1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5  */
6 
7 #include <linux/mman.h>
8 #include <linux/kvm_host.h>
9 #include <linux/io.h>
10 #include <linux/hugetlb.h>
11 #include <linux/sched/signal.h>
12 #include <trace/events/kvm.h>
13 #include <asm/pgalloc.h>
14 #include <asm/cacheflush.h>
15 #include <asm/kvm_arm.h>
16 #include <asm/kvm_mmu.h>
17 #include <asm/kvm_mmio.h>
18 #include <asm/kvm_ras.h>
19 #include <asm/kvm_asm.h>
20 #include <asm/kvm_emulate.h>
21 #include <asm/virt.h>
22 
23 #include "trace.h"
24 
25 static pgd_t *boot_hyp_pgd;
26 static pgd_t *hyp_pgd;
27 static pgd_t *merged_hyp_pgd;
28 static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
29 
30 static unsigned long hyp_idmap_start;
31 static unsigned long hyp_idmap_end;
32 static phys_addr_t hyp_idmap_vector;
33 
34 static unsigned long io_map_base;
35 
36 #define hyp_pgd_order get_order(PTRS_PER_PGD * sizeof(pgd_t))
37 
38 #define KVM_S2PTE_FLAG_IS_IOMAP		(1UL << 0)
39 #define KVM_S2_FLAG_LOGGING_ACTIVE	(1UL << 1)
40 
memslot_is_logging(struct kvm_memory_slot * memslot)41 static bool memslot_is_logging(struct kvm_memory_slot *memslot)
42 {
43 	return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
44 }
45 
46 /**
47  * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
48  * @kvm:	pointer to kvm structure.
49  *
50  * Interface to HYP function to flush all VM TLB entries
51  */
kvm_flush_remote_tlbs(struct kvm * kvm)52 void kvm_flush_remote_tlbs(struct kvm *kvm)
53 {
54 	kvm_call_hyp(__kvm_tlb_flush_vmid, kvm);
55 }
56 
kvm_tlb_flush_vmid_ipa(struct kvm * kvm,phys_addr_t ipa)57 static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
58 {
59 	kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, kvm, ipa);
60 }
61 
62 /*
63  * D-Cache management functions. They take the page table entries by
64  * value, as they are flushing the cache using the kernel mapping (or
65  * kmap on 32bit).
66  */
kvm_flush_dcache_pte(pte_t pte)67 static void kvm_flush_dcache_pte(pte_t pte)
68 {
69 	__kvm_flush_dcache_pte(pte);
70 }
71 
kvm_flush_dcache_pmd(pmd_t pmd)72 static void kvm_flush_dcache_pmd(pmd_t pmd)
73 {
74 	__kvm_flush_dcache_pmd(pmd);
75 }
76 
kvm_flush_dcache_pud(pud_t pud)77 static void kvm_flush_dcache_pud(pud_t pud)
78 {
79 	__kvm_flush_dcache_pud(pud);
80 }
81 
kvm_is_device_pfn(unsigned long pfn)82 static bool kvm_is_device_pfn(unsigned long pfn)
83 {
84 	return !pfn_valid(pfn);
85 }
86 
87 /**
88  * stage2_dissolve_pmd() - clear and flush huge PMD entry
89  * @kvm:	pointer to kvm structure.
90  * @addr:	IPA
91  * @pmd:	pmd pointer for IPA
92  *
93  * Function clears a PMD entry, flushes addr 1st and 2nd stage TLBs.
94  */
stage2_dissolve_pmd(struct kvm * kvm,phys_addr_t addr,pmd_t * pmd)95 static void stage2_dissolve_pmd(struct kvm *kvm, phys_addr_t addr, pmd_t *pmd)
96 {
97 	if (!pmd_thp_or_huge(*pmd))
98 		return;
99 
100 	pmd_clear(pmd);
101 	kvm_tlb_flush_vmid_ipa(kvm, addr);
102 	put_page(virt_to_page(pmd));
103 }
104 
105 /**
106  * stage2_dissolve_pud() - clear and flush huge PUD entry
107  * @kvm:	pointer to kvm structure.
108  * @addr:	IPA
109  * @pud:	pud pointer for IPA
110  *
111  * Function clears a PUD entry, flushes addr 1st and 2nd stage TLBs.
112  */
stage2_dissolve_pud(struct kvm * kvm,phys_addr_t addr,pud_t * pudp)113 static void stage2_dissolve_pud(struct kvm *kvm, phys_addr_t addr, pud_t *pudp)
114 {
115 	if (!stage2_pud_huge(kvm, *pudp))
116 		return;
117 
118 	stage2_pud_clear(kvm, pudp);
119 	kvm_tlb_flush_vmid_ipa(kvm, addr);
120 	put_page(virt_to_page(pudp));
121 }
122 
mmu_topup_memory_cache(struct kvm_mmu_memory_cache * cache,int min,int max)123 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
124 				  int min, int max)
125 {
126 	void *page;
127 
128 	BUG_ON(max > KVM_NR_MEM_OBJS);
129 	if (cache->nobjs >= min)
130 		return 0;
131 	while (cache->nobjs < max) {
132 		page = (void *)__get_free_page(GFP_PGTABLE_USER);
133 		if (!page)
134 			return -ENOMEM;
135 		cache->objects[cache->nobjs++] = page;
136 	}
137 	return 0;
138 }
139 
mmu_free_memory_cache(struct kvm_mmu_memory_cache * mc)140 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
141 {
142 	while (mc->nobjs)
143 		free_page((unsigned long)mc->objects[--mc->nobjs]);
144 }
145 
mmu_memory_cache_alloc(struct kvm_mmu_memory_cache * mc)146 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
147 {
148 	void *p;
149 
150 	BUG_ON(!mc || !mc->nobjs);
151 	p = mc->objects[--mc->nobjs];
152 	return p;
153 }
154 
clear_stage2_pgd_entry(struct kvm * kvm,pgd_t * pgd,phys_addr_t addr)155 static void clear_stage2_pgd_entry(struct kvm *kvm, pgd_t *pgd, phys_addr_t addr)
156 {
157 	pud_t *pud_table __maybe_unused = stage2_pud_offset(kvm, pgd, 0UL);
158 	stage2_pgd_clear(kvm, pgd);
159 	kvm_tlb_flush_vmid_ipa(kvm, addr);
160 	stage2_pud_free(kvm, pud_table);
161 	put_page(virt_to_page(pgd));
162 }
163 
clear_stage2_pud_entry(struct kvm * kvm,pud_t * pud,phys_addr_t addr)164 static void clear_stage2_pud_entry(struct kvm *kvm, pud_t *pud, phys_addr_t addr)
165 {
166 	pmd_t *pmd_table __maybe_unused = stage2_pmd_offset(kvm, pud, 0);
167 	VM_BUG_ON(stage2_pud_huge(kvm, *pud));
168 	stage2_pud_clear(kvm, pud);
169 	kvm_tlb_flush_vmid_ipa(kvm, addr);
170 	stage2_pmd_free(kvm, pmd_table);
171 	put_page(virt_to_page(pud));
172 }
173 
clear_stage2_pmd_entry(struct kvm * kvm,pmd_t * pmd,phys_addr_t addr)174 static void clear_stage2_pmd_entry(struct kvm *kvm, pmd_t *pmd, phys_addr_t addr)
175 {
176 	pte_t *pte_table = pte_offset_kernel(pmd, 0);
177 	VM_BUG_ON(pmd_thp_or_huge(*pmd));
178 	pmd_clear(pmd);
179 	kvm_tlb_flush_vmid_ipa(kvm, addr);
180 	free_page((unsigned long)pte_table);
181 	put_page(virt_to_page(pmd));
182 }
183 
kvm_set_pte(pte_t * ptep,pte_t new_pte)184 static inline void kvm_set_pte(pte_t *ptep, pte_t new_pte)
185 {
186 	WRITE_ONCE(*ptep, new_pte);
187 	dsb(ishst);
188 }
189 
kvm_set_pmd(pmd_t * pmdp,pmd_t new_pmd)190 static inline void kvm_set_pmd(pmd_t *pmdp, pmd_t new_pmd)
191 {
192 	WRITE_ONCE(*pmdp, new_pmd);
193 	dsb(ishst);
194 }
195 
kvm_pmd_populate(pmd_t * pmdp,pte_t * ptep)196 static inline void kvm_pmd_populate(pmd_t *pmdp, pte_t *ptep)
197 {
198 	kvm_set_pmd(pmdp, kvm_mk_pmd(ptep));
199 }
200 
kvm_pud_populate(pud_t * pudp,pmd_t * pmdp)201 static inline void kvm_pud_populate(pud_t *pudp, pmd_t *pmdp)
202 {
203 	WRITE_ONCE(*pudp, kvm_mk_pud(pmdp));
204 	dsb(ishst);
205 }
206 
kvm_pgd_populate(pgd_t * pgdp,pud_t * pudp)207 static inline void kvm_pgd_populate(pgd_t *pgdp, pud_t *pudp)
208 {
209 	WRITE_ONCE(*pgdp, kvm_mk_pgd(pudp));
210 	dsb(ishst);
211 }
212 
213 /*
214  * Unmapping vs dcache management:
215  *
216  * If a guest maps certain memory pages as uncached, all writes will
217  * bypass the data cache and go directly to RAM.  However, the CPUs
218  * can still speculate reads (not writes) and fill cache lines with
219  * data.
220  *
221  * Those cache lines will be *clean* cache lines though, so a
222  * clean+invalidate operation is equivalent to an invalidate
223  * operation, because no cache lines are marked dirty.
224  *
225  * Those clean cache lines could be filled prior to an uncached write
226  * by the guest, and the cache coherent IO subsystem would therefore
227  * end up writing old data to disk.
228  *
229  * This is why right after unmapping a page/section and invalidating
230  * the corresponding TLBs, we call kvm_flush_dcache_p*() to make sure
231  * the IO subsystem will never hit in the cache.
232  *
233  * This is all avoided on systems that have ARM64_HAS_STAGE2_FWB, as
234  * we then fully enforce cacheability of RAM, no matter what the guest
235  * does.
236  */
unmap_stage2_ptes(struct kvm * kvm,pmd_t * pmd,phys_addr_t addr,phys_addr_t end)237 static void unmap_stage2_ptes(struct kvm *kvm, pmd_t *pmd,
238 		       phys_addr_t addr, phys_addr_t end)
239 {
240 	phys_addr_t start_addr = addr;
241 	pte_t *pte, *start_pte;
242 
243 	start_pte = pte = pte_offset_kernel(pmd, addr);
244 	do {
245 		if (!pte_none(*pte)) {
246 			pte_t old_pte = *pte;
247 
248 			kvm_set_pte(pte, __pte(0));
249 			kvm_tlb_flush_vmid_ipa(kvm, addr);
250 
251 			/* No need to invalidate the cache for device mappings */
252 			if (!kvm_is_device_pfn(pte_pfn(old_pte)))
253 				kvm_flush_dcache_pte(old_pte);
254 
255 			put_page(virt_to_page(pte));
256 		}
257 	} while (pte++, addr += PAGE_SIZE, addr != end);
258 
259 	if (stage2_pte_table_empty(kvm, start_pte))
260 		clear_stage2_pmd_entry(kvm, pmd, start_addr);
261 }
262 
unmap_stage2_pmds(struct kvm * kvm,pud_t * pud,phys_addr_t addr,phys_addr_t end)263 static void unmap_stage2_pmds(struct kvm *kvm, pud_t *pud,
264 		       phys_addr_t addr, phys_addr_t end)
265 {
266 	phys_addr_t next, start_addr = addr;
267 	pmd_t *pmd, *start_pmd;
268 
269 	start_pmd = pmd = stage2_pmd_offset(kvm, pud, addr);
270 	do {
271 		next = stage2_pmd_addr_end(kvm, addr, end);
272 		if (!pmd_none(*pmd)) {
273 			if (pmd_thp_or_huge(*pmd)) {
274 				pmd_t old_pmd = *pmd;
275 
276 				pmd_clear(pmd);
277 				kvm_tlb_flush_vmid_ipa(kvm, addr);
278 
279 				kvm_flush_dcache_pmd(old_pmd);
280 
281 				put_page(virt_to_page(pmd));
282 			} else {
283 				unmap_stage2_ptes(kvm, pmd, addr, next);
284 			}
285 		}
286 	} while (pmd++, addr = next, addr != end);
287 
288 	if (stage2_pmd_table_empty(kvm, start_pmd))
289 		clear_stage2_pud_entry(kvm, pud, start_addr);
290 }
291 
unmap_stage2_puds(struct kvm * kvm,pgd_t * pgd,phys_addr_t addr,phys_addr_t end)292 static void unmap_stage2_puds(struct kvm *kvm, pgd_t *pgd,
293 		       phys_addr_t addr, phys_addr_t end)
294 {
295 	phys_addr_t next, start_addr = addr;
296 	pud_t *pud, *start_pud;
297 
298 	start_pud = pud = stage2_pud_offset(kvm, pgd, addr);
299 	do {
300 		next = stage2_pud_addr_end(kvm, addr, end);
301 		if (!stage2_pud_none(kvm, *pud)) {
302 			if (stage2_pud_huge(kvm, *pud)) {
303 				pud_t old_pud = *pud;
304 
305 				stage2_pud_clear(kvm, pud);
306 				kvm_tlb_flush_vmid_ipa(kvm, addr);
307 				kvm_flush_dcache_pud(old_pud);
308 				put_page(virt_to_page(pud));
309 			} else {
310 				unmap_stage2_pmds(kvm, pud, addr, next);
311 			}
312 		}
313 	} while (pud++, addr = next, addr != end);
314 
315 	if (stage2_pud_table_empty(kvm, start_pud))
316 		clear_stage2_pgd_entry(kvm, pgd, start_addr);
317 }
318 
319 /**
320  * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
321  * @kvm:   The VM pointer
322  * @start: The intermediate physical base address of the range to unmap
323  * @size:  The size of the area to unmap
324  *
325  * Clear a range of stage-2 mappings, lowering the various ref-counts.  Must
326  * be called while holding mmu_lock (unless for freeing the stage2 pgd before
327  * destroying the VM), otherwise another faulting VCPU may come in and mess
328  * with things behind our backs.
329  */
unmap_stage2_range(struct kvm * kvm,phys_addr_t start,u64 size)330 static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size)
331 {
332 	pgd_t *pgd;
333 	phys_addr_t addr = start, end = start + size;
334 	phys_addr_t next;
335 
336 	assert_spin_locked(&kvm->mmu_lock);
337 	WARN_ON(size & ~PAGE_MASK);
338 
339 	pgd = kvm->arch.pgd + stage2_pgd_index(kvm, addr);
340 	do {
341 		/*
342 		 * Make sure the page table is still active, as another thread
343 		 * could have possibly freed the page table, while we released
344 		 * the lock.
345 		 */
346 		if (!READ_ONCE(kvm->arch.pgd))
347 			break;
348 		next = stage2_pgd_addr_end(kvm, addr, end);
349 		if (!stage2_pgd_none(kvm, *pgd))
350 			unmap_stage2_puds(kvm, pgd, addr, next);
351 		/*
352 		 * If the range is too large, release the kvm->mmu_lock
353 		 * to prevent starvation and lockup detector warnings.
354 		 */
355 		if (next != end)
356 			cond_resched_lock(&kvm->mmu_lock);
357 	} while (pgd++, addr = next, addr != end);
358 }
359 
stage2_flush_ptes(struct kvm * kvm,pmd_t * pmd,phys_addr_t addr,phys_addr_t end)360 static void stage2_flush_ptes(struct kvm *kvm, pmd_t *pmd,
361 			      phys_addr_t addr, phys_addr_t end)
362 {
363 	pte_t *pte;
364 
365 	pte = pte_offset_kernel(pmd, addr);
366 	do {
367 		if (!pte_none(*pte) && !kvm_is_device_pfn(pte_pfn(*pte)))
368 			kvm_flush_dcache_pte(*pte);
369 	} while (pte++, addr += PAGE_SIZE, addr != end);
370 }
371 
stage2_flush_pmds(struct kvm * kvm,pud_t * pud,phys_addr_t addr,phys_addr_t end)372 static void stage2_flush_pmds(struct kvm *kvm, pud_t *pud,
373 			      phys_addr_t addr, phys_addr_t end)
374 {
375 	pmd_t *pmd;
376 	phys_addr_t next;
377 
378 	pmd = stage2_pmd_offset(kvm, pud, addr);
379 	do {
380 		next = stage2_pmd_addr_end(kvm, addr, end);
381 		if (!pmd_none(*pmd)) {
382 			if (pmd_thp_or_huge(*pmd))
383 				kvm_flush_dcache_pmd(*pmd);
384 			else
385 				stage2_flush_ptes(kvm, pmd, addr, next);
386 		}
387 	} while (pmd++, addr = next, addr != end);
388 }
389 
stage2_flush_puds(struct kvm * kvm,pgd_t * pgd,phys_addr_t addr,phys_addr_t end)390 static void stage2_flush_puds(struct kvm *kvm, pgd_t *pgd,
391 			      phys_addr_t addr, phys_addr_t end)
392 {
393 	pud_t *pud;
394 	phys_addr_t next;
395 
396 	pud = stage2_pud_offset(kvm, pgd, addr);
397 	do {
398 		next = stage2_pud_addr_end(kvm, addr, end);
399 		if (!stage2_pud_none(kvm, *pud)) {
400 			if (stage2_pud_huge(kvm, *pud))
401 				kvm_flush_dcache_pud(*pud);
402 			else
403 				stage2_flush_pmds(kvm, pud, addr, next);
404 		}
405 	} while (pud++, addr = next, addr != end);
406 }
407 
stage2_flush_memslot(struct kvm * kvm,struct kvm_memory_slot * memslot)408 static void stage2_flush_memslot(struct kvm *kvm,
409 				 struct kvm_memory_slot *memslot)
410 {
411 	phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
412 	phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
413 	phys_addr_t next;
414 	pgd_t *pgd;
415 
416 	pgd = kvm->arch.pgd + stage2_pgd_index(kvm, addr);
417 	do {
418 		next = stage2_pgd_addr_end(kvm, addr, end);
419 		if (!stage2_pgd_none(kvm, *pgd))
420 			stage2_flush_puds(kvm, pgd, addr, next);
421 	} while (pgd++, addr = next, addr != end);
422 }
423 
424 /**
425  * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
426  * @kvm: The struct kvm pointer
427  *
428  * Go through the stage 2 page tables and invalidate any cache lines
429  * backing memory already mapped to the VM.
430  */
stage2_flush_vm(struct kvm * kvm)431 static void stage2_flush_vm(struct kvm *kvm)
432 {
433 	struct kvm_memslots *slots;
434 	struct kvm_memory_slot *memslot;
435 	int idx;
436 
437 	idx = srcu_read_lock(&kvm->srcu);
438 	spin_lock(&kvm->mmu_lock);
439 
440 	slots = kvm_memslots(kvm);
441 	kvm_for_each_memslot(memslot, slots)
442 		stage2_flush_memslot(kvm, memslot);
443 
444 	spin_unlock(&kvm->mmu_lock);
445 	srcu_read_unlock(&kvm->srcu, idx);
446 }
447 
clear_hyp_pgd_entry(pgd_t * pgd)448 static void clear_hyp_pgd_entry(pgd_t *pgd)
449 {
450 	pud_t *pud_table __maybe_unused = pud_offset(pgd, 0UL);
451 	pgd_clear(pgd);
452 	pud_free(NULL, pud_table);
453 	put_page(virt_to_page(pgd));
454 }
455 
clear_hyp_pud_entry(pud_t * pud)456 static void clear_hyp_pud_entry(pud_t *pud)
457 {
458 	pmd_t *pmd_table __maybe_unused = pmd_offset(pud, 0);
459 	VM_BUG_ON(pud_huge(*pud));
460 	pud_clear(pud);
461 	pmd_free(NULL, pmd_table);
462 	put_page(virt_to_page(pud));
463 }
464 
clear_hyp_pmd_entry(pmd_t * pmd)465 static void clear_hyp_pmd_entry(pmd_t *pmd)
466 {
467 	pte_t *pte_table = pte_offset_kernel(pmd, 0);
468 	VM_BUG_ON(pmd_thp_or_huge(*pmd));
469 	pmd_clear(pmd);
470 	pte_free_kernel(NULL, pte_table);
471 	put_page(virt_to_page(pmd));
472 }
473 
unmap_hyp_ptes(pmd_t * pmd,phys_addr_t addr,phys_addr_t end)474 static void unmap_hyp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
475 {
476 	pte_t *pte, *start_pte;
477 
478 	start_pte = pte = pte_offset_kernel(pmd, addr);
479 	do {
480 		if (!pte_none(*pte)) {
481 			kvm_set_pte(pte, __pte(0));
482 			put_page(virt_to_page(pte));
483 		}
484 	} while (pte++, addr += PAGE_SIZE, addr != end);
485 
486 	if (hyp_pte_table_empty(start_pte))
487 		clear_hyp_pmd_entry(pmd);
488 }
489 
unmap_hyp_pmds(pud_t * pud,phys_addr_t addr,phys_addr_t end)490 static void unmap_hyp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
491 {
492 	phys_addr_t next;
493 	pmd_t *pmd, *start_pmd;
494 
495 	start_pmd = pmd = pmd_offset(pud, addr);
496 	do {
497 		next = pmd_addr_end(addr, end);
498 		/* Hyp doesn't use huge pmds */
499 		if (!pmd_none(*pmd))
500 			unmap_hyp_ptes(pmd, addr, next);
501 	} while (pmd++, addr = next, addr != end);
502 
503 	if (hyp_pmd_table_empty(start_pmd))
504 		clear_hyp_pud_entry(pud);
505 }
506 
unmap_hyp_puds(pgd_t * pgd,phys_addr_t addr,phys_addr_t end)507 static void unmap_hyp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
508 {
509 	phys_addr_t next;
510 	pud_t *pud, *start_pud;
511 
512 	start_pud = pud = pud_offset(pgd, addr);
513 	do {
514 		next = pud_addr_end(addr, end);
515 		/* Hyp doesn't use huge puds */
516 		if (!pud_none(*pud))
517 			unmap_hyp_pmds(pud, addr, next);
518 	} while (pud++, addr = next, addr != end);
519 
520 	if (hyp_pud_table_empty(start_pud))
521 		clear_hyp_pgd_entry(pgd);
522 }
523 
kvm_pgd_index(unsigned long addr,unsigned int ptrs_per_pgd)524 static unsigned int kvm_pgd_index(unsigned long addr, unsigned int ptrs_per_pgd)
525 {
526 	return (addr >> PGDIR_SHIFT) & (ptrs_per_pgd - 1);
527 }
528 
__unmap_hyp_range(pgd_t * pgdp,unsigned long ptrs_per_pgd,phys_addr_t start,u64 size)529 static void __unmap_hyp_range(pgd_t *pgdp, unsigned long ptrs_per_pgd,
530 			      phys_addr_t start, u64 size)
531 {
532 	pgd_t *pgd;
533 	phys_addr_t addr = start, end = start + size;
534 	phys_addr_t next;
535 
536 	/*
537 	 * We don't unmap anything from HYP, except at the hyp tear down.
538 	 * Hence, we don't have to invalidate the TLBs here.
539 	 */
540 	pgd = pgdp + kvm_pgd_index(addr, ptrs_per_pgd);
541 	do {
542 		next = pgd_addr_end(addr, end);
543 		if (!pgd_none(*pgd))
544 			unmap_hyp_puds(pgd, addr, next);
545 	} while (pgd++, addr = next, addr != end);
546 }
547 
unmap_hyp_range(pgd_t * pgdp,phys_addr_t start,u64 size)548 static void unmap_hyp_range(pgd_t *pgdp, phys_addr_t start, u64 size)
549 {
550 	__unmap_hyp_range(pgdp, PTRS_PER_PGD, start, size);
551 }
552 
unmap_hyp_idmap_range(pgd_t * pgdp,phys_addr_t start,u64 size)553 static void unmap_hyp_idmap_range(pgd_t *pgdp, phys_addr_t start, u64 size)
554 {
555 	__unmap_hyp_range(pgdp, __kvm_idmap_ptrs_per_pgd(), start, size);
556 }
557 
558 /**
559  * free_hyp_pgds - free Hyp-mode page tables
560  *
561  * Assumes hyp_pgd is a page table used strictly in Hyp-mode and
562  * therefore contains either mappings in the kernel memory area (above
563  * PAGE_OFFSET), or device mappings in the idmap range.
564  *
565  * boot_hyp_pgd should only map the idmap range, and is only used in
566  * the extended idmap case.
567  */
free_hyp_pgds(void)568 void free_hyp_pgds(void)
569 {
570 	pgd_t *id_pgd;
571 
572 	mutex_lock(&kvm_hyp_pgd_mutex);
573 
574 	id_pgd = boot_hyp_pgd ? boot_hyp_pgd : hyp_pgd;
575 
576 	if (id_pgd) {
577 		/* In case we never called hyp_mmu_init() */
578 		if (!io_map_base)
579 			io_map_base = hyp_idmap_start;
580 		unmap_hyp_idmap_range(id_pgd, io_map_base,
581 				      hyp_idmap_start + PAGE_SIZE - io_map_base);
582 	}
583 
584 	if (boot_hyp_pgd) {
585 		free_pages((unsigned long)boot_hyp_pgd, hyp_pgd_order);
586 		boot_hyp_pgd = NULL;
587 	}
588 
589 	if (hyp_pgd) {
590 		unmap_hyp_range(hyp_pgd, kern_hyp_va(PAGE_OFFSET),
591 				(uintptr_t)high_memory - PAGE_OFFSET);
592 
593 		free_pages((unsigned long)hyp_pgd, hyp_pgd_order);
594 		hyp_pgd = NULL;
595 	}
596 	if (merged_hyp_pgd) {
597 		clear_page(merged_hyp_pgd);
598 		free_page((unsigned long)merged_hyp_pgd);
599 		merged_hyp_pgd = NULL;
600 	}
601 
602 	mutex_unlock(&kvm_hyp_pgd_mutex);
603 }
604 
create_hyp_pte_mappings(pmd_t * pmd,unsigned long start,unsigned long end,unsigned long pfn,pgprot_t prot)605 static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start,
606 				    unsigned long end, unsigned long pfn,
607 				    pgprot_t prot)
608 {
609 	pte_t *pte;
610 	unsigned long addr;
611 
612 	addr = start;
613 	do {
614 		pte = pte_offset_kernel(pmd, addr);
615 		kvm_set_pte(pte, kvm_pfn_pte(pfn, prot));
616 		get_page(virt_to_page(pte));
617 		pfn++;
618 	} while (addr += PAGE_SIZE, addr != end);
619 }
620 
create_hyp_pmd_mappings(pud_t * pud,unsigned long start,unsigned long end,unsigned long pfn,pgprot_t prot)621 static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start,
622 				   unsigned long end, unsigned long pfn,
623 				   pgprot_t prot)
624 {
625 	pmd_t *pmd;
626 	pte_t *pte;
627 	unsigned long addr, next;
628 
629 	addr = start;
630 	do {
631 		pmd = pmd_offset(pud, addr);
632 
633 		BUG_ON(pmd_sect(*pmd));
634 
635 		if (pmd_none(*pmd)) {
636 			pte = pte_alloc_one_kernel(NULL);
637 			if (!pte) {
638 				kvm_err("Cannot allocate Hyp pte\n");
639 				return -ENOMEM;
640 			}
641 			kvm_pmd_populate(pmd, pte);
642 			get_page(virt_to_page(pmd));
643 		}
644 
645 		next = pmd_addr_end(addr, end);
646 
647 		create_hyp_pte_mappings(pmd, addr, next, pfn, prot);
648 		pfn += (next - addr) >> PAGE_SHIFT;
649 	} while (addr = next, addr != end);
650 
651 	return 0;
652 }
653 
create_hyp_pud_mappings(pgd_t * pgd,unsigned long start,unsigned long end,unsigned long pfn,pgprot_t prot)654 static int create_hyp_pud_mappings(pgd_t *pgd, unsigned long start,
655 				   unsigned long end, unsigned long pfn,
656 				   pgprot_t prot)
657 {
658 	pud_t *pud;
659 	pmd_t *pmd;
660 	unsigned long addr, next;
661 	int ret;
662 
663 	addr = start;
664 	do {
665 		pud = pud_offset(pgd, addr);
666 
667 		if (pud_none_or_clear_bad(pud)) {
668 			pmd = pmd_alloc_one(NULL, addr);
669 			if (!pmd) {
670 				kvm_err("Cannot allocate Hyp pmd\n");
671 				return -ENOMEM;
672 			}
673 			kvm_pud_populate(pud, pmd);
674 			get_page(virt_to_page(pud));
675 		}
676 
677 		next = pud_addr_end(addr, end);
678 		ret = create_hyp_pmd_mappings(pud, addr, next, pfn, prot);
679 		if (ret)
680 			return ret;
681 		pfn += (next - addr) >> PAGE_SHIFT;
682 	} while (addr = next, addr != end);
683 
684 	return 0;
685 }
686 
__create_hyp_mappings(pgd_t * pgdp,unsigned long ptrs_per_pgd,unsigned long start,unsigned long end,unsigned long pfn,pgprot_t prot)687 static int __create_hyp_mappings(pgd_t *pgdp, unsigned long ptrs_per_pgd,
688 				 unsigned long start, unsigned long end,
689 				 unsigned long pfn, pgprot_t prot)
690 {
691 	pgd_t *pgd;
692 	pud_t *pud;
693 	unsigned long addr, next;
694 	int err = 0;
695 
696 	mutex_lock(&kvm_hyp_pgd_mutex);
697 	addr = start & PAGE_MASK;
698 	end = PAGE_ALIGN(end);
699 	do {
700 		pgd = pgdp + kvm_pgd_index(addr, ptrs_per_pgd);
701 
702 		if (pgd_none(*pgd)) {
703 			pud = pud_alloc_one(NULL, addr);
704 			if (!pud) {
705 				kvm_err("Cannot allocate Hyp pud\n");
706 				err = -ENOMEM;
707 				goto out;
708 			}
709 			kvm_pgd_populate(pgd, pud);
710 			get_page(virt_to_page(pgd));
711 		}
712 
713 		next = pgd_addr_end(addr, end);
714 		err = create_hyp_pud_mappings(pgd, addr, next, pfn, prot);
715 		if (err)
716 			goto out;
717 		pfn += (next - addr) >> PAGE_SHIFT;
718 	} while (addr = next, addr != end);
719 out:
720 	mutex_unlock(&kvm_hyp_pgd_mutex);
721 	return err;
722 }
723 
kvm_kaddr_to_phys(void * kaddr)724 static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
725 {
726 	if (!is_vmalloc_addr(kaddr)) {
727 		BUG_ON(!virt_addr_valid(kaddr));
728 		return __pa(kaddr);
729 	} else {
730 		return page_to_phys(vmalloc_to_page(kaddr)) +
731 		       offset_in_page(kaddr);
732 	}
733 }
734 
735 /**
736  * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
737  * @from:	The virtual kernel start address of the range
738  * @to:		The virtual kernel end address of the range (exclusive)
739  * @prot:	The protection to be applied to this range
740  *
741  * The same virtual address as the kernel virtual address is also used
742  * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
743  * physical pages.
744  */
create_hyp_mappings(void * from,void * to,pgprot_t prot)745 int create_hyp_mappings(void *from, void *to, pgprot_t prot)
746 {
747 	phys_addr_t phys_addr;
748 	unsigned long virt_addr;
749 	unsigned long start = kern_hyp_va((unsigned long)from);
750 	unsigned long end = kern_hyp_va((unsigned long)to);
751 
752 	if (is_kernel_in_hyp_mode())
753 		return 0;
754 
755 	start = start & PAGE_MASK;
756 	end = PAGE_ALIGN(end);
757 
758 	for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
759 		int err;
760 
761 		phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
762 		err = __create_hyp_mappings(hyp_pgd, PTRS_PER_PGD,
763 					    virt_addr, virt_addr + PAGE_SIZE,
764 					    __phys_to_pfn(phys_addr),
765 					    prot);
766 		if (err)
767 			return err;
768 	}
769 
770 	return 0;
771 }
772 
__create_hyp_private_mapping(phys_addr_t phys_addr,size_t size,unsigned long * haddr,pgprot_t prot)773 static int __create_hyp_private_mapping(phys_addr_t phys_addr, size_t size,
774 					unsigned long *haddr, pgprot_t prot)
775 {
776 	pgd_t *pgd = hyp_pgd;
777 	unsigned long base;
778 	int ret = 0;
779 
780 	mutex_lock(&kvm_hyp_pgd_mutex);
781 
782 	/*
783 	 * This assumes that we we have enough space below the idmap
784 	 * page to allocate our VAs. If not, the check below will
785 	 * kick. A potential alternative would be to detect that
786 	 * overflow and switch to an allocation above the idmap.
787 	 *
788 	 * The allocated size is always a multiple of PAGE_SIZE.
789 	 */
790 	size = PAGE_ALIGN(size + offset_in_page(phys_addr));
791 	base = io_map_base - size;
792 
793 	/*
794 	 * Verify that BIT(VA_BITS - 1) hasn't been flipped by
795 	 * allocating the new area, as it would indicate we've
796 	 * overflowed the idmap/IO address range.
797 	 */
798 	if ((base ^ io_map_base) & BIT(VA_BITS - 1))
799 		ret = -ENOMEM;
800 	else
801 		io_map_base = base;
802 
803 	mutex_unlock(&kvm_hyp_pgd_mutex);
804 
805 	if (ret)
806 		goto out;
807 
808 	if (__kvm_cpu_uses_extended_idmap())
809 		pgd = boot_hyp_pgd;
810 
811 	ret = __create_hyp_mappings(pgd, __kvm_idmap_ptrs_per_pgd(),
812 				    base, base + size,
813 				    __phys_to_pfn(phys_addr), prot);
814 	if (ret)
815 		goto out;
816 
817 	*haddr = base + offset_in_page(phys_addr);
818 
819 out:
820 	return ret;
821 }
822 
823 /**
824  * create_hyp_io_mappings - Map IO into both kernel and HYP
825  * @phys_addr:	The physical start address which gets mapped
826  * @size:	Size of the region being mapped
827  * @kaddr:	Kernel VA for this mapping
828  * @haddr:	HYP VA for this mapping
829  */
create_hyp_io_mappings(phys_addr_t phys_addr,size_t size,void __iomem ** kaddr,void __iomem ** haddr)830 int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
831 			   void __iomem **kaddr,
832 			   void __iomem **haddr)
833 {
834 	unsigned long addr;
835 	int ret;
836 
837 	*kaddr = ioremap(phys_addr, size);
838 	if (!*kaddr)
839 		return -ENOMEM;
840 
841 	if (is_kernel_in_hyp_mode()) {
842 		*haddr = *kaddr;
843 		return 0;
844 	}
845 
846 	ret = __create_hyp_private_mapping(phys_addr, size,
847 					   &addr, PAGE_HYP_DEVICE);
848 	if (ret) {
849 		iounmap(*kaddr);
850 		*kaddr = NULL;
851 		*haddr = NULL;
852 		return ret;
853 	}
854 
855 	*haddr = (void __iomem *)addr;
856 	return 0;
857 }
858 
859 /**
860  * create_hyp_exec_mappings - Map an executable range into HYP
861  * @phys_addr:	The physical start address which gets mapped
862  * @size:	Size of the region being mapped
863  * @haddr:	HYP VA for this mapping
864  */
create_hyp_exec_mappings(phys_addr_t phys_addr,size_t size,void ** haddr)865 int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
866 			     void **haddr)
867 {
868 	unsigned long addr;
869 	int ret;
870 
871 	BUG_ON(is_kernel_in_hyp_mode());
872 
873 	ret = __create_hyp_private_mapping(phys_addr, size,
874 					   &addr, PAGE_HYP_EXEC);
875 	if (ret) {
876 		*haddr = NULL;
877 		return ret;
878 	}
879 
880 	*haddr = (void *)addr;
881 	return 0;
882 }
883 
884 /**
885  * kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation.
886  * @kvm:	The KVM struct pointer for the VM.
887  *
888  * Allocates only the stage-2 HW PGD level table(s) of size defined by
889  * stage2_pgd_size(kvm).
890  *
891  * Note we don't need locking here as this is only called when the VM is
892  * created, which can only be done once.
893  */
kvm_alloc_stage2_pgd(struct kvm * kvm)894 int kvm_alloc_stage2_pgd(struct kvm *kvm)
895 {
896 	phys_addr_t pgd_phys;
897 	pgd_t *pgd;
898 
899 	if (kvm->arch.pgd != NULL) {
900 		kvm_err("kvm_arch already initialized?\n");
901 		return -EINVAL;
902 	}
903 
904 	/* Allocate the HW PGD, making sure that each page gets its own refcount */
905 	pgd = alloc_pages_exact(stage2_pgd_size(kvm), GFP_KERNEL | __GFP_ZERO);
906 	if (!pgd)
907 		return -ENOMEM;
908 
909 	pgd_phys = virt_to_phys(pgd);
910 	if (WARN_ON(pgd_phys & ~kvm_vttbr_baddr_mask(kvm)))
911 		return -EINVAL;
912 
913 	kvm->arch.pgd = pgd;
914 	kvm->arch.pgd_phys = pgd_phys;
915 	return 0;
916 }
917 
stage2_unmap_memslot(struct kvm * kvm,struct kvm_memory_slot * memslot)918 static void stage2_unmap_memslot(struct kvm *kvm,
919 				 struct kvm_memory_slot *memslot)
920 {
921 	hva_t hva = memslot->userspace_addr;
922 	phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
923 	phys_addr_t size = PAGE_SIZE * memslot->npages;
924 	hva_t reg_end = hva + size;
925 
926 	/*
927 	 * A memory region could potentially cover multiple VMAs, and any holes
928 	 * between them, so iterate over all of them to find out if we should
929 	 * unmap any of them.
930 	 *
931 	 *     +--------------------------------------------+
932 	 * +---------------+----------------+   +----------------+
933 	 * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
934 	 * +---------------+----------------+   +----------------+
935 	 *     |               memory region                |
936 	 *     +--------------------------------------------+
937 	 */
938 	do {
939 		struct vm_area_struct *vma = find_vma(current->mm, hva);
940 		hva_t vm_start, vm_end;
941 
942 		if (!vma || vma->vm_start >= reg_end)
943 			break;
944 
945 		/*
946 		 * Take the intersection of this VMA with the memory region
947 		 */
948 		vm_start = max(hva, vma->vm_start);
949 		vm_end = min(reg_end, vma->vm_end);
950 
951 		if (!(vma->vm_flags & VM_PFNMAP)) {
952 			gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
953 			unmap_stage2_range(kvm, gpa, vm_end - vm_start);
954 		}
955 		hva = vm_end;
956 	} while (hva < reg_end);
957 }
958 
959 /**
960  * stage2_unmap_vm - Unmap Stage-2 RAM mappings
961  * @kvm: The struct kvm pointer
962  *
963  * Go through the memregions and unmap any reguler RAM
964  * backing memory already mapped to the VM.
965  */
stage2_unmap_vm(struct kvm * kvm)966 void stage2_unmap_vm(struct kvm *kvm)
967 {
968 	struct kvm_memslots *slots;
969 	struct kvm_memory_slot *memslot;
970 	int idx;
971 
972 	idx = srcu_read_lock(&kvm->srcu);
973 	down_read(&current->mm->mmap_sem);
974 	spin_lock(&kvm->mmu_lock);
975 
976 	slots = kvm_memslots(kvm);
977 	kvm_for_each_memslot(memslot, slots)
978 		stage2_unmap_memslot(kvm, memslot);
979 
980 	spin_unlock(&kvm->mmu_lock);
981 	up_read(&current->mm->mmap_sem);
982 	srcu_read_unlock(&kvm->srcu, idx);
983 }
984 
985 /**
986  * kvm_free_stage2_pgd - free all stage-2 tables
987  * @kvm:	The KVM struct pointer for the VM.
988  *
989  * Walks the level-1 page table pointed to by kvm->arch.pgd and frees all
990  * underlying level-2 and level-3 tables before freeing the actual level-1 table
991  * and setting the struct pointer to NULL.
992  */
kvm_free_stage2_pgd(struct kvm * kvm)993 void kvm_free_stage2_pgd(struct kvm *kvm)
994 {
995 	void *pgd = NULL;
996 
997 	spin_lock(&kvm->mmu_lock);
998 	if (kvm->arch.pgd) {
999 		unmap_stage2_range(kvm, 0, kvm_phys_size(kvm));
1000 		pgd = READ_ONCE(kvm->arch.pgd);
1001 		kvm->arch.pgd = NULL;
1002 		kvm->arch.pgd_phys = 0;
1003 	}
1004 	spin_unlock(&kvm->mmu_lock);
1005 
1006 	/* Free the HW pgd, one page at a time */
1007 	if (pgd)
1008 		free_pages_exact(pgd, stage2_pgd_size(kvm));
1009 }
1010 
stage2_get_pud(struct kvm * kvm,struct kvm_mmu_memory_cache * cache,phys_addr_t addr)1011 static pud_t *stage2_get_pud(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
1012 			     phys_addr_t addr)
1013 {
1014 	pgd_t *pgd;
1015 	pud_t *pud;
1016 
1017 	pgd = kvm->arch.pgd + stage2_pgd_index(kvm, addr);
1018 	if (stage2_pgd_none(kvm, *pgd)) {
1019 		if (!cache)
1020 			return NULL;
1021 		pud = mmu_memory_cache_alloc(cache);
1022 		stage2_pgd_populate(kvm, pgd, pud);
1023 		get_page(virt_to_page(pgd));
1024 	}
1025 
1026 	return stage2_pud_offset(kvm, pgd, addr);
1027 }
1028 
stage2_get_pmd(struct kvm * kvm,struct kvm_mmu_memory_cache * cache,phys_addr_t addr)1029 static pmd_t *stage2_get_pmd(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
1030 			     phys_addr_t addr)
1031 {
1032 	pud_t *pud;
1033 	pmd_t *pmd;
1034 
1035 	pud = stage2_get_pud(kvm, cache, addr);
1036 	if (!pud || stage2_pud_huge(kvm, *pud))
1037 		return NULL;
1038 
1039 	if (stage2_pud_none(kvm, *pud)) {
1040 		if (!cache)
1041 			return NULL;
1042 		pmd = mmu_memory_cache_alloc(cache);
1043 		stage2_pud_populate(kvm, pud, pmd);
1044 		get_page(virt_to_page(pud));
1045 	}
1046 
1047 	return stage2_pmd_offset(kvm, pud, addr);
1048 }
1049 
stage2_set_pmd_huge(struct kvm * kvm,struct kvm_mmu_memory_cache * cache,phys_addr_t addr,const pmd_t * new_pmd)1050 static int stage2_set_pmd_huge(struct kvm *kvm, struct kvm_mmu_memory_cache
1051 			       *cache, phys_addr_t addr, const pmd_t *new_pmd)
1052 {
1053 	pmd_t *pmd, old_pmd;
1054 
1055 retry:
1056 	pmd = stage2_get_pmd(kvm, cache, addr);
1057 	VM_BUG_ON(!pmd);
1058 
1059 	old_pmd = *pmd;
1060 	/*
1061 	 * Multiple vcpus faulting on the same PMD entry, can
1062 	 * lead to them sequentially updating the PMD with the
1063 	 * same value. Following the break-before-make
1064 	 * (pmd_clear() followed by tlb_flush()) process can
1065 	 * hinder forward progress due to refaults generated
1066 	 * on missing translations.
1067 	 *
1068 	 * Skip updating the page table if the entry is
1069 	 * unchanged.
1070 	 */
1071 	if (pmd_val(old_pmd) == pmd_val(*new_pmd))
1072 		return 0;
1073 
1074 	if (pmd_present(old_pmd)) {
1075 		/*
1076 		 * If we already have PTE level mapping for this block,
1077 		 * we must unmap it to avoid inconsistent TLB state and
1078 		 * leaking the table page. We could end up in this situation
1079 		 * if the memory slot was marked for dirty logging and was
1080 		 * reverted, leaving PTE level mappings for the pages accessed
1081 		 * during the period. So, unmap the PTE level mapping for this
1082 		 * block and retry, as we could have released the upper level
1083 		 * table in the process.
1084 		 *
1085 		 * Normal THP split/merge follows mmu_notifier callbacks and do
1086 		 * get handled accordingly.
1087 		 */
1088 		if (!pmd_thp_or_huge(old_pmd)) {
1089 			unmap_stage2_range(kvm, addr & S2_PMD_MASK, S2_PMD_SIZE);
1090 			goto retry;
1091 		}
1092 		/*
1093 		 * Mapping in huge pages should only happen through a
1094 		 * fault.  If a page is merged into a transparent huge
1095 		 * page, the individual subpages of that huge page
1096 		 * should be unmapped through MMU notifiers before we
1097 		 * get here.
1098 		 *
1099 		 * Merging of CompoundPages is not supported; they
1100 		 * should become splitting first, unmapped, merged,
1101 		 * and mapped back in on-demand.
1102 		 */
1103 		WARN_ON_ONCE(pmd_pfn(old_pmd) != pmd_pfn(*new_pmd));
1104 		pmd_clear(pmd);
1105 		kvm_tlb_flush_vmid_ipa(kvm, addr);
1106 	} else {
1107 		get_page(virt_to_page(pmd));
1108 	}
1109 
1110 	kvm_set_pmd(pmd, *new_pmd);
1111 	return 0;
1112 }
1113 
stage2_set_pud_huge(struct kvm * kvm,struct kvm_mmu_memory_cache * cache,phys_addr_t addr,const pud_t * new_pudp)1114 static int stage2_set_pud_huge(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
1115 			       phys_addr_t addr, const pud_t *new_pudp)
1116 {
1117 	pud_t *pudp, old_pud;
1118 
1119 retry:
1120 	pudp = stage2_get_pud(kvm, cache, addr);
1121 	VM_BUG_ON(!pudp);
1122 
1123 	old_pud = *pudp;
1124 
1125 	/*
1126 	 * A large number of vcpus faulting on the same stage 2 entry,
1127 	 * can lead to a refault due to the stage2_pud_clear()/tlb_flush().
1128 	 * Skip updating the page tables if there is no change.
1129 	 */
1130 	if (pud_val(old_pud) == pud_val(*new_pudp))
1131 		return 0;
1132 
1133 	if (stage2_pud_present(kvm, old_pud)) {
1134 		/*
1135 		 * If we already have table level mapping for this block, unmap
1136 		 * the range for this block and retry.
1137 		 */
1138 		if (!stage2_pud_huge(kvm, old_pud)) {
1139 			unmap_stage2_range(kvm, addr & S2_PUD_MASK, S2_PUD_SIZE);
1140 			goto retry;
1141 		}
1142 
1143 		WARN_ON_ONCE(kvm_pud_pfn(old_pud) != kvm_pud_pfn(*new_pudp));
1144 		stage2_pud_clear(kvm, pudp);
1145 		kvm_tlb_flush_vmid_ipa(kvm, addr);
1146 	} else {
1147 		get_page(virt_to_page(pudp));
1148 	}
1149 
1150 	kvm_set_pud(pudp, *new_pudp);
1151 	return 0;
1152 }
1153 
1154 /*
1155  * stage2_get_leaf_entry - walk the stage2 VM page tables and return
1156  * true if a valid and present leaf-entry is found. A pointer to the
1157  * leaf-entry is returned in the appropriate level variable - pudpp,
1158  * pmdpp, ptepp.
1159  */
stage2_get_leaf_entry(struct kvm * kvm,phys_addr_t addr,pud_t ** pudpp,pmd_t ** pmdpp,pte_t ** ptepp)1160 static bool stage2_get_leaf_entry(struct kvm *kvm, phys_addr_t addr,
1161 				  pud_t **pudpp, pmd_t **pmdpp, pte_t **ptepp)
1162 {
1163 	pud_t *pudp;
1164 	pmd_t *pmdp;
1165 	pte_t *ptep;
1166 
1167 	*pudpp = NULL;
1168 	*pmdpp = NULL;
1169 	*ptepp = NULL;
1170 
1171 	pudp = stage2_get_pud(kvm, NULL, addr);
1172 	if (!pudp || stage2_pud_none(kvm, *pudp) || !stage2_pud_present(kvm, *pudp))
1173 		return false;
1174 
1175 	if (stage2_pud_huge(kvm, *pudp)) {
1176 		*pudpp = pudp;
1177 		return true;
1178 	}
1179 
1180 	pmdp = stage2_pmd_offset(kvm, pudp, addr);
1181 	if (!pmdp || pmd_none(*pmdp) || !pmd_present(*pmdp))
1182 		return false;
1183 
1184 	if (pmd_thp_or_huge(*pmdp)) {
1185 		*pmdpp = pmdp;
1186 		return true;
1187 	}
1188 
1189 	ptep = pte_offset_kernel(pmdp, addr);
1190 	if (!ptep || pte_none(*ptep) || !pte_present(*ptep))
1191 		return false;
1192 
1193 	*ptepp = ptep;
1194 	return true;
1195 }
1196 
stage2_is_exec(struct kvm * kvm,phys_addr_t addr)1197 static bool stage2_is_exec(struct kvm *kvm, phys_addr_t addr)
1198 {
1199 	pud_t *pudp;
1200 	pmd_t *pmdp;
1201 	pte_t *ptep;
1202 	bool found;
1203 
1204 	found = stage2_get_leaf_entry(kvm, addr, &pudp, &pmdp, &ptep);
1205 	if (!found)
1206 		return false;
1207 
1208 	if (pudp)
1209 		return kvm_s2pud_exec(pudp);
1210 	else if (pmdp)
1211 		return kvm_s2pmd_exec(pmdp);
1212 	else
1213 		return kvm_s2pte_exec(ptep);
1214 }
1215 
stage2_set_pte(struct kvm * kvm,struct kvm_mmu_memory_cache * cache,phys_addr_t addr,const pte_t * new_pte,unsigned long flags)1216 static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
1217 			  phys_addr_t addr, const pte_t *new_pte,
1218 			  unsigned long flags)
1219 {
1220 	pud_t *pud;
1221 	pmd_t *pmd;
1222 	pte_t *pte, old_pte;
1223 	bool iomap = flags & KVM_S2PTE_FLAG_IS_IOMAP;
1224 	bool logging_active = flags & KVM_S2_FLAG_LOGGING_ACTIVE;
1225 
1226 	VM_BUG_ON(logging_active && !cache);
1227 
1228 	/* Create stage-2 page table mapping - Levels 0 and 1 */
1229 	pud = stage2_get_pud(kvm, cache, addr);
1230 	if (!pud) {
1231 		/*
1232 		 * Ignore calls from kvm_set_spte_hva for unallocated
1233 		 * address ranges.
1234 		 */
1235 		return 0;
1236 	}
1237 
1238 	/*
1239 	 * While dirty page logging - dissolve huge PUD, then continue
1240 	 * on to allocate page.
1241 	 */
1242 	if (logging_active)
1243 		stage2_dissolve_pud(kvm, addr, pud);
1244 
1245 	if (stage2_pud_none(kvm, *pud)) {
1246 		if (!cache)
1247 			return 0; /* ignore calls from kvm_set_spte_hva */
1248 		pmd = mmu_memory_cache_alloc(cache);
1249 		stage2_pud_populate(kvm, pud, pmd);
1250 		get_page(virt_to_page(pud));
1251 	}
1252 
1253 	pmd = stage2_pmd_offset(kvm, pud, addr);
1254 	if (!pmd) {
1255 		/*
1256 		 * Ignore calls from kvm_set_spte_hva for unallocated
1257 		 * address ranges.
1258 		 */
1259 		return 0;
1260 	}
1261 
1262 	/*
1263 	 * While dirty page logging - dissolve huge PMD, then continue on to
1264 	 * allocate page.
1265 	 */
1266 	if (logging_active)
1267 		stage2_dissolve_pmd(kvm, addr, pmd);
1268 
1269 	/* Create stage-2 page mappings - Level 2 */
1270 	if (pmd_none(*pmd)) {
1271 		if (!cache)
1272 			return 0; /* ignore calls from kvm_set_spte_hva */
1273 		pte = mmu_memory_cache_alloc(cache);
1274 		kvm_pmd_populate(pmd, pte);
1275 		get_page(virt_to_page(pmd));
1276 	}
1277 
1278 	pte = pte_offset_kernel(pmd, addr);
1279 
1280 	if (iomap && pte_present(*pte))
1281 		return -EFAULT;
1282 
1283 	/* Create 2nd stage page table mapping - Level 3 */
1284 	old_pte = *pte;
1285 	if (pte_present(old_pte)) {
1286 		/* Skip page table update if there is no change */
1287 		if (pte_val(old_pte) == pte_val(*new_pte))
1288 			return 0;
1289 
1290 		kvm_set_pte(pte, __pte(0));
1291 		kvm_tlb_flush_vmid_ipa(kvm, addr);
1292 	} else {
1293 		get_page(virt_to_page(pte));
1294 	}
1295 
1296 	kvm_set_pte(pte, *new_pte);
1297 	return 0;
1298 }
1299 
1300 #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
stage2_ptep_test_and_clear_young(pte_t * pte)1301 static int stage2_ptep_test_and_clear_young(pte_t *pte)
1302 {
1303 	if (pte_young(*pte)) {
1304 		*pte = pte_mkold(*pte);
1305 		return 1;
1306 	}
1307 	return 0;
1308 }
1309 #else
stage2_ptep_test_and_clear_young(pte_t * pte)1310 static int stage2_ptep_test_and_clear_young(pte_t *pte)
1311 {
1312 	return __ptep_test_and_clear_young(pte);
1313 }
1314 #endif
1315 
stage2_pmdp_test_and_clear_young(pmd_t * pmd)1316 static int stage2_pmdp_test_and_clear_young(pmd_t *pmd)
1317 {
1318 	return stage2_ptep_test_and_clear_young((pte_t *)pmd);
1319 }
1320 
stage2_pudp_test_and_clear_young(pud_t * pud)1321 static int stage2_pudp_test_and_clear_young(pud_t *pud)
1322 {
1323 	return stage2_ptep_test_and_clear_young((pte_t *)pud);
1324 }
1325 
1326 /**
1327  * kvm_phys_addr_ioremap - map a device range to guest IPA
1328  *
1329  * @kvm:	The KVM pointer
1330  * @guest_ipa:	The IPA at which to insert the mapping
1331  * @pa:		The physical address of the device
1332  * @size:	The size of the mapping
1333  */
kvm_phys_addr_ioremap(struct kvm * kvm,phys_addr_t guest_ipa,phys_addr_t pa,unsigned long size,bool writable)1334 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
1335 			  phys_addr_t pa, unsigned long size, bool writable)
1336 {
1337 	phys_addr_t addr, end;
1338 	int ret = 0;
1339 	unsigned long pfn;
1340 	struct kvm_mmu_memory_cache cache = { 0, };
1341 
1342 	end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK;
1343 	pfn = __phys_to_pfn(pa);
1344 
1345 	for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) {
1346 		pte_t pte = kvm_pfn_pte(pfn, PAGE_S2_DEVICE);
1347 
1348 		if (writable)
1349 			pte = kvm_s2pte_mkwrite(pte);
1350 
1351 		ret = mmu_topup_memory_cache(&cache,
1352 					     kvm_mmu_cache_min_pages(kvm),
1353 					     KVM_NR_MEM_OBJS);
1354 		if (ret)
1355 			goto out;
1356 		spin_lock(&kvm->mmu_lock);
1357 		ret = stage2_set_pte(kvm, &cache, addr, &pte,
1358 						KVM_S2PTE_FLAG_IS_IOMAP);
1359 		spin_unlock(&kvm->mmu_lock);
1360 		if (ret)
1361 			goto out;
1362 
1363 		pfn++;
1364 	}
1365 
1366 out:
1367 	mmu_free_memory_cache(&cache);
1368 	return ret;
1369 }
1370 
transparent_hugepage_adjust(kvm_pfn_t * pfnp,phys_addr_t * ipap)1371 static bool transparent_hugepage_adjust(kvm_pfn_t *pfnp, phys_addr_t *ipap)
1372 {
1373 	kvm_pfn_t pfn = *pfnp;
1374 	gfn_t gfn = *ipap >> PAGE_SHIFT;
1375 	struct page *page = pfn_to_page(pfn);
1376 
1377 	/*
1378 	 * PageTransCompoundMap() returns true for THP and
1379 	 * hugetlbfs. Make sure the adjustment is done only for THP
1380 	 * pages.
1381 	 */
1382 	if (!PageHuge(page) && PageTransCompoundMap(page)) {
1383 		unsigned long mask;
1384 		/*
1385 		 * The address we faulted on is backed by a transparent huge
1386 		 * page.  However, because we map the compound huge page and
1387 		 * not the individual tail page, we need to transfer the
1388 		 * refcount to the head page.  We have to be careful that the
1389 		 * THP doesn't start to split while we are adjusting the
1390 		 * refcounts.
1391 		 *
1392 		 * We are sure this doesn't happen, because mmu_notifier_retry
1393 		 * was successful and we are holding the mmu_lock, so if this
1394 		 * THP is trying to split, it will be blocked in the mmu
1395 		 * notifier before touching any of the pages, specifically
1396 		 * before being able to call __split_huge_page_refcount().
1397 		 *
1398 		 * We can therefore safely transfer the refcount from PG_tail
1399 		 * to PG_head and switch the pfn from a tail page to the head
1400 		 * page accordingly.
1401 		 */
1402 		mask = PTRS_PER_PMD - 1;
1403 		VM_BUG_ON((gfn & mask) != (pfn & mask));
1404 		if (pfn & mask) {
1405 			*ipap &= PMD_MASK;
1406 			kvm_release_pfn_clean(pfn);
1407 			pfn &= ~mask;
1408 			kvm_get_pfn(pfn);
1409 			*pfnp = pfn;
1410 		}
1411 
1412 		return true;
1413 	}
1414 
1415 	return false;
1416 }
1417 
1418 /**
1419  * stage2_wp_ptes - write protect PMD range
1420  * @pmd:	pointer to pmd entry
1421  * @addr:	range start address
1422  * @end:	range end address
1423  */
stage2_wp_ptes(pmd_t * pmd,phys_addr_t addr,phys_addr_t end)1424 static void stage2_wp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
1425 {
1426 	pte_t *pte;
1427 
1428 	pte = pte_offset_kernel(pmd, addr);
1429 	do {
1430 		if (!pte_none(*pte)) {
1431 			if (!kvm_s2pte_readonly(pte))
1432 				kvm_set_s2pte_readonly(pte);
1433 		}
1434 	} while (pte++, addr += PAGE_SIZE, addr != end);
1435 }
1436 
1437 /**
1438  * stage2_wp_pmds - write protect PUD range
1439  * kvm:		kvm instance for the VM
1440  * @pud:	pointer to pud entry
1441  * @addr:	range start address
1442  * @end:	range end address
1443  */
stage2_wp_pmds(struct kvm * kvm,pud_t * pud,phys_addr_t addr,phys_addr_t end)1444 static void stage2_wp_pmds(struct kvm *kvm, pud_t *pud,
1445 			   phys_addr_t addr, phys_addr_t end)
1446 {
1447 	pmd_t *pmd;
1448 	phys_addr_t next;
1449 
1450 	pmd = stage2_pmd_offset(kvm, pud, addr);
1451 
1452 	do {
1453 		next = stage2_pmd_addr_end(kvm, addr, end);
1454 		if (!pmd_none(*pmd)) {
1455 			if (pmd_thp_or_huge(*pmd)) {
1456 				if (!kvm_s2pmd_readonly(pmd))
1457 					kvm_set_s2pmd_readonly(pmd);
1458 			} else {
1459 				stage2_wp_ptes(pmd, addr, next);
1460 			}
1461 		}
1462 	} while (pmd++, addr = next, addr != end);
1463 }
1464 
1465 /**
1466  * stage2_wp_puds - write protect PGD range
1467  * @pgd:	pointer to pgd entry
1468  * @addr:	range start address
1469  * @end:	range end address
1470  */
stage2_wp_puds(struct kvm * kvm,pgd_t * pgd,phys_addr_t addr,phys_addr_t end)1471 static void  stage2_wp_puds(struct kvm *kvm, pgd_t *pgd,
1472 			    phys_addr_t addr, phys_addr_t end)
1473 {
1474 	pud_t *pud;
1475 	phys_addr_t next;
1476 
1477 	pud = stage2_pud_offset(kvm, pgd, addr);
1478 	do {
1479 		next = stage2_pud_addr_end(kvm, addr, end);
1480 		if (!stage2_pud_none(kvm, *pud)) {
1481 			if (stage2_pud_huge(kvm, *pud)) {
1482 				if (!kvm_s2pud_readonly(pud))
1483 					kvm_set_s2pud_readonly(pud);
1484 			} else {
1485 				stage2_wp_pmds(kvm, pud, addr, next);
1486 			}
1487 		}
1488 	} while (pud++, addr = next, addr != end);
1489 }
1490 
1491 /**
1492  * stage2_wp_range() - write protect stage2 memory region range
1493  * @kvm:	The KVM pointer
1494  * @addr:	Start address of range
1495  * @end:	End address of range
1496  */
stage2_wp_range(struct kvm * kvm,phys_addr_t addr,phys_addr_t end)1497 static void stage2_wp_range(struct kvm *kvm, phys_addr_t addr, phys_addr_t end)
1498 {
1499 	pgd_t *pgd;
1500 	phys_addr_t next;
1501 
1502 	pgd = kvm->arch.pgd + stage2_pgd_index(kvm, addr);
1503 	do {
1504 		/*
1505 		 * Release kvm_mmu_lock periodically if the memory region is
1506 		 * large. Otherwise, we may see kernel panics with
1507 		 * CONFIG_DETECT_HUNG_TASK, CONFIG_LOCKUP_DETECTOR,
1508 		 * CONFIG_LOCKDEP. Additionally, holding the lock too long
1509 		 * will also starve other vCPUs. We have to also make sure
1510 		 * that the page tables are not freed while we released
1511 		 * the lock.
1512 		 */
1513 		cond_resched_lock(&kvm->mmu_lock);
1514 		if (!READ_ONCE(kvm->arch.pgd))
1515 			break;
1516 		next = stage2_pgd_addr_end(kvm, addr, end);
1517 		if (stage2_pgd_present(kvm, *pgd))
1518 			stage2_wp_puds(kvm, pgd, addr, next);
1519 	} while (pgd++, addr = next, addr != end);
1520 }
1521 
1522 /**
1523  * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
1524  * @kvm:	The KVM pointer
1525  * @slot:	The memory slot to write protect
1526  *
1527  * Called to start logging dirty pages after memory region
1528  * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
1529  * all present PUD, PMD and PTEs are write protected in the memory region.
1530  * Afterwards read of dirty page log can be called.
1531  *
1532  * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
1533  * serializing operations for VM memory regions.
1534  */
kvm_mmu_wp_memory_region(struct kvm * kvm,int slot)1535 void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
1536 {
1537 	struct kvm_memslots *slots = kvm_memslots(kvm);
1538 	struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
1539 	phys_addr_t start = memslot->base_gfn << PAGE_SHIFT;
1540 	phys_addr_t end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
1541 
1542 	spin_lock(&kvm->mmu_lock);
1543 	stage2_wp_range(kvm, start, end);
1544 	spin_unlock(&kvm->mmu_lock);
1545 	kvm_flush_remote_tlbs(kvm);
1546 }
1547 
1548 /**
1549  * kvm_mmu_write_protect_pt_masked() - write protect dirty pages
1550  * @kvm:	The KVM pointer
1551  * @slot:	The memory slot associated with mask
1552  * @gfn_offset:	The gfn offset in memory slot
1553  * @mask:	The mask of dirty pages at offset 'gfn_offset' in this memory
1554  *		slot to be write protected
1555  *
1556  * Walks bits set in mask write protects the associated pte's. Caller must
1557  * acquire kvm_mmu_lock.
1558  */
kvm_mmu_write_protect_pt_masked(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn_offset,unsigned long mask)1559 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1560 		struct kvm_memory_slot *slot,
1561 		gfn_t gfn_offset, unsigned long mask)
1562 {
1563 	phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
1564 	phys_addr_t start = (base_gfn +  __ffs(mask)) << PAGE_SHIFT;
1565 	phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
1566 
1567 	stage2_wp_range(kvm, start, end);
1568 }
1569 
1570 /*
1571  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1572  * dirty pages.
1573  *
1574  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1575  * enable dirty logging for them.
1576  */
kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn_offset,unsigned long mask)1577 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1578 		struct kvm_memory_slot *slot,
1579 		gfn_t gfn_offset, unsigned long mask)
1580 {
1581 	kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1582 }
1583 
clean_dcache_guest_page(kvm_pfn_t pfn,unsigned long size)1584 static void clean_dcache_guest_page(kvm_pfn_t pfn, unsigned long size)
1585 {
1586 	__clean_dcache_guest_page(pfn, size);
1587 }
1588 
invalidate_icache_guest_page(kvm_pfn_t pfn,unsigned long size)1589 static void invalidate_icache_guest_page(kvm_pfn_t pfn, unsigned long size)
1590 {
1591 	__invalidate_icache_guest_page(pfn, size);
1592 }
1593 
kvm_send_hwpoison_signal(unsigned long address,struct vm_area_struct * vma)1594 static void kvm_send_hwpoison_signal(unsigned long address,
1595 				     struct vm_area_struct *vma)
1596 {
1597 	short lsb;
1598 
1599 	if (is_vm_hugetlb_page(vma))
1600 		lsb = huge_page_shift(hstate_vma(vma));
1601 	else
1602 		lsb = PAGE_SHIFT;
1603 
1604 	send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb, current);
1605 }
1606 
fault_supports_stage2_huge_mapping(struct kvm_memory_slot * memslot,unsigned long hva,unsigned long map_size)1607 static bool fault_supports_stage2_huge_mapping(struct kvm_memory_slot *memslot,
1608 					       unsigned long hva,
1609 					       unsigned long map_size)
1610 {
1611 	gpa_t gpa_start;
1612 	hva_t uaddr_start, uaddr_end;
1613 	size_t size;
1614 
1615 	size = memslot->npages * PAGE_SIZE;
1616 
1617 	gpa_start = memslot->base_gfn << PAGE_SHIFT;
1618 
1619 	uaddr_start = memslot->userspace_addr;
1620 	uaddr_end = uaddr_start + size;
1621 
1622 	/*
1623 	 * Pages belonging to memslots that don't have the same alignment
1624 	 * within a PMD/PUD for userspace and IPA cannot be mapped with stage-2
1625 	 * PMD/PUD entries, because we'll end up mapping the wrong pages.
1626 	 *
1627 	 * Consider a layout like the following:
1628 	 *
1629 	 *    memslot->userspace_addr:
1630 	 *    +-----+--------------------+--------------------+---+
1631 	 *    |abcde|fgh  Stage-1 block  |    Stage-1 block tv|xyz|
1632 	 *    +-----+--------------------+--------------------+---+
1633 	 *
1634 	 *    memslot->base_gfn << PAGE_SIZE:
1635 	 *      +---+--------------------+--------------------+-----+
1636 	 *      |abc|def  Stage-2 block  |    Stage-2 block   |tvxyz|
1637 	 *      +---+--------------------+--------------------+-----+
1638 	 *
1639 	 * If we create those stage-2 blocks, we'll end up with this incorrect
1640 	 * mapping:
1641 	 *   d -> f
1642 	 *   e -> g
1643 	 *   f -> h
1644 	 */
1645 	if ((gpa_start & (map_size - 1)) != (uaddr_start & (map_size - 1)))
1646 		return false;
1647 
1648 	/*
1649 	 * Next, let's make sure we're not trying to map anything not covered
1650 	 * by the memslot. This means we have to prohibit block size mappings
1651 	 * for the beginning and end of a non-block aligned and non-block sized
1652 	 * memory slot (illustrated by the head and tail parts of the
1653 	 * userspace view above containing pages 'abcde' and 'xyz',
1654 	 * respectively).
1655 	 *
1656 	 * Note that it doesn't matter if we do the check using the
1657 	 * userspace_addr or the base_gfn, as both are equally aligned (per
1658 	 * the check above) and equally sized.
1659 	 */
1660 	return (hva & ~(map_size - 1)) >= uaddr_start &&
1661 	       (hva & ~(map_size - 1)) + map_size <= uaddr_end;
1662 }
1663 
user_mem_abort(struct kvm_vcpu * vcpu,phys_addr_t fault_ipa,struct kvm_memory_slot * memslot,unsigned long hva,unsigned long fault_status)1664 static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
1665 			  struct kvm_memory_slot *memslot, unsigned long hva,
1666 			  unsigned long fault_status)
1667 {
1668 	int ret;
1669 	bool write_fault, writable, force_pte = false;
1670 	bool exec_fault, needs_exec;
1671 	unsigned long mmu_seq;
1672 	gfn_t gfn = fault_ipa >> PAGE_SHIFT;
1673 	struct kvm *kvm = vcpu->kvm;
1674 	struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
1675 	struct vm_area_struct *vma;
1676 	kvm_pfn_t pfn;
1677 	pgprot_t mem_type = PAGE_S2;
1678 	bool logging_active = memslot_is_logging(memslot);
1679 	unsigned long vma_pagesize, flags = 0;
1680 
1681 	write_fault = kvm_is_write_fault(vcpu);
1682 	exec_fault = kvm_vcpu_trap_is_iabt(vcpu);
1683 	VM_BUG_ON(write_fault && exec_fault);
1684 
1685 	if (fault_status == FSC_PERM && !write_fault && !exec_fault) {
1686 		kvm_err("Unexpected L2 read permission error\n");
1687 		return -EFAULT;
1688 	}
1689 
1690 	/* Let's check if we will get back a huge page backed by hugetlbfs */
1691 	down_read(&current->mm->mmap_sem);
1692 	vma = find_vma_intersection(current->mm, hva, hva + 1);
1693 	if (unlikely(!vma)) {
1694 		kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
1695 		up_read(&current->mm->mmap_sem);
1696 		return -EFAULT;
1697 	}
1698 
1699 	vma_pagesize = vma_kernel_pagesize(vma);
1700 	if (logging_active ||
1701 	    !fault_supports_stage2_huge_mapping(memslot, hva, vma_pagesize)) {
1702 		force_pte = true;
1703 		vma_pagesize = PAGE_SIZE;
1704 	}
1705 
1706 	/*
1707 	 * The stage2 has a minimum of 2 level table (For arm64 see
1708 	 * kvm_arm_setup_stage2()). Hence, we are guaranteed that we can
1709 	 * use PMD_SIZE huge mappings (even when the PMD is folded into PGD).
1710 	 * As for PUD huge maps, we must make sure that we have at least
1711 	 * 3 levels, i.e, PMD is not folded.
1712 	 */
1713 	if (vma_pagesize == PMD_SIZE ||
1714 	    (vma_pagesize == PUD_SIZE && kvm_stage2_has_pmd(kvm)))
1715 		gfn = (fault_ipa & huge_page_mask(hstate_vma(vma))) >> PAGE_SHIFT;
1716 	up_read(&current->mm->mmap_sem);
1717 
1718 	/* We need minimum second+third level pages */
1719 	ret = mmu_topup_memory_cache(memcache, kvm_mmu_cache_min_pages(kvm),
1720 				     KVM_NR_MEM_OBJS);
1721 	if (ret)
1722 		return ret;
1723 
1724 	mmu_seq = vcpu->kvm->mmu_notifier_seq;
1725 	/*
1726 	 * Ensure the read of mmu_notifier_seq happens before we call
1727 	 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
1728 	 * the page we just got a reference to gets unmapped before we have a
1729 	 * chance to grab the mmu_lock, which ensure that if the page gets
1730 	 * unmapped afterwards, the call to kvm_unmap_hva will take it away
1731 	 * from us again properly. This smp_rmb() interacts with the smp_wmb()
1732 	 * in kvm_mmu_notifier_invalidate_<page|range_end>.
1733 	 */
1734 	smp_rmb();
1735 
1736 	pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable);
1737 	if (pfn == KVM_PFN_ERR_HWPOISON) {
1738 		kvm_send_hwpoison_signal(hva, vma);
1739 		return 0;
1740 	}
1741 	if (is_error_noslot_pfn(pfn))
1742 		return -EFAULT;
1743 
1744 	if (kvm_is_device_pfn(pfn)) {
1745 		mem_type = PAGE_S2_DEVICE;
1746 		flags |= KVM_S2PTE_FLAG_IS_IOMAP;
1747 	} else if (logging_active) {
1748 		/*
1749 		 * Faults on pages in a memslot with logging enabled
1750 		 * should not be mapped with huge pages (it introduces churn
1751 		 * and performance degradation), so force a pte mapping.
1752 		 */
1753 		flags |= KVM_S2_FLAG_LOGGING_ACTIVE;
1754 
1755 		/*
1756 		 * Only actually map the page as writable if this was a write
1757 		 * fault.
1758 		 */
1759 		if (!write_fault)
1760 			writable = false;
1761 	}
1762 
1763 	spin_lock(&kvm->mmu_lock);
1764 	if (mmu_notifier_retry(kvm, mmu_seq))
1765 		goto out_unlock;
1766 
1767 	if (vma_pagesize == PAGE_SIZE && !force_pte) {
1768 		/*
1769 		 * Only PMD_SIZE transparent hugepages(THP) are
1770 		 * currently supported. This code will need to be
1771 		 * updated to support other THP sizes.
1772 		 *
1773 		 * Make sure the host VA and the guest IPA are sufficiently
1774 		 * aligned and that the block is contained within the memslot.
1775 		 */
1776 		if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE) &&
1777 		    transparent_hugepage_adjust(&pfn, &fault_ipa))
1778 			vma_pagesize = PMD_SIZE;
1779 	}
1780 
1781 	if (writable)
1782 		kvm_set_pfn_dirty(pfn);
1783 
1784 	if (fault_status != FSC_PERM)
1785 		clean_dcache_guest_page(pfn, vma_pagesize);
1786 
1787 	if (exec_fault)
1788 		invalidate_icache_guest_page(pfn, vma_pagesize);
1789 
1790 	/*
1791 	 * If we took an execution fault we have made the
1792 	 * icache/dcache coherent above and should now let the s2
1793 	 * mapping be executable.
1794 	 *
1795 	 * Write faults (!exec_fault && FSC_PERM) are orthogonal to
1796 	 * execute permissions, and we preserve whatever we have.
1797 	 */
1798 	needs_exec = exec_fault ||
1799 		(fault_status == FSC_PERM && stage2_is_exec(kvm, fault_ipa));
1800 
1801 	if (vma_pagesize == PUD_SIZE) {
1802 		pud_t new_pud = kvm_pfn_pud(pfn, mem_type);
1803 
1804 		new_pud = kvm_pud_mkhuge(new_pud);
1805 		if (writable)
1806 			new_pud = kvm_s2pud_mkwrite(new_pud);
1807 
1808 		if (needs_exec)
1809 			new_pud = kvm_s2pud_mkexec(new_pud);
1810 
1811 		ret = stage2_set_pud_huge(kvm, memcache, fault_ipa, &new_pud);
1812 	} else if (vma_pagesize == PMD_SIZE) {
1813 		pmd_t new_pmd = kvm_pfn_pmd(pfn, mem_type);
1814 
1815 		new_pmd = kvm_pmd_mkhuge(new_pmd);
1816 
1817 		if (writable)
1818 			new_pmd = kvm_s2pmd_mkwrite(new_pmd);
1819 
1820 		if (needs_exec)
1821 			new_pmd = kvm_s2pmd_mkexec(new_pmd);
1822 
1823 		ret = stage2_set_pmd_huge(kvm, memcache, fault_ipa, &new_pmd);
1824 	} else {
1825 		pte_t new_pte = kvm_pfn_pte(pfn, mem_type);
1826 
1827 		if (writable) {
1828 			new_pte = kvm_s2pte_mkwrite(new_pte);
1829 			mark_page_dirty(kvm, gfn);
1830 		}
1831 
1832 		if (needs_exec)
1833 			new_pte = kvm_s2pte_mkexec(new_pte);
1834 
1835 		ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte, flags);
1836 	}
1837 
1838 out_unlock:
1839 	spin_unlock(&kvm->mmu_lock);
1840 	kvm_set_pfn_accessed(pfn);
1841 	kvm_release_pfn_clean(pfn);
1842 	return ret;
1843 }
1844 
1845 /*
1846  * Resolve the access fault by making the page young again.
1847  * Note that because the faulting entry is guaranteed not to be
1848  * cached in the TLB, we don't need to invalidate anything.
1849  * Only the HW Access Flag updates are supported for Stage 2 (no DBM),
1850  * so there is no need for atomic (pte|pmd)_mkyoung operations.
1851  */
handle_access_fault(struct kvm_vcpu * vcpu,phys_addr_t fault_ipa)1852 static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
1853 {
1854 	pud_t *pud;
1855 	pmd_t *pmd;
1856 	pte_t *pte;
1857 	kvm_pfn_t pfn;
1858 	bool pfn_valid = false;
1859 
1860 	trace_kvm_access_fault(fault_ipa);
1861 
1862 	spin_lock(&vcpu->kvm->mmu_lock);
1863 
1864 	if (!stage2_get_leaf_entry(vcpu->kvm, fault_ipa, &pud, &pmd, &pte))
1865 		goto out;
1866 
1867 	if (pud) {		/* HugeTLB */
1868 		*pud = kvm_s2pud_mkyoung(*pud);
1869 		pfn = kvm_pud_pfn(*pud);
1870 		pfn_valid = true;
1871 	} else	if (pmd) {	/* THP, HugeTLB */
1872 		*pmd = pmd_mkyoung(*pmd);
1873 		pfn = pmd_pfn(*pmd);
1874 		pfn_valid = true;
1875 	} else {
1876 		*pte = pte_mkyoung(*pte);	/* Just a page... */
1877 		pfn = pte_pfn(*pte);
1878 		pfn_valid = true;
1879 	}
1880 
1881 out:
1882 	spin_unlock(&vcpu->kvm->mmu_lock);
1883 	if (pfn_valid)
1884 		kvm_set_pfn_accessed(pfn);
1885 }
1886 
1887 /**
1888  * kvm_handle_guest_abort - handles all 2nd stage aborts
1889  * @vcpu:	the VCPU pointer
1890  * @run:	the kvm_run structure
1891  *
1892  * Any abort that gets to the host is almost guaranteed to be caused by a
1893  * missing second stage translation table entry, which can mean that either the
1894  * guest simply needs more memory and we must allocate an appropriate page or it
1895  * can mean that the guest tried to access I/O memory, which is emulated by user
1896  * space. The distinction is based on the IPA causing the fault and whether this
1897  * memory region has been registered as standard RAM by user space.
1898  */
kvm_handle_guest_abort(struct kvm_vcpu * vcpu,struct kvm_run * run)1899 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run)
1900 {
1901 	unsigned long fault_status;
1902 	phys_addr_t fault_ipa;
1903 	struct kvm_memory_slot *memslot;
1904 	unsigned long hva;
1905 	bool is_iabt, write_fault, writable;
1906 	gfn_t gfn;
1907 	int ret, idx;
1908 
1909 	fault_status = kvm_vcpu_trap_get_fault_type(vcpu);
1910 
1911 	fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
1912 	is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
1913 
1914 	/* Synchronous External Abort? */
1915 	if (kvm_vcpu_dabt_isextabt(vcpu)) {
1916 		/*
1917 		 * For RAS the host kernel may handle this abort.
1918 		 * There is no need to pass the error into the guest.
1919 		 */
1920 		if (!kvm_handle_guest_sea(fault_ipa, kvm_vcpu_get_hsr(vcpu)))
1921 			return 1;
1922 
1923 		if (unlikely(!is_iabt)) {
1924 			kvm_inject_vabt(vcpu);
1925 			return 1;
1926 		}
1927 	}
1928 
1929 	trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_hsr(vcpu),
1930 			      kvm_vcpu_get_hfar(vcpu), fault_ipa);
1931 
1932 	/* Check the stage-2 fault is trans. fault or write fault */
1933 	if (fault_status != FSC_FAULT && fault_status != FSC_PERM &&
1934 	    fault_status != FSC_ACCESS) {
1935 		kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
1936 			kvm_vcpu_trap_get_class(vcpu),
1937 			(unsigned long)kvm_vcpu_trap_get_fault(vcpu),
1938 			(unsigned long)kvm_vcpu_get_hsr(vcpu));
1939 		return -EFAULT;
1940 	}
1941 
1942 	idx = srcu_read_lock(&vcpu->kvm->srcu);
1943 
1944 	gfn = fault_ipa >> PAGE_SHIFT;
1945 	memslot = gfn_to_memslot(vcpu->kvm, gfn);
1946 	hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
1947 	write_fault = kvm_is_write_fault(vcpu);
1948 	if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
1949 		if (is_iabt) {
1950 			/* Prefetch Abort on I/O address */
1951 			kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1952 			ret = 1;
1953 			goto out_unlock;
1954 		}
1955 
1956 		/*
1957 		 * Check for a cache maintenance operation. Since we
1958 		 * ended-up here, we know it is outside of any memory
1959 		 * slot. But we can't find out if that is for a device,
1960 		 * or if the guest is just being stupid. The only thing
1961 		 * we know for sure is that this range cannot be cached.
1962 		 *
1963 		 * So let's assume that the guest is just being
1964 		 * cautious, and skip the instruction.
1965 		 */
1966 		if (kvm_vcpu_dabt_is_cm(vcpu)) {
1967 			kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
1968 			ret = 1;
1969 			goto out_unlock;
1970 		}
1971 
1972 		/*
1973 		 * The IPA is reported as [MAX:12], so we need to
1974 		 * complement it with the bottom 12 bits from the
1975 		 * faulting VA. This is always 12 bits, irrespective
1976 		 * of the page size.
1977 		 */
1978 		fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
1979 		ret = io_mem_abort(vcpu, run, fault_ipa);
1980 		goto out_unlock;
1981 	}
1982 
1983 	/* Userspace should not be able to register out-of-bounds IPAs */
1984 	VM_BUG_ON(fault_ipa >= kvm_phys_size(vcpu->kvm));
1985 
1986 	if (fault_status == FSC_ACCESS) {
1987 		handle_access_fault(vcpu, fault_ipa);
1988 		ret = 1;
1989 		goto out_unlock;
1990 	}
1991 
1992 	ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
1993 	if (ret == 0)
1994 		ret = 1;
1995 out_unlock:
1996 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
1997 	return ret;
1998 }
1999 
handle_hva_to_gpa(struct kvm * kvm,unsigned long start,unsigned long end,int (* handler)(struct kvm * kvm,gpa_t gpa,u64 size,void * data),void * data)2000 static int handle_hva_to_gpa(struct kvm *kvm,
2001 			     unsigned long start,
2002 			     unsigned long end,
2003 			     int (*handler)(struct kvm *kvm,
2004 					    gpa_t gpa, u64 size,
2005 					    void *data),
2006 			     void *data)
2007 {
2008 	struct kvm_memslots *slots;
2009 	struct kvm_memory_slot *memslot;
2010 	int ret = 0;
2011 
2012 	slots = kvm_memslots(kvm);
2013 
2014 	/* we only care about the pages that the guest sees */
2015 	kvm_for_each_memslot(memslot, slots) {
2016 		unsigned long hva_start, hva_end;
2017 		gfn_t gpa;
2018 
2019 		hva_start = max(start, memslot->userspace_addr);
2020 		hva_end = min(end, memslot->userspace_addr +
2021 					(memslot->npages << PAGE_SHIFT));
2022 		if (hva_start >= hva_end)
2023 			continue;
2024 
2025 		gpa = hva_to_gfn_memslot(hva_start, memslot) << PAGE_SHIFT;
2026 		ret |= handler(kvm, gpa, (u64)(hva_end - hva_start), data);
2027 	}
2028 
2029 	return ret;
2030 }
2031 
kvm_unmap_hva_handler(struct kvm * kvm,gpa_t gpa,u64 size,void * data)2032 static int kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
2033 {
2034 	unmap_stage2_range(kvm, gpa, size);
2035 	return 0;
2036 }
2037 
kvm_unmap_hva_range(struct kvm * kvm,unsigned long start,unsigned long end)2038 int kvm_unmap_hva_range(struct kvm *kvm,
2039 			unsigned long start, unsigned long end)
2040 {
2041 	if (!kvm->arch.pgd)
2042 		return 0;
2043 
2044 	trace_kvm_unmap_hva_range(start, end);
2045 	handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
2046 	return 0;
2047 }
2048 
kvm_set_spte_handler(struct kvm * kvm,gpa_t gpa,u64 size,void * data)2049 static int kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
2050 {
2051 	pte_t *pte = (pte_t *)data;
2052 
2053 	WARN_ON(size != PAGE_SIZE);
2054 	/*
2055 	 * We can always call stage2_set_pte with KVM_S2PTE_FLAG_LOGGING_ACTIVE
2056 	 * flag clear because MMU notifiers will have unmapped a huge PMD before
2057 	 * calling ->change_pte() (which in turn calls kvm_set_spte_hva()) and
2058 	 * therefore stage2_set_pte() never needs to clear out a huge PMD
2059 	 * through this calling path.
2060 	 */
2061 	stage2_set_pte(kvm, NULL, gpa, pte, 0);
2062 	return 0;
2063 }
2064 
2065 
kvm_set_spte_hva(struct kvm * kvm,unsigned long hva,pte_t pte)2066 int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
2067 {
2068 	unsigned long end = hva + PAGE_SIZE;
2069 	kvm_pfn_t pfn = pte_pfn(pte);
2070 	pte_t stage2_pte;
2071 
2072 	if (!kvm->arch.pgd)
2073 		return 0;
2074 
2075 	trace_kvm_set_spte_hva(hva);
2076 
2077 	/*
2078 	 * We've moved a page around, probably through CoW, so let's treat it
2079 	 * just like a translation fault and clean the cache to the PoC.
2080 	 */
2081 	clean_dcache_guest_page(pfn, PAGE_SIZE);
2082 	stage2_pte = kvm_pfn_pte(pfn, PAGE_S2);
2083 	handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte);
2084 
2085 	return 0;
2086 }
2087 
kvm_age_hva_handler(struct kvm * kvm,gpa_t gpa,u64 size,void * data)2088 static int kvm_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
2089 {
2090 	pud_t *pud;
2091 	pmd_t *pmd;
2092 	pte_t *pte;
2093 
2094 	WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE);
2095 	if (!stage2_get_leaf_entry(kvm, gpa, &pud, &pmd, &pte))
2096 		return 0;
2097 
2098 	if (pud)
2099 		return stage2_pudp_test_and_clear_young(pud);
2100 	else if (pmd)
2101 		return stage2_pmdp_test_and_clear_young(pmd);
2102 	else
2103 		return stage2_ptep_test_and_clear_young(pte);
2104 }
2105 
kvm_test_age_hva_handler(struct kvm * kvm,gpa_t gpa,u64 size,void * data)2106 static int kvm_test_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
2107 {
2108 	pud_t *pud;
2109 	pmd_t *pmd;
2110 	pte_t *pte;
2111 
2112 	WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE);
2113 	if (!stage2_get_leaf_entry(kvm, gpa, &pud, &pmd, &pte))
2114 		return 0;
2115 
2116 	if (pud)
2117 		return kvm_s2pud_young(*pud);
2118 	else if (pmd)
2119 		return pmd_young(*pmd);
2120 	else
2121 		return pte_young(*pte);
2122 }
2123 
kvm_age_hva(struct kvm * kvm,unsigned long start,unsigned long end)2124 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
2125 {
2126 	if (!kvm->arch.pgd)
2127 		return 0;
2128 	trace_kvm_age_hva(start, end);
2129 	return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL);
2130 }
2131 
kvm_test_age_hva(struct kvm * kvm,unsigned long hva)2132 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
2133 {
2134 	if (!kvm->arch.pgd)
2135 		return 0;
2136 	trace_kvm_test_age_hva(hva);
2137 	return handle_hva_to_gpa(kvm, hva, hva, kvm_test_age_hva_handler, NULL);
2138 }
2139 
kvm_mmu_free_memory_caches(struct kvm_vcpu * vcpu)2140 void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
2141 {
2142 	mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
2143 }
2144 
kvm_mmu_get_httbr(void)2145 phys_addr_t kvm_mmu_get_httbr(void)
2146 {
2147 	if (__kvm_cpu_uses_extended_idmap())
2148 		return virt_to_phys(merged_hyp_pgd);
2149 	else
2150 		return virt_to_phys(hyp_pgd);
2151 }
2152 
kvm_get_idmap_vector(void)2153 phys_addr_t kvm_get_idmap_vector(void)
2154 {
2155 	return hyp_idmap_vector;
2156 }
2157 
kvm_map_idmap_text(pgd_t * pgd)2158 static int kvm_map_idmap_text(pgd_t *pgd)
2159 {
2160 	int err;
2161 
2162 	/* Create the idmap in the boot page tables */
2163 	err = 	__create_hyp_mappings(pgd, __kvm_idmap_ptrs_per_pgd(),
2164 				      hyp_idmap_start, hyp_idmap_end,
2165 				      __phys_to_pfn(hyp_idmap_start),
2166 				      PAGE_HYP_EXEC);
2167 	if (err)
2168 		kvm_err("Failed to idmap %lx-%lx\n",
2169 			hyp_idmap_start, hyp_idmap_end);
2170 
2171 	return err;
2172 }
2173 
kvm_mmu_init(void)2174 int kvm_mmu_init(void)
2175 {
2176 	int err;
2177 
2178 	hyp_idmap_start = kvm_virt_to_phys(__hyp_idmap_text_start);
2179 	hyp_idmap_start = ALIGN_DOWN(hyp_idmap_start, PAGE_SIZE);
2180 	hyp_idmap_end = kvm_virt_to_phys(__hyp_idmap_text_end);
2181 	hyp_idmap_end = ALIGN(hyp_idmap_end, PAGE_SIZE);
2182 	hyp_idmap_vector = kvm_virt_to_phys(__kvm_hyp_init);
2183 
2184 	/*
2185 	 * We rely on the linker script to ensure at build time that the HYP
2186 	 * init code does not cross a page boundary.
2187 	 */
2188 	BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
2189 
2190 	kvm_debug("IDMAP page: %lx\n", hyp_idmap_start);
2191 	kvm_debug("HYP VA range: %lx:%lx\n",
2192 		  kern_hyp_va(PAGE_OFFSET),
2193 		  kern_hyp_va((unsigned long)high_memory - 1));
2194 
2195 	if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) &&
2196 	    hyp_idmap_start <  kern_hyp_va((unsigned long)high_memory - 1) &&
2197 	    hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) {
2198 		/*
2199 		 * The idmap page is intersecting with the VA space,
2200 		 * it is not safe to continue further.
2201 		 */
2202 		kvm_err("IDMAP intersecting with HYP VA, unable to continue\n");
2203 		err = -EINVAL;
2204 		goto out;
2205 	}
2206 
2207 	hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order);
2208 	if (!hyp_pgd) {
2209 		kvm_err("Hyp mode PGD not allocated\n");
2210 		err = -ENOMEM;
2211 		goto out;
2212 	}
2213 
2214 	if (__kvm_cpu_uses_extended_idmap()) {
2215 		boot_hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
2216 							 hyp_pgd_order);
2217 		if (!boot_hyp_pgd) {
2218 			kvm_err("Hyp boot PGD not allocated\n");
2219 			err = -ENOMEM;
2220 			goto out;
2221 		}
2222 
2223 		err = kvm_map_idmap_text(boot_hyp_pgd);
2224 		if (err)
2225 			goto out;
2226 
2227 		merged_hyp_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
2228 		if (!merged_hyp_pgd) {
2229 			kvm_err("Failed to allocate extra HYP pgd\n");
2230 			goto out;
2231 		}
2232 		__kvm_extend_hypmap(boot_hyp_pgd, hyp_pgd, merged_hyp_pgd,
2233 				    hyp_idmap_start);
2234 	} else {
2235 		err = kvm_map_idmap_text(hyp_pgd);
2236 		if (err)
2237 			goto out;
2238 	}
2239 
2240 	io_map_base = hyp_idmap_start;
2241 	return 0;
2242 out:
2243 	free_hyp_pgds();
2244 	return err;
2245 }
2246 
kvm_arch_commit_memory_region(struct kvm * kvm,const struct kvm_userspace_memory_region * mem,const struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)2247 void kvm_arch_commit_memory_region(struct kvm *kvm,
2248 				   const struct kvm_userspace_memory_region *mem,
2249 				   const struct kvm_memory_slot *old,
2250 				   const struct kvm_memory_slot *new,
2251 				   enum kvm_mr_change change)
2252 {
2253 	/*
2254 	 * At this point memslot has been committed and there is an
2255 	 * allocated dirty_bitmap[], dirty pages will be be tracked while the
2256 	 * memory slot is write protected.
2257 	 */
2258 	if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES)
2259 		kvm_mmu_wp_memory_region(kvm, mem->slot);
2260 }
2261 
kvm_arch_prepare_memory_region(struct kvm * kvm,struct kvm_memory_slot * memslot,const struct kvm_userspace_memory_region * mem,enum kvm_mr_change change)2262 int kvm_arch_prepare_memory_region(struct kvm *kvm,
2263 				   struct kvm_memory_slot *memslot,
2264 				   const struct kvm_userspace_memory_region *mem,
2265 				   enum kvm_mr_change change)
2266 {
2267 	hva_t hva = mem->userspace_addr;
2268 	hva_t reg_end = hva + mem->memory_size;
2269 	bool writable = !(mem->flags & KVM_MEM_READONLY);
2270 	int ret = 0;
2271 
2272 	if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
2273 			change != KVM_MR_FLAGS_ONLY)
2274 		return 0;
2275 
2276 	/*
2277 	 * Prevent userspace from creating a memory region outside of the IPA
2278 	 * space addressable by the KVM guest IPA space.
2279 	 */
2280 	if (memslot->base_gfn + memslot->npages >=
2281 	    (kvm_phys_size(kvm) >> PAGE_SHIFT))
2282 		return -EFAULT;
2283 
2284 	down_read(&current->mm->mmap_sem);
2285 	/*
2286 	 * A memory region could potentially cover multiple VMAs, and any holes
2287 	 * between them, so iterate over all of them to find out if we can map
2288 	 * any of them right now.
2289 	 *
2290 	 *     +--------------------------------------------+
2291 	 * +---------------+----------------+   +----------------+
2292 	 * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
2293 	 * +---------------+----------------+   +----------------+
2294 	 *     |               memory region                |
2295 	 *     +--------------------------------------------+
2296 	 */
2297 	do {
2298 		struct vm_area_struct *vma = find_vma(current->mm, hva);
2299 		hva_t vm_start, vm_end;
2300 
2301 		if (!vma || vma->vm_start >= reg_end)
2302 			break;
2303 
2304 		/*
2305 		 * Mapping a read-only VMA is only allowed if the
2306 		 * memory region is configured as read-only.
2307 		 */
2308 		if (writable && !(vma->vm_flags & VM_WRITE)) {
2309 			ret = -EPERM;
2310 			break;
2311 		}
2312 
2313 		/*
2314 		 * Take the intersection of this VMA with the memory region
2315 		 */
2316 		vm_start = max(hva, vma->vm_start);
2317 		vm_end = min(reg_end, vma->vm_end);
2318 
2319 		if (vma->vm_flags & VM_PFNMAP) {
2320 			gpa_t gpa = mem->guest_phys_addr +
2321 				    (vm_start - mem->userspace_addr);
2322 			phys_addr_t pa;
2323 
2324 			pa = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
2325 			pa += vm_start - vma->vm_start;
2326 
2327 			/* IO region dirty page logging not allowed */
2328 			if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES) {
2329 				ret = -EINVAL;
2330 				goto out;
2331 			}
2332 
2333 			ret = kvm_phys_addr_ioremap(kvm, gpa, pa,
2334 						    vm_end - vm_start,
2335 						    writable);
2336 			if (ret)
2337 				break;
2338 		}
2339 		hva = vm_end;
2340 	} while (hva < reg_end);
2341 
2342 	if (change == KVM_MR_FLAGS_ONLY)
2343 		goto out;
2344 
2345 	spin_lock(&kvm->mmu_lock);
2346 	if (ret)
2347 		unmap_stage2_range(kvm, mem->guest_phys_addr, mem->memory_size);
2348 	else
2349 		stage2_flush_memslot(kvm, memslot);
2350 	spin_unlock(&kvm->mmu_lock);
2351 out:
2352 	up_read(&current->mm->mmap_sem);
2353 	return ret;
2354 }
2355 
kvm_arch_free_memslot(struct kvm * kvm,struct kvm_memory_slot * free,struct kvm_memory_slot * dont)2356 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
2357 			   struct kvm_memory_slot *dont)
2358 {
2359 }
2360 
kvm_arch_create_memslot(struct kvm * kvm,struct kvm_memory_slot * slot,unsigned long npages)2361 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
2362 			    unsigned long npages)
2363 {
2364 	return 0;
2365 }
2366 
kvm_arch_memslots_updated(struct kvm * kvm,u64 gen)2367 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
2368 {
2369 }
2370 
kvm_arch_flush_shadow_all(struct kvm * kvm)2371 void kvm_arch_flush_shadow_all(struct kvm *kvm)
2372 {
2373 	kvm_free_stage2_pgd(kvm);
2374 }
2375 
kvm_arch_flush_shadow_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)2376 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
2377 				   struct kvm_memory_slot *slot)
2378 {
2379 	gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
2380 	phys_addr_t size = slot->npages << PAGE_SHIFT;
2381 
2382 	spin_lock(&kvm->mmu_lock);
2383 	unmap_stage2_range(kvm, gpa, size);
2384 	spin_unlock(&kvm->mmu_lock);
2385 }
2386 
2387 /*
2388  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
2389  *
2390  * Main problems:
2391  * - S/W ops are local to a CPU (not broadcast)
2392  * - We have line migration behind our back (speculation)
2393  * - System caches don't support S/W at all (damn!)
2394  *
2395  * In the face of the above, the best we can do is to try and convert
2396  * S/W ops to VA ops. Because the guest is not allowed to infer the
2397  * S/W to PA mapping, it can only use S/W to nuke the whole cache,
2398  * which is a rather good thing for us.
2399  *
2400  * Also, it is only used when turning caches on/off ("The expected
2401  * usage of the cache maintenance instructions that operate by set/way
2402  * is associated with the cache maintenance instructions associated
2403  * with the powerdown and powerup of caches, if this is required by
2404  * the implementation.").
2405  *
2406  * We use the following policy:
2407  *
2408  * - If we trap a S/W operation, we enable VM trapping to detect
2409  *   caches being turned on/off, and do a full clean.
2410  *
2411  * - We flush the caches on both caches being turned on and off.
2412  *
2413  * - Once the caches are enabled, we stop trapping VM ops.
2414  */
kvm_set_way_flush(struct kvm_vcpu * vcpu)2415 void kvm_set_way_flush(struct kvm_vcpu *vcpu)
2416 {
2417 	unsigned long hcr = *vcpu_hcr(vcpu);
2418 
2419 	/*
2420 	 * If this is the first time we do a S/W operation
2421 	 * (i.e. HCR_TVM not set) flush the whole memory, and set the
2422 	 * VM trapping.
2423 	 *
2424 	 * Otherwise, rely on the VM trapping to wait for the MMU +
2425 	 * Caches to be turned off. At that point, we'll be able to
2426 	 * clean the caches again.
2427 	 */
2428 	if (!(hcr & HCR_TVM)) {
2429 		trace_kvm_set_way_flush(*vcpu_pc(vcpu),
2430 					vcpu_has_cache_enabled(vcpu));
2431 		stage2_flush_vm(vcpu->kvm);
2432 		*vcpu_hcr(vcpu) = hcr | HCR_TVM;
2433 	}
2434 }
2435 
kvm_toggle_cache(struct kvm_vcpu * vcpu,bool was_enabled)2436 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
2437 {
2438 	bool now_enabled = vcpu_has_cache_enabled(vcpu);
2439 
2440 	/*
2441 	 * If switching the MMU+caches on, need to invalidate the caches.
2442 	 * If switching it off, need to clean the caches.
2443 	 * Clean + invalidate does the trick always.
2444 	 */
2445 	if (now_enabled != was_enabled)
2446 		stage2_flush_vm(vcpu->kvm);
2447 
2448 	/* Caches are now on, stop trapping VM ops (until a S/W op) */
2449 	if (now_enabled)
2450 		*vcpu_hcr(vcpu) &= ~HCR_TVM;
2451 
2452 	trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
2453 }
2454