gpa = paging32_gva_to_gpa;
4521 }
4522
4523 update_permission_bitmask(vcpu, context, false);
4524 update_pkru_bitmask(vcpu, context, false);
4525 update_last_nonleaf_level(vcpu, context);
4526 reset_tdp_shadow_zero_bits_mask(vcpu, context);
4527 }
4528
4529 static union kvm_mmu_role
kvm_calc_shadow_root_page_role_common(struct kvm_vcpu * vcpu,bool base_only)4530 kvm_calc_shadow_root_page_role_common(struct kvm_vcpu *vcpu, bool base_only)
4531 {
4532 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4533
4534 role.base.smep_andnot_wp = role.ext.cr4_smep &&
4535 !is_write_protection(vcpu);
4536 role.base.smap_andnot_wp = role.ext.cr4_smap &&
4537 !is_write_protection(vcpu);
4538 role.base.gpte_is_8_bytes = !!is_pae(vcpu);
4539
4540 return role;
4541 }
4542
4543 static union kvm_mmu_role
kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu * vcpu,bool base_only)4544 kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4545 {
4546 union kvm_mmu_role role =
4547 kvm_calc_shadow_root_page_role_common(vcpu, base_only);
4548
4549 role.base.direct = !is_paging(vcpu);
4550
4551 if (!is_long_mode(vcpu))
4552 role.base.level = PT32E_ROOT_LEVEL;
4553 else if (is_la57_mode(vcpu))
4554 role.base.level = PT64_ROOT_5LEVEL;
4555 else
4556 role.base.level = PT64_ROOT_4LEVEL;
4557
4558 return role;
4559 }
4560
shadow_mmu_init_context(struct kvm_vcpu * vcpu,struct kvm_mmu * context,u32 cr0,u32 cr4,u32 efer,union kvm_mmu_role new_role)4561 static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
4562 u32 cr0, u32 cr4, u32 efer,
4563 union kvm_mmu_role new_role)
4564 {
4565 if (!(cr0 & X86_CR0_PG))
4566 nonpaging_init_context(vcpu, context);
4567 else if (efer & EFER_LMA)
4568 paging64_init_context(vcpu, context);
4569 else if (cr4 & X86_CR4_PAE)
4570 paging32E_init_context(vcpu, context);
4571 else
4572 paging32_init_context(vcpu, context);
4573
4574 context->mmu_role.as_u64 = new_role.as_u64;
4575 reset_shadow_zero_bits_mask(vcpu, context);
4576 }
4577
kvm_init_shadow_mmu(struct kvm_vcpu * vcpu,u32 cr0,u32 cr4,u32 efer)4578 static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer)
4579 {
4580 struct kvm_mmu *context = &vcpu->arch.root_mmu;
4581 union kvm_mmu_role new_role =
4582 kvm_calc_shadow_mmu_root_page_role(vcpu, false);
4583
4584 if (new_role.as_u64 != context->mmu_role.as_u64)
4585 shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role);
4586 }
4587
4588 static union kvm_mmu_role
kvm_calc_shadow_npt_root_page_role(struct kvm_vcpu * vcpu)4589 kvm_calc_shadow_npt_root_page_role(struct kvm_vcpu *vcpu)
4590 {
4591 union kvm_mmu_role role =
4592 kvm_calc_shadow_root_page_role_common(vcpu, false);
4593
4594 role.base.direct = false;
4595 role.base.level = kvm_mmu_get_tdp_level(vcpu);
4596
4597 return role;
4598 }
4599
kvm_init_shadow_npt_mmu(struct kvm_vcpu * vcpu,u32 cr0,u32 cr4,u32 efer,gpa_t nested_cr3)4600 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer,
4601 gpa_t nested_cr3)
4602 {
4603 struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4604 union kvm_mmu_role new_role = kvm_calc_shadow_npt_root_page_role(vcpu);
4605
4606 context->shadow_root_level = new_role.base.level;
4607
4608 __kvm_mmu_new_pgd(vcpu, nested_cr3, new_role.base, false, false);
4609
4610 if (new_role.as_u64 != context->mmu_role.as_u64)
4611 shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role);
4612 }
4613 EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu);
4614
4615 static union kvm_mmu_role
kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu * vcpu,bool accessed_dirty,bool execonly,u8 level)4616 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
4617 bool execonly, u8 level)
4618 {
4619 union kvm_mmu_role role = {0};
4620
4621 /* SMM flag is inherited from root_mmu */
4622 role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
4623
4624 role.base.level = level;
4625 role.base.gpte_is_8_bytes = true;
4626 role.base.direct = false;
4627 role.base.ad_disabled = !accessed_dirty;
4628 role.base.guest_mode = true;
4629 role.base.access = ACC_ALL;
4630
4631 /*
4632 * WP=1 and NOT_WP=1 is an impossible combination, use WP and the
4633 * SMAP variation to denote shadow EPT entries.
4634 */
4635 role.base.cr0_wp = true;
4636 role.base.smap_andnot_wp = true;
4637
4638 role.ext = kvm_calc_mmu_role_ext(vcpu);
4639 role.ext.execonly = execonly;
4640
4641 return role;
4642 }
4643
kvm_init_shadow_ept_mmu(struct kvm_vcpu * vcpu,bool execonly,bool accessed_dirty,gpa_t new_eptp)4644 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
4645 bool accessed_dirty, gpa_t new_eptp)
4646 {
4647 struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4648 u8 level = vmx_eptp_page_walk_level(new_eptp);
4649 union kvm_mmu_role new_role =
4650 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
4651 execonly, level);
4652
4653 __kvm_mmu_new_pgd(vcpu, new_eptp, new_role.base, true, true);
4654
4655 if (new_role.as_u64 == context->mmu_role.as_u64)
4656 return;
4657
4658 context->shadow_root_level = level;
4659
4660 context->nx = true;
4661 context->ept_ad = accessed_dirty;
4662 context->page_fault = ept_page_fault;
4663 context->gva_to_gpa = ept_gva_to_gpa;
4664 context->sync_page = ept_sync_page;
4665 context->invlpg = ept_invlpg;
4666 context->update_pte = ept_update_pte;
4667 context->root_level = level;
4668 context->direct_map = false;
4669 context->mmu_role.as_u64 = new_role.as_u64;
4670
4671 update_permission_bitmask(vcpu, context, true);
4672 update_pkru_bitmask(vcpu, context, true);
4673 update_last_nonleaf_level(vcpu, context);
4674 reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4675 reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
4676 }
4677 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4678
init_kvm_softmmu(struct kvm_vcpu * vcpu)4679 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4680 {
4681 struct kvm_mmu *context = &vcpu->arch.root_mmu;
4682
4683 kvm_init_shadow_mmu(vcpu,
4684 kvm_read_cr0_bits(vcpu, X86_CR0_PG),
4685 kvm_read_cr4_bits(vcpu, X86_CR4_PAE),
4686 vcpu->arch.efer);
4687
4688 context->get_guest_pgd = get_cr3;
4689 context->get_pdptr = kvm_pdptr_read;
4690 context->inject_page_fault = kvm_inject_page_fault;
4691 }
4692
init_kvm_nested_mmu(struct kvm_vcpu * vcpu)4693 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4694 {
4695 union kvm_mmu_role new_role = kvm_calc_mmu_role_common(vcpu, false);
4696 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4697
4698 if (new_role.as_u64 == g_context->mmu_role.as_u64)
4699 return;
4700
4701 g_context->mmu_role.as_u64 = new_role.as_u64;
4702 g_context->get_guest_pgd = get_cr3;
4703 g_context->get_pdptr = kvm_pdptr_read;
4704 g_context->inject_page_fault = kvm_inject_page_fault;
4705
4706 /*
4707 * L2 page tables are never shadowed, so there is no need to sync
4708 * SPTEs.
4709 */
4710 g_context->invlpg = NULL;
4711
4712 /*
4713 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
4714 * L1's nested page tables (e.g. EPT12). The nested translation
4715 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4716 * L2's page tables as the first level of translation and L1's
4717 * nested page tables as the second level of translation. Basically
4718 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4719 */
4720 if (!is_paging(vcpu)) {
4721 g_context->nx = false;
4722 g_context->root_level = 0;
4723 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4724 } else if (is_long_mode(vcpu)) {
4725 g_context->nx = is_nx(vcpu);
4726 g_context->root_level = is_la57_mode(vcpu) ?
4727 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4728 reset_rsvds_bits_mask(vcpu, g_context);
4729 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4730 } else if (is_pae(vcpu)) {
4731 g_context->nx = is_nx(vcpu);
4732 g_context->root_level = PT32E_ROOT_LEVEL;
4733 reset_rsvds_bits_mask(vcpu, g_context);
4734 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4735 } else {
4736 g_context->nx = false;
4737 g_context->root_level = PT32_ROOT_LEVEL;
4738 reset_rsvds_bits_mask(vcpu, g_context);
4739 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4740 }
4741
4742 update_permission_bitmask(vcpu, g_context, false);
4743 update_pkru_bitmask(vcpu, g_context, false);
4744 update_last_nonleaf_level(vcpu, g_context);
4745 }
4746
kvm_init_mmu(struct kvm_vcpu * vcpu,bool reset_roots)4747 void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots)
4748 {
4749 if (reset_roots) {
4750 uint i;
4751
4752 vcpu->arch.mmu->root_hpa = INVALID_PAGE;
4753
4754 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
4755 vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
4756 }
4757
4758 if (mmu_is_nested(vcpu))
4759 init_kvm_nested_mmu(vcpu);
4760 else if (tdp_enabled)
4761 init_kvm_tdp_mmu(vcpu);
4762 else
4763 init_kvm_softmmu(vcpu);
4764 }
4765 EXPORT_SYMBOL_GPL(kvm_init_mmu);
4766
4767 static union kvm_mmu_page_role
kvm_mmu_calc_root_page_role(struct kvm_vcpu * vcpu)4768 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
4769 {
4770 union kvm_mmu_role role;
4771
4772 if (tdp_enabled)
4773 role = kvm_calc_tdp_mmu_root_page_role(vcpu, true);
4774 else
4775 role = kvm_calc_shadow_mmu_root_page_role(vcpu, true);
4776
4777 return role.base;
4778 }
4779
kvm_mmu_reset_context(struct kvm_vcpu * vcpu)4780 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
4781 {
4782 kvm_mmu_unload(vcpu);
4783 kvm_init_mmu(vcpu, true);
4784 }
4785 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
4786
kvm_mmu_load(struct kvm_vcpu * vcpu)4787 int kvm_mmu_load(struct kvm_vcpu *vcpu)
4788 {
4789 int r;
4790
4791 r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->direct_map);
4792 if (r)
4793 goto out;
4794 r = mmu_alloc_roots(vcpu);
4795 kvm_mmu_sync_roots(vcpu);
4796 if (r)
4797 goto out;
4798 kvm_mmu_load_pgd(vcpu);
4799 kvm_x86_ops.tlb_flush_current(vcpu);
4800 out:
4801 return r;
4802 }
4803 EXPORT_SYMBOL_GPL(kvm_mmu_load);
4804
kvm_mmu_unload(struct kvm_vcpu * vcpu)4805 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4806 {
4807 kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
4808 WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
4809 kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
4810 WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
4811 }
4812 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
4813
mmu_pte_write_new_pte(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,u64 * spte,const void * new)4814 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
4815 struct kvm_mmu_page *sp, u64 *spte,
4816 const void *new)
4817 {
4818 if (sp->role.level != PG_LEVEL_4K) {
4819 ++vcpu->kvm->stat.mmu_pde_zapped;
4820 return;
4821 }
4822
4823 ++vcpu->kvm->stat.mmu_pte_updated;
4824 vcpu->arch.mmu->update_pte(vcpu, sp, spte, new);
4825 }
4826
need_remote_flush(u64 old,u64 new)4827 static bool need_remote_flush(u64 old, u64 new)
4828 {
4829 if (!is_shadow_present_pte(old))
4830 return false;
4831 if (!is_shadow_present_pte(new))
4832 return true;
4833 if ((old ^ new) & PT64_BASE_ADDR_MASK)
4834 return true;
4835 old ^= shadow_nx_mask;
4836 new ^= shadow_nx_mask;
4837 return (old & ~new & PT64_PERM_MASK) != 0;
4838 }
4839
mmu_pte_write_fetch_gpte(struct kvm_vcpu * vcpu,gpa_t * gpa,int * bytes)4840 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4841 int *bytes)
4842 {
4843 u64 gentry = 0;
4844 int r;
4845
4846 /*
4847 * Assume that the pte write on a page table of the same type
4848 * as the current vcpu paging mode since we update the sptes only
4849 * when they have the same mode.
4850 */
4851 if (is_pae(vcpu) && *bytes == 4) {
4852 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4853 *gpa &= ~(gpa_t)7;
4854 *bytes = 8;
4855 }
4856
4857 if (*bytes == 4 || *bytes == 8) {
4858 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
4859 if (r)
4860 gentry = 0;
4861 }
4862
4863 return gentry;
4864 }
4865
4866 /*
4867 * If we're seeing too many writes to a page, it may no longer be a page table,
4868 * or we may be forking, in which case it is better to unmap the page.
4869 */
detect_write_flooding(struct kvm_mmu_page * sp)4870 static bool detect_write_flooding(struct kvm_mmu_page *sp)
4871 {
4872 /*
4873 * Skip write-flooding detected for the sp whose level is 1, because
4874 * it can become unsync, then the guest page is not write-protected.
4875 */
4876 if (sp->role.level == PG_LEVEL_4K)
4877 return false;
4878
4879 atomic_inc(&sp->write_flooding_count);
4880 return atomic_read(&sp->write_flooding_count) >= 3;
4881 }
4882
4883 /*
4884 * Misaligned accesses are too much trouble to fix up; also, they usually
4885 * indicate a page is not used as a page table.
4886 */
detect_write_misaligned(struct kvm_mmu_page * sp,gpa_t gpa,int bytes)4887 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4888 int bytes)
4889 {
4890 unsigned offset, pte_size, misaligned;
4891
4892 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4893 gpa, bytes, sp->role.word);
4894
4895 offset = offset_in_page(gpa);
4896 pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
4897
4898 /*
4899 * Sometimes, the OS only writes the last one bytes to update status
4900 * bits, for example, in linux, andb instruction is used in clear_bit().
4901 */
4902 if (!(offset & (pte_size - 1)) && bytes == 1)
4903 return false;
4904
4905 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4906 misaligned |= bytes < 4;
4907
4908 return misaligned;
4909 }
4910
get_written_sptes(struct kvm_mmu_page * sp,gpa_t gpa,int * nspte)4911 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4912 {
4913 unsigned page_offset, quadrant;
4914 u64 *spte;
4915 int level;
4916
4917 page_offset = offset_in_page(gpa);
4918 level = sp->role.level;
4919 *nspte = 1;
4920 if (!sp->role.gpte_is_8_bytes) {
4921 page_offset <<= 1; /* 32->64 */
4922 /*
4923 * A 32-bit pde maps 4MB while the shadow pdes map
4924 * only 2MB. So we need to double the offset again
4925 * and zap two pdes instead of one.
4926 */
4927 if (level == PT32_ROOT_LEVEL) {
4928 page_offset &= ~7; /* kill rounding error */
4929 page_offset <<= 1;
4930 *nspte = 2;
4931 }
4932 quadrant = page_offset >> PAGE_SHIFT;
4933 page_offset &= ~PAGE_MASK;
4934 if (quadrant != sp->role.quadrant)
4935 return NULL;
4936 }
4937
4938 spte = &sp->spt[page_offset / sizeof(*spte)];
4939 return spte;
4940 }
4941
4942 /*
4943 * Ignore various flags when determining if a SPTE can be immediately
4944 * overwritten for the current MMU.
4945 * - level: explicitly checked in mmu_pte_write_new_pte(), and will never
4946 * match the current MMU role, as MMU's level tracks the root level.
4947 * - access: updated based on the new guest PTE
4948 * - quadrant: handled by get_written_sptes()
4949 * - invalid: always false (loop only walks valid shadow pages)
4950 */
4951 static const union kvm_mmu_page_role role_ign = {
4952 .level = 0xf,
4953 .access = 0x7,
4954 .quadrant = 0x3,
4955 .invalid = 0x1,
4956 };
4957
kvm_mmu_pte_write(struct kvm_vcpu * vcpu,gpa_t gpa,const u8 * new,int bytes,struct kvm_page_track_notifier_node * node)4958 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4959 const u8 *new, int bytes,
4960 struct kvm_page_track_notifier_node *node)
4961 {
4962 gfn_t gfn = gpa >> PAGE_SHIFT;
4963 struct kvm_mmu_page *sp;
4964 LIST_HEAD(invalid_list);
4965 u64 entry, gentry, *spte;
4966 int npte;
4967 bool remote_flush, local_flush;
4968
4969 /*
4970 * If we don't have indirect shadow pages, it means no page is
4971 * write-protected, so we can exit simply.
4972 */
4973 if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4974 return;
4975
4976 remote_flush = local_flush = false;
4977
4978 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4979
4980 /*
4981 * No need to care whether allocation memory is successful
4982 * or not since pte prefetch is skiped if it does not have
4983 * enough objects in the cache.
4984 */
4985 mmu_topup_memory_caches(vcpu, true);
4986
4987 spin_lock(&vcpu->kvm->mmu_lock);
4988
4989 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
4990
4991 ++vcpu->kvm->stat.mmu_pte_write;
4992 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4993
4994 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4995 if (detect_write_misaligned(sp, gpa, bytes) ||
4996 detect_write_flooding(sp)) {
4997 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4998 ++vcpu->kvm->stat.mmu_flooded;
4999 continue;
5000 }
5001
5002 spte = get_written_sptes(sp, gpa, &npte);
5003 if (!spte)
5004 continue;
5005
5006 local_flush = true;
5007 while (npte--) {
5008 u32 base_role = vcpu->arch.mmu->mmu_role.base.word;
5009
5010 entry = *spte;
5011 mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL);
5012 if (gentry &&
5013 !((sp->role.word ^ base_role) & ~role_ign.word) &&
5014 rmap_can_add(vcpu))
5015 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
5016 if (need_remote_flush(entry, *spte))
5017 remote_flush = true;
5018 ++spte;
5019 }
5020 }
5021 kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
5022 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
5023 spin_unlock(&vcpu->kvm->mmu_lock);
5024 }
5025
kvm_mmu_unprotect_page_virt(struct kvm_vcpu * vcpu,gva_t gva)5026 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
5027 {
5028 gpa_t gpa;
5029 int r;
5030
5031 if (vcpu->arch.mmu->direct_map)
5032 return 0;
5033
5034 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
5035
5036 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
5037
5038 return r;
5039 }
5040 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
5041
kvm_mmu_page_fault(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,u64 error_code,void * insn,int insn_len)5042 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
5043 void *insn, int insn_len)
5044 {
5045 int r, emulation_type = EMULTYPE_PF;
5046 bool direct = vcpu->arch.mmu->direct_map;
5047
5048 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
5049 return RET_PF_RETRY;
5050
5051 r = RET_PF_INVALID;
5052 if (unlikely(error_code & PFERR_RSVD_MASK)) {
5053 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
5054 if (r == RET_PF_EMULATE)
5055 goto emulate;
5056 }
5057
5058 if (r == RET_PF_INVALID) {
5059 r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
5060 lower_32_bits(error_code), false);
5061 if (WARN_ON_ONCE(r == RET_PF_INVALID))
5062 return -EIO;
5063 }
5064
5065 if (r < 0)
5066 return r;
5067 if (r != RET_PF_EMULATE)
5068 return 1;
5069
5070 /*
5071 * Before emulating the instruction, check if the error code
5072 * was due to a RO violation while translating the guest page.
5073 * This can occur when using nested virtualization with nested
5074 * paging in both guests. If true, we simply unprotect the page
5075 * and resume the guest.
5076 */
5077 if (vcpu->arch.mmu->direct_map &&
5078 (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5079 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
5080 return 1;
5081 }
5082
5083 /*
5084 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5085 * optimistically try to just unprotect the page and let the processor
5086 * re-execute the instruction that caused the page fault. Do not allow
5087 * retrying MMIO emulation, as it's not only pointless but could also
5088 * cause us to enter an infinite loop because the processor will keep
5089 * faulting on the non-existent MMIO address. Retrying an instruction
5090 * from a nested guest is also pointless and dangerous as we are only
5091 * explicitly shadowing L1's page tables, i.e. unprotecting something
5092 * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5093 */
5094 if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
5095 emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
5096 emulate:
5097 return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
5098 insn_len);
5099 }
5100 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5101
kvm_mmu_invalidate_gva(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu,gva_t gva,hpa_t root_hpa)5102 void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
5103 gva_t gva, hpa_t root_hpa)
5104 {
5105 int i;
5106
5107 /* It's actually a GPA for vcpu->arch.guest_mmu. */
5108 if (mmu != &vcpu->arch.guest_mmu) {
5109 /* INVLPG on a non-canonical address is a NOP according to the SDM. */
5110 if (is_noncanonical_address(gva, vcpu))
5111 return;
5112
5113 kvm_x86_ops.tlb_flush_gva(vcpu, gva);
5114 }
5115
5116 if (!mmu->invlpg)
5117 return;
5118
5119 if (root_hpa == INVALID_PAGE) {
5120 mmu->invlpg(vcpu, gva, mmu->root_hpa);
5121
5122 /*
5123 * INVLPG is required to invalidate any global mappings for the VA,
5124 * irrespective of PCID. Since it would take us roughly similar amount
5125 * of work to determine whether any of the prev_root mappings of the VA
5126 * is marked global, or to just sync it blindly, so we might as well
5127 * just always sync it.
5128 *
5129 * Mappings not reachable via the current cr3 or the prev_roots will be
5130 * synced when switching to that cr3, so nothing needs to be done here
5131 * for them.
5132 */
5133 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5134 if (VALID_PAGE(mmu->prev_roots[i].hpa))
5135 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5136 } else {
5137 mmu->invlpg(vcpu, gva, root_hpa);
5138 }
5139 }
5140 EXPORT_SYMBOL_GPL(kvm_mmu_invalidate_gva);
5141
kvm_mmu_invlpg(struct kvm_vcpu * vcpu,gva_t gva)5142 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5143 {
5144 kvm_mmu_invalidate_gva(vcpu, vcpu->arch.mmu, gva, INVALID_PAGE);
5145 ++vcpu->stat.invlpg;
5146 }
5147 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5148
5149
kvm_mmu_invpcid_gva(struct kvm_vcpu * vcpu,gva_t gva,unsigned long pcid)5150 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5151 {
5152 struct kvm_mmu *mmu = vcpu->arch.mmu;
5153 bool tlb_flush = false;
5154 uint i;
5155
5156 if (pcid == kvm_get_active_pcid(vcpu)) {
5157 mmu->invlpg(vcpu, gva, mmu->root_hpa);
5158 tlb_flush = true;
5159 }
5160
5161 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5162 if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5163 pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) {
5164 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5165 tlb_flush = true;
5166 }
5167 }
5168
5169 if (tlb_flush)
5170 kvm_x86_ops.tlb_flush_gva(vcpu, gva);
5171
5172 ++vcpu->stat.invlpg;
5173
5174 /*
5175 * Mappings not reachable via the current cr3 or the prev_roots will be
5176 * synced when switching to that cr3, so nothing needs to be done here
5177 * for them.
5178 */
5179 }
5180 EXPORT_SYMBOL_GPL(kvm_mmu_invpcid_gva);
5181
kvm_configure_mmu(bool enable_tdp,int tdp_max_root_level,int tdp_huge_page_level)5182 void kvm_configure_mmu(bool enable_tdp, int tdp_max_root_level,
5183 int tdp_huge_page_level)
5184 {
5185 tdp_enabled = enable_tdp;
5186 max_tdp_level = tdp_max_root_level;
5187
5188 /*
5189 * max_huge_page_level reflects KVM's MMU capabilities irrespective
5190 * of kernel support, e.g. KVM may be capable of using 1GB pages when
5191 * the kernel is not. But, KVM never creates a page size greater than
5192 * what is used by the kernel for any given HVA, i.e. the kernel's
5193 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
5194 */
5195 if (tdp_enabled)
5196 max_huge_page_level = tdp_huge_page_level;
5197 else if (boot_cpu_has(X86_FEATURE_GBPAGES))
5198 max_huge_page_level = PG_LEVEL_1G;
5199 else
5200 max_huge_page_level = PG_LEVEL_2M;
5201 }
5202 EXPORT_SYMBOL_GPL(kvm_configure_mmu);
5203
5204 /* The return value indicates if tlb flush on all vcpus is needed. */
5205 typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
5206
5207 /* The caller should hold mmu-lock before calling this function. */
5208 static __always_inline bool
slot_handle_level_range(struct kvm * kvm,struct kvm_memory_slot * memslot,slot_level_handler fn,int start_level,int end_level,gfn_t start_gfn,gfn_t end_gfn,bool lock_flush_tlb)5209 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5210 slot_level_handler fn, int start_level, int end_level,
5211 gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
5212 {
5213 struct slot_rmap_walk_iterator iterator;
5214 bool flush = false;
5215
5216 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5217 end_gfn, &iterator) {
5218 if (iterator.rmap)
5219 flush |= fn(kvm, iterator.rmap);
5220
5221 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
5222 if (flush && lock_flush_tlb) {
5223 kvm_flush_remote_tlbs_with_address(kvm,
5224 start_gfn,
5225 iterator.gfn - start_gfn + 1);
5226 flush = false;
5227 }
5228 cond_resched_lock(&kvm->mmu_lock);
5229 }
5230 }
5231
5232 if (flush && lock_flush_tlb) {
5233 kvm_flush_remote_tlbs_with_address(kvm, start_gfn,
5234 end_gfn - start_gfn + 1);
5235 flush = false;
5236 }
5237
5238 return flush;
5239 }
5240
5241 static __always_inline bool
slot_handle_level(struct kvm * kvm,struct kvm_memory_slot * memslot,slot_level_handler fn,int start_level,int end_level,bool lock_flush_tlb)5242 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5243 slot_level_handler fn, int start_level, int end_level,
5244 bool lock_flush_tlb)
5245 {
5246 return slot_handle_level_range(kvm, memslot, fn, start_level,
5247 end_level, memslot->base_gfn,
5248 memslot->base_gfn + memslot->npages - 1,
5249 lock_flush_tlb);
5250 }
5251
5252 static __always_inline bool
slot_handle_all_level(struct kvm * kvm,struct kvm_memory_slot * memslot,slot_level_handler fn,bool lock_flush_tlb)5253 slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5254 slot_level_handler fn, bool lock_flush_tlb)
5255 {
5256 return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5257 KVM_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5258 }
5259
5260 static __always_inline bool
slot_handle_large_level(struct kvm * kvm,struct kvm_memory_slot * memslot,slot_level_handler fn,bool lock_flush_tlb)5261 slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5262 slot_level_handler fn, bool lock_flush_tlb)
5263 {
5264 return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K + 1,
5265 KVM_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5266 }
5267
5268 static __always_inline bool
slot_handle_leaf(struct kvm * kvm,struct kvm_memory_slot * memslot,slot_level_handler fn,bool lock_flush_tlb)5269 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5270 slot_level_handler fn, bool lock_flush_tlb)
5271 {
5272 return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5273 PG_LEVEL_4K, lock_flush_tlb);
5274 }
5275
free_mmu_pages(struct kvm_mmu * mmu)5276 static void free_mmu_pages(struct kvm_mmu *mmu)
5277 {
5278 free_page((unsigned long)mmu->pae_root);
5279 free_page((unsigned long)mmu->lm_root);
5280 }
5281
__kvm_mmu_create(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu)5282 static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
5283 {
5284 struct page *page;
5285 int i;
5286
5287 mmu->root_hpa = INVALID_PAGE;
5288 mmu->root_pgd = 0;
5289 mmu->translate_gpa = translate_gpa;
5290 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5291 mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5292
5293 /*
5294 * When using PAE paging, the four PDPTEs are treated as 'root' pages,
5295 * while the PDP table is a per-vCPU construct that's allocated at MMU
5296 * creation. When emulating 32-bit mode, cr3 is only 32 bits even on
5297 * x86_64. Therefore we need to allocate the PDP table in the first
5298 * 4GB of memory, which happens to fit the DMA32 zone. Except for
5299 * SVM's 32-bit NPT support, TDP paging doesn't use PAE paging and can
5300 * skip allocating the PDP table.
5301 */
5302 if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
5303 return 0;
5304
5305 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
5306 if (!page)
5307 return -ENOMEM;
5308
5309 mmu->pae_root = page_address(page);
5310 for (i = 0; i < 4; ++i)
5311 mmu->pae_root[i] = INVALID_PAGE;
5312
5313 return 0;
5314 }
5315
kvm_mmu_create(struct kvm_vcpu * vcpu)5316 int kvm_mmu_create(struct kvm_vcpu *vcpu)
5317 {
5318 int ret;
5319
5320 vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache;
5321 vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO;
5322
5323 vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache;
5324 vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO;
5325
5326 vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO;
5327
5328 vcpu->arch.mmu = &vcpu->arch.root_mmu;
5329 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
5330
5331 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5332
5333 ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu);
5334 if (ret)
5335 return ret;
5336
5337 ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu);
5338 if (ret)
5339 goto fail_allocate_root;
5340
5341 return ret;
5342 fail_allocate_root:
5343 free_mmu_pages(&vcpu->arch.guest_mmu);
5344 return ret;
5345 }
5346
5347 #define BATCH_ZAP_PAGES 10
kvm_zap_obsolete_pages(struct kvm * kvm)5348 static void kvm_zap_obsolete_pages(struct kvm *kvm)
5349 {
5350 struct kvm_mmu_page *sp, *node;
5351 int nr_zapped, batch = 0;
5352
5353 restart:
5354 list_for_each_entry_safe_reverse(sp, node,
5355 &kvm->arch.active_mmu_pages, link) {
5356 /*
5357 * No obsolete valid page exists before a newly created page
5358 * since active_mmu_pages is a FIFO list.
5359 */
5360 if (!is_obsolete_sp(kvm, sp))
5361 break;
5362
5363 /*
5364 * Invalid pages should never land back on the list of active
5365 * pages. Skip the bogus page, otherwise we'll get stuck in an
5366 * infinite loop if the page gets put back on the list (again).
5367 */
5368 if (WARN_ON(sp->role.invalid))
5369 continue;
5370
5371 /*
5372 * No need to flush the TLB since we're only zapping shadow
5373 * pages with an obsolete generation number and all vCPUS have
5374 * loaded a new root, i.e. the shadow pages being zapped cannot
5375 * be in active use by the guest.
5376 */
5377 if (batch >= BATCH_ZAP_PAGES &&
5378 cond_resched_lock(&kvm->mmu_lock)) {
5379 batch = 0;
5380 goto restart;
5381 }
5382
5383 if (__kvm_mmu_prepare_zap_page(kvm, sp,
5384 &kvm->arch.zapped_obsolete_pages, &nr_zapped)) {
5385 batch += nr_zapped;
5386 goto restart;
5387 }
5388 }
5389
5390 /*
5391 * Trigger a remote TLB flush before freeing the page tables to ensure
5392 * KVM is not in the middle of a lockless shadow page table walk, which
5393 * may reference the pages.
5394 */
5395 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5396 }
5397
5398 /*
5399 * Fast invalidate all shadow pages and use lock-break technique
5400 * to zap obsolete pages.
5401 *
5402 * It's required when memslot is being deleted or VM is being
5403 * destroyed, in these cases, we should ensure that KVM MMU does
5404 * not use any resource of the being-deleted slot or all slots
5405 * after calling the function.
5406 */
kvm_mmu_zap_all_fast(struct kvm * kvm)5407 static void kvm_mmu_zap_all_fast(struct kvm *kvm)
5408 {
5409 lockdep_assert_held(&kvm->slots_lock);
5410
5411 spin_lock(&kvm->mmu_lock);
5412 trace_kvm_mmu_zap_all_fast(kvm);
5413
5414 /*
5415 * Toggle mmu_valid_gen between '0' and '1'. Because slots_lock is
5416 * held for the entire duration of zapping obsolete pages, it's
5417 * impossible for there to be multiple invalid generations associated
5418 * with *valid* shadow pages at any given time, i.e. there is exactly
5419 * one valid generation and (at most) one invalid generation.
5420 */
5421 kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
5422
5423 /*
5424 * Notify all vcpus to reload its shadow page table and flush TLB.
5425 * Then all vcpus will switch to new shadow page table with the new
5426 * mmu_valid_gen.
5427 *
5428 * Note: we need to do this under the protection of mmu_lock,
5429 * otherwise, vcpu would purge shadow page but miss tlb flush.
5430 */
5431 kvm_reload_remote_mmus(kvm);
5432
5433 kvm_zap_obsolete_pages(kvm);
5434
5435 if (kvm->arch.tdp_mmu_enabled)
5436 kvm_tdp_mmu_zap_all(kvm);
5437
5438 spin_unlock(&kvm->mmu_lock);
5439 }
5440
kvm_has_zapped_obsolete_pages(struct kvm * kvm)5441 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5442 {
5443 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5444 }
5445
kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm * kvm,struct kvm_memory_slot * slot,struct kvm_page_track_notifier_node * node)5446 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5447 struct kvm_memory_slot *slot,
5448 struct kvm_page_track_notifier_node *node)
5449 {
5450 kvm_mmu_zap_all_fast(kvm);
5451 }
5452
kvm_mmu_init_vm(struct kvm * kvm)5453 void kvm_mmu_init_vm(struct kvm *kvm)
5454 {
5455 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5456
5457 kvm_mmu_init_tdp_mmu(kvm);
5458
5459 node->track_write = kvm_mmu_pte_write;
5460 node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5461 kvm_page_track_register_notifier(kvm, node);
5462 }
5463
kvm_mmu_uninit_vm(struct kvm * kvm)5464 void kvm_mmu_uninit_vm(struct kvm *kvm)
5465 {
5466 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5467
5468 kvm_page_track_unregister_notifier(kvm, node);
5469
5470 kvm_mmu_uninit_tdp_mmu(kvm);
5471 }
5472
kvm_zap_gfn_range(struct kvm * kvm,gfn_t gfn_start,gfn_t gfn_end)5473 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5474 {
5475 struct kvm_memslots *slots;
5476 struct kvm_memory_slot *memslot;
5477 int i;
5478 bool flush;
5479
5480 spin_lock(&kvm->mmu_lock);
5481 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5482 slots = __kvm_memslots(kvm, i);
5483 kvm_for_each_memslot(memslot, slots) {
5484 gfn_t start, end;
5485
5486 start = max(gfn_start, memslot->base_gfn);
5487 end = min(gfn_end, memslot->base_gfn + memslot->npages);
5488 if (start >= end)
5489 continue;
5490
5491 slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
5492 PG_LEVEL_4K,
5493 KVM_MAX_HUGEPAGE_LEVEL,
5494 start, end - 1, true);
5495 }
5496 }
5497
5498 if (kvm->arch.tdp_mmu_enabled) {
5499 flush = kvm_tdp_mmu_zap_gfn_range(kvm, gfn_start, gfn_end);
5500 if (flush)
5501 kvm_flush_remote_tlbs(kvm);
5502 }
5503
5504 spin_unlock(&kvm->mmu_lock);
5505 }
5506
slot_rmap_write_protect(struct kvm * kvm,struct kvm_rmap_head * rmap_head)5507 static bool slot_rmap_write_protect(struct kvm *kvm,
5508 struct kvm_rmap_head *rmap_head)
5509 {
5510 return __rmap_write_protect(kvm, rmap_head, false);
5511 }
5512
kvm_mmu_slot_remove_write_access(struct kvm * kvm,struct kvm_memory_slot * memslot,int start_level)5513 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5514 struct kvm_memory_slot *memslot,
5515 int start_level)
5516 {
5517 bool flush;
5518
5519 spin_lock(&kvm->mmu_lock);
5520 flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect,
5521 start_level, KVM_MAX_HUGEPAGE_LEVEL, false);
5522 if (kvm->arch.tdp_mmu_enabled)
5523 flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, PG_LEVEL_4K);
5524 spin_unlock(&kvm->mmu_lock);
5525
5526 /*
5527 * We can flush all the TLBs out of the mmu lock without TLB
5528 * corruption since we just change the spte from writable to
5529 * readonly so that we only need to care the case of changing
5530 * spte from present to present (changing the spte from present
5531 * to nonpresent will flush all the TLBs immediately), in other
5532 * words, the only case we care is mmu_spte_update() where we
5533 * have checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
5534 * instead of PT_WRITABLE_MASK, that means it does not depend
5535 * on PT_WRITABLE_MASK anymore.
5536 */
5537 if (flush)
5538 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5539 }
5540
kvm_mmu_zap_collapsible_spte(struct kvm * kvm,struct kvm_rmap_head * rmap_head)5541 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5542 struct kvm_rmap_head *rmap_head)
5543 {
5544 u64 *sptep;
5545 struct rmap_iterator iter;
5546 int need_tlb_flush = 0;
5547 kvm_pfn_t pfn;
5548 struct kvm_mmu_page *sp;
5549
5550 restart:
5551 for_each_rmap_spte(rmap_head, &iter, sptep) {
5552 sp = sptep_to_sp(sptep);
5553 pfn = spte_to_pfn(*sptep);
5554
5555 /*
5556 * We cannot do huge page mapping for indirect shadow pages,
5557 * which are found on the last rmap (level = 1) when not using
5558 * tdp; such shadow pages are synced with the page table in
5559 * the guest, and the guest page table is using 4K page size
5560 * mapping if the indirect sp has level = 1.
5561 */
5562 if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
5563 (kvm_is_zone_device_pfn(pfn) ||
5564 PageCompound(pfn_to_page(pfn)))) {
5565 pte_list_remove(rmap_head, sptep);
5566
5567 if (kvm_available_flush_tlb_with_range())
5568 kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
5569 KVM_PAGES_PER_HPAGE(sp->role.level));
5570 else
5571 need_tlb_flush = 1;
5572
5573 goto restart;
5574 }
5575 }
5576
5577 return need_tlb_flush;
5578 }
5579
kvm_mmu_zap_collapsible_sptes(struct kvm * kvm,const struct kvm_memory_slot * memslot)5580 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5581 const struct kvm_memory_slot *memslot)
5582 {
5583 /* FIXME: const-ify all uses of struct kvm_memory_slot. */
5584 spin_lock(&kvm->mmu_lock);
5585 slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
5586 kvm_mmu_zap_collapsible_spte, true);
5587
5588 if (kvm->arch.tdp_mmu_enabled)
5589 kvm_tdp_mmu_zap_collapsible_sptes(kvm, memslot);
5590 spin_unlock(&kvm->mmu_lock);
5591 }
5592
kvm_arch_flush_remote_tlbs_memslot(struct kvm * kvm,struct kvm_memory_slot * memslot)5593 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
5594 struct kvm_memory_slot *memslot)
5595 {
5596 /*
5597 * All current use cases for flushing the TLBs for a specific memslot
5598 * are related to dirty logging, and do the TLB flush out of mmu_lock.
5599 * The interaction between the various operations on memslot must be
5600 * serialized by slots_locks to ensure the TLB flush from one operation
5601 * is observed by any other operation on the same memslot.
5602 */
5603 lockdep_assert_held(&kvm->slots_lock);
5604 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5605 memslot->npages);
5606 }
5607
kvm_mmu_slot_leaf_clear_dirty(struct kvm * kvm,struct kvm_memory_slot * memslot)5608 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5609 struct kvm_memory_slot *memslot)
5610 {
5611 bool flush;
5612
5613 spin_lock(&kvm->mmu_lock);
5614 flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
5615 if (kvm->arch.tdp_mmu_enabled)
5616 flush |= kvm_tdp_mmu_clear_dirty_slot(kvm, memslot);
5617 spin_unlock(&kvm->mmu_lock);
5618
5619 /*
5620 * It's also safe to flush TLBs out of mmu lock here as currently this
5621 * function is only used for dirty logging, in which case flushing TLB
5622 * out of mmu lock also guarantees no dirty pages will be lost in
5623 * dirty_bitmap.
5624 */
5625 if (flush)
5626 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5627 }
5628 EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
5629
kvm_mmu_slot_largepage_remove_write_access(struct kvm * kvm,struct kvm_memory_slot * memslot)5630 void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
5631 struct kvm_memory_slot *memslot)
5632 {
5633 bool flush;
5634
5635 spin_lock(&kvm->mmu_lock);
5636 flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
5637 false);
5638 if (kvm->arch.tdp_mmu_enabled)
5639 flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, PG_LEVEL_2M);
5640 spin_unlock(&kvm->mmu_lock);
5641
5642 if (flush)
5643 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5644 }
5645 EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
5646
kvm_mmu_slot_set_dirty(struct kvm * kvm,struct kvm_memory_slot * memslot)5647 void kvm_mmu_slot_set_dirty(struct kvm *kvm,
5648 struct kvm_memory_slot *memslot)
5649 {
5650 bool flush;
5651
5652 spin_lock(&kvm->mmu_lock);
5653 flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
5654 if (kvm->arch.tdp_mmu_enabled)
5655 flush |= kvm_tdp_mmu_slot_set_dirty(kvm, memslot);
5656 spin_unlock(&kvm->mmu_lock);
5657
5658 if (flush)
5659 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5660 }
5661 EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
5662
kvm_mmu_zap_all(struct kvm * kvm)5663 void kvm_mmu_zap_all(struct kvm *kvm)
5664 {
5665 struct kvm_mmu_page *sp, *node;
5666 LIST_HEAD(invalid_list);
5667 int ign;
5668
5669 spin_lock(&kvm->mmu_lock);
5670 restart:
5671 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
5672 if (WARN_ON(sp->role.invalid))
5673 continue;
5674 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
5675 goto restart;
5676 if (cond_resched_lock(&kvm->mmu_lock))
5677 goto restart;
5678 }
5679
5680 kvm_mmu_commit_zap_page(kvm, &invalid_list);
5681
5682 if (kvm->arch.tdp_mmu_enabled)
5683 kvm_tdp_mmu_zap_all(kvm);
5684
5685 spin_unlock(&kvm->mmu_lock);
5686 }
5687
kvm_mmu_invalidate_mmio_sptes(struct kvm * kvm,u64 gen)5688 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
5689 {
5690 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
5691
5692 gen &= MMIO_SPTE_GEN_MASK;
5693
5694 /*
5695 * Generation numbers are incremented in multiples of the number of
5696 * address spaces in order to provide unique generations across all
5697 * address spaces. Strip what is effectively the address space
5698 * modifier prior to checking for a wrap of the MMIO generation so
5699 * that a wrap in any address space is detected.
5700 */
5701 gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);
5702
5703 /*
5704 * The very rare case: if the MMIO generation number has wrapped,
5705 * zap all shadow pages.
5706 */
5707 if (unlikely(gen == 0)) {
5708 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
5709 kvm_mmu_zap_all_fast(kvm);
5710 }
5711 }
5712
5713 static unsigned long
mmu_shrink_scan(struct shrinker * shrink,struct shrink_control * sc)5714 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5715 {
5716 struct kvm *kvm;
5717 int nr_to_scan = sc->nr_to_scan;
5718 unsigned long freed = 0;
5719
5720 mutex_lock(&kvm_lock);
5721
5722 list_for_each_entry(kvm, &vm_list, vm_list) {
5723 int idx;
5724 LIST_HEAD(invalid_list);
5725
5726 /*
5727 * Never scan more than sc->nr_to_scan VM instances.
5728 * Will not hit this condition practically since we do not try
5729 * to shrink more than one VM and it is very unlikely to see
5730 * !n_used_mmu_pages so many times.
5731 */
5732 if (!nr_to_scan--)
5733 break;
5734 /*
5735 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
5736 * here. We may skip a VM instance errorneosly, but we do not
5737 * want to shrink a VM that only started to populate its MMU
5738 * anyway.
5739 */
5740 if (!kvm->arch.n_used_mmu_pages &&
5741 !kvm_has_zapped_obsolete_pages(kvm))
5742 continue;
5743
5744 idx = srcu_read_lock(&kvm->srcu);
5745 spin_lock(&kvm->mmu_lock);
5746
5747 if (kvm_has_zapped_obsolete_pages(kvm)) {
5748 kvm_mmu_commit_zap_page(kvm,
5749 &kvm->arch.zapped_obsolete_pages);
5750 goto unlock;
5751 }
5752
5753 freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan);
5754
5755 unlock:
5756 spin_unlock(&kvm->mmu_lock);
5757 srcu_read_unlock(&kvm->srcu, idx);
5758
5759 /*
5760 * unfair on small ones
5761 * per-vm shrinkers cry out
5762 * sadness comes quickly
5763 */
5764 list_move_tail(&kvm->vm_list, &vm_list);
5765 break;
5766 }
5767
5768 mutex_unlock(&kvm_lock);
5769 return freed;
5770 }
5771
5772 static unsigned long
mmu_shrink_count(struct shrinker * shrink,struct shrink_control * sc)5773 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5774 {
5775 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
5776 }
5777
5778 static struct shrinker mmu_shrinker = {
5779 .count_objects = mmu_shrink_count,
5780 .scan_objects = mmu_shrink_scan,
5781 .seeks = DEFAULT_SEEKS * 10,
5782 };
5783
mmu_destroy_caches(void)5784 static void mmu_destroy_caches(void)
5785 {
5786 kmem_cache_destroy(pte_list_desc_cache);
5787 kmem_cache_destroy(mmu_page_header_cache);
5788 }
5789
kvm_set_mmio_spte_mask(void)5790 static void kvm_set_mmio_spte_mask(void)
5791 {
5792 u64 mask;
5793
5794 /*
5795 * Set a reserved PA bit in MMIO SPTEs to generate page faults with
5796 * PFEC.RSVD=1 on MMIO accesses. 64-bit PTEs (PAE, x86-64, and EPT
5797 * paging) support a maximum of 52 bits of PA, i.e. if the CPU supports
5798 * 52-bit physical addresses then there are no reserved PA bits in the
5799 * PTEs and so the reserved PA approach must be disabled.
5800 */
5801 if (shadow_phys_bits < 52)
5802 mask = BIT_ULL(51) | PT_PRESENT_MASK;
5803 else
5804 mask = 0;
5805
5806 kvm_mmu_set_mmio_spte_mask(mask, ACC_WRITE_MASK | ACC_USER_MASK);
5807 }
5808
get_nx_auto_mode(void)5809 static bool get_nx_auto_mode(void)
5810 {
5811 /* Return true when CPU has the bug, and mitigations are ON */
5812 return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
5813 }
5814
__set_nx_huge_pages(bool val)5815 static void __set_nx_huge_pages(bool val)
5816 {
5817 nx_huge_pages = itlb_multihit_kvm_mitigation = val;
5818 }
5819
set_nx_huge_pages(const char * val,const struct kernel_param * kp)5820 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
5821 {
5822 bool old_val = nx_huge_pages;
5823 bool new_val;
5824
5825 /* In "auto" mode deploy workaround only if CPU has the bug. */
5826 if (sysfs_streq(val, "off"))
5827 new_val = 0;
5828 else if (sysfs_streq(val, "force"))
5829 new_val = 1;
5830 else if (sysfs_streq(val, "auto"))
5831 new_val = get_nx_auto_mode();
5832 else if (strtobool(val, &new_val) < 0)
5833 return -EINVAL;
5834
5835 __set_nx_huge_pages(new_val);
5836
5837 if (new_val != old_val) {
5838 struct kvm *kvm;
5839
5840 mutex_lock(&kvm_lock);
5841
5842 list_for_each_entry(kvm, &vm_list, vm_list) {
5843 mutex_lock(&kvm->slots_lock);
5844 kvm_mmu_zap_all_fast(kvm);
5845 mutex_unlock(&kvm->slots_lock);
5846
5847 wake_up_process(kvm->arch.nx_lpage_recovery_thread);
5848 }
5849 mutex_unlock(&kvm_lock);
5850 }
5851
5852 return 0;
5853 }
5854
kvm_mmu_module_init(void)5855 int kvm_mmu_module_init(void)
5856 {
5857 int ret = -ENOMEM;
5858
5859 if (nx_huge_pages == -1)
5860 __set_nx_huge_pages(get_nx_auto_mode());
5861
5862 /*
5863 * MMU roles use union aliasing which is, generally speaking, an
5864 * undefined behavior. However, we supposedly know how compilers behave
5865 * and the current status quo is unlikely to change. Guardians below are
5866 * supposed to let us know if the assumption becomes false.
5867 */
5868 BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
5869 BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
5870 BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));
5871
5872 kvm_mmu_reset_all_pte_masks();
5873
5874 kvm_set_mmio_spte_mask();
5875
5876 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
5877 sizeof(struct pte_list_desc),
5878 0, SLAB_ACCOUNT, NULL);
5879 if (!pte_list_desc_cache)
5880 goto out;
5881
5882 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
5883 sizeof(struct kvm_mmu_page),
5884 0, SLAB_ACCOUNT, NULL);
5885 if (!mmu_page_header_cache)
5886 goto out;
5887
5888 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
5889 goto out;
5890
5891 ret = register_shrinker(&mmu_shrinker);
5892 if (ret)
5893 goto out;
5894
5895 return 0;
5896
5897 out:
5898 mmu_destroy_caches();
5899 return ret;
5900 }
5901
5902 /*
5903 * Calculate mmu pages needed for kvm.
5904 */
kvm_mmu_calculate_default_mmu_pages(struct kvm * kvm)5905 unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
5906 {
5907 unsigned long nr_mmu_pages;
5908 unsigned long nr_pages = 0;
5909 struct kvm_memslots *slots;
5910 struct kvm_memory_slot *memslot;
5911 int i;
5912
5913 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5914 slots = __kvm_memslots(kvm, i);
5915
5916 kvm_for_each_memslot(memslot, slots)
5917 nr_pages += memslot->npages;
5918 }
5919
5920 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
5921 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
5922
5923 return nr_mmu_pages;
5924 }
5925
kvm_mmu_destroy(struct kvm_vcpu * vcpu)5926 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
5927 {
5928 kvm_mmu_unload(vcpu);
5929 free_mmu_pages(&vcpu->arch.root_mmu);
5930 free_mmu_pages(&vcpu->arch.guest_mmu);
5931 mmu_free_memory_caches(vcpu);
5932 }
5933
kvm_mmu_module_exit(void)5934 void kvm_mmu_module_exit(void)
5935 {
5936 mmu_destroy_caches();
5937 percpu_counter_destroy(&kvm_total_used_mmu_pages);
5938 unregister_shrinker(&mmu_shrinker);
5939 mmu_audit_disable();
5940 }
5941
set_nx_huge_pages_recovery_ratio(const char * val,const struct kernel_param * kp)5942 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp)
5943 {
5944 unsigned int old_val;
5945 int err;
5946
5947 old_val = nx_huge_pages_recovery_ratio;
5948 err = param_set_uint(val, kp);
5949 if (err)
5950 return err;
5951
5952 if (READ_ONCE(nx_huge_pages) &&
5953 !old_val && nx_huge_pages_recovery_ratio) {
5954 struct kvm *kvm;
5955
5956 mutex_lock(&kvm_lock);
5957
5958 list_for_each_entry(kvm, &vm_list, vm_list)
5959 wake_up_process(kvm->arch.nx_lpage_recovery_thread);
5960
5961 mutex_unlock(&kvm_lock);
5962 }
5963
5964 return err;
5965 }
5966
kvm_recover_nx_lpages(struct kvm * kvm)5967 static void kvm_recover_nx_lpages(struct kvm *kvm)
5968 {
5969 int rcu_idx;
5970 struct kvm_mmu_page *sp;
5971 unsigned int ratio;
5972 LIST_HEAD(invalid_list);
5973 ulong to_zap;
5974
5975 rcu_idx = srcu_read_lock(&kvm->srcu);
5976 spin_lock(&kvm->mmu_lock);
5977
5978 ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
5979 to_zap = ratio ? DIV_ROUND_UP(kvm->stat.nx_lpage_splits, ratio) : 0;
5980 for ( ; to_zap; --to_zap) {
5981 if (list_empty(&kvm->arch.lpage_disallowed_mmu_pages))
5982 break;
5983
5984 /*
5985 * We use a separate list instead of just using active_mmu_pages
5986 * because the number of lpage_disallowed pages is expected to
5987 * be relatively small compared to the total.
5988 */
5989 sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
5990 struct kvm_mmu_page,
5991 lpage_disallowed_link);
5992 WARN_ON_ONCE(!sp->lpage_disallowed);
5993 if (sp->tdp_mmu_page)
5994 kvm_tdp_mmu_zap_gfn_range(kvm, sp->gfn,
5995 sp->gfn + KVM_PAGES_PER_HPAGE(sp->role.level));
5996 else {
5997 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
5998 WARN_ON_ONCE(sp->lpage_disallowed);
5999 }
6000
6001 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
6002 kvm_mmu_commit_zap_page(kvm, &invalid_list);
6003 cond_resched_lock(&kvm->mmu_lock);
6004 }
6005 }
6006 kvm_mmu_commit_zap_page(kvm, &invalid_list);
6007
6008 spin_unlock(&kvm->mmu_lock);
6009 srcu_read_unlock(&kvm->srcu, rcu_idx);
6010 }
6011
get_nx_lpage_recovery_timeout(u64 start_time)6012 static long get_nx_lpage_recovery_timeout(u64 start_time)
6013 {
6014 return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio)
6015 ? start_time + 60 * HZ - get_jiffies_64()
6016 : MAX_SCHEDULE_TIMEOUT;
6017 }
6018
kvm_nx_lpage_recovery_worker(struct kvm * kvm,uintptr_t data)6019 static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
6020 {
6021 u64 start_time;
6022 long remaining_time;
6023
6024 while (true) {
6025 start_time = get_jiffies_64();
6026 remaining_time = get_nx_lpage_recovery_timeout(start_time);
6027
6028 set_current_state(TASK_INTERRUPTIBLE);
6029 while (!kthread_should_stop() && remaining_time > 0) {
6030 schedule_timeout(remaining_time);
6031 remaining_time = get_nx_lpage_recovery_timeout(start_time);
6032 set_current_state(TASK_INTERRUPTIBLE);
6033 }
6034
6035 set_current_state(TASK_RUNNING);
6036
6037 if (kthread_should_stop())
6038 return 0;
6039
6040 kvm_recover_nx_lpages(kvm);
6041 }
6042 }
6043
kvm_mmu_post_init_vm(struct kvm * kvm)6044 int kvm_mmu_post_init_vm(struct kvm *kvm)
6045 {
6046 int err;
6047
6048 err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
6049 "kvm-nx-lpage-recovery",
6050 &kvm->arch.nx_lpage_recovery_thread);
6051 if (!err)
6052 kthread_unpark(kvm->arch.nx_lpage_recovery_thread);
6053
6054 return err;
6055 }
6056
kvm_mmu_pre_destroy_vm(struct kvm * kvm)6057 void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
6058 {
6059 if (kvm->arch.nx_lpage_recovery_thread)
6060 kthread_stop(kvm->arch.nx_lpage_recovery_thread);
6061 }
6062