1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * KVM Microsoft Hyper-V emulation
4 *
5 * derived from arch/x86/kvm/x86.c
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright (C) 2008 Qumranet, Inc.
9 * Copyright IBM Corporation, 2008
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 * Copyright (C) 2015 Andrey Smetanin <asmetanin@virtuozzo.com>
12 *
13 * Authors:
14 * Avi Kivity <avi@qumranet.com>
15 * Yaniv Kamay <yaniv@qumranet.com>
16 * Amit Shah <amit.shah@qumranet.com>
17 * Ben-Ami Yassour <benami@il.ibm.com>
18 * Andrey Smetanin <asmetanin@virtuozzo.com>
19 */
20
21 #include "x86.h"
22 #include "lapic.h"
23 #include "ioapic.h"
24 #include "cpuid.h"
25 #include "hyperv.h"
26 #include "xen.h"
27
28 #include <linux/cpu.h>
29 #include <linux/kvm_host.h>
30 #include <linux/highmem.h>
31 #include <linux/sched/cputime.h>
32 #include <linux/eventfd.h>
33
34 #include <asm/apicdef.h>
35 #include <trace/events/kvm.h>
36
37 #include "trace.h"
38 #include "irq.h"
39 #include "fpu.h"
40
41 /* "Hv#1" signature */
42 #define HYPERV_CPUID_SIGNATURE_EAX 0x31237648
43
44 #define KVM_HV_MAX_SPARSE_VCPU_SET_BITS DIV_ROUND_UP(KVM_MAX_VCPUS, 64)
45
46 static void stimer_mark_pending(struct kvm_vcpu_hv_stimer *stimer,
47 bool vcpu_kick);
48
synic_read_sint(struct kvm_vcpu_hv_synic * synic,int sint)49 static inline u64 synic_read_sint(struct kvm_vcpu_hv_synic *synic, int sint)
50 {
51 return atomic64_read(&synic->sint[sint]);
52 }
53
synic_get_sint_vector(u64 sint_value)54 static inline int synic_get_sint_vector(u64 sint_value)
55 {
56 if (sint_value & HV_SYNIC_SINT_MASKED)
57 return -1;
58 return sint_value & HV_SYNIC_SINT_VECTOR_MASK;
59 }
60
synic_has_vector_connected(struct kvm_vcpu_hv_synic * synic,int vector)61 static bool synic_has_vector_connected(struct kvm_vcpu_hv_synic *synic,
62 int vector)
63 {
64 int i;
65
66 for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
67 if (synic_get_sint_vector(synic_read_sint(synic, i)) == vector)
68 return true;
69 }
70 return false;
71 }
72
synic_has_vector_auto_eoi(struct kvm_vcpu_hv_synic * synic,int vector)73 static bool synic_has_vector_auto_eoi(struct kvm_vcpu_hv_synic *synic,
74 int vector)
75 {
76 int i;
77 u64 sint_value;
78
79 for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
80 sint_value = synic_read_sint(synic, i);
81 if (synic_get_sint_vector(sint_value) == vector &&
82 sint_value & HV_SYNIC_SINT_AUTO_EOI)
83 return true;
84 }
85 return false;
86 }
87
synic_update_vector(struct kvm_vcpu_hv_synic * synic,int vector)88 static void synic_update_vector(struct kvm_vcpu_hv_synic *synic,
89 int vector)
90 {
91 struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic);
92 struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);
93 int auto_eoi_old, auto_eoi_new;
94
95 if (vector < HV_SYNIC_FIRST_VALID_VECTOR)
96 return;
97
98 if (synic_has_vector_connected(synic, vector))
99 __set_bit(vector, synic->vec_bitmap);
100 else
101 __clear_bit(vector, synic->vec_bitmap);
102
103 auto_eoi_old = bitmap_weight(synic->auto_eoi_bitmap, 256);
104
105 if (synic_has_vector_auto_eoi(synic, vector))
106 __set_bit(vector, synic->auto_eoi_bitmap);
107 else
108 __clear_bit(vector, synic->auto_eoi_bitmap);
109
110 auto_eoi_new = bitmap_weight(synic->auto_eoi_bitmap, 256);
111
112 if (!!auto_eoi_old == !!auto_eoi_new)
113 return;
114
115 mutex_lock(&vcpu->kvm->arch.apicv_update_lock);
116
117 if (auto_eoi_new)
118 hv->synic_auto_eoi_used++;
119 else
120 hv->synic_auto_eoi_used--;
121
122 __kvm_request_apicv_update(vcpu->kvm,
123 !hv->synic_auto_eoi_used,
124 APICV_INHIBIT_REASON_HYPERV);
125
126 mutex_unlock(&vcpu->kvm->arch.apicv_update_lock);
127 }
128
synic_set_sint(struct kvm_vcpu_hv_synic * synic,int sint,u64 data,bool host)129 static int synic_set_sint(struct kvm_vcpu_hv_synic *synic, int sint,
130 u64 data, bool host)
131 {
132 int vector, old_vector;
133 bool masked;
134
135 vector = data & HV_SYNIC_SINT_VECTOR_MASK;
136 masked = data & HV_SYNIC_SINT_MASKED;
137
138 /*
139 * Valid vectors are 16-255, however, nested Hyper-V attempts to write
140 * default '0x10000' value on boot and this should not #GP. We need to
141 * allow zero-initing the register from host as well.
142 */
143 if (vector < HV_SYNIC_FIRST_VALID_VECTOR && !host && !masked)
144 return 1;
145 /*
146 * Guest may configure multiple SINTs to use the same vector, so
147 * we maintain a bitmap of vectors handled by synic, and a
148 * bitmap of vectors with auto-eoi behavior. The bitmaps are
149 * updated here, and atomically queried on fast paths.
150 */
151 old_vector = synic_read_sint(synic, sint) & HV_SYNIC_SINT_VECTOR_MASK;
152
153 atomic64_set(&synic->sint[sint], data);
154
155 synic_update_vector(synic, old_vector);
156
157 synic_update_vector(synic, vector);
158
159 /* Load SynIC vectors into EOI exit bitmap */
160 kvm_make_request(KVM_REQ_SCAN_IOAPIC, hv_synic_to_vcpu(synic));
161 return 0;
162 }
163
get_vcpu_by_vpidx(struct kvm * kvm,u32 vpidx)164 static struct kvm_vcpu *get_vcpu_by_vpidx(struct kvm *kvm, u32 vpidx)
165 {
166 struct kvm_vcpu *vcpu = NULL;
167 int i;
168
169 if (vpidx >= KVM_MAX_VCPUS)
170 return NULL;
171
172 vcpu = kvm_get_vcpu(kvm, vpidx);
173 if (vcpu && kvm_hv_get_vpindex(vcpu) == vpidx)
174 return vcpu;
175 kvm_for_each_vcpu(i, vcpu, kvm)
176 if (kvm_hv_get_vpindex(vcpu) == vpidx)
177 return vcpu;
178 return NULL;
179 }
180
synic_get(struct kvm * kvm,u32 vpidx)181 static struct kvm_vcpu_hv_synic *synic_get(struct kvm *kvm, u32 vpidx)
182 {
183 struct kvm_vcpu *vcpu;
184 struct kvm_vcpu_hv_synic *synic;
185
186 vcpu = get_vcpu_by_vpidx(kvm, vpidx);
187 if (!vcpu || !to_hv_vcpu(vcpu))
188 return NULL;
189 synic = to_hv_synic(vcpu);
190 return (synic->active) ? synic : NULL;
191 }
192
kvm_hv_notify_acked_sint(struct kvm_vcpu * vcpu,u32 sint)193 static void kvm_hv_notify_acked_sint(struct kvm_vcpu *vcpu, u32 sint)
194 {
195 struct kvm *kvm = vcpu->kvm;
196 struct kvm_vcpu_hv_synic *synic = to_hv_synic(vcpu);
197 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
198 struct kvm_vcpu_hv_stimer *stimer;
199 int gsi, idx;
200
201 trace_kvm_hv_notify_acked_sint(vcpu->vcpu_id, sint);
202
203 /* Try to deliver pending Hyper-V SynIC timers messages */
204 for (idx = 0; idx < ARRAY_SIZE(hv_vcpu->stimer); idx++) {
205 stimer = &hv_vcpu->stimer[idx];
206 if (stimer->msg_pending && stimer->config.enable &&
207 !stimer->config.direct_mode &&
208 stimer->config.sintx == sint)
209 stimer_mark_pending(stimer, false);
210 }
211
212 idx = srcu_read_lock(&kvm->irq_srcu);
213 gsi = atomic_read(&synic->sint_to_gsi[sint]);
214 if (gsi != -1)
215 kvm_notify_acked_gsi(kvm, gsi);
216 srcu_read_unlock(&kvm->irq_srcu, idx);
217 }
218
synic_exit(struct kvm_vcpu_hv_synic * synic,u32 msr)219 static void synic_exit(struct kvm_vcpu_hv_synic *synic, u32 msr)
220 {
221 struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic);
222 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
223
224 hv_vcpu->exit.type = KVM_EXIT_HYPERV_SYNIC;
225 hv_vcpu->exit.u.synic.msr = msr;
226 hv_vcpu->exit.u.synic.control = synic->control;
227 hv_vcpu->exit.u.synic.evt_page = synic->evt_page;
228 hv_vcpu->exit.u.synic.msg_page = synic->msg_page;
229
230 kvm_make_request(KVM_REQ_HV_EXIT, vcpu);
231 }
232
synic_set_msr(struct kvm_vcpu_hv_synic * synic,u32 msr,u64 data,bool host)233 static int synic_set_msr(struct kvm_vcpu_hv_synic *synic,
234 u32 msr, u64 data, bool host)
235 {
236 struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic);
237 int ret;
238
239 if (!synic->active && !host)
240 return 1;
241
242 trace_kvm_hv_synic_set_msr(vcpu->vcpu_id, msr, data, host);
243
244 ret = 0;
245 switch (msr) {
246 case HV_X64_MSR_SCONTROL:
247 synic->control = data;
248 if (!host)
249 synic_exit(synic, msr);
250 break;
251 case HV_X64_MSR_SVERSION:
252 if (!host) {
253 ret = 1;
254 break;
255 }
256 synic->version = data;
257 break;
258 case HV_X64_MSR_SIEFP:
259 if ((data & HV_SYNIC_SIEFP_ENABLE) && !host &&
260 !synic->dont_zero_synic_pages)
261 if (kvm_clear_guest(vcpu->kvm,
262 data & PAGE_MASK, PAGE_SIZE)) {
263 ret = 1;
264 break;
265 }
266 synic->evt_page = data;
267 if (!host)
268 synic_exit(synic, msr);
269 break;
270 case HV_X64_MSR_SIMP:
271 if ((data & HV_SYNIC_SIMP_ENABLE) && !host &&
272 !synic->dont_zero_synic_pages)
273 if (kvm_clear_guest(vcpu->kvm,
274 data & PAGE_MASK, PAGE_SIZE)) {
275 ret = 1;
276 break;
277 }
278 synic->msg_page = data;
279 if (!host)
280 synic_exit(synic, msr);
281 break;
282 case HV_X64_MSR_EOM: {
283 int i;
284
285 for (i = 0; i < ARRAY_SIZE(synic->sint); i++)
286 kvm_hv_notify_acked_sint(vcpu, i);
287 break;
288 }
289 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
290 ret = synic_set_sint(synic, msr - HV_X64_MSR_SINT0, data, host);
291 break;
292 default:
293 ret = 1;
294 break;
295 }
296 return ret;
297 }
298
kvm_hv_is_syndbg_enabled(struct kvm_vcpu * vcpu)299 static bool kvm_hv_is_syndbg_enabled(struct kvm_vcpu *vcpu)
300 {
301 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
302
303 return hv_vcpu->cpuid_cache.syndbg_cap_eax &
304 HV_X64_SYNDBG_CAP_ALLOW_KERNEL_DEBUGGING;
305 }
306
kvm_hv_syndbg_complete_userspace(struct kvm_vcpu * vcpu)307 static int kvm_hv_syndbg_complete_userspace(struct kvm_vcpu *vcpu)
308 {
309 struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);
310
311 if (vcpu->run->hyperv.u.syndbg.msr == HV_X64_MSR_SYNDBG_CONTROL)
312 hv->hv_syndbg.control.status =
313 vcpu->run->hyperv.u.syndbg.status;
314 return 1;
315 }
316
syndbg_exit(struct kvm_vcpu * vcpu,u32 msr)317 static void syndbg_exit(struct kvm_vcpu *vcpu, u32 msr)
318 {
319 struct kvm_hv_syndbg *syndbg = to_hv_syndbg(vcpu);
320 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
321
322 hv_vcpu->exit.type = KVM_EXIT_HYPERV_SYNDBG;
323 hv_vcpu->exit.u.syndbg.msr = msr;
324 hv_vcpu->exit.u.syndbg.control = syndbg->control.control;
325 hv_vcpu->exit.u.syndbg.send_page = syndbg->control.send_page;
326 hv_vcpu->exit.u.syndbg.recv_page = syndbg->control.recv_page;
327 hv_vcpu->exit.u.syndbg.pending_page = syndbg->control.pending_page;
328 vcpu->arch.complete_userspace_io =
329 kvm_hv_syndbg_complete_userspace;
330
331 kvm_make_request(KVM_REQ_HV_EXIT, vcpu);
332 }
333
syndbg_set_msr(struct kvm_vcpu * vcpu,u32 msr,u64 data,bool host)334 static int syndbg_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host)
335 {
336 struct kvm_hv_syndbg *syndbg = to_hv_syndbg(vcpu);
337
338 if (!kvm_hv_is_syndbg_enabled(vcpu) && !host)
339 return 1;
340
341 trace_kvm_hv_syndbg_set_msr(vcpu->vcpu_id,
342 to_hv_vcpu(vcpu)->vp_index, msr, data);
343 switch (msr) {
344 case HV_X64_MSR_SYNDBG_CONTROL:
345 syndbg->control.control = data;
346 if (!host)
347 syndbg_exit(vcpu, msr);
348 break;
349 case HV_X64_MSR_SYNDBG_STATUS:
350 syndbg->control.status = data;
351 break;
352 case HV_X64_MSR_SYNDBG_SEND_BUFFER:
353 syndbg->control.send_page = data;
354 break;
355 case HV_X64_MSR_SYNDBG_RECV_BUFFER:
356 syndbg->control.recv_page = data;
357 break;
358 case HV_X64_MSR_SYNDBG_PENDING_BUFFER:
359 syndbg->control.pending_page = data;
360 if (!host)
361 syndbg_exit(vcpu, msr);
362 break;
363 case HV_X64_MSR_SYNDBG_OPTIONS:
364 syndbg->options = data;
365 break;
366 default:
367 break;
368 }
369
370 return 0;
371 }
372
syndbg_get_msr(struct kvm_vcpu * vcpu,u32 msr,u64 * pdata,bool host)373 static int syndbg_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
374 {
375 struct kvm_hv_syndbg *syndbg = to_hv_syndbg(vcpu);
376
377 if (!kvm_hv_is_syndbg_enabled(vcpu) && !host)
378 return 1;
379
380 switch (msr) {
381 case HV_X64_MSR_SYNDBG_CONTROL:
382 *pdata = syndbg->control.control;
383 break;
384 case HV_X64_MSR_SYNDBG_STATUS:
385 *pdata = syndbg->control.status;
386 break;
387 case HV_X64_MSR_SYNDBG_SEND_BUFFER:
388 *pdata = syndbg->control.send_page;
389 break;
390 case HV_X64_MSR_SYNDBG_RECV_BUFFER:
391 *pdata = syndbg->control.recv_page;
392 break;
393 case HV_X64_MSR_SYNDBG_PENDING_BUFFER:
394 *pdata = syndbg->control.pending_page;
395 break;
396 case HV_X64_MSR_SYNDBG_OPTIONS:
397 *pdata = syndbg->options;
398 break;
399 default:
400 break;
401 }
402
403 trace_kvm_hv_syndbg_get_msr(vcpu->vcpu_id, kvm_hv_get_vpindex(vcpu), msr, *pdata);
404
405 return 0;
406 }
407
synic_get_msr(struct kvm_vcpu_hv_synic * synic,u32 msr,u64 * pdata,bool host)408 static int synic_get_msr(struct kvm_vcpu_hv_synic *synic, u32 msr, u64 *pdata,
409 bool host)
410 {
411 int ret;
412
413 if (!synic->active && !host)
414 return 1;
415
416 ret = 0;
417 switch (msr) {
418 case HV_X64_MSR_SCONTROL:
419 *pdata = synic->control;
420 break;
421 case HV_X64_MSR_SVERSION:
422 *pdata = synic->version;
423 break;
424 case HV_X64_MSR_SIEFP:
425 *pdata = synic->evt_page;
426 break;
427 case HV_X64_MSR_SIMP:
428 *pdata = synic->msg_page;
429 break;
430 case HV_X64_MSR_EOM:
431 *pdata = 0;
432 break;
433 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
434 *pdata = atomic64_read(&synic->sint[msr - HV_X64_MSR_SINT0]);
435 break;
436 default:
437 ret = 1;
438 break;
439 }
440 return ret;
441 }
442
synic_set_irq(struct kvm_vcpu_hv_synic * synic,u32 sint)443 static int synic_set_irq(struct kvm_vcpu_hv_synic *synic, u32 sint)
444 {
445 struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic);
446 struct kvm_lapic_irq irq;
447 int ret, vector;
448
449 if (sint >= ARRAY_SIZE(synic->sint))
450 return -EINVAL;
451
452 vector = synic_get_sint_vector(synic_read_sint(synic, sint));
453 if (vector < 0)
454 return -ENOENT;
455
456 memset(&irq, 0, sizeof(irq));
457 irq.shorthand = APIC_DEST_SELF;
458 irq.dest_mode = APIC_DEST_PHYSICAL;
459 irq.delivery_mode = APIC_DM_FIXED;
460 irq.vector = vector;
461 irq.level = 1;
462
463 ret = kvm_irq_delivery_to_apic(vcpu->kvm, vcpu->arch.apic, &irq, NULL);
464 trace_kvm_hv_synic_set_irq(vcpu->vcpu_id, sint, irq.vector, ret);
465 return ret;
466 }
467
kvm_hv_synic_set_irq(struct kvm * kvm,u32 vpidx,u32 sint)468 int kvm_hv_synic_set_irq(struct kvm *kvm, u32 vpidx, u32 sint)
469 {
470 struct kvm_vcpu_hv_synic *synic;
471
472 synic = synic_get(kvm, vpidx);
473 if (!synic)
474 return -EINVAL;
475
476 return synic_set_irq(synic, sint);
477 }
478
kvm_hv_synic_send_eoi(struct kvm_vcpu * vcpu,int vector)479 void kvm_hv_synic_send_eoi(struct kvm_vcpu *vcpu, int vector)
480 {
481 struct kvm_vcpu_hv_synic *synic = to_hv_synic(vcpu);
482 int i;
483
484 trace_kvm_hv_synic_send_eoi(vcpu->vcpu_id, vector);
485
486 for (i = 0; i < ARRAY_SIZE(synic->sint); i++)
487 if (synic_get_sint_vector(synic_read_sint(synic, i)) == vector)
488 kvm_hv_notify_acked_sint(vcpu, i);
489 }
490
kvm_hv_set_sint_gsi(struct kvm * kvm,u32 vpidx,u32 sint,int gsi)491 static int kvm_hv_set_sint_gsi(struct kvm *kvm, u32 vpidx, u32 sint, int gsi)
492 {
493 struct kvm_vcpu_hv_synic *synic;
494
495 synic = synic_get(kvm, vpidx);
496 if (!synic)
497 return -EINVAL;
498
499 if (sint >= ARRAY_SIZE(synic->sint_to_gsi))
500 return -EINVAL;
501
502 atomic_set(&synic->sint_to_gsi[sint], gsi);
503 return 0;
504 }
505
kvm_hv_irq_routing_update(struct kvm * kvm)506 void kvm_hv_irq_routing_update(struct kvm *kvm)
507 {
508 struct kvm_irq_routing_table *irq_rt;
509 struct kvm_kernel_irq_routing_entry *e;
510 u32 gsi;
511
512 irq_rt = srcu_dereference_check(kvm->irq_routing, &kvm->irq_srcu,
513 lockdep_is_held(&kvm->irq_lock));
514
515 for (gsi = 0; gsi < irq_rt->nr_rt_entries; gsi++) {
516 hlist_for_each_entry(e, &irq_rt->map[gsi], link) {
517 if (e->type == KVM_IRQ_ROUTING_HV_SINT)
518 kvm_hv_set_sint_gsi(kvm, e->hv_sint.vcpu,
519 e->hv_sint.sint, gsi);
520 }
521 }
522 }
523
synic_init(struct kvm_vcpu_hv_synic * synic)524 static void synic_init(struct kvm_vcpu_hv_synic *synic)
525 {
526 int i;
527
528 memset(synic, 0, sizeof(*synic));
529 synic->version = HV_SYNIC_VERSION_1;
530 for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
531 atomic64_set(&synic->sint[i], HV_SYNIC_SINT_MASKED);
532 atomic_set(&synic->sint_to_gsi[i], -1);
533 }
534 }
535
get_time_ref_counter(struct kvm * kvm)536 static u64 get_time_ref_counter(struct kvm *kvm)
537 {
538 struct kvm_hv *hv = to_kvm_hv(kvm);
539 struct kvm_vcpu *vcpu;
540 u64 tsc;
541
542 /*
543 * Fall back to get_kvmclock_ns() when TSC page hasn't been set up,
544 * is broken, disabled or being updated.
545 */
546 if (hv->hv_tsc_page_status != HV_TSC_PAGE_SET)
547 return div_u64(get_kvmclock_ns(kvm), 100);
548
549 vcpu = kvm_get_vcpu(kvm, 0);
550 tsc = kvm_read_l1_tsc(vcpu, rdtsc());
551 return mul_u64_u64_shr(tsc, hv->tsc_ref.tsc_scale, 64)
552 + hv->tsc_ref.tsc_offset;
553 }
554
stimer_mark_pending(struct kvm_vcpu_hv_stimer * stimer,bool vcpu_kick)555 static void stimer_mark_pending(struct kvm_vcpu_hv_stimer *stimer,
556 bool vcpu_kick)
557 {
558 struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
559
560 set_bit(stimer->index,
561 to_hv_vcpu(vcpu)->stimer_pending_bitmap);
562 kvm_make_request(KVM_REQ_HV_STIMER, vcpu);
563 if (vcpu_kick)
564 kvm_vcpu_kick(vcpu);
565 }
566
stimer_cleanup(struct kvm_vcpu_hv_stimer * stimer)567 static void stimer_cleanup(struct kvm_vcpu_hv_stimer *stimer)
568 {
569 struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
570
571 trace_kvm_hv_stimer_cleanup(hv_stimer_to_vcpu(stimer)->vcpu_id,
572 stimer->index);
573
574 hrtimer_cancel(&stimer->timer);
575 clear_bit(stimer->index,
576 to_hv_vcpu(vcpu)->stimer_pending_bitmap);
577 stimer->msg_pending = false;
578 stimer->exp_time = 0;
579 }
580
stimer_timer_callback(struct hrtimer * timer)581 static enum hrtimer_restart stimer_timer_callback(struct hrtimer *timer)
582 {
583 struct kvm_vcpu_hv_stimer *stimer;
584
585 stimer = container_of(timer, struct kvm_vcpu_hv_stimer, timer);
586 trace_kvm_hv_stimer_callback(hv_stimer_to_vcpu(stimer)->vcpu_id,
587 stimer->index);
588 stimer_mark_pending(stimer, true);
589
590 return HRTIMER_NORESTART;
591 }
592
593 /*
594 * stimer_start() assumptions:
595 * a) stimer->count is not equal to 0
596 * b) stimer->config has HV_STIMER_ENABLE flag
597 */
stimer_start(struct kvm_vcpu_hv_stimer * stimer)598 static int stimer_start(struct kvm_vcpu_hv_stimer *stimer)
599 {
600 u64 time_now;
601 ktime_t ktime_now;
602
603 time_now = get_time_ref_counter(hv_stimer_to_vcpu(stimer)->kvm);
604 ktime_now = ktime_get();
605
606 if (stimer->config.periodic) {
607 if (stimer->exp_time) {
608 if (time_now >= stimer->exp_time) {
609 u64 remainder;
610
611 div64_u64_rem(time_now - stimer->exp_time,
612 stimer->count, &remainder);
613 stimer->exp_time =
614 time_now + (stimer->count - remainder);
615 }
616 } else
617 stimer->exp_time = time_now + stimer->count;
618
619 trace_kvm_hv_stimer_start_periodic(
620 hv_stimer_to_vcpu(stimer)->vcpu_id,
621 stimer->index,
622 time_now, stimer->exp_time);
623
624 hrtimer_start(&stimer->timer,
625 ktime_add_ns(ktime_now,
626 100 * (stimer->exp_time - time_now)),
627 HRTIMER_MODE_ABS);
628 return 0;
629 }
630 stimer->exp_time = stimer->count;
631 if (time_now >= stimer->count) {
632 /*
633 * Expire timer according to Hypervisor Top-Level Functional
634 * specification v4(15.3.1):
635 * "If a one shot is enabled and the specified count is in
636 * the past, it will expire immediately."
637 */
638 stimer_mark_pending(stimer, false);
639 return 0;
640 }
641
642 trace_kvm_hv_stimer_start_one_shot(hv_stimer_to_vcpu(stimer)->vcpu_id,
643 stimer->index,
644 time_now, stimer->count);
645
646 hrtimer_start(&stimer->timer,
647 ktime_add_ns(ktime_now, 100 * (stimer->count - time_now)),
648 HRTIMER_MODE_ABS);
649 return 0;
650 }
651
stimer_set_config(struct kvm_vcpu_hv_stimer * stimer,u64 config,bool host)652 static int stimer_set_config(struct kvm_vcpu_hv_stimer *stimer, u64 config,
653 bool host)
654 {
655 union hv_stimer_config new_config = {.as_uint64 = config},
656 old_config = {.as_uint64 = stimer->config.as_uint64};
657 struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
658 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
659 struct kvm_vcpu_hv_synic *synic = to_hv_synic(vcpu);
660
661 if (!synic->active && !host)
662 return 1;
663
664 if (unlikely(!host && hv_vcpu->enforce_cpuid && new_config.direct_mode &&
665 !(hv_vcpu->cpuid_cache.features_edx &
666 HV_STIMER_DIRECT_MODE_AVAILABLE)))
667 return 1;
668
669 trace_kvm_hv_stimer_set_config(hv_stimer_to_vcpu(stimer)->vcpu_id,
670 stimer->index, config, host);
671
672 stimer_cleanup(stimer);
673 if (old_config.enable &&
674 !new_config.direct_mode && new_config.sintx == 0)
675 new_config.enable = 0;
676 stimer->config.as_uint64 = new_config.as_uint64;
677
678 if (stimer->config.enable)
679 stimer_mark_pending(stimer, false);
680
681 return 0;
682 }
683
stimer_set_count(struct kvm_vcpu_hv_stimer * stimer,u64 count,bool host)684 static int stimer_set_count(struct kvm_vcpu_hv_stimer *stimer, u64 count,
685 bool host)
686 {
687 struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
688 struct kvm_vcpu_hv_synic *synic = to_hv_synic(vcpu);
689
690 if (!synic->active && !host)
691 return 1;
692
693 trace_kvm_hv_stimer_set_count(hv_stimer_to_vcpu(stimer)->vcpu_id,
694 stimer->index, count, host);
695
696 stimer_cleanup(stimer);
697 stimer->count = count;
698 if (stimer->count == 0)
699 stimer->config.enable = 0;
700 else if (stimer->config.auto_enable)
701 stimer->config.enable = 1;
702
703 if (stimer->config.enable)
704 stimer_mark_pending(stimer, false);
705
706 return 0;
707 }
708
stimer_get_config(struct kvm_vcpu_hv_stimer * stimer,u64 * pconfig)709 static int stimer_get_config(struct kvm_vcpu_hv_stimer *stimer, u64 *pconfig)
710 {
711 *pconfig = stimer->config.as_uint64;
712 return 0;
713 }
714
stimer_get_count(struct kvm_vcpu_hv_stimer * stimer,u64 * pcount)715 static int stimer_get_count(struct kvm_vcpu_hv_stimer *stimer, u64 *pcount)
716 {
717 *pcount = stimer->count;
718 return 0;
719 }
720
synic_deliver_msg(struct kvm_vcpu_hv_synic * synic,u32 sint,struct hv_message * src_msg,bool no_retry)721 static int synic_deliver_msg(struct kvm_vcpu_hv_synic *synic, u32 sint,
722 struct hv_message *src_msg, bool no_retry)
723 {
724 struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic);
725 int msg_off = offsetof(struct hv_message_page, sint_message[sint]);
726 gfn_t msg_page_gfn;
727 struct hv_message_header hv_hdr;
728 int r;
729
730 if (!(synic->msg_page & HV_SYNIC_SIMP_ENABLE))
731 return -ENOENT;
732
733 msg_page_gfn = synic->msg_page >> PAGE_SHIFT;
734
735 /*
736 * Strictly following the spec-mandated ordering would assume setting
737 * .msg_pending before checking .message_type. However, this function
738 * is only called in vcpu context so the entire update is atomic from
739 * guest POV and thus the exact order here doesn't matter.
740 */
741 r = kvm_vcpu_read_guest_page(vcpu, msg_page_gfn, &hv_hdr.message_type,
742 msg_off + offsetof(struct hv_message,
743 header.message_type),
744 sizeof(hv_hdr.message_type));
745 if (r < 0)
746 return r;
747
748 if (hv_hdr.message_type != HVMSG_NONE) {
749 if (no_retry)
750 return 0;
751
752 hv_hdr.message_flags.msg_pending = 1;
753 r = kvm_vcpu_write_guest_page(vcpu, msg_page_gfn,
754 &hv_hdr.message_flags,
755 msg_off +
756 offsetof(struct hv_message,
757 header.message_flags),
758 sizeof(hv_hdr.message_flags));
759 if (r < 0)
760 return r;
761 return -EAGAIN;
762 }
763
764 r = kvm_vcpu_write_guest_page(vcpu, msg_page_gfn, src_msg, msg_off,
765 sizeof(src_msg->header) +
766 src_msg->header.payload_size);
767 if (r < 0)
768 return r;
769
770 r = synic_set_irq(synic, sint);
771 if (r < 0)
772 return r;
773 if (r == 0)
774 return -EFAULT;
775 return 0;
776 }
777
stimer_send_msg(struct kvm_vcpu_hv_stimer * stimer)778 static int stimer_send_msg(struct kvm_vcpu_hv_stimer *stimer)
779 {
780 struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
781 struct hv_message *msg = &stimer->msg;
782 struct hv_timer_message_payload *payload =
783 (struct hv_timer_message_payload *)&msg->u.payload;
784
785 /*
786 * To avoid piling up periodic ticks, don't retry message
787 * delivery for them (within "lazy" lost ticks policy).
788 */
789 bool no_retry = stimer->config.periodic;
790
791 payload->expiration_time = stimer->exp_time;
792 payload->delivery_time = get_time_ref_counter(vcpu->kvm);
793 return synic_deliver_msg(to_hv_synic(vcpu),
794 stimer->config.sintx, msg,
795 no_retry);
796 }
797
stimer_notify_direct(struct kvm_vcpu_hv_stimer * stimer)798 static int stimer_notify_direct(struct kvm_vcpu_hv_stimer *stimer)
799 {
800 struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
801 struct kvm_lapic_irq irq = {
802 .delivery_mode = APIC_DM_FIXED,
803 .vector = stimer->config.apic_vector
804 };
805
806 if (lapic_in_kernel(vcpu))
807 return !kvm_apic_set_irq(vcpu, &irq, NULL);
808 return 0;
809 }
810
stimer_expiration(struct kvm_vcpu_hv_stimer * stimer)811 static void stimer_expiration(struct kvm_vcpu_hv_stimer *stimer)
812 {
813 int r, direct = stimer->config.direct_mode;
814
815 stimer->msg_pending = true;
816 if (!direct)
817 r = stimer_send_msg(stimer);
818 else
819 r = stimer_notify_direct(stimer);
820 trace_kvm_hv_stimer_expiration(hv_stimer_to_vcpu(stimer)->vcpu_id,
821 stimer->index, direct, r);
822 if (!r) {
823 stimer->msg_pending = false;
824 if (!(stimer->config.periodic))
825 stimer->config.enable = 0;
826 }
827 }
828
kvm_hv_process_stimers(struct kvm_vcpu * vcpu)829 void kvm_hv_process_stimers(struct kvm_vcpu *vcpu)
830 {
831 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
832 struct kvm_vcpu_hv_stimer *stimer;
833 u64 time_now, exp_time;
834 int i;
835
836 if (!hv_vcpu)
837 return;
838
839 for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
840 if (test_and_clear_bit(i, hv_vcpu->stimer_pending_bitmap)) {
841 stimer = &hv_vcpu->stimer[i];
842 if (stimer->config.enable) {
843 exp_time = stimer->exp_time;
844
845 if (exp_time) {
846 time_now =
847 get_time_ref_counter(vcpu->kvm);
848 if (time_now >= exp_time)
849 stimer_expiration(stimer);
850 }
851
852 if ((stimer->config.enable) &&
853 stimer->count) {
854 if (!stimer->msg_pending)
855 stimer_start(stimer);
856 } else
857 stimer_cleanup(stimer);
858 }
859 }
860 }
861
kvm_hv_vcpu_uninit(struct kvm_vcpu * vcpu)862 void kvm_hv_vcpu_uninit(struct kvm_vcpu *vcpu)
863 {
864 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
865 int i;
866
867 if (!hv_vcpu)
868 return;
869
870 for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
871 stimer_cleanup(&hv_vcpu->stimer[i]);
872
873 kfree(hv_vcpu);
874 vcpu->arch.hyperv = NULL;
875 }
876
kvm_hv_assist_page_enabled(struct kvm_vcpu * vcpu)877 bool kvm_hv_assist_page_enabled(struct kvm_vcpu *vcpu)
878 {
879 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
880
881 if (!hv_vcpu)
882 return false;
883
884 if (!(hv_vcpu->hv_vapic & HV_X64_MSR_VP_ASSIST_PAGE_ENABLE))
885 return false;
886 return vcpu->arch.pv_eoi.msr_val & KVM_MSR_ENABLED;
887 }
888 EXPORT_SYMBOL_GPL(kvm_hv_assist_page_enabled);
889
kvm_hv_get_assist_page(struct kvm_vcpu * vcpu,struct hv_vp_assist_page * assist_page)890 bool kvm_hv_get_assist_page(struct kvm_vcpu *vcpu,
891 struct hv_vp_assist_page *assist_page)
892 {
893 if (!kvm_hv_assist_page_enabled(vcpu))
894 return false;
895 return !kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data,
896 assist_page, sizeof(*assist_page));
897 }
898 EXPORT_SYMBOL_GPL(kvm_hv_get_assist_page);
899
stimer_prepare_msg(struct kvm_vcpu_hv_stimer * stimer)900 static void stimer_prepare_msg(struct kvm_vcpu_hv_stimer *stimer)
901 {
902 struct hv_message *msg = &stimer->msg;
903 struct hv_timer_message_payload *payload =
904 (struct hv_timer_message_payload *)&msg->u.payload;
905
906 memset(&msg->header, 0, sizeof(msg->header));
907 msg->header.message_type = HVMSG_TIMER_EXPIRED;
908 msg->header.payload_size = sizeof(*payload);
909
910 payload->timer_index = stimer->index;
911 payload->expiration_time = 0;
912 payload->delivery_time = 0;
913 }
914
stimer_init(struct kvm_vcpu_hv_stimer * stimer,int timer_index)915 static void stimer_init(struct kvm_vcpu_hv_stimer *stimer, int timer_index)
916 {
917 memset(stimer, 0, sizeof(*stimer));
918 stimer->index = timer_index;
919 hrtimer_init(&stimer->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
920 stimer->timer.function = stimer_timer_callback;
921 stimer_prepare_msg(stimer);
922 }
923
kvm_hv_vcpu_init(struct kvm_vcpu * vcpu)924 static int kvm_hv_vcpu_init(struct kvm_vcpu *vcpu)
925 {
926 struct kvm_vcpu_hv *hv_vcpu;
927 int i;
928
929 hv_vcpu = kzalloc(sizeof(struct kvm_vcpu_hv), GFP_KERNEL_ACCOUNT);
930 if (!hv_vcpu)
931 return -ENOMEM;
932
933 vcpu->arch.hyperv = hv_vcpu;
934 hv_vcpu->vcpu = vcpu;
935
936 synic_init(&hv_vcpu->synic);
937
938 bitmap_zero(hv_vcpu->stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT);
939 for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
940 stimer_init(&hv_vcpu->stimer[i], i);
941
942 hv_vcpu->vp_index = vcpu->vcpu_idx;
943
944 return 0;
945 }
946
kvm_hv_activate_synic(struct kvm_vcpu * vcpu,bool dont_zero_synic_pages)947 int kvm_hv_activate_synic(struct kvm_vcpu *vcpu, bool dont_zero_synic_pages)
948 {
949 struct kvm_vcpu_hv_synic *synic;
950 int r;
951
952 if (!to_hv_vcpu(vcpu)) {
953 r = kvm_hv_vcpu_init(vcpu);
954 if (r)
955 return r;
956 }
957
958 synic = to_hv_synic(vcpu);
959
960 synic->active = true;
961 synic->dont_zero_synic_pages = dont_zero_synic_pages;
962 synic->control = HV_SYNIC_CONTROL_ENABLE;
963 return 0;
964 }
965
kvm_hv_msr_partition_wide(u32 msr)966 static bool kvm_hv_msr_partition_wide(u32 msr)
967 {
968 bool r = false;
969
970 switch (msr) {
971 case HV_X64_MSR_GUEST_OS_ID:
972 case HV_X64_MSR_HYPERCALL:
973 case HV_X64_MSR_REFERENCE_TSC:
974 case HV_X64_MSR_TIME_REF_COUNT:
975 case HV_X64_MSR_CRASH_CTL:
976 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
977 case HV_X64_MSR_RESET:
978 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
979 case HV_X64_MSR_TSC_EMULATION_CONTROL:
980 case HV_X64_MSR_TSC_EMULATION_STATUS:
981 case HV_X64_MSR_SYNDBG_OPTIONS:
982 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
983 r = true;
984 break;
985 }
986
987 return r;
988 }
989
kvm_hv_msr_get_crash_data(struct kvm * kvm,u32 index,u64 * pdata)990 static int kvm_hv_msr_get_crash_data(struct kvm *kvm, u32 index, u64 *pdata)
991 {
992 struct kvm_hv *hv = to_kvm_hv(kvm);
993 size_t size = ARRAY_SIZE(hv->hv_crash_param);
994
995 if (WARN_ON_ONCE(index >= size))
996 return -EINVAL;
997
998 *pdata = hv->hv_crash_param[array_index_nospec(index, size)];
999 return 0;
1000 }
1001
kvm_hv_msr_get_crash_ctl(struct kvm * kvm,u64 * pdata)1002 static int kvm_hv_msr_get_crash_ctl(struct kvm *kvm, u64 *pdata)
1003 {
1004 struct kvm_hv *hv = to_kvm_hv(kvm);
1005
1006 *pdata = hv->hv_crash_ctl;
1007 return 0;
1008 }
1009
kvm_hv_msr_set_crash_ctl(struct kvm * kvm,u64 data)1010 static int kvm_hv_msr_set_crash_ctl(struct kvm *kvm, u64 data)
1011 {
1012 struct kvm_hv *hv = to_kvm_hv(kvm);
1013
1014 hv->hv_crash_ctl = data & HV_CRASH_CTL_CRASH_NOTIFY;
1015
1016 return 0;
1017 }
1018
kvm_hv_msr_set_crash_data(struct kvm * kvm,u32 index,u64 data)1019 static int kvm_hv_msr_set_crash_data(struct kvm *kvm, u32 index, u64 data)
1020 {
1021 struct kvm_hv *hv = to_kvm_hv(kvm);
1022 size_t size = ARRAY_SIZE(hv->hv_crash_param);
1023
1024 if (WARN_ON_ONCE(index >= size))
1025 return -EINVAL;
1026
1027 hv->hv_crash_param[array_index_nospec(index, size)] = data;
1028 return 0;
1029 }
1030
1031 /*
1032 * The kvmclock and Hyper-V TSC page use similar formulas, and converting
1033 * between them is possible:
1034 *
1035 * kvmclock formula:
1036 * nsec = (ticks - tsc_timestamp) * tsc_to_system_mul * 2^(tsc_shift-32)
1037 * + system_time
1038 *
1039 * Hyper-V formula:
1040 * nsec/100 = ticks * scale / 2^64 + offset
1041 *
1042 * When tsc_timestamp = system_time = 0, offset is zero in the Hyper-V formula.
1043 * By dividing the kvmclock formula by 100 and equating what's left we get:
1044 * ticks * scale / 2^64 = ticks * tsc_to_system_mul * 2^(tsc_shift-32) / 100
1045 * scale / 2^64 = tsc_to_system_mul * 2^(tsc_shift-32) / 100
1046 * scale = tsc_to_system_mul * 2^(32+tsc_shift) / 100
1047 *
1048 * Now expand the kvmclock formula and divide by 100:
1049 * nsec = ticks * tsc_to_system_mul * 2^(tsc_shift-32)
1050 * - tsc_timestamp * tsc_to_system_mul * 2^(tsc_shift-32)
1051 * + system_time
1052 * nsec/100 = ticks * tsc_to_system_mul * 2^(tsc_shift-32) / 100
1053 * - tsc_timestamp * tsc_to_system_mul * 2^(tsc_shift-32) / 100
1054 * + system_time / 100
1055 *
1056 * Replace tsc_to_system_mul * 2^(tsc_shift-32) / 100 by scale / 2^64:
1057 * nsec/100 = ticks * scale / 2^64
1058 * - tsc_timestamp * scale / 2^64
1059 * + system_time / 100
1060 *
1061 * Equate with the Hyper-V formula so that ticks * scale / 2^64 cancels out:
1062 * offset = system_time / 100 - tsc_timestamp * scale / 2^64
1063 *
1064 * These two equivalencies are implemented in this function.
1065 */
compute_tsc_page_parameters(struct pvclock_vcpu_time_info * hv_clock,struct ms_hyperv_tsc_page * tsc_ref)1066 static bool compute_tsc_page_parameters(struct pvclock_vcpu_time_info *hv_clock,
1067 struct ms_hyperv_tsc_page *tsc_ref)
1068 {
1069 u64 max_mul;
1070
1071 if (!(hv_clock->flags & PVCLOCK_TSC_STABLE_BIT))
1072 return false;
1073
1074 /*
1075 * check if scale would overflow, if so we use the time ref counter
1076 * tsc_to_system_mul * 2^(tsc_shift+32) / 100 >= 2^64
1077 * tsc_to_system_mul / 100 >= 2^(32-tsc_shift)
1078 * tsc_to_system_mul >= 100 * 2^(32-tsc_shift)
1079 */
1080 max_mul = 100ull << (32 - hv_clock->tsc_shift);
1081 if (hv_clock->tsc_to_system_mul >= max_mul)
1082 return false;
1083
1084 /*
1085 * Otherwise compute the scale and offset according to the formulas
1086 * derived above.
1087 */
1088 tsc_ref->tsc_scale =
1089 mul_u64_u32_div(1ULL << (32 + hv_clock->tsc_shift),
1090 hv_clock->tsc_to_system_mul,
1091 100);
1092
1093 tsc_ref->tsc_offset = hv_clock->system_time;
1094 do_div(tsc_ref->tsc_offset, 100);
1095 tsc_ref->tsc_offset -=
1096 mul_u64_u64_shr(hv_clock->tsc_timestamp, tsc_ref->tsc_scale, 64);
1097 return true;
1098 }
1099
1100 /*
1101 * Don't touch TSC page values if the guest has opted for TSC emulation after
1102 * migration. KVM doesn't fully support reenlightenment notifications and TSC
1103 * access emulation and Hyper-V is known to expect the values in TSC page to
1104 * stay constant before TSC access emulation is disabled from guest side
1105 * (HV_X64_MSR_TSC_EMULATION_STATUS). KVM userspace is expected to preserve TSC
1106 * frequency and guest visible TSC value across migration (and prevent it when
1107 * TSC scaling is unsupported).
1108 */
tsc_page_update_unsafe(struct kvm_hv * hv)1109 static inline bool tsc_page_update_unsafe(struct kvm_hv *hv)
1110 {
1111 return (hv->hv_tsc_page_status != HV_TSC_PAGE_GUEST_CHANGED) &&
1112 hv->hv_tsc_emulation_control;
1113 }
1114
kvm_hv_setup_tsc_page(struct kvm * kvm,struct pvclock_vcpu_time_info * hv_clock)1115 void kvm_hv_setup_tsc_page(struct kvm *kvm,
1116 struct pvclock_vcpu_time_info *hv_clock)
1117 {
1118 struct kvm_hv *hv = to_kvm_hv(kvm);
1119 u32 tsc_seq;
1120 u64 gfn;
1121
1122 BUILD_BUG_ON(sizeof(tsc_seq) != sizeof(hv->tsc_ref.tsc_sequence));
1123 BUILD_BUG_ON(offsetof(struct ms_hyperv_tsc_page, tsc_sequence) != 0);
1124
1125 if (hv->hv_tsc_page_status == HV_TSC_PAGE_BROKEN ||
1126 hv->hv_tsc_page_status == HV_TSC_PAGE_UNSET)
1127 return;
1128
1129 mutex_lock(&hv->hv_lock);
1130 if (!(hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE))
1131 goto out_unlock;
1132
1133 gfn = hv->hv_tsc_page >> HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT;
1134 /*
1135 * Because the TSC parameters only vary when there is a
1136 * change in the master clock, do not bother with caching.
1137 */
1138 if (unlikely(kvm_read_guest(kvm, gfn_to_gpa(gfn),
1139 &tsc_seq, sizeof(tsc_seq))))
1140 goto out_err;
1141
1142 if (tsc_seq && tsc_page_update_unsafe(hv)) {
1143 if (kvm_read_guest(kvm, gfn_to_gpa(gfn), &hv->tsc_ref, sizeof(hv->tsc_ref)))
1144 goto out_err;
1145
1146 hv->hv_tsc_page_status = HV_TSC_PAGE_SET;
1147 goto out_unlock;
1148 }
1149
1150 /*
1151 * While we're computing and writing the parameters, force the
1152 * guest to use the time reference count MSR.
1153 */
1154 hv->tsc_ref.tsc_sequence = 0;
1155 if (kvm_write_guest(kvm, gfn_to_gpa(gfn),
1156 &hv->tsc_ref, sizeof(hv->tsc_ref.tsc_sequence)))
1157 goto out_err;
1158
1159 if (!compute_tsc_page_parameters(hv_clock, &hv->tsc_ref))
1160 goto out_err;
1161
1162 /* Ensure sequence is zero before writing the rest of the struct. */
1163 smp_wmb();
1164 if (kvm_write_guest(kvm, gfn_to_gpa(gfn), &hv->tsc_ref, sizeof(hv->tsc_ref)))
1165 goto out_err;
1166
1167 /*
1168 * Now switch to the TSC page mechanism by writing the sequence.
1169 */
1170 tsc_seq++;
1171 if (tsc_seq == 0xFFFFFFFF || tsc_seq == 0)
1172 tsc_seq = 1;
1173
1174 /* Write the struct entirely before the non-zero sequence. */
1175 smp_wmb();
1176
1177 hv->tsc_ref.tsc_sequence = tsc_seq;
1178 if (kvm_write_guest(kvm, gfn_to_gpa(gfn),
1179 &hv->tsc_ref, sizeof(hv->tsc_ref.tsc_sequence)))
1180 goto out_err;
1181
1182 hv->hv_tsc_page_status = HV_TSC_PAGE_SET;
1183 goto out_unlock;
1184
1185 out_err:
1186 hv->hv_tsc_page_status = HV_TSC_PAGE_BROKEN;
1187 out_unlock:
1188 mutex_unlock(&hv->hv_lock);
1189 }
1190
kvm_hv_invalidate_tsc_page(struct kvm * kvm)1191 void kvm_hv_invalidate_tsc_page(struct kvm *kvm)
1192 {
1193 struct kvm_hv *hv = to_kvm_hv(kvm);
1194 u64 gfn;
1195 int idx;
1196
1197 if (hv->hv_tsc_page_status == HV_TSC_PAGE_BROKEN ||
1198 hv->hv_tsc_page_status == HV_TSC_PAGE_UNSET ||
1199 tsc_page_update_unsafe(hv))
1200 return;
1201
1202 mutex_lock(&hv->hv_lock);
1203
1204 if (!(hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE))
1205 goto out_unlock;
1206
1207 /* Preserve HV_TSC_PAGE_GUEST_CHANGED/HV_TSC_PAGE_HOST_CHANGED states */
1208 if (hv->hv_tsc_page_status == HV_TSC_PAGE_SET)
1209 hv->hv_tsc_page_status = HV_TSC_PAGE_UPDATING;
1210
1211 gfn = hv->hv_tsc_page >> HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT;
1212
1213 hv->tsc_ref.tsc_sequence = 0;
1214
1215 /*
1216 * Take the srcu lock as memslots will be accessed to check the gfn
1217 * cache generation against the memslots generation.
1218 */
1219 idx = srcu_read_lock(&kvm->srcu);
1220 if (kvm_write_guest(kvm, gfn_to_gpa(gfn),
1221 &hv->tsc_ref, sizeof(hv->tsc_ref.tsc_sequence)))
1222 hv->hv_tsc_page_status = HV_TSC_PAGE_BROKEN;
1223 srcu_read_unlock(&kvm->srcu, idx);
1224
1225 out_unlock:
1226 mutex_unlock(&hv->hv_lock);
1227 }
1228
1229
hv_check_msr_access(struct kvm_vcpu_hv * hv_vcpu,u32 msr)1230 static bool hv_check_msr_access(struct kvm_vcpu_hv *hv_vcpu, u32 msr)
1231 {
1232 if (!hv_vcpu->enforce_cpuid)
1233 return true;
1234
1235 switch (msr) {
1236 case HV_X64_MSR_GUEST_OS_ID:
1237 case HV_X64_MSR_HYPERCALL:
1238 return hv_vcpu->cpuid_cache.features_eax &
1239 HV_MSR_HYPERCALL_AVAILABLE;
1240 case HV_X64_MSR_VP_RUNTIME:
1241 return hv_vcpu->cpuid_cache.features_eax &
1242 HV_MSR_VP_RUNTIME_AVAILABLE;
1243 case HV_X64_MSR_TIME_REF_COUNT:
1244 return hv_vcpu->cpuid_cache.features_eax &
1245 HV_MSR_TIME_REF_COUNT_AVAILABLE;
1246 case HV_X64_MSR_VP_INDEX:
1247 return hv_vcpu->cpuid_cache.features_eax &
1248 HV_MSR_VP_INDEX_AVAILABLE;
1249 case HV_X64_MSR_RESET:
1250 return hv_vcpu->cpuid_cache.features_eax &
1251 HV_MSR_RESET_AVAILABLE;
1252 case HV_X64_MSR_REFERENCE_TSC:
1253 return hv_vcpu->cpuid_cache.features_eax &
1254 HV_MSR_REFERENCE_TSC_AVAILABLE;
1255 case HV_X64_MSR_SCONTROL:
1256 case HV_X64_MSR_SVERSION:
1257 case HV_X64_MSR_SIEFP:
1258 case HV_X64_MSR_SIMP:
1259 case HV_X64_MSR_EOM:
1260 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
1261 return hv_vcpu->cpuid_cache.features_eax &
1262 HV_MSR_SYNIC_AVAILABLE;
1263 case HV_X64_MSR_STIMER0_CONFIG:
1264 case HV_X64_MSR_STIMER1_CONFIG:
1265 case HV_X64_MSR_STIMER2_CONFIG:
1266 case HV_X64_MSR_STIMER3_CONFIG:
1267 case HV_X64_MSR_STIMER0_COUNT:
1268 case HV_X64_MSR_STIMER1_COUNT:
1269 case HV_X64_MSR_STIMER2_COUNT:
1270 case HV_X64_MSR_STIMER3_COUNT:
1271 return hv_vcpu->cpuid_cache.features_eax &
1272 HV_MSR_SYNTIMER_AVAILABLE;
1273 case HV_X64_MSR_EOI:
1274 case HV_X64_MSR_ICR:
1275 case HV_X64_MSR_TPR:
1276 case HV_X64_MSR_VP_ASSIST_PAGE:
1277 return hv_vcpu->cpuid_cache.features_eax &
1278 HV_MSR_APIC_ACCESS_AVAILABLE;
1279 break;
1280 case HV_X64_MSR_TSC_FREQUENCY:
1281 case HV_X64_MSR_APIC_FREQUENCY:
1282 return hv_vcpu->cpuid_cache.features_eax &
1283 HV_ACCESS_FREQUENCY_MSRS;
1284 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
1285 case HV_X64_MSR_TSC_EMULATION_CONTROL:
1286 case HV_X64_MSR_TSC_EMULATION_STATUS:
1287 return hv_vcpu->cpuid_cache.features_eax &
1288 HV_ACCESS_REENLIGHTENMENT;
1289 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
1290 case HV_X64_MSR_CRASH_CTL:
1291 return hv_vcpu->cpuid_cache.features_edx &
1292 HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE;
1293 case HV_X64_MSR_SYNDBG_OPTIONS:
1294 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
1295 return hv_vcpu->cpuid_cache.features_edx &
1296 HV_FEATURE_DEBUG_MSRS_AVAILABLE;
1297 default:
1298 break;
1299 }
1300
1301 return false;
1302 }
1303
kvm_hv_set_msr_pw(struct kvm_vcpu * vcpu,u32 msr,u64 data,bool host)1304 static int kvm_hv_set_msr_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data,
1305 bool host)
1306 {
1307 struct kvm *kvm = vcpu->kvm;
1308 struct kvm_hv *hv = to_kvm_hv(kvm);
1309
1310 if (unlikely(!host && !hv_check_msr_access(to_hv_vcpu(vcpu), msr)))
1311 return 1;
1312
1313 switch (msr) {
1314 case HV_X64_MSR_GUEST_OS_ID:
1315 hv->hv_guest_os_id = data;
1316 /* setting guest os id to zero disables hypercall page */
1317 if (!hv->hv_guest_os_id)
1318 hv->hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1319 break;
1320 case HV_X64_MSR_HYPERCALL: {
1321 u8 instructions[9];
1322 int i = 0;
1323 u64 addr;
1324
1325 /* if guest os id is not set hypercall should remain disabled */
1326 if (!hv->hv_guest_os_id)
1327 break;
1328 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1329 hv->hv_hypercall = data;
1330 break;
1331 }
1332
1333 /*
1334 * If Xen and Hyper-V hypercalls are both enabled, disambiguate
1335 * the same way Xen itself does, by setting the bit 31 of EAX
1336 * which is RsvdZ in the 32-bit Hyper-V hypercall ABI and just
1337 * going to be clobbered on 64-bit.
1338 */
1339 if (kvm_xen_hypercall_enabled(kvm)) {
1340 /* orl $0x80000000, %eax */
1341 instructions[i++] = 0x0d;
1342 instructions[i++] = 0x00;
1343 instructions[i++] = 0x00;
1344 instructions[i++] = 0x00;
1345 instructions[i++] = 0x80;
1346 }
1347
1348 /* vmcall/vmmcall */
1349 static_call(kvm_x86_patch_hypercall)(vcpu, instructions + i);
1350 i += 3;
1351
1352 /* ret */
1353 ((unsigned char *)instructions)[i++] = 0xc3;
1354
1355 addr = data & HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_MASK;
1356 if (kvm_vcpu_write_guest(vcpu, addr, instructions, i))
1357 return 1;
1358 hv->hv_hypercall = data;
1359 break;
1360 }
1361 case HV_X64_MSR_REFERENCE_TSC:
1362 hv->hv_tsc_page = data;
1363 if (hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE) {
1364 if (!host)
1365 hv->hv_tsc_page_status = HV_TSC_PAGE_GUEST_CHANGED;
1366 else
1367 hv->hv_tsc_page_status = HV_TSC_PAGE_HOST_CHANGED;
1368 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1369 } else {
1370 hv->hv_tsc_page_status = HV_TSC_PAGE_UNSET;
1371 }
1372 break;
1373 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
1374 return kvm_hv_msr_set_crash_data(kvm,
1375 msr - HV_X64_MSR_CRASH_P0,
1376 data);
1377 case HV_X64_MSR_CRASH_CTL:
1378 if (host)
1379 return kvm_hv_msr_set_crash_ctl(kvm, data);
1380
1381 if (data & HV_CRASH_CTL_CRASH_NOTIFY) {
1382 vcpu_debug(vcpu, "hv crash (0x%llx 0x%llx 0x%llx 0x%llx 0x%llx)\n",
1383 hv->hv_crash_param[0],
1384 hv->hv_crash_param[1],
1385 hv->hv_crash_param[2],
1386 hv->hv_crash_param[3],
1387 hv->hv_crash_param[4]);
1388
1389 /* Send notification about crash to user space */
1390 kvm_make_request(KVM_REQ_HV_CRASH, vcpu);
1391 }
1392 break;
1393 case HV_X64_MSR_RESET:
1394 if (data == 1) {
1395 vcpu_debug(vcpu, "hyper-v reset requested\n");
1396 kvm_make_request(KVM_REQ_HV_RESET, vcpu);
1397 }
1398 break;
1399 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
1400 hv->hv_reenlightenment_control = data;
1401 break;
1402 case HV_X64_MSR_TSC_EMULATION_CONTROL:
1403 hv->hv_tsc_emulation_control = data;
1404 break;
1405 case HV_X64_MSR_TSC_EMULATION_STATUS:
1406 if (data && !host)
1407 return 1;
1408
1409 hv->hv_tsc_emulation_status = data;
1410 break;
1411 case HV_X64_MSR_TIME_REF_COUNT:
1412 /* read-only, but still ignore it if host-initiated */
1413 if (!host)
1414 return 1;
1415 break;
1416 case HV_X64_MSR_SYNDBG_OPTIONS:
1417 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
1418 return syndbg_set_msr(vcpu, msr, data, host);
1419 default:
1420 vcpu_unimpl(vcpu, "Hyper-V unhandled wrmsr: 0x%x data 0x%llx\n",
1421 msr, data);
1422 return 1;
1423 }
1424 return 0;
1425 }
1426
1427 /* Calculate cpu time spent by current task in 100ns units */
current_task_runtime_100ns(void)1428 static u64 current_task_runtime_100ns(void)
1429 {
1430 u64 utime, stime;
1431
1432 task_cputime_adjusted(current, &utime, &stime);
1433
1434 return div_u64(utime + stime, 100);
1435 }
1436
kvm_hv_set_msr(struct kvm_vcpu * vcpu,u32 msr,u64 data,bool host)1437 static int kvm_hv_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host)
1438 {
1439 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
1440
1441 if (unlikely(!host && !hv_check_msr_access(hv_vcpu, msr)))
1442 return 1;
1443
1444 switch (msr) {
1445 case HV_X64_MSR_VP_INDEX: {
1446 struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);
1447 u32 new_vp_index = (u32)data;
1448
1449 if (!host || new_vp_index >= KVM_MAX_VCPUS)
1450 return 1;
1451
1452 if (new_vp_index == hv_vcpu->vp_index)
1453 return 0;
1454
1455 /*
1456 * The VP index is initialized to vcpu_index by
1457 * kvm_hv_vcpu_postcreate so they initially match. Now the
1458 * VP index is changing, adjust num_mismatched_vp_indexes if
1459 * it now matches or no longer matches vcpu_idx.
1460 */
1461 if (hv_vcpu->vp_index == vcpu->vcpu_idx)
1462 atomic_inc(&hv->num_mismatched_vp_indexes);
1463 else if (new_vp_index == vcpu->vcpu_idx)
1464 atomic_dec(&hv->num_mismatched_vp_indexes);
1465
1466 hv_vcpu->vp_index = new_vp_index;
1467 break;
1468 }
1469 case HV_X64_MSR_VP_ASSIST_PAGE: {
1470 u64 gfn;
1471 unsigned long addr;
1472
1473 if (!(data & HV_X64_MSR_VP_ASSIST_PAGE_ENABLE)) {
1474 hv_vcpu->hv_vapic = data;
1475 if (kvm_lapic_enable_pv_eoi(vcpu, 0, 0))
1476 return 1;
1477 break;
1478 }
1479 gfn = data >> HV_X64_MSR_VP_ASSIST_PAGE_ADDRESS_SHIFT;
1480 addr = kvm_vcpu_gfn_to_hva(vcpu, gfn);
1481 if (kvm_is_error_hva(addr))
1482 return 1;
1483
1484 /*
1485 * Clear apic_assist portion of struct hv_vp_assist_page
1486 * only, there can be valuable data in the rest which needs
1487 * to be preserved e.g. on migration.
1488 */
1489 if (__put_user(0, (u32 __user *)addr))
1490 return 1;
1491 hv_vcpu->hv_vapic = data;
1492 kvm_vcpu_mark_page_dirty(vcpu, gfn);
1493 if (kvm_lapic_enable_pv_eoi(vcpu,
1494 gfn_to_gpa(gfn) | KVM_MSR_ENABLED,
1495 sizeof(struct hv_vp_assist_page)))
1496 return 1;
1497 break;
1498 }
1499 case HV_X64_MSR_EOI:
1500 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1501 case HV_X64_MSR_ICR:
1502 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1503 case HV_X64_MSR_TPR:
1504 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1505 case HV_X64_MSR_VP_RUNTIME:
1506 if (!host)
1507 return 1;
1508 hv_vcpu->runtime_offset = data - current_task_runtime_100ns();
1509 break;
1510 case HV_X64_MSR_SCONTROL:
1511 case HV_X64_MSR_SVERSION:
1512 case HV_X64_MSR_SIEFP:
1513 case HV_X64_MSR_SIMP:
1514 case HV_X64_MSR_EOM:
1515 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
1516 return synic_set_msr(to_hv_synic(vcpu), msr, data, host);
1517 case HV_X64_MSR_STIMER0_CONFIG:
1518 case HV_X64_MSR_STIMER1_CONFIG:
1519 case HV_X64_MSR_STIMER2_CONFIG:
1520 case HV_X64_MSR_STIMER3_CONFIG: {
1521 int timer_index = (msr - HV_X64_MSR_STIMER0_CONFIG)/2;
1522
1523 return stimer_set_config(to_hv_stimer(vcpu, timer_index),
1524 data, host);
1525 }
1526 case HV_X64_MSR_STIMER0_COUNT:
1527 case HV_X64_MSR_STIMER1_COUNT:
1528 case HV_X64_MSR_STIMER2_COUNT:
1529 case HV_X64_MSR_STIMER3_COUNT: {
1530 int timer_index = (msr - HV_X64_MSR_STIMER0_COUNT)/2;
1531
1532 return stimer_set_count(to_hv_stimer(vcpu, timer_index),
1533 data, host);
1534 }
1535 case HV_X64_MSR_TSC_FREQUENCY:
1536 case HV_X64_MSR_APIC_FREQUENCY:
1537 /* read-only, but still ignore it if host-initiated */
1538 if (!host)
1539 return 1;
1540 break;
1541 default:
1542 vcpu_unimpl(vcpu, "Hyper-V unhandled wrmsr: 0x%x data 0x%llx\n",
1543 msr, data);
1544 return 1;
1545 }
1546
1547 return 0;
1548 }
1549
kvm_hv_get_msr_pw(struct kvm_vcpu * vcpu,u32 msr,u64 * pdata,bool host)1550 static int kvm_hv_get_msr_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata,
1551 bool host)
1552 {
1553 u64 data = 0;
1554 struct kvm *kvm = vcpu->kvm;
1555 struct kvm_hv *hv = to_kvm_hv(kvm);
1556
1557 if (unlikely(!host && !hv_check_msr_access(to_hv_vcpu(vcpu), msr)))
1558 return 1;
1559
1560 switch (msr) {
1561 case HV_X64_MSR_GUEST_OS_ID:
1562 data = hv->hv_guest_os_id;
1563 break;
1564 case HV_X64_MSR_HYPERCALL:
1565 data = hv->hv_hypercall;
1566 break;
1567 case HV_X64_MSR_TIME_REF_COUNT:
1568 data = get_time_ref_counter(kvm);
1569 break;
1570 case HV_X64_MSR_REFERENCE_TSC:
1571 data = hv->hv_tsc_page;
1572 break;
1573 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
1574 return kvm_hv_msr_get_crash_data(kvm,
1575 msr - HV_X64_MSR_CRASH_P0,
1576 pdata);
1577 case HV_X64_MSR_CRASH_CTL:
1578 return kvm_hv_msr_get_crash_ctl(kvm, pdata);
1579 case HV_X64_MSR_RESET:
1580 data = 0;
1581 break;
1582 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
1583 data = hv->hv_reenlightenment_control;
1584 break;
1585 case HV_X64_MSR_TSC_EMULATION_CONTROL:
1586 data = hv->hv_tsc_emulation_control;
1587 break;
1588 case HV_X64_MSR_TSC_EMULATION_STATUS:
1589 data = hv->hv_tsc_emulation_status;
1590 break;
1591 case HV_X64_MSR_SYNDBG_OPTIONS:
1592 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
1593 return syndbg_get_msr(vcpu, msr, pdata, host);
1594 default:
1595 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1596 return 1;
1597 }
1598
1599 *pdata = data;
1600 return 0;
1601 }
1602
kvm_hv_get_msr(struct kvm_vcpu * vcpu,u32 msr,u64 * pdata,bool host)1603 static int kvm_hv_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata,
1604 bool host)
1605 {
1606 u64 data = 0;
1607 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
1608
1609 if (unlikely(!host && !hv_check_msr_access(hv_vcpu, msr)))
1610 return 1;
1611
1612 switch (msr) {
1613 case HV_X64_MSR_VP_INDEX:
1614 data = hv_vcpu->vp_index;
1615 break;
1616 case HV_X64_MSR_EOI:
1617 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
1618 case HV_X64_MSR_ICR:
1619 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
1620 case HV_X64_MSR_TPR:
1621 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1622 case HV_X64_MSR_VP_ASSIST_PAGE:
1623 data = hv_vcpu->hv_vapic;
1624 break;
1625 case HV_X64_MSR_VP_RUNTIME:
1626 data = current_task_runtime_100ns() + hv_vcpu->runtime_offset;
1627 break;
1628 case HV_X64_MSR_SCONTROL:
1629 case HV_X64_MSR_SVERSION:
1630 case HV_X64_MSR_SIEFP:
1631 case HV_X64_MSR_SIMP:
1632 case HV_X64_MSR_EOM:
1633 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
1634 return synic_get_msr(to_hv_synic(vcpu), msr, pdata, host);
1635 case HV_X64_MSR_STIMER0_CONFIG:
1636 case HV_X64_MSR_STIMER1_CONFIG:
1637 case HV_X64_MSR_STIMER2_CONFIG:
1638 case HV_X64_MSR_STIMER3_CONFIG: {
1639 int timer_index = (msr - HV_X64_MSR_STIMER0_CONFIG)/2;
1640
1641 return stimer_get_config(to_hv_stimer(vcpu, timer_index),
1642 pdata);
1643 }
1644 case HV_X64_MSR_STIMER0_COUNT:
1645 case HV_X64_MSR_STIMER1_COUNT:
1646 case HV_X64_MSR_STIMER2_COUNT:
1647 case HV_X64_MSR_STIMER3_COUNT: {
1648 int timer_index = (msr - HV_X64_MSR_STIMER0_COUNT)/2;
1649
1650 return stimer_get_count(to_hv_stimer(vcpu, timer_index),
1651 pdata);
1652 }
1653 case HV_X64_MSR_TSC_FREQUENCY:
1654 data = (u64)vcpu->arch.virtual_tsc_khz * 1000;
1655 break;
1656 case HV_X64_MSR_APIC_FREQUENCY:
1657 data = APIC_BUS_FREQUENCY;
1658 break;
1659 default:
1660 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1661 return 1;
1662 }
1663 *pdata = data;
1664 return 0;
1665 }
1666
kvm_hv_set_msr_common(struct kvm_vcpu * vcpu,u32 msr,u64 data,bool host)1667 int kvm_hv_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host)
1668 {
1669 struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);
1670
1671 if (!host && !vcpu->arch.hyperv_enabled)
1672 return 1;
1673
1674 if (!to_hv_vcpu(vcpu)) {
1675 if (kvm_hv_vcpu_init(vcpu))
1676 return 1;
1677 }
1678
1679 if (kvm_hv_msr_partition_wide(msr)) {
1680 int r;
1681
1682 mutex_lock(&hv->hv_lock);
1683 r = kvm_hv_set_msr_pw(vcpu, msr, data, host);
1684 mutex_unlock(&hv->hv_lock);
1685 return r;
1686 } else
1687 return kvm_hv_set_msr(vcpu, msr, data, host);
1688 }
1689
kvm_hv_get_msr_common(struct kvm_vcpu * vcpu,u32 msr,u64 * pdata,bool host)1690 int kvm_hv_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
1691 {
1692 struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);
1693
1694 if (!host && !vcpu->arch.hyperv_enabled)
1695 return 1;
1696
1697 if (!to_hv_vcpu(vcpu)) {
1698 if (kvm_hv_vcpu_init(vcpu))
1699 return 1;
1700 }
1701
1702 if (kvm_hv_msr_partition_wide(msr)) {
1703 int r;
1704
1705 mutex_lock(&hv->hv_lock);
1706 r = kvm_hv_get_msr_pw(vcpu, msr, pdata, host);
1707 mutex_unlock(&hv->hv_lock);
1708 return r;
1709 } else
1710 return kvm_hv_get_msr(vcpu, msr, pdata, host);
1711 }
1712
sparse_set_to_vcpu_mask(struct kvm * kvm,u64 * sparse_banks,u64 valid_bank_mask,u64 * vp_bitmap,unsigned long * vcpu_bitmap)1713 static __always_inline unsigned long *sparse_set_to_vcpu_mask(
1714 struct kvm *kvm, u64 *sparse_banks, u64 valid_bank_mask,
1715 u64 *vp_bitmap, unsigned long *vcpu_bitmap)
1716 {
1717 struct kvm_hv *hv = to_kvm_hv(kvm);
1718 struct kvm_vcpu *vcpu;
1719 int i, bank, sbank = 0;
1720
1721 memset(vp_bitmap, 0,
1722 KVM_HV_MAX_SPARSE_VCPU_SET_BITS * sizeof(*vp_bitmap));
1723 for_each_set_bit(bank, (unsigned long *)&valid_bank_mask,
1724 KVM_HV_MAX_SPARSE_VCPU_SET_BITS)
1725 vp_bitmap[bank] = sparse_banks[sbank++];
1726
1727 if (likely(!atomic_read(&hv->num_mismatched_vp_indexes))) {
1728 /* for all vcpus vp_index == vcpu_idx */
1729 return (unsigned long *)vp_bitmap;
1730 }
1731
1732 bitmap_zero(vcpu_bitmap, KVM_MAX_VCPUS);
1733 kvm_for_each_vcpu(i, vcpu, kvm) {
1734 if (test_bit(kvm_hv_get_vpindex(vcpu), (unsigned long *)vp_bitmap))
1735 __set_bit(i, vcpu_bitmap);
1736 }
1737 return vcpu_bitmap;
1738 }
1739
1740 struct kvm_hv_hcall {
1741 u64 param;
1742 u64 ingpa;
1743 u64 outgpa;
1744 u16 code;
1745 u16 rep_cnt;
1746 u16 rep_idx;
1747 bool fast;
1748 bool rep;
1749 sse128_t xmm[HV_HYPERCALL_MAX_XMM_REGISTERS];
1750 };
1751
kvm_hv_flush_tlb(struct kvm_vcpu * vcpu,struct kvm_hv_hcall * hc,bool ex)1752 static u64 kvm_hv_flush_tlb(struct kvm_vcpu *vcpu, struct kvm_hv_hcall *hc, bool ex)
1753 {
1754 int i;
1755 gpa_t gpa;
1756 struct kvm *kvm = vcpu->kvm;
1757 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
1758 struct hv_tlb_flush_ex flush_ex;
1759 struct hv_tlb_flush flush;
1760 u64 vp_bitmap[KVM_HV_MAX_SPARSE_VCPU_SET_BITS];
1761 DECLARE_BITMAP(vcpu_bitmap, KVM_MAX_VCPUS);
1762 unsigned long *vcpu_mask;
1763 u64 valid_bank_mask;
1764 u64 sparse_banks[64];
1765 int sparse_banks_len;
1766 bool all_cpus;
1767
1768 if (!ex) {
1769 if (hc->fast) {
1770 flush.address_space = hc->ingpa;
1771 flush.flags = hc->outgpa;
1772 flush.processor_mask = sse128_lo(hc->xmm[0]);
1773 } else {
1774 if (unlikely(kvm_read_guest(kvm, hc->ingpa,
1775 &flush, sizeof(flush))))
1776 return HV_STATUS_INVALID_HYPERCALL_INPUT;
1777 }
1778
1779 trace_kvm_hv_flush_tlb(flush.processor_mask,
1780 flush.address_space, flush.flags);
1781
1782 valid_bank_mask = BIT_ULL(0);
1783 sparse_banks[0] = flush.processor_mask;
1784
1785 /*
1786 * Work around possible WS2012 bug: it sends hypercalls
1787 * with processor_mask = 0x0 and HV_FLUSH_ALL_PROCESSORS clear,
1788 * while also expecting us to flush something and crashing if
1789 * we don't. Let's treat processor_mask == 0 same as
1790 * HV_FLUSH_ALL_PROCESSORS.
1791 */
1792 all_cpus = (flush.flags & HV_FLUSH_ALL_PROCESSORS) ||
1793 flush.processor_mask == 0;
1794 } else {
1795 if (hc->fast) {
1796 flush_ex.address_space = hc->ingpa;
1797 flush_ex.flags = hc->outgpa;
1798 memcpy(&flush_ex.hv_vp_set,
1799 &hc->xmm[0], sizeof(hc->xmm[0]));
1800 } else {
1801 if (unlikely(kvm_read_guest(kvm, hc->ingpa, &flush_ex,
1802 sizeof(flush_ex))))
1803 return HV_STATUS_INVALID_HYPERCALL_INPUT;
1804 }
1805
1806 trace_kvm_hv_flush_tlb_ex(flush_ex.hv_vp_set.valid_bank_mask,
1807 flush_ex.hv_vp_set.format,
1808 flush_ex.address_space,
1809 flush_ex.flags);
1810
1811 valid_bank_mask = flush_ex.hv_vp_set.valid_bank_mask;
1812 all_cpus = flush_ex.hv_vp_set.format !=
1813 HV_GENERIC_SET_SPARSE_4K;
1814
1815 sparse_banks_len = bitmap_weight((unsigned long *)&valid_bank_mask, 64);
1816
1817 if (!sparse_banks_len && !all_cpus)
1818 goto ret_success;
1819
1820 if (!all_cpus) {
1821 if (hc->fast) {
1822 if (sparse_banks_len > HV_HYPERCALL_MAX_XMM_REGISTERS - 1)
1823 return HV_STATUS_INVALID_HYPERCALL_INPUT;
1824 for (i = 0; i < sparse_banks_len; i += 2) {
1825 sparse_banks[i] = sse128_lo(hc->xmm[i / 2 + 1]);
1826 sparse_banks[i + 1] = sse128_hi(hc->xmm[i / 2 + 1]);
1827 }
1828 } else {
1829 gpa = hc->ingpa + offsetof(struct hv_tlb_flush_ex,
1830 hv_vp_set.bank_contents);
1831 if (unlikely(kvm_read_guest(kvm, gpa, sparse_banks,
1832 sparse_banks_len *
1833 sizeof(sparse_banks[0]))))
1834 return HV_STATUS_INVALID_HYPERCALL_INPUT;
1835 }
1836 }
1837 }
1838
1839 cpumask_clear(&hv_vcpu->tlb_flush);
1840
1841 vcpu_mask = all_cpus ? NULL :
1842 sparse_set_to_vcpu_mask(kvm, sparse_banks, valid_bank_mask,
1843 vp_bitmap, vcpu_bitmap);
1844
1845 /*
1846 * vcpu->arch.cr3 may not be up-to-date for running vCPUs so we can't
1847 * analyze it here, flush TLB regardless of the specified address space.
1848 */
1849 kvm_make_vcpus_request_mask(kvm, KVM_REQ_TLB_FLUSH_GUEST,
1850 NULL, vcpu_mask, &hv_vcpu->tlb_flush);
1851
1852 ret_success:
1853 /* We always do full TLB flush, set 'Reps completed' = 'Rep Count' */
1854 return (u64)HV_STATUS_SUCCESS |
1855 ((u64)hc->rep_cnt << HV_HYPERCALL_REP_COMP_OFFSET);
1856 }
1857
kvm_send_ipi_to_many(struct kvm * kvm,u32 vector,unsigned long * vcpu_bitmap)1858 static void kvm_send_ipi_to_many(struct kvm *kvm, u32 vector,
1859 unsigned long *vcpu_bitmap)
1860 {
1861 struct kvm_lapic_irq irq = {
1862 .delivery_mode = APIC_DM_FIXED,
1863 .vector = vector
1864 };
1865 struct kvm_vcpu *vcpu;
1866 int i;
1867
1868 kvm_for_each_vcpu(i, vcpu, kvm) {
1869 if (vcpu_bitmap && !test_bit(i, vcpu_bitmap))
1870 continue;
1871
1872 /* We fail only when APIC is disabled */
1873 kvm_apic_set_irq(vcpu, &irq, NULL);
1874 }
1875 }
1876
kvm_hv_send_ipi(struct kvm_vcpu * vcpu,struct kvm_hv_hcall * hc,bool ex)1877 static u64 kvm_hv_send_ipi(struct kvm_vcpu *vcpu, struct kvm_hv_hcall *hc, bool ex)
1878 {
1879 struct kvm *kvm = vcpu->kvm;
1880 struct hv_send_ipi_ex send_ipi_ex;
1881 struct hv_send_ipi send_ipi;
1882 u64 vp_bitmap[KVM_HV_MAX_SPARSE_VCPU_SET_BITS];
1883 DECLARE_BITMAP(vcpu_bitmap, KVM_MAX_VCPUS);
1884 unsigned long *vcpu_mask;
1885 unsigned long valid_bank_mask;
1886 u64 sparse_banks[64];
1887 int sparse_banks_len;
1888 u32 vector;
1889 bool all_cpus;
1890
1891 if (!ex) {
1892 if (!hc->fast) {
1893 if (unlikely(kvm_read_guest(kvm, hc->ingpa, &send_ipi,
1894 sizeof(send_ipi))))
1895 return HV_STATUS_INVALID_HYPERCALL_INPUT;
1896 sparse_banks[0] = send_ipi.cpu_mask;
1897 vector = send_ipi.vector;
1898 } else {
1899 /* 'reserved' part of hv_send_ipi should be 0 */
1900 if (unlikely(hc->ingpa >> 32 != 0))
1901 return HV_STATUS_INVALID_HYPERCALL_INPUT;
1902 sparse_banks[0] = hc->outgpa;
1903 vector = (u32)hc->ingpa;
1904 }
1905 all_cpus = false;
1906 valid_bank_mask = BIT_ULL(0);
1907
1908 trace_kvm_hv_send_ipi(vector, sparse_banks[0]);
1909 } else {
1910 if (unlikely(kvm_read_guest(kvm, hc->ingpa, &send_ipi_ex,
1911 sizeof(send_ipi_ex))))
1912 return HV_STATUS_INVALID_HYPERCALL_INPUT;
1913
1914 trace_kvm_hv_send_ipi_ex(send_ipi_ex.vector,
1915 send_ipi_ex.vp_set.format,
1916 send_ipi_ex.vp_set.valid_bank_mask);
1917
1918 vector = send_ipi_ex.vector;
1919 valid_bank_mask = send_ipi_ex.vp_set.valid_bank_mask;
1920 sparse_banks_len = bitmap_weight(&valid_bank_mask, 64) *
1921 sizeof(sparse_banks[0]);
1922
1923 all_cpus = send_ipi_ex.vp_set.format == HV_GENERIC_SET_ALL;
1924
1925 if (!sparse_banks_len)
1926 goto ret_success;
1927
1928 if (!all_cpus &&
1929 kvm_read_guest(kvm,
1930 hc->ingpa + offsetof(struct hv_send_ipi_ex,
1931 vp_set.bank_contents),
1932 sparse_banks,
1933 sparse_banks_len))
1934 return HV_STATUS_INVALID_HYPERCALL_INPUT;
1935 }
1936
1937 if ((vector < HV_IPI_LOW_VECTOR) || (vector > HV_IPI_HIGH_VECTOR))
1938 return HV_STATUS_INVALID_HYPERCALL_INPUT;
1939
1940 vcpu_mask = all_cpus ? NULL :
1941 sparse_set_to_vcpu_mask(kvm, sparse_banks, valid_bank_mask,
1942 vp_bitmap, vcpu_bitmap);
1943
1944 kvm_send_ipi_to_many(kvm, vector, vcpu_mask);
1945
1946 ret_success:
1947 return HV_STATUS_SUCCESS;
1948 }
1949
kvm_hv_set_cpuid(struct kvm_vcpu * vcpu)1950 void kvm_hv_set_cpuid(struct kvm_vcpu *vcpu)
1951 {
1952 struct kvm_cpuid_entry2 *entry;
1953 struct kvm_vcpu_hv *hv_vcpu;
1954
1955 entry = kvm_find_cpuid_entry(vcpu, HYPERV_CPUID_INTERFACE, 0);
1956 if (entry && entry->eax == HYPERV_CPUID_SIGNATURE_EAX) {
1957 vcpu->arch.hyperv_enabled = true;
1958 } else {
1959 vcpu->arch.hyperv_enabled = false;
1960 return;
1961 }
1962
1963 if (!to_hv_vcpu(vcpu) && kvm_hv_vcpu_init(vcpu))
1964 return;
1965
1966 hv_vcpu = to_hv_vcpu(vcpu);
1967
1968 entry = kvm_find_cpuid_entry(vcpu, HYPERV_CPUID_FEATURES, 0);
1969 if (entry) {
1970 hv_vcpu->cpuid_cache.features_eax = entry->eax;
1971 hv_vcpu->cpuid_cache.features_ebx = entry->ebx;
1972 hv_vcpu->cpuid_cache.features_edx = entry->edx;
1973 } else {
1974 hv_vcpu->cpuid_cache.features_eax = 0;
1975 hv_vcpu->cpuid_cache.features_ebx = 0;
1976 hv_vcpu->cpuid_cache.features_edx = 0;
1977 }
1978
1979 entry = kvm_find_cpuid_entry(vcpu, HYPERV_CPUID_ENLIGHTMENT_INFO, 0);
1980 if (entry) {
1981 hv_vcpu->cpuid_cache.enlightenments_eax = entry->eax;
1982 hv_vcpu->cpuid_cache.enlightenments_ebx = entry->ebx;
1983 } else {
1984 hv_vcpu->cpuid_cache.enlightenments_eax = 0;
1985 hv_vcpu->cpuid_cache.enlightenments_ebx = 0;
1986 }
1987
1988 entry = kvm_find_cpuid_entry(vcpu, HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES, 0);
1989 if (entry)
1990 hv_vcpu->cpuid_cache.syndbg_cap_eax = entry->eax;
1991 else
1992 hv_vcpu->cpuid_cache.syndbg_cap_eax = 0;
1993 }
1994
kvm_hv_set_enforce_cpuid(struct kvm_vcpu * vcpu,bool enforce)1995 int kvm_hv_set_enforce_cpuid(struct kvm_vcpu *vcpu, bool enforce)
1996 {
1997 struct kvm_vcpu_hv *hv_vcpu;
1998 int ret = 0;
1999
2000 if (!to_hv_vcpu(vcpu)) {
2001 if (enforce) {
2002 ret = kvm_hv_vcpu_init(vcpu);
2003 if (ret)
2004 return ret;
2005 } else {
2006 return 0;
2007 }
2008 }
2009
2010 hv_vcpu = to_hv_vcpu(vcpu);
2011 hv_vcpu->enforce_cpuid = enforce;
2012
2013 return ret;
2014 }
2015
kvm_hv_hypercall_enabled(struct kvm_vcpu * vcpu)2016 bool kvm_hv_hypercall_enabled(struct kvm_vcpu *vcpu)
2017 {
2018 return vcpu->arch.hyperv_enabled && to_kvm_hv(vcpu->kvm)->hv_guest_os_id;
2019 }
2020
kvm_hv_hypercall_set_result(struct kvm_vcpu * vcpu,u64 result)2021 static void kvm_hv_hypercall_set_result(struct kvm_vcpu *vcpu, u64 result)
2022 {
2023 bool longmode;
2024
2025 longmode = is_64_bit_mode(vcpu);
2026 if (longmode)
2027 kvm_rax_write(vcpu, result);
2028 else {
2029 kvm_rdx_write(vcpu, result >> 32);
2030 kvm_rax_write(vcpu, result & 0xffffffff);
2031 }
2032 }
2033
kvm_hv_hypercall_complete(struct kvm_vcpu * vcpu,u64 result)2034 static int kvm_hv_hypercall_complete(struct kvm_vcpu *vcpu, u64 result)
2035 {
2036 trace_kvm_hv_hypercall_done(result);
2037 kvm_hv_hypercall_set_result(vcpu, result);
2038 ++vcpu->stat.hypercalls;
2039 return kvm_skip_emulated_instruction(vcpu);
2040 }
2041
kvm_hv_hypercall_complete_userspace(struct kvm_vcpu * vcpu)2042 static int kvm_hv_hypercall_complete_userspace(struct kvm_vcpu *vcpu)
2043 {
2044 return kvm_hv_hypercall_complete(vcpu, vcpu->run->hyperv.u.hcall.result);
2045 }
2046
kvm_hvcall_signal_event(struct kvm_vcpu * vcpu,struct kvm_hv_hcall * hc)2047 static u16 kvm_hvcall_signal_event(struct kvm_vcpu *vcpu, struct kvm_hv_hcall *hc)
2048 {
2049 struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);
2050 struct eventfd_ctx *eventfd;
2051
2052 if (unlikely(!hc->fast)) {
2053 int ret;
2054 gpa_t gpa = hc->ingpa;
2055
2056 if ((gpa & (__alignof__(hc->ingpa) - 1)) ||
2057 offset_in_page(gpa) + sizeof(hc->ingpa) > PAGE_SIZE)
2058 return HV_STATUS_INVALID_ALIGNMENT;
2059
2060 ret = kvm_vcpu_read_guest(vcpu, gpa,
2061 &hc->ingpa, sizeof(hc->ingpa));
2062 if (ret < 0)
2063 return HV_STATUS_INVALID_ALIGNMENT;
2064 }
2065
2066 /*
2067 * Per spec, bits 32-47 contain the extra "flag number". However, we
2068 * have no use for it, and in all known usecases it is zero, so just
2069 * report lookup failure if it isn't.
2070 */
2071 if (hc->ingpa & 0xffff00000000ULL)
2072 return HV_STATUS_INVALID_PORT_ID;
2073 /* remaining bits are reserved-zero */
2074 if (hc->ingpa & ~KVM_HYPERV_CONN_ID_MASK)
2075 return HV_STATUS_INVALID_HYPERCALL_INPUT;
2076
2077 /* the eventfd is protected by vcpu->kvm->srcu, but conn_to_evt isn't */
2078 rcu_read_lock();
2079 eventfd = idr_find(&hv->conn_to_evt, hc->ingpa);
2080 rcu_read_unlock();
2081 if (!eventfd)
2082 return HV_STATUS_INVALID_PORT_ID;
2083
2084 eventfd_signal(eventfd, 1);
2085 return HV_STATUS_SUCCESS;
2086 }
2087
is_xmm_fast_hypercall(struct kvm_hv_hcall * hc)2088 static bool is_xmm_fast_hypercall(struct kvm_hv_hcall *hc)
2089 {
2090 switch (hc->code) {
2091 case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST:
2092 case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE:
2093 case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX:
2094 case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX:
2095 return true;
2096 }
2097
2098 return false;
2099 }
2100
kvm_hv_hypercall_read_xmm(struct kvm_hv_hcall * hc)2101 static void kvm_hv_hypercall_read_xmm(struct kvm_hv_hcall *hc)
2102 {
2103 int reg;
2104
2105 kvm_fpu_get();
2106 for (reg = 0; reg < HV_HYPERCALL_MAX_XMM_REGISTERS; reg++)
2107 _kvm_read_sse_reg(reg, &hc->xmm[reg]);
2108 kvm_fpu_put();
2109 }
2110
hv_check_hypercall_access(struct kvm_vcpu_hv * hv_vcpu,u16 code)2111 static bool hv_check_hypercall_access(struct kvm_vcpu_hv *hv_vcpu, u16 code)
2112 {
2113 if (!hv_vcpu->enforce_cpuid)
2114 return true;
2115
2116 switch (code) {
2117 case HVCALL_NOTIFY_LONG_SPIN_WAIT:
2118 return hv_vcpu->cpuid_cache.enlightenments_ebx &&
2119 hv_vcpu->cpuid_cache.enlightenments_ebx != U32_MAX;
2120 case HVCALL_POST_MESSAGE:
2121 return hv_vcpu->cpuid_cache.features_ebx & HV_POST_MESSAGES;
2122 case HVCALL_SIGNAL_EVENT:
2123 return hv_vcpu->cpuid_cache.features_ebx & HV_SIGNAL_EVENTS;
2124 case HVCALL_POST_DEBUG_DATA:
2125 case HVCALL_RETRIEVE_DEBUG_DATA:
2126 case HVCALL_RESET_DEBUG_SESSION:
2127 /*
2128 * Return 'true' when SynDBG is disabled so the resulting code
2129 * will be HV_STATUS_INVALID_HYPERCALL_CODE.
2130 */
2131 return !kvm_hv_is_syndbg_enabled(hv_vcpu->vcpu) ||
2132 hv_vcpu->cpuid_cache.features_ebx & HV_DEBUGGING;
2133 case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX:
2134 case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX:
2135 if (!(hv_vcpu->cpuid_cache.enlightenments_eax &
2136 HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED))
2137 return false;
2138 fallthrough;
2139 case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST:
2140 case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE:
2141 return hv_vcpu->cpuid_cache.enlightenments_eax &
2142 HV_X64_REMOTE_TLB_FLUSH_RECOMMENDED;
2143 case HVCALL_SEND_IPI_EX:
2144 if (!(hv_vcpu->cpuid_cache.enlightenments_eax &
2145 HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED))
2146 return false;
2147 fallthrough;
2148 case HVCALL_SEND_IPI:
2149 return hv_vcpu->cpuid_cache.enlightenments_eax &
2150 HV_X64_CLUSTER_IPI_RECOMMENDED;
2151 default:
2152 break;
2153 }
2154
2155 return true;
2156 }
2157
kvm_hv_hypercall(struct kvm_vcpu * vcpu)2158 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
2159 {
2160 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
2161 struct kvm_hv_hcall hc;
2162 u64 ret = HV_STATUS_SUCCESS;
2163
2164 /*
2165 * hypercall generates UD from non zero cpl and real mode
2166 * per HYPER-V spec
2167 */
2168 if (static_call(kvm_x86_get_cpl)(vcpu) != 0 || !is_protmode(vcpu)) {
2169 kvm_queue_exception(vcpu, UD_VECTOR);
2170 return 1;
2171 }
2172
2173 #ifdef CONFIG_X86_64
2174 if (is_64_bit_mode(vcpu)) {
2175 hc.param = kvm_rcx_read(vcpu);
2176 hc.ingpa = kvm_rdx_read(vcpu);
2177 hc.outgpa = kvm_r8_read(vcpu);
2178 } else
2179 #endif
2180 {
2181 hc.param = ((u64)kvm_rdx_read(vcpu) << 32) |
2182 (kvm_rax_read(vcpu) & 0xffffffff);
2183 hc.ingpa = ((u64)kvm_rbx_read(vcpu) << 32) |
2184 (kvm_rcx_read(vcpu) & 0xffffffff);
2185 hc.outgpa = ((u64)kvm_rdi_read(vcpu) << 32) |
2186 (kvm_rsi_read(vcpu) & 0xffffffff);
2187 }
2188
2189 hc.code = hc.param & 0xffff;
2190 hc.fast = !!(hc.param & HV_HYPERCALL_FAST_BIT);
2191 hc.rep_cnt = (hc.param >> HV_HYPERCALL_REP_COMP_OFFSET) & 0xfff;
2192 hc.rep_idx = (hc.param >> HV_HYPERCALL_REP_START_OFFSET) & 0xfff;
2193 hc.rep = !!(hc.rep_cnt || hc.rep_idx);
2194
2195 trace_kvm_hv_hypercall(hc.code, hc.fast, hc.rep_cnt, hc.rep_idx,
2196 hc.ingpa, hc.outgpa);
2197
2198 if (unlikely(!hv_check_hypercall_access(hv_vcpu, hc.code))) {
2199 ret = HV_STATUS_ACCESS_DENIED;
2200 goto hypercall_complete;
2201 }
2202
2203 if (hc.fast && is_xmm_fast_hypercall(&hc)) {
2204 if (unlikely(hv_vcpu->enforce_cpuid &&
2205 !(hv_vcpu->cpuid_cache.features_edx &
2206 HV_X64_HYPERCALL_XMM_INPUT_AVAILABLE))) {
2207 kvm_queue_exception(vcpu, UD_VECTOR);
2208 return 1;
2209 }
2210
2211 kvm_hv_hypercall_read_xmm(&hc);
2212 }
2213
2214 switch (hc.code) {
2215 case HVCALL_NOTIFY_LONG_SPIN_WAIT:
2216 if (unlikely(hc.rep)) {
2217 ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2218 break;
2219 }
2220 kvm_vcpu_on_spin(vcpu, true);
2221 break;
2222 case HVCALL_SIGNAL_EVENT:
2223 if (unlikely(hc.rep)) {
2224 ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2225 break;
2226 }
2227 ret = kvm_hvcall_signal_event(vcpu, &hc);
2228 if (ret != HV_STATUS_INVALID_PORT_ID)
2229 break;
2230 fallthrough; /* maybe userspace knows this conn_id */
2231 case HVCALL_POST_MESSAGE:
2232 /* don't bother userspace if it has no way to handle it */
2233 if (unlikely(hc.rep || !to_hv_synic(vcpu)->active)) {
2234 ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2235 break;
2236 }
2237 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
2238 vcpu->run->hyperv.type = KVM_EXIT_HYPERV_HCALL;
2239 vcpu->run->hyperv.u.hcall.input = hc.param;
2240 vcpu->run->hyperv.u.hcall.params[0] = hc.ingpa;
2241 vcpu->run->hyperv.u.hcall.params[1] = hc.outgpa;
2242 vcpu->arch.complete_userspace_io =
2243 kvm_hv_hypercall_complete_userspace;
2244 return 0;
2245 case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST:
2246 if (unlikely(!hc.rep_cnt || hc.rep_idx)) {
2247 ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2248 break;
2249 }
2250 ret = kvm_hv_flush_tlb(vcpu, &hc, false);
2251 break;
2252 case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE:
2253 if (unlikely(hc.rep)) {
2254 ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2255 break;
2256 }
2257 ret = kvm_hv_flush_tlb(vcpu, &hc, false);
2258 break;
2259 case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX:
2260 if (unlikely(!hc.rep_cnt || hc.rep_idx)) {
2261 ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2262 break;
2263 }
2264 ret = kvm_hv_flush_tlb(vcpu, &hc, true);
2265 break;
2266 case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX:
2267 if (unlikely(hc.rep)) {
2268 ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2269 break;
2270 }
2271 ret = kvm_hv_flush_tlb(vcpu, &hc, true);
2272 break;
2273 case HVCALL_SEND_IPI:
2274 if (unlikely(hc.rep)) {
2275 ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2276 break;
2277 }
2278 ret = kvm_hv_send_ipi(vcpu, &hc, false);
2279 break;
2280 case HVCALL_SEND_IPI_EX:
2281 if (unlikely(hc.fast || hc.rep)) {
2282 ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2283 break;
2284 }
2285 ret = kvm_hv_send_ipi(vcpu, &hc, true);
2286 break;
2287 case HVCALL_POST_DEBUG_DATA:
2288 case HVCALL_RETRIEVE_DEBUG_DATA:
2289 if (unlikely(hc.fast)) {
2290 ret = HV_STATUS_INVALID_PARAMETER;
2291 break;
2292 }
2293 fallthrough;
2294 case HVCALL_RESET_DEBUG_SESSION: {
2295 struct kvm_hv_syndbg *syndbg = to_hv_syndbg(vcpu);
2296
2297 if (!kvm_hv_is_syndbg_enabled(vcpu)) {
2298 ret = HV_STATUS_INVALID_HYPERCALL_CODE;
2299 break;
2300 }
2301
2302 if (!(syndbg->options & HV_X64_SYNDBG_OPTION_USE_HCALLS)) {
2303 ret = HV_STATUS_OPERATION_DENIED;
2304 break;
2305 }
2306 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
2307 vcpu->run->hyperv.type = KVM_EXIT_HYPERV_HCALL;
2308 vcpu->run->hyperv.u.hcall.input = hc.param;
2309 vcpu->run->hyperv.u.hcall.params[0] = hc.ingpa;
2310 vcpu->run->hyperv.u.hcall.params[1] = hc.outgpa;
2311 vcpu->arch.complete_userspace_io =
2312 kvm_hv_hypercall_complete_userspace;
2313 return 0;
2314 }
2315 default:
2316 ret = HV_STATUS_INVALID_HYPERCALL_CODE;
2317 break;
2318 }
2319
2320 hypercall_complete:
2321 return kvm_hv_hypercall_complete(vcpu, ret);
2322 }
2323
kvm_hv_init_vm(struct kvm * kvm)2324 void kvm_hv_init_vm(struct kvm *kvm)
2325 {
2326 struct kvm_hv *hv = to_kvm_hv(kvm);
2327
2328 mutex_init(&hv->hv_lock);
2329 idr_init(&hv->conn_to_evt);
2330 }
2331
kvm_hv_destroy_vm(struct kvm * kvm)2332 void kvm_hv_destroy_vm(struct kvm *kvm)
2333 {
2334 struct kvm_hv *hv = to_kvm_hv(kvm);
2335 struct eventfd_ctx *eventfd;
2336 int i;
2337
2338 idr_for_each_entry(&hv->conn_to_evt, eventfd, i)
2339 eventfd_ctx_put(eventfd);
2340 idr_destroy(&hv->conn_to_evt);
2341 }
2342
kvm_hv_eventfd_assign(struct kvm * kvm,u32 conn_id,int fd)2343 static int kvm_hv_eventfd_assign(struct kvm *kvm, u32 conn_id, int fd)
2344 {
2345 struct kvm_hv *hv = to_kvm_hv(kvm);
2346 struct eventfd_ctx *eventfd;
2347 int ret;
2348
2349 eventfd = eventfd_ctx_fdget(fd);
2350 if (IS_ERR(eventfd))
2351 return PTR_ERR(eventfd);
2352
2353 mutex_lock(&hv->hv_lock);
2354 ret = idr_alloc(&hv->conn_to_evt, eventfd, conn_id, conn_id + 1,
2355 GFP_KERNEL_ACCOUNT);
2356 mutex_unlock(&hv->hv_lock);
2357
2358 if (ret >= 0)
2359 return 0;
2360
2361 if (ret == -ENOSPC)
2362 ret = -EEXIST;
2363 eventfd_ctx_put(eventfd);
2364 return ret;
2365 }
2366
kvm_hv_eventfd_deassign(struct kvm * kvm,u32 conn_id)2367 static int kvm_hv_eventfd_deassign(struct kvm *kvm, u32 conn_id)
2368 {
2369 struct kvm_hv *hv = to_kvm_hv(kvm);
2370 struct eventfd_ctx *eventfd;
2371
2372 mutex_lock(&hv->hv_lock);
2373 eventfd = idr_remove(&hv->conn_to_evt, conn_id);
2374 mutex_unlock(&hv->hv_lock);
2375
2376 if (!eventfd)
2377 return -ENOENT;
2378
2379 synchronize_srcu(&kvm->srcu);
2380 eventfd_ctx_put(eventfd);
2381 return 0;
2382 }
2383
kvm_vm_ioctl_hv_eventfd(struct kvm * kvm,struct kvm_hyperv_eventfd * args)2384 int kvm_vm_ioctl_hv_eventfd(struct kvm *kvm, struct kvm_hyperv_eventfd *args)
2385 {
2386 if ((args->flags & ~KVM_HYPERV_EVENTFD_DEASSIGN) ||
2387 (args->conn_id & ~KVM_HYPERV_CONN_ID_MASK))
2388 return -EINVAL;
2389
2390 if (args->flags == KVM_HYPERV_EVENTFD_DEASSIGN)
2391 return kvm_hv_eventfd_deassign(kvm, args->conn_id);
2392 return kvm_hv_eventfd_assign(kvm, args->conn_id, args->fd);
2393 }
2394
kvm_get_hv_cpuid(struct kvm_vcpu * vcpu,struct kvm_cpuid2 * cpuid,struct kvm_cpuid_entry2 __user * entries)2395 int kvm_get_hv_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid2 *cpuid,
2396 struct kvm_cpuid_entry2 __user *entries)
2397 {
2398 uint16_t evmcs_ver = 0;
2399 struct kvm_cpuid_entry2 cpuid_entries[] = {
2400 { .function = HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS },
2401 { .function = HYPERV_CPUID_INTERFACE },
2402 { .function = HYPERV_CPUID_VERSION },
2403 { .function = HYPERV_CPUID_FEATURES },
2404 { .function = HYPERV_CPUID_ENLIGHTMENT_INFO },
2405 { .function = HYPERV_CPUID_IMPLEMENT_LIMITS },
2406 { .function = HYPERV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIONS },
2407 { .function = HYPERV_CPUID_SYNDBG_INTERFACE },
2408 { .function = HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES },
2409 { .function = HYPERV_CPUID_NESTED_FEATURES },
2410 };
2411 int i, nent = ARRAY_SIZE(cpuid_entries);
2412
2413 if (kvm_x86_ops.nested_ops->get_evmcs_version)
2414 evmcs_ver = kvm_x86_ops.nested_ops->get_evmcs_version(vcpu);
2415
2416 /* Skip NESTED_FEATURES if eVMCS is not supported */
2417 if (!evmcs_ver)
2418 --nent;
2419
2420 if (cpuid->nent < nent)
2421 return -E2BIG;
2422
2423 if (cpuid->nent > nent)
2424 cpuid->nent = nent;
2425
2426 for (i = 0; i < nent; i++) {
2427 struct kvm_cpuid_entry2 *ent = &cpuid_entries[i];
2428 u32 signature[3];
2429
2430 switch (ent->function) {
2431 case HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS:
2432 memcpy(signature, "Linux KVM Hv", 12);
2433
2434 ent->eax = HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES;
2435 ent->ebx = signature[0];
2436 ent->ecx = signature[1];
2437 ent->edx = signature[2];
2438 break;
2439
2440 case HYPERV_CPUID_INTERFACE:
2441 ent->eax = HYPERV_CPUID_SIGNATURE_EAX;
2442 break;
2443
2444 case HYPERV_CPUID_VERSION:
2445 /*
2446 * We implement some Hyper-V 2016 functions so let's use
2447 * this version.
2448 */
2449 ent->eax = 0x00003839;
2450 ent->ebx = 0x000A0000;
2451 break;
2452
2453 case HYPERV_CPUID_FEATURES:
2454 ent->eax |= HV_MSR_VP_RUNTIME_AVAILABLE;
2455 ent->eax |= HV_MSR_TIME_REF_COUNT_AVAILABLE;
2456 ent->eax |= HV_MSR_SYNIC_AVAILABLE;
2457 ent->eax |= HV_MSR_SYNTIMER_AVAILABLE;
2458 ent->eax |= HV_MSR_APIC_ACCESS_AVAILABLE;
2459 ent->eax |= HV_MSR_HYPERCALL_AVAILABLE;
2460 ent->eax |= HV_MSR_VP_INDEX_AVAILABLE;
2461 ent->eax |= HV_MSR_RESET_AVAILABLE;
2462 ent->eax |= HV_MSR_REFERENCE_TSC_AVAILABLE;
2463 ent->eax |= HV_ACCESS_FREQUENCY_MSRS;
2464 ent->eax |= HV_ACCESS_REENLIGHTENMENT;
2465
2466 ent->ebx |= HV_POST_MESSAGES;
2467 ent->ebx |= HV_SIGNAL_EVENTS;
2468
2469 ent->edx |= HV_X64_HYPERCALL_XMM_INPUT_AVAILABLE;
2470 ent->edx |= HV_FEATURE_FREQUENCY_MSRS_AVAILABLE;
2471 ent->edx |= HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE;
2472
2473 ent->ebx |= HV_DEBUGGING;
2474 ent->edx |= HV_X64_GUEST_DEBUGGING_AVAILABLE;
2475 ent->edx |= HV_FEATURE_DEBUG_MSRS_AVAILABLE;
2476
2477 /*
2478 * Direct Synthetic timers only make sense with in-kernel
2479 * LAPIC
2480 */
2481 if (!vcpu || lapic_in_kernel(vcpu))
2482 ent->edx |= HV_STIMER_DIRECT_MODE_AVAILABLE;
2483
2484 break;
2485
2486 case HYPERV_CPUID_ENLIGHTMENT_INFO:
2487 ent->eax |= HV_X64_REMOTE_TLB_FLUSH_RECOMMENDED;
2488 ent->eax |= HV_X64_APIC_ACCESS_RECOMMENDED;
2489 ent->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED;
2490 ent->eax |= HV_X64_CLUSTER_IPI_RECOMMENDED;
2491 ent->eax |= HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED;
2492 if (evmcs_ver)
2493 ent->eax |= HV_X64_ENLIGHTENED_VMCS_RECOMMENDED;
2494 if (!cpu_smt_possible())
2495 ent->eax |= HV_X64_NO_NONARCH_CORESHARING;
2496
2497 ent->eax |= HV_DEPRECATING_AEOI_RECOMMENDED;
2498 /*
2499 * Default number of spinlock retry attempts, matches
2500 * HyperV 2016.
2501 */
2502 ent->ebx = 0x00000FFF;
2503
2504 break;
2505
2506 case HYPERV_CPUID_IMPLEMENT_LIMITS:
2507 /* Maximum number of virtual processors */
2508 ent->eax = KVM_MAX_VCPUS;
2509 /*
2510 * Maximum number of logical processors, matches
2511 * HyperV 2016.
2512 */
2513 ent->ebx = 64;
2514
2515 break;
2516
2517 case HYPERV_CPUID_NESTED_FEATURES:
2518 ent->eax = evmcs_ver;
2519
2520 break;
2521
2522 case HYPERV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIONS:
2523 memcpy(signature, "Linux KVM Hv", 12);
2524
2525 ent->eax = 0;
2526 ent->ebx = signature[0];
2527 ent->ecx = signature[1];
2528 ent->edx = signature[2];
2529 break;
2530
2531 case HYPERV_CPUID_SYNDBG_INTERFACE:
2532 memcpy(signature, "VS#1\0\0\0\0\0\0\0\0", 12);
2533 ent->eax = signature[0];
2534 break;
2535
2536 case HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES:
2537 ent->eax |= HV_X64_SYNDBG_CAP_ALLOW_KERNEL_DEBUGGING;
2538 break;
2539
2540 default:
2541 break;
2542 }
2543 }
2544
2545 if (copy_to_user(entries, cpuid_entries,
2546 nent * sizeof(struct kvm_cpuid_entry2)))
2547 return -EFAULT;
2548
2549 return 0;
2550 }
2551