1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * KVM Microsoft Hyper-V emulation
4 *
5 * derived from arch/x86/kvm/x86.c
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright (C) 2008 Qumranet, Inc.
9 * Copyright IBM Corporation, 2008
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 * Copyright (C) 2015 Andrey Smetanin <asmetanin@virtuozzo.com>
12 *
13 * Authors:
14 * Avi Kivity <avi@qumranet.com>
15 * Yaniv Kamay <yaniv@qumranet.com>
16 * Amit Shah <amit.shah@qumranet.com>
17 * Ben-Ami Yassour <benami@il.ibm.com>
18 * Andrey Smetanin <asmetanin@virtuozzo.com>
19 */
20
21 #include "x86.h"
22 #include "lapic.h"
23 #include "ioapic.h"
24 #include "cpuid.h"
25 #include "hyperv.h"
26
27 #include <linux/cpu.h>
28 #include <linux/kvm_host.h>
29 #include <linux/highmem.h>
30 #include <linux/sched/cputime.h>
31 #include <linux/eventfd.h>
32
33 #include <asm/apicdef.h>
34 #include <trace/events/kvm.h>
35
36 #include "trace.h"
37 #include "irq.h"
38
39 #define KVM_HV_MAX_SPARSE_VCPU_SET_BITS DIV_ROUND_UP(KVM_MAX_VCPUS, 64)
40
41 static void stimer_mark_pending(struct kvm_vcpu_hv_stimer *stimer,
42 bool vcpu_kick);
43
synic_read_sint(struct kvm_vcpu_hv_synic * synic,int sint)44 static inline u64 synic_read_sint(struct kvm_vcpu_hv_synic *synic, int sint)
45 {
46 return atomic64_read(&synic->sint[sint]);
47 }
48
synic_get_sint_vector(u64 sint_value)49 static inline int synic_get_sint_vector(u64 sint_value)
50 {
51 if (sint_value & HV_SYNIC_SINT_MASKED)
52 return -1;
53 return sint_value & HV_SYNIC_SINT_VECTOR_MASK;
54 }
55
synic_has_vector_connected(struct kvm_vcpu_hv_synic * synic,int vector)56 static bool synic_has_vector_connected(struct kvm_vcpu_hv_synic *synic,
57 int vector)
58 {
59 int i;
60
61 for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
62 if (synic_get_sint_vector(synic_read_sint(synic, i)) == vector)
63 return true;
64 }
65 return false;
66 }
67
synic_has_vector_auto_eoi(struct kvm_vcpu_hv_synic * synic,int vector)68 static bool synic_has_vector_auto_eoi(struct kvm_vcpu_hv_synic *synic,
69 int vector)
70 {
71 int i;
72 u64 sint_value;
73
74 for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
75 sint_value = synic_read_sint(synic, i);
76 if (synic_get_sint_vector(sint_value) == vector &&
77 sint_value & HV_SYNIC_SINT_AUTO_EOI)
78 return true;
79 }
80 return false;
81 }
82
synic_update_vector(struct kvm_vcpu_hv_synic * synic,int vector)83 static void synic_update_vector(struct kvm_vcpu_hv_synic *synic,
84 int vector)
85 {
86 if (vector < HV_SYNIC_FIRST_VALID_VECTOR)
87 return;
88
89 if (synic_has_vector_connected(synic, vector))
90 __set_bit(vector, synic->vec_bitmap);
91 else
92 __clear_bit(vector, synic->vec_bitmap);
93
94 if (synic_has_vector_auto_eoi(synic, vector))
95 __set_bit(vector, synic->auto_eoi_bitmap);
96 else
97 __clear_bit(vector, synic->auto_eoi_bitmap);
98 }
99
synic_set_sint(struct kvm_vcpu_hv_synic * synic,int sint,u64 data,bool host)100 static int synic_set_sint(struct kvm_vcpu_hv_synic *synic, int sint,
101 u64 data, bool host)
102 {
103 int vector, old_vector;
104 bool masked;
105
106 vector = data & HV_SYNIC_SINT_VECTOR_MASK;
107 masked = data & HV_SYNIC_SINT_MASKED;
108
109 /*
110 * Valid vectors are 16-255, however, nested Hyper-V attempts to write
111 * default '0x10000' value on boot and this should not #GP. We need to
112 * allow zero-initing the register from host as well.
113 */
114 if (vector < HV_SYNIC_FIRST_VALID_VECTOR && !host && !masked)
115 return 1;
116 /*
117 * Guest may configure multiple SINTs to use the same vector, so
118 * we maintain a bitmap of vectors handled by synic, and a
119 * bitmap of vectors with auto-eoi behavior. The bitmaps are
120 * updated here, and atomically queried on fast paths.
121 */
122 old_vector = synic_read_sint(synic, sint) & HV_SYNIC_SINT_VECTOR_MASK;
123
124 atomic64_set(&synic->sint[sint], data);
125
126 synic_update_vector(synic, old_vector);
127
128 synic_update_vector(synic, vector);
129
130 /* Load SynIC vectors into EOI exit bitmap */
131 kvm_make_request(KVM_REQ_SCAN_IOAPIC, synic_to_vcpu(synic));
132 return 0;
133 }
134
get_vcpu_by_vpidx(struct kvm * kvm,u32 vpidx)135 static struct kvm_vcpu *get_vcpu_by_vpidx(struct kvm *kvm, u32 vpidx)
136 {
137 struct kvm_vcpu *vcpu = NULL;
138 int i;
139
140 if (vpidx >= KVM_MAX_VCPUS)
141 return NULL;
142
143 vcpu = kvm_get_vcpu(kvm, vpidx);
144 if (vcpu && vcpu_to_hv_vcpu(vcpu)->vp_index == vpidx)
145 return vcpu;
146 kvm_for_each_vcpu(i, vcpu, kvm)
147 if (vcpu_to_hv_vcpu(vcpu)->vp_index == vpidx)
148 return vcpu;
149 return NULL;
150 }
151
synic_get(struct kvm * kvm,u32 vpidx)152 static struct kvm_vcpu_hv_synic *synic_get(struct kvm *kvm, u32 vpidx)
153 {
154 struct kvm_vcpu *vcpu;
155 struct kvm_vcpu_hv_synic *synic;
156
157 vcpu = get_vcpu_by_vpidx(kvm, vpidx);
158 if (!vcpu)
159 return NULL;
160 synic = vcpu_to_synic(vcpu);
161 return (synic->active) ? synic : NULL;
162 }
163
kvm_hv_notify_acked_sint(struct kvm_vcpu * vcpu,u32 sint)164 static void kvm_hv_notify_acked_sint(struct kvm_vcpu *vcpu, u32 sint)
165 {
166 struct kvm *kvm = vcpu->kvm;
167 struct kvm_vcpu_hv_synic *synic = vcpu_to_synic(vcpu);
168 struct kvm_vcpu_hv *hv_vcpu = vcpu_to_hv_vcpu(vcpu);
169 struct kvm_vcpu_hv_stimer *stimer;
170 int gsi, idx;
171
172 trace_kvm_hv_notify_acked_sint(vcpu->vcpu_id, sint);
173
174 /* Try to deliver pending Hyper-V SynIC timers messages */
175 for (idx = 0; idx < ARRAY_SIZE(hv_vcpu->stimer); idx++) {
176 stimer = &hv_vcpu->stimer[idx];
177 if (stimer->msg_pending && stimer->config.enable &&
178 !stimer->config.direct_mode &&
179 stimer->config.sintx == sint)
180 stimer_mark_pending(stimer, false);
181 }
182
183 idx = srcu_read_lock(&kvm->irq_srcu);
184 gsi = atomic_read(&synic->sint_to_gsi[sint]);
185 if (gsi != -1)
186 kvm_notify_acked_gsi(kvm, gsi);
187 srcu_read_unlock(&kvm->irq_srcu, idx);
188 }
189
synic_exit(struct kvm_vcpu_hv_synic * synic,u32 msr)190 static void synic_exit(struct kvm_vcpu_hv_synic *synic, u32 msr)
191 {
192 struct kvm_vcpu *vcpu = synic_to_vcpu(synic);
193 struct kvm_vcpu_hv *hv_vcpu = &vcpu->arch.hyperv;
194
195 hv_vcpu->exit.type = KVM_EXIT_HYPERV_SYNIC;
196 hv_vcpu->exit.u.synic.msr = msr;
197 hv_vcpu->exit.u.synic.control = synic->control;
198 hv_vcpu->exit.u.synic.evt_page = synic->evt_page;
199 hv_vcpu->exit.u.synic.msg_page = synic->msg_page;
200
201 kvm_make_request(KVM_REQ_HV_EXIT, vcpu);
202 }
203
synic_set_msr(struct kvm_vcpu_hv_synic * synic,u32 msr,u64 data,bool host)204 static int synic_set_msr(struct kvm_vcpu_hv_synic *synic,
205 u32 msr, u64 data, bool host)
206 {
207 struct kvm_vcpu *vcpu = synic_to_vcpu(synic);
208 int ret;
209
210 if (!synic->active && !host)
211 return 1;
212
213 trace_kvm_hv_synic_set_msr(vcpu->vcpu_id, msr, data, host);
214
215 ret = 0;
216 switch (msr) {
217 case HV_X64_MSR_SCONTROL:
218 synic->control = data;
219 if (!host)
220 synic_exit(synic, msr);
221 break;
222 case HV_X64_MSR_SVERSION:
223 if (!host) {
224 ret = 1;
225 break;
226 }
227 synic->version = data;
228 break;
229 case HV_X64_MSR_SIEFP:
230 if ((data & HV_SYNIC_SIEFP_ENABLE) && !host &&
231 !synic->dont_zero_synic_pages)
232 if (kvm_clear_guest(vcpu->kvm,
233 data & PAGE_MASK, PAGE_SIZE)) {
234 ret = 1;
235 break;
236 }
237 synic->evt_page = data;
238 if (!host)
239 synic_exit(synic, msr);
240 break;
241 case HV_X64_MSR_SIMP:
242 if ((data & HV_SYNIC_SIMP_ENABLE) && !host &&
243 !synic->dont_zero_synic_pages)
244 if (kvm_clear_guest(vcpu->kvm,
245 data & PAGE_MASK, PAGE_SIZE)) {
246 ret = 1;
247 break;
248 }
249 synic->msg_page = data;
250 if (!host)
251 synic_exit(synic, msr);
252 break;
253 case HV_X64_MSR_EOM: {
254 int i;
255
256 for (i = 0; i < ARRAY_SIZE(synic->sint); i++)
257 kvm_hv_notify_acked_sint(vcpu, i);
258 break;
259 }
260 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
261 ret = synic_set_sint(synic, msr - HV_X64_MSR_SINT0, data, host);
262 break;
263 default:
264 ret = 1;
265 break;
266 }
267 return ret;
268 }
269
kvm_hv_is_syndbg_enabled(struct kvm_vcpu * vcpu)270 static bool kvm_hv_is_syndbg_enabled(struct kvm_vcpu *vcpu)
271 {
272 struct kvm_cpuid_entry2 *entry;
273
274 entry = kvm_find_cpuid_entry(vcpu,
275 HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES,
276 0);
277 if (!entry)
278 return false;
279
280 return entry->eax & HV_X64_SYNDBG_CAP_ALLOW_KERNEL_DEBUGGING;
281 }
282
kvm_hv_syndbg_complete_userspace(struct kvm_vcpu * vcpu)283 static int kvm_hv_syndbg_complete_userspace(struct kvm_vcpu *vcpu)
284 {
285 struct kvm *kvm = vcpu->kvm;
286 struct kvm_hv *hv = &kvm->arch.hyperv;
287
288 if (vcpu->run->hyperv.u.syndbg.msr == HV_X64_MSR_SYNDBG_CONTROL)
289 hv->hv_syndbg.control.status =
290 vcpu->run->hyperv.u.syndbg.status;
291 return 1;
292 }
293
syndbg_exit(struct kvm_vcpu * vcpu,u32 msr)294 static void syndbg_exit(struct kvm_vcpu *vcpu, u32 msr)
295 {
296 struct kvm_hv_syndbg *syndbg = vcpu_to_hv_syndbg(vcpu);
297 struct kvm_vcpu_hv *hv_vcpu = &vcpu->arch.hyperv;
298
299 hv_vcpu->exit.type = KVM_EXIT_HYPERV_SYNDBG;
300 hv_vcpu->exit.u.syndbg.msr = msr;
301 hv_vcpu->exit.u.syndbg.control = syndbg->control.control;
302 hv_vcpu->exit.u.syndbg.send_page = syndbg->control.send_page;
303 hv_vcpu->exit.u.syndbg.recv_page = syndbg->control.recv_page;
304 hv_vcpu->exit.u.syndbg.pending_page = syndbg->control.pending_page;
305 vcpu->arch.complete_userspace_io =
306 kvm_hv_syndbg_complete_userspace;
307
308 kvm_make_request(KVM_REQ_HV_EXIT, vcpu);
309 }
310
syndbg_set_msr(struct kvm_vcpu * vcpu,u32 msr,u64 data,bool host)311 static int syndbg_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host)
312 {
313 struct kvm_hv_syndbg *syndbg = vcpu_to_hv_syndbg(vcpu);
314
315 if (!kvm_hv_is_syndbg_enabled(vcpu) && !host)
316 return 1;
317
318 trace_kvm_hv_syndbg_set_msr(vcpu->vcpu_id,
319 vcpu_to_hv_vcpu(vcpu)->vp_index, msr, data);
320 switch (msr) {
321 case HV_X64_MSR_SYNDBG_CONTROL:
322 syndbg->control.control = data;
323 if (!host)
324 syndbg_exit(vcpu, msr);
325 break;
326 case HV_X64_MSR_SYNDBG_STATUS:
327 syndbg->control.status = data;
328 break;
329 case HV_X64_MSR_SYNDBG_SEND_BUFFER:
330 syndbg->control.send_page = data;
331 break;
332 case HV_X64_MSR_SYNDBG_RECV_BUFFER:
333 syndbg->control.recv_page = data;
334 break;
335 case HV_X64_MSR_SYNDBG_PENDING_BUFFER:
336 syndbg->control.pending_page = data;
337 if (!host)
338 syndbg_exit(vcpu, msr);
339 break;
340 case HV_X64_MSR_SYNDBG_OPTIONS:
341 syndbg->options = data;
342 break;
343 default:
344 break;
345 }
346
347 return 0;
348 }
349
syndbg_get_msr(struct kvm_vcpu * vcpu,u32 msr,u64 * pdata,bool host)350 static int syndbg_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
351 {
352 struct kvm_hv_syndbg *syndbg = vcpu_to_hv_syndbg(vcpu);
353
354 if (!kvm_hv_is_syndbg_enabled(vcpu) && !host)
355 return 1;
356
357 switch (msr) {
358 case HV_X64_MSR_SYNDBG_CONTROL:
359 *pdata = syndbg->control.control;
360 break;
361 case HV_X64_MSR_SYNDBG_STATUS:
362 *pdata = syndbg->control.status;
363 break;
364 case HV_X64_MSR_SYNDBG_SEND_BUFFER:
365 *pdata = syndbg->control.send_page;
366 break;
367 case HV_X64_MSR_SYNDBG_RECV_BUFFER:
368 *pdata = syndbg->control.recv_page;
369 break;
370 case HV_X64_MSR_SYNDBG_PENDING_BUFFER:
371 *pdata = syndbg->control.pending_page;
372 break;
373 case HV_X64_MSR_SYNDBG_OPTIONS:
374 *pdata = syndbg->options;
375 break;
376 default:
377 break;
378 }
379
380 trace_kvm_hv_syndbg_get_msr(vcpu->vcpu_id,
381 vcpu_to_hv_vcpu(vcpu)->vp_index, msr,
382 *pdata);
383
384 return 0;
385 }
386
synic_get_msr(struct kvm_vcpu_hv_synic * synic,u32 msr,u64 * pdata,bool host)387 static int synic_get_msr(struct kvm_vcpu_hv_synic *synic, u32 msr, u64 *pdata,
388 bool host)
389 {
390 int ret;
391
392 if (!synic->active && !host)
393 return 1;
394
395 ret = 0;
396 switch (msr) {
397 case HV_X64_MSR_SCONTROL:
398 *pdata = synic->control;
399 break;
400 case HV_X64_MSR_SVERSION:
401 *pdata = synic->version;
402 break;
403 case HV_X64_MSR_SIEFP:
404 *pdata = synic->evt_page;
405 break;
406 case HV_X64_MSR_SIMP:
407 *pdata = synic->msg_page;
408 break;
409 case HV_X64_MSR_EOM:
410 *pdata = 0;
411 break;
412 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
413 *pdata = atomic64_read(&synic->sint[msr - HV_X64_MSR_SINT0]);
414 break;
415 default:
416 ret = 1;
417 break;
418 }
419 return ret;
420 }
421
synic_set_irq(struct kvm_vcpu_hv_synic * synic,u32 sint)422 static int synic_set_irq(struct kvm_vcpu_hv_synic *synic, u32 sint)
423 {
424 struct kvm_vcpu *vcpu = synic_to_vcpu(synic);
425 struct kvm_lapic_irq irq;
426 int ret, vector;
427
428 if (sint >= ARRAY_SIZE(synic->sint))
429 return -EINVAL;
430
431 vector = synic_get_sint_vector(synic_read_sint(synic, sint));
432 if (vector < 0)
433 return -ENOENT;
434
435 memset(&irq, 0, sizeof(irq));
436 irq.shorthand = APIC_DEST_SELF;
437 irq.dest_mode = APIC_DEST_PHYSICAL;
438 irq.delivery_mode = APIC_DM_FIXED;
439 irq.vector = vector;
440 irq.level = 1;
441
442 ret = kvm_irq_delivery_to_apic(vcpu->kvm, vcpu->arch.apic, &irq, NULL);
443 trace_kvm_hv_synic_set_irq(vcpu->vcpu_id, sint, irq.vector, ret);
444 return ret;
445 }
446
kvm_hv_synic_set_irq(struct kvm * kvm,u32 vpidx,u32 sint)447 int kvm_hv_synic_set_irq(struct kvm *kvm, u32 vpidx, u32 sint)
448 {
449 struct kvm_vcpu_hv_synic *synic;
450
451 synic = synic_get(kvm, vpidx);
452 if (!synic)
453 return -EINVAL;
454
455 return synic_set_irq(synic, sint);
456 }
457
kvm_hv_synic_send_eoi(struct kvm_vcpu * vcpu,int vector)458 void kvm_hv_synic_send_eoi(struct kvm_vcpu *vcpu, int vector)
459 {
460 struct kvm_vcpu_hv_synic *synic = vcpu_to_synic(vcpu);
461 int i;
462
463 trace_kvm_hv_synic_send_eoi(vcpu->vcpu_id, vector);
464
465 for (i = 0; i < ARRAY_SIZE(synic->sint); i++)
466 if (synic_get_sint_vector(synic_read_sint(synic, i)) == vector)
467 kvm_hv_notify_acked_sint(vcpu, i);
468 }
469
kvm_hv_set_sint_gsi(struct kvm * kvm,u32 vpidx,u32 sint,int gsi)470 static int kvm_hv_set_sint_gsi(struct kvm *kvm, u32 vpidx, u32 sint, int gsi)
471 {
472 struct kvm_vcpu_hv_synic *synic;
473
474 synic = synic_get(kvm, vpidx);
475 if (!synic)
476 return -EINVAL;
477
478 if (sint >= ARRAY_SIZE(synic->sint_to_gsi))
479 return -EINVAL;
480
481 atomic_set(&synic->sint_to_gsi[sint], gsi);
482 return 0;
483 }
484
kvm_hv_irq_routing_update(struct kvm * kvm)485 void kvm_hv_irq_routing_update(struct kvm *kvm)
486 {
487 struct kvm_irq_routing_table *irq_rt;
488 struct kvm_kernel_irq_routing_entry *e;
489 u32 gsi;
490
491 irq_rt = srcu_dereference_check(kvm->irq_routing, &kvm->irq_srcu,
492 lockdep_is_held(&kvm->irq_lock));
493
494 for (gsi = 0; gsi < irq_rt->nr_rt_entries; gsi++) {
495 hlist_for_each_entry(e, &irq_rt->map[gsi], link) {
496 if (e->type == KVM_IRQ_ROUTING_HV_SINT)
497 kvm_hv_set_sint_gsi(kvm, e->hv_sint.vcpu,
498 e->hv_sint.sint, gsi);
499 }
500 }
501 }
502
synic_init(struct kvm_vcpu_hv_synic * synic)503 static void synic_init(struct kvm_vcpu_hv_synic *synic)
504 {
505 int i;
506
507 memset(synic, 0, sizeof(*synic));
508 synic->version = HV_SYNIC_VERSION_1;
509 for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
510 atomic64_set(&synic->sint[i], HV_SYNIC_SINT_MASKED);
511 atomic_set(&synic->sint_to_gsi[i], -1);
512 }
513 }
514
get_time_ref_counter(struct kvm * kvm)515 static u64 get_time_ref_counter(struct kvm *kvm)
516 {
517 struct kvm_hv *hv = &kvm->arch.hyperv;
518 struct kvm_vcpu *vcpu;
519 u64 tsc;
520
521 /*
522 * The guest has not set up the TSC page or the clock isn't
523 * stable, fall back to get_kvmclock_ns.
524 */
525 if (!hv->tsc_ref.tsc_sequence)
526 return div_u64(get_kvmclock_ns(kvm), 100);
527
528 vcpu = kvm_get_vcpu(kvm, 0);
529 tsc = kvm_read_l1_tsc(vcpu, rdtsc());
530 return mul_u64_u64_shr(tsc, hv->tsc_ref.tsc_scale, 64)
531 + hv->tsc_ref.tsc_offset;
532 }
533
stimer_mark_pending(struct kvm_vcpu_hv_stimer * stimer,bool vcpu_kick)534 static void stimer_mark_pending(struct kvm_vcpu_hv_stimer *stimer,
535 bool vcpu_kick)
536 {
537 struct kvm_vcpu *vcpu = stimer_to_vcpu(stimer);
538
539 set_bit(stimer->index,
540 vcpu_to_hv_vcpu(vcpu)->stimer_pending_bitmap);
541 kvm_make_request(KVM_REQ_HV_STIMER, vcpu);
542 if (vcpu_kick)
543 kvm_vcpu_kick(vcpu);
544 }
545
stimer_cleanup(struct kvm_vcpu_hv_stimer * stimer)546 static void stimer_cleanup(struct kvm_vcpu_hv_stimer *stimer)
547 {
548 struct kvm_vcpu *vcpu = stimer_to_vcpu(stimer);
549
550 trace_kvm_hv_stimer_cleanup(stimer_to_vcpu(stimer)->vcpu_id,
551 stimer->index);
552
553 hrtimer_cancel(&stimer->timer);
554 clear_bit(stimer->index,
555 vcpu_to_hv_vcpu(vcpu)->stimer_pending_bitmap);
556 stimer->msg_pending = false;
557 stimer->exp_time = 0;
558 }
559
stimer_timer_callback(struct hrtimer * timer)560 static enum hrtimer_restart stimer_timer_callback(struct hrtimer *timer)
561 {
562 struct kvm_vcpu_hv_stimer *stimer;
563
564 stimer = container_of(timer, struct kvm_vcpu_hv_stimer, timer);
565 trace_kvm_hv_stimer_callback(stimer_to_vcpu(stimer)->vcpu_id,
566 stimer->index);
567 stimer_mark_pending(stimer, true);
568
569 return HRTIMER_NORESTART;
570 }
571
572 /*
573 * stimer_start() assumptions:
574 * a) stimer->count is not equal to 0
575 * b) stimer->config has HV_STIMER_ENABLE flag
576 */
stimer_start(struct kvm_vcpu_hv_stimer * stimer)577 static int stimer_start(struct kvm_vcpu_hv_stimer *stimer)
578 {
579 u64 time_now;
580 ktime_t ktime_now;
581
582 time_now = get_time_ref_counter(stimer_to_vcpu(stimer)->kvm);
583 ktime_now = ktime_get();
584
585 if (stimer->config.periodic) {
586 if (stimer->exp_time) {
587 if (time_now >= stimer->exp_time) {
588 u64 remainder;
589
590 div64_u64_rem(time_now - stimer->exp_time,
591 stimer->count, &remainder);
592 stimer->exp_time =
593 time_now + (stimer->count - remainder);
594 }
595 } else
596 stimer->exp_time = time_now + stimer->count;
597
598 trace_kvm_hv_stimer_start_periodic(
599 stimer_to_vcpu(stimer)->vcpu_id,
600 stimer->index,
601 time_now, stimer->exp_time);
602
603 hrtimer_start(&stimer->timer,
604 ktime_add_ns(ktime_now,
605 100 * (stimer->exp_time - time_now)),
606 HRTIMER_MODE_ABS);
607 return 0;
608 }
609 stimer->exp_time = stimer->count;
610 if (time_now >= stimer->count) {
611 /*
612 * Expire timer according to Hypervisor Top-Level Functional
613 * specification v4(15.3.1):
614 * "If a one shot is enabled and the specified count is in
615 * the past, it will expire immediately."
616 */
617 stimer_mark_pending(stimer, false);
618 return 0;
619 }
620
621 trace_kvm_hv_stimer_start_one_shot(stimer_to_vcpu(stimer)->vcpu_id,
622 stimer->index,
623 time_now, stimer->count);
624
625 hrtimer_start(&stimer->timer,
626 ktime_add_ns(ktime_now, 100 * (stimer->count - time_now)),
627 HRTIMER_MODE_ABS);
628 return 0;
629 }
630
stimer_set_config(struct kvm_vcpu_hv_stimer * stimer,u64 config,bool host)631 static int stimer_set_config(struct kvm_vcpu_hv_stimer *stimer, u64 config,
632 bool host)
633 {
634 union hv_stimer_config new_config = {.as_uint64 = config},
635 old_config = {.as_uint64 = stimer->config.as_uint64};
636 struct kvm_vcpu *vcpu = stimer_to_vcpu(stimer);
637 struct kvm_vcpu_hv_synic *synic = vcpu_to_synic(vcpu);
638
639 if (!synic->active && !host)
640 return 1;
641
642 trace_kvm_hv_stimer_set_config(stimer_to_vcpu(stimer)->vcpu_id,
643 stimer->index, config, host);
644
645 stimer_cleanup(stimer);
646 if (old_config.enable &&
647 !new_config.direct_mode && new_config.sintx == 0)
648 new_config.enable = 0;
649 stimer->config.as_uint64 = new_config.as_uint64;
650
651 if (stimer->config.enable)
652 stimer_mark_pending(stimer, false);
653
654 return 0;
655 }
656
stimer_set_count(struct kvm_vcpu_hv_stimer * stimer,u64 count,bool host)657 static int stimer_set_count(struct kvm_vcpu_hv_stimer *stimer, u64 count,
658 bool host)
659 {
660 struct kvm_vcpu *vcpu = stimer_to_vcpu(stimer);
661 struct kvm_vcpu_hv_synic *synic = vcpu_to_synic(vcpu);
662
663 if (!synic->active && !host)
664 return 1;
665
666 trace_kvm_hv_stimer_set_count(stimer_to_vcpu(stimer)->vcpu_id,
667 stimer->index, count, host);
668
669 stimer_cleanup(stimer);
670 stimer->count = count;
671 if (stimer->count == 0)
672 stimer->config.enable = 0;
673 else if (stimer->config.auto_enable)
674 stimer->config.enable = 1;
675
676 if (stimer->config.enable)
677 stimer_mark_pending(stimer, false);
678
679 return 0;
680 }
681
stimer_get_config(struct kvm_vcpu_hv_stimer * stimer,u64 * pconfig)682 static int stimer_get_config(struct kvm_vcpu_hv_stimer *stimer, u64 *pconfig)
683 {
684 *pconfig = stimer->config.as_uint64;
685 return 0;
686 }
687
stimer_get_count(struct kvm_vcpu_hv_stimer * stimer,u64 * pcount)688 static int stimer_get_count(struct kvm_vcpu_hv_stimer *stimer, u64 *pcount)
689 {
690 *pcount = stimer->count;
691 return 0;
692 }
693
synic_deliver_msg(struct kvm_vcpu_hv_synic * synic,u32 sint,struct hv_message * src_msg,bool no_retry)694 static int synic_deliver_msg(struct kvm_vcpu_hv_synic *synic, u32 sint,
695 struct hv_message *src_msg, bool no_retry)
696 {
697 struct kvm_vcpu *vcpu = synic_to_vcpu(synic);
698 int msg_off = offsetof(struct hv_message_page, sint_message[sint]);
699 gfn_t msg_page_gfn;
700 struct hv_message_header hv_hdr;
701 int r;
702
703 if (!(synic->msg_page & HV_SYNIC_SIMP_ENABLE))
704 return -ENOENT;
705
706 msg_page_gfn = synic->msg_page >> PAGE_SHIFT;
707
708 /*
709 * Strictly following the spec-mandated ordering would assume setting
710 * .msg_pending before checking .message_type. However, this function
711 * is only called in vcpu context so the entire update is atomic from
712 * guest POV and thus the exact order here doesn't matter.
713 */
714 r = kvm_vcpu_read_guest_page(vcpu, msg_page_gfn, &hv_hdr.message_type,
715 msg_off + offsetof(struct hv_message,
716 header.message_type),
717 sizeof(hv_hdr.message_type));
718 if (r < 0)
719 return r;
720
721 if (hv_hdr.message_type != HVMSG_NONE) {
722 if (no_retry)
723 return 0;
724
725 hv_hdr.message_flags.msg_pending = 1;
726 r = kvm_vcpu_write_guest_page(vcpu, msg_page_gfn,
727 &hv_hdr.message_flags,
728 msg_off +
729 offsetof(struct hv_message,
730 header.message_flags),
731 sizeof(hv_hdr.message_flags));
732 if (r < 0)
733 return r;
734 return -EAGAIN;
735 }
736
737 r = kvm_vcpu_write_guest_page(vcpu, msg_page_gfn, src_msg, msg_off,
738 sizeof(src_msg->header) +
739 src_msg->header.payload_size);
740 if (r < 0)
741 return r;
742
743 r = synic_set_irq(synic, sint);
744 if (r < 0)
745 return r;
746 if (r == 0)
747 return -EFAULT;
748 return 0;
749 }
750
stimer_send_msg(struct kvm_vcpu_hv_stimer * stimer)751 static int stimer_send_msg(struct kvm_vcpu_hv_stimer *stimer)
752 {
753 struct kvm_vcpu *vcpu = stimer_to_vcpu(stimer);
754 struct hv_message *msg = &stimer->msg;
755 struct hv_timer_message_payload *payload =
756 (struct hv_timer_message_payload *)&msg->u.payload;
757
758 /*
759 * To avoid piling up periodic ticks, don't retry message
760 * delivery for them (within "lazy" lost ticks policy).
761 */
762 bool no_retry = stimer->config.periodic;
763
764 payload->expiration_time = stimer->exp_time;
765 payload->delivery_time = get_time_ref_counter(vcpu->kvm);
766 return synic_deliver_msg(vcpu_to_synic(vcpu),
767 stimer->config.sintx, msg,
768 no_retry);
769 }
770
stimer_notify_direct(struct kvm_vcpu_hv_stimer * stimer)771 static int stimer_notify_direct(struct kvm_vcpu_hv_stimer *stimer)
772 {
773 struct kvm_vcpu *vcpu = stimer_to_vcpu(stimer);
774 struct kvm_lapic_irq irq = {
775 .delivery_mode = APIC_DM_FIXED,
776 .vector = stimer->config.apic_vector
777 };
778
779 if (lapic_in_kernel(vcpu))
780 return !kvm_apic_set_irq(vcpu, &irq, NULL);
781 return 0;
782 }
783
stimer_expiration(struct kvm_vcpu_hv_stimer * stimer)784 static void stimer_expiration(struct kvm_vcpu_hv_stimer *stimer)
785 {
786 int r, direct = stimer->config.direct_mode;
787
788 stimer->msg_pending = true;
789 if (!direct)
790 r = stimer_send_msg(stimer);
791 else
792 r = stimer_notify_direct(stimer);
793 trace_kvm_hv_stimer_expiration(stimer_to_vcpu(stimer)->vcpu_id,
794 stimer->index, direct, r);
795 if (!r) {
796 stimer->msg_pending = false;
797 if (!(stimer->config.periodic))
798 stimer->config.enable = 0;
799 }
800 }
801
kvm_hv_process_stimers(struct kvm_vcpu * vcpu)802 void kvm_hv_process_stimers(struct kvm_vcpu *vcpu)
803 {
804 struct kvm_vcpu_hv *hv_vcpu = vcpu_to_hv_vcpu(vcpu);
805 struct kvm_vcpu_hv_stimer *stimer;
806 u64 time_now, exp_time;
807 int i;
808
809 for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
810 if (test_and_clear_bit(i, hv_vcpu->stimer_pending_bitmap)) {
811 stimer = &hv_vcpu->stimer[i];
812 if (stimer->config.enable) {
813 exp_time = stimer->exp_time;
814
815 if (exp_time) {
816 time_now =
817 get_time_ref_counter(vcpu->kvm);
818 if (time_now >= exp_time)
819 stimer_expiration(stimer);
820 }
821
822 if ((stimer->config.enable) &&
823 stimer->count) {
824 if (!stimer->msg_pending)
825 stimer_start(stimer);
826 } else
827 stimer_cleanup(stimer);
828 }
829 }
830 }
831
kvm_hv_vcpu_uninit(struct kvm_vcpu * vcpu)832 void kvm_hv_vcpu_uninit(struct kvm_vcpu *vcpu)
833 {
834 struct kvm_vcpu_hv *hv_vcpu = vcpu_to_hv_vcpu(vcpu);
835 int i;
836
837 for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
838 stimer_cleanup(&hv_vcpu->stimer[i]);
839 }
840
kvm_hv_assist_page_enabled(struct kvm_vcpu * vcpu)841 bool kvm_hv_assist_page_enabled(struct kvm_vcpu *vcpu)
842 {
843 if (!(vcpu->arch.hyperv.hv_vapic & HV_X64_MSR_VP_ASSIST_PAGE_ENABLE))
844 return false;
845 return vcpu->arch.pv_eoi.msr_val & KVM_MSR_ENABLED;
846 }
847 EXPORT_SYMBOL_GPL(kvm_hv_assist_page_enabled);
848
kvm_hv_get_assist_page(struct kvm_vcpu * vcpu,struct hv_vp_assist_page * assist_page)849 bool kvm_hv_get_assist_page(struct kvm_vcpu *vcpu,
850 struct hv_vp_assist_page *assist_page)
851 {
852 if (!kvm_hv_assist_page_enabled(vcpu))
853 return false;
854 return !kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data,
855 assist_page, sizeof(*assist_page));
856 }
857 EXPORT_SYMBOL_GPL(kvm_hv_get_assist_page);
858
stimer_prepare_msg(struct kvm_vcpu_hv_stimer * stimer)859 static void stimer_prepare_msg(struct kvm_vcpu_hv_stimer *stimer)
860 {
861 struct hv_message *msg = &stimer->msg;
862 struct hv_timer_message_payload *payload =
863 (struct hv_timer_message_payload *)&msg->u.payload;
864
865 memset(&msg->header, 0, sizeof(msg->header));
866 msg->header.message_type = HVMSG_TIMER_EXPIRED;
867 msg->header.payload_size = sizeof(*payload);
868
869 payload->timer_index = stimer->index;
870 payload->expiration_time = 0;
871 payload->delivery_time = 0;
872 }
873
stimer_init(struct kvm_vcpu_hv_stimer * stimer,int timer_index)874 static void stimer_init(struct kvm_vcpu_hv_stimer *stimer, int timer_index)
875 {
876 memset(stimer, 0, sizeof(*stimer));
877 stimer->index = timer_index;
878 hrtimer_init(&stimer->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
879 stimer->timer.function = stimer_timer_callback;
880 stimer_prepare_msg(stimer);
881 }
882
kvm_hv_vcpu_init(struct kvm_vcpu * vcpu)883 void kvm_hv_vcpu_init(struct kvm_vcpu *vcpu)
884 {
885 struct kvm_vcpu_hv *hv_vcpu = vcpu_to_hv_vcpu(vcpu);
886 int i;
887
888 synic_init(&hv_vcpu->synic);
889
890 bitmap_zero(hv_vcpu->stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT);
891 for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
892 stimer_init(&hv_vcpu->stimer[i], i);
893 }
894
kvm_hv_vcpu_postcreate(struct kvm_vcpu * vcpu)895 void kvm_hv_vcpu_postcreate(struct kvm_vcpu *vcpu)
896 {
897 struct kvm_vcpu_hv *hv_vcpu = vcpu_to_hv_vcpu(vcpu);
898
899 hv_vcpu->vp_index = kvm_vcpu_get_idx(vcpu);
900 }
901
kvm_hv_activate_synic(struct kvm_vcpu * vcpu,bool dont_zero_synic_pages)902 int kvm_hv_activate_synic(struct kvm_vcpu *vcpu, bool dont_zero_synic_pages)
903 {
904 struct kvm_vcpu_hv_synic *synic = vcpu_to_synic(vcpu);
905
906 /*
907 * Hyper-V SynIC auto EOI SINT's are
908 * not compatible with APICV, so request
909 * to deactivate APICV permanently.
910 */
911 kvm_request_apicv_update(vcpu->kvm, false, APICV_INHIBIT_REASON_HYPERV);
912 synic->active = true;
913 synic->dont_zero_synic_pages = dont_zero_synic_pages;
914 synic->control = HV_SYNIC_CONTROL_ENABLE;
915 return 0;
916 }
917
kvm_hv_msr_partition_wide(u32 msr)918 static bool kvm_hv_msr_partition_wide(u32 msr)
919 {
920 bool r = false;
921
922 switch (msr) {
923 case HV_X64_MSR_GUEST_OS_ID:
924 case HV_X64_MSR_HYPERCALL:
925 case HV_X64_MSR_REFERENCE_TSC:
926 case HV_X64_MSR_TIME_REF_COUNT:
927 case HV_X64_MSR_CRASH_CTL:
928 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
929 case HV_X64_MSR_RESET:
930 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
931 case HV_X64_MSR_TSC_EMULATION_CONTROL:
932 case HV_X64_MSR_TSC_EMULATION_STATUS:
933 case HV_X64_MSR_SYNDBG_OPTIONS:
934 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
935 r = true;
936 break;
937 }
938
939 return r;
940 }
941
kvm_hv_msr_get_crash_data(struct kvm_vcpu * vcpu,u32 index,u64 * pdata)942 static int kvm_hv_msr_get_crash_data(struct kvm_vcpu *vcpu,
943 u32 index, u64 *pdata)
944 {
945 struct kvm_hv *hv = &vcpu->kvm->arch.hyperv;
946 size_t size = ARRAY_SIZE(hv->hv_crash_param);
947
948 if (WARN_ON_ONCE(index >= size))
949 return -EINVAL;
950
951 *pdata = hv->hv_crash_param[array_index_nospec(index, size)];
952 return 0;
953 }
954
kvm_hv_msr_get_crash_ctl(struct kvm_vcpu * vcpu,u64 * pdata)955 static int kvm_hv_msr_get_crash_ctl(struct kvm_vcpu *vcpu, u64 *pdata)
956 {
957 struct kvm_hv *hv = &vcpu->kvm->arch.hyperv;
958
959 *pdata = hv->hv_crash_ctl;
960 return 0;
961 }
962
kvm_hv_msr_set_crash_ctl(struct kvm_vcpu * vcpu,u64 data,bool host)963 static int kvm_hv_msr_set_crash_ctl(struct kvm_vcpu *vcpu, u64 data, bool host)
964 {
965 struct kvm_hv *hv = &vcpu->kvm->arch.hyperv;
966
967 if (host)
968 hv->hv_crash_ctl = data & HV_CRASH_CTL_CRASH_NOTIFY;
969
970 if (!host && (data & HV_CRASH_CTL_CRASH_NOTIFY)) {
971
972 vcpu_debug(vcpu, "hv crash (0x%llx 0x%llx 0x%llx 0x%llx 0x%llx)\n",
973 hv->hv_crash_param[0],
974 hv->hv_crash_param[1],
975 hv->hv_crash_param[2],
976 hv->hv_crash_param[3],
977 hv->hv_crash_param[4]);
978
979 /* Send notification about crash to user space */
980 kvm_make_request(KVM_REQ_HV_CRASH, vcpu);
981 }
982
983 return 0;
984 }
985
kvm_hv_msr_set_crash_data(struct kvm_vcpu * vcpu,u32 index,u64 data)986 static int kvm_hv_msr_set_crash_data(struct kvm_vcpu *vcpu,
987 u32 index, u64 data)
988 {
989 struct kvm_hv *hv = &vcpu->kvm->arch.hyperv;
990 size_t size = ARRAY_SIZE(hv->hv_crash_param);
991
992 if (WARN_ON_ONCE(index >= size))
993 return -EINVAL;
994
995 hv->hv_crash_param[array_index_nospec(index, size)] = data;
996 return 0;
997 }
998
999 /*
1000 * The kvmclock and Hyper-V TSC page use similar formulas, and converting
1001 * between them is possible:
1002 *
1003 * kvmclock formula:
1004 * nsec = (ticks - tsc_timestamp) * tsc_to_system_mul * 2^(tsc_shift-32)
1005 * + system_time
1006 *
1007 * Hyper-V formula:
1008 * nsec/100 = ticks * scale / 2^64 + offset
1009 *
1010 * When tsc_timestamp = system_time = 0, offset is zero in the Hyper-V formula.
1011 * By dividing the kvmclock formula by 100 and equating what's left we get:
1012 * ticks * scale / 2^64 = ticks * tsc_to_system_mul * 2^(tsc_shift-32) / 100
1013 * scale / 2^64 = tsc_to_system_mul * 2^(tsc_shift-32) / 100
1014 * scale = tsc_to_system_mul * 2^(32+tsc_shift) / 100
1015 *
1016 * Now expand the kvmclock formula and divide by 100:
1017 * nsec = ticks * tsc_to_system_mul * 2^(tsc_shift-32)
1018 * - tsc_timestamp * tsc_to_system_mul * 2^(tsc_shift-32)
1019 * + system_time
1020 * nsec/100 = ticks * tsc_to_system_mul * 2^(tsc_shift-32) / 100
1021 * - tsc_timestamp * tsc_to_system_mul * 2^(tsc_shift-32) / 100
1022 * + system_time / 100
1023 *
1024 * Replace tsc_to_system_mul * 2^(tsc_shift-32) / 100 by scale / 2^64:
1025 * nsec/100 = ticks * scale / 2^64
1026 * - tsc_timestamp * scale / 2^64
1027 * + system_time / 100
1028 *
1029 * Equate with the Hyper-V formula so that ticks * scale / 2^64 cancels out:
1030 * offset = system_time / 100 - tsc_timestamp * scale / 2^64
1031 *
1032 * These two equivalencies are implemented in this function.
1033 */
compute_tsc_page_parameters(struct pvclock_vcpu_time_info * hv_clock,struct ms_hyperv_tsc_page * tsc_ref)1034 static bool compute_tsc_page_parameters(struct pvclock_vcpu_time_info *hv_clock,
1035 struct ms_hyperv_tsc_page *tsc_ref)
1036 {
1037 u64 max_mul;
1038
1039 if (!(hv_clock->flags & PVCLOCK_TSC_STABLE_BIT))
1040 return false;
1041
1042 /*
1043 * check if scale would overflow, if so we use the time ref counter
1044 * tsc_to_system_mul * 2^(tsc_shift+32) / 100 >= 2^64
1045 * tsc_to_system_mul / 100 >= 2^(32-tsc_shift)
1046 * tsc_to_system_mul >= 100 * 2^(32-tsc_shift)
1047 */
1048 max_mul = 100ull << (32 - hv_clock->tsc_shift);
1049 if (hv_clock->tsc_to_system_mul >= max_mul)
1050 return false;
1051
1052 /*
1053 * Otherwise compute the scale and offset according to the formulas
1054 * derived above.
1055 */
1056 tsc_ref->tsc_scale =
1057 mul_u64_u32_div(1ULL << (32 + hv_clock->tsc_shift),
1058 hv_clock->tsc_to_system_mul,
1059 100);
1060
1061 tsc_ref->tsc_offset = hv_clock->system_time;
1062 do_div(tsc_ref->tsc_offset, 100);
1063 tsc_ref->tsc_offset -=
1064 mul_u64_u64_shr(hv_clock->tsc_timestamp, tsc_ref->tsc_scale, 64);
1065 return true;
1066 }
1067
kvm_hv_setup_tsc_page(struct kvm * kvm,struct pvclock_vcpu_time_info * hv_clock)1068 void kvm_hv_setup_tsc_page(struct kvm *kvm,
1069 struct pvclock_vcpu_time_info *hv_clock)
1070 {
1071 struct kvm_hv *hv = &kvm->arch.hyperv;
1072 u32 tsc_seq;
1073 u64 gfn;
1074
1075 BUILD_BUG_ON(sizeof(tsc_seq) != sizeof(hv->tsc_ref.tsc_sequence));
1076 BUILD_BUG_ON(offsetof(struct ms_hyperv_tsc_page, tsc_sequence) != 0);
1077
1078 if (!(hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE))
1079 return;
1080
1081 mutex_lock(&kvm->arch.hyperv.hv_lock);
1082 if (!(hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE))
1083 goto out_unlock;
1084
1085 gfn = hv->hv_tsc_page >> HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT;
1086 /*
1087 * Because the TSC parameters only vary when there is a
1088 * change in the master clock, do not bother with caching.
1089 */
1090 if (unlikely(kvm_read_guest(kvm, gfn_to_gpa(gfn),
1091 &tsc_seq, sizeof(tsc_seq))))
1092 goto out_unlock;
1093
1094 /*
1095 * While we're computing and writing the parameters, force the
1096 * guest to use the time reference count MSR.
1097 */
1098 hv->tsc_ref.tsc_sequence = 0;
1099 if (kvm_write_guest(kvm, gfn_to_gpa(gfn),
1100 &hv->tsc_ref, sizeof(hv->tsc_ref.tsc_sequence)))
1101 goto out_unlock;
1102
1103 if (!compute_tsc_page_parameters(hv_clock, &hv->tsc_ref))
1104 goto out_unlock;
1105
1106 /* Ensure sequence is zero before writing the rest of the struct. */
1107 smp_wmb();
1108 if (kvm_write_guest(kvm, gfn_to_gpa(gfn), &hv->tsc_ref, sizeof(hv->tsc_ref)))
1109 goto out_unlock;
1110
1111 /*
1112 * Now switch to the TSC page mechanism by writing the sequence.
1113 */
1114 tsc_seq++;
1115 if (tsc_seq == 0xFFFFFFFF || tsc_seq == 0)
1116 tsc_seq = 1;
1117
1118 /* Write the struct entirely before the non-zero sequence. */
1119 smp_wmb();
1120
1121 hv->tsc_ref.tsc_sequence = tsc_seq;
1122 kvm_write_guest(kvm, gfn_to_gpa(gfn),
1123 &hv->tsc_ref, sizeof(hv->tsc_ref.tsc_sequence));
1124 out_unlock:
1125 mutex_unlock(&kvm->arch.hyperv.hv_lock);
1126 }
1127
kvm_hv_set_msr_pw(struct kvm_vcpu * vcpu,u32 msr,u64 data,bool host)1128 static int kvm_hv_set_msr_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data,
1129 bool host)
1130 {
1131 struct kvm *kvm = vcpu->kvm;
1132 struct kvm_hv *hv = &kvm->arch.hyperv;
1133
1134 switch (msr) {
1135 case HV_X64_MSR_GUEST_OS_ID:
1136 hv->hv_guest_os_id = data;
1137 /* setting guest os id to zero disables hypercall page */
1138 if (!hv->hv_guest_os_id)
1139 hv->hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1140 break;
1141 case HV_X64_MSR_HYPERCALL: {
1142 u64 gfn;
1143 unsigned long addr;
1144 u8 instructions[4];
1145
1146 /* if guest os id is not set hypercall should remain disabled */
1147 if (!hv->hv_guest_os_id)
1148 break;
1149 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1150 hv->hv_hypercall = data;
1151 break;
1152 }
1153 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1154 addr = gfn_to_hva(kvm, gfn);
1155 if (kvm_is_error_hva(addr))
1156 return 1;
1157 kvm_x86_ops.patch_hypercall(vcpu, instructions);
1158 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1159 if (__copy_to_user((void __user *)addr, instructions, 4))
1160 return 1;
1161 hv->hv_hypercall = data;
1162 mark_page_dirty(kvm, gfn);
1163 break;
1164 }
1165 case HV_X64_MSR_REFERENCE_TSC:
1166 hv->hv_tsc_page = data;
1167 if (hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE)
1168 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1169 break;
1170 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
1171 return kvm_hv_msr_set_crash_data(vcpu,
1172 msr - HV_X64_MSR_CRASH_P0,
1173 data);
1174 case HV_X64_MSR_CRASH_CTL:
1175 return kvm_hv_msr_set_crash_ctl(vcpu, data, host);
1176 case HV_X64_MSR_RESET:
1177 if (data == 1) {
1178 vcpu_debug(vcpu, "hyper-v reset requested\n");
1179 kvm_make_request(KVM_REQ_HV_RESET, vcpu);
1180 }
1181 break;
1182 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
1183 hv->hv_reenlightenment_control = data;
1184 break;
1185 case HV_X64_MSR_TSC_EMULATION_CONTROL:
1186 hv->hv_tsc_emulation_control = data;
1187 break;
1188 case HV_X64_MSR_TSC_EMULATION_STATUS:
1189 hv->hv_tsc_emulation_status = data;
1190 break;
1191 case HV_X64_MSR_TIME_REF_COUNT:
1192 /* read-only, but still ignore it if host-initiated */
1193 if (!host)
1194 return 1;
1195 break;
1196 case HV_X64_MSR_SYNDBG_OPTIONS:
1197 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
1198 return syndbg_set_msr(vcpu, msr, data, host);
1199 default:
1200 vcpu_unimpl(vcpu, "Hyper-V unhandled wrmsr: 0x%x data 0x%llx\n",
1201 msr, data);
1202 return 1;
1203 }
1204 return 0;
1205 }
1206
1207 /* Calculate cpu time spent by current task in 100ns units */
current_task_runtime_100ns(void)1208 static u64 current_task_runtime_100ns(void)
1209 {
1210 u64 utime, stime;
1211
1212 task_cputime_adjusted(current, &utime, &stime);
1213
1214 return div_u64(utime + stime, 100);
1215 }
1216
kvm_hv_set_msr(struct kvm_vcpu * vcpu,u32 msr,u64 data,bool host)1217 static int kvm_hv_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host)
1218 {
1219 struct kvm_vcpu_hv *hv_vcpu = &vcpu->arch.hyperv;
1220
1221 switch (msr) {
1222 case HV_X64_MSR_VP_INDEX: {
1223 struct kvm_hv *hv = &vcpu->kvm->arch.hyperv;
1224 int vcpu_idx = kvm_vcpu_get_idx(vcpu);
1225 u32 new_vp_index = (u32)data;
1226
1227 if (!host || new_vp_index >= KVM_MAX_VCPUS)
1228 return 1;
1229
1230 if (new_vp_index == hv_vcpu->vp_index)
1231 return 0;
1232
1233 /*
1234 * The VP index is initialized to vcpu_index by
1235 * kvm_hv_vcpu_postcreate so they initially match. Now the
1236 * VP index is changing, adjust num_mismatched_vp_indexes if
1237 * it now matches or no longer matches vcpu_idx.
1238 */
1239 if (hv_vcpu->vp_index == vcpu_idx)
1240 atomic_inc(&hv->num_mismatched_vp_indexes);
1241 else if (new_vp_index == vcpu_idx)
1242 atomic_dec(&hv->num_mismatched_vp_indexes);
1243
1244 hv_vcpu->vp_index = new_vp_index;
1245 break;
1246 }
1247 case HV_X64_MSR_VP_ASSIST_PAGE: {
1248 u64 gfn;
1249 unsigned long addr;
1250
1251 if (!(data & HV_X64_MSR_VP_ASSIST_PAGE_ENABLE)) {
1252 hv_vcpu->hv_vapic = data;
1253 if (kvm_lapic_enable_pv_eoi(vcpu, 0, 0))
1254 return 1;
1255 break;
1256 }
1257 gfn = data >> HV_X64_MSR_VP_ASSIST_PAGE_ADDRESS_SHIFT;
1258 addr = kvm_vcpu_gfn_to_hva(vcpu, gfn);
1259 if (kvm_is_error_hva(addr))
1260 return 1;
1261
1262 /*
1263 * Clear apic_assist portion of struct hv_vp_assist_page
1264 * only, there can be valuable data in the rest which needs
1265 * to be preserved e.g. on migration.
1266 */
1267 if (__put_user(0, (u32 __user *)addr))
1268 return 1;
1269 hv_vcpu->hv_vapic = data;
1270 kvm_vcpu_mark_page_dirty(vcpu, gfn);
1271 if (kvm_lapic_enable_pv_eoi(vcpu,
1272 gfn_to_gpa(gfn) | KVM_MSR_ENABLED,
1273 sizeof(struct hv_vp_assist_page)))
1274 return 1;
1275 break;
1276 }
1277 case HV_X64_MSR_EOI:
1278 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1279 case HV_X64_MSR_ICR:
1280 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1281 case HV_X64_MSR_TPR:
1282 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1283 case HV_X64_MSR_VP_RUNTIME:
1284 if (!host)
1285 return 1;
1286 hv_vcpu->runtime_offset = data - current_task_runtime_100ns();
1287 break;
1288 case HV_X64_MSR_SCONTROL:
1289 case HV_X64_MSR_SVERSION:
1290 case HV_X64_MSR_SIEFP:
1291 case HV_X64_MSR_SIMP:
1292 case HV_X64_MSR_EOM:
1293 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
1294 return synic_set_msr(vcpu_to_synic(vcpu), msr, data, host);
1295 case HV_X64_MSR_STIMER0_CONFIG:
1296 case HV_X64_MSR_STIMER1_CONFIG:
1297 case HV_X64_MSR_STIMER2_CONFIG:
1298 case HV_X64_MSR_STIMER3_CONFIG: {
1299 int timer_index = (msr - HV_X64_MSR_STIMER0_CONFIG)/2;
1300
1301 return stimer_set_config(vcpu_to_stimer(vcpu, timer_index),
1302 data, host);
1303 }
1304 case HV_X64_MSR_STIMER0_COUNT:
1305 case HV_X64_MSR_STIMER1_COUNT:
1306 case HV_X64_MSR_STIMER2_COUNT:
1307 case HV_X64_MSR_STIMER3_COUNT: {
1308 int timer_index = (msr - HV_X64_MSR_STIMER0_COUNT)/2;
1309
1310 return stimer_set_count(vcpu_to_stimer(vcpu, timer_index),
1311 data, host);
1312 }
1313 case HV_X64_MSR_TSC_FREQUENCY:
1314 case HV_X64_MSR_APIC_FREQUENCY:
1315 /* read-only, but still ignore it if host-initiated */
1316 if (!host)
1317 return 1;
1318 break;
1319 default:
1320 vcpu_unimpl(vcpu, "Hyper-V unhandled wrmsr: 0x%x data 0x%llx\n",
1321 msr, data);
1322 return 1;
1323 }
1324
1325 return 0;
1326 }
1327
kvm_hv_get_msr_pw(struct kvm_vcpu * vcpu,u32 msr,u64 * pdata,bool host)1328 static int kvm_hv_get_msr_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata,
1329 bool host)
1330 {
1331 u64 data = 0;
1332 struct kvm *kvm = vcpu->kvm;
1333 struct kvm_hv *hv = &kvm->arch.hyperv;
1334
1335 switch (msr) {
1336 case HV_X64_MSR_GUEST_OS_ID:
1337 data = hv->hv_guest_os_id;
1338 break;
1339 case HV_X64_MSR_HYPERCALL:
1340 data = hv->hv_hypercall;
1341 break;
1342 case HV_X64_MSR_TIME_REF_COUNT:
1343 data = get_time_ref_counter(kvm);
1344 break;
1345 case HV_X64_MSR_REFERENCE_TSC:
1346 data = hv->hv_tsc_page;
1347 break;
1348 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
1349 return kvm_hv_msr_get_crash_data(vcpu,
1350 msr - HV_X64_MSR_CRASH_P0,
1351 pdata);
1352 case HV_X64_MSR_CRASH_CTL:
1353 return kvm_hv_msr_get_crash_ctl(vcpu, pdata);
1354 case HV_X64_MSR_RESET:
1355 data = 0;
1356 break;
1357 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
1358 data = hv->hv_reenlightenment_control;
1359 break;
1360 case HV_X64_MSR_TSC_EMULATION_CONTROL:
1361 data = hv->hv_tsc_emulation_control;
1362 break;
1363 case HV_X64_MSR_TSC_EMULATION_STATUS:
1364 data = hv->hv_tsc_emulation_status;
1365 break;
1366 case HV_X64_MSR_SYNDBG_OPTIONS:
1367 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
1368 return syndbg_get_msr(vcpu, msr, pdata, host);
1369 default:
1370 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1371 return 1;
1372 }
1373
1374 *pdata = data;
1375 return 0;
1376 }
1377
kvm_hv_get_msr(struct kvm_vcpu * vcpu,u32 msr,u64 * pdata,bool host)1378 static int kvm_hv_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata,
1379 bool host)
1380 {
1381 u64 data = 0;
1382 struct kvm_vcpu_hv *hv_vcpu = &vcpu->arch.hyperv;
1383
1384 switch (msr) {
1385 case HV_X64_MSR_VP_INDEX:
1386 data = hv_vcpu->vp_index;
1387 break;
1388 case HV_X64_MSR_EOI:
1389 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
1390 case HV_X64_MSR_ICR:
1391 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
1392 case HV_X64_MSR_TPR:
1393 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1394 case HV_X64_MSR_VP_ASSIST_PAGE:
1395 data = hv_vcpu->hv_vapic;
1396 break;
1397 case HV_X64_MSR_VP_RUNTIME:
1398 data = current_task_runtime_100ns() + hv_vcpu->runtime_offset;
1399 break;
1400 case HV_X64_MSR_SCONTROL:
1401 case HV_X64_MSR_SVERSION:
1402 case HV_X64_MSR_SIEFP:
1403 case HV_X64_MSR_SIMP:
1404 case HV_X64_MSR_EOM:
1405 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
1406 return synic_get_msr(vcpu_to_synic(vcpu), msr, pdata, host);
1407 case HV_X64_MSR_STIMER0_CONFIG:
1408 case HV_X64_MSR_STIMER1_CONFIG:
1409 case HV_X64_MSR_STIMER2_CONFIG:
1410 case HV_X64_MSR_STIMER3_CONFIG: {
1411 int timer_index = (msr - HV_X64_MSR_STIMER0_CONFIG)/2;
1412
1413 return stimer_get_config(vcpu_to_stimer(vcpu, timer_index),
1414 pdata);
1415 }
1416 case HV_X64_MSR_STIMER0_COUNT:
1417 case HV_X64_MSR_STIMER1_COUNT:
1418 case HV_X64_MSR_STIMER2_COUNT:
1419 case HV_X64_MSR_STIMER3_COUNT: {
1420 int timer_index = (msr - HV_X64_MSR_STIMER0_COUNT)/2;
1421
1422 return stimer_get_count(vcpu_to_stimer(vcpu, timer_index),
1423 pdata);
1424 }
1425 case HV_X64_MSR_TSC_FREQUENCY:
1426 data = (u64)vcpu->arch.virtual_tsc_khz * 1000;
1427 break;
1428 case HV_X64_MSR_APIC_FREQUENCY:
1429 data = APIC_BUS_FREQUENCY;
1430 break;
1431 default:
1432 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1433 return 1;
1434 }
1435 *pdata = data;
1436 return 0;
1437 }
1438
kvm_hv_set_msr_common(struct kvm_vcpu * vcpu,u32 msr,u64 data,bool host)1439 int kvm_hv_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host)
1440 {
1441 if (kvm_hv_msr_partition_wide(msr)) {
1442 int r;
1443
1444 mutex_lock(&vcpu->kvm->arch.hyperv.hv_lock);
1445 r = kvm_hv_set_msr_pw(vcpu, msr, data, host);
1446 mutex_unlock(&vcpu->kvm->arch.hyperv.hv_lock);
1447 return r;
1448 } else
1449 return kvm_hv_set_msr(vcpu, msr, data, host);
1450 }
1451
kvm_hv_get_msr_common(struct kvm_vcpu * vcpu,u32 msr,u64 * pdata,bool host)1452 int kvm_hv_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
1453 {
1454 if (kvm_hv_msr_partition_wide(msr)) {
1455 int r;
1456
1457 mutex_lock(&vcpu->kvm->arch.hyperv.hv_lock);
1458 r = kvm_hv_get_msr_pw(vcpu, msr, pdata, host);
1459 mutex_unlock(&vcpu->kvm->arch.hyperv.hv_lock);
1460 return r;
1461 } else
1462 return kvm_hv_get_msr(vcpu, msr, pdata, host);
1463 }
1464
sparse_set_to_vcpu_mask(struct kvm * kvm,u64 * sparse_banks,u64 valid_bank_mask,u64 * vp_bitmap,unsigned long * vcpu_bitmap)1465 static __always_inline unsigned long *sparse_set_to_vcpu_mask(
1466 struct kvm *kvm, u64 *sparse_banks, u64 valid_bank_mask,
1467 u64 *vp_bitmap, unsigned long *vcpu_bitmap)
1468 {
1469 struct kvm_hv *hv = &kvm->arch.hyperv;
1470 struct kvm_vcpu *vcpu;
1471 int i, bank, sbank = 0;
1472
1473 memset(vp_bitmap, 0,
1474 KVM_HV_MAX_SPARSE_VCPU_SET_BITS * sizeof(*vp_bitmap));
1475 for_each_set_bit(bank, (unsigned long *)&valid_bank_mask,
1476 KVM_HV_MAX_SPARSE_VCPU_SET_BITS)
1477 vp_bitmap[bank] = sparse_banks[sbank++];
1478
1479 if (likely(!atomic_read(&hv->num_mismatched_vp_indexes))) {
1480 /* for all vcpus vp_index == vcpu_idx */
1481 return (unsigned long *)vp_bitmap;
1482 }
1483
1484 bitmap_zero(vcpu_bitmap, KVM_MAX_VCPUS);
1485 kvm_for_each_vcpu(i, vcpu, kvm) {
1486 if (test_bit(vcpu_to_hv_vcpu(vcpu)->vp_index,
1487 (unsigned long *)vp_bitmap))
1488 __set_bit(i, vcpu_bitmap);
1489 }
1490 return vcpu_bitmap;
1491 }
1492
kvm_hv_flush_tlb(struct kvm_vcpu * current_vcpu,u64 ingpa,u16 rep_cnt,bool ex)1493 static u64 kvm_hv_flush_tlb(struct kvm_vcpu *current_vcpu, u64 ingpa,
1494 u16 rep_cnt, bool ex)
1495 {
1496 struct kvm *kvm = current_vcpu->kvm;
1497 struct kvm_vcpu_hv *hv_vcpu = ¤t_vcpu->arch.hyperv;
1498 struct hv_tlb_flush_ex flush_ex;
1499 struct hv_tlb_flush flush;
1500 u64 vp_bitmap[KVM_HV_MAX_SPARSE_VCPU_SET_BITS];
1501 DECLARE_BITMAP(vcpu_bitmap, KVM_MAX_VCPUS);
1502 unsigned long *vcpu_mask;
1503 u64 valid_bank_mask;
1504 u64 sparse_banks[64];
1505 int sparse_banks_len;
1506 bool all_cpus;
1507
1508 if (!ex) {
1509 if (unlikely(kvm_read_guest(kvm, ingpa, &flush, sizeof(flush))))
1510 return HV_STATUS_INVALID_HYPERCALL_INPUT;
1511
1512 trace_kvm_hv_flush_tlb(flush.processor_mask,
1513 flush.address_space, flush.flags);
1514
1515 valid_bank_mask = BIT_ULL(0);
1516 sparse_banks[0] = flush.processor_mask;
1517
1518 /*
1519 * Work around possible WS2012 bug: it sends hypercalls
1520 * with processor_mask = 0x0 and HV_FLUSH_ALL_PROCESSORS clear,
1521 * while also expecting us to flush something and crashing if
1522 * we don't. Let's treat processor_mask == 0 same as
1523 * HV_FLUSH_ALL_PROCESSORS.
1524 */
1525 all_cpus = (flush.flags & HV_FLUSH_ALL_PROCESSORS) ||
1526 flush.processor_mask == 0;
1527 } else {
1528 if (unlikely(kvm_read_guest(kvm, ingpa, &flush_ex,
1529 sizeof(flush_ex))))
1530 return HV_STATUS_INVALID_HYPERCALL_INPUT;
1531
1532 trace_kvm_hv_flush_tlb_ex(flush_ex.hv_vp_set.valid_bank_mask,
1533 flush_ex.hv_vp_set.format,
1534 flush_ex.address_space,
1535 flush_ex.flags);
1536
1537 valid_bank_mask = flush_ex.hv_vp_set.valid_bank_mask;
1538 all_cpus = flush_ex.hv_vp_set.format !=
1539 HV_GENERIC_SET_SPARSE_4K;
1540
1541 sparse_banks_len =
1542 bitmap_weight((unsigned long *)&valid_bank_mask, 64) *
1543 sizeof(sparse_banks[0]);
1544
1545 if (!sparse_banks_len && !all_cpus)
1546 goto ret_success;
1547
1548 if (!all_cpus &&
1549 kvm_read_guest(kvm,
1550 ingpa + offsetof(struct hv_tlb_flush_ex,
1551 hv_vp_set.bank_contents),
1552 sparse_banks,
1553 sparse_banks_len))
1554 return HV_STATUS_INVALID_HYPERCALL_INPUT;
1555 }
1556
1557 cpumask_clear(&hv_vcpu->tlb_flush);
1558
1559 vcpu_mask = all_cpus ? NULL :
1560 sparse_set_to_vcpu_mask(kvm, sparse_banks, valid_bank_mask,
1561 vp_bitmap, vcpu_bitmap);
1562
1563 /*
1564 * vcpu->arch.cr3 may not be up-to-date for running vCPUs so we can't
1565 * analyze it here, flush TLB regardless of the specified address space.
1566 */
1567 kvm_make_vcpus_request_mask(kvm, KVM_REQ_HV_TLB_FLUSH,
1568 NULL, vcpu_mask, &hv_vcpu->tlb_flush);
1569
1570 ret_success:
1571 /* We always do full TLB flush, set rep_done = rep_cnt. */
1572 return (u64)HV_STATUS_SUCCESS |
1573 ((u64)rep_cnt << HV_HYPERCALL_REP_COMP_OFFSET);
1574 }
1575
kvm_send_ipi_to_many(struct kvm * kvm,u32 vector,unsigned long * vcpu_bitmap)1576 static void kvm_send_ipi_to_many(struct kvm *kvm, u32 vector,
1577 unsigned long *vcpu_bitmap)
1578 {
1579 struct kvm_lapic_irq irq = {
1580 .delivery_mode = APIC_DM_FIXED,
1581 .vector = vector
1582 };
1583 struct kvm_vcpu *vcpu;
1584 int i;
1585
1586 kvm_for_each_vcpu(i, vcpu, kvm) {
1587 if (vcpu_bitmap && !test_bit(i, vcpu_bitmap))
1588 continue;
1589
1590 /* We fail only when APIC is disabled */
1591 kvm_apic_set_irq(vcpu, &irq, NULL);
1592 }
1593 }
1594
kvm_hv_send_ipi(struct kvm_vcpu * current_vcpu,u64 ingpa,u64 outgpa,bool ex,bool fast)1595 static u64 kvm_hv_send_ipi(struct kvm_vcpu *current_vcpu, u64 ingpa, u64 outgpa,
1596 bool ex, bool fast)
1597 {
1598 struct kvm *kvm = current_vcpu->kvm;
1599 struct hv_send_ipi_ex send_ipi_ex;
1600 struct hv_send_ipi send_ipi;
1601 u64 vp_bitmap[KVM_HV_MAX_SPARSE_VCPU_SET_BITS];
1602 DECLARE_BITMAP(vcpu_bitmap, KVM_MAX_VCPUS);
1603 unsigned long *vcpu_mask;
1604 unsigned long valid_bank_mask;
1605 u64 sparse_banks[64];
1606 int sparse_banks_len;
1607 u32 vector;
1608 bool all_cpus;
1609
1610 if (!ex) {
1611 if (!fast) {
1612 if (unlikely(kvm_read_guest(kvm, ingpa, &send_ipi,
1613 sizeof(send_ipi))))
1614 return HV_STATUS_INVALID_HYPERCALL_INPUT;
1615 sparse_banks[0] = send_ipi.cpu_mask;
1616 vector = send_ipi.vector;
1617 } else {
1618 /* 'reserved' part of hv_send_ipi should be 0 */
1619 if (unlikely(ingpa >> 32 != 0))
1620 return HV_STATUS_INVALID_HYPERCALL_INPUT;
1621 sparse_banks[0] = outgpa;
1622 vector = (u32)ingpa;
1623 }
1624 all_cpus = false;
1625 valid_bank_mask = BIT_ULL(0);
1626
1627 trace_kvm_hv_send_ipi(vector, sparse_banks[0]);
1628 } else {
1629 if (unlikely(kvm_read_guest(kvm, ingpa, &send_ipi_ex,
1630 sizeof(send_ipi_ex))))
1631 return HV_STATUS_INVALID_HYPERCALL_INPUT;
1632
1633 trace_kvm_hv_send_ipi_ex(send_ipi_ex.vector,
1634 send_ipi_ex.vp_set.format,
1635 send_ipi_ex.vp_set.valid_bank_mask);
1636
1637 vector = send_ipi_ex.vector;
1638 valid_bank_mask = send_ipi_ex.vp_set.valid_bank_mask;
1639 sparse_banks_len = bitmap_weight(&valid_bank_mask, 64) *
1640 sizeof(sparse_banks[0]);
1641
1642 all_cpus = send_ipi_ex.vp_set.format == HV_GENERIC_SET_ALL;
1643
1644 if (!sparse_banks_len)
1645 goto ret_success;
1646
1647 if (!all_cpus &&
1648 kvm_read_guest(kvm,
1649 ingpa + offsetof(struct hv_send_ipi_ex,
1650 vp_set.bank_contents),
1651 sparse_banks,
1652 sparse_banks_len))
1653 return HV_STATUS_INVALID_HYPERCALL_INPUT;
1654 }
1655
1656 if ((vector < HV_IPI_LOW_VECTOR) || (vector > HV_IPI_HIGH_VECTOR))
1657 return HV_STATUS_INVALID_HYPERCALL_INPUT;
1658
1659 vcpu_mask = all_cpus ? NULL :
1660 sparse_set_to_vcpu_mask(kvm, sparse_banks, valid_bank_mask,
1661 vp_bitmap, vcpu_bitmap);
1662
1663 kvm_send_ipi_to_many(kvm, vector, vcpu_mask);
1664
1665 ret_success:
1666 return HV_STATUS_SUCCESS;
1667 }
1668
kvm_hv_hypercall_enabled(struct kvm * kvm)1669 bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1670 {
1671 return READ_ONCE(kvm->arch.hyperv.hv_guest_os_id) != 0;
1672 }
1673
kvm_hv_hypercall_set_result(struct kvm_vcpu * vcpu,u64 result)1674 static void kvm_hv_hypercall_set_result(struct kvm_vcpu *vcpu, u64 result)
1675 {
1676 bool longmode;
1677
1678 longmode = is_64_bit_mode(vcpu);
1679 if (longmode)
1680 kvm_rax_write(vcpu, result);
1681 else {
1682 kvm_rdx_write(vcpu, result >> 32);
1683 kvm_rax_write(vcpu, result & 0xffffffff);
1684 }
1685 }
1686
kvm_hv_hypercall_complete(struct kvm_vcpu * vcpu,u64 result)1687 static int kvm_hv_hypercall_complete(struct kvm_vcpu *vcpu, u64 result)
1688 {
1689 kvm_hv_hypercall_set_result(vcpu, result);
1690 ++vcpu->stat.hypercalls;
1691 return kvm_skip_emulated_instruction(vcpu);
1692 }
1693
kvm_hv_hypercall_complete_userspace(struct kvm_vcpu * vcpu)1694 static int kvm_hv_hypercall_complete_userspace(struct kvm_vcpu *vcpu)
1695 {
1696 return kvm_hv_hypercall_complete(vcpu, vcpu->run->hyperv.u.hcall.result);
1697 }
1698
kvm_hvcall_signal_event(struct kvm_vcpu * vcpu,bool fast,u64 param)1699 static u16 kvm_hvcall_signal_event(struct kvm_vcpu *vcpu, bool fast, u64 param)
1700 {
1701 struct eventfd_ctx *eventfd;
1702
1703 if (unlikely(!fast)) {
1704 int ret;
1705 gpa_t gpa = param;
1706
1707 if ((gpa & (__alignof__(param) - 1)) ||
1708 offset_in_page(gpa) + sizeof(param) > PAGE_SIZE)
1709 return HV_STATUS_INVALID_ALIGNMENT;
1710
1711 ret = kvm_vcpu_read_guest(vcpu, gpa, ¶m, sizeof(param));
1712 if (ret < 0)
1713 return HV_STATUS_INVALID_ALIGNMENT;
1714 }
1715
1716 /*
1717 * Per spec, bits 32-47 contain the extra "flag number". However, we
1718 * have no use for it, and in all known usecases it is zero, so just
1719 * report lookup failure if it isn't.
1720 */
1721 if (param & 0xffff00000000ULL)
1722 return HV_STATUS_INVALID_PORT_ID;
1723 /* remaining bits are reserved-zero */
1724 if (param & ~KVM_HYPERV_CONN_ID_MASK)
1725 return HV_STATUS_INVALID_HYPERCALL_INPUT;
1726
1727 /* the eventfd is protected by vcpu->kvm->srcu, but conn_to_evt isn't */
1728 rcu_read_lock();
1729 eventfd = idr_find(&vcpu->kvm->arch.hyperv.conn_to_evt, param);
1730 rcu_read_unlock();
1731 if (!eventfd)
1732 return HV_STATUS_INVALID_PORT_ID;
1733
1734 eventfd_signal(eventfd, 1);
1735 return HV_STATUS_SUCCESS;
1736 }
1737
kvm_hv_hypercall(struct kvm_vcpu * vcpu)1738 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
1739 {
1740 u64 param, ingpa, outgpa, ret = HV_STATUS_SUCCESS;
1741 uint16_t code, rep_idx, rep_cnt;
1742 bool fast, rep;
1743
1744 /*
1745 * hypercall generates UD from non zero cpl and real mode
1746 * per HYPER-V spec
1747 */
1748 if (kvm_x86_ops.get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
1749 kvm_queue_exception(vcpu, UD_VECTOR);
1750 return 1;
1751 }
1752
1753 #ifdef CONFIG_X86_64
1754 if (is_64_bit_mode(vcpu)) {
1755 param = kvm_rcx_read(vcpu);
1756 ingpa = kvm_rdx_read(vcpu);
1757 outgpa = kvm_r8_read(vcpu);
1758 } else
1759 #endif
1760 {
1761 param = ((u64)kvm_rdx_read(vcpu) << 32) |
1762 (kvm_rax_read(vcpu) & 0xffffffff);
1763 ingpa = ((u64)kvm_rbx_read(vcpu) << 32) |
1764 (kvm_rcx_read(vcpu) & 0xffffffff);
1765 outgpa = ((u64)kvm_rdi_read(vcpu) << 32) |
1766 (kvm_rsi_read(vcpu) & 0xffffffff);
1767 }
1768
1769 code = param & 0xffff;
1770 fast = !!(param & HV_HYPERCALL_FAST_BIT);
1771 rep_cnt = (param >> HV_HYPERCALL_REP_COMP_OFFSET) & 0xfff;
1772 rep_idx = (param >> HV_HYPERCALL_REP_START_OFFSET) & 0xfff;
1773 rep = !!(rep_cnt || rep_idx);
1774
1775 trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
1776
1777 switch (code) {
1778 case HVCALL_NOTIFY_LONG_SPIN_WAIT:
1779 if (unlikely(rep)) {
1780 ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1781 break;
1782 }
1783 kvm_vcpu_on_spin(vcpu, true);
1784 break;
1785 case HVCALL_SIGNAL_EVENT:
1786 if (unlikely(rep)) {
1787 ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1788 break;
1789 }
1790 ret = kvm_hvcall_signal_event(vcpu, fast, ingpa);
1791 if (ret != HV_STATUS_INVALID_PORT_ID)
1792 break;
1793 fallthrough; /* maybe userspace knows this conn_id */
1794 case HVCALL_POST_MESSAGE:
1795 /* don't bother userspace if it has no way to handle it */
1796 if (unlikely(rep || !vcpu_to_synic(vcpu)->active)) {
1797 ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1798 break;
1799 }
1800 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
1801 vcpu->run->hyperv.type = KVM_EXIT_HYPERV_HCALL;
1802 vcpu->run->hyperv.u.hcall.input = param;
1803 vcpu->run->hyperv.u.hcall.params[0] = ingpa;
1804 vcpu->run->hyperv.u.hcall.params[1] = outgpa;
1805 vcpu->arch.complete_userspace_io =
1806 kvm_hv_hypercall_complete_userspace;
1807 return 0;
1808 case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST:
1809 if (unlikely(fast || !rep_cnt || rep_idx)) {
1810 ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1811 break;
1812 }
1813 ret = kvm_hv_flush_tlb(vcpu, ingpa, rep_cnt, false);
1814 break;
1815 case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE:
1816 if (unlikely(fast || rep)) {
1817 ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1818 break;
1819 }
1820 ret = kvm_hv_flush_tlb(vcpu, ingpa, rep_cnt, false);
1821 break;
1822 case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX:
1823 if (unlikely(fast || !rep_cnt || rep_idx)) {
1824 ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1825 break;
1826 }
1827 ret = kvm_hv_flush_tlb(vcpu, ingpa, rep_cnt, true);
1828 break;
1829 case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX:
1830 if (unlikely(fast || rep)) {
1831 ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1832 break;
1833 }
1834 ret = kvm_hv_flush_tlb(vcpu, ingpa, rep_cnt, true);
1835 break;
1836 case HVCALL_SEND_IPI:
1837 if (unlikely(rep)) {
1838 ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1839 break;
1840 }
1841 ret = kvm_hv_send_ipi(vcpu, ingpa, outgpa, false, fast);
1842 break;
1843 case HVCALL_SEND_IPI_EX:
1844 if (unlikely(fast || rep)) {
1845 ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1846 break;
1847 }
1848 ret = kvm_hv_send_ipi(vcpu, ingpa, outgpa, true, false);
1849 break;
1850 case HVCALL_POST_DEBUG_DATA:
1851 case HVCALL_RETRIEVE_DEBUG_DATA:
1852 if (unlikely(fast)) {
1853 ret = HV_STATUS_INVALID_PARAMETER;
1854 break;
1855 }
1856 fallthrough;
1857 case HVCALL_RESET_DEBUG_SESSION: {
1858 struct kvm_hv_syndbg *syndbg = vcpu_to_hv_syndbg(vcpu);
1859
1860 if (!kvm_hv_is_syndbg_enabled(vcpu)) {
1861 ret = HV_STATUS_INVALID_HYPERCALL_CODE;
1862 break;
1863 }
1864
1865 if (!(syndbg->options & HV_X64_SYNDBG_OPTION_USE_HCALLS)) {
1866 ret = HV_STATUS_OPERATION_DENIED;
1867 break;
1868 }
1869 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
1870 vcpu->run->hyperv.type = KVM_EXIT_HYPERV_HCALL;
1871 vcpu->run->hyperv.u.hcall.input = param;
1872 vcpu->run->hyperv.u.hcall.params[0] = ingpa;
1873 vcpu->run->hyperv.u.hcall.params[1] = outgpa;
1874 vcpu->arch.complete_userspace_io =
1875 kvm_hv_hypercall_complete_userspace;
1876 return 0;
1877 }
1878 default:
1879 ret = HV_STATUS_INVALID_HYPERCALL_CODE;
1880 break;
1881 }
1882
1883 return kvm_hv_hypercall_complete(vcpu, ret);
1884 }
1885
kvm_hv_init_vm(struct kvm * kvm)1886 void kvm_hv_init_vm(struct kvm *kvm)
1887 {
1888 mutex_init(&kvm->arch.hyperv.hv_lock);
1889 idr_init(&kvm->arch.hyperv.conn_to_evt);
1890 }
1891
kvm_hv_destroy_vm(struct kvm * kvm)1892 void kvm_hv_destroy_vm(struct kvm *kvm)
1893 {
1894 struct eventfd_ctx *eventfd;
1895 int i;
1896
1897 idr_for_each_entry(&kvm->arch.hyperv.conn_to_evt, eventfd, i)
1898 eventfd_ctx_put(eventfd);
1899 idr_destroy(&kvm->arch.hyperv.conn_to_evt);
1900 }
1901
kvm_hv_eventfd_assign(struct kvm * kvm,u32 conn_id,int fd)1902 static int kvm_hv_eventfd_assign(struct kvm *kvm, u32 conn_id, int fd)
1903 {
1904 struct kvm_hv *hv = &kvm->arch.hyperv;
1905 struct eventfd_ctx *eventfd;
1906 int ret;
1907
1908 eventfd = eventfd_ctx_fdget(fd);
1909 if (IS_ERR(eventfd))
1910 return PTR_ERR(eventfd);
1911
1912 mutex_lock(&hv->hv_lock);
1913 ret = idr_alloc(&hv->conn_to_evt, eventfd, conn_id, conn_id + 1,
1914 GFP_KERNEL_ACCOUNT);
1915 mutex_unlock(&hv->hv_lock);
1916
1917 if (ret >= 0)
1918 return 0;
1919
1920 if (ret == -ENOSPC)
1921 ret = -EEXIST;
1922 eventfd_ctx_put(eventfd);
1923 return ret;
1924 }
1925
kvm_hv_eventfd_deassign(struct kvm * kvm,u32 conn_id)1926 static int kvm_hv_eventfd_deassign(struct kvm *kvm, u32 conn_id)
1927 {
1928 struct kvm_hv *hv = &kvm->arch.hyperv;
1929 struct eventfd_ctx *eventfd;
1930
1931 mutex_lock(&hv->hv_lock);
1932 eventfd = idr_remove(&hv->conn_to_evt, conn_id);
1933 mutex_unlock(&hv->hv_lock);
1934
1935 if (!eventfd)
1936 return -ENOENT;
1937
1938 synchronize_srcu(&kvm->srcu);
1939 eventfd_ctx_put(eventfd);
1940 return 0;
1941 }
1942
kvm_vm_ioctl_hv_eventfd(struct kvm * kvm,struct kvm_hyperv_eventfd * args)1943 int kvm_vm_ioctl_hv_eventfd(struct kvm *kvm, struct kvm_hyperv_eventfd *args)
1944 {
1945 if ((args->flags & ~KVM_HYPERV_EVENTFD_DEASSIGN) ||
1946 (args->conn_id & ~KVM_HYPERV_CONN_ID_MASK))
1947 return -EINVAL;
1948
1949 if (args->flags == KVM_HYPERV_EVENTFD_DEASSIGN)
1950 return kvm_hv_eventfd_deassign(kvm, args->conn_id);
1951 return kvm_hv_eventfd_assign(kvm, args->conn_id, args->fd);
1952 }
1953
kvm_vcpu_ioctl_get_hv_cpuid(struct kvm_vcpu * vcpu,struct kvm_cpuid2 * cpuid,struct kvm_cpuid_entry2 __user * entries)1954 int kvm_vcpu_ioctl_get_hv_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid2 *cpuid,
1955 struct kvm_cpuid_entry2 __user *entries)
1956 {
1957 uint16_t evmcs_ver = 0;
1958 struct kvm_cpuid_entry2 cpuid_entries[] = {
1959 { .function = HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS },
1960 { .function = HYPERV_CPUID_INTERFACE },
1961 { .function = HYPERV_CPUID_VERSION },
1962 { .function = HYPERV_CPUID_FEATURES },
1963 { .function = HYPERV_CPUID_ENLIGHTMENT_INFO },
1964 { .function = HYPERV_CPUID_IMPLEMENT_LIMITS },
1965 { .function = HYPERV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIONS },
1966 { .function = HYPERV_CPUID_SYNDBG_INTERFACE },
1967 { .function = HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES },
1968 { .function = HYPERV_CPUID_NESTED_FEATURES },
1969 };
1970 int i, nent = ARRAY_SIZE(cpuid_entries);
1971
1972 if (kvm_x86_ops.nested_ops->get_evmcs_version)
1973 evmcs_ver = kvm_x86_ops.nested_ops->get_evmcs_version(vcpu);
1974
1975 /* Skip NESTED_FEATURES if eVMCS is not supported */
1976 if (!evmcs_ver)
1977 --nent;
1978
1979 if (cpuid->nent < nent)
1980 return -E2BIG;
1981
1982 if (cpuid->nent > nent)
1983 cpuid->nent = nent;
1984
1985 for (i = 0; i < nent; i++) {
1986 struct kvm_cpuid_entry2 *ent = &cpuid_entries[i];
1987 u32 signature[3];
1988
1989 switch (ent->function) {
1990 case HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS:
1991 memcpy(signature, "Linux KVM Hv", 12);
1992
1993 ent->eax = HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES;
1994 ent->ebx = signature[0];
1995 ent->ecx = signature[1];
1996 ent->edx = signature[2];
1997 break;
1998
1999 case HYPERV_CPUID_INTERFACE:
2000 memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12);
2001 ent->eax = signature[0];
2002 break;
2003
2004 case HYPERV_CPUID_VERSION:
2005 /*
2006 * We implement some Hyper-V 2016 functions so let's use
2007 * this version.
2008 */
2009 ent->eax = 0x00003839;
2010 ent->ebx = 0x000A0000;
2011 break;
2012
2013 case HYPERV_CPUID_FEATURES:
2014 ent->eax |= HV_MSR_VP_RUNTIME_AVAILABLE;
2015 ent->eax |= HV_MSR_TIME_REF_COUNT_AVAILABLE;
2016 ent->eax |= HV_MSR_SYNIC_AVAILABLE;
2017 ent->eax |= HV_MSR_SYNTIMER_AVAILABLE;
2018 ent->eax |= HV_MSR_APIC_ACCESS_AVAILABLE;
2019 ent->eax |= HV_MSR_HYPERCALL_AVAILABLE;
2020 ent->eax |= HV_MSR_VP_INDEX_AVAILABLE;
2021 ent->eax |= HV_MSR_RESET_AVAILABLE;
2022 ent->eax |= HV_MSR_REFERENCE_TSC_AVAILABLE;
2023 ent->eax |= HV_ACCESS_FREQUENCY_MSRS;
2024 ent->eax |= HV_ACCESS_REENLIGHTENMENT;
2025
2026 ent->ebx |= HV_POST_MESSAGES;
2027 ent->ebx |= HV_SIGNAL_EVENTS;
2028
2029 ent->edx |= HV_FEATURE_FREQUENCY_MSRS_AVAILABLE;
2030 ent->edx |= HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE;
2031
2032 ent->ebx |= HV_DEBUGGING;
2033 ent->edx |= HV_X64_GUEST_DEBUGGING_AVAILABLE;
2034 ent->edx |= HV_FEATURE_DEBUG_MSRS_AVAILABLE;
2035
2036 /*
2037 * Direct Synthetic timers only make sense with in-kernel
2038 * LAPIC
2039 */
2040 if (lapic_in_kernel(vcpu))
2041 ent->edx |= HV_STIMER_DIRECT_MODE_AVAILABLE;
2042
2043 break;
2044
2045 case HYPERV_CPUID_ENLIGHTMENT_INFO:
2046 ent->eax |= HV_X64_REMOTE_TLB_FLUSH_RECOMMENDED;
2047 ent->eax |= HV_X64_APIC_ACCESS_RECOMMENDED;
2048 ent->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED;
2049 ent->eax |= HV_X64_CLUSTER_IPI_RECOMMENDED;
2050 ent->eax |= HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED;
2051 if (evmcs_ver)
2052 ent->eax |= HV_X64_ENLIGHTENED_VMCS_RECOMMENDED;
2053 if (!cpu_smt_possible())
2054 ent->eax |= HV_X64_NO_NONARCH_CORESHARING;
2055 /*
2056 * Default number of spinlock retry attempts, matches
2057 * HyperV 2016.
2058 */
2059 ent->ebx = 0x00000FFF;
2060
2061 break;
2062
2063 case HYPERV_CPUID_IMPLEMENT_LIMITS:
2064 /* Maximum number of virtual processors */
2065 ent->eax = KVM_MAX_VCPUS;
2066 /*
2067 * Maximum number of logical processors, matches
2068 * HyperV 2016.
2069 */
2070 ent->ebx = 64;
2071
2072 break;
2073
2074 case HYPERV_CPUID_NESTED_FEATURES:
2075 ent->eax = evmcs_ver;
2076
2077 break;
2078
2079 case HYPERV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIONS:
2080 memcpy(signature, "Linux KVM Hv", 12);
2081
2082 ent->eax = 0;
2083 ent->ebx = signature[0];
2084 ent->ecx = signature[1];
2085 ent->edx = signature[2];
2086 break;
2087
2088 case HYPERV_CPUID_SYNDBG_INTERFACE:
2089 memcpy(signature, "VS#1\0\0\0\0\0\0\0\0", 12);
2090 ent->eax = signature[0];
2091 break;
2092
2093 case HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES:
2094 ent->eax |= HV_X64_SYNDBG_CAP_ALLOW_KERNEL_DEBUGGING;
2095 break;
2096
2097 default:
2098 break;
2099 }
2100 }
2101
2102 if (copy_to_user(entries, cpuid_entries,
2103 nent * sizeof(struct kvm_cpuid_entry2)))
2104 return -EFAULT;
2105
2106 return 0;
2107 }
2108