1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * derived from drivers/kvm/kvm_main.c
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright (C) 2008 Qumranet, Inc.
9 * Copyright IBM Corporation, 2008
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 *
12 * Authors:
13 * Avi Kivity <avi@qumranet.com>
14 * Yaniv Kamay <yaniv@qumranet.com>
15 * Amit Shah <amit.shah@qumranet.com>
16 * Ben-Ami Yassour <benami@il.ibm.com>
17 */
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20 #include <linux/kvm_host.h>
21 #include "irq.h"
22 #include "ioapic.h"
23 #include "mmu.h"
24 #include "i8254.h"
25 #include "tss.h"
26 #include "kvm_cache_regs.h"
27 #include "kvm_emulate.h"
28 #include "mmu/page_track.h"
29 #include "x86.h"
30 #include "cpuid.h"
31 #include "pmu.h"
32 #include "hyperv.h"
33 #include "lapic.h"
34 #include "xen.h"
35 #include "smm.h"
36
37 #include <linux/clocksource.h>
38 #include <linux/interrupt.h>
39 #include <linux/kvm.h>
40 #include <linux/fs.h>
41 #include <linux/vmalloc.h>
42 #include <linux/export.h>
43 #include <linux/moduleparam.h>
44 #include <linux/mman.h>
45 #include <linux/highmem.h>
46 #include <linux/iommu.h>
47 #include <linux/cpufreq.h>
48 #include <linux/user-return-notifier.h>
49 #include <linux/srcu.h>
50 #include <linux/slab.h>
51 #include <linux/perf_event.h>
52 #include <linux/uaccess.h>
53 #include <linux/hash.h>
54 #include <linux/pci.h>
55 #include <linux/timekeeper_internal.h>
56 #include <linux/pvclock_gtod.h>
57 #include <linux/kvm_irqfd.h>
58 #include <linux/irqbypass.h>
59 #include <linux/sched/stat.h>
60 #include <linux/sched/isolation.h>
61 #include <linux/mem_encrypt.h>
62 #include <linux/entry-kvm.h>
63 #include <linux/suspend.h>
64 #include <linux/smp.h>
65
66 #include <trace/events/ipi.h>
67 #include <trace/events/kvm.h>
68
69 #include <asm/debugreg.h>
70 #include <asm/msr.h>
71 #include <asm/desc.h>
72 #include <asm/mce.h>
73 #include <asm/pkru.h>
74 #include <linux/kernel_stat.h>
75 #include <asm/fpu/api.h>
76 #include <asm/fpu/xcr.h>
77 #include <asm/fpu/xstate.h>
78 #include <asm/pvclock.h>
79 #include <asm/div64.h>
80 #include <asm/irq_remapping.h>
81 #include <asm/mshyperv.h>
82 #include <asm/hypervisor.h>
83 #include <asm/tlbflush.h>
84 #include <asm/intel_pt.h>
85 #include <asm/emulate_prefix.h>
86 #include <asm/sgx.h>
87 #include <clocksource/hyperv_timer.h>
88
89 #define CREATE_TRACE_POINTS
90 #include "trace.h"
91
92 #define MAX_IO_MSRS 256
93 #define KVM_MAX_MCE_BANKS 32
94
95 struct kvm_caps kvm_caps __read_mostly = {
96 .supported_mce_cap = MCG_CTL_P | MCG_SER_P,
97 };
98 EXPORT_SYMBOL_GPL(kvm_caps);
99
100 #define ERR_PTR_USR(e) ((void __user *)ERR_PTR(e))
101
102 #define emul_to_vcpu(ctxt) \
103 ((struct kvm_vcpu *)(ctxt)->vcpu)
104
105 /* EFER defaults:
106 * - enable syscall per default because its emulated by KVM
107 * - enable LME and LMA per default on 64 bit KVM
108 */
109 #ifdef CONFIG_X86_64
110 static
111 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
112 #else
113 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
114 #endif
115
116 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
117
118 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
119
120 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE
121
122 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
123 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
124
125 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
126 static void process_nmi(struct kvm_vcpu *vcpu);
127 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
128 static void store_regs(struct kvm_vcpu *vcpu);
129 static int sync_regs(struct kvm_vcpu *vcpu);
130 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu);
131
132 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
133 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
134
135 static DEFINE_MUTEX(vendor_module_lock);
136 struct kvm_x86_ops kvm_x86_ops __read_mostly;
137
138 #define KVM_X86_OP(func) \
139 DEFINE_STATIC_CALL_NULL(kvm_x86_##func, \
140 *(((struct kvm_x86_ops *)0)->func));
141 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
142 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
143 #include <asm/kvm-x86-ops.h>
144 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
145 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
146
147 static bool __read_mostly ignore_msrs = 0;
148 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
149
150 bool __read_mostly report_ignored_msrs = true;
151 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
152 EXPORT_SYMBOL_GPL(report_ignored_msrs);
153
154 unsigned int min_timer_period_us = 200;
155 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
156
157 static bool __read_mostly kvmclock_periodic_sync = true;
158 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
159
160 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
161 static u32 __read_mostly tsc_tolerance_ppm = 250;
162 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
163
164 /*
165 * lapic timer advance (tscdeadline mode only) in nanoseconds. '-1' enables
166 * adaptive tuning starting from default advancement of 1000ns. '0' disables
167 * advancement entirely. Any other value is used as-is and disables adaptive
168 * tuning, i.e. allows privileged userspace to set an exact advancement time.
169 */
170 static int __read_mostly lapic_timer_advance_ns = -1;
171 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
172
173 static bool __read_mostly vector_hashing = true;
174 module_param(vector_hashing, bool, S_IRUGO);
175
176 bool __read_mostly enable_vmware_backdoor = false;
177 module_param(enable_vmware_backdoor, bool, S_IRUGO);
178 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
179
180 /*
181 * Flags to manipulate forced emulation behavior (any non-zero value will
182 * enable forced emulation).
183 */
184 #define KVM_FEP_CLEAR_RFLAGS_RF BIT(1)
185 static int __read_mostly force_emulation_prefix;
186 module_param(force_emulation_prefix, int, 0644);
187
188 int __read_mostly pi_inject_timer = -1;
189 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
190
191 /* Enable/disable PMU virtualization */
192 bool __read_mostly enable_pmu = true;
193 EXPORT_SYMBOL_GPL(enable_pmu);
194 module_param(enable_pmu, bool, 0444);
195
196 bool __read_mostly eager_page_split = true;
197 module_param(eager_page_split, bool, 0644);
198
199 /* Enable/disable SMT_RSB bug mitigation */
200 static bool __read_mostly mitigate_smt_rsb;
201 module_param(mitigate_smt_rsb, bool, 0444);
202
203 /*
204 * Restoring the host value for MSRs that are only consumed when running in
205 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
206 * returns to userspace, i.e. the kernel can run with the guest's value.
207 */
208 #define KVM_MAX_NR_USER_RETURN_MSRS 16
209
210 struct kvm_user_return_msrs {
211 struct user_return_notifier urn;
212 bool registered;
213 struct kvm_user_return_msr_values {
214 u64 host;
215 u64 curr;
216 } values[KVM_MAX_NR_USER_RETURN_MSRS];
217 };
218
219 u32 __read_mostly kvm_nr_uret_msrs;
220 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
221 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
222 static struct kvm_user_return_msrs __percpu *user_return_msrs;
223
224 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
225 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
226 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
227 | XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE)
228
229 u64 __read_mostly host_efer;
230 EXPORT_SYMBOL_GPL(host_efer);
231
232 bool __read_mostly allow_smaller_maxphyaddr = 0;
233 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
234
235 bool __read_mostly enable_apicv = true;
236 EXPORT_SYMBOL_GPL(enable_apicv);
237
238 u64 __read_mostly host_xss;
239 EXPORT_SYMBOL_GPL(host_xss);
240
241 u64 __read_mostly host_arch_capabilities;
242 EXPORT_SYMBOL_GPL(host_arch_capabilities);
243
244 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
245 KVM_GENERIC_VM_STATS(),
246 STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
247 STATS_DESC_COUNTER(VM, mmu_pte_write),
248 STATS_DESC_COUNTER(VM, mmu_pde_zapped),
249 STATS_DESC_COUNTER(VM, mmu_flooded),
250 STATS_DESC_COUNTER(VM, mmu_recycled),
251 STATS_DESC_COUNTER(VM, mmu_cache_miss),
252 STATS_DESC_ICOUNTER(VM, mmu_unsync),
253 STATS_DESC_ICOUNTER(VM, pages_4k),
254 STATS_DESC_ICOUNTER(VM, pages_2m),
255 STATS_DESC_ICOUNTER(VM, pages_1g),
256 STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
257 STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
258 STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
259 };
260
261 const struct kvm_stats_header kvm_vm_stats_header = {
262 .name_size = KVM_STATS_NAME_SIZE,
263 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
264 .id_offset = sizeof(struct kvm_stats_header),
265 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
266 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
267 sizeof(kvm_vm_stats_desc),
268 };
269
270 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
271 KVM_GENERIC_VCPU_STATS(),
272 STATS_DESC_COUNTER(VCPU, pf_taken),
273 STATS_DESC_COUNTER(VCPU, pf_fixed),
274 STATS_DESC_COUNTER(VCPU, pf_emulate),
275 STATS_DESC_COUNTER(VCPU, pf_spurious),
276 STATS_DESC_COUNTER(VCPU, pf_fast),
277 STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created),
278 STATS_DESC_COUNTER(VCPU, pf_guest),
279 STATS_DESC_COUNTER(VCPU, tlb_flush),
280 STATS_DESC_COUNTER(VCPU, invlpg),
281 STATS_DESC_COUNTER(VCPU, exits),
282 STATS_DESC_COUNTER(VCPU, io_exits),
283 STATS_DESC_COUNTER(VCPU, mmio_exits),
284 STATS_DESC_COUNTER(VCPU, signal_exits),
285 STATS_DESC_COUNTER(VCPU, irq_window_exits),
286 STATS_DESC_COUNTER(VCPU, nmi_window_exits),
287 STATS_DESC_COUNTER(VCPU, l1d_flush),
288 STATS_DESC_COUNTER(VCPU, halt_exits),
289 STATS_DESC_COUNTER(VCPU, request_irq_exits),
290 STATS_DESC_COUNTER(VCPU, irq_exits),
291 STATS_DESC_COUNTER(VCPU, host_state_reload),
292 STATS_DESC_COUNTER(VCPU, fpu_reload),
293 STATS_DESC_COUNTER(VCPU, insn_emulation),
294 STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
295 STATS_DESC_COUNTER(VCPU, hypercalls),
296 STATS_DESC_COUNTER(VCPU, irq_injections),
297 STATS_DESC_COUNTER(VCPU, nmi_injections),
298 STATS_DESC_COUNTER(VCPU, req_event),
299 STATS_DESC_COUNTER(VCPU, nested_run),
300 STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
301 STATS_DESC_COUNTER(VCPU, directed_yield_successful),
302 STATS_DESC_COUNTER(VCPU, preemption_reported),
303 STATS_DESC_COUNTER(VCPU, preemption_other),
304 STATS_DESC_IBOOLEAN(VCPU, guest_mode),
305 STATS_DESC_COUNTER(VCPU, notify_window_exits),
306 };
307
308 const struct kvm_stats_header kvm_vcpu_stats_header = {
309 .name_size = KVM_STATS_NAME_SIZE,
310 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
311 .id_offset = sizeof(struct kvm_stats_header),
312 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
313 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
314 sizeof(kvm_vcpu_stats_desc),
315 };
316
317 u64 __read_mostly host_xcr0;
318
319 static struct kmem_cache *x86_emulator_cache;
320
321 /*
322 * When called, it means the previous get/set msr reached an invalid msr.
323 * Return true if we want to ignore/silent this failed msr access.
324 */
kvm_msr_ignored_check(u32 msr,u64 data,bool write)325 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write)
326 {
327 const char *op = write ? "wrmsr" : "rdmsr";
328
329 if (ignore_msrs) {
330 if (report_ignored_msrs)
331 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
332 op, msr, data);
333 /* Mask the error */
334 return true;
335 } else {
336 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
337 op, msr, data);
338 return false;
339 }
340 }
341
kvm_alloc_emulator_cache(void)342 static struct kmem_cache *kvm_alloc_emulator_cache(void)
343 {
344 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
345 unsigned int size = sizeof(struct x86_emulate_ctxt);
346
347 return kmem_cache_create_usercopy("x86_emulator", size,
348 __alignof__(struct x86_emulate_ctxt),
349 SLAB_ACCOUNT, useroffset,
350 size - useroffset, NULL);
351 }
352
353 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
354
kvm_async_pf_hash_reset(struct kvm_vcpu * vcpu)355 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
356 {
357 int i;
358 for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
359 vcpu->arch.apf.gfns[i] = ~0;
360 }
361
kvm_on_user_return(struct user_return_notifier * urn)362 static void kvm_on_user_return(struct user_return_notifier *urn)
363 {
364 unsigned slot;
365 struct kvm_user_return_msrs *msrs
366 = container_of(urn, struct kvm_user_return_msrs, urn);
367 struct kvm_user_return_msr_values *values;
368 unsigned long flags;
369
370 /*
371 * Disabling irqs at this point since the following code could be
372 * interrupted and executed through kvm_arch_hardware_disable()
373 */
374 local_irq_save(flags);
375 if (msrs->registered) {
376 msrs->registered = false;
377 user_return_notifier_unregister(urn);
378 }
379 local_irq_restore(flags);
380 for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
381 values = &msrs->values[slot];
382 if (values->host != values->curr) {
383 wrmsrl(kvm_uret_msrs_list[slot], values->host);
384 values->curr = values->host;
385 }
386 }
387 }
388
kvm_probe_user_return_msr(u32 msr)389 static int kvm_probe_user_return_msr(u32 msr)
390 {
391 u64 val;
392 int ret;
393
394 preempt_disable();
395 ret = rdmsrl_safe(msr, &val);
396 if (ret)
397 goto out;
398 ret = wrmsrl_safe(msr, val);
399 out:
400 preempt_enable();
401 return ret;
402 }
403
kvm_add_user_return_msr(u32 msr)404 int kvm_add_user_return_msr(u32 msr)
405 {
406 BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
407
408 if (kvm_probe_user_return_msr(msr))
409 return -1;
410
411 kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
412 return kvm_nr_uret_msrs++;
413 }
414 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
415
kvm_find_user_return_msr(u32 msr)416 int kvm_find_user_return_msr(u32 msr)
417 {
418 int i;
419
420 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
421 if (kvm_uret_msrs_list[i] == msr)
422 return i;
423 }
424 return -1;
425 }
426 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
427
kvm_user_return_msr_cpu_online(void)428 static void kvm_user_return_msr_cpu_online(void)
429 {
430 unsigned int cpu = smp_processor_id();
431 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
432 u64 value;
433 int i;
434
435 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
436 rdmsrl_safe(kvm_uret_msrs_list[i], &value);
437 msrs->values[i].host = value;
438 msrs->values[i].curr = value;
439 }
440 }
441
kvm_set_user_return_msr(unsigned slot,u64 value,u64 mask)442 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
443 {
444 unsigned int cpu = smp_processor_id();
445 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
446 int err;
447
448 value = (value & mask) | (msrs->values[slot].host & ~mask);
449 if (value == msrs->values[slot].curr)
450 return 0;
451 err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
452 if (err)
453 return 1;
454
455 msrs->values[slot].curr = value;
456 if (!msrs->registered) {
457 msrs->urn.on_user_return = kvm_on_user_return;
458 user_return_notifier_register(&msrs->urn);
459 msrs->registered = true;
460 }
461 return 0;
462 }
463 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
464
drop_user_return_notifiers(void)465 static void drop_user_return_notifiers(void)
466 {
467 unsigned int cpu = smp_processor_id();
468 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
469
470 if (msrs->registered)
471 kvm_on_user_return(&msrs->urn);
472 }
473
kvm_get_apic_base(struct kvm_vcpu * vcpu)474 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
475 {
476 return vcpu->arch.apic_base;
477 }
478
kvm_get_apic_mode(struct kvm_vcpu * vcpu)479 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
480 {
481 return kvm_apic_mode(kvm_get_apic_base(vcpu));
482 }
483 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
484
kvm_set_apic_base(struct kvm_vcpu * vcpu,struct msr_data * msr_info)485 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
486 {
487 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
488 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
489 u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
490 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
491
492 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
493 return 1;
494 if (!msr_info->host_initiated) {
495 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
496 return 1;
497 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
498 return 1;
499 }
500
501 kvm_lapic_set_base(vcpu, msr_info->data);
502 kvm_recalculate_apic_map(vcpu->kvm);
503 return 0;
504 }
505
506 /*
507 * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
508 *
509 * Hardware virtualization extension instructions may fault if a reboot turns
510 * off virtualization while processes are running. Usually after catching the
511 * fault we just panic; during reboot instead the instruction is ignored.
512 */
kvm_spurious_fault(void)513 noinstr void kvm_spurious_fault(void)
514 {
515 /* Fault while not rebooting. We want the trace. */
516 BUG_ON(!kvm_rebooting);
517 }
518 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
519
520 #define EXCPT_BENIGN 0
521 #define EXCPT_CONTRIBUTORY 1
522 #define EXCPT_PF 2
523
exception_class(int vector)524 static int exception_class(int vector)
525 {
526 switch (vector) {
527 case PF_VECTOR:
528 return EXCPT_PF;
529 case DE_VECTOR:
530 case TS_VECTOR:
531 case NP_VECTOR:
532 case SS_VECTOR:
533 case GP_VECTOR:
534 return EXCPT_CONTRIBUTORY;
535 default:
536 break;
537 }
538 return EXCPT_BENIGN;
539 }
540
541 #define EXCPT_FAULT 0
542 #define EXCPT_TRAP 1
543 #define EXCPT_ABORT 2
544 #define EXCPT_INTERRUPT 3
545 #define EXCPT_DB 4
546
exception_type(int vector)547 static int exception_type(int vector)
548 {
549 unsigned int mask;
550
551 if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
552 return EXCPT_INTERRUPT;
553
554 mask = 1 << vector;
555
556 /*
557 * #DBs can be trap-like or fault-like, the caller must check other CPU
558 * state, e.g. DR6, to determine whether a #DB is a trap or fault.
559 */
560 if (mask & (1 << DB_VECTOR))
561 return EXCPT_DB;
562
563 if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR)))
564 return EXCPT_TRAP;
565
566 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
567 return EXCPT_ABORT;
568
569 /* Reserved exceptions will result in fault */
570 return EXCPT_FAULT;
571 }
572
kvm_deliver_exception_payload(struct kvm_vcpu * vcpu,struct kvm_queued_exception * ex)573 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu,
574 struct kvm_queued_exception *ex)
575 {
576 if (!ex->has_payload)
577 return;
578
579 switch (ex->vector) {
580 case DB_VECTOR:
581 /*
582 * "Certain debug exceptions may clear bit 0-3. The
583 * remaining contents of the DR6 register are never
584 * cleared by the processor".
585 */
586 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
587 /*
588 * In order to reflect the #DB exception payload in guest
589 * dr6, three components need to be considered: active low
590 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
591 * DR6_BS and DR6_BT)
592 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
593 * In the target guest dr6:
594 * FIXED_1 bits should always be set.
595 * Active low bits should be cleared if 1-setting in payload.
596 * Active high bits should be set if 1-setting in payload.
597 *
598 * Note, the payload is compatible with the pending debug
599 * exceptions/exit qualification under VMX, that active_low bits
600 * are active high in payload.
601 * So they need to be flipped for DR6.
602 */
603 vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
604 vcpu->arch.dr6 |= ex->payload;
605 vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW;
606
607 /*
608 * The #DB payload is defined as compatible with the 'pending
609 * debug exceptions' field under VMX, not DR6. While bit 12 is
610 * defined in the 'pending debug exceptions' field (enabled
611 * breakpoint), it is reserved and must be zero in DR6.
612 */
613 vcpu->arch.dr6 &= ~BIT(12);
614 break;
615 case PF_VECTOR:
616 vcpu->arch.cr2 = ex->payload;
617 break;
618 }
619
620 ex->has_payload = false;
621 ex->payload = 0;
622 }
623 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
624
kvm_queue_exception_vmexit(struct kvm_vcpu * vcpu,unsigned int vector,bool has_error_code,u32 error_code,bool has_payload,unsigned long payload)625 static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector,
626 bool has_error_code, u32 error_code,
627 bool has_payload, unsigned long payload)
628 {
629 struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit;
630
631 ex->vector = vector;
632 ex->injected = false;
633 ex->pending = true;
634 ex->has_error_code = has_error_code;
635 ex->error_code = error_code;
636 ex->has_payload = has_payload;
637 ex->payload = payload;
638 }
639
640 /* Forcibly leave the nested mode in cases like a vCPU reset */
kvm_leave_nested(struct kvm_vcpu * vcpu)641 static void kvm_leave_nested(struct kvm_vcpu *vcpu)
642 {
643 kvm_x86_ops.nested_ops->leave_nested(vcpu);
644 }
645
kvm_multiple_exception(struct kvm_vcpu * vcpu,unsigned nr,bool has_error,u32 error_code,bool has_payload,unsigned long payload,bool reinject)646 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
647 unsigned nr, bool has_error, u32 error_code,
648 bool has_payload, unsigned long payload, bool reinject)
649 {
650 u32 prev_nr;
651 int class1, class2;
652
653 kvm_make_request(KVM_REQ_EVENT, vcpu);
654
655 /*
656 * If the exception is destined for L2 and isn't being reinjected,
657 * morph it to a VM-Exit if L1 wants to intercept the exception. A
658 * previously injected exception is not checked because it was checked
659 * when it was original queued, and re-checking is incorrect if _L1_
660 * injected the exception, in which case it's exempt from interception.
661 */
662 if (!reinject && is_guest_mode(vcpu) &&
663 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) {
664 kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code,
665 has_payload, payload);
666 return;
667 }
668
669 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
670 queue:
671 if (reinject) {
672 /*
673 * On VM-Entry, an exception can be pending if and only
674 * if event injection was blocked by nested_run_pending.
675 * In that case, however, vcpu_enter_guest() requests an
676 * immediate exit, and the guest shouldn't proceed far
677 * enough to need reinjection.
678 */
679 WARN_ON_ONCE(kvm_is_exception_pending(vcpu));
680 vcpu->arch.exception.injected = true;
681 if (WARN_ON_ONCE(has_payload)) {
682 /*
683 * A reinjected event has already
684 * delivered its payload.
685 */
686 has_payload = false;
687 payload = 0;
688 }
689 } else {
690 vcpu->arch.exception.pending = true;
691 vcpu->arch.exception.injected = false;
692 }
693 vcpu->arch.exception.has_error_code = has_error;
694 vcpu->arch.exception.vector = nr;
695 vcpu->arch.exception.error_code = error_code;
696 vcpu->arch.exception.has_payload = has_payload;
697 vcpu->arch.exception.payload = payload;
698 if (!is_guest_mode(vcpu))
699 kvm_deliver_exception_payload(vcpu,
700 &vcpu->arch.exception);
701 return;
702 }
703
704 /* to check exception */
705 prev_nr = vcpu->arch.exception.vector;
706 if (prev_nr == DF_VECTOR) {
707 /* triple fault -> shutdown */
708 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
709 return;
710 }
711 class1 = exception_class(prev_nr);
712 class2 = exception_class(nr);
713 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) ||
714 (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
715 /*
716 * Synthesize #DF. Clear the previously injected or pending
717 * exception so as not to incorrectly trigger shutdown.
718 */
719 vcpu->arch.exception.injected = false;
720 vcpu->arch.exception.pending = false;
721
722 kvm_queue_exception_e(vcpu, DF_VECTOR, 0);
723 } else {
724 /* replace previous exception with a new one in a hope
725 that instruction re-execution will regenerate lost
726 exception */
727 goto queue;
728 }
729 }
730
kvm_queue_exception(struct kvm_vcpu * vcpu,unsigned nr)731 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
732 {
733 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
734 }
735 EXPORT_SYMBOL_GPL(kvm_queue_exception);
736
kvm_requeue_exception(struct kvm_vcpu * vcpu,unsigned nr)737 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
738 {
739 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
740 }
741 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
742
kvm_queue_exception_p(struct kvm_vcpu * vcpu,unsigned nr,unsigned long payload)743 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
744 unsigned long payload)
745 {
746 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
747 }
748 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
749
kvm_queue_exception_e_p(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code,unsigned long payload)750 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
751 u32 error_code, unsigned long payload)
752 {
753 kvm_multiple_exception(vcpu, nr, true, error_code,
754 true, payload, false);
755 }
756
kvm_complete_insn_gp(struct kvm_vcpu * vcpu,int err)757 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
758 {
759 if (err)
760 kvm_inject_gp(vcpu, 0);
761 else
762 return kvm_skip_emulated_instruction(vcpu);
763
764 return 1;
765 }
766 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
767
complete_emulated_insn_gp(struct kvm_vcpu * vcpu,int err)768 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err)
769 {
770 if (err) {
771 kvm_inject_gp(vcpu, 0);
772 return 1;
773 }
774
775 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
776 EMULTYPE_COMPLETE_USER_EXIT);
777 }
778
kvm_inject_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)779 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
780 {
781 ++vcpu->stat.pf_guest;
782
783 /*
784 * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of
785 * whether or not L1 wants to intercept "regular" #PF.
786 */
787 if (is_guest_mode(vcpu) && fault->async_page_fault)
788 kvm_queue_exception_vmexit(vcpu, PF_VECTOR,
789 true, fault->error_code,
790 true, fault->address);
791 else
792 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
793 fault->address);
794 }
795
kvm_inject_emulated_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)796 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
797 struct x86_exception *fault)
798 {
799 struct kvm_mmu *fault_mmu;
800 WARN_ON_ONCE(fault->vector != PF_VECTOR);
801
802 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
803 vcpu->arch.walk_mmu;
804
805 /*
806 * Invalidate the TLB entry for the faulting address, if it exists,
807 * else the access will fault indefinitely (and to emulate hardware).
808 */
809 if ((fault->error_code & PFERR_PRESENT_MASK) &&
810 !(fault->error_code & PFERR_RSVD_MASK))
811 kvm_mmu_invalidate_addr(vcpu, fault_mmu, fault->address,
812 KVM_MMU_ROOT_CURRENT);
813
814 fault_mmu->inject_page_fault(vcpu, fault);
815 }
816 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
817
kvm_inject_nmi(struct kvm_vcpu * vcpu)818 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
819 {
820 atomic_inc(&vcpu->arch.nmi_queued);
821 kvm_make_request(KVM_REQ_NMI, vcpu);
822 }
823
kvm_queue_exception_e(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code)824 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
825 {
826 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
827 }
828 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
829
kvm_requeue_exception_e(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code)830 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
831 {
832 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
833 }
834 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
835
836 /*
837 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
838 * a #GP and return false.
839 */
kvm_require_cpl(struct kvm_vcpu * vcpu,int required_cpl)840 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
841 {
842 if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
843 return true;
844 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
845 return false;
846 }
847
kvm_require_dr(struct kvm_vcpu * vcpu,int dr)848 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
849 {
850 if ((dr != 4 && dr != 5) || !kvm_is_cr4_bit_set(vcpu, X86_CR4_DE))
851 return true;
852
853 kvm_queue_exception(vcpu, UD_VECTOR);
854 return false;
855 }
856 EXPORT_SYMBOL_GPL(kvm_require_dr);
857
pdptr_rsvd_bits(struct kvm_vcpu * vcpu)858 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
859 {
860 return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
861 }
862
863 /*
864 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise.
865 */
load_pdptrs(struct kvm_vcpu * vcpu,unsigned long cr3)866 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
867 {
868 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
869 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
870 gpa_t real_gpa;
871 int i;
872 int ret;
873 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
874
875 /*
876 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated
877 * to an L1 GPA.
878 */
879 real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn),
880 PFERR_USER_MASK | PFERR_WRITE_MASK, NULL);
881 if (real_gpa == INVALID_GPA)
882 return 0;
883
884 /* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */
885 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte,
886 cr3 & GENMASK(11, 5), sizeof(pdpte));
887 if (ret < 0)
888 return 0;
889
890 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
891 if ((pdpte[i] & PT_PRESENT_MASK) &&
892 (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
893 return 0;
894 }
895 }
896
897 /*
898 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled.
899 * Shadow page roots need to be reconstructed instead.
900 */
901 if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)))
902 kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT);
903
904 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
905 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
906 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
907 vcpu->arch.pdptrs_from_userspace = false;
908
909 return 1;
910 }
911 EXPORT_SYMBOL_GPL(load_pdptrs);
912
kvm_is_valid_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)913 static bool kvm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
914 {
915 #ifdef CONFIG_X86_64
916 if (cr0 & 0xffffffff00000000UL)
917 return false;
918 #endif
919
920 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
921 return false;
922
923 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
924 return false;
925
926 return static_call(kvm_x86_is_valid_cr0)(vcpu, cr0);
927 }
928
kvm_post_set_cr0(struct kvm_vcpu * vcpu,unsigned long old_cr0,unsigned long cr0)929 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
930 {
931 /*
932 * CR0.WP is incorporated into the MMU role, but only for non-nested,
933 * indirect shadow MMUs. If paging is disabled, no updates are needed
934 * as there are no permission bits to emulate. If TDP is enabled, the
935 * MMU's metadata needs to be updated, e.g. so that emulating guest
936 * translations does the right thing, but there's no need to unload the
937 * root as CR0.WP doesn't affect SPTEs.
938 */
939 if ((cr0 ^ old_cr0) == X86_CR0_WP) {
940 if (!(cr0 & X86_CR0_PG))
941 return;
942
943 if (tdp_enabled) {
944 kvm_init_mmu(vcpu);
945 return;
946 }
947 }
948
949 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
950 kvm_clear_async_pf_completion_queue(vcpu);
951 kvm_async_pf_hash_reset(vcpu);
952
953 /*
954 * Clearing CR0.PG is defined to flush the TLB from the guest's
955 * perspective.
956 */
957 if (!(cr0 & X86_CR0_PG))
958 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
959 }
960
961 if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
962 kvm_mmu_reset_context(vcpu);
963
964 if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
965 kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
966 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
967 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
968 }
969 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
970
kvm_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)971 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
972 {
973 unsigned long old_cr0 = kvm_read_cr0(vcpu);
974
975 if (!kvm_is_valid_cr0(vcpu, cr0))
976 return 1;
977
978 cr0 |= X86_CR0_ET;
979
980 /* Write to CR0 reserved bits are ignored, even on Intel. */
981 cr0 &= ~CR0_RESERVED_BITS;
982
983 #ifdef CONFIG_X86_64
984 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
985 (cr0 & X86_CR0_PG)) {
986 int cs_db, cs_l;
987
988 if (!is_pae(vcpu))
989 return 1;
990 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
991 if (cs_l)
992 return 1;
993 }
994 #endif
995 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
996 is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) &&
997 !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
998 return 1;
999
1000 if (!(cr0 & X86_CR0_PG) &&
1001 (is_64_bit_mode(vcpu) || kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)))
1002 return 1;
1003
1004 static_call(kvm_x86_set_cr0)(vcpu, cr0);
1005
1006 kvm_post_set_cr0(vcpu, old_cr0, cr0);
1007
1008 return 0;
1009 }
1010 EXPORT_SYMBOL_GPL(kvm_set_cr0);
1011
kvm_lmsw(struct kvm_vcpu * vcpu,unsigned long msw)1012 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
1013 {
1014 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
1015 }
1016 EXPORT_SYMBOL_GPL(kvm_lmsw);
1017
kvm_load_guest_xsave_state(struct kvm_vcpu * vcpu)1018 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
1019 {
1020 if (vcpu->arch.guest_state_protected)
1021 return;
1022
1023 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) {
1024
1025 if (vcpu->arch.xcr0 != host_xcr0)
1026 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
1027
1028 if (guest_can_use(vcpu, X86_FEATURE_XSAVES) &&
1029 vcpu->arch.ia32_xss != host_xss)
1030 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
1031 }
1032
1033 if (cpu_feature_enabled(X86_FEATURE_PKU) &&
1034 vcpu->arch.pkru != vcpu->arch.host_pkru &&
1035 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1036 kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE)))
1037 write_pkru(vcpu->arch.pkru);
1038 }
1039 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
1040
kvm_load_host_xsave_state(struct kvm_vcpu * vcpu)1041 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
1042 {
1043 if (vcpu->arch.guest_state_protected)
1044 return;
1045
1046 if (cpu_feature_enabled(X86_FEATURE_PKU) &&
1047 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1048 kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) {
1049 vcpu->arch.pkru = rdpkru();
1050 if (vcpu->arch.pkru != vcpu->arch.host_pkru)
1051 write_pkru(vcpu->arch.host_pkru);
1052 }
1053
1054 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) {
1055
1056 if (vcpu->arch.xcr0 != host_xcr0)
1057 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
1058
1059 if (guest_can_use(vcpu, X86_FEATURE_XSAVES) &&
1060 vcpu->arch.ia32_xss != host_xss)
1061 wrmsrl(MSR_IA32_XSS, host_xss);
1062 }
1063
1064 }
1065 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
1066
1067 #ifdef CONFIG_X86_64
kvm_guest_supported_xfd(struct kvm_vcpu * vcpu)1068 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu)
1069 {
1070 return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC;
1071 }
1072 #endif
1073
__kvm_set_xcr(struct kvm_vcpu * vcpu,u32 index,u64 xcr)1074 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
1075 {
1076 u64 xcr0 = xcr;
1077 u64 old_xcr0 = vcpu->arch.xcr0;
1078 u64 valid_bits;
1079
1080 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
1081 if (index != XCR_XFEATURE_ENABLED_MASK)
1082 return 1;
1083 if (!(xcr0 & XFEATURE_MASK_FP))
1084 return 1;
1085 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
1086 return 1;
1087
1088 /*
1089 * Do not allow the guest to set bits that we do not support
1090 * saving. However, xcr0 bit 0 is always set, even if the
1091 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()).
1092 */
1093 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
1094 if (xcr0 & ~valid_bits)
1095 return 1;
1096
1097 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1098 (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1099 return 1;
1100
1101 if (xcr0 & XFEATURE_MASK_AVX512) {
1102 if (!(xcr0 & XFEATURE_MASK_YMM))
1103 return 1;
1104 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1105 return 1;
1106 }
1107
1108 if ((xcr0 & XFEATURE_MASK_XTILE) &&
1109 ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE))
1110 return 1;
1111
1112 vcpu->arch.xcr0 = xcr0;
1113
1114 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1115 kvm_update_cpuid_runtime(vcpu);
1116 return 0;
1117 }
1118
kvm_emulate_xsetbv(struct kvm_vcpu * vcpu)1119 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1120 {
1121 /* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */
1122 if (static_call(kvm_x86_get_cpl)(vcpu) != 0 ||
1123 __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1124 kvm_inject_gp(vcpu, 0);
1125 return 1;
1126 }
1127
1128 return kvm_skip_emulated_instruction(vcpu);
1129 }
1130 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1131
__kvm_is_valid_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)1132 bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1133 {
1134 if (cr4 & cr4_reserved_bits)
1135 return false;
1136
1137 if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1138 return false;
1139
1140 return true;
1141 }
1142 EXPORT_SYMBOL_GPL(__kvm_is_valid_cr4);
1143
kvm_is_valid_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)1144 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1145 {
1146 return __kvm_is_valid_cr4(vcpu, cr4) &&
1147 static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1148 }
1149
kvm_post_set_cr4(struct kvm_vcpu * vcpu,unsigned long old_cr4,unsigned long cr4)1150 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1151 {
1152 if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS)
1153 kvm_mmu_reset_context(vcpu);
1154
1155 /*
1156 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB
1157 * according to the SDM; however, stale prev_roots could be reused
1158 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we
1159 * free them all. This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST
1160 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed,
1161 * so fall through.
1162 */
1163 if (!tdp_enabled &&
1164 (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE))
1165 kvm_mmu_unload(vcpu);
1166
1167 /*
1168 * The TLB has to be flushed for all PCIDs if any of the following
1169 * (architecturally required) changes happen:
1170 * - CR4.PCIDE is changed from 1 to 0
1171 * - CR4.PGE is toggled
1172 *
1173 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT.
1174 */
1175 if (((cr4 ^ old_cr4) & X86_CR4_PGE) ||
1176 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1177 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1178
1179 /*
1180 * The TLB has to be flushed for the current PCID if any of the
1181 * following (architecturally required) changes happen:
1182 * - CR4.SMEP is changed from 0 to 1
1183 * - CR4.PAE is toggled
1184 */
1185 else if (((cr4 ^ old_cr4) & X86_CR4_PAE) ||
1186 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP)))
1187 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1188
1189 }
1190 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1191
kvm_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)1192 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1193 {
1194 unsigned long old_cr4 = kvm_read_cr4(vcpu);
1195
1196 if (!kvm_is_valid_cr4(vcpu, cr4))
1197 return 1;
1198
1199 if (is_long_mode(vcpu)) {
1200 if (!(cr4 & X86_CR4_PAE))
1201 return 1;
1202 if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1203 return 1;
1204 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1205 && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS)
1206 && !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1207 return 1;
1208
1209 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1210 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1211 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1212 return 1;
1213 }
1214
1215 static_call(kvm_x86_set_cr4)(vcpu, cr4);
1216
1217 kvm_post_set_cr4(vcpu, old_cr4, cr4);
1218
1219 return 0;
1220 }
1221 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1222
kvm_invalidate_pcid(struct kvm_vcpu * vcpu,unsigned long pcid)1223 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1224 {
1225 struct kvm_mmu *mmu = vcpu->arch.mmu;
1226 unsigned long roots_to_free = 0;
1227 int i;
1228
1229 /*
1230 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but
1231 * this is reachable when running EPT=1 and unrestricted_guest=0, and
1232 * also via the emulator. KVM's TDP page tables are not in the scope of
1233 * the invalidation, but the guest's TLB entries need to be flushed as
1234 * the CPU may have cached entries in its TLB for the target PCID.
1235 */
1236 if (unlikely(tdp_enabled)) {
1237 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1238 return;
1239 }
1240
1241 /*
1242 * If neither the current CR3 nor any of the prev_roots use the given
1243 * PCID, then nothing needs to be done here because a resync will
1244 * happen anyway before switching to any other CR3.
1245 */
1246 if (kvm_get_active_pcid(vcpu) == pcid) {
1247 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1248 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1249 }
1250
1251 /*
1252 * If PCID is disabled, there is no need to free prev_roots even if the
1253 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB
1254 * with PCIDE=0.
1255 */
1256 if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE))
1257 return;
1258
1259 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1260 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1261 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1262
1263 kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
1264 }
1265
kvm_set_cr3(struct kvm_vcpu * vcpu,unsigned long cr3)1266 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1267 {
1268 bool skip_tlb_flush = false;
1269 unsigned long pcid = 0;
1270 #ifdef CONFIG_X86_64
1271 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) {
1272 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1273 cr3 &= ~X86_CR3_PCID_NOFLUSH;
1274 pcid = cr3 & X86_CR3_PCID_MASK;
1275 }
1276 #endif
1277
1278 /* PDPTRs are always reloaded for PAE paging. */
1279 if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1280 goto handle_tlb_flush;
1281
1282 /*
1283 * Do not condition the GPA check on long mode, this helper is used to
1284 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1285 * the current vCPU mode is accurate.
1286 */
1287 if (kvm_vcpu_is_illegal_gpa(vcpu, cr3))
1288 return 1;
1289
1290 if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3))
1291 return 1;
1292
1293 if (cr3 != kvm_read_cr3(vcpu))
1294 kvm_mmu_new_pgd(vcpu, cr3);
1295
1296 vcpu->arch.cr3 = cr3;
1297 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1298 /* Do not call post_set_cr3, we do not get here for confidential guests. */
1299
1300 handle_tlb_flush:
1301 /*
1302 * A load of CR3 that flushes the TLB flushes only the current PCID,
1303 * even if PCID is disabled, in which case PCID=0 is flushed. It's a
1304 * moot point in the end because _disabling_ PCID will flush all PCIDs,
1305 * and it's impossible to use a non-zero PCID when PCID is disabled,
1306 * i.e. only PCID=0 can be relevant.
1307 */
1308 if (!skip_tlb_flush)
1309 kvm_invalidate_pcid(vcpu, pcid);
1310
1311 return 0;
1312 }
1313 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1314
kvm_set_cr8(struct kvm_vcpu * vcpu,unsigned long cr8)1315 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1316 {
1317 if (cr8 & CR8_RESERVED_BITS)
1318 return 1;
1319 if (lapic_in_kernel(vcpu))
1320 kvm_lapic_set_tpr(vcpu, cr8);
1321 else
1322 vcpu->arch.cr8 = cr8;
1323 return 0;
1324 }
1325 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1326
kvm_get_cr8(struct kvm_vcpu * vcpu)1327 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1328 {
1329 if (lapic_in_kernel(vcpu))
1330 return kvm_lapic_get_cr8(vcpu);
1331 else
1332 return vcpu->arch.cr8;
1333 }
1334 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1335
kvm_update_dr0123(struct kvm_vcpu * vcpu)1336 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1337 {
1338 int i;
1339
1340 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1341 for (i = 0; i < KVM_NR_DB_REGS; i++)
1342 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1343 }
1344 }
1345
kvm_update_dr7(struct kvm_vcpu * vcpu)1346 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1347 {
1348 unsigned long dr7;
1349
1350 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1351 dr7 = vcpu->arch.guest_debug_dr7;
1352 else
1353 dr7 = vcpu->arch.dr7;
1354 static_call(kvm_x86_set_dr7)(vcpu, dr7);
1355 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1356 if (dr7 & DR7_BP_EN_MASK)
1357 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1358 }
1359 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1360
kvm_dr6_fixed(struct kvm_vcpu * vcpu)1361 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1362 {
1363 u64 fixed = DR6_FIXED_1;
1364
1365 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1366 fixed |= DR6_RTM;
1367
1368 if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1369 fixed |= DR6_BUS_LOCK;
1370 return fixed;
1371 }
1372
kvm_set_dr(struct kvm_vcpu * vcpu,int dr,unsigned long val)1373 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1374 {
1375 size_t size = ARRAY_SIZE(vcpu->arch.db);
1376
1377 switch (dr) {
1378 case 0 ... 3:
1379 vcpu->arch.db[array_index_nospec(dr, size)] = val;
1380 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1381 vcpu->arch.eff_db[dr] = val;
1382 break;
1383 case 4:
1384 case 6:
1385 if (!kvm_dr6_valid(val))
1386 return 1; /* #GP */
1387 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1388 break;
1389 case 5:
1390 default: /* 7 */
1391 if (!kvm_dr7_valid(val))
1392 return 1; /* #GP */
1393 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1394 kvm_update_dr7(vcpu);
1395 break;
1396 }
1397
1398 return 0;
1399 }
1400 EXPORT_SYMBOL_GPL(kvm_set_dr);
1401
kvm_get_dr(struct kvm_vcpu * vcpu,int dr,unsigned long * val)1402 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1403 {
1404 size_t size = ARRAY_SIZE(vcpu->arch.db);
1405
1406 switch (dr) {
1407 case 0 ... 3:
1408 *val = vcpu->arch.db[array_index_nospec(dr, size)];
1409 break;
1410 case 4:
1411 case 6:
1412 *val = vcpu->arch.dr6;
1413 break;
1414 case 5:
1415 default: /* 7 */
1416 *val = vcpu->arch.dr7;
1417 break;
1418 }
1419 }
1420 EXPORT_SYMBOL_GPL(kvm_get_dr);
1421
kvm_emulate_rdpmc(struct kvm_vcpu * vcpu)1422 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1423 {
1424 u32 ecx = kvm_rcx_read(vcpu);
1425 u64 data;
1426
1427 if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1428 kvm_inject_gp(vcpu, 0);
1429 return 1;
1430 }
1431
1432 kvm_rax_write(vcpu, (u32)data);
1433 kvm_rdx_write(vcpu, data >> 32);
1434 return kvm_skip_emulated_instruction(vcpu);
1435 }
1436 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1437
1438 /*
1439 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) track
1440 * the set of MSRs that KVM exposes to userspace through KVM_GET_MSRS,
1441 * KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. msrs_to_save holds MSRs that
1442 * require host support, i.e. should be probed via RDMSR. emulated_msrs holds
1443 * MSRs that KVM emulates without strictly requiring host support.
1444 * msr_based_features holds MSRs that enumerate features, i.e. are effectively
1445 * CPUID leafs. Note, msr_based_features isn't mutually exclusive with
1446 * msrs_to_save and emulated_msrs.
1447 */
1448
1449 static const u32 msrs_to_save_base[] = {
1450 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1451 MSR_STAR,
1452 #ifdef CONFIG_X86_64
1453 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1454 #endif
1455 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1456 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1457 MSR_IA32_SPEC_CTRL, MSR_IA32_TSX_CTRL,
1458 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1459 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1460 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1461 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1462 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1463 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1464 MSR_IA32_UMWAIT_CONTROL,
1465
1466 MSR_IA32_XFD, MSR_IA32_XFD_ERR,
1467 };
1468
1469 static const u32 msrs_to_save_pmu[] = {
1470 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1471 MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
1472 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1473 MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1474 MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG,
1475
1476 /* This part of MSRs should match KVM_INTEL_PMC_MAX_GENERIC. */
1477 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1478 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1479 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1480 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1481 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1482 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1483 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1484 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1485
1486 MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
1487 MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
1488
1489 /* This part of MSRs should match KVM_AMD_PMC_MAX_GENERIC. */
1490 MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
1491 MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
1492 MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
1493 MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
1494
1495 MSR_AMD64_PERF_CNTR_GLOBAL_CTL,
1496 MSR_AMD64_PERF_CNTR_GLOBAL_STATUS,
1497 MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR,
1498 };
1499
1500 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_base) +
1501 ARRAY_SIZE(msrs_to_save_pmu)];
1502 static unsigned num_msrs_to_save;
1503
1504 static const u32 emulated_msrs_all[] = {
1505 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1506 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1507 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1508 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1509 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1510 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1511 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1512 HV_X64_MSR_RESET,
1513 HV_X64_MSR_VP_INDEX,
1514 HV_X64_MSR_VP_RUNTIME,
1515 HV_X64_MSR_SCONTROL,
1516 HV_X64_MSR_STIMER0_CONFIG,
1517 HV_X64_MSR_VP_ASSIST_PAGE,
1518 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1519 HV_X64_MSR_TSC_EMULATION_STATUS, HV_X64_MSR_TSC_INVARIANT_CONTROL,
1520 HV_X64_MSR_SYNDBG_OPTIONS,
1521 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1522 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1523 HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1524
1525 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1526 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1527
1528 MSR_IA32_TSC_ADJUST,
1529 MSR_IA32_TSC_DEADLINE,
1530 MSR_IA32_ARCH_CAPABILITIES,
1531 MSR_IA32_PERF_CAPABILITIES,
1532 MSR_IA32_MISC_ENABLE,
1533 MSR_IA32_MCG_STATUS,
1534 MSR_IA32_MCG_CTL,
1535 MSR_IA32_MCG_EXT_CTL,
1536 MSR_IA32_SMBASE,
1537 MSR_SMI_COUNT,
1538 MSR_PLATFORM_INFO,
1539 MSR_MISC_FEATURES_ENABLES,
1540 MSR_AMD64_VIRT_SPEC_CTRL,
1541 MSR_AMD64_TSC_RATIO,
1542 MSR_IA32_POWER_CTL,
1543 MSR_IA32_UCODE_REV,
1544
1545 /*
1546 * KVM always supports the "true" VMX control MSRs, even if the host
1547 * does not. The VMX MSRs as a whole are considered "emulated" as KVM
1548 * doesn't strictly require them to exist in the host (ignoring that
1549 * KVM would refuse to load in the first place if the core set of MSRs
1550 * aren't supported).
1551 */
1552 MSR_IA32_VMX_BASIC,
1553 MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1554 MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1555 MSR_IA32_VMX_TRUE_EXIT_CTLS,
1556 MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1557 MSR_IA32_VMX_MISC,
1558 MSR_IA32_VMX_CR0_FIXED0,
1559 MSR_IA32_VMX_CR4_FIXED0,
1560 MSR_IA32_VMX_VMCS_ENUM,
1561 MSR_IA32_VMX_PROCBASED_CTLS2,
1562 MSR_IA32_VMX_EPT_VPID_CAP,
1563 MSR_IA32_VMX_VMFUNC,
1564
1565 MSR_K7_HWCR,
1566 MSR_KVM_POLL_CONTROL,
1567 };
1568
1569 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1570 static unsigned num_emulated_msrs;
1571
1572 /*
1573 * List of MSRs that control the existence of MSR-based features, i.e. MSRs
1574 * that are effectively CPUID leafs. VMX MSRs are also included in the set of
1575 * feature MSRs, but are handled separately to allow expedited lookups.
1576 */
1577 static const u32 msr_based_features_all_except_vmx[] = {
1578 MSR_AMD64_DE_CFG,
1579 MSR_IA32_UCODE_REV,
1580 MSR_IA32_ARCH_CAPABILITIES,
1581 MSR_IA32_PERF_CAPABILITIES,
1582 };
1583
1584 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all_except_vmx) +
1585 (KVM_LAST_EMULATED_VMX_MSR - KVM_FIRST_EMULATED_VMX_MSR + 1)];
1586 static unsigned int num_msr_based_features;
1587
1588 /*
1589 * All feature MSRs except uCode revID, which tracks the currently loaded uCode
1590 * patch, are immutable once the vCPU model is defined.
1591 */
kvm_is_immutable_feature_msr(u32 msr)1592 static bool kvm_is_immutable_feature_msr(u32 msr)
1593 {
1594 int i;
1595
1596 if (msr >= KVM_FIRST_EMULATED_VMX_MSR && msr <= KVM_LAST_EMULATED_VMX_MSR)
1597 return true;
1598
1599 for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) {
1600 if (msr == msr_based_features_all_except_vmx[i])
1601 return msr != MSR_IA32_UCODE_REV;
1602 }
1603
1604 return false;
1605 }
1606
1607 /*
1608 * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM
1609 * does not yet virtualize. These include:
1610 * 10 - MISC_PACKAGE_CTRLS
1611 * 11 - ENERGY_FILTERING_CTL
1612 * 12 - DOITM
1613 * 18 - FB_CLEAR_CTRL
1614 * 21 - XAPIC_DISABLE_STATUS
1615 * 23 - OVERCLOCKING_STATUS
1616 */
1617
1618 #define KVM_SUPPORTED_ARCH_CAP \
1619 (ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \
1620 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \
1621 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \
1622 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \
1623 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO | ARCH_CAP_GDS_NO)
1624
kvm_get_arch_capabilities(void)1625 static u64 kvm_get_arch_capabilities(void)
1626 {
1627 u64 data = host_arch_capabilities & KVM_SUPPORTED_ARCH_CAP;
1628
1629 /*
1630 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1631 * the nested hypervisor runs with NX huge pages. If it is not,
1632 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1633 * L1 guests, so it need not worry about its own (L2) guests.
1634 */
1635 data |= ARCH_CAP_PSCHANGE_MC_NO;
1636
1637 /*
1638 * If we're doing cache flushes (either "always" or "cond")
1639 * we will do one whenever the guest does a vmlaunch/vmresume.
1640 * If an outer hypervisor is doing the cache flush for us
1641 * (ARCH_CAP_SKIP_VMENTRY_L1DFLUSH), we can safely pass that
1642 * capability to the guest too, and if EPT is disabled we're not
1643 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will
1644 * require a nested hypervisor to do a flush of its own.
1645 */
1646 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1647 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1648
1649 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1650 data |= ARCH_CAP_RDCL_NO;
1651 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1652 data |= ARCH_CAP_SSB_NO;
1653 if (!boot_cpu_has_bug(X86_BUG_MDS))
1654 data |= ARCH_CAP_MDS_NO;
1655
1656 if (!boot_cpu_has(X86_FEATURE_RTM)) {
1657 /*
1658 * If RTM=0 because the kernel has disabled TSX, the host might
1659 * have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0
1660 * and therefore knows that there cannot be TAA) but keep
1661 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1662 * and we want to allow migrating those guests to tsx=off hosts.
1663 */
1664 data &= ~ARCH_CAP_TAA_NO;
1665 } else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1666 data |= ARCH_CAP_TAA_NO;
1667 } else {
1668 /*
1669 * Nothing to do here; we emulate TSX_CTRL if present on the
1670 * host so the guest can choose between disabling TSX or
1671 * using VERW to clear CPU buffers.
1672 */
1673 }
1674
1675 if (!boot_cpu_has_bug(X86_BUG_GDS) || gds_ucode_mitigated())
1676 data |= ARCH_CAP_GDS_NO;
1677
1678 return data;
1679 }
1680
kvm_get_msr_feature(struct kvm_msr_entry * msr)1681 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1682 {
1683 switch (msr->index) {
1684 case MSR_IA32_ARCH_CAPABILITIES:
1685 msr->data = kvm_get_arch_capabilities();
1686 break;
1687 case MSR_IA32_PERF_CAPABILITIES:
1688 msr->data = kvm_caps.supported_perf_cap;
1689 break;
1690 case MSR_IA32_UCODE_REV:
1691 rdmsrl_safe(msr->index, &msr->data);
1692 break;
1693 default:
1694 return static_call(kvm_x86_get_msr_feature)(msr);
1695 }
1696 return 0;
1697 }
1698
do_get_msr_feature(struct kvm_vcpu * vcpu,unsigned index,u64 * data)1699 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1700 {
1701 struct kvm_msr_entry msr;
1702 int r;
1703
1704 msr.index = index;
1705 r = kvm_get_msr_feature(&msr);
1706
1707 if (r == KVM_MSR_RET_INVALID) {
1708 /* Unconditionally clear the output for simplicity */
1709 *data = 0;
1710 if (kvm_msr_ignored_check(index, 0, false))
1711 r = 0;
1712 }
1713
1714 if (r)
1715 return r;
1716
1717 *data = msr.data;
1718
1719 return 0;
1720 }
1721
__kvm_valid_efer(struct kvm_vcpu * vcpu,u64 efer)1722 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1723 {
1724 if (efer & EFER_AUTOIBRS && !guest_cpuid_has(vcpu, X86_FEATURE_AUTOIBRS))
1725 return false;
1726
1727 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1728 return false;
1729
1730 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1731 return false;
1732
1733 if (efer & (EFER_LME | EFER_LMA) &&
1734 !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1735 return false;
1736
1737 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1738 return false;
1739
1740 return true;
1741
1742 }
kvm_valid_efer(struct kvm_vcpu * vcpu,u64 efer)1743 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1744 {
1745 if (efer & efer_reserved_bits)
1746 return false;
1747
1748 return __kvm_valid_efer(vcpu, efer);
1749 }
1750 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1751
set_efer(struct kvm_vcpu * vcpu,struct msr_data * msr_info)1752 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1753 {
1754 u64 old_efer = vcpu->arch.efer;
1755 u64 efer = msr_info->data;
1756 int r;
1757
1758 if (efer & efer_reserved_bits)
1759 return 1;
1760
1761 if (!msr_info->host_initiated) {
1762 if (!__kvm_valid_efer(vcpu, efer))
1763 return 1;
1764
1765 if (is_paging(vcpu) &&
1766 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1767 return 1;
1768 }
1769
1770 efer &= ~EFER_LMA;
1771 efer |= vcpu->arch.efer & EFER_LMA;
1772
1773 r = static_call(kvm_x86_set_efer)(vcpu, efer);
1774 if (r) {
1775 WARN_ON(r > 0);
1776 return r;
1777 }
1778
1779 if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS)
1780 kvm_mmu_reset_context(vcpu);
1781
1782 return 0;
1783 }
1784
kvm_enable_efer_bits(u64 mask)1785 void kvm_enable_efer_bits(u64 mask)
1786 {
1787 efer_reserved_bits &= ~mask;
1788 }
1789 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1790
kvm_msr_allowed(struct kvm_vcpu * vcpu,u32 index,u32 type)1791 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1792 {
1793 struct kvm_x86_msr_filter *msr_filter;
1794 struct msr_bitmap_range *ranges;
1795 struct kvm *kvm = vcpu->kvm;
1796 bool allowed;
1797 int idx;
1798 u32 i;
1799
1800 /* x2APIC MSRs do not support filtering. */
1801 if (index >= 0x800 && index <= 0x8ff)
1802 return true;
1803
1804 idx = srcu_read_lock(&kvm->srcu);
1805
1806 msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1807 if (!msr_filter) {
1808 allowed = true;
1809 goto out;
1810 }
1811
1812 allowed = msr_filter->default_allow;
1813 ranges = msr_filter->ranges;
1814
1815 for (i = 0; i < msr_filter->count; i++) {
1816 u32 start = ranges[i].base;
1817 u32 end = start + ranges[i].nmsrs;
1818 u32 flags = ranges[i].flags;
1819 unsigned long *bitmap = ranges[i].bitmap;
1820
1821 if ((index >= start) && (index < end) && (flags & type)) {
1822 allowed = test_bit(index - start, bitmap);
1823 break;
1824 }
1825 }
1826
1827 out:
1828 srcu_read_unlock(&kvm->srcu, idx);
1829
1830 return allowed;
1831 }
1832 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1833
1834 /*
1835 * Write @data into the MSR specified by @index. Select MSR specific fault
1836 * checks are bypassed if @host_initiated is %true.
1837 * Returns 0 on success, non-0 otherwise.
1838 * Assumes vcpu_load() was already called.
1839 */
__kvm_set_msr(struct kvm_vcpu * vcpu,u32 index,u64 data,bool host_initiated)1840 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1841 bool host_initiated)
1842 {
1843 struct msr_data msr;
1844
1845 switch (index) {
1846 case MSR_FS_BASE:
1847 case MSR_GS_BASE:
1848 case MSR_KERNEL_GS_BASE:
1849 case MSR_CSTAR:
1850 case MSR_LSTAR:
1851 if (is_noncanonical_address(data, vcpu))
1852 return 1;
1853 break;
1854 case MSR_IA32_SYSENTER_EIP:
1855 case MSR_IA32_SYSENTER_ESP:
1856 /*
1857 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1858 * non-canonical address is written on Intel but not on
1859 * AMD (which ignores the top 32-bits, because it does
1860 * not implement 64-bit SYSENTER).
1861 *
1862 * 64-bit code should hence be able to write a non-canonical
1863 * value on AMD. Making the address canonical ensures that
1864 * vmentry does not fail on Intel after writing a non-canonical
1865 * value, and that something deterministic happens if the guest
1866 * invokes 64-bit SYSENTER.
1867 */
1868 data = __canonical_address(data, vcpu_virt_addr_bits(vcpu));
1869 break;
1870 case MSR_TSC_AUX:
1871 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1872 return 1;
1873
1874 if (!host_initiated &&
1875 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1876 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1877 return 1;
1878
1879 /*
1880 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1881 * incomplete and conflicting architectural behavior. Current
1882 * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1883 * reserved and always read as zeros. Enforce Intel's reserved
1884 * bits check if and only if the guest CPU is Intel, and clear
1885 * the bits in all other cases. This ensures cross-vendor
1886 * migration will provide consistent behavior for the guest.
1887 */
1888 if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0)
1889 return 1;
1890
1891 data = (u32)data;
1892 break;
1893 }
1894
1895 msr.data = data;
1896 msr.index = index;
1897 msr.host_initiated = host_initiated;
1898
1899 return static_call(kvm_x86_set_msr)(vcpu, &msr);
1900 }
1901
kvm_set_msr_ignored_check(struct kvm_vcpu * vcpu,u32 index,u64 data,bool host_initiated)1902 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1903 u32 index, u64 data, bool host_initiated)
1904 {
1905 int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1906
1907 if (ret == KVM_MSR_RET_INVALID)
1908 if (kvm_msr_ignored_check(index, data, true))
1909 ret = 0;
1910
1911 return ret;
1912 }
1913
1914 /*
1915 * Read the MSR specified by @index into @data. Select MSR specific fault
1916 * checks are bypassed if @host_initiated is %true.
1917 * Returns 0 on success, non-0 otherwise.
1918 * Assumes vcpu_load() was already called.
1919 */
__kvm_get_msr(struct kvm_vcpu * vcpu,u32 index,u64 * data,bool host_initiated)1920 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1921 bool host_initiated)
1922 {
1923 struct msr_data msr;
1924 int ret;
1925
1926 switch (index) {
1927 case MSR_TSC_AUX:
1928 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1929 return 1;
1930
1931 if (!host_initiated &&
1932 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1933 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1934 return 1;
1935 break;
1936 }
1937
1938 msr.index = index;
1939 msr.host_initiated = host_initiated;
1940
1941 ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1942 if (!ret)
1943 *data = msr.data;
1944 return ret;
1945 }
1946
kvm_get_msr_ignored_check(struct kvm_vcpu * vcpu,u32 index,u64 * data,bool host_initiated)1947 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1948 u32 index, u64 *data, bool host_initiated)
1949 {
1950 int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1951
1952 if (ret == KVM_MSR_RET_INVALID) {
1953 /* Unconditionally clear *data for simplicity */
1954 *data = 0;
1955 if (kvm_msr_ignored_check(index, 0, false))
1956 ret = 0;
1957 }
1958
1959 return ret;
1960 }
1961
kvm_get_msr_with_filter(struct kvm_vcpu * vcpu,u32 index,u64 * data)1962 static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1963 {
1964 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1965 return KVM_MSR_RET_FILTERED;
1966 return kvm_get_msr_ignored_check(vcpu, index, data, false);
1967 }
1968
kvm_set_msr_with_filter(struct kvm_vcpu * vcpu,u32 index,u64 data)1969 static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data)
1970 {
1971 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1972 return KVM_MSR_RET_FILTERED;
1973 return kvm_set_msr_ignored_check(vcpu, index, data, false);
1974 }
1975
kvm_get_msr(struct kvm_vcpu * vcpu,u32 index,u64 * data)1976 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1977 {
1978 return kvm_get_msr_ignored_check(vcpu, index, data, false);
1979 }
1980 EXPORT_SYMBOL_GPL(kvm_get_msr);
1981
kvm_set_msr(struct kvm_vcpu * vcpu,u32 index,u64 data)1982 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1983 {
1984 return kvm_set_msr_ignored_check(vcpu, index, data, false);
1985 }
1986 EXPORT_SYMBOL_GPL(kvm_set_msr);
1987
complete_userspace_rdmsr(struct kvm_vcpu * vcpu)1988 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu)
1989 {
1990 if (!vcpu->run->msr.error) {
1991 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1992 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1993 }
1994 }
1995
complete_emulated_msr_access(struct kvm_vcpu * vcpu)1996 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu)
1997 {
1998 return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error);
1999 }
2000
complete_emulated_rdmsr(struct kvm_vcpu * vcpu)2001 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
2002 {
2003 complete_userspace_rdmsr(vcpu);
2004 return complete_emulated_msr_access(vcpu);
2005 }
2006
complete_fast_msr_access(struct kvm_vcpu * vcpu)2007 static int complete_fast_msr_access(struct kvm_vcpu *vcpu)
2008 {
2009 return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
2010 }
2011
complete_fast_rdmsr(struct kvm_vcpu * vcpu)2012 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu)
2013 {
2014 complete_userspace_rdmsr(vcpu);
2015 return complete_fast_msr_access(vcpu);
2016 }
2017
kvm_msr_reason(int r)2018 static u64 kvm_msr_reason(int r)
2019 {
2020 switch (r) {
2021 case KVM_MSR_RET_INVALID:
2022 return KVM_MSR_EXIT_REASON_UNKNOWN;
2023 case KVM_MSR_RET_FILTERED:
2024 return KVM_MSR_EXIT_REASON_FILTER;
2025 default:
2026 return KVM_MSR_EXIT_REASON_INVAL;
2027 }
2028 }
2029
kvm_msr_user_space(struct kvm_vcpu * vcpu,u32 index,u32 exit_reason,u64 data,int (* completion)(struct kvm_vcpu * vcpu),int r)2030 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
2031 u32 exit_reason, u64 data,
2032 int (*completion)(struct kvm_vcpu *vcpu),
2033 int r)
2034 {
2035 u64 msr_reason = kvm_msr_reason(r);
2036
2037 /* Check if the user wanted to know about this MSR fault */
2038 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
2039 return 0;
2040
2041 vcpu->run->exit_reason = exit_reason;
2042 vcpu->run->msr.error = 0;
2043 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
2044 vcpu->run->msr.reason = msr_reason;
2045 vcpu->run->msr.index = index;
2046 vcpu->run->msr.data = data;
2047 vcpu->arch.complete_userspace_io = completion;
2048
2049 return 1;
2050 }
2051
kvm_emulate_rdmsr(struct kvm_vcpu * vcpu)2052 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
2053 {
2054 u32 ecx = kvm_rcx_read(vcpu);
2055 u64 data;
2056 int r;
2057
2058 r = kvm_get_msr_with_filter(vcpu, ecx, &data);
2059
2060 if (!r) {
2061 trace_kvm_msr_read(ecx, data);
2062
2063 kvm_rax_write(vcpu, data & -1u);
2064 kvm_rdx_write(vcpu, (data >> 32) & -1u);
2065 } else {
2066 /* MSR read failed? See if we should ask user space */
2067 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0,
2068 complete_fast_rdmsr, r))
2069 return 0;
2070 trace_kvm_msr_read_ex(ecx);
2071 }
2072
2073 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2074 }
2075 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
2076
kvm_emulate_wrmsr(struct kvm_vcpu * vcpu)2077 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
2078 {
2079 u32 ecx = kvm_rcx_read(vcpu);
2080 u64 data = kvm_read_edx_eax(vcpu);
2081 int r;
2082
2083 r = kvm_set_msr_with_filter(vcpu, ecx, data);
2084
2085 if (!r) {
2086 trace_kvm_msr_write(ecx, data);
2087 } else {
2088 /* MSR write failed? See if we should ask user space */
2089 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data,
2090 complete_fast_msr_access, r))
2091 return 0;
2092 /* Signal all other negative errors to userspace */
2093 if (r < 0)
2094 return r;
2095 trace_kvm_msr_write_ex(ecx, data);
2096 }
2097
2098 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2099 }
2100 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
2101
kvm_emulate_as_nop(struct kvm_vcpu * vcpu)2102 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
2103 {
2104 return kvm_skip_emulated_instruction(vcpu);
2105 }
2106
kvm_emulate_invd(struct kvm_vcpu * vcpu)2107 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
2108 {
2109 /* Treat an INVD instruction as a NOP and just skip it. */
2110 return kvm_emulate_as_nop(vcpu);
2111 }
2112 EXPORT_SYMBOL_GPL(kvm_emulate_invd);
2113
kvm_handle_invalid_op(struct kvm_vcpu * vcpu)2114 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
2115 {
2116 kvm_queue_exception(vcpu, UD_VECTOR);
2117 return 1;
2118 }
2119 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
2120
2121
kvm_emulate_monitor_mwait(struct kvm_vcpu * vcpu,const char * insn)2122 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn)
2123 {
2124 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) &&
2125 !guest_cpuid_has(vcpu, X86_FEATURE_MWAIT))
2126 return kvm_handle_invalid_op(vcpu);
2127
2128 pr_warn_once("%s instruction emulated as NOP!\n", insn);
2129 return kvm_emulate_as_nop(vcpu);
2130 }
kvm_emulate_mwait(struct kvm_vcpu * vcpu)2131 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
2132 {
2133 return kvm_emulate_monitor_mwait(vcpu, "MWAIT");
2134 }
2135 EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
2136
kvm_emulate_monitor(struct kvm_vcpu * vcpu)2137 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
2138 {
2139 return kvm_emulate_monitor_mwait(vcpu, "MONITOR");
2140 }
2141 EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
2142
kvm_vcpu_exit_request(struct kvm_vcpu * vcpu)2143 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
2144 {
2145 xfer_to_guest_mode_prepare();
2146 return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
2147 xfer_to_guest_mode_work_pending();
2148 }
2149
2150 /*
2151 * The fast path for frequent and performance sensitive wrmsr emulation,
2152 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
2153 * the latency of virtual IPI by avoiding the expensive bits of transitioning
2154 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
2155 * other cases which must be called after interrupts are enabled on the host.
2156 */
handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu * vcpu,u64 data)2157 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
2158 {
2159 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
2160 return 1;
2161
2162 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
2163 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
2164 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
2165 ((u32)(data >> 32) != X2APIC_BROADCAST))
2166 return kvm_x2apic_icr_write(vcpu->arch.apic, data);
2167
2168 return 1;
2169 }
2170
handle_fastpath_set_tscdeadline(struct kvm_vcpu * vcpu,u64 data)2171 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
2172 {
2173 if (!kvm_can_use_hv_timer(vcpu))
2174 return 1;
2175
2176 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2177 return 0;
2178 }
2179
handle_fastpath_set_msr_irqoff(struct kvm_vcpu * vcpu)2180 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
2181 {
2182 u32 msr = kvm_rcx_read(vcpu);
2183 u64 data;
2184 fastpath_t ret = EXIT_FASTPATH_NONE;
2185
2186 kvm_vcpu_srcu_read_lock(vcpu);
2187
2188 switch (msr) {
2189 case APIC_BASE_MSR + (APIC_ICR >> 4):
2190 data = kvm_read_edx_eax(vcpu);
2191 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
2192 kvm_skip_emulated_instruction(vcpu);
2193 ret = EXIT_FASTPATH_EXIT_HANDLED;
2194 }
2195 break;
2196 case MSR_IA32_TSC_DEADLINE:
2197 data = kvm_read_edx_eax(vcpu);
2198 if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
2199 kvm_skip_emulated_instruction(vcpu);
2200 ret = EXIT_FASTPATH_REENTER_GUEST;
2201 }
2202 break;
2203 default:
2204 break;
2205 }
2206
2207 if (ret != EXIT_FASTPATH_NONE)
2208 trace_kvm_msr_write(msr, data);
2209
2210 kvm_vcpu_srcu_read_unlock(vcpu);
2211
2212 return ret;
2213 }
2214 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2215
2216 /*
2217 * Adapt set_msr() to msr_io()'s calling convention
2218 */
do_get_msr(struct kvm_vcpu * vcpu,unsigned index,u64 * data)2219 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2220 {
2221 return kvm_get_msr_ignored_check(vcpu, index, data, true);
2222 }
2223
do_set_msr(struct kvm_vcpu * vcpu,unsigned index,u64 * data)2224 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2225 {
2226 u64 val;
2227
2228 /*
2229 * Disallow writes to immutable feature MSRs after KVM_RUN. KVM does
2230 * not support modifying the guest vCPU model on the fly, e.g. changing
2231 * the nVMX capabilities while L2 is running is nonsensical. Ignore
2232 * writes of the same value, e.g. to allow userspace to blindly stuff
2233 * all MSRs when emulating RESET.
2234 */
2235 if (kvm_vcpu_has_run(vcpu) && kvm_is_immutable_feature_msr(index)) {
2236 if (do_get_msr(vcpu, index, &val) || *data != val)
2237 return -EINVAL;
2238
2239 return 0;
2240 }
2241
2242 return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2243 }
2244
2245 #ifdef CONFIG_X86_64
2246 struct pvclock_clock {
2247 int vclock_mode;
2248 u64 cycle_last;
2249 u64 mask;
2250 u32 mult;
2251 u32 shift;
2252 u64 base_cycles;
2253 u64 offset;
2254 };
2255
2256 struct pvclock_gtod_data {
2257 seqcount_t seq;
2258
2259 struct pvclock_clock clock; /* extract of a clocksource struct */
2260 struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2261
2262 ktime_t offs_boot;
2263 u64 wall_time_sec;
2264 };
2265
2266 static struct pvclock_gtod_data pvclock_gtod_data;
2267
update_pvclock_gtod(struct timekeeper * tk)2268 static void update_pvclock_gtod(struct timekeeper *tk)
2269 {
2270 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2271
2272 write_seqcount_begin(&vdata->seq);
2273
2274 /* copy pvclock gtod data */
2275 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode;
2276 vdata->clock.cycle_last = tk->tkr_mono.cycle_last;
2277 vdata->clock.mask = tk->tkr_mono.mask;
2278 vdata->clock.mult = tk->tkr_mono.mult;
2279 vdata->clock.shift = tk->tkr_mono.shift;
2280 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec;
2281 vdata->clock.offset = tk->tkr_mono.base;
2282
2283 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode;
2284 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last;
2285 vdata->raw_clock.mask = tk->tkr_raw.mask;
2286 vdata->raw_clock.mult = tk->tkr_raw.mult;
2287 vdata->raw_clock.shift = tk->tkr_raw.shift;
2288 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec;
2289 vdata->raw_clock.offset = tk->tkr_raw.base;
2290
2291 vdata->wall_time_sec = tk->xtime_sec;
2292
2293 vdata->offs_boot = tk->offs_boot;
2294
2295 write_seqcount_end(&vdata->seq);
2296 }
2297
get_kvmclock_base_ns(void)2298 static s64 get_kvmclock_base_ns(void)
2299 {
2300 /* Count up from boot time, but with the frequency of the raw clock. */
2301 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2302 }
2303 #else
get_kvmclock_base_ns(void)2304 static s64 get_kvmclock_base_ns(void)
2305 {
2306 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */
2307 return ktime_get_boottime_ns();
2308 }
2309 #endif
2310
kvm_write_wall_clock(struct kvm * kvm,gpa_t wall_clock,int sec_hi_ofs)2311 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2312 {
2313 int version;
2314 int r;
2315 struct pvclock_wall_clock wc;
2316 u32 wc_sec_hi;
2317 u64 wall_nsec;
2318
2319 if (!wall_clock)
2320 return;
2321
2322 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2323 if (r)
2324 return;
2325
2326 if (version & 1)
2327 ++version; /* first time write, random junk */
2328
2329 ++version;
2330
2331 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2332 return;
2333
2334 /*
2335 * The guest calculates current wall clock time by adding
2336 * system time (updated by kvm_guest_time_update below) to the
2337 * wall clock specified here. We do the reverse here.
2338 */
2339 wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
2340
2341 wc.nsec = do_div(wall_nsec, 1000000000);
2342 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2343 wc.version = version;
2344
2345 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2346
2347 if (sec_hi_ofs) {
2348 wc_sec_hi = wall_nsec >> 32;
2349 kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2350 &wc_sec_hi, sizeof(wc_sec_hi));
2351 }
2352
2353 version++;
2354 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2355 }
2356
kvm_write_system_time(struct kvm_vcpu * vcpu,gpa_t system_time,bool old_msr,bool host_initiated)2357 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2358 bool old_msr, bool host_initiated)
2359 {
2360 struct kvm_arch *ka = &vcpu->kvm->arch;
2361
2362 if (vcpu->vcpu_id == 0 && !host_initiated) {
2363 if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2364 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2365
2366 ka->boot_vcpu_runs_old_kvmclock = old_msr;
2367 }
2368
2369 vcpu->arch.time = system_time;
2370 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2371
2372 /* we verify if the enable bit is set... */
2373 if (system_time & 1)
2374 kvm_gpc_activate(&vcpu->arch.pv_time, system_time & ~1ULL,
2375 sizeof(struct pvclock_vcpu_time_info));
2376 else
2377 kvm_gpc_deactivate(&vcpu->arch.pv_time);
2378
2379 return;
2380 }
2381
div_frac(uint32_t dividend,uint32_t divisor)2382 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2383 {
2384 do_shl32_div32(dividend, divisor);
2385 return dividend;
2386 }
2387
kvm_get_time_scale(uint64_t scaled_hz,uint64_t base_hz,s8 * pshift,u32 * pmultiplier)2388 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2389 s8 *pshift, u32 *pmultiplier)
2390 {
2391 uint64_t scaled64;
2392 int32_t shift = 0;
2393 uint64_t tps64;
2394 uint32_t tps32;
2395
2396 tps64 = base_hz;
2397 scaled64 = scaled_hz;
2398 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2399 tps64 >>= 1;
2400 shift--;
2401 }
2402
2403 tps32 = (uint32_t)tps64;
2404 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2405 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2406 scaled64 >>= 1;
2407 else
2408 tps32 <<= 1;
2409 shift++;
2410 }
2411
2412 *pshift = shift;
2413 *pmultiplier = div_frac(scaled64, tps32);
2414 }
2415
2416 #ifdef CONFIG_X86_64
2417 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2418 #endif
2419
2420 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2421 static unsigned long max_tsc_khz;
2422
adjust_tsc_khz(u32 khz,s32 ppm)2423 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2424 {
2425 u64 v = (u64)khz * (1000000 + ppm);
2426 do_div(v, 1000000);
2427 return v;
2428 }
2429
2430 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2431
set_tsc_khz(struct kvm_vcpu * vcpu,u32 user_tsc_khz,bool scale)2432 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2433 {
2434 u64 ratio;
2435
2436 /* Guest TSC same frequency as host TSC? */
2437 if (!scale) {
2438 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2439 return 0;
2440 }
2441
2442 /* TSC scaling supported? */
2443 if (!kvm_caps.has_tsc_control) {
2444 if (user_tsc_khz > tsc_khz) {
2445 vcpu->arch.tsc_catchup = 1;
2446 vcpu->arch.tsc_always_catchup = 1;
2447 return 0;
2448 } else {
2449 pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2450 return -1;
2451 }
2452 }
2453
2454 /* TSC scaling required - calculate ratio */
2455 ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits,
2456 user_tsc_khz, tsc_khz);
2457
2458 if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) {
2459 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2460 user_tsc_khz);
2461 return -1;
2462 }
2463
2464 kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2465 return 0;
2466 }
2467
kvm_set_tsc_khz(struct kvm_vcpu * vcpu,u32 user_tsc_khz)2468 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2469 {
2470 u32 thresh_lo, thresh_hi;
2471 int use_scaling = 0;
2472
2473 /* tsc_khz can be zero if TSC calibration fails */
2474 if (user_tsc_khz == 0) {
2475 /* set tsc_scaling_ratio to a safe value */
2476 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2477 return -1;
2478 }
2479
2480 /* Compute a scale to convert nanoseconds in TSC cycles */
2481 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2482 &vcpu->arch.virtual_tsc_shift,
2483 &vcpu->arch.virtual_tsc_mult);
2484 vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2485
2486 /*
2487 * Compute the variation in TSC rate which is acceptable
2488 * within the range of tolerance and decide if the
2489 * rate being applied is within that bounds of the hardware
2490 * rate. If so, no scaling or compensation need be done.
2491 */
2492 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2493 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2494 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2495 pr_debug("requested TSC rate %u falls outside tolerance [%u,%u]\n",
2496 user_tsc_khz, thresh_lo, thresh_hi);
2497 use_scaling = 1;
2498 }
2499 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2500 }
2501
compute_guest_tsc(struct kvm_vcpu * vcpu,s64 kernel_ns)2502 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2503 {
2504 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2505 vcpu->arch.virtual_tsc_mult,
2506 vcpu->arch.virtual_tsc_shift);
2507 tsc += vcpu->arch.this_tsc_write;
2508 return tsc;
2509 }
2510
2511 #ifdef CONFIG_X86_64
gtod_is_based_on_tsc(int mode)2512 static inline int gtod_is_based_on_tsc(int mode)
2513 {
2514 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2515 }
2516 #endif
2517
kvm_track_tsc_matching(struct kvm_vcpu * vcpu)2518 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2519 {
2520 #ifdef CONFIG_X86_64
2521 bool vcpus_matched;
2522 struct kvm_arch *ka = &vcpu->kvm->arch;
2523 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2524
2525 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2526 atomic_read(&vcpu->kvm->online_vcpus));
2527
2528 /*
2529 * Once the masterclock is enabled, always perform request in
2530 * order to update it.
2531 *
2532 * In order to enable masterclock, the host clocksource must be TSC
2533 * and the vcpus need to have matched TSCs. When that happens,
2534 * perform request to enable masterclock.
2535 */
2536 if (ka->use_master_clock ||
2537 (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2538 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2539
2540 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2541 atomic_read(&vcpu->kvm->online_vcpus),
2542 ka->use_master_clock, gtod->clock.vclock_mode);
2543 #endif
2544 }
2545
2546 /*
2547 * Multiply tsc by a fixed point number represented by ratio.
2548 *
2549 * The most significant 64-N bits (mult) of ratio represent the
2550 * integral part of the fixed point number; the remaining N bits
2551 * (frac) represent the fractional part, ie. ratio represents a fixed
2552 * point number (mult + frac * 2^(-N)).
2553 *
2554 * N equals to kvm_caps.tsc_scaling_ratio_frac_bits.
2555 */
__scale_tsc(u64 ratio,u64 tsc)2556 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2557 {
2558 return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits);
2559 }
2560
kvm_scale_tsc(u64 tsc,u64 ratio)2561 u64 kvm_scale_tsc(u64 tsc, u64 ratio)
2562 {
2563 u64 _tsc = tsc;
2564
2565 if (ratio != kvm_caps.default_tsc_scaling_ratio)
2566 _tsc = __scale_tsc(ratio, tsc);
2567
2568 return _tsc;
2569 }
2570
kvm_compute_l1_tsc_offset(struct kvm_vcpu * vcpu,u64 target_tsc)2571 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2572 {
2573 u64 tsc;
2574
2575 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2576
2577 return target_tsc - tsc;
2578 }
2579
kvm_read_l1_tsc(struct kvm_vcpu * vcpu,u64 host_tsc)2580 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2581 {
2582 return vcpu->arch.l1_tsc_offset +
2583 kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2584 }
2585 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2586
kvm_calc_nested_tsc_offset(u64 l1_offset,u64 l2_offset,u64 l2_multiplier)2587 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2588 {
2589 u64 nested_offset;
2590
2591 if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio)
2592 nested_offset = l1_offset;
2593 else
2594 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2595 kvm_caps.tsc_scaling_ratio_frac_bits);
2596
2597 nested_offset += l2_offset;
2598 return nested_offset;
2599 }
2600 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2601
kvm_calc_nested_tsc_multiplier(u64 l1_multiplier,u64 l2_multiplier)2602 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2603 {
2604 if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio)
2605 return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2606 kvm_caps.tsc_scaling_ratio_frac_bits);
2607
2608 return l1_multiplier;
2609 }
2610 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2611
kvm_vcpu_write_tsc_offset(struct kvm_vcpu * vcpu,u64 l1_offset)2612 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2613 {
2614 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2615 vcpu->arch.l1_tsc_offset,
2616 l1_offset);
2617
2618 vcpu->arch.l1_tsc_offset = l1_offset;
2619
2620 /*
2621 * If we are here because L1 chose not to trap WRMSR to TSC then
2622 * according to the spec this should set L1's TSC (as opposed to
2623 * setting L1's offset for L2).
2624 */
2625 if (is_guest_mode(vcpu))
2626 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2627 l1_offset,
2628 static_call(kvm_x86_get_l2_tsc_offset)(vcpu),
2629 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2630 else
2631 vcpu->arch.tsc_offset = l1_offset;
2632
2633 static_call(kvm_x86_write_tsc_offset)(vcpu);
2634 }
2635
kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu * vcpu,u64 l1_multiplier)2636 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2637 {
2638 vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2639
2640 /* Userspace is changing the multiplier while L2 is active */
2641 if (is_guest_mode(vcpu))
2642 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2643 l1_multiplier,
2644 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2645 else
2646 vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2647
2648 if (kvm_caps.has_tsc_control)
2649 static_call(kvm_x86_write_tsc_multiplier)(vcpu);
2650 }
2651
kvm_check_tsc_unstable(void)2652 static inline bool kvm_check_tsc_unstable(void)
2653 {
2654 #ifdef CONFIG_X86_64
2655 /*
2656 * TSC is marked unstable when we're running on Hyper-V,
2657 * 'TSC page' clocksource is good.
2658 */
2659 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2660 return false;
2661 #endif
2662 return check_tsc_unstable();
2663 }
2664
2665 /*
2666 * Infers attempts to synchronize the guest's tsc from host writes. Sets the
2667 * offset for the vcpu and tracks the TSC matching generation that the vcpu
2668 * participates in.
2669 */
__kvm_synchronize_tsc(struct kvm_vcpu * vcpu,u64 offset,u64 tsc,u64 ns,bool matched)2670 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc,
2671 u64 ns, bool matched)
2672 {
2673 struct kvm *kvm = vcpu->kvm;
2674
2675 lockdep_assert_held(&kvm->arch.tsc_write_lock);
2676
2677 /*
2678 * We also track th most recent recorded KHZ, write and time to
2679 * allow the matching interval to be extended at each write.
2680 */
2681 kvm->arch.last_tsc_nsec = ns;
2682 kvm->arch.last_tsc_write = tsc;
2683 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2684 kvm->arch.last_tsc_offset = offset;
2685
2686 vcpu->arch.last_guest_tsc = tsc;
2687
2688 kvm_vcpu_write_tsc_offset(vcpu, offset);
2689
2690 if (!matched) {
2691 /*
2692 * We split periods of matched TSC writes into generations.
2693 * For each generation, we track the original measured
2694 * nanosecond time, offset, and write, so if TSCs are in
2695 * sync, we can match exact offset, and if not, we can match
2696 * exact software computation in compute_guest_tsc()
2697 *
2698 * These values are tracked in kvm->arch.cur_xxx variables.
2699 */
2700 kvm->arch.cur_tsc_generation++;
2701 kvm->arch.cur_tsc_nsec = ns;
2702 kvm->arch.cur_tsc_write = tsc;
2703 kvm->arch.cur_tsc_offset = offset;
2704 kvm->arch.nr_vcpus_matched_tsc = 0;
2705 } else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) {
2706 kvm->arch.nr_vcpus_matched_tsc++;
2707 }
2708
2709 /* Keep track of which generation this VCPU has synchronized to */
2710 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2711 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2712 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2713
2714 kvm_track_tsc_matching(vcpu);
2715 }
2716
kvm_synchronize_tsc(struct kvm_vcpu * vcpu,u64 data)2717 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2718 {
2719 struct kvm *kvm = vcpu->kvm;
2720 u64 offset, ns, elapsed;
2721 unsigned long flags;
2722 bool matched = false;
2723 bool synchronizing = false;
2724
2725 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2726 offset = kvm_compute_l1_tsc_offset(vcpu, data);
2727 ns = get_kvmclock_base_ns();
2728 elapsed = ns - kvm->arch.last_tsc_nsec;
2729
2730 if (vcpu->arch.virtual_tsc_khz) {
2731 if (data == 0) {
2732 /*
2733 * detection of vcpu initialization -- need to sync
2734 * with other vCPUs. This particularly helps to keep
2735 * kvm_clock stable after CPU hotplug
2736 */
2737 synchronizing = true;
2738 } else {
2739 u64 tsc_exp = kvm->arch.last_tsc_write +
2740 nsec_to_cycles(vcpu, elapsed);
2741 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2742 /*
2743 * Special case: TSC write with a small delta (1 second)
2744 * of virtual cycle time against real time is
2745 * interpreted as an attempt to synchronize the CPU.
2746 */
2747 synchronizing = data < tsc_exp + tsc_hz &&
2748 data + tsc_hz > tsc_exp;
2749 }
2750 }
2751
2752 /*
2753 * For a reliable TSC, we can match TSC offsets, and for an unstable
2754 * TSC, we add elapsed time in this computation. We could let the
2755 * compensation code attempt to catch up if we fall behind, but
2756 * it's better to try to match offsets from the beginning.
2757 */
2758 if (synchronizing &&
2759 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2760 if (!kvm_check_tsc_unstable()) {
2761 offset = kvm->arch.cur_tsc_offset;
2762 } else {
2763 u64 delta = nsec_to_cycles(vcpu, elapsed);
2764 data += delta;
2765 offset = kvm_compute_l1_tsc_offset(vcpu, data);
2766 }
2767 matched = true;
2768 }
2769
2770 __kvm_synchronize_tsc(vcpu, offset, data, ns, matched);
2771 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2772 }
2773
adjust_tsc_offset_guest(struct kvm_vcpu * vcpu,s64 adjustment)2774 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2775 s64 adjustment)
2776 {
2777 u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2778 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2779 }
2780
adjust_tsc_offset_host(struct kvm_vcpu * vcpu,s64 adjustment)2781 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2782 {
2783 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio)
2784 WARN_ON(adjustment < 0);
2785 adjustment = kvm_scale_tsc((u64) adjustment,
2786 vcpu->arch.l1_tsc_scaling_ratio);
2787 adjust_tsc_offset_guest(vcpu, adjustment);
2788 }
2789
2790 #ifdef CONFIG_X86_64
2791
read_tsc(void)2792 static u64 read_tsc(void)
2793 {
2794 u64 ret = (u64)rdtsc_ordered();
2795 u64 last = pvclock_gtod_data.clock.cycle_last;
2796
2797 if (likely(ret >= last))
2798 return ret;
2799
2800 /*
2801 * GCC likes to generate cmov here, but this branch is extremely
2802 * predictable (it's just a function of time and the likely is
2803 * very likely) and there's a data dependence, so force GCC
2804 * to generate a branch instead. I don't barrier() because
2805 * we don't actually need a barrier, and if this function
2806 * ever gets inlined it will generate worse code.
2807 */
2808 asm volatile ("");
2809 return last;
2810 }
2811
vgettsc(struct pvclock_clock * clock,u64 * tsc_timestamp,int * mode)2812 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2813 int *mode)
2814 {
2815 u64 tsc_pg_val;
2816 long v;
2817
2818 switch (clock->vclock_mode) {
2819 case VDSO_CLOCKMODE_HVCLOCK:
2820 if (hv_read_tsc_page_tsc(hv_get_tsc_page(),
2821 tsc_timestamp, &tsc_pg_val)) {
2822 /* TSC page valid */
2823 *mode = VDSO_CLOCKMODE_HVCLOCK;
2824 v = (tsc_pg_val - clock->cycle_last) &
2825 clock->mask;
2826 } else {
2827 /* TSC page invalid */
2828 *mode = VDSO_CLOCKMODE_NONE;
2829 }
2830 break;
2831 case VDSO_CLOCKMODE_TSC:
2832 *mode = VDSO_CLOCKMODE_TSC;
2833 *tsc_timestamp = read_tsc();
2834 v = (*tsc_timestamp - clock->cycle_last) &
2835 clock->mask;
2836 break;
2837 default:
2838 *mode = VDSO_CLOCKMODE_NONE;
2839 }
2840
2841 if (*mode == VDSO_CLOCKMODE_NONE)
2842 *tsc_timestamp = v = 0;
2843
2844 return v * clock->mult;
2845 }
2846
do_monotonic_raw(s64 * t,u64 * tsc_timestamp)2847 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2848 {
2849 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2850 unsigned long seq;
2851 int mode;
2852 u64 ns;
2853
2854 do {
2855 seq = read_seqcount_begin(>od->seq);
2856 ns = gtod->raw_clock.base_cycles;
2857 ns += vgettsc(>od->raw_clock, tsc_timestamp, &mode);
2858 ns >>= gtod->raw_clock.shift;
2859 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2860 } while (unlikely(read_seqcount_retry(>od->seq, seq)));
2861 *t = ns;
2862
2863 return mode;
2864 }
2865
do_realtime(struct timespec64 * ts,u64 * tsc_timestamp)2866 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2867 {
2868 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2869 unsigned long seq;
2870 int mode;
2871 u64 ns;
2872
2873 do {
2874 seq = read_seqcount_begin(>od->seq);
2875 ts->tv_sec = gtod->wall_time_sec;
2876 ns = gtod->clock.base_cycles;
2877 ns += vgettsc(>od->clock, tsc_timestamp, &mode);
2878 ns >>= gtod->clock.shift;
2879 } while (unlikely(read_seqcount_retry(>od->seq, seq)));
2880
2881 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2882 ts->tv_nsec = ns;
2883
2884 return mode;
2885 }
2886
2887 /* returns true if host is using TSC based clocksource */
kvm_get_time_and_clockread(s64 * kernel_ns,u64 * tsc_timestamp)2888 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2889 {
2890 /* checked again under seqlock below */
2891 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2892 return false;
2893
2894 return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2895 tsc_timestamp));
2896 }
2897
2898 /* returns true if host is using TSC based clocksource */
kvm_get_walltime_and_clockread(struct timespec64 * ts,u64 * tsc_timestamp)2899 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2900 u64 *tsc_timestamp)
2901 {
2902 /* checked again under seqlock below */
2903 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2904 return false;
2905
2906 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2907 }
2908 #endif
2909
2910 /*
2911 *
2912 * Assuming a stable TSC across physical CPUS, and a stable TSC
2913 * across virtual CPUs, the following condition is possible.
2914 * Each numbered line represents an event visible to both
2915 * CPUs at the next numbered event.
2916 *
2917 * "timespecX" represents host monotonic time. "tscX" represents
2918 * RDTSC value.
2919 *
2920 * VCPU0 on CPU0 | VCPU1 on CPU1
2921 *
2922 * 1. read timespec0,tsc0
2923 * 2. | timespec1 = timespec0 + N
2924 * | tsc1 = tsc0 + M
2925 * 3. transition to guest | transition to guest
2926 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2927 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
2928 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2929 *
2930 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2931 *
2932 * - ret0 < ret1
2933 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2934 * ...
2935 * - 0 < N - M => M < N
2936 *
2937 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2938 * always the case (the difference between two distinct xtime instances
2939 * might be smaller then the difference between corresponding TSC reads,
2940 * when updating guest vcpus pvclock areas).
2941 *
2942 * To avoid that problem, do not allow visibility of distinct
2943 * system_timestamp/tsc_timestamp values simultaneously: use a master
2944 * copy of host monotonic time values. Update that master copy
2945 * in lockstep.
2946 *
2947 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2948 *
2949 */
2950
pvclock_update_vm_gtod_copy(struct kvm * kvm)2951 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2952 {
2953 #ifdef CONFIG_X86_64
2954 struct kvm_arch *ka = &kvm->arch;
2955 int vclock_mode;
2956 bool host_tsc_clocksource, vcpus_matched;
2957
2958 lockdep_assert_held(&kvm->arch.tsc_write_lock);
2959 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2960 atomic_read(&kvm->online_vcpus));
2961
2962 /*
2963 * If the host uses TSC clock, then passthrough TSC as stable
2964 * to the guest.
2965 */
2966 host_tsc_clocksource = kvm_get_time_and_clockread(
2967 &ka->master_kernel_ns,
2968 &ka->master_cycle_now);
2969
2970 ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2971 && !ka->backwards_tsc_observed
2972 && !ka->boot_vcpu_runs_old_kvmclock;
2973
2974 if (ka->use_master_clock)
2975 atomic_set(&kvm_guest_has_master_clock, 1);
2976
2977 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2978 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2979 vcpus_matched);
2980 #endif
2981 }
2982
kvm_make_mclock_inprogress_request(struct kvm * kvm)2983 static void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2984 {
2985 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2986 }
2987
__kvm_start_pvclock_update(struct kvm * kvm)2988 static void __kvm_start_pvclock_update(struct kvm *kvm)
2989 {
2990 raw_spin_lock_irq(&kvm->arch.tsc_write_lock);
2991 write_seqcount_begin(&kvm->arch.pvclock_sc);
2992 }
2993
kvm_start_pvclock_update(struct kvm * kvm)2994 static void kvm_start_pvclock_update(struct kvm *kvm)
2995 {
2996 kvm_make_mclock_inprogress_request(kvm);
2997
2998 /* no guest entries from this point */
2999 __kvm_start_pvclock_update(kvm);
3000 }
3001
kvm_end_pvclock_update(struct kvm * kvm)3002 static void kvm_end_pvclock_update(struct kvm *kvm)
3003 {
3004 struct kvm_arch *ka = &kvm->arch;
3005 struct kvm_vcpu *vcpu;
3006 unsigned long i;
3007
3008 write_seqcount_end(&ka->pvclock_sc);
3009 raw_spin_unlock_irq(&ka->tsc_write_lock);
3010 kvm_for_each_vcpu(i, vcpu, kvm)
3011 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3012
3013 /* guest entries allowed */
3014 kvm_for_each_vcpu(i, vcpu, kvm)
3015 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
3016 }
3017
kvm_update_masterclock(struct kvm * kvm)3018 static void kvm_update_masterclock(struct kvm *kvm)
3019 {
3020 kvm_hv_request_tsc_page_update(kvm);
3021 kvm_start_pvclock_update(kvm);
3022 pvclock_update_vm_gtod_copy(kvm);
3023 kvm_end_pvclock_update(kvm);
3024 }
3025
3026 /*
3027 * Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's
3028 * per-CPU value (which may be zero if a CPU is going offline). Note, tsc_khz
3029 * can change during boot even if the TSC is constant, as it's possible for KVM
3030 * to be loaded before TSC calibration completes. Ideally, KVM would get a
3031 * notification when calibration completes, but practically speaking calibration
3032 * will complete before userspace is alive enough to create VMs.
3033 */
get_cpu_tsc_khz(void)3034 static unsigned long get_cpu_tsc_khz(void)
3035 {
3036 if (static_cpu_has(X86_FEATURE_CONSTANT_TSC))
3037 return tsc_khz;
3038 else
3039 return __this_cpu_read(cpu_tsc_khz);
3040 }
3041
3042 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc. */
__get_kvmclock(struct kvm * kvm,struct kvm_clock_data * data)3043 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3044 {
3045 struct kvm_arch *ka = &kvm->arch;
3046 struct pvclock_vcpu_time_info hv_clock;
3047
3048 /* both __this_cpu_read() and rdtsc() should be on the same cpu */
3049 get_cpu();
3050
3051 data->flags = 0;
3052 if (ka->use_master_clock &&
3053 (static_cpu_has(X86_FEATURE_CONSTANT_TSC) || __this_cpu_read(cpu_tsc_khz))) {
3054 #ifdef CONFIG_X86_64
3055 struct timespec64 ts;
3056
3057 if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) {
3058 data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec;
3059 data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC;
3060 } else
3061 #endif
3062 data->host_tsc = rdtsc();
3063
3064 data->flags |= KVM_CLOCK_TSC_STABLE;
3065 hv_clock.tsc_timestamp = ka->master_cycle_now;
3066 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
3067 kvm_get_time_scale(NSEC_PER_SEC, get_cpu_tsc_khz() * 1000LL,
3068 &hv_clock.tsc_shift,
3069 &hv_clock.tsc_to_system_mul);
3070 data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc);
3071 } else {
3072 data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset;
3073 }
3074
3075 put_cpu();
3076 }
3077
get_kvmclock(struct kvm * kvm,struct kvm_clock_data * data)3078 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3079 {
3080 struct kvm_arch *ka = &kvm->arch;
3081 unsigned seq;
3082
3083 do {
3084 seq = read_seqcount_begin(&ka->pvclock_sc);
3085 __get_kvmclock(kvm, data);
3086 } while (read_seqcount_retry(&ka->pvclock_sc, seq));
3087 }
3088
get_kvmclock_ns(struct kvm * kvm)3089 u64 get_kvmclock_ns(struct kvm *kvm)
3090 {
3091 struct kvm_clock_data data;
3092
3093 get_kvmclock(kvm, &data);
3094 return data.clock;
3095 }
3096
kvm_setup_guest_pvclock(struct kvm_vcpu * v,struct gfn_to_pfn_cache * gpc,unsigned int offset)3097 static void kvm_setup_guest_pvclock(struct kvm_vcpu *v,
3098 struct gfn_to_pfn_cache *gpc,
3099 unsigned int offset)
3100 {
3101 struct kvm_vcpu_arch *vcpu = &v->arch;
3102 struct pvclock_vcpu_time_info *guest_hv_clock;
3103 unsigned long flags;
3104
3105 read_lock_irqsave(&gpc->lock, flags);
3106 while (!kvm_gpc_check(gpc, offset + sizeof(*guest_hv_clock))) {
3107 read_unlock_irqrestore(&gpc->lock, flags);
3108
3109 if (kvm_gpc_refresh(gpc, offset + sizeof(*guest_hv_clock)))
3110 return;
3111
3112 read_lock_irqsave(&gpc->lock, flags);
3113 }
3114
3115 guest_hv_clock = (void *)(gpc->khva + offset);
3116
3117 /*
3118 * This VCPU is paused, but it's legal for a guest to read another
3119 * VCPU's kvmclock, so we really have to follow the specification where
3120 * it says that version is odd if data is being modified, and even after
3121 * it is consistent.
3122 */
3123
3124 guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1;
3125 smp_wmb();
3126
3127 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
3128 vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED);
3129
3130 if (vcpu->pvclock_set_guest_stopped_request) {
3131 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
3132 vcpu->pvclock_set_guest_stopped_request = false;
3133 }
3134
3135 memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock));
3136 smp_wmb();
3137
3138 guest_hv_clock->version = ++vcpu->hv_clock.version;
3139
3140 mark_page_dirty_in_slot(v->kvm, gpc->memslot, gpc->gpa >> PAGE_SHIFT);
3141 read_unlock_irqrestore(&gpc->lock, flags);
3142
3143 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
3144 }
3145
kvm_guest_time_update(struct kvm_vcpu * v)3146 static int kvm_guest_time_update(struct kvm_vcpu *v)
3147 {
3148 unsigned long flags, tgt_tsc_khz;
3149 unsigned seq;
3150 struct kvm_vcpu_arch *vcpu = &v->arch;
3151 struct kvm_arch *ka = &v->kvm->arch;
3152 s64 kernel_ns;
3153 u64 tsc_timestamp, host_tsc;
3154 u8 pvclock_flags;
3155 bool use_master_clock;
3156
3157 kernel_ns = 0;
3158 host_tsc = 0;
3159
3160 /*
3161 * If the host uses TSC clock, then passthrough TSC as stable
3162 * to the guest.
3163 */
3164 do {
3165 seq = read_seqcount_begin(&ka->pvclock_sc);
3166 use_master_clock = ka->use_master_clock;
3167 if (use_master_clock) {
3168 host_tsc = ka->master_cycle_now;
3169 kernel_ns = ka->master_kernel_ns;
3170 }
3171 } while (read_seqcount_retry(&ka->pvclock_sc, seq));
3172
3173 /* Keep irq disabled to prevent changes to the clock */
3174 local_irq_save(flags);
3175 tgt_tsc_khz = get_cpu_tsc_khz();
3176 if (unlikely(tgt_tsc_khz == 0)) {
3177 local_irq_restore(flags);
3178 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3179 return 1;
3180 }
3181 if (!use_master_clock) {
3182 host_tsc = rdtsc();
3183 kernel_ns = get_kvmclock_base_ns();
3184 }
3185
3186 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
3187
3188 /*
3189 * We may have to catch up the TSC to match elapsed wall clock
3190 * time for two reasons, even if kvmclock is used.
3191 * 1) CPU could have been running below the maximum TSC rate
3192 * 2) Broken TSC compensation resets the base at each VCPU
3193 * entry to avoid unknown leaps of TSC even when running
3194 * again on the same CPU. This may cause apparent elapsed
3195 * time to disappear, and the guest to stand still or run
3196 * very slowly.
3197 */
3198 if (vcpu->tsc_catchup) {
3199 u64 tsc = compute_guest_tsc(v, kernel_ns);
3200 if (tsc > tsc_timestamp) {
3201 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
3202 tsc_timestamp = tsc;
3203 }
3204 }
3205
3206 local_irq_restore(flags);
3207
3208 /* With all the info we got, fill in the values */
3209
3210 if (kvm_caps.has_tsc_control)
3211 tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz,
3212 v->arch.l1_tsc_scaling_ratio);
3213
3214 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
3215 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
3216 &vcpu->hv_clock.tsc_shift,
3217 &vcpu->hv_clock.tsc_to_system_mul);
3218 vcpu->hw_tsc_khz = tgt_tsc_khz;
3219 kvm_xen_update_tsc_info(v);
3220 }
3221
3222 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
3223 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
3224 vcpu->last_guest_tsc = tsc_timestamp;
3225
3226 /* If the host uses TSC clocksource, then it is stable */
3227 pvclock_flags = 0;
3228 if (use_master_clock)
3229 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
3230
3231 vcpu->hv_clock.flags = pvclock_flags;
3232
3233 if (vcpu->pv_time.active)
3234 kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0);
3235 if (vcpu->xen.vcpu_info_cache.active)
3236 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache,
3237 offsetof(struct compat_vcpu_info, time));
3238 if (vcpu->xen.vcpu_time_info_cache.active)
3239 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0);
3240 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
3241 return 0;
3242 }
3243
3244 /*
3245 * kvmclock updates which are isolated to a given vcpu, such as
3246 * vcpu->cpu migration, should not allow system_timestamp from
3247 * the rest of the vcpus to remain static. Otherwise ntp frequency
3248 * correction applies to one vcpu's system_timestamp but not
3249 * the others.
3250 *
3251 * So in those cases, request a kvmclock update for all vcpus.
3252 * We need to rate-limit these requests though, as they can
3253 * considerably slow guests that have a large number of vcpus.
3254 * The time for a remote vcpu to update its kvmclock is bound
3255 * by the delay we use to rate-limit the updates.
3256 */
3257
3258 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
3259
kvmclock_update_fn(struct work_struct * work)3260 static void kvmclock_update_fn(struct work_struct *work)
3261 {
3262 unsigned long i;
3263 struct delayed_work *dwork = to_delayed_work(work);
3264 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3265 kvmclock_update_work);
3266 struct kvm *kvm = container_of(ka, struct kvm, arch);
3267 struct kvm_vcpu *vcpu;
3268
3269 kvm_for_each_vcpu(i, vcpu, kvm) {
3270 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3271 kvm_vcpu_kick(vcpu);
3272 }
3273 }
3274
kvm_gen_kvmclock_update(struct kvm_vcpu * v)3275 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3276 {
3277 struct kvm *kvm = v->kvm;
3278
3279 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3280 schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3281 KVMCLOCK_UPDATE_DELAY);
3282 }
3283
3284 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3285
kvmclock_sync_fn(struct work_struct * work)3286 static void kvmclock_sync_fn(struct work_struct *work)
3287 {
3288 struct delayed_work *dwork = to_delayed_work(work);
3289 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3290 kvmclock_sync_work);
3291 struct kvm *kvm = container_of(ka, struct kvm, arch);
3292
3293 if (!kvmclock_periodic_sync)
3294 return;
3295
3296 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3297 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3298 KVMCLOCK_SYNC_PERIOD);
3299 }
3300
3301 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */
is_mci_control_msr(u32 msr)3302 static bool is_mci_control_msr(u32 msr)
3303 {
3304 return (msr & 3) == 0;
3305 }
is_mci_status_msr(u32 msr)3306 static bool is_mci_status_msr(u32 msr)
3307 {
3308 return (msr & 3) == 1;
3309 }
3310
3311 /*
3312 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3313 */
can_set_mci_status(struct kvm_vcpu * vcpu)3314 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3315 {
3316 /* McStatusWrEn enabled? */
3317 if (guest_cpuid_is_amd_or_hygon(vcpu))
3318 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3319
3320 return false;
3321 }
3322
set_msr_mce(struct kvm_vcpu * vcpu,struct msr_data * msr_info)3323 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3324 {
3325 u64 mcg_cap = vcpu->arch.mcg_cap;
3326 unsigned bank_num = mcg_cap & 0xff;
3327 u32 msr = msr_info->index;
3328 u64 data = msr_info->data;
3329 u32 offset, last_msr;
3330
3331 switch (msr) {
3332 case MSR_IA32_MCG_STATUS:
3333 vcpu->arch.mcg_status = data;
3334 break;
3335 case MSR_IA32_MCG_CTL:
3336 if (!(mcg_cap & MCG_CTL_P) &&
3337 (data || !msr_info->host_initiated))
3338 return 1;
3339 if (data != 0 && data != ~(u64)0)
3340 return 1;
3341 vcpu->arch.mcg_ctl = data;
3342 break;
3343 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3344 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
3345 if (msr > last_msr)
3346 return 1;
3347
3348 if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated))
3349 return 1;
3350 /* An attempt to write a 1 to a reserved bit raises #GP */
3351 if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK))
3352 return 1;
3353 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
3354 last_msr + 1 - MSR_IA32_MC0_CTL2);
3355 vcpu->arch.mci_ctl2_banks[offset] = data;
3356 break;
3357 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3358 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
3359 if (msr > last_msr)
3360 return 1;
3361
3362 /*
3363 * Only 0 or all 1s can be written to IA32_MCi_CTL, all other
3364 * values are architecturally undefined. But, some Linux
3365 * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB
3366 * issue on AMD K8s, allow bit 10 to be clear when setting all
3367 * other bits in order to avoid an uncaught #GP in the guest.
3368 *
3369 * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable,
3370 * single-bit ECC data errors.
3371 */
3372 if (is_mci_control_msr(msr) &&
3373 data != 0 && (data | (1 << 10) | 1) != ~(u64)0)
3374 return 1;
3375
3376 /*
3377 * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR.
3378 * AMD-based CPUs allow non-zero values, but if and only if
3379 * HWCR[McStatusWrEn] is set.
3380 */
3381 if (!msr_info->host_initiated && is_mci_status_msr(msr) &&
3382 data != 0 && !can_set_mci_status(vcpu))
3383 return 1;
3384
3385 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
3386 last_msr + 1 - MSR_IA32_MC0_CTL);
3387 vcpu->arch.mce_banks[offset] = data;
3388 break;
3389 default:
3390 return 1;
3391 }
3392 return 0;
3393 }
3394
kvm_pv_async_pf_enabled(struct kvm_vcpu * vcpu)3395 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3396 {
3397 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3398
3399 return (vcpu->arch.apf.msr_en_val & mask) == mask;
3400 }
3401
kvm_pv_enable_async_pf(struct kvm_vcpu * vcpu,u64 data)3402 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3403 {
3404 gpa_t gpa = data & ~0x3f;
3405
3406 /* Bits 4:5 are reserved, Should be zero */
3407 if (data & 0x30)
3408 return 1;
3409
3410 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3411 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3412 return 1;
3413
3414 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3415 (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3416 return 1;
3417
3418 if (!lapic_in_kernel(vcpu))
3419 return data ? 1 : 0;
3420
3421 vcpu->arch.apf.msr_en_val = data;
3422
3423 if (!kvm_pv_async_pf_enabled(vcpu)) {
3424 kvm_clear_async_pf_completion_queue(vcpu);
3425 kvm_async_pf_hash_reset(vcpu);
3426 return 0;
3427 }
3428
3429 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3430 sizeof(u64)))
3431 return 1;
3432
3433 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3434 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3435
3436 kvm_async_pf_wakeup_all(vcpu);
3437
3438 return 0;
3439 }
3440
kvm_pv_enable_async_pf_int(struct kvm_vcpu * vcpu,u64 data)3441 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3442 {
3443 /* Bits 8-63 are reserved */
3444 if (data >> 8)
3445 return 1;
3446
3447 if (!lapic_in_kernel(vcpu))
3448 return 1;
3449
3450 vcpu->arch.apf.msr_int_val = data;
3451
3452 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3453
3454 return 0;
3455 }
3456
kvmclock_reset(struct kvm_vcpu * vcpu)3457 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3458 {
3459 kvm_gpc_deactivate(&vcpu->arch.pv_time);
3460 vcpu->arch.time = 0;
3461 }
3462
kvm_vcpu_flush_tlb_all(struct kvm_vcpu * vcpu)3463 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3464 {
3465 ++vcpu->stat.tlb_flush;
3466 static_call(kvm_x86_flush_tlb_all)(vcpu);
3467
3468 /* Flushing all ASIDs flushes the current ASID... */
3469 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
3470 }
3471
kvm_vcpu_flush_tlb_guest(struct kvm_vcpu * vcpu)3472 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3473 {
3474 ++vcpu->stat.tlb_flush;
3475
3476 if (!tdp_enabled) {
3477 /*
3478 * A TLB flush on behalf of the guest is equivalent to
3479 * INVPCID(all), toggling CR4.PGE, etc., which requires
3480 * a forced sync of the shadow page tables. Ensure all the
3481 * roots are synced and the guest TLB in hardware is clean.
3482 */
3483 kvm_mmu_sync_roots(vcpu);
3484 kvm_mmu_sync_prev_roots(vcpu);
3485 }
3486
3487 static_call(kvm_x86_flush_tlb_guest)(vcpu);
3488
3489 /*
3490 * Flushing all "guest" TLB is always a superset of Hyper-V's fine
3491 * grained flushing.
3492 */
3493 kvm_hv_vcpu_purge_flush_tlb(vcpu);
3494 }
3495
3496
kvm_vcpu_flush_tlb_current(struct kvm_vcpu * vcpu)3497 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
3498 {
3499 ++vcpu->stat.tlb_flush;
3500 static_call(kvm_x86_flush_tlb_current)(vcpu);
3501 }
3502
3503 /*
3504 * Service "local" TLB flush requests, which are specific to the current MMU
3505 * context. In addition to the generic event handling in vcpu_enter_guest(),
3506 * TLB flushes that are targeted at an MMU context also need to be serviced
3507 * prior before nested VM-Enter/VM-Exit.
3508 */
kvm_service_local_tlb_flush_requests(struct kvm_vcpu * vcpu)3509 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu)
3510 {
3511 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3512 kvm_vcpu_flush_tlb_current(vcpu);
3513
3514 if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
3515 kvm_vcpu_flush_tlb_guest(vcpu);
3516 }
3517 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests);
3518
record_steal_time(struct kvm_vcpu * vcpu)3519 static void record_steal_time(struct kvm_vcpu *vcpu)
3520 {
3521 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3522 struct kvm_steal_time __user *st;
3523 struct kvm_memslots *slots;
3524 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3525 u64 steal;
3526 u32 version;
3527
3528 if (kvm_xen_msr_enabled(vcpu->kvm)) {
3529 kvm_xen_runstate_set_running(vcpu);
3530 return;
3531 }
3532
3533 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3534 return;
3535
3536 if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3537 return;
3538
3539 slots = kvm_memslots(vcpu->kvm);
3540
3541 if (unlikely(slots->generation != ghc->generation ||
3542 gpa != ghc->gpa ||
3543 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3544 /* We rely on the fact that it fits in a single page. */
3545 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3546
3547 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) ||
3548 kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3549 return;
3550 }
3551
3552 st = (struct kvm_steal_time __user *)ghc->hva;
3553 /*
3554 * Doing a TLB flush here, on the guest's behalf, can avoid
3555 * expensive IPIs.
3556 */
3557 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3558 u8 st_preempted = 0;
3559 int err = -EFAULT;
3560
3561 if (!user_access_begin(st, sizeof(*st)))
3562 return;
3563
3564 asm volatile("1: xchgb %0, %2\n"
3565 "xor %1, %1\n"
3566 "2:\n"
3567 _ASM_EXTABLE_UA(1b, 2b)
3568 : "+q" (st_preempted),
3569 "+&r" (err),
3570 "+m" (st->preempted));
3571 if (err)
3572 goto out;
3573
3574 user_access_end();
3575
3576 vcpu->arch.st.preempted = 0;
3577
3578 trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3579 st_preempted & KVM_VCPU_FLUSH_TLB);
3580 if (st_preempted & KVM_VCPU_FLUSH_TLB)
3581 kvm_vcpu_flush_tlb_guest(vcpu);
3582
3583 if (!user_access_begin(st, sizeof(*st)))
3584 goto dirty;
3585 } else {
3586 if (!user_access_begin(st, sizeof(*st)))
3587 return;
3588
3589 unsafe_put_user(0, &st->preempted, out);
3590 vcpu->arch.st.preempted = 0;
3591 }
3592
3593 unsafe_get_user(version, &st->version, out);
3594 if (version & 1)
3595 version += 1; /* first time write, random junk */
3596
3597 version += 1;
3598 unsafe_put_user(version, &st->version, out);
3599
3600 smp_wmb();
3601
3602 unsafe_get_user(steal, &st->steal, out);
3603 steal += current->sched_info.run_delay -
3604 vcpu->arch.st.last_steal;
3605 vcpu->arch.st.last_steal = current->sched_info.run_delay;
3606 unsafe_put_user(steal, &st->steal, out);
3607
3608 version += 1;
3609 unsafe_put_user(version, &st->version, out);
3610
3611 out:
3612 user_access_end();
3613 dirty:
3614 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
3615 }
3616
kvm_is_msr_to_save(u32 msr_index)3617 static bool kvm_is_msr_to_save(u32 msr_index)
3618 {
3619 unsigned int i;
3620
3621 for (i = 0; i < num_msrs_to_save; i++) {
3622 if (msrs_to_save[i] == msr_index)
3623 return true;
3624 }
3625
3626 return false;
3627 }
3628
kvm_set_msr_common(struct kvm_vcpu * vcpu,struct msr_data * msr_info)3629 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3630 {
3631 u32 msr = msr_info->index;
3632 u64 data = msr_info->data;
3633
3634 if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3635 return kvm_xen_write_hypercall_page(vcpu, data);
3636
3637 switch (msr) {
3638 case MSR_AMD64_NB_CFG:
3639 case MSR_IA32_UCODE_WRITE:
3640 case MSR_VM_HSAVE_PA:
3641 case MSR_AMD64_PATCH_LOADER:
3642 case MSR_AMD64_BU_CFG2:
3643 case MSR_AMD64_DC_CFG:
3644 case MSR_F15H_EX_CFG:
3645 break;
3646
3647 case MSR_IA32_UCODE_REV:
3648 if (msr_info->host_initiated)
3649 vcpu->arch.microcode_version = data;
3650 break;
3651 case MSR_IA32_ARCH_CAPABILITIES:
3652 if (!msr_info->host_initiated)
3653 return 1;
3654 vcpu->arch.arch_capabilities = data;
3655 break;
3656 case MSR_IA32_PERF_CAPABILITIES:
3657 if (!msr_info->host_initiated)
3658 return 1;
3659 if (data & ~kvm_caps.supported_perf_cap)
3660 return 1;
3661
3662 /*
3663 * Note, this is not just a performance optimization! KVM
3664 * disallows changing feature MSRs after the vCPU has run; PMU
3665 * refresh will bug the VM if called after the vCPU has run.
3666 */
3667 if (vcpu->arch.perf_capabilities == data)
3668 break;
3669
3670 vcpu->arch.perf_capabilities = data;
3671 kvm_pmu_refresh(vcpu);
3672 break;
3673 case MSR_IA32_PRED_CMD:
3674 if (!msr_info->host_initiated && !guest_has_pred_cmd_msr(vcpu))
3675 return 1;
3676
3677 if (!boot_cpu_has(X86_FEATURE_IBPB) || (data & ~PRED_CMD_IBPB))
3678 return 1;
3679 if (!data)
3680 break;
3681
3682 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
3683 break;
3684 case MSR_IA32_FLUSH_CMD:
3685 if (!msr_info->host_initiated &&
3686 !guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D))
3687 return 1;
3688
3689 if (!boot_cpu_has(X86_FEATURE_FLUSH_L1D) || (data & ~L1D_FLUSH))
3690 return 1;
3691 if (!data)
3692 break;
3693
3694 wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
3695 break;
3696 case MSR_EFER:
3697 return set_efer(vcpu, msr_info);
3698 case MSR_K7_HWCR:
3699 data &= ~(u64)0x40; /* ignore flush filter disable */
3700 data &= ~(u64)0x100; /* ignore ignne emulation enable */
3701 data &= ~(u64)0x8; /* ignore TLB cache disable */
3702
3703 /* Handle McStatusWrEn */
3704 if (data == BIT_ULL(18)) {
3705 vcpu->arch.msr_hwcr = data;
3706 } else if (data != 0) {
3707 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3708 return 1;
3709 }
3710 break;
3711 case MSR_FAM10H_MMIO_CONF_BASE:
3712 if (data != 0) {
3713 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3714 return 1;
3715 }
3716 break;
3717 case MSR_IA32_CR_PAT:
3718 if (!kvm_pat_valid(data))
3719 return 1;
3720
3721 vcpu->arch.pat = data;
3722 break;
3723 case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
3724 case MSR_MTRRdefType:
3725 return kvm_mtrr_set_msr(vcpu, msr, data);
3726 case MSR_IA32_APICBASE:
3727 return kvm_set_apic_base(vcpu, msr_info);
3728 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3729 return kvm_x2apic_msr_write(vcpu, msr, data);
3730 case MSR_IA32_TSC_DEADLINE:
3731 kvm_set_lapic_tscdeadline_msr(vcpu, data);
3732 break;
3733 case MSR_IA32_TSC_ADJUST:
3734 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3735 if (!msr_info->host_initiated) {
3736 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3737 adjust_tsc_offset_guest(vcpu, adj);
3738 /* Before back to guest, tsc_timestamp must be adjusted
3739 * as well, otherwise guest's percpu pvclock time could jump.
3740 */
3741 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3742 }
3743 vcpu->arch.ia32_tsc_adjust_msr = data;
3744 }
3745 break;
3746 case MSR_IA32_MISC_ENABLE: {
3747 u64 old_val = vcpu->arch.ia32_misc_enable_msr;
3748
3749 if (!msr_info->host_initiated) {
3750 /* RO bits */
3751 if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK)
3752 return 1;
3753
3754 /* R bits, i.e. writes are ignored, but don't fault. */
3755 data = data & ~MSR_IA32_MISC_ENABLE_EMON;
3756 data |= old_val & MSR_IA32_MISC_ENABLE_EMON;
3757 }
3758
3759 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3760 ((old_val ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
3761 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3762 return 1;
3763 vcpu->arch.ia32_misc_enable_msr = data;
3764 kvm_update_cpuid_runtime(vcpu);
3765 } else {
3766 vcpu->arch.ia32_misc_enable_msr = data;
3767 }
3768 break;
3769 }
3770 case MSR_IA32_SMBASE:
3771 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
3772 return 1;
3773 vcpu->arch.smbase = data;
3774 break;
3775 case MSR_IA32_POWER_CTL:
3776 vcpu->arch.msr_ia32_power_ctl = data;
3777 break;
3778 case MSR_IA32_TSC:
3779 if (msr_info->host_initiated) {
3780 kvm_synchronize_tsc(vcpu, data);
3781 } else {
3782 u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3783 adjust_tsc_offset_guest(vcpu, adj);
3784 vcpu->arch.ia32_tsc_adjust_msr += adj;
3785 }
3786 break;
3787 case MSR_IA32_XSS:
3788 if (!msr_info->host_initiated &&
3789 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3790 return 1;
3791 /*
3792 * KVM supports exposing PT to the guest, but does not support
3793 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3794 * XSAVES/XRSTORS to save/restore PT MSRs.
3795 */
3796 if (data & ~kvm_caps.supported_xss)
3797 return 1;
3798 vcpu->arch.ia32_xss = data;
3799 kvm_update_cpuid_runtime(vcpu);
3800 break;
3801 case MSR_SMI_COUNT:
3802 if (!msr_info->host_initiated)
3803 return 1;
3804 vcpu->arch.smi_count = data;
3805 break;
3806 case MSR_KVM_WALL_CLOCK_NEW:
3807 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3808 return 1;
3809
3810 vcpu->kvm->arch.wall_clock = data;
3811 kvm_write_wall_clock(vcpu->kvm, data, 0);
3812 break;
3813 case MSR_KVM_WALL_CLOCK:
3814 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3815 return 1;
3816
3817 vcpu->kvm->arch.wall_clock = data;
3818 kvm_write_wall_clock(vcpu->kvm, data, 0);
3819 break;
3820 case MSR_KVM_SYSTEM_TIME_NEW:
3821 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3822 return 1;
3823
3824 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3825 break;
3826 case MSR_KVM_SYSTEM_TIME:
3827 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3828 return 1;
3829
3830 kvm_write_system_time(vcpu, data, true, msr_info->host_initiated);
3831 break;
3832 case MSR_KVM_ASYNC_PF_EN:
3833 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3834 return 1;
3835
3836 if (kvm_pv_enable_async_pf(vcpu, data))
3837 return 1;
3838 break;
3839 case MSR_KVM_ASYNC_PF_INT:
3840 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3841 return 1;
3842
3843 if (kvm_pv_enable_async_pf_int(vcpu, data))
3844 return 1;
3845 break;
3846 case MSR_KVM_ASYNC_PF_ACK:
3847 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3848 return 1;
3849 if (data & 0x1) {
3850 vcpu->arch.apf.pageready_pending = false;
3851 kvm_check_async_pf_completion(vcpu);
3852 }
3853 break;
3854 case MSR_KVM_STEAL_TIME:
3855 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3856 return 1;
3857
3858 if (unlikely(!sched_info_on()))
3859 return 1;
3860
3861 if (data & KVM_STEAL_RESERVED_MASK)
3862 return 1;
3863
3864 vcpu->arch.st.msr_val = data;
3865
3866 if (!(data & KVM_MSR_ENABLED))
3867 break;
3868
3869 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3870
3871 break;
3872 case MSR_KVM_PV_EOI_EN:
3873 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3874 return 1;
3875
3876 if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8)))
3877 return 1;
3878 break;
3879
3880 case MSR_KVM_POLL_CONTROL:
3881 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3882 return 1;
3883
3884 /* only enable bit supported */
3885 if (data & (-1ULL << 1))
3886 return 1;
3887
3888 vcpu->arch.msr_kvm_poll_control = data;
3889 break;
3890
3891 case MSR_IA32_MCG_CTL:
3892 case MSR_IA32_MCG_STATUS:
3893 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3894 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3895 return set_msr_mce(vcpu, msr_info);
3896
3897 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3898 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3899 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3900 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3901 if (kvm_pmu_is_valid_msr(vcpu, msr))
3902 return kvm_pmu_set_msr(vcpu, msr_info);
3903
3904 if (data)
3905 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3906 break;
3907 case MSR_K7_CLK_CTL:
3908 /*
3909 * Ignore all writes to this no longer documented MSR.
3910 * Writes are only relevant for old K7 processors,
3911 * all pre-dating SVM, but a recommended workaround from
3912 * AMD for these chips. It is possible to specify the
3913 * affected processor models on the command line, hence
3914 * the need to ignore the workaround.
3915 */
3916 break;
3917 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3918 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3919 case HV_X64_MSR_SYNDBG_OPTIONS:
3920 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3921 case HV_X64_MSR_CRASH_CTL:
3922 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3923 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3924 case HV_X64_MSR_TSC_EMULATION_CONTROL:
3925 case HV_X64_MSR_TSC_EMULATION_STATUS:
3926 case HV_X64_MSR_TSC_INVARIANT_CONTROL:
3927 return kvm_hv_set_msr_common(vcpu, msr, data,
3928 msr_info->host_initiated);
3929 case MSR_IA32_BBL_CR_CTL3:
3930 /* Drop writes to this legacy MSR -- see rdmsr
3931 * counterpart for further detail.
3932 */
3933 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3934 break;
3935 case MSR_AMD64_OSVW_ID_LENGTH:
3936 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3937 return 1;
3938 vcpu->arch.osvw.length = data;
3939 break;
3940 case MSR_AMD64_OSVW_STATUS:
3941 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3942 return 1;
3943 vcpu->arch.osvw.status = data;
3944 break;
3945 case MSR_PLATFORM_INFO:
3946 if (!msr_info->host_initiated ||
3947 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3948 cpuid_fault_enabled(vcpu)))
3949 return 1;
3950 vcpu->arch.msr_platform_info = data;
3951 break;
3952 case MSR_MISC_FEATURES_ENABLES:
3953 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3954 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3955 !supports_cpuid_fault(vcpu)))
3956 return 1;
3957 vcpu->arch.msr_misc_features_enables = data;
3958 break;
3959 #ifdef CONFIG_X86_64
3960 case MSR_IA32_XFD:
3961 if (!msr_info->host_initiated &&
3962 !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3963 return 1;
3964
3965 if (data & ~kvm_guest_supported_xfd(vcpu))
3966 return 1;
3967
3968 fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data);
3969 break;
3970 case MSR_IA32_XFD_ERR:
3971 if (!msr_info->host_initiated &&
3972 !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3973 return 1;
3974
3975 if (data & ~kvm_guest_supported_xfd(vcpu))
3976 return 1;
3977
3978 vcpu->arch.guest_fpu.xfd_err = data;
3979 break;
3980 #endif
3981 default:
3982 if (kvm_pmu_is_valid_msr(vcpu, msr))
3983 return kvm_pmu_set_msr(vcpu, msr_info);
3984
3985 /*
3986 * Userspace is allowed to write '0' to MSRs that KVM reports
3987 * as to-be-saved, even if an MSRs isn't fully supported.
3988 */
3989 if (msr_info->host_initiated && !data &&
3990 kvm_is_msr_to_save(msr))
3991 break;
3992
3993 return KVM_MSR_RET_INVALID;
3994 }
3995 return 0;
3996 }
3997 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3998
get_msr_mce(struct kvm_vcpu * vcpu,u32 msr,u64 * pdata,bool host)3999 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
4000 {
4001 u64 data;
4002 u64 mcg_cap = vcpu->arch.mcg_cap;
4003 unsigned bank_num = mcg_cap & 0xff;
4004 u32 offset, last_msr;
4005
4006 switch (msr) {
4007 case MSR_IA32_P5_MC_ADDR:
4008 case MSR_IA32_P5_MC_TYPE:
4009 data = 0;
4010 break;
4011 case MSR_IA32_MCG_CAP:
4012 data = vcpu->arch.mcg_cap;
4013 break;
4014 case MSR_IA32_MCG_CTL:
4015 if (!(mcg_cap & MCG_CTL_P) && !host)
4016 return 1;
4017 data = vcpu->arch.mcg_ctl;
4018 break;
4019 case MSR_IA32_MCG_STATUS:
4020 data = vcpu->arch.mcg_status;
4021 break;
4022 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4023 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
4024 if (msr > last_msr)
4025 return 1;
4026
4027 if (!(mcg_cap & MCG_CMCI_P) && !host)
4028 return 1;
4029 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
4030 last_msr + 1 - MSR_IA32_MC0_CTL2);
4031 data = vcpu->arch.mci_ctl2_banks[offset];
4032 break;
4033 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4034 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
4035 if (msr > last_msr)
4036 return 1;
4037
4038 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
4039 last_msr + 1 - MSR_IA32_MC0_CTL);
4040 data = vcpu->arch.mce_banks[offset];
4041 break;
4042 default:
4043 return 1;
4044 }
4045 *pdata = data;
4046 return 0;
4047 }
4048
kvm_get_msr_common(struct kvm_vcpu * vcpu,struct msr_data * msr_info)4049 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
4050 {
4051 switch (msr_info->index) {
4052 case MSR_IA32_PLATFORM_ID:
4053 case MSR_IA32_EBL_CR_POWERON:
4054 case MSR_IA32_LASTBRANCHFROMIP:
4055 case MSR_IA32_LASTBRANCHTOIP:
4056 case MSR_IA32_LASTINTFROMIP:
4057 case MSR_IA32_LASTINTTOIP:
4058 case MSR_AMD64_SYSCFG:
4059 case MSR_K8_TSEG_ADDR:
4060 case MSR_K8_TSEG_MASK:
4061 case MSR_VM_HSAVE_PA:
4062 case MSR_K8_INT_PENDING_MSG:
4063 case MSR_AMD64_NB_CFG:
4064 case MSR_FAM10H_MMIO_CONF_BASE:
4065 case MSR_AMD64_BU_CFG2:
4066 case MSR_IA32_PERF_CTL:
4067 case MSR_AMD64_DC_CFG:
4068 case MSR_F15H_EX_CFG:
4069 /*
4070 * Intel Sandy Bridge CPUs must support the RAPL (running average power
4071 * limit) MSRs. Just return 0, as we do not want to expose the host
4072 * data here. Do not conditionalize this on CPUID, as KVM does not do
4073 * so for existing CPU-specific MSRs.
4074 */
4075 case MSR_RAPL_POWER_UNIT:
4076 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */
4077 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */
4078 case MSR_PKG_ENERGY_STATUS: /* Total package */
4079 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */
4080 msr_info->data = 0;
4081 break;
4082 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
4083 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
4084 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
4085 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
4086 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4087 return kvm_pmu_get_msr(vcpu, msr_info);
4088 msr_info->data = 0;
4089 break;
4090 case MSR_IA32_UCODE_REV:
4091 msr_info->data = vcpu->arch.microcode_version;
4092 break;
4093 case MSR_IA32_ARCH_CAPABILITIES:
4094 if (!msr_info->host_initiated &&
4095 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
4096 return 1;
4097 msr_info->data = vcpu->arch.arch_capabilities;
4098 break;
4099 case MSR_IA32_PERF_CAPABILITIES:
4100 if (!msr_info->host_initiated &&
4101 !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
4102 return 1;
4103 msr_info->data = vcpu->arch.perf_capabilities;
4104 break;
4105 case MSR_IA32_POWER_CTL:
4106 msr_info->data = vcpu->arch.msr_ia32_power_ctl;
4107 break;
4108 case MSR_IA32_TSC: {
4109 /*
4110 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
4111 * even when not intercepted. AMD manual doesn't explicitly
4112 * state this but appears to behave the same.
4113 *
4114 * On userspace reads and writes, however, we unconditionally
4115 * return L1's TSC value to ensure backwards-compatible
4116 * behavior for migration.
4117 */
4118 u64 offset, ratio;
4119
4120 if (msr_info->host_initiated) {
4121 offset = vcpu->arch.l1_tsc_offset;
4122 ratio = vcpu->arch.l1_tsc_scaling_ratio;
4123 } else {
4124 offset = vcpu->arch.tsc_offset;
4125 ratio = vcpu->arch.tsc_scaling_ratio;
4126 }
4127
4128 msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset;
4129 break;
4130 }
4131 case MSR_IA32_CR_PAT:
4132 msr_info->data = vcpu->arch.pat;
4133 break;
4134 case MSR_MTRRcap:
4135 case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
4136 case MSR_MTRRdefType:
4137 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
4138 case 0xcd: /* fsb frequency */
4139 msr_info->data = 3;
4140 break;
4141 /*
4142 * MSR_EBC_FREQUENCY_ID
4143 * Conservative value valid for even the basic CPU models.
4144 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
4145 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
4146 * and 266MHz for model 3, or 4. Set Core Clock
4147 * Frequency to System Bus Frequency Ratio to 1 (bits
4148 * 31:24) even though these are only valid for CPU
4149 * models > 2, however guests may end up dividing or
4150 * multiplying by zero otherwise.
4151 */
4152 case MSR_EBC_FREQUENCY_ID:
4153 msr_info->data = 1 << 24;
4154 break;
4155 case MSR_IA32_APICBASE:
4156 msr_info->data = kvm_get_apic_base(vcpu);
4157 break;
4158 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
4159 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
4160 case MSR_IA32_TSC_DEADLINE:
4161 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
4162 break;
4163 case MSR_IA32_TSC_ADJUST:
4164 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
4165 break;
4166 case MSR_IA32_MISC_ENABLE:
4167 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
4168 break;
4169 case MSR_IA32_SMBASE:
4170 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
4171 return 1;
4172 msr_info->data = vcpu->arch.smbase;
4173 break;
4174 case MSR_SMI_COUNT:
4175 msr_info->data = vcpu->arch.smi_count;
4176 break;
4177 case MSR_IA32_PERF_STATUS:
4178 /* TSC increment by tick */
4179 msr_info->data = 1000ULL;
4180 /* CPU multiplier */
4181 msr_info->data |= (((uint64_t)4ULL) << 40);
4182 break;
4183 case MSR_EFER:
4184 msr_info->data = vcpu->arch.efer;
4185 break;
4186 case MSR_KVM_WALL_CLOCK:
4187 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4188 return 1;
4189
4190 msr_info->data = vcpu->kvm->arch.wall_clock;
4191 break;
4192 case MSR_KVM_WALL_CLOCK_NEW:
4193 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4194 return 1;
4195
4196 msr_info->data = vcpu->kvm->arch.wall_clock;
4197 break;
4198 case MSR_KVM_SYSTEM_TIME:
4199 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4200 return 1;
4201
4202 msr_info->data = vcpu->arch.time;
4203 break;
4204 case MSR_KVM_SYSTEM_TIME_NEW:
4205 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4206 return 1;
4207
4208 msr_info->data = vcpu->arch.time;
4209 break;
4210 case MSR_KVM_ASYNC_PF_EN:
4211 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
4212 return 1;
4213
4214 msr_info->data = vcpu->arch.apf.msr_en_val;
4215 break;
4216 case MSR_KVM_ASYNC_PF_INT:
4217 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4218 return 1;
4219
4220 msr_info->data = vcpu->arch.apf.msr_int_val;
4221 break;
4222 case MSR_KVM_ASYNC_PF_ACK:
4223 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4224 return 1;
4225
4226 msr_info->data = 0;
4227 break;
4228 case MSR_KVM_STEAL_TIME:
4229 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
4230 return 1;
4231
4232 msr_info->data = vcpu->arch.st.msr_val;
4233 break;
4234 case MSR_KVM_PV_EOI_EN:
4235 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4236 return 1;
4237
4238 msr_info->data = vcpu->arch.pv_eoi.msr_val;
4239 break;
4240 case MSR_KVM_POLL_CONTROL:
4241 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4242 return 1;
4243
4244 msr_info->data = vcpu->arch.msr_kvm_poll_control;
4245 break;
4246 case MSR_IA32_P5_MC_ADDR:
4247 case MSR_IA32_P5_MC_TYPE:
4248 case MSR_IA32_MCG_CAP:
4249 case MSR_IA32_MCG_CTL:
4250 case MSR_IA32_MCG_STATUS:
4251 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4252 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4253 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
4254 msr_info->host_initiated);
4255 case MSR_IA32_XSS:
4256 if (!msr_info->host_initiated &&
4257 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
4258 return 1;
4259 msr_info->data = vcpu->arch.ia32_xss;
4260 break;
4261 case MSR_K7_CLK_CTL:
4262 /*
4263 * Provide expected ramp-up count for K7. All other
4264 * are set to zero, indicating minimum divisors for
4265 * every field.
4266 *
4267 * This prevents guest kernels on AMD host with CPU
4268 * type 6, model 8 and higher from exploding due to
4269 * the rdmsr failing.
4270 */
4271 msr_info->data = 0x20000000;
4272 break;
4273 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4274 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4275 case HV_X64_MSR_SYNDBG_OPTIONS:
4276 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4277 case HV_X64_MSR_CRASH_CTL:
4278 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4279 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4280 case HV_X64_MSR_TSC_EMULATION_CONTROL:
4281 case HV_X64_MSR_TSC_EMULATION_STATUS:
4282 case HV_X64_MSR_TSC_INVARIANT_CONTROL:
4283 return kvm_hv_get_msr_common(vcpu,
4284 msr_info->index, &msr_info->data,
4285 msr_info->host_initiated);
4286 case MSR_IA32_BBL_CR_CTL3:
4287 /* This legacy MSR exists but isn't fully documented in current
4288 * silicon. It is however accessed by winxp in very narrow
4289 * scenarios where it sets bit #19, itself documented as
4290 * a "reserved" bit. Best effort attempt to source coherent
4291 * read data here should the balance of the register be
4292 * interpreted by the guest:
4293 *
4294 * L2 cache control register 3: 64GB range, 256KB size,
4295 * enabled, latency 0x1, configured
4296 */
4297 msr_info->data = 0xbe702111;
4298 break;
4299 case MSR_AMD64_OSVW_ID_LENGTH:
4300 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4301 return 1;
4302 msr_info->data = vcpu->arch.osvw.length;
4303 break;
4304 case MSR_AMD64_OSVW_STATUS:
4305 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4306 return 1;
4307 msr_info->data = vcpu->arch.osvw.status;
4308 break;
4309 case MSR_PLATFORM_INFO:
4310 if (!msr_info->host_initiated &&
4311 !vcpu->kvm->arch.guest_can_read_msr_platform_info)
4312 return 1;
4313 msr_info->data = vcpu->arch.msr_platform_info;
4314 break;
4315 case MSR_MISC_FEATURES_ENABLES:
4316 msr_info->data = vcpu->arch.msr_misc_features_enables;
4317 break;
4318 case MSR_K7_HWCR:
4319 msr_info->data = vcpu->arch.msr_hwcr;
4320 break;
4321 #ifdef CONFIG_X86_64
4322 case MSR_IA32_XFD:
4323 if (!msr_info->host_initiated &&
4324 !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4325 return 1;
4326
4327 msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd;
4328 break;
4329 case MSR_IA32_XFD_ERR:
4330 if (!msr_info->host_initiated &&
4331 !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4332 return 1;
4333
4334 msr_info->data = vcpu->arch.guest_fpu.xfd_err;
4335 break;
4336 #endif
4337 default:
4338 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4339 return kvm_pmu_get_msr(vcpu, msr_info);
4340
4341 /*
4342 * Userspace is allowed to read MSRs that KVM reports as
4343 * to-be-saved, even if an MSR isn't fully supported.
4344 */
4345 if (msr_info->host_initiated &&
4346 kvm_is_msr_to_save(msr_info->index)) {
4347 msr_info->data = 0;
4348 break;
4349 }
4350
4351 return KVM_MSR_RET_INVALID;
4352 }
4353 return 0;
4354 }
4355 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
4356
4357 /*
4358 * Read or write a bunch of msrs. All parameters are kernel addresses.
4359 *
4360 * @return number of msrs set successfully.
4361 */
__msr_io(struct kvm_vcpu * vcpu,struct kvm_msrs * msrs,struct kvm_msr_entry * entries,int (* do_msr)(struct kvm_vcpu * vcpu,unsigned index,u64 * data))4362 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
4363 struct kvm_msr_entry *entries,
4364 int (*do_msr)(struct kvm_vcpu *vcpu,
4365 unsigned index, u64 *data))
4366 {
4367 int i;
4368
4369 for (i = 0; i < msrs->nmsrs; ++i)
4370 if (do_msr(vcpu, entries[i].index, &entries[i].data))
4371 break;
4372
4373 return i;
4374 }
4375
4376 /*
4377 * Read or write a bunch of msrs. Parameters are user addresses.
4378 *
4379 * @return number of msrs set successfully.
4380 */
msr_io(struct kvm_vcpu * vcpu,struct kvm_msrs __user * user_msrs,int (* do_msr)(struct kvm_vcpu * vcpu,unsigned index,u64 * data),int writeback)4381 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
4382 int (*do_msr)(struct kvm_vcpu *vcpu,
4383 unsigned index, u64 *data),
4384 int writeback)
4385 {
4386 struct kvm_msrs msrs;
4387 struct kvm_msr_entry *entries;
4388 unsigned size;
4389 int r;
4390
4391 r = -EFAULT;
4392 if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
4393 goto out;
4394
4395 r = -E2BIG;
4396 if (msrs.nmsrs >= MAX_IO_MSRS)
4397 goto out;
4398
4399 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
4400 entries = memdup_user(user_msrs->entries, size);
4401 if (IS_ERR(entries)) {
4402 r = PTR_ERR(entries);
4403 goto out;
4404 }
4405
4406 r = __msr_io(vcpu, &msrs, entries, do_msr);
4407
4408 if (writeback && copy_to_user(user_msrs->entries, entries, size))
4409 r = -EFAULT;
4410
4411 kfree(entries);
4412 out:
4413 return r;
4414 }
4415
kvm_can_mwait_in_guest(void)4416 static inline bool kvm_can_mwait_in_guest(void)
4417 {
4418 return boot_cpu_has(X86_FEATURE_MWAIT) &&
4419 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
4420 boot_cpu_has(X86_FEATURE_ARAT);
4421 }
4422
kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu * vcpu,struct kvm_cpuid2 __user * cpuid_arg)4423 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
4424 struct kvm_cpuid2 __user *cpuid_arg)
4425 {
4426 struct kvm_cpuid2 cpuid;
4427 int r;
4428
4429 r = -EFAULT;
4430 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4431 return r;
4432
4433 r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4434 if (r)
4435 return r;
4436
4437 r = -EFAULT;
4438 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4439 return r;
4440
4441 return 0;
4442 }
4443
kvm_vm_ioctl_check_extension(struct kvm * kvm,long ext)4444 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
4445 {
4446 int r = 0;
4447
4448 switch (ext) {
4449 case KVM_CAP_IRQCHIP:
4450 case KVM_CAP_HLT:
4451 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
4452 case KVM_CAP_SET_TSS_ADDR:
4453 case KVM_CAP_EXT_CPUID:
4454 case KVM_CAP_EXT_EMUL_CPUID:
4455 case KVM_CAP_CLOCKSOURCE:
4456 case KVM_CAP_PIT:
4457 case KVM_CAP_NOP_IO_DELAY:
4458 case KVM_CAP_MP_STATE:
4459 case KVM_CAP_SYNC_MMU:
4460 case KVM_CAP_USER_NMI:
4461 case KVM_CAP_REINJECT_CONTROL:
4462 case KVM_CAP_IRQ_INJECT_STATUS:
4463 case KVM_CAP_IOEVENTFD:
4464 case KVM_CAP_IOEVENTFD_NO_LENGTH:
4465 case KVM_CAP_PIT2:
4466 case KVM_CAP_PIT_STATE2:
4467 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
4468 case KVM_CAP_VCPU_EVENTS:
4469 case KVM_CAP_HYPERV:
4470 case KVM_CAP_HYPERV_VAPIC:
4471 case KVM_CAP_HYPERV_SPIN:
4472 case KVM_CAP_HYPERV_SYNIC:
4473 case KVM_CAP_HYPERV_SYNIC2:
4474 case KVM_CAP_HYPERV_VP_INDEX:
4475 case KVM_CAP_HYPERV_EVENTFD:
4476 case KVM_CAP_HYPERV_TLBFLUSH:
4477 case KVM_CAP_HYPERV_SEND_IPI:
4478 case KVM_CAP_HYPERV_CPUID:
4479 case KVM_CAP_HYPERV_ENFORCE_CPUID:
4480 case KVM_CAP_SYS_HYPERV_CPUID:
4481 case KVM_CAP_PCI_SEGMENT:
4482 case KVM_CAP_DEBUGREGS:
4483 case KVM_CAP_X86_ROBUST_SINGLESTEP:
4484 case KVM_CAP_XSAVE:
4485 case KVM_CAP_ASYNC_PF:
4486 case KVM_CAP_ASYNC_PF_INT:
4487 case KVM_CAP_GET_TSC_KHZ:
4488 case KVM_CAP_KVMCLOCK_CTRL:
4489 case KVM_CAP_READONLY_MEM:
4490 case KVM_CAP_HYPERV_TIME:
4491 case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4492 case KVM_CAP_TSC_DEADLINE_TIMER:
4493 case KVM_CAP_DISABLE_QUIRKS:
4494 case KVM_CAP_SET_BOOT_CPU_ID:
4495 case KVM_CAP_SPLIT_IRQCHIP:
4496 case KVM_CAP_IMMEDIATE_EXIT:
4497 case KVM_CAP_PMU_EVENT_FILTER:
4498 case KVM_CAP_PMU_EVENT_MASKED_EVENTS:
4499 case KVM_CAP_GET_MSR_FEATURES:
4500 case KVM_CAP_MSR_PLATFORM_INFO:
4501 case KVM_CAP_EXCEPTION_PAYLOAD:
4502 case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
4503 case KVM_CAP_SET_GUEST_DEBUG:
4504 case KVM_CAP_LAST_CPU:
4505 case KVM_CAP_X86_USER_SPACE_MSR:
4506 case KVM_CAP_X86_MSR_FILTER:
4507 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4508 #ifdef CONFIG_X86_SGX_KVM
4509 case KVM_CAP_SGX_ATTRIBUTE:
4510 #endif
4511 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4512 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
4513 case KVM_CAP_SREGS2:
4514 case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4515 case KVM_CAP_VCPU_ATTRIBUTES:
4516 case KVM_CAP_SYS_ATTRIBUTES:
4517 case KVM_CAP_VAPIC:
4518 case KVM_CAP_ENABLE_CAP:
4519 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
4520 case KVM_CAP_IRQFD_RESAMPLE:
4521 r = 1;
4522 break;
4523 case KVM_CAP_EXIT_HYPERCALL:
4524 r = KVM_EXIT_HYPERCALL_VALID_MASK;
4525 break;
4526 case KVM_CAP_SET_GUEST_DEBUG2:
4527 return KVM_GUESTDBG_VALID_MASK;
4528 #ifdef CONFIG_KVM_XEN
4529 case KVM_CAP_XEN_HVM:
4530 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4531 KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4532 KVM_XEN_HVM_CONFIG_SHARED_INFO |
4533 KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL |
4534 KVM_XEN_HVM_CONFIG_EVTCHN_SEND;
4535 if (sched_info_on())
4536 r |= KVM_XEN_HVM_CONFIG_RUNSTATE |
4537 KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG;
4538 break;
4539 #endif
4540 case KVM_CAP_SYNC_REGS:
4541 r = KVM_SYNC_X86_VALID_FIELDS;
4542 break;
4543 case KVM_CAP_ADJUST_CLOCK:
4544 r = KVM_CLOCK_VALID_FLAGS;
4545 break;
4546 case KVM_CAP_X86_DISABLE_EXITS:
4547 r = KVM_X86_DISABLE_EXITS_PAUSE;
4548
4549 if (!mitigate_smt_rsb) {
4550 r |= KVM_X86_DISABLE_EXITS_HLT |
4551 KVM_X86_DISABLE_EXITS_CSTATE;
4552
4553 if (kvm_can_mwait_in_guest())
4554 r |= KVM_X86_DISABLE_EXITS_MWAIT;
4555 }
4556 break;
4557 case KVM_CAP_X86_SMM:
4558 if (!IS_ENABLED(CONFIG_KVM_SMM))
4559 break;
4560
4561 /* SMBASE is usually relocated above 1M on modern chipsets,
4562 * and SMM handlers might indeed rely on 4G segment limits,
4563 * so do not report SMM to be available if real mode is
4564 * emulated via vm86 mode. Still, do not go to great lengths
4565 * to avoid userspace's usage of the feature, because it is a
4566 * fringe case that is not enabled except via specific settings
4567 * of the module parameters.
4568 */
4569 r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4570 break;
4571 case KVM_CAP_NR_VCPUS:
4572 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
4573 break;
4574 case KVM_CAP_MAX_VCPUS:
4575 r = KVM_MAX_VCPUS;
4576 break;
4577 case KVM_CAP_MAX_VCPU_ID:
4578 r = KVM_MAX_VCPU_IDS;
4579 break;
4580 case KVM_CAP_PV_MMU: /* obsolete */
4581 r = 0;
4582 break;
4583 case KVM_CAP_MCE:
4584 r = KVM_MAX_MCE_BANKS;
4585 break;
4586 case KVM_CAP_XCRS:
4587 r = boot_cpu_has(X86_FEATURE_XSAVE);
4588 break;
4589 case KVM_CAP_TSC_CONTROL:
4590 case KVM_CAP_VM_TSC_CONTROL:
4591 r = kvm_caps.has_tsc_control;
4592 break;
4593 case KVM_CAP_X2APIC_API:
4594 r = KVM_X2APIC_API_VALID_FLAGS;
4595 break;
4596 case KVM_CAP_NESTED_STATE:
4597 r = kvm_x86_ops.nested_ops->get_state ?
4598 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4599 break;
4600 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4601 r = kvm_x86_ops.enable_l2_tlb_flush != NULL;
4602 break;
4603 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4604 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4605 break;
4606 case KVM_CAP_SMALLER_MAXPHYADDR:
4607 r = (int) allow_smaller_maxphyaddr;
4608 break;
4609 case KVM_CAP_STEAL_TIME:
4610 r = sched_info_on();
4611 break;
4612 case KVM_CAP_X86_BUS_LOCK_EXIT:
4613 if (kvm_caps.has_bus_lock_exit)
4614 r = KVM_BUS_LOCK_DETECTION_OFF |
4615 KVM_BUS_LOCK_DETECTION_EXIT;
4616 else
4617 r = 0;
4618 break;
4619 case KVM_CAP_XSAVE2: {
4620 r = xstate_required_size(kvm_get_filtered_xcr0(), false);
4621 if (r < sizeof(struct kvm_xsave))
4622 r = sizeof(struct kvm_xsave);
4623 break;
4624 }
4625 case KVM_CAP_PMU_CAPABILITY:
4626 r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0;
4627 break;
4628 case KVM_CAP_DISABLE_QUIRKS2:
4629 r = KVM_X86_VALID_QUIRKS;
4630 break;
4631 case KVM_CAP_X86_NOTIFY_VMEXIT:
4632 r = kvm_caps.has_notify_vmexit;
4633 break;
4634 default:
4635 break;
4636 }
4637 return r;
4638 }
4639
kvm_get_attr_addr(struct kvm_device_attr * attr)4640 static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr)
4641 {
4642 void __user *uaddr = (void __user*)(unsigned long)attr->addr;
4643
4644 if ((u64)(unsigned long)uaddr != attr->addr)
4645 return ERR_PTR_USR(-EFAULT);
4646 return uaddr;
4647 }
4648
kvm_x86_dev_get_attr(struct kvm_device_attr * attr)4649 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr)
4650 {
4651 u64 __user *uaddr = kvm_get_attr_addr(attr);
4652
4653 if (attr->group)
4654 return -ENXIO;
4655
4656 if (IS_ERR(uaddr))
4657 return PTR_ERR(uaddr);
4658
4659 switch (attr->attr) {
4660 case KVM_X86_XCOMP_GUEST_SUPP:
4661 if (put_user(kvm_caps.supported_xcr0, uaddr))
4662 return -EFAULT;
4663 return 0;
4664 default:
4665 return -ENXIO;
4666 }
4667 }
4668
kvm_x86_dev_has_attr(struct kvm_device_attr * attr)4669 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr)
4670 {
4671 if (attr->group)
4672 return -ENXIO;
4673
4674 switch (attr->attr) {
4675 case KVM_X86_XCOMP_GUEST_SUPP:
4676 return 0;
4677 default:
4678 return -ENXIO;
4679 }
4680 }
4681
kvm_arch_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)4682 long kvm_arch_dev_ioctl(struct file *filp,
4683 unsigned int ioctl, unsigned long arg)
4684 {
4685 void __user *argp = (void __user *)arg;
4686 long r;
4687
4688 switch (ioctl) {
4689 case KVM_GET_MSR_INDEX_LIST: {
4690 struct kvm_msr_list __user *user_msr_list = argp;
4691 struct kvm_msr_list msr_list;
4692 unsigned n;
4693
4694 r = -EFAULT;
4695 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4696 goto out;
4697 n = msr_list.nmsrs;
4698 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4699 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4700 goto out;
4701 r = -E2BIG;
4702 if (n < msr_list.nmsrs)
4703 goto out;
4704 r = -EFAULT;
4705 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4706 num_msrs_to_save * sizeof(u32)))
4707 goto out;
4708 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4709 &emulated_msrs,
4710 num_emulated_msrs * sizeof(u32)))
4711 goto out;
4712 r = 0;
4713 break;
4714 }
4715 case KVM_GET_SUPPORTED_CPUID:
4716 case KVM_GET_EMULATED_CPUID: {
4717 struct kvm_cpuid2 __user *cpuid_arg = argp;
4718 struct kvm_cpuid2 cpuid;
4719
4720 r = -EFAULT;
4721 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4722 goto out;
4723
4724 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4725 ioctl);
4726 if (r)
4727 goto out;
4728
4729 r = -EFAULT;
4730 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4731 goto out;
4732 r = 0;
4733 break;
4734 }
4735 case KVM_X86_GET_MCE_CAP_SUPPORTED:
4736 r = -EFAULT;
4737 if (copy_to_user(argp, &kvm_caps.supported_mce_cap,
4738 sizeof(kvm_caps.supported_mce_cap)))
4739 goto out;
4740 r = 0;
4741 break;
4742 case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4743 struct kvm_msr_list __user *user_msr_list = argp;
4744 struct kvm_msr_list msr_list;
4745 unsigned int n;
4746
4747 r = -EFAULT;
4748 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4749 goto out;
4750 n = msr_list.nmsrs;
4751 msr_list.nmsrs = num_msr_based_features;
4752 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4753 goto out;
4754 r = -E2BIG;
4755 if (n < msr_list.nmsrs)
4756 goto out;
4757 r = -EFAULT;
4758 if (copy_to_user(user_msr_list->indices, &msr_based_features,
4759 num_msr_based_features * sizeof(u32)))
4760 goto out;
4761 r = 0;
4762 break;
4763 }
4764 case KVM_GET_MSRS:
4765 r = msr_io(NULL, argp, do_get_msr_feature, 1);
4766 break;
4767 case KVM_GET_SUPPORTED_HV_CPUID:
4768 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4769 break;
4770 case KVM_GET_DEVICE_ATTR: {
4771 struct kvm_device_attr attr;
4772 r = -EFAULT;
4773 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4774 break;
4775 r = kvm_x86_dev_get_attr(&attr);
4776 break;
4777 }
4778 case KVM_HAS_DEVICE_ATTR: {
4779 struct kvm_device_attr attr;
4780 r = -EFAULT;
4781 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4782 break;
4783 r = kvm_x86_dev_has_attr(&attr);
4784 break;
4785 }
4786 default:
4787 r = -EINVAL;
4788 break;
4789 }
4790 out:
4791 return r;
4792 }
4793
wbinvd_ipi(void * garbage)4794 static void wbinvd_ipi(void *garbage)
4795 {
4796 wbinvd();
4797 }
4798
need_emulate_wbinvd(struct kvm_vcpu * vcpu)4799 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4800 {
4801 return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4802 }
4803
kvm_arch_vcpu_load(struct kvm_vcpu * vcpu,int cpu)4804 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4805 {
4806 /* Address WBINVD may be executed by guest */
4807 if (need_emulate_wbinvd(vcpu)) {
4808 if (static_call(kvm_x86_has_wbinvd_exit)())
4809 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4810 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4811 smp_call_function_single(vcpu->cpu,
4812 wbinvd_ipi, NULL, 1);
4813 }
4814
4815 static_call(kvm_x86_vcpu_load)(vcpu, cpu);
4816
4817 /* Save host pkru register if supported */
4818 vcpu->arch.host_pkru = read_pkru();
4819
4820 /* Apply any externally detected TSC adjustments (due to suspend) */
4821 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4822 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4823 vcpu->arch.tsc_offset_adjustment = 0;
4824 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4825 }
4826
4827 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
4828 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4829 rdtsc() - vcpu->arch.last_host_tsc;
4830 if (tsc_delta < 0)
4831 mark_tsc_unstable("KVM discovered backwards TSC");
4832
4833 if (kvm_check_tsc_unstable()) {
4834 u64 offset = kvm_compute_l1_tsc_offset(vcpu,
4835 vcpu->arch.last_guest_tsc);
4836 kvm_vcpu_write_tsc_offset(vcpu, offset);
4837 vcpu->arch.tsc_catchup = 1;
4838 }
4839
4840 if (kvm_lapic_hv_timer_in_use(vcpu))
4841 kvm_lapic_restart_hv_timer(vcpu);
4842
4843 /*
4844 * On a host with synchronized TSC, there is no need to update
4845 * kvmclock on vcpu->cpu migration
4846 */
4847 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
4848 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
4849 if (vcpu->cpu != cpu)
4850 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
4851 vcpu->cpu = cpu;
4852 }
4853
4854 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4855 }
4856
kvm_steal_time_set_preempted(struct kvm_vcpu * vcpu)4857 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4858 {
4859 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
4860 struct kvm_steal_time __user *st;
4861 struct kvm_memslots *slots;
4862 static const u8 preempted = KVM_VCPU_PREEMPTED;
4863 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
4864
4865 /*
4866 * The vCPU can be marked preempted if and only if the VM-Exit was on
4867 * an instruction boundary and will not trigger guest emulation of any
4868 * kind (see vcpu_run). Vendor specific code controls (conservatively)
4869 * when this is true, for example allowing the vCPU to be marked
4870 * preempted if and only if the VM-Exit was due to a host interrupt.
4871 */
4872 if (!vcpu->arch.at_instruction_boundary) {
4873 vcpu->stat.preemption_other++;
4874 return;
4875 }
4876
4877 vcpu->stat.preemption_reported++;
4878 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
4879 return;
4880
4881 if (vcpu->arch.st.preempted)
4882 return;
4883
4884 /* This happens on process exit */
4885 if (unlikely(current->mm != vcpu->kvm->mm))
4886 return;
4887
4888 slots = kvm_memslots(vcpu->kvm);
4889
4890 if (unlikely(slots->generation != ghc->generation ||
4891 gpa != ghc->gpa ||
4892 kvm_is_error_hva(ghc->hva) || !ghc->memslot))
4893 return;
4894
4895 st = (struct kvm_steal_time __user *)ghc->hva;
4896 BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
4897
4898 if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
4899 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
4900
4901 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
4902 }
4903
kvm_arch_vcpu_put(struct kvm_vcpu * vcpu)4904 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
4905 {
4906 int idx;
4907
4908 if (vcpu->preempted) {
4909 if (!vcpu->arch.guest_state_protected)
4910 vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu);
4911
4912 /*
4913 * Take the srcu lock as memslots will be accessed to check the gfn
4914 * cache generation against the memslots generation.
4915 */
4916 idx = srcu_read_lock(&vcpu->kvm->srcu);
4917 if (kvm_xen_msr_enabled(vcpu->kvm))
4918 kvm_xen_runstate_set_preempted(vcpu);
4919 else
4920 kvm_steal_time_set_preempted(vcpu);
4921 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4922 }
4923
4924 static_call(kvm_x86_vcpu_put)(vcpu);
4925 vcpu->arch.last_host_tsc = rdtsc();
4926 }
4927
kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s)4928 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4929 struct kvm_lapic_state *s)
4930 {
4931 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
4932
4933 return kvm_apic_get_state(vcpu, s);
4934 }
4935
kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s)4936 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4937 struct kvm_lapic_state *s)
4938 {
4939 int r;
4940
4941 r = kvm_apic_set_state(vcpu, s);
4942 if (r)
4943 return r;
4944 update_cr8_intercept(vcpu);
4945
4946 return 0;
4947 }
4948
kvm_cpu_accept_dm_intr(struct kvm_vcpu * vcpu)4949 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4950 {
4951 /*
4952 * We can accept userspace's request for interrupt injection
4953 * as long as we have a place to store the interrupt number.
4954 * The actual injection will happen when the CPU is able to
4955 * deliver the interrupt.
4956 */
4957 if (kvm_cpu_has_extint(vcpu))
4958 return false;
4959
4960 /* Acknowledging ExtINT does not happen if LINT0 is masked. */
4961 return (!lapic_in_kernel(vcpu) ||
4962 kvm_apic_accept_pic_intr(vcpu));
4963 }
4964
kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu * vcpu)4965 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4966 {
4967 /*
4968 * Do not cause an interrupt window exit if an exception
4969 * is pending or an event needs reinjection; userspace
4970 * might want to inject the interrupt manually using KVM_SET_REGS
4971 * or KVM_SET_SREGS. For that to work, we must be at an
4972 * instruction boundary and with no events half-injected.
4973 */
4974 return (kvm_arch_interrupt_allowed(vcpu) &&
4975 kvm_cpu_accept_dm_intr(vcpu) &&
4976 !kvm_event_needs_reinjection(vcpu) &&
4977 !kvm_is_exception_pending(vcpu));
4978 }
4979
kvm_vcpu_ioctl_interrupt(struct kvm_vcpu * vcpu,struct kvm_interrupt * irq)4980 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4981 struct kvm_interrupt *irq)
4982 {
4983 if (irq->irq >= KVM_NR_INTERRUPTS)
4984 return -EINVAL;
4985
4986 if (!irqchip_in_kernel(vcpu->kvm)) {
4987 kvm_queue_interrupt(vcpu, irq->irq, false);
4988 kvm_make_request(KVM_REQ_EVENT, vcpu);
4989 return 0;
4990 }
4991
4992 /*
4993 * With in-kernel LAPIC, we only use this to inject EXTINT, so
4994 * fail for in-kernel 8259.
4995 */
4996 if (pic_in_kernel(vcpu->kvm))
4997 return -ENXIO;
4998
4999 if (vcpu->arch.pending_external_vector != -1)
5000 return -EEXIST;
5001
5002 vcpu->arch.pending_external_vector = irq->irq;
5003 kvm_make_request(KVM_REQ_EVENT, vcpu);
5004 return 0;
5005 }
5006
kvm_vcpu_ioctl_nmi(struct kvm_vcpu * vcpu)5007 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
5008 {
5009 kvm_inject_nmi(vcpu);
5010
5011 return 0;
5012 }
5013
vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu * vcpu,struct kvm_tpr_access_ctl * tac)5014 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
5015 struct kvm_tpr_access_ctl *tac)
5016 {
5017 if (tac->flags)
5018 return -EINVAL;
5019 vcpu->arch.tpr_access_reporting = !!tac->enabled;
5020 return 0;
5021 }
5022
kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu * vcpu,u64 mcg_cap)5023 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
5024 u64 mcg_cap)
5025 {
5026 int r;
5027 unsigned bank_num = mcg_cap & 0xff, bank;
5028
5029 r = -EINVAL;
5030 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
5031 goto out;
5032 if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000))
5033 goto out;
5034 r = 0;
5035 vcpu->arch.mcg_cap = mcg_cap;
5036 /* Init IA32_MCG_CTL to all 1s */
5037 if (mcg_cap & MCG_CTL_P)
5038 vcpu->arch.mcg_ctl = ~(u64)0;
5039 /* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */
5040 for (bank = 0; bank < bank_num; bank++) {
5041 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
5042 if (mcg_cap & MCG_CMCI_P)
5043 vcpu->arch.mci_ctl2_banks[bank] = 0;
5044 }
5045
5046 kvm_apic_after_set_mcg_cap(vcpu);
5047
5048 static_call(kvm_x86_setup_mce)(vcpu);
5049 out:
5050 return r;
5051 }
5052
5053 /*
5054 * Validate this is an UCNA (uncorrectable no action) error by checking the
5055 * MCG_STATUS and MCi_STATUS registers:
5056 * - none of the bits for Machine Check Exceptions are set
5057 * - both the VAL (valid) and UC (uncorrectable) bits are set
5058 * MCI_STATUS_PCC - Processor Context Corrupted
5059 * MCI_STATUS_S - Signaled as a Machine Check Exception
5060 * MCI_STATUS_AR - Software recoverable Action Required
5061 */
is_ucna(struct kvm_x86_mce * mce)5062 static bool is_ucna(struct kvm_x86_mce *mce)
5063 {
5064 return !mce->mcg_status &&
5065 !(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) &&
5066 (mce->status & MCI_STATUS_VAL) &&
5067 (mce->status & MCI_STATUS_UC);
5068 }
5069
kvm_vcpu_x86_set_ucna(struct kvm_vcpu * vcpu,struct kvm_x86_mce * mce,u64 * banks)5070 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks)
5071 {
5072 u64 mcg_cap = vcpu->arch.mcg_cap;
5073
5074 banks[1] = mce->status;
5075 banks[2] = mce->addr;
5076 banks[3] = mce->misc;
5077 vcpu->arch.mcg_status = mce->mcg_status;
5078
5079 if (!(mcg_cap & MCG_CMCI_P) ||
5080 !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN))
5081 return 0;
5082
5083 if (lapic_in_kernel(vcpu))
5084 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI);
5085
5086 return 0;
5087 }
5088
kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu * vcpu,struct kvm_x86_mce * mce)5089 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
5090 struct kvm_x86_mce *mce)
5091 {
5092 u64 mcg_cap = vcpu->arch.mcg_cap;
5093 unsigned bank_num = mcg_cap & 0xff;
5094 u64 *banks = vcpu->arch.mce_banks;
5095
5096 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
5097 return -EINVAL;
5098
5099 banks += array_index_nospec(4 * mce->bank, 4 * bank_num);
5100
5101 if (is_ucna(mce))
5102 return kvm_vcpu_x86_set_ucna(vcpu, mce, banks);
5103
5104 /*
5105 * if IA32_MCG_CTL is not all 1s, the uncorrected error
5106 * reporting is disabled
5107 */
5108 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
5109 vcpu->arch.mcg_ctl != ~(u64)0)
5110 return 0;
5111 /*
5112 * if IA32_MCi_CTL is not all 1s, the uncorrected error
5113 * reporting is disabled for the bank
5114 */
5115 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
5116 return 0;
5117 if (mce->status & MCI_STATUS_UC) {
5118 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
5119 !kvm_is_cr4_bit_set(vcpu, X86_CR4_MCE)) {
5120 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5121 return 0;
5122 }
5123 if (banks[1] & MCI_STATUS_VAL)
5124 mce->status |= MCI_STATUS_OVER;
5125 banks[2] = mce->addr;
5126 banks[3] = mce->misc;
5127 vcpu->arch.mcg_status = mce->mcg_status;
5128 banks[1] = mce->status;
5129 kvm_queue_exception(vcpu, MC_VECTOR);
5130 } else if (!(banks[1] & MCI_STATUS_VAL)
5131 || !(banks[1] & MCI_STATUS_UC)) {
5132 if (banks[1] & MCI_STATUS_VAL)
5133 mce->status |= MCI_STATUS_OVER;
5134 banks[2] = mce->addr;
5135 banks[3] = mce->misc;
5136 banks[1] = mce->status;
5137 } else
5138 banks[1] |= MCI_STATUS_OVER;
5139 return 0;
5140 }
5141
kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)5142 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
5143 struct kvm_vcpu_events *events)
5144 {
5145 struct kvm_queued_exception *ex;
5146
5147 process_nmi(vcpu);
5148
5149 #ifdef CONFIG_KVM_SMM
5150 if (kvm_check_request(KVM_REQ_SMI, vcpu))
5151 process_smi(vcpu);
5152 #endif
5153
5154 /*
5155 * KVM's ABI only allows for one exception to be migrated. Luckily,
5156 * the only time there can be two queued exceptions is if there's a
5157 * non-exiting _injected_ exception, and a pending exiting exception.
5158 * In that case, ignore the VM-Exiting exception as it's an extension
5159 * of the injected exception.
5160 */
5161 if (vcpu->arch.exception_vmexit.pending &&
5162 !vcpu->arch.exception.pending &&
5163 !vcpu->arch.exception.injected)
5164 ex = &vcpu->arch.exception_vmexit;
5165 else
5166 ex = &vcpu->arch.exception;
5167
5168 /*
5169 * In guest mode, payload delivery should be deferred if the exception
5170 * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1
5171 * intercepts #PF, ditto for DR6 and #DBs. If the per-VM capability,
5172 * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not
5173 * propagate the payload and so it cannot be safely deferred. Deliver
5174 * the payload if the capability hasn't been requested.
5175 */
5176 if (!vcpu->kvm->arch.exception_payload_enabled &&
5177 ex->pending && ex->has_payload)
5178 kvm_deliver_exception_payload(vcpu, ex);
5179
5180 memset(events, 0, sizeof(*events));
5181
5182 /*
5183 * The API doesn't provide the instruction length for software
5184 * exceptions, so don't report them. As long as the guest RIP
5185 * isn't advanced, we should expect to encounter the exception
5186 * again.
5187 */
5188 if (!kvm_exception_is_soft(ex->vector)) {
5189 events->exception.injected = ex->injected;
5190 events->exception.pending = ex->pending;
5191 /*
5192 * For ABI compatibility, deliberately conflate
5193 * pending and injected exceptions when
5194 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
5195 */
5196 if (!vcpu->kvm->arch.exception_payload_enabled)
5197 events->exception.injected |= ex->pending;
5198 }
5199 events->exception.nr = ex->vector;
5200 events->exception.has_error_code = ex->has_error_code;
5201 events->exception.error_code = ex->error_code;
5202 events->exception_has_payload = ex->has_payload;
5203 events->exception_payload = ex->payload;
5204
5205 events->interrupt.injected =
5206 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
5207 events->interrupt.nr = vcpu->arch.interrupt.nr;
5208 events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
5209
5210 events->nmi.injected = vcpu->arch.nmi_injected;
5211 events->nmi.pending = kvm_get_nr_pending_nmis(vcpu);
5212 events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
5213
5214 /* events->sipi_vector is never valid when reporting to user space */
5215
5216 #ifdef CONFIG_KVM_SMM
5217 events->smi.smm = is_smm(vcpu);
5218 events->smi.pending = vcpu->arch.smi_pending;
5219 events->smi.smm_inside_nmi =
5220 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
5221 #endif
5222 events->smi.latched_init = kvm_lapic_latched_init(vcpu);
5223
5224 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
5225 | KVM_VCPUEVENT_VALID_SHADOW
5226 | KVM_VCPUEVENT_VALID_SMM);
5227 if (vcpu->kvm->arch.exception_payload_enabled)
5228 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
5229 if (vcpu->kvm->arch.triple_fault_event) {
5230 events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5231 events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT;
5232 }
5233 }
5234
kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)5235 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
5236 struct kvm_vcpu_events *events)
5237 {
5238 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
5239 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
5240 | KVM_VCPUEVENT_VALID_SHADOW
5241 | KVM_VCPUEVENT_VALID_SMM
5242 | KVM_VCPUEVENT_VALID_PAYLOAD
5243 | KVM_VCPUEVENT_VALID_TRIPLE_FAULT))
5244 return -EINVAL;
5245
5246 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
5247 if (!vcpu->kvm->arch.exception_payload_enabled)
5248 return -EINVAL;
5249 if (events->exception.pending)
5250 events->exception.injected = 0;
5251 else
5252 events->exception_has_payload = 0;
5253 } else {
5254 events->exception.pending = 0;
5255 events->exception_has_payload = 0;
5256 }
5257
5258 if ((events->exception.injected || events->exception.pending) &&
5259 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
5260 return -EINVAL;
5261
5262 /* INITs are latched while in SMM */
5263 if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
5264 (events->smi.smm || events->smi.pending) &&
5265 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
5266 return -EINVAL;
5267
5268 process_nmi(vcpu);
5269
5270 /*
5271 * Flag that userspace is stuffing an exception, the next KVM_RUN will
5272 * morph the exception to a VM-Exit if appropriate. Do this only for
5273 * pending exceptions, already-injected exceptions are not subject to
5274 * intercpetion. Note, userspace that conflates pending and injected
5275 * is hosed, and will incorrectly convert an injected exception into a
5276 * pending exception, which in turn may cause a spurious VM-Exit.
5277 */
5278 vcpu->arch.exception_from_userspace = events->exception.pending;
5279
5280 vcpu->arch.exception_vmexit.pending = false;
5281
5282 vcpu->arch.exception.injected = events->exception.injected;
5283 vcpu->arch.exception.pending = events->exception.pending;
5284 vcpu->arch.exception.vector = events->exception.nr;
5285 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
5286 vcpu->arch.exception.error_code = events->exception.error_code;
5287 vcpu->arch.exception.has_payload = events->exception_has_payload;
5288 vcpu->arch.exception.payload = events->exception_payload;
5289
5290 vcpu->arch.interrupt.injected = events->interrupt.injected;
5291 vcpu->arch.interrupt.nr = events->interrupt.nr;
5292 vcpu->arch.interrupt.soft = events->interrupt.soft;
5293 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
5294 static_call(kvm_x86_set_interrupt_shadow)(vcpu,
5295 events->interrupt.shadow);
5296
5297 vcpu->arch.nmi_injected = events->nmi.injected;
5298 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) {
5299 vcpu->arch.nmi_pending = 0;
5300 atomic_set(&vcpu->arch.nmi_queued, events->nmi.pending);
5301 kvm_make_request(KVM_REQ_NMI, vcpu);
5302 }
5303 static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
5304
5305 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
5306 lapic_in_kernel(vcpu))
5307 vcpu->arch.apic->sipi_vector = events->sipi_vector;
5308
5309 if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
5310 #ifdef CONFIG_KVM_SMM
5311 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
5312 kvm_leave_nested(vcpu);
5313 kvm_smm_changed(vcpu, events->smi.smm);
5314 }
5315
5316 vcpu->arch.smi_pending = events->smi.pending;
5317
5318 if (events->smi.smm) {
5319 if (events->smi.smm_inside_nmi)
5320 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
5321 else
5322 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
5323 }
5324
5325 #else
5326 if (events->smi.smm || events->smi.pending ||
5327 events->smi.smm_inside_nmi)
5328 return -EINVAL;
5329 #endif
5330
5331 if (lapic_in_kernel(vcpu)) {
5332 if (events->smi.latched_init)
5333 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5334 else
5335 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5336 }
5337 }
5338
5339 if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) {
5340 if (!vcpu->kvm->arch.triple_fault_event)
5341 return -EINVAL;
5342 if (events->triple_fault.pending)
5343 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5344 else
5345 kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5346 }
5347
5348 kvm_make_request(KVM_REQ_EVENT, vcpu);
5349
5350 return 0;
5351 }
5352
kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu * vcpu,struct kvm_debugregs * dbgregs)5353 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
5354 struct kvm_debugregs *dbgregs)
5355 {
5356 unsigned long val;
5357
5358 memset(dbgregs, 0, sizeof(*dbgregs));
5359 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
5360 kvm_get_dr(vcpu, 6, &val);
5361 dbgregs->dr6 = val;
5362 dbgregs->dr7 = vcpu->arch.dr7;
5363 }
5364
kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu * vcpu,struct kvm_debugregs * dbgregs)5365 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
5366 struct kvm_debugregs *dbgregs)
5367 {
5368 if (dbgregs->flags)
5369 return -EINVAL;
5370
5371 if (!kvm_dr6_valid(dbgregs->dr6))
5372 return -EINVAL;
5373 if (!kvm_dr7_valid(dbgregs->dr7))
5374 return -EINVAL;
5375
5376 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
5377 kvm_update_dr0123(vcpu);
5378 vcpu->arch.dr6 = dbgregs->dr6;
5379 vcpu->arch.dr7 = dbgregs->dr7;
5380 kvm_update_dr7(vcpu);
5381
5382 return 0;
5383 }
5384
5385
kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu * vcpu,u8 * state,unsigned int size)5386 static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu,
5387 u8 *state, unsigned int size)
5388 {
5389 /*
5390 * Only copy state for features that are enabled for the guest. The
5391 * state itself isn't problematic, but setting bits in the header for
5392 * features that are supported in *this* host but not exposed to the
5393 * guest can result in KVM_SET_XSAVE failing when live migrating to a
5394 * compatible host without the features that are NOT exposed to the
5395 * guest.
5396 *
5397 * FP+SSE can always be saved/restored via KVM_{G,S}ET_XSAVE, even if
5398 * XSAVE/XCRO are not exposed to the guest, and even if XSAVE isn't
5399 * supported by the host.
5400 */
5401 u64 supported_xcr0 = vcpu->arch.guest_supported_xcr0 |
5402 XFEATURE_MASK_FPSSE;
5403
5404 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5405 return;
5406
5407 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, state, size,
5408 supported_xcr0, vcpu->arch.pkru);
5409 }
5410
kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu * vcpu,struct kvm_xsave * guest_xsave)5411 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
5412 struct kvm_xsave *guest_xsave)
5413 {
5414 return kvm_vcpu_ioctl_x86_get_xsave2(vcpu, (void *)guest_xsave->region,
5415 sizeof(guest_xsave->region));
5416 }
5417
kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu * vcpu,struct kvm_xsave * guest_xsave)5418 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
5419 struct kvm_xsave *guest_xsave)
5420 {
5421 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5422 return 0;
5423
5424 return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu,
5425 guest_xsave->region,
5426 kvm_caps.supported_xcr0,
5427 &vcpu->arch.pkru);
5428 }
5429
kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu * vcpu,struct kvm_xcrs * guest_xcrs)5430 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
5431 struct kvm_xcrs *guest_xcrs)
5432 {
5433 if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
5434 guest_xcrs->nr_xcrs = 0;
5435 return;
5436 }
5437
5438 guest_xcrs->nr_xcrs = 1;
5439 guest_xcrs->flags = 0;
5440 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
5441 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
5442 }
5443
kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu * vcpu,struct kvm_xcrs * guest_xcrs)5444 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
5445 struct kvm_xcrs *guest_xcrs)
5446 {
5447 int i, r = 0;
5448
5449 if (!boot_cpu_has(X86_FEATURE_XSAVE))
5450 return -EINVAL;
5451
5452 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
5453 return -EINVAL;
5454
5455 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
5456 /* Only support XCR0 currently */
5457 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
5458 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
5459 guest_xcrs->xcrs[i].value);
5460 break;
5461 }
5462 if (r)
5463 r = -EINVAL;
5464 return r;
5465 }
5466
5467 /*
5468 * kvm_set_guest_paused() indicates to the guest kernel that it has been
5469 * stopped by the hypervisor. This function will be called from the host only.
5470 * EINVAL is returned when the host attempts to set the flag for a guest that
5471 * does not support pv clocks.
5472 */
kvm_set_guest_paused(struct kvm_vcpu * vcpu)5473 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
5474 {
5475 if (!vcpu->arch.pv_time.active)
5476 return -EINVAL;
5477 vcpu->arch.pvclock_set_guest_stopped_request = true;
5478 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5479 return 0;
5480 }
5481
kvm_arch_tsc_has_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)5482 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu,
5483 struct kvm_device_attr *attr)
5484 {
5485 int r;
5486
5487 switch (attr->attr) {
5488 case KVM_VCPU_TSC_OFFSET:
5489 r = 0;
5490 break;
5491 default:
5492 r = -ENXIO;
5493 }
5494
5495 return r;
5496 }
5497
kvm_arch_tsc_get_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)5498 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu,
5499 struct kvm_device_attr *attr)
5500 {
5501 u64 __user *uaddr = kvm_get_attr_addr(attr);
5502 int r;
5503
5504 if (IS_ERR(uaddr))
5505 return PTR_ERR(uaddr);
5506
5507 switch (attr->attr) {
5508 case KVM_VCPU_TSC_OFFSET:
5509 r = -EFAULT;
5510 if (put_user(vcpu->arch.l1_tsc_offset, uaddr))
5511 break;
5512 r = 0;
5513 break;
5514 default:
5515 r = -ENXIO;
5516 }
5517
5518 return r;
5519 }
5520
kvm_arch_tsc_set_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)5521 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu,
5522 struct kvm_device_attr *attr)
5523 {
5524 u64 __user *uaddr = kvm_get_attr_addr(attr);
5525 struct kvm *kvm = vcpu->kvm;
5526 int r;
5527
5528 if (IS_ERR(uaddr))
5529 return PTR_ERR(uaddr);
5530
5531 switch (attr->attr) {
5532 case KVM_VCPU_TSC_OFFSET: {
5533 u64 offset, tsc, ns;
5534 unsigned long flags;
5535 bool matched;
5536
5537 r = -EFAULT;
5538 if (get_user(offset, uaddr))
5539 break;
5540
5541 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
5542
5543 matched = (vcpu->arch.virtual_tsc_khz &&
5544 kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz &&
5545 kvm->arch.last_tsc_offset == offset);
5546
5547 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset;
5548 ns = get_kvmclock_base_ns();
5549
5550 __kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched);
5551 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
5552
5553 r = 0;
5554 break;
5555 }
5556 default:
5557 r = -ENXIO;
5558 }
5559
5560 return r;
5561 }
5562
kvm_vcpu_ioctl_device_attr(struct kvm_vcpu * vcpu,unsigned int ioctl,void __user * argp)5563 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu,
5564 unsigned int ioctl,
5565 void __user *argp)
5566 {
5567 struct kvm_device_attr attr;
5568 int r;
5569
5570 if (copy_from_user(&attr, argp, sizeof(attr)))
5571 return -EFAULT;
5572
5573 if (attr.group != KVM_VCPU_TSC_CTRL)
5574 return -ENXIO;
5575
5576 switch (ioctl) {
5577 case KVM_HAS_DEVICE_ATTR:
5578 r = kvm_arch_tsc_has_attr(vcpu, &attr);
5579 break;
5580 case KVM_GET_DEVICE_ATTR:
5581 r = kvm_arch_tsc_get_attr(vcpu, &attr);
5582 break;
5583 case KVM_SET_DEVICE_ATTR:
5584 r = kvm_arch_tsc_set_attr(vcpu, &attr);
5585 break;
5586 }
5587
5588 return r;
5589 }
5590
kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu * vcpu,struct kvm_enable_cap * cap)5591 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
5592 struct kvm_enable_cap *cap)
5593 {
5594 int r;
5595 uint16_t vmcs_version;
5596 void __user *user_ptr;
5597
5598 if (cap->flags)
5599 return -EINVAL;
5600
5601 switch (cap->cap) {
5602 case KVM_CAP_HYPERV_SYNIC2:
5603 if (cap->args[0])
5604 return -EINVAL;
5605 fallthrough;
5606
5607 case KVM_CAP_HYPERV_SYNIC:
5608 if (!irqchip_in_kernel(vcpu->kvm))
5609 return -EINVAL;
5610 return kvm_hv_activate_synic(vcpu, cap->cap ==
5611 KVM_CAP_HYPERV_SYNIC2);
5612 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
5613 if (!kvm_x86_ops.nested_ops->enable_evmcs)
5614 return -ENOTTY;
5615 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
5616 if (!r) {
5617 user_ptr = (void __user *)(uintptr_t)cap->args[0];
5618 if (copy_to_user(user_ptr, &vmcs_version,
5619 sizeof(vmcs_version)))
5620 r = -EFAULT;
5621 }
5622 return r;
5623 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
5624 if (!kvm_x86_ops.enable_l2_tlb_flush)
5625 return -ENOTTY;
5626
5627 return static_call(kvm_x86_enable_l2_tlb_flush)(vcpu);
5628
5629 case KVM_CAP_HYPERV_ENFORCE_CPUID:
5630 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
5631
5632 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
5633 vcpu->arch.pv_cpuid.enforce = cap->args[0];
5634 if (vcpu->arch.pv_cpuid.enforce)
5635 kvm_update_pv_runtime(vcpu);
5636
5637 return 0;
5638 default:
5639 return -EINVAL;
5640 }
5641 }
5642
kvm_arch_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)5643 long kvm_arch_vcpu_ioctl(struct file *filp,
5644 unsigned int ioctl, unsigned long arg)
5645 {
5646 struct kvm_vcpu *vcpu = filp->private_data;
5647 void __user *argp = (void __user *)arg;
5648 int r;
5649 union {
5650 struct kvm_sregs2 *sregs2;
5651 struct kvm_lapic_state *lapic;
5652 struct kvm_xsave *xsave;
5653 struct kvm_xcrs *xcrs;
5654 void *buffer;
5655 } u;
5656
5657 vcpu_load(vcpu);
5658
5659 u.buffer = NULL;
5660 switch (ioctl) {
5661 case KVM_GET_LAPIC: {
5662 r = -EINVAL;
5663 if (!lapic_in_kernel(vcpu))
5664 goto out;
5665 u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
5666 GFP_KERNEL_ACCOUNT);
5667
5668 r = -ENOMEM;
5669 if (!u.lapic)
5670 goto out;
5671 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
5672 if (r)
5673 goto out;
5674 r = -EFAULT;
5675 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
5676 goto out;
5677 r = 0;
5678 break;
5679 }
5680 case KVM_SET_LAPIC: {
5681 r = -EINVAL;
5682 if (!lapic_in_kernel(vcpu))
5683 goto out;
5684 u.lapic = memdup_user(argp, sizeof(*u.lapic));
5685 if (IS_ERR(u.lapic)) {
5686 r = PTR_ERR(u.lapic);
5687 goto out_nofree;
5688 }
5689
5690 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
5691 break;
5692 }
5693 case KVM_INTERRUPT: {
5694 struct kvm_interrupt irq;
5695
5696 r = -EFAULT;
5697 if (copy_from_user(&irq, argp, sizeof(irq)))
5698 goto out;
5699 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
5700 break;
5701 }
5702 case KVM_NMI: {
5703 r = kvm_vcpu_ioctl_nmi(vcpu);
5704 break;
5705 }
5706 case KVM_SMI: {
5707 r = kvm_inject_smi(vcpu);
5708 break;
5709 }
5710 case KVM_SET_CPUID: {
5711 struct kvm_cpuid __user *cpuid_arg = argp;
5712 struct kvm_cpuid cpuid;
5713
5714 r = -EFAULT;
5715 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5716 goto out;
5717 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
5718 break;
5719 }
5720 case KVM_SET_CPUID2: {
5721 struct kvm_cpuid2 __user *cpuid_arg = argp;
5722 struct kvm_cpuid2 cpuid;
5723
5724 r = -EFAULT;
5725 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5726 goto out;
5727 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5728 cpuid_arg->entries);
5729 break;
5730 }
5731 case KVM_GET_CPUID2: {
5732 struct kvm_cpuid2 __user *cpuid_arg = argp;
5733 struct kvm_cpuid2 cpuid;
5734
5735 r = -EFAULT;
5736 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5737 goto out;
5738 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5739 cpuid_arg->entries);
5740 if (r)
5741 goto out;
5742 r = -EFAULT;
5743 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5744 goto out;
5745 r = 0;
5746 break;
5747 }
5748 case KVM_GET_MSRS: {
5749 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5750 r = msr_io(vcpu, argp, do_get_msr, 1);
5751 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5752 break;
5753 }
5754 case KVM_SET_MSRS: {
5755 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5756 r = msr_io(vcpu, argp, do_set_msr, 0);
5757 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5758 break;
5759 }
5760 case KVM_TPR_ACCESS_REPORTING: {
5761 struct kvm_tpr_access_ctl tac;
5762
5763 r = -EFAULT;
5764 if (copy_from_user(&tac, argp, sizeof(tac)))
5765 goto out;
5766 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5767 if (r)
5768 goto out;
5769 r = -EFAULT;
5770 if (copy_to_user(argp, &tac, sizeof(tac)))
5771 goto out;
5772 r = 0;
5773 break;
5774 };
5775 case KVM_SET_VAPIC_ADDR: {
5776 struct kvm_vapic_addr va;
5777 int idx;
5778
5779 r = -EINVAL;
5780 if (!lapic_in_kernel(vcpu))
5781 goto out;
5782 r = -EFAULT;
5783 if (copy_from_user(&va, argp, sizeof(va)))
5784 goto out;
5785 idx = srcu_read_lock(&vcpu->kvm->srcu);
5786 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
5787 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5788 break;
5789 }
5790 case KVM_X86_SETUP_MCE: {
5791 u64 mcg_cap;
5792
5793 r = -EFAULT;
5794 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
5795 goto out;
5796 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
5797 break;
5798 }
5799 case KVM_X86_SET_MCE: {
5800 struct kvm_x86_mce mce;
5801
5802 r = -EFAULT;
5803 if (copy_from_user(&mce, argp, sizeof(mce)))
5804 goto out;
5805 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
5806 break;
5807 }
5808 case KVM_GET_VCPU_EVENTS: {
5809 struct kvm_vcpu_events events;
5810
5811 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
5812
5813 r = -EFAULT;
5814 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
5815 break;
5816 r = 0;
5817 break;
5818 }
5819 case KVM_SET_VCPU_EVENTS: {
5820 struct kvm_vcpu_events events;
5821
5822 r = -EFAULT;
5823 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
5824 break;
5825
5826 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
5827 break;
5828 }
5829 case KVM_GET_DEBUGREGS: {
5830 struct kvm_debugregs dbgregs;
5831
5832 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
5833
5834 r = -EFAULT;
5835 if (copy_to_user(argp, &dbgregs,
5836 sizeof(struct kvm_debugregs)))
5837 break;
5838 r = 0;
5839 break;
5840 }
5841 case KVM_SET_DEBUGREGS: {
5842 struct kvm_debugregs dbgregs;
5843
5844 r = -EFAULT;
5845 if (copy_from_user(&dbgregs, argp,
5846 sizeof(struct kvm_debugregs)))
5847 break;
5848
5849 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
5850 break;
5851 }
5852 case KVM_GET_XSAVE: {
5853 r = -EINVAL;
5854 if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave))
5855 break;
5856
5857 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
5858 r = -ENOMEM;
5859 if (!u.xsave)
5860 break;
5861
5862 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
5863
5864 r = -EFAULT;
5865 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
5866 break;
5867 r = 0;
5868 break;
5869 }
5870 case KVM_SET_XSAVE: {
5871 int size = vcpu->arch.guest_fpu.uabi_size;
5872
5873 u.xsave = memdup_user(argp, size);
5874 if (IS_ERR(u.xsave)) {
5875 r = PTR_ERR(u.xsave);
5876 goto out_nofree;
5877 }
5878
5879 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
5880 break;
5881 }
5882
5883 case KVM_GET_XSAVE2: {
5884 int size = vcpu->arch.guest_fpu.uabi_size;
5885
5886 u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT);
5887 r = -ENOMEM;
5888 if (!u.xsave)
5889 break;
5890
5891 kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size);
5892
5893 r = -EFAULT;
5894 if (copy_to_user(argp, u.xsave, size))
5895 break;
5896
5897 r = 0;
5898 break;
5899 }
5900
5901 case KVM_GET_XCRS: {
5902 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
5903 r = -ENOMEM;
5904 if (!u.xcrs)
5905 break;
5906
5907 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
5908
5909 r = -EFAULT;
5910 if (copy_to_user(argp, u.xcrs,
5911 sizeof(struct kvm_xcrs)))
5912 break;
5913 r = 0;
5914 break;
5915 }
5916 case KVM_SET_XCRS: {
5917 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
5918 if (IS_ERR(u.xcrs)) {
5919 r = PTR_ERR(u.xcrs);
5920 goto out_nofree;
5921 }
5922
5923 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
5924 break;
5925 }
5926 case KVM_SET_TSC_KHZ: {
5927 u32 user_tsc_khz;
5928
5929 r = -EINVAL;
5930 user_tsc_khz = (u32)arg;
5931
5932 if (kvm_caps.has_tsc_control &&
5933 user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
5934 goto out;
5935
5936 if (user_tsc_khz == 0)
5937 user_tsc_khz = tsc_khz;
5938
5939 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
5940 r = 0;
5941
5942 goto out;
5943 }
5944 case KVM_GET_TSC_KHZ: {
5945 r = vcpu->arch.virtual_tsc_khz;
5946 goto out;
5947 }
5948 case KVM_KVMCLOCK_CTRL: {
5949 r = kvm_set_guest_paused(vcpu);
5950 goto out;
5951 }
5952 case KVM_ENABLE_CAP: {
5953 struct kvm_enable_cap cap;
5954
5955 r = -EFAULT;
5956 if (copy_from_user(&cap, argp, sizeof(cap)))
5957 goto out;
5958 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
5959 break;
5960 }
5961 case KVM_GET_NESTED_STATE: {
5962 struct kvm_nested_state __user *user_kvm_nested_state = argp;
5963 u32 user_data_size;
5964
5965 r = -EINVAL;
5966 if (!kvm_x86_ops.nested_ops->get_state)
5967 break;
5968
5969 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
5970 r = -EFAULT;
5971 if (get_user(user_data_size, &user_kvm_nested_state->size))
5972 break;
5973
5974 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
5975 user_data_size);
5976 if (r < 0)
5977 break;
5978
5979 if (r > user_data_size) {
5980 if (put_user(r, &user_kvm_nested_state->size))
5981 r = -EFAULT;
5982 else
5983 r = -E2BIG;
5984 break;
5985 }
5986
5987 r = 0;
5988 break;
5989 }
5990 case KVM_SET_NESTED_STATE: {
5991 struct kvm_nested_state __user *user_kvm_nested_state = argp;
5992 struct kvm_nested_state kvm_state;
5993 int idx;
5994
5995 r = -EINVAL;
5996 if (!kvm_x86_ops.nested_ops->set_state)
5997 break;
5998
5999 r = -EFAULT;
6000 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
6001 break;
6002
6003 r = -EINVAL;
6004 if (kvm_state.size < sizeof(kvm_state))
6005 break;
6006
6007 if (kvm_state.flags &
6008 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
6009 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
6010 | KVM_STATE_NESTED_GIF_SET))
6011 break;
6012
6013 /* nested_run_pending implies guest_mode. */
6014 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
6015 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
6016 break;
6017
6018 idx = srcu_read_lock(&vcpu->kvm->srcu);
6019 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
6020 srcu_read_unlock(&vcpu->kvm->srcu, idx);
6021 break;
6022 }
6023 case KVM_GET_SUPPORTED_HV_CPUID:
6024 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
6025 break;
6026 #ifdef CONFIG_KVM_XEN
6027 case KVM_XEN_VCPU_GET_ATTR: {
6028 struct kvm_xen_vcpu_attr xva;
6029
6030 r = -EFAULT;
6031 if (copy_from_user(&xva, argp, sizeof(xva)))
6032 goto out;
6033 r = kvm_xen_vcpu_get_attr(vcpu, &xva);
6034 if (!r && copy_to_user(argp, &xva, sizeof(xva)))
6035 r = -EFAULT;
6036 break;
6037 }
6038 case KVM_XEN_VCPU_SET_ATTR: {
6039 struct kvm_xen_vcpu_attr xva;
6040
6041 r = -EFAULT;
6042 if (copy_from_user(&xva, argp, sizeof(xva)))
6043 goto out;
6044 r = kvm_xen_vcpu_set_attr(vcpu, &xva);
6045 break;
6046 }
6047 #endif
6048 case KVM_GET_SREGS2: {
6049 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
6050 r = -ENOMEM;
6051 if (!u.sregs2)
6052 goto out;
6053 __get_sregs2(vcpu, u.sregs2);
6054 r = -EFAULT;
6055 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
6056 goto out;
6057 r = 0;
6058 break;
6059 }
6060 case KVM_SET_SREGS2: {
6061 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
6062 if (IS_ERR(u.sregs2)) {
6063 r = PTR_ERR(u.sregs2);
6064 u.sregs2 = NULL;
6065 goto out;
6066 }
6067 r = __set_sregs2(vcpu, u.sregs2);
6068 break;
6069 }
6070 case KVM_HAS_DEVICE_ATTR:
6071 case KVM_GET_DEVICE_ATTR:
6072 case KVM_SET_DEVICE_ATTR:
6073 r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp);
6074 break;
6075 default:
6076 r = -EINVAL;
6077 }
6078 out:
6079 kfree(u.buffer);
6080 out_nofree:
6081 vcpu_put(vcpu);
6082 return r;
6083 }
6084
kvm_arch_vcpu_fault(struct kvm_vcpu * vcpu,struct vm_fault * vmf)6085 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
6086 {
6087 return VM_FAULT_SIGBUS;
6088 }
6089
kvm_vm_ioctl_set_tss_addr(struct kvm * kvm,unsigned long addr)6090 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
6091 {
6092 int ret;
6093
6094 if (addr > (unsigned int)(-3 * PAGE_SIZE))
6095 return -EINVAL;
6096 ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
6097 return ret;
6098 }
6099
kvm_vm_ioctl_set_identity_map_addr(struct kvm * kvm,u64 ident_addr)6100 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
6101 u64 ident_addr)
6102 {
6103 return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
6104 }
6105
kvm_vm_ioctl_set_nr_mmu_pages(struct kvm * kvm,unsigned long kvm_nr_mmu_pages)6106 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
6107 unsigned long kvm_nr_mmu_pages)
6108 {
6109 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
6110 return -EINVAL;
6111
6112 mutex_lock(&kvm->slots_lock);
6113
6114 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
6115 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
6116
6117 mutex_unlock(&kvm->slots_lock);
6118 return 0;
6119 }
6120
kvm_vm_ioctl_get_irqchip(struct kvm * kvm,struct kvm_irqchip * chip)6121 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6122 {
6123 struct kvm_pic *pic = kvm->arch.vpic;
6124 int r;
6125
6126 r = 0;
6127 switch (chip->chip_id) {
6128 case KVM_IRQCHIP_PIC_MASTER:
6129 memcpy(&chip->chip.pic, &pic->pics[0],
6130 sizeof(struct kvm_pic_state));
6131 break;
6132 case KVM_IRQCHIP_PIC_SLAVE:
6133 memcpy(&chip->chip.pic, &pic->pics[1],
6134 sizeof(struct kvm_pic_state));
6135 break;
6136 case KVM_IRQCHIP_IOAPIC:
6137 kvm_get_ioapic(kvm, &chip->chip.ioapic);
6138 break;
6139 default:
6140 r = -EINVAL;
6141 break;
6142 }
6143 return r;
6144 }
6145
kvm_vm_ioctl_set_irqchip(struct kvm * kvm,struct kvm_irqchip * chip)6146 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6147 {
6148 struct kvm_pic *pic = kvm->arch.vpic;
6149 int r;
6150
6151 r = 0;
6152 switch (chip->chip_id) {
6153 case KVM_IRQCHIP_PIC_MASTER:
6154 spin_lock(&pic->lock);
6155 memcpy(&pic->pics[0], &chip->chip.pic,
6156 sizeof(struct kvm_pic_state));
6157 spin_unlock(&pic->lock);
6158 break;
6159 case KVM_IRQCHIP_PIC_SLAVE:
6160 spin_lock(&pic->lock);
6161 memcpy(&pic->pics[1], &chip->chip.pic,
6162 sizeof(struct kvm_pic_state));
6163 spin_unlock(&pic->lock);
6164 break;
6165 case KVM_IRQCHIP_IOAPIC:
6166 kvm_set_ioapic(kvm, &chip->chip.ioapic);
6167 break;
6168 default:
6169 r = -EINVAL;
6170 break;
6171 }
6172 kvm_pic_update_irq(pic);
6173 return r;
6174 }
6175
kvm_vm_ioctl_get_pit(struct kvm * kvm,struct kvm_pit_state * ps)6176 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6177 {
6178 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
6179
6180 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
6181
6182 mutex_lock(&kps->lock);
6183 memcpy(ps, &kps->channels, sizeof(*ps));
6184 mutex_unlock(&kps->lock);
6185 return 0;
6186 }
6187
kvm_vm_ioctl_set_pit(struct kvm * kvm,struct kvm_pit_state * ps)6188 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6189 {
6190 int i;
6191 struct kvm_pit *pit = kvm->arch.vpit;
6192
6193 mutex_lock(&pit->pit_state.lock);
6194 memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
6195 for (i = 0; i < 3; i++)
6196 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
6197 mutex_unlock(&pit->pit_state.lock);
6198 return 0;
6199 }
6200
kvm_vm_ioctl_get_pit2(struct kvm * kvm,struct kvm_pit_state2 * ps)6201 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6202 {
6203 mutex_lock(&kvm->arch.vpit->pit_state.lock);
6204 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
6205 sizeof(ps->channels));
6206 ps->flags = kvm->arch.vpit->pit_state.flags;
6207 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
6208 memset(&ps->reserved, 0, sizeof(ps->reserved));
6209 return 0;
6210 }
6211
kvm_vm_ioctl_set_pit2(struct kvm * kvm,struct kvm_pit_state2 * ps)6212 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6213 {
6214 int start = 0;
6215 int i;
6216 u32 prev_legacy, cur_legacy;
6217 struct kvm_pit *pit = kvm->arch.vpit;
6218
6219 mutex_lock(&pit->pit_state.lock);
6220 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
6221 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
6222 if (!prev_legacy && cur_legacy)
6223 start = 1;
6224 memcpy(&pit->pit_state.channels, &ps->channels,
6225 sizeof(pit->pit_state.channels));
6226 pit->pit_state.flags = ps->flags;
6227 for (i = 0; i < 3; i++)
6228 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
6229 start && i == 0);
6230 mutex_unlock(&pit->pit_state.lock);
6231 return 0;
6232 }
6233
kvm_vm_ioctl_reinject(struct kvm * kvm,struct kvm_reinject_control * control)6234 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
6235 struct kvm_reinject_control *control)
6236 {
6237 struct kvm_pit *pit = kvm->arch.vpit;
6238
6239 /* pit->pit_state.lock was overloaded to prevent userspace from getting
6240 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
6241 * ioctls in parallel. Use a separate lock if that ioctl isn't rare.
6242 */
6243 mutex_lock(&pit->pit_state.lock);
6244 kvm_pit_set_reinject(pit, control->pit_reinject);
6245 mutex_unlock(&pit->pit_state.lock);
6246
6247 return 0;
6248 }
6249
kvm_arch_sync_dirty_log(struct kvm * kvm,struct kvm_memory_slot * memslot)6250 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
6251 {
6252
6253 /*
6254 * Flush all CPUs' dirty log buffers to the dirty_bitmap. Called
6255 * before reporting dirty_bitmap to userspace. KVM flushes the buffers
6256 * on all VM-Exits, thus we only need to kick running vCPUs to force a
6257 * VM-Exit.
6258 */
6259 struct kvm_vcpu *vcpu;
6260 unsigned long i;
6261
6262 kvm_for_each_vcpu(i, vcpu, kvm)
6263 kvm_vcpu_kick(vcpu);
6264 }
6265
kvm_vm_ioctl_irq_line(struct kvm * kvm,struct kvm_irq_level * irq_event,bool line_status)6266 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
6267 bool line_status)
6268 {
6269 if (!irqchip_in_kernel(kvm))
6270 return -ENXIO;
6271
6272 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
6273 irq_event->irq, irq_event->level,
6274 line_status);
6275 return 0;
6276 }
6277
kvm_vm_ioctl_enable_cap(struct kvm * kvm,struct kvm_enable_cap * cap)6278 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
6279 struct kvm_enable_cap *cap)
6280 {
6281 int r;
6282
6283 if (cap->flags)
6284 return -EINVAL;
6285
6286 switch (cap->cap) {
6287 case KVM_CAP_DISABLE_QUIRKS2:
6288 r = -EINVAL;
6289 if (cap->args[0] & ~KVM_X86_VALID_QUIRKS)
6290 break;
6291 fallthrough;
6292 case KVM_CAP_DISABLE_QUIRKS:
6293 kvm->arch.disabled_quirks = cap->args[0];
6294 r = 0;
6295 break;
6296 case KVM_CAP_SPLIT_IRQCHIP: {
6297 mutex_lock(&kvm->lock);
6298 r = -EINVAL;
6299 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
6300 goto split_irqchip_unlock;
6301 r = -EEXIST;
6302 if (irqchip_in_kernel(kvm))
6303 goto split_irqchip_unlock;
6304 if (kvm->created_vcpus)
6305 goto split_irqchip_unlock;
6306 r = kvm_setup_empty_irq_routing(kvm);
6307 if (r)
6308 goto split_irqchip_unlock;
6309 /* Pairs with irqchip_in_kernel. */
6310 smp_wmb();
6311 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
6312 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
6313 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6314 r = 0;
6315 split_irqchip_unlock:
6316 mutex_unlock(&kvm->lock);
6317 break;
6318 }
6319 case KVM_CAP_X2APIC_API:
6320 r = -EINVAL;
6321 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
6322 break;
6323
6324 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
6325 kvm->arch.x2apic_format = true;
6326 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
6327 kvm->arch.x2apic_broadcast_quirk_disabled = true;
6328
6329 r = 0;
6330 break;
6331 case KVM_CAP_X86_DISABLE_EXITS:
6332 r = -EINVAL;
6333 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
6334 break;
6335
6336 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
6337 kvm->arch.pause_in_guest = true;
6338
6339 #define SMT_RSB_MSG "This processor is affected by the Cross-Thread Return Predictions vulnerability. " \
6340 "KVM_CAP_X86_DISABLE_EXITS should only be used with SMT disabled or trusted guests."
6341
6342 if (!mitigate_smt_rsb) {
6343 if (boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible() &&
6344 (cap->args[0] & ~KVM_X86_DISABLE_EXITS_PAUSE))
6345 pr_warn_once(SMT_RSB_MSG);
6346
6347 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
6348 kvm_can_mwait_in_guest())
6349 kvm->arch.mwait_in_guest = true;
6350 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
6351 kvm->arch.hlt_in_guest = true;
6352 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
6353 kvm->arch.cstate_in_guest = true;
6354 }
6355
6356 r = 0;
6357 break;
6358 case KVM_CAP_MSR_PLATFORM_INFO:
6359 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
6360 r = 0;
6361 break;
6362 case KVM_CAP_EXCEPTION_PAYLOAD:
6363 kvm->arch.exception_payload_enabled = cap->args[0];
6364 r = 0;
6365 break;
6366 case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
6367 kvm->arch.triple_fault_event = cap->args[0];
6368 r = 0;
6369 break;
6370 case KVM_CAP_X86_USER_SPACE_MSR:
6371 r = -EINVAL;
6372 if (cap->args[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK)
6373 break;
6374 kvm->arch.user_space_msr_mask = cap->args[0];
6375 r = 0;
6376 break;
6377 case KVM_CAP_X86_BUS_LOCK_EXIT:
6378 r = -EINVAL;
6379 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
6380 break;
6381
6382 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
6383 (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
6384 break;
6385
6386 if (kvm_caps.has_bus_lock_exit &&
6387 cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
6388 kvm->arch.bus_lock_detection_enabled = true;
6389 r = 0;
6390 break;
6391 #ifdef CONFIG_X86_SGX_KVM
6392 case KVM_CAP_SGX_ATTRIBUTE: {
6393 unsigned long allowed_attributes = 0;
6394
6395 r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
6396 if (r)
6397 break;
6398
6399 /* KVM only supports the PROVISIONKEY privileged attribute. */
6400 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
6401 !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
6402 kvm->arch.sgx_provisioning_allowed = true;
6403 else
6404 r = -EINVAL;
6405 break;
6406 }
6407 #endif
6408 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
6409 r = -EINVAL;
6410 if (!kvm_x86_ops.vm_copy_enc_context_from)
6411 break;
6412
6413 r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]);
6414 break;
6415 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
6416 r = -EINVAL;
6417 if (!kvm_x86_ops.vm_move_enc_context_from)
6418 break;
6419
6420 r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]);
6421 break;
6422 case KVM_CAP_EXIT_HYPERCALL:
6423 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
6424 r = -EINVAL;
6425 break;
6426 }
6427 kvm->arch.hypercall_exit_enabled = cap->args[0];
6428 r = 0;
6429 break;
6430 case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
6431 r = -EINVAL;
6432 if (cap->args[0] & ~1)
6433 break;
6434 kvm->arch.exit_on_emulation_error = cap->args[0];
6435 r = 0;
6436 break;
6437 case KVM_CAP_PMU_CAPABILITY:
6438 r = -EINVAL;
6439 if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK))
6440 break;
6441
6442 mutex_lock(&kvm->lock);
6443 if (!kvm->created_vcpus) {
6444 kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE);
6445 r = 0;
6446 }
6447 mutex_unlock(&kvm->lock);
6448 break;
6449 case KVM_CAP_MAX_VCPU_ID:
6450 r = -EINVAL;
6451 if (cap->args[0] > KVM_MAX_VCPU_IDS)
6452 break;
6453
6454 mutex_lock(&kvm->lock);
6455 if (kvm->arch.max_vcpu_ids == cap->args[0]) {
6456 r = 0;
6457 } else if (!kvm->arch.max_vcpu_ids) {
6458 kvm->arch.max_vcpu_ids = cap->args[0];
6459 r = 0;
6460 }
6461 mutex_unlock(&kvm->lock);
6462 break;
6463 case KVM_CAP_X86_NOTIFY_VMEXIT:
6464 r = -EINVAL;
6465 if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS)
6466 break;
6467 if (!kvm_caps.has_notify_vmexit)
6468 break;
6469 if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED))
6470 break;
6471 mutex_lock(&kvm->lock);
6472 if (!kvm->created_vcpus) {
6473 kvm->arch.notify_window = cap->args[0] >> 32;
6474 kvm->arch.notify_vmexit_flags = (u32)cap->args[0];
6475 r = 0;
6476 }
6477 mutex_unlock(&kvm->lock);
6478 break;
6479 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
6480 r = -EINVAL;
6481
6482 /*
6483 * Since the risk of disabling NX hugepages is a guest crashing
6484 * the system, ensure the userspace process has permission to
6485 * reboot the system.
6486 *
6487 * Note that unlike the reboot() syscall, the process must have
6488 * this capability in the root namespace because exposing
6489 * /dev/kvm into a container does not limit the scope of the
6490 * iTLB multihit bug to that container. In other words,
6491 * this must use capable(), not ns_capable().
6492 */
6493 if (!capable(CAP_SYS_BOOT)) {
6494 r = -EPERM;
6495 break;
6496 }
6497
6498 if (cap->args[0])
6499 break;
6500
6501 mutex_lock(&kvm->lock);
6502 if (!kvm->created_vcpus) {
6503 kvm->arch.disable_nx_huge_pages = true;
6504 r = 0;
6505 }
6506 mutex_unlock(&kvm->lock);
6507 break;
6508 default:
6509 r = -EINVAL;
6510 break;
6511 }
6512 return r;
6513 }
6514
kvm_alloc_msr_filter(bool default_allow)6515 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
6516 {
6517 struct kvm_x86_msr_filter *msr_filter;
6518
6519 msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
6520 if (!msr_filter)
6521 return NULL;
6522
6523 msr_filter->default_allow = default_allow;
6524 return msr_filter;
6525 }
6526
kvm_free_msr_filter(struct kvm_x86_msr_filter * msr_filter)6527 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
6528 {
6529 u32 i;
6530
6531 if (!msr_filter)
6532 return;
6533
6534 for (i = 0; i < msr_filter->count; i++)
6535 kfree(msr_filter->ranges[i].bitmap);
6536
6537 kfree(msr_filter);
6538 }
6539
kvm_add_msr_filter(struct kvm_x86_msr_filter * msr_filter,struct kvm_msr_filter_range * user_range)6540 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
6541 struct kvm_msr_filter_range *user_range)
6542 {
6543 unsigned long *bitmap;
6544 size_t bitmap_size;
6545
6546 if (!user_range->nmsrs)
6547 return 0;
6548
6549 if (user_range->flags & ~KVM_MSR_FILTER_RANGE_VALID_MASK)
6550 return -EINVAL;
6551
6552 if (!user_range->flags)
6553 return -EINVAL;
6554
6555 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
6556 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
6557 return -EINVAL;
6558
6559 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
6560 if (IS_ERR(bitmap))
6561 return PTR_ERR(bitmap);
6562
6563 msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
6564 .flags = user_range->flags,
6565 .base = user_range->base,
6566 .nmsrs = user_range->nmsrs,
6567 .bitmap = bitmap,
6568 };
6569
6570 msr_filter->count++;
6571 return 0;
6572 }
6573
kvm_vm_ioctl_set_msr_filter(struct kvm * kvm,struct kvm_msr_filter * filter)6574 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm,
6575 struct kvm_msr_filter *filter)
6576 {
6577 struct kvm_x86_msr_filter *new_filter, *old_filter;
6578 bool default_allow;
6579 bool empty = true;
6580 int r;
6581 u32 i;
6582
6583 if (filter->flags & ~KVM_MSR_FILTER_VALID_MASK)
6584 return -EINVAL;
6585
6586 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++)
6587 empty &= !filter->ranges[i].nmsrs;
6588
6589 default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY);
6590 if (empty && !default_allow)
6591 return -EINVAL;
6592
6593 new_filter = kvm_alloc_msr_filter(default_allow);
6594 if (!new_filter)
6595 return -ENOMEM;
6596
6597 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) {
6598 r = kvm_add_msr_filter(new_filter, &filter->ranges[i]);
6599 if (r) {
6600 kvm_free_msr_filter(new_filter);
6601 return r;
6602 }
6603 }
6604
6605 mutex_lock(&kvm->lock);
6606 old_filter = rcu_replace_pointer(kvm->arch.msr_filter, new_filter,
6607 mutex_is_locked(&kvm->lock));
6608 mutex_unlock(&kvm->lock);
6609 synchronize_srcu(&kvm->srcu);
6610
6611 kvm_free_msr_filter(old_filter);
6612
6613 kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
6614
6615 return 0;
6616 }
6617
6618 #ifdef CONFIG_KVM_COMPAT
6619 /* for KVM_X86_SET_MSR_FILTER */
6620 struct kvm_msr_filter_range_compat {
6621 __u32 flags;
6622 __u32 nmsrs;
6623 __u32 base;
6624 __u32 bitmap;
6625 };
6626
6627 struct kvm_msr_filter_compat {
6628 __u32 flags;
6629 struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES];
6630 };
6631
6632 #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat)
6633
kvm_arch_vm_compat_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)6634 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
6635 unsigned long arg)
6636 {
6637 void __user *argp = (void __user *)arg;
6638 struct kvm *kvm = filp->private_data;
6639 long r = -ENOTTY;
6640
6641 switch (ioctl) {
6642 case KVM_X86_SET_MSR_FILTER_COMPAT: {
6643 struct kvm_msr_filter __user *user_msr_filter = argp;
6644 struct kvm_msr_filter_compat filter_compat;
6645 struct kvm_msr_filter filter;
6646 int i;
6647
6648 if (copy_from_user(&filter_compat, user_msr_filter,
6649 sizeof(filter_compat)))
6650 return -EFAULT;
6651
6652 filter.flags = filter_compat.flags;
6653 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
6654 struct kvm_msr_filter_range_compat *cr;
6655
6656 cr = &filter_compat.ranges[i];
6657 filter.ranges[i] = (struct kvm_msr_filter_range) {
6658 .flags = cr->flags,
6659 .nmsrs = cr->nmsrs,
6660 .base = cr->base,
6661 .bitmap = (__u8 *)(ulong)cr->bitmap,
6662 };
6663 }
6664
6665 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
6666 break;
6667 }
6668 }
6669
6670 return r;
6671 }
6672 #endif
6673
6674 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
kvm_arch_suspend_notifier(struct kvm * kvm)6675 static int kvm_arch_suspend_notifier(struct kvm *kvm)
6676 {
6677 struct kvm_vcpu *vcpu;
6678 unsigned long i;
6679 int ret = 0;
6680
6681 mutex_lock(&kvm->lock);
6682 kvm_for_each_vcpu(i, vcpu, kvm) {
6683 if (!vcpu->arch.pv_time.active)
6684 continue;
6685
6686 ret = kvm_set_guest_paused(vcpu);
6687 if (ret) {
6688 kvm_err("Failed to pause guest VCPU%d: %d\n",
6689 vcpu->vcpu_id, ret);
6690 break;
6691 }
6692 }
6693 mutex_unlock(&kvm->lock);
6694
6695 return ret ? NOTIFY_BAD : NOTIFY_DONE;
6696 }
6697
kvm_arch_pm_notifier(struct kvm * kvm,unsigned long state)6698 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
6699 {
6700 switch (state) {
6701 case PM_HIBERNATION_PREPARE:
6702 case PM_SUSPEND_PREPARE:
6703 return kvm_arch_suspend_notifier(kvm);
6704 }
6705
6706 return NOTIFY_DONE;
6707 }
6708 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
6709
kvm_vm_ioctl_get_clock(struct kvm * kvm,void __user * argp)6710 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp)
6711 {
6712 struct kvm_clock_data data = { 0 };
6713
6714 get_kvmclock(kvm, &data);
6715 if (copy_to_user(argp, &data, sizeof(data)))
6716 return -EFAULT;
6717
6718 return 0;
6719 }
6720
kvm_vm_ioctl_set_clock(struct kvm * kvm,void __user * argp)6721 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp)
6722 {
6723 struct kvm_arch *ka = &kvm->arch;
6724 struct kvm_clock_data data;
6725 u64 now_raw_ns;
6726
6727 if (copy_from_user(&data, argp, sizeof(data)))
6728 return -EFAULT;
6729
6730 /*
6731 * Only KVM_CLOCK_REALTIME is used, but allow passing the
6732 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK.
6733 */
6734 if (data.flags & ~KVM_CLOCK_VALID_FLAGS)
6735 return -EINVAL;
6736
6737 kvm_hv_request_tsc_page_update(kvm);
6738 kvm_start_pvclock_update(kvm);
6739 pvclock_update_vm_gtod_copy(kvm);
6740
6741 /*
6742 * This pairs with kvm_guest_time_update(): when masterclock is
6743 * in use, we use master_kernel_ns + kvmclock_offset to set
6744 * unsigned 'system_time' so if we use get_kvmclock_ns() (which
6745 * is slightly ahead) here we risk going negative on unsigned
6746 * 'system_time' when 'data.clock' is very small.
6747 */
6748 if (data.flags & KVM_CLOCK_REALTIME) {
6749 u64 now_real_ns = ktime_get_real_ns();
6750
6751 /*
6752 * Avoid stepping the kvmclock backwards.
6753 */
6754 if (now_real_ns > data.realtime)
6755 data.clock += now_real_ns - data.realtime;
6756 }
6757
6758 if (ka->use_master_clock)
6759 now_raw_ns = ka->master_kernel_ns;
6760 else
6761 now_raw_ns = get_kvmclock_base_ns();
6762 ka->kvmclock_offset = data.clock - now_raw_ns;
6763 kvm_end_pvclock_update(kvm);
6764 return 0;
6765 }
6766
kvm_arch_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)6767 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
6768 {
6769 struct kvm *kvm = filp->private_data;
6770 void __user *argp = (void __user *)arg;
6771 int r = -ENOTTY;
6772 /*
6773 * This union makes it completely explicit to gcc-3.x
6774 * that these two variables' stack usage should be
6775 * combined, not added together.
6776 */
6777 union {
6778 struct kvm_pit_state ps;
6779 struct kvm_pit_state2 ps2;
6780 struct kvm_pit_config pit_config;
6781 } u;
6782
6783 switch (ioctl) {
6784 case KVM_SET_TSS_ADDR:
6785 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
6786 break;
6787 case KVM_SET_IDENTITY_MAP_ADDR: {
6788 u64 ident_addr;
6789
6790 mutex_lock(&kvm->lock);
6791 r = -EINVAL;
6792 if (kvm->created_vcpus)
6793 goto set_identity_unlock;
6794 r = -EFAULT;
6795 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
6796 goto set_identity_unlock;
6797 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
6798 set_identity_unlock:
6799 mutex_unlock(&kvm->lock);
6800 break;
6801 }
6802 case KVM_SET_NR_MMU_PAGES:
6803 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
6804 break;
6805 case KVM_CREATE_IRQCHIP: {
6806 mutex_lock(&kvm->lock);
6807
6808 r = -EEXIST;
6809 if (irqchip_in_kernel(kvm))
6810 goto create_irqchip_unlock;
6811
6812 r = -EINVAL;
6813 if (kvm->created_vcpus)
6814 goto create_irqchip_unlock;
6815
6816 r = kvm_pic_init(kvm);
6817 if (r)
6818 goto create_irqchip_unlock;
6819
6820 r = kvm_ioapic_init(kvm);
6821 if (r) {
6822 kvm_pic_destroy(kvm);
6823 goto create_irqchip_unlock;
6824 }
6825
6826 r = kvm_setup_default_irq_routing(kvm);
6827 if (r) {
6828 kvm_ioapic_destroy(kvm);
6829 kvm_pic_destroy(kvm);
6830 goto create_irqchip_unlock;
6831 }
6832 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
6833 smp_wmb();
6834 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
6835 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6836 create_irqchip_unlock:
6837 mutex_unlock(&kvm->lock);
6838 break;
6839 }
6840 case KVM_CREATE_PIT:
6841 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
6842 goto create_pit;
6843 case KVM_CREATE_PIT2:
6844 r = -EFAULT;
6845 if (copy_from_user(&u.pit_config, argp,
6846 sizeof(struct kvm_pit_config)))
6847 goto out;
6848 create_pit:
6849 mutex_lock(&kvm->lock);
6850 r = -EEXIST;
6851 if (kvm->arch.vpit)
6852 goto create_pit_unlock;
6853 r = -ENOMEM;
6854 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
6855 if (kvm->arch.vpit)
6856 r = 0;
6857 create_pit_unlock:
6858 mutex_unlock(&kvm->lock);
6859 break;
6860 case KVM_GET_IRQCHIP: {
6861 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6862 struct kvm_irqchip *chip;
6863
6864 chip = memdup_user(argp, sizeof(*chip));
6865 if (IS_ERR(chip)) {
6866 r = PTR_ERR(chip);
6867 goto out;
6868 }
6869
6870 r = -ENXIO;
6871 if (!irqchip_kernel(kvm))
6872 goto get_irqchip_out;
6873 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
6874 if (r)
6875 goto get_irqchip_out;
6876 r = -EFAULT;
6877 if (copy_to_user(argp, chip, sizeof(*chip)))
6878 goto get_irqchip_out;
6879 r = 0;
6880 get_irqchip_out:
6881 kfree(chip);
6882 break;
6883 }
6884 case KVM_SET_IRQCHIP: {
6885 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6886 struct kvm_irqchip *chip;
6887
6888 chip = memdup_user(argp, sizeof(*chip));
6889 if (IS_ERR(chip)) {
6890 r = PTR_ERR(chip);
6891 goto out;
6892 }
6893
6894 r = -ENXIO;
6895 if (!irqchip_kernel(kvm))
6896 goto set_irqchip_out;
6897 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
6898 set_irqchip_out:
6899 kfree(chip);
6900 break;
6901 }
6902 case KVM_GET_PIT: {
6903 r = -EFAULT;
6904 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
6905 goto out;
6906 r = -ENXIO;
6907 if (!kvm->arch.vpit)
6908 goto out;
6909 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
6910 if (r)
6911 goto out;
6912 r = -EFAULT;
6913 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
6914 goto out;
6915 r = 0;
6916 break;
6917 }
6918 case KVM_SET_PIT: {
6919 r = -EFAULT;
6920 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
6921 goto out;
6922 mutex_lock(&kvm->lock);
6923 r = -ENXIO;
6924 if (!kvm->arch.vpit)
6925 goto set_pit_out;
6926 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
6927 set_pit_out:
6928 mutex_unlock(&kvm->lock);
6929 break;
6930 }
6931 case KVM_GET_PIT2: {
6932 r = -ENXIO;
6933 if (!kvm->arch.vpit)
6934 goto out;
6935 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
6936 if (r)
6937 goto out;
6938 r = -EFAULT;
6939 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
6940 goto out;
6941 r = 0;
6942 break;
6943 }
6944 case KVM_SET_PIT2: {
6945 r = -EFAULT;
6946 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
6947 goto out;
6948 mutex_lock(&kvm->lock);
6949 r = -ENXIO;
6950 if (!kvm->arch.vpit)
6951 goto set_pit2_out;
6952 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
6953 set_pit2_out:
6954 mutex_unlock(&kvm->lock);
6955 break;
6956 }
6957 case KVM_REINJECT_CONTROL: {
6958 struct kvm_reinject_control control;
6959 r = -EFAULT;
6960 if (copy_from_user(&control, argp, sizeof(control)))
6961 goto out;
6962 r = -ENXIO;
6963 if (!kvm->arch.vpit)
6964 goto out;
6965 r = kvm_vm_ioctl_reinject(kvm, &control);
6966 break;
6967 }
6968 case KVM_SET_BOOT_CPU_ID:
6969 r = 0;
6970 mutex_lock(&kvm->lock);
6971 if (kvm->created_vcpus)
6972 r = -EBUSY;
6973 else
6974 kvm->arch.bsp_vcpu_id = arg;
6975 mutex_unlock(&kvm->lock);
6976 break;
6977 #ifdef CONFIG_KVM_XEN
6978 case KVM_XEN_HVM_CONFIG: {
6979 struct kvm_xen_hvm_config xhc;
6980 r = -EFAULT;
6981 if (copy_from_user(&xhc, argp, sizeof(xhc)))
6982 goto out;
6983 r = kvm_xen_hvm_config(kvm, &xhc);
6984 break;
6985 }
6986 case KVM_XEN_HVM_GET_ATTR: {
6987 struct kvm_xen_hvm_attr xha;
6988
6989 r = -EFAULT;
6990 if (copy_from_user(&xha, argp, sizeof(xha)))
6991 goto out;
6992 r = kvm_xen_hvm_get_attr(kvm, &xha);
6993 if (!r && copy_to_user(argp, &xha, sizeof(xha)))
6994 r = -EFAULT;
6995 break;
6996 }
6997 case KVM_XEN_HVM_SET_ATTR: {
6998 struct kvm_xen_hvm_attr xha;
6999
7000 r = -EFAULT;
7001 if (copy_from_user(&xha, argp, sizeof(xha)))
7002 goto out;
7003 r = kvm_xen_hvm_set_attr(kvm, &xha);
7004 break;
7005 }
7006 case KVM_XEN_HVM_EVTCHN_SEND: {
7007 struct kvm_irq_routing_xen_evtchn uxe;
7008
7009 r = -EFAULT;
7010 if (copy_from_user(&uxe, argp, sizeof(uxe)))
7011 goto out;
7012 r = kvm_xen_hvm_evtchn_send(kvm, &uxe);
7013 break;
7014 }
7015 #endif
7016 case KVM_SET_CLOCK:
7017 r = kvm_vm_ioctl_set_clock(kvm, argp);
7018 break;
7019 case KVM_GET_CLOCK:
7020 r = kvm_vm_ioctl_get_clock(kvm, argp);
7021 break;
7022 case KVM_SET_TSC_KHZ: {
7023 u32 user_tsc_khz;
7024
7025 r = -EINVAL;
7026 user_tsc_khz = (u32)arg;
7027
7028 if (kvm_caps.has_tsc_control &&
7029 user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
7030 goto out;
7031
7032 if (user_tsc_khz == 0)
7033 user_tsc_khz = tsc_khz;
7034
7035 WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz);
7036 r = 0;
7037
7038 goto out;
7039 }
7040 case KVM_GET_TSC_KHZ: {
7041 r = READ_ONCE(kvm->arch.default_tsc_khz);
7042 goto out;
7043 }
7044 case KVM_MEMORY_ENCRYPT_OP: {
7045 r = -ENOTTY;
7046 if (!kvm_x86_ops.mem_enc_ioctl)
7047 goto out;
7048
7049 r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp);
7050 break;
7051 }
7052 case KVM_MEMORY_ENCRYPT_REG_REGION: {
7053 struct kvm_enc_region region;
7054
7055 r = -EFAULT;
7056 if (copy_from_user(®ion, argp, sizeof(region)))
7057 goto out;
7058
7059 r = -ENOTTY;
7060 if (!kvm_x86_ops.mem_enc_register_region)
7061 goto out;
7062
7063 r = static_call(kvm_x86_mem_enc_register_region)(kvm, ®ion);
7064 break;
7065 }
7066 case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
7067 struct kvm_enc_region region;
7068
7069 r = -EFAULT;
7070 if (copy_from_user(®ion, argp, sizeof(region)))
7071 goto out;
7072
7073 r = -ENOTTY;
7074 if (!kvm_x86_ops.mem_enc_unregister_region)
7075 goto out;
7076
7077 r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, ®ion);
7078 break;
7079 }
7080 case KVM_HYPERV_EVENTFD: {
7081 struct kvm_hyperv_eventfd hvevfd;
7082
7083 r = -EFAULT;
7084 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
7085 goto out;
7086 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
7087 break;
7088 }
7089 case KVM_SET_PMU_EVENT_FILTER:
7090 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
7091 break;
7092 case KVM_X86_SET_MSR_FILTER: {
7093 struct kvm_msr_filter __user *user_msr_filter = argp;
7094 struct kvm_msr_filter filter;
7095
7096 if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
7097 return -EFAULT;
7098
7099 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
7100 break;
7101 }
7102 default:
7103 r = -ENOTTY;
7104 }
7105 out:
7106 return r;
7107 }
7108
kvm_probe_feature_msr(u32 msr_index)7109 static void kvm_probe_feature_msr(u32 msr_index)
7110 {
7111 struct kvm_msr_entry msr = {
7112 .index = msr_index,
7113 };
7114
7115 if (kvm_get_msr_feature(&msr))
7116 return;
7117
7118 msr_based_features[num_msr_based_features++] = msr_index;
7119 }
7120
kvm_probe_msr_to_save(u32 msr_index)7121 static void kvm_probe_msr_to_save(u32 msr_index)
7122 {
7123 u32 dummy[2];
7124
7125 if (rdmsr_safe(msr_index, &dummy[0], &dummy[1]))
7126 return;
7127
7128 /*
7129 * Even MSRs that are valid in the host may not be exposed to guests in
7130 * some cases.
7131 */
7132 switch (msr_index) {
7133 case MSR_IA32_BNDCFGS:
7134 if (!kvm_mpx_supported())
7135 return;
7136 break;
7137 case MSR_TSC_AUX:
7138 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
7139 !kvm_cpu_cap_has(X86_FEATURE_RDPID))
7140 return;
7141 break;
7142 case MSR_IA32_UMWAIT_CONTROL:
7143 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
7144 return;
7145 break;
7146 case MSR_IA32_RTIT_CTL:
7147 case MSR_IA32_RTIT_STATUS:
7148 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
7149 return;
7150 break;
7151 case MSR_IA32_RTIT_CR3_MATCH:
7152 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7153 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
7154 return;
7155 break;
7156 case MSR_IA32_RTIT_OUTPUT_BASE:
7157 case MSR_IA32_RTIT_OUTPUT_MASK:
7158 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7159 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
7160 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
7161 return;
7162 break;
7163 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
7164 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7165 (msr_index - MSR_IA32_RTIT_ADDR0_A >=
7166 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2))
7167 return;
7168 break;
7169 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR_MAX:
7170 if (msr_index - MSR_ARCH_PERFMON_PERFCTR0 >=
7171 kvm_pmu_cap.num_counters_gp)
7172 return;
7173 break;
7174 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL_MAX:
7175 if (msr_index - MSR_ARCH_PERFMON_EVENTSEL0 >=
7176 kvm_pmu_cap.num_counters_gp)
7177 return;
7178 break;
7179 case MSR_ARCH_PERFMON_FIXED_CTR0 ... MSR_ARCH_PERFMON_FIXED_CTR_MAX:
7180 if (msr_index - MSR_ARCH_PERFMON_FIXED_CTR0 >=
7181 kvm_pmu_cap.num_counters_fixed)
7182 return;
7183 break;
7184 case MSR_AMD64_PERF_CNTR_GLOBAL_CTL:
7185 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS:
7186 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR:
7187 if (!kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2))
7188 return;
7189 break;
7190 case MSR_IA32_XFD:
7191 case MSR_IA32_XFD_ERR:
7192 if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
7193 return;
7194 break;
7195 case MSR_IA32_TSX_CTRL:
7196 if (!(kvm_get_arch_capabilities() & ARCH_CAP_TSX_CTRL_MSR))
7197 return;
7198 break;
7199 default:
7200 break;
7201 }
7202
7203 msrs_to_save[num_msrs_to_save++] = msr_index;
7204 }
7205
kvm_init_msr_lists(void)7206 static void kvm_init_msr_lists(void)
7207 {
7208 unsigned i;
7209
7210 BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3,
7211 "Please update the fixed PMCs in msrs_to_save_pmu[]");
7212
7213 num_msrs_to_save = 0;
7214 num_emulated_msrs = 0;
7215 num_msr_based_features = 0;
7216
7217 for (i = 0; i < ARRAY_SIZE(msrs_to_save_base); i++)
7218 kvm_probe_msr_to_save(msrs_to_save_base[i]);
7219
7220 if (enable_pmu) {
7221 for (i = 0; i < ARRAY_SIZE(msrs_to_save_pmu); i++)
7222 kvm_probe_msr_to_save(msrs_to_save_pmu[i]);
7223 }
7224
7225 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
7226 if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
7227 continue;
7228
7229 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
7230 }
7231
7232 for (i = KVM_FIRST_EMULATED_VMX_MSR; i <= KVM_LAST_EMULATED_VMX_MSR; i++)
7233 kvm_probe_feature_msr(i);
7234
7235 for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++)
7236 kvm_probe_feature_msr(msr_based_features_all_except_vmx[i]);
7237 }
7238
vcpu_mmio_write(struct kvm_vcpu * vcpu,gpa_t addr,int len,const void * v)7239 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
7240 const void *v)
7241 {
7242 int handled = 0;
7243 int n;
7244
7245 do {
7246 n = min(len, 8);
7247 if (!(lapic_in_kernel(vcpu) &&
7248 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
7249 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
7250 break;
7251 handled += n;
7252 addr += n;
7253 len -= n;
7254 v += n;
7255 } while (len);
7256
7257 return handled;
7258 }
7259
vcpu_mmio_read(struct kvm_vcpu * vcpu,gpa_t addr,int len,void * v)7260 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
7261 {
7262 int handled = 0;
7263 int n;
7264
7265 do {
7266 n = min(len, 8);
7267 if (!(lapic_in_kernel(vcpu) &&
7268 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
7269 addr, n, v))
7270 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
7271 break;
7272 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
7273 handled += n;
7274 addr += n;
7275 len -= n;
7276 v += n;
7277 } while (len);
7278
7279 return handled;
7280 }
7281
kvm_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)7282 void kvm_set_segment(struct kvm_vcpu *vcpu,
7283 struct kvm_segment *var, int seg)
7284 {
7285 static_call(kvm_x86_set_segment)(vcpu, var, seg);
7286 }
7287
kvm_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)7288 void kvm_get_segment(struct kvm_vcpu *vcpu,
7289 struct kvm_segment *var, int seg)
7290 {
7291 static_call(kvm_x86_get_segment)(vcpu, var, seg);
7292 }
7293
translate_nested_gpa(struct kvm_vcpu * vcpu,gpa_t gpa,u64 access,struct x86_exception * exception)7294 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access,
7295 struct x86_exception *exception)
7296 {
7297 struct kvm_mmu *mmu = vcpu->arch.mmu;
7298 gpa_t t_gpa;
7299
7300 BUG_ON(!mmu_is_nested(vcpu));
7301
7302 /* NPT walks are always user-walks */
7303 access |= PFERR_USER_MASK;
7304 t_gpa = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception);
7305
7306 return t_gpa;
7307 }
7308
kvm_mmu_gva_to_gpa_read(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)7309 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
7310 struct x86_exception *exception)
7311 {
7312 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7313
7314 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7315 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7316 }
7317 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
7318
kvm_mmu_gva_to_gpa_write(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)7319 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
7320 struct x86_exception *exception)
7321 {
7322 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7323
7324 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7325 access |= PFERR_WRITE_MASK;
7326 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7327 }
7328 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
7329
7330 /* uses this to access any guest's mapped memory without checking CPL */
kvm_mmu_gva_to_gpa_system(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)7331 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
7332 struct x86_exception *exception)
7333 {
7334 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7335
7336 return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception);
7337 }
7338
kvm_read_guest_virt_helper(gva_t addr,void * val,unsigned int bytes,struct kvm_vcpu * vcpu,u64 access,struct x86_exception * exception)7339 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7340 struct kvm_vcpu *vcpu, u64 access,
7341 struct x86_exception *exception)
7342 {
7343 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7344 void *data = val;
7345 int r = X86EMUL_CONTINUE;
7346
7347 while (bytes) {
7348 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7349 unsigned offset = addr & (PAGE_SIZE-1);
7350 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
7351 int ret;
7352
7353 if (gpa == INVALID_GPA)
7354 return X86EMUL_PROPAGATE_FAULT;
7355 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
7356 offset, toread);
7357 if (ret < 0) {
7358 r = X86EMUL_IO_NEEDED;
7359 goto out;
7360 }
7361
7362 bytes -= toread;
7363 data += toread;
7364 addr += toread;
7365 }
7366 out:
7367 return r;
7368 }
7369
7370 /* used for instruction fetching */
kvm_fetch_guest_virt(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)7371 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
7372 gva_t addr, void *val, unsigned int bytes,
7373 struct x86_exception *exception)
7374 {
7375 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7376 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7377 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7378 unsigned offset;
7379 int ret;
7380
7381 /* Inline kvm_read_guest_virt_helper for speed. */
7382 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK,
7383 exception);
7384 if (unlikely(gpa == INVALID_GPA))
7385 return X86EMUL_PROPAGATE_FAULT;
7386
7387 offset = addr & (PAGE_SIZE-1);
7388 if (WARN_ON(offset + bytes > PAGE_SIZE))
7389 bytes = (unsigned)PAGE_SIZE - offset;
7390 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
7391 offset, bytes);
7392 if (unlikely(ret < 0))
7393 return X86EMUL_IO_NEEDED;
7394
7395 return X86EMUL_CONTINUE;
7396 }
7397
kvm_read_guest_virt(struct kvm_vcpu * vcpu,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)7398 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
7399 gva_t addr, void *val, unsigned int bytes,
7400 struct x86_exception *exception)
7401 {
7402 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7403
7404 /*
7405 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
7406 * is returned, but our callers are not ready for that and they blindly
7407 * call kvm_inject_page_fault. Ensure that they at least do not leak
7408 * uninitialized kernel stack memory into cr2 and error code.
7409 */
7410 memset(exception, 0, sizeof(*exception));
7411 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
7412 exception);
7413 }
7414 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
7415
emulator_read_std(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception,bool system)7416 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
7417 gva_t addr, void *val, unsigned int bytes,
7418 struct x86_exception *exception, bool system)
7419 {
7420 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7421 u64 access = 0;
7422
7423 if (system)
7424 access |= PFERR_IMPLICIT_ACCESS;
7425 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7426 access |= PFERR_USER_MASK;
7427
7428 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
7429 }
7430
kvm_write_guest_virt_helper(gva_t addr,void * val,unsigned int bytes,struct kvm_vcpu * vcpu,u64 access,struct x86_exception * exception)7431 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7432 struct kvm_vcpu *vcpu, u64 access,
7433 struct x86_exception *exception)
7434 {
7435 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7436 void *data = val;
7437 int r = X86EMUL_CONTINUE;
7438
7439 while (bytes) {
7440 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7441 unsigned offset = addr & (PAGE_SIZE-1);
7442 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
7443 int ret;
7444
7445 if (gpa == INVALID_GPA)
7446 return X86EMUL_PROPAGATE_FAULT;
7447 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
7448 if (ret < 0) {
7449 r = X86EMUL_IO_NEEDED;
7450 goto out;
7451 }
7452
7453 bytes -= towrite;
7454 data += towrite;
7455 addr += towrite;
7456 }
7457 out:
7458 return r;
7459 }
7460
emulator_write_std(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception,bool system)7461 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
7462 unsigned int bytes, struct x86_exception *exception,
7463 bool system)
7464 {
7465 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7466 u64 access = PFERR_WRITE_MASK;
7467
7468 if (system)
7469 access |= PFERR_IMPLICIT_ACCESS;
7470 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7471 access |= PFERR_USER_MASK;
7472
7473 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7474 access, exception);
7475 }
7476
kvm_write_guest_virt_system(struct kvm_vcpu * vcpu,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)7477 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
7478 unsigned int bytes, struct x86_exception *exception)
7479 {
7480 /* kvm_write_guest_virt_system can pull in tons of pages. */
7481 vcpu->arch.l1tf_flush_l1d = true;
7482
7483 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7484 PFERR_WRITE_MASK, exception);
7485 }
7486 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
7487
kvm_can_emulate_insn(struct kvm_vcpu * vcpu,int emul_type,void * insn,int insn_len)7488 static int kvm_can_emulate_insn(struct kvm_vcpu *vcpu, int emul_type,
7489 void *insn, int insn_len)
7490 {
7491 return static_call(kvm_x86_can_emulate_instruction)(vcpu, emul_type,
7492 insn, insn_len);
7493 }
7494
handle_ud(struct kvm_vcpu * vcpu)7495 int handle_ud(struct kvm_vcpu *vcpu)
7496 {
7497 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
7498 int fep_flags = READ_ONCE(force_emulation_prefix);
7499 int emul_type = EMULTYPE_TRAP_UD;
7500 char sig[5]; /* ud2; .ascii "kvm" */
7501 struct x86_exception e;
7502
7503 if (unlikely(!kvm_can_emulate_insn(vcpu, emul_type, NULL, 0)))
7504 return 1;
7505
7506 if (fep_flags &&
7507 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
7508 sig, sizeof(sig), &e) == 0 &&
7509 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
7510 if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF)
7511 kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF);
7512 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
7513 emul_type = EMULTYPE_TRAP_UD_FORCED;
7514 }
7515
7516 return kvm_emulate_instruction(vcpu, emul_type);
7517 }
7518 EXPORT_SYMBOL_GPL(handle_ud);
7519
vcpu_is_mmio_gpa(struct kvm_vcpu * vcpu,unsigned long gva,gpa_t gpa,bool write)7520 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7521 gpa_t gpa, bool write)
7522 {
7523 /* For APIC access vmexit */
7524 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7525 return 1;
7526
7527 if (vcpu_match_mmio_gpa(vcpu, gpa)) {
7528 trace_vcpu_match_mmio(gva, gpa, write, true);
7529 return 1;
7530 }
7531
7532 return 0;
7533 }
7534
vcpu_mmio_gva_to_gpa(struct kvm_vcpu * vcpu,unsigned long gva,gpa_t * gpa,struct x86_exception * exception,bool write)7535 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7536 gpa_t *gpa, struct x86_exception *exception,
7537 bool write)
7538 {
7539 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7540 u64 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
7541 | (write ? PFERR_WRITE_MASK : 0);
7542
7543 /*
7544 * currently PKRU is only applied to ept enabled guest so
7545 * there is no pkey in EPT page table for L1 guest or EPT
7546 * shadow page table for L2 guest.
7547 */
7548 if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
7549 !permission_fault(vcpu, vcpu->arch.walk_mmu,
7550 vcpu->arch.mmio_access, 0, access))) {
7551 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
7552 (gva & (PAGE_SIZE - 1));
7553 trace_vcpu_match_mmio(gva, *gpa, write, false);
7554 return 1;
7555 }
7556
7557 *gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7558
7559 if (*gpa == INVALID_GPA)
7560 return -1;
7561
7562 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
7563 }
7564
emulator_write_phys(struct kvm_vcpu * vcpu,gpa_t gpa,const void * val,int bytes)7565 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
7566 const void *val, int bytes)
7567 {
7568 int ret;
7569
7570 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
7571 if (ret < 0)
7572 return 0;
7573 kvm_page_track_write(vcpu, gpa, val, bytes);
7574 return 1;
7575 }
7576
7577 struct read_write_emulator_ops {
7578 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
7579 int bytes);
7580 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
7581 void *val, int bytes);
7582 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7583 int bytes, void *val);
7584 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7585 void *val, int bytes);
7586 bool write;
7587 };
7588
read_prepare(struct kvm_vcpu * vcpu,void * val,int bytes)7589 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
7590 {
7591 if (vcpu->mmio_read_completed) {
7592 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
7593 vcpu->mmio_fragments[0].gpa, val);
7594 vcpu->mmio_read_completed = 0;
7595 return 1;
7596 }
7597
7598 return 0;
7599 }
7600
read_emulate(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)7601 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7602 void *val, int bytes)
7603 {
7604 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
7605 }
7606
write_emulate(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)7607 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7608 void *val, int bytes)
7609 {
7610 return emulator_write_phys(vcpu, gpa, val, bytes);
7611 }
7612
write_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,int bytes,void * val)7613 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
7614 {
7615 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
7616 return vcpu_mmio_write(vcpu, gpa, bytes, val);
7617 }
7618
read_exit_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)7619 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7620 void *val, int bytes)
7621 {
7622 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
7623 return X86EMUL_IO_NEEDED;
7624 }
7625
write_exit_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)7626 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7627 void *val, int bytes)
7628 {
7629 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
7630
7631 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
7632 return X86EMUL_CONTINUE;
7633 }
7634
7635 static const struct read_write_emulator_ops read_emultor = {
7636 .read_write_prepare = read_prepare,
7637 .read_write_emulate = read_emulate,
7638 .read_write_mmio = vcpu_mmio_read,
7639 .read_write_exit_mmio = read_exit_mmio,
7640 };
7641
7642 static const struct read_write_emulator_ops write_emultor = {
7643 .read_write_emulate = write_emulate,
7644 .read_write_mmio = write_mmio,
7645 .read_write_exit_mmio = write_exit_mmio,
7646 .write = true,
7647 };
7648
emulator_read_write_onepage(unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception,struct kvm_vcpu * vcpu,const struct read_write_emulator_ops * ops)7649 static int emulator_read_write_onepage(unsigned long addr, void *val,
7650 unsigned int bytes,
7651 struct x86_exception *exception,
7652 struct kvm_vcpu *vcpu,
7653 const struct read_write_emulator_ops *ops)
7654 {
7655 gpa_t gpa;
7656 int handled, ret;
7657 bool write = ops->write;
7658 struct kvm_mmio_fragment *frag;
7659 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7660
7661 /*
7662 * If the exit was due to a NPF we may already have a GPA.
7663 * If the GPA is present, use it to avoid the GVA to GPA table walk.
7664 * Note, this cannot be used on string operations since string
7665 * operation using rep will only have the initial GPA from the NPF
7666 * occurred.
7667 */
7668 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
7669 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
7670 gpa = ctxt->gpa_val;
7671 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
7672 } else {
7673 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
7674 if (ret < 0)
7675 return X86EMUL_PROPAGATE_FAULT;
7676 }
7677
7678 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
7679 return X86EMUL_CONTINUE;
7680
7681 /*
7682 * Is this MMIO handled locally?
7683 */
7684 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
7685 if (handled == bytes)
7686 return X86EMUL_CONTINUE;
7687
7688 gpa += handled;
7689 bytes -= handled;
7690 val += handled;
7691
7692 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
7693 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
7694 frag->gpa = gpa;
7695 frag->data = val;
7696 frag->len = bytes;
7697 return X86EMUL_CONTINUE;
7698 }
7699
emulator_read_write(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception,const struct read_write_emulator_ops * ops)7700 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
7701 unsigned long addr,
7702 void *val, unsigned int bytes,
7703 struct x86_exception *exception,
7704 const struct read_write_emulator_ops *ops)
7705 {
7706 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7707 gpa_t gpa;
7708 int rc;
7709
7710 if (ops->read_write_prepare &&
7711 ops->read_write_prepare(vcpu, val, bytes))
7712 return X86EMUL_CONTINUE;
7713
7714 vcpu->mmio_nr_fragments = 0;
7715
7716 /* Crossing a page boundary? */
7717 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
7718 int now;
7719
7720 now = -addr & ~PAGE_MASK;
7721 rc = emulator_read_write_onepage(addr, val, now, exception,
7722 vcpu, ops);
7723
7724 if (rc != X86EMUL_CONTINUE)
7725 return rc;
7726 addr += now;
7727 if (ctxt->mode != X86EMUL_MODE_PROT64)
7728 addr = (u32)addr;
7729 val += now;
7730 bytes -= now;
7731 }
7732
7733 rc = emulator_read_write_onepage(addr, val, bytes, exception,
7734 vcpu, ops);
7735 if (rc != X86EMUL_CONTINUE)
7736 return rc;
7737
7738 if (!vcpu->mmio_nr_fragments)
7739 return rc;
7740
7741 gpa = vcpu->mmio_fragments[0].gpa;
7742
7743 vcpu->mmio_needed = 1;
7744 vcpu->mmio_cur_fragment = 0;
7745
7746 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
7747 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
7748 vcpu->run->exit_reason = KVM_EXIT_MMIO;
7749 vcpu->run->mmio.phys_addr = gpa;
7750
7751 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
7752 }
7753
emulator_read_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception)7754 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
7755 unsigned long addr,
7756 void *val,
7757 unsigned int bytes,
7758 struct x86_exception *exception)
7759 {
7760 return emulator_read_write(ctxt, addr, val, bytes,
7761 exception, &read_emultor);
7762 }
7763
emulator_write_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,const void * val,unsigned int bytes,struct x86_exception * exception)7764 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
7765 unsigned long addr,
7766 const void *val,
7767 unsigned int bytes,
7768 struct x86_exception *exception)
7769 {
7770 return emulator_read_write(ctxt, addr, (void *)val, bytes,
7771 exception, &write_emultor);
7772 }
7773
7774 #define emulator_try_cmpxchg_user(t, ptr, old, new) \
7775 (__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t))
7776
emulator_cmpxchg_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,const void * old,const void * new,unsigned int bytes,struct x86_exception * exception)7777 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
7778 unsigned long addr,
7779 const void *old,
7780 const void *new,
7781 unsigned int bytes,
7782 struct x86_exception *exception)
7783 {
7784 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7785 u64 page_line_mask;
7786 unsigned long hva;
7787 gpa_t gpa;
7788 int r;
7789
7790 /* guests cmpxchg8b have to be emulated atomically */
7791 if (bytes > 8 || (bytes & (bytes - 1)))
7792 goto emul_write;
7793
7794 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
7795
7796 if (gpa == INVALID_GPA ||
7797 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7798 goto emul_write;
7799
7800 /*
7801 * Emulate the atomic as a straight write to avoid #AC if SLD is
7802 * enabled in the host and the access splits a cache line.
7803 */
7804 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
7805 page_line_mask = ~(cache_line_size() - 1);
7806 else
7807 page_line_mask = PAGE_MASK;
7808
7809 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
7810 goto emul_write;
7811
7812 hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa));
7813 if (kvm_is_error_hva(hva))
7814 goto emul_write;
7815
7816 hva += offset_in_page(gpa);
7817
7818 switch (bytes) {
7819 case 1:
7820 r = emulator_try_cmpxchg_user(u8, hva, old, new);
7821 break;
7822 case 2:
7823 r = emulator_try_cmpxchg_user(u16, hva, old, new);
7824 break;
7825 case 4:
7826 r = emulator_try_cmpxchg_user(u32, hva, old, new);
7827 break;
7828 case 8:
7829 r = emulator_try_cmpxchg_user(u64, hva, old, new);
7830 break;
7831 default:
7832 BUG();
7833 }
7834
7835 if (r < 0)
7836 return X86EMUL_UNHANDLEABLE;
7837 if (r)
7838 return X86EMUL_CMPXCHG_FAILED;
7839
7840 kvm_page_track_write(vcpu, gpa, new, bytes);
7841
7842 return X86EMUL_CONTINUE;
7843
7844 emul_write:
7845 pr_warn_once("emulating exchange as write\n");
7846
7847 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
7848 }
7849
emulator_pio_in_out(struct kvm_vcpu * vcpu,int size,unsigned short port,void * data,unsigned int count,bool in)7850 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
7851 unsigned short port, void *data,
7852 unsigned int count, bool in)
7853 {
7854 unsigned i;
7855 int r;
7856
7857 WARN_ON_ONCE(vcpu->arch.pio.count);
7858 for (i = 0; i < count; i++) {
7859 if (in)
7860 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data);
7861 else
7862 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data);
7863
7864 if (r) {
7865 if (i == 0)
7866 goto userspace_io;
7867
7868 /*
7869 * Userspace must have unregistered the device while PIO
7870 * was running. Drop writes / read as 0.
7871 */
7872 if (in)
7873 memset(data, 0, size * (count - i));
7874 break;
7875 }
7876
7877 data += size;
7878 }
7879 return 1;
7880
7881 userspace_io:
7882 vcpu->arch.pio.port = port;
7883 vcpu->arch.pio.in = in;
7884 vcpu->arch.pio.count = count;
7885 vcpu->arch.pio.size = size;
7886
7887 if (in)
7888 memset(vcpu->arch.pio_data, 0, size * count);
7889 else
7890 memcpy(vcpu->arch.pio_data, data, size * count);
7891
7892 vcpu->run->exit_reason = KVM_EXIT_IO;
7893 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
7894 vcpu->run->io.size = size;
7895 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
7896 vcpu->run->io.count = count;
7897 vcpu->run->io.port = port;
7898 return 0;
7899 }
7900
emulator_pio_in(struct kvm_vcpu * vcpu,int size,unsigned short port,void * val,unsigned int count)7901 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
7902 unsigned short port, void *val, unsigned int count)
7903 {
7904 int r = emulator_pio_in_out(vcpu, size, port, val, count, true);
7905 if (r)
7906 trace_kvm_pio(KVM_PIO_IN, port, size, count, val);
7907
7908 return r;
7909 }
7910
complete_emulator_pio_in(struct kvm_vcpu * vcpu,void * val)7911 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
7912 {
7913 int size = vcpu->arch.pio.size;
7914 unsigned int count = vcpu->arch.pio.count;
7915 memcpy(val, vcpu->arch.pio_data, size * count);
7916 trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
7917 vcpu->arch.pio.count = 0;
7918 }
7919
emulator_pio_in_emulated(struct x86_emulate_ctxt * ctxt,int size,unsigned short port,void * val,unsigned int count)7920 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
7921 int size, unsigned short port, void *val,
7922 unsigned int count)
7923 {
7924 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7925 if (vcpu->arch.pio.count) {
7926 /*
7927 * Complete a previous iteration that required userspace I/O.
7928 * Note, @count isn't guaranteed to match pio.count as userspace
7929 * can modify ECX before rerunning the vCPU. Ignore any such
7930 * shenanigans as KVM doesn't support modifying the rep count,
7931 * and the emulator ensures @count doesn't overflow the buffer.
7932 */
7933 complete_emulator_pio_in(vcpu, val);
7934 return 1;
7935 }
7936
7937 return emulator_pio_in(vcpu, size, port, val, count);
7938 }
7939
emulator_pio_out(struct kvm_vcpu * vcpu,int size,unsigned short port,const void * val,unsigned int count)7940 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
7941 unsigned short port, const void *val,
7942 unsigned int count)
7943 {
7944 trace_kvm_pio(KVM_PIO_OUT, port, size, count, val);
7945 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
7946 }
7947
emulator_pio_out_emulated(struct x86_emulate_ctxt * ctxt,int size,unsigned short port,const void * val,unsigned int count)7948 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
7949 int size, unsigned short port,
7950 const void *val, unsigned int count)
7951 {
7952 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
7953 }
7954
get_segment_base(struct kvm_vcpu * vcpu,int seg)7955 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
7956 {
7957 return static_call(kvm_x86_get_segment_base)(vcpu, seg);
7958 }
7959
emulator_invlpg(struct x86_emulate_ctxt * ctxt,ulong address)7960 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
7961 {
7962 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
7963 }
7964
kvm_emulate_wbinvd_noskip(struct kvm_vcpu * vcpu)7965 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
7966 {
7967 if (!need_emulate_wbinvd(vcpu))
7968 return X86EMUL_CONTINUE;
7969
7970 if (static_call(kvm_x86_has_wbinvd_exit)()) {
7971 int cpu = get_cpu();
7972
7973 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
7974 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
7975 wbinvd_ipi, NULL, 1);
7976 put_cpu();
7977 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
7978 } else
7979 wbinvd();
7980 return X86EMUL_CONTINUE;
7981 }
7982
kvm_emulate_wbinvd(struct kvm_vcpu * vcpu)7983 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
7984 {
7985 kvm_emulate_wbinvd_noskip(vcpu);
7986 return kvm_skip_emulated_instruction(vcpu);
7987 }
7988 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
7989
7990
7991
emulator_wbinvd(struct x86_emulate_ctxt * ctxt)7992 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
7993 {
7994 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
7995 }
7996
emulator_get_dr(struct x86_emulate_ctxt * ctxt,int dr,unsigned long * dest)7997 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
7998 unsigned long *dest)
7999 {
8000 kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
8001 }
8002
emulator_set_dr(struct x86_emulate_ctxt * ctxt,int dr,unsigned long value)8003 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
8004 unsigned long value)
8005 {
8006
8007 return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
8008 }
8009
mk_cr_64(u64 curr_cr,u32 new_val)8010 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
8011 {
8012 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
8013 }
8014
emulator_get_cr(struct x86_emulate_ctxt * ctxt,int cr)8015 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
8016 {
8017 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8018 unsigned long value;
8019
8020 switch (cr) {
8021 case 0:
8022 value = kvm_read_cr0(vcpu);
8023 break;
8024 case 2:
8025 value = vcpu->arch.cr2;
8026 break;
8027 case 3:
8028 value = kvm_read_cr3(vcpu);
8029 break;
8030 case 4:
8031 value = kvm_read_cr4(vcpu);
8032 break;
8033 case 8:
8034 value = kvm_get_cr8(vcpu);
8035 break;
8036 default:
8037 kvm_err("%s: unexpected cr %u\n", __func__, cr);
8038 return 0;
8039 }
8040
8041 return value;
8042 }
8043
emulator_set_cr(struct x86_emulate_ctxt * ctxt,int cr,ulong val)8044 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
8045 {
8046 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8047 int res = 0;
8048
8049 switch (cr) {
8050 case 0:
8051 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
8052 break;
8053 case 2:
8054 vcpu->arch.cr2 = val;
8055 break;
8056 case 3:
8057 res = kvm_set_cr3(vcpu, val);
8058 break;
8059 case 4:
8060 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
8061 break;
8062 case 8:
8063 res = kvm_set_cr8(vcpu, val);
8064 break;
8065 default:
8066 kvm_err("%s: unexpected cr %u\n", __func__, cr);
8067 res = -1;
8068 }
8069
8070 return res;
8071 }
8072
emulator_get_cpl(struct x86_emulate_ctxt * ctxt)8073 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
8074 {
8075 return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
8076 }
8077
emulator_get_gdt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)8078 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8079 {
8080 static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
8081 }
8082
emulator_get_idt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)8083 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8084 {
8085 static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
8086 }
8087
emulator_set_gdt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)8088 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8089 {
8090 static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
8091 }
8092
emulator_set_idt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)8093 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8094 {
8095 static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
8096 }
8097
emulator_get_cached_segment_base(struct x86_emulate_ctxt * ctxt,int seg)8098 static unsigned long emulator_get_cached_segment_base(
8099 struct x86_emulate_ctxt *ctxt, int seg)
8100 {
8101 return get_segment_base(emul_to_vcpu(ctxt), seg);
8102 }
8103
emulator_get_segment(struct x86_emulate_ctxt * ctxt,u16 * selector,struct desc_struct * desc,u32 * base3,int seg)8104 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
8105 struct desc_struct *desc, u32 *base3,
8106 int seg)
8107 {
8108 struct kvm_segment var;
8109
8110 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
8111 *selector = var.selector;
8112
8113 if (var.unusable) {
8114 memset(desc, 0, sizeof(*desc));
8115 if (base3)
8116 *base3 = 0;
8117 return false;
8118 }
8119
8120 if (var.g)
8121 var.limit >>= 12;
8122 set_desc_limit(desc, var.limit);
8123 set_desc_base(desc, (unsigned long)var.base);
8124 #ifdef CONFIG_X86_64
8125 if (base3)
8126 *base3 = var.base >> 32;
8127 #endif
8128 desc->type = var.type;
8129 desc->s = var.s;
8130 desc->dpl = var.dpl;
8131 desc->p = var.present;
8132 desc->avl = var.avl;
8133 desc->l = var.l;
8134 desc->d = var.db;
8135 desc->g = var.g;
8136
8137 return true;
8138 }
8139
emulator_set_segment(struct x86_emulate_ctxt * ctxt,u16 selector,struct desc_struct * desc,u32 base3,int seg)8140 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
8141 struct desc_struct *desc, u32 base3,
8142 int seg)
8143 {
8144 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8145 struct kvm_segment var;
8146
8147 var.selector = selector;
8148 var.base = get_desc_base(desc);
8149 #ifdef CONFIG_X86_64
8150 var.base |= ((u64)base3) << 32;
8151 #endif
8152 var.limit = get_desc_limit(desc);
8153 if (desc->g)
8154 var.limit = (var.limit << 12) | 0xfff;
8155 var.type = desc->type;
8156 var.dpl = desc->dpl;
8157 var.db = desc->d;
8158 var.s = desc->s;
8159 var.l = desc->l;
8160 var.g = desc->g;
8161 var.avl = desc->avl;
8162 var.present = desc->p;
8163 var.unusable = !var.present;
8164 var.padding = 0;
8165
8166 kvm_set_segment(vcpu, &var, seg);
8167 return;
8168 }
8169
emulator_get_msr_with_filter(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 * pdata)8170 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8171 u32 msr_index, u64 *pdata)
8172 {
8173 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8174 int r;
8175
8176 r = kvm_get_msr_with_filter(vcpu, msr_index, pdata);
8177 if (r < 0)
8178 return X86EMUL_UNHANDLEABLE;
8179
8180 if (r) {
8181 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0,
8182 complete_emulated_rdmsr, r))
8183 return X86EMUL_IO_NEEDED;
8184
8185 trace_kvm_msr_read_ex(msr_index);
8186 return X86EMUL_PROPAGATE_FAULT;
8187 }
8188
8189 trace_kvm_msr_read(msr_index, *pdata);
8190 return X86EMUL_CONTINUE;
8191 }
8192
emulator_set_msr_with_filter(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 data)8193 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8194 u32 msr_index, u64 data)
8195 {
8196 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8197 int r;
8198
8199 r = kvm_set_msr_with_filter(vcpu, msr_index, data);
8200 if (r < 0)
8201 return X86EMUL_UNHANDLEABLE;
8202
8203 if (r) {
8204 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data,
8205 complete_emulated_msr_access, r))
8206 return X86EMUL_IO_NEEDED;
8207
8208 trace_kvm_msr_write_ex(msr_index, data);
8209 return X86EMUL_PROPAGATE_FAULT;
8210 }
8211
8212 trace_kvm_msr_write(msr_index, data);
8213 return X86EMUL_CONTINUE;
8214 }
8215
emulator_get_msr(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 * pdata)8216 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
8217 u32 msr_index, u64 *pdata)
8218 {
8219 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
8220 }
8221
emulator_check_pmc(struct x86_emulate_ctxt * ctxt,u32 pmc)8222 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
8223 u32 pmc)
8224 {
8225 if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc))
8226 return 0;
8227 return -EINVAL;
8228 }
8229
emulator_read_pmc(struct x86_emulate_ctxt * ctxt,u32 pmc,u64 * pdata)8230 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
8231 u32 pmc, u64 *pdata)
8232 {
8233 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
8234 }
8235
emulator_halt(struct x86_emulate_ctxt * ctxt)8236 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
8237 {
8238 emul_to_vcpu(ctxt)->arch.halt_request = 1;
8239 }
8240
emulator_intercept(struct x86_emulate_ctxt * ctxt,struct x86_instruction_info * info,enum x86_intercept_stage stage)8241 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
8242 struct x86_instruction_info *info,
8243 enum x86_intercept_stage stage)
8244 {
8245 return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
8246 &ctxt->exception);
8247 }
8248
emulator_get_cpuid(struct x86_emulate_ctxt * ctxt,u32 * eax,u32 * ebx,u32 * ecx,u32 * edx,bool exact_only)8249 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
8250 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
8251 bool exact_only)
8252 {
8253 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
8254 }
8255
emulator_guest_has_movbe(struct x86_emulate_ctxt * ctxt)8256 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
8257 {
8258 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
8259 }
8260
emulator_guest_has_fxsr(struct x86_emulate_ctxt * ctxt)8261 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
8262 {
8263 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
8264 }
8265
emulator_guest_has_rdpid(struct x86_emulate_ctxt * ctxt)8266 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt)
8267 {
8268 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID);
8269 }
8270
emulator_read_gpr(struct x86_emulate_ctxt * ctxt,unsigned reg)8271 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
8272 {
8273 return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
8274 }
8275
emulator_write_gpr(struct x86_emulate_ctxt * ctxt,unsigned reg,ulong val)8276 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
8277 {
8278 kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
8279 }
8280
emulator_set_nmi_mask(struct x86_emulate_ctxt * ctxt,bool masked)8281 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
8282 {
8283 static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
8284 }
8285
emulator_is_smm(struct x86_emulate_ctxt * ctxt)8286 static bool emulator_is_smm(struct x86_emulate_ctxt *ctxt)
8287 {
8288 return is_smm(emul_to_vcpu(ctxt));
8289 }
8290
emulator_is_guest_mode(struct x86_emulate_ctxt * ctxt)8291 static bool emulator_is_guest_mode(struct x86_emulate_ctxt *ctxt)
8292 {
8293 return is_guest_mode(emul_to_vcpu(ctxt));
8294 }
8295
8296 #ifndef CONFIG_KVM_SMM
emulator_leave_smm(struct x86_emulate_ctxt * ctxt)8297 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt)
8298 {
8299 WARN_ON_ONCE(1);
8300 return X86EMUL_UNHANDLEABLE;
8301 }
8302 #endif
8303
emulator_triple_fault(struct x86_emulate_ctxt * ctxt)8304 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
8305 {
8306 kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
8307 }
8308
emulator_set_xcr(struct x86_emulate_ctxt * ctxt,u32 index,u64 xcr)8309 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
8310 {
8311 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
8312 }
8313
emulator_vm_bugged(struct x86_emulate_ctxt * ctxt)8314 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt)
8315 {
8316 struct kvm *kvm = emul_to_vcpu(ctxt)->kvm;
8317
8318 if (!kvm->vm_bugged)
8319 kvm_vm_bugged(kvm);
8320 }
8321
8322 static const struct x86_emulate_ops emulate_ops = {
8323 .vm_bugged = emulator_vm_bugged,
8324 .read_gpr = emulator_read_gpr,
8325 .write_gpr = emulator_write_gpr,
8326 .read_std = emulator_read_std,
8327 .write_std = emulator_write_std,
8328 .fetch = kvm_fetch_guest_virt,
8329 .read_emulated = emulator_read_emulated,
8330 .write_emulated = emulator_write_emulated,
8331 .cmpxchg_emulated = emulator_cmpxchg_emulated,
8332 .invlpg = emulator_invlpg,
8333 .pio_in_emulated = emulator_pio_in_emulated,
8334 .pio_out_emulated = emulator_pio_out_emulated,
8335 .get_segment = emulator_get_segment,
8336 .set_segment = emulator_set_segment,
8337 .get_cached_segment_base = emulator_get_cached_segment_base,
8338 .get_gdt = emulator_get_gdt,
8339 .get_idt = emulator_get_idt,
8340 .set_gdt = emulator_set_gdt,
8341 .set_idt = emulator_set_idt,
8342 .get_cr = emulator_get_cr,
8343 .set_cr = emulator_set_cr,
8344 .cpl = emulator_get_cpl,
8345 .get_dr = emulator_get_dr,
8346 .set_dr = emulator_set_dr,
8347 .set_msr_with_filter = emulator_set_msr_with_filter,
8348 .get_msr_with_filter = emulator_get_msr_with_filter,
8349 .get_msr = emulator_get_msr,
8350 .check_pmc = emulator_check_pmc,
8351 .read_pmc = emulator_read_pmc,
8352 .halt = emulator_halt,
8353 .wbinvd = emulator_wbinvd,
8354 .fix_hypercall = emulator_fix_hypercall,
8355 .intercept = emulator_intercept,
8356 .get_cpuid = emulator_get_cpuid,
8357 .guest_has_movbe = emulator_guest_has_movbe,
8358 .guest_has_fxsr = emulator_guest_has_fxsr,
8359 .guest_has_rdpid = emulator_guest_has_rdpid,
8360 .set_nmi_mask = emulator_set_nmi_mask,
8361 .is_smm = emulator_is_smm,
8362 .is_guest_mode = emulator_is_guest_mode,
8363 .leave_smm = emulator_leave_smm,
8364 .triple_fault = emulator_triple_fault,
8365 .set_xcr = emulator_set_xcr,
8366 };
8367
toggle_interruptibility(struct kvm_vcpu * vcpu,u32 mask)8368 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
8369 {
8370 u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
8371 /*
8372 * an sti; sti; sequence only disable interrupts for the first
8373 * instruction. So, if the last instruction, be it emulated or
8374 * not, left the system with the INT_STI flag enabled, it
8375 * means that the last instruction is an sti. We should not
8376 * leave the flag on in this case. The same goes for mov ss
8377 */
8378 if (int_shadow & mask)
8379 mask = 0;
8380 if (unlikely(int_shadow || mask)) {
8381 static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
8382 if (!mask)
8383 kvm_make_request(KVM_REQ_EVENT, vcpu);
8384 }
8385 }
8386
inject_emulated_exception(struct kvm_vcpu * vcpu)8387 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
8388 {
8389 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8390
8391 if (ctxt->exception.vector == PF_VECTOR)
8392 kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
8393 else if (ctxt->exception.error_code_valid)
8394 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
8395 ctxt->exception.error_code);
8396 else
8397 kvm_queue_exception(vcpu, ctxt->exception.vector);
8398 }
8399
alloc_emulate_ctxt(struct kvm_vcpu * vcpu)8400 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
8401 {
8402 struct x86_emulate_ctxt *ctxt;
8403
8404 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
8405 if (!ctxt) {
8406 pr_err("failed to allocate vcpu's emulator\n");
8407 return NULL;
8408 }
8409
8410 ctxt->vcpu = vcpu;
8411 ctxt->ops = &emulate_ops;
8412 vcpu->arch.emulate_ctxt = ctxt;
8413
8414 return ctxt;
8415 }
8416
init_emulate_ctxt(struct kvm_vcpu * vcpu)8417 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
8418 {
8419 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8420 int cs_db, cs_l;
8421
8422 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
8423
8424 ctxt->gpa_available = false;
8425 ctxt->eflags = kvm_get_rflags(vcpu);
8426 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
8427
8428 ctxt->eip = kvm_rip_read(vcpu);
8429 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
8430 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
8431 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
8432 cs_db ? X86EMUL_MODE_PROT32 :
8433 X86EMUL_MODE_PROT16;
8434 ctxt->interruptibility = 0;
8435 ctxt->have_exception = false;
8436 ctxt->exception.vector = -1;
8437 ctxt->perm_ok = false;
8438
8439 init_decode_cache(ctxt);
8440 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8441 }
8442
kvm_inject_realmode_interrupt(struct kvm_vcpu * vcpu,int irq,int inc_eip)8443 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
8444 {
8445 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8446 int ret;
8447
8448 init_emulate_ctxt(vcpu);
8449
8450 ctxt->op_bytes = 2;
8451 ctxt->ad_bytes = 2;
8452 ctxt->_eip = ctxt->eip + inc_eip;
8453 ret = emulate_int_real(ctxt, irq);
8454
8455 if (ret != X86EMUL_CONTINUE) {
8456 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8457 } else {
8458 ctxt->eip = ctxt->_eip;
8459 kvm_rip_write(vcpu, ctxt->eip);
8460 kvm_set_rflags(vcpu, ctxt->eflags);
8461 }
8462 }
8463 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
8464
prepare_emulation_failure_exit(struct kvm_vcpu * vcpu,u64 * data,u8 ndata,u8 * insn_bytes,u8 insn_size)8465 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8466 u8 ndata, u8 *insn_bytes, u8 insn_size)
8467 {
8468 struct kvm_run *run = vcpu->run;
8469 u64 info[5];
8470 u8 info_start;
8471
8472 /*
8473 * Zero the whole array used to retrieve the exit info, as casting to
8474 * u32 for select entries will leave some chunks uninitialized.
8475 */
8476 memset(&info, 0, sizeof(info));
8477
8478 static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1],
8479 &info[2], (u32 *)&info[3],
8480 (u32 *)&info[4]);
8481
8482 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8483 run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
8484
8485 /*
8486 * There's currently space for 13 entries, but 5 are used for the exit
8487 * reason and info. Restrict to 4 to reduce the maintenance burden
8488 * when expanding kvm_run.emulation_failure in the future.
8489 */
8490 if (WARN_ON_ONCE(ndata > 4))
8491 ndata = 4;
8492
8493 /* Always include the flags as a 'data' entry. */
8494 info_start = 1;
8495 run->emulation_failure.flags = 0;
8496
8497 if (insn_size) {
8498 BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) +
8499 sizeof(run->emulation_failure.insn_bytes) != 16));
8500 info_start += 2;
8501 run->emulation_failure.flags |=
8502 KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
8503 run->emulation_failure.insn_size = insn_size;
8504 memset(run->emulation_failure.insn_bytes, 0x90,
8505 sizeof(run->emulation_failure.insn_bytes));
8506 memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size);
8507 }
8508
8509 memcpy(&run->internal.data[info_start], info, sizeof(info));
8510 memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data,
8511 ndata * sizeof(data[0]));
8512
8513 run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata;
8514 }
8515
prepare_emulation_ctxt_failure_exit(struct kvm_vcpu * vcpu)8516 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu)
8517 {
8518 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8519
8520 prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data,
8521 ctxt->fetch.end - ctxt->fetch.data);
8522 }
8523
__kvm_prepare_emulation_failure_exit(struct kvm_vcpu * vcpu,u64 * data,u8 ndata)8524 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8525 u8 ndata)
8526 {
8527 prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0);
8528 }
8529 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit);
8530
kvm_prepare_emulation_failure_exit(struct kvm_vcpu * vcpu)8531 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
8532 {
8533 __kvm_prepare_emulation_failure_exit(vcpu, NULL, 0);
8534 }
8535 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit);
8536
handle_emulation_failure(struct kvm_vcpu * vcpu,int emulation_type)8537 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
8538 {
8539 struct kvm *kvm = vcpu->kvm;
8540
8541 ++vcpu->stat.insn_emulation_fail;
8542 trace_kvm_emulate_insn_failed(vcpu);
8543
8544 if (emulation_type & EMULTYPE_VMWARE_GP) {
8545 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8546 return 1;
8547 }
8548
8549 if (kvm->arch.exit_on_emulation_error ||
8550 (emulation_type & EMULTYPE_SKIP)) {
8551 prepare_emulation_ctxt_failure_exit(vcpu);
8552 return 0;
8553 }
8554
8555 kvm_queue_exception(vcpu, UD_VECTOR);
8556
8557 if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
8558 prepare_emulation_ctxt_failure_exit(vcpu);
8559 return 0;
8560 }
8561
8562 return 1;
8563 }
8564
reexecute_instruction(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,int emulation_type)8565 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8566 int emulation_type)
8567 {
8568 gpa_t gpa = cr2_or_gpa;
8569 kvm_pfn_t pfn;
8570
8571 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8572 return false;
8573
8574 if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8575 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8576 return false;
8577
8578 if (!vcpu->arch.mmu->root_role.direct) {
8579 /*
8580 * Write permission should be allowed since only
8581 * write access need to be emulated.
8582 */
8583 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8584
8585 /*
8586 * If the mapping is invalid in guest, let cpu retry
8587 * it to generate fault.
8588 */
8589 if (gpa == INVALID_GPA)
8590 return true;
8591 }
8592
8593 /*
8594 * Do not retry the unhandleable instruction if it faults on the
8595 * readonly host memory, otherwise it will goto a infinite loop:
8596 * retry instruction -> write #PF -> emulation fail -> retry
8597 * instruction -> ...
8598 */
8599 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
8600
8601 /*
8602 * If the instruction failed on the error pfn, it can not be fixed,
8603 * report the error to userspace.
8604 */
8605 if (is_error_noslot_pfn(pfn))
8606 return false;
8607
8608 kvm_release_pfn_clean(pfn);
8609
8610 /* The instructions are well-emulated on direct mmu. */
8611 if (vcpu->arch.mmu->root_role.direct) {
8612 unsigned int indirect_shadow_pages;
8613
8614 write_lock(&vcpu->kvm->mmu_lock);
8615 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
8616 write_unlock(&vcpu->kvm->mmu_lock);
8617
8618 if (indirect_shadow_pages)
8619 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8620
8621 return true;
8622 }
8623
8624 /*
8625 * if emulation was due to access to shadowed page table
8626 * and it failed try to unshadow page and re-enter the
8627 * guest to let CPU execute the instruction.
8628 */
8629 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8630
8631 /*
8632 * If the access faults on its page table, it can not
8633 * be fixed by unprotecting shadow page and it should
8634 * be reported to userspace.
8635 */
8636 return !(emulation_type & EMULTYPE_WRITE_PF_TO_SP);
8637 }
8638
retry_instruction(struct x86_emulate_ctxt * ctxt,gpa_t cr2_or_gpa,int emulation_type)8639 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
8640 gpa_t cr2_or_gpa, int emulation_type)
8641 {
8642 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8643 unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
8644
8645 last_retry_eip = vcpu->arch.last_retry_eip;
8646 last_retry_addr = vcpu->arch.last_retry_addr;
8647
8648 /*
8649 * If the emulation is caused by #PF and it is non-page_table
8650 * writing instruction, it means the VM-EXIT is caused by shadow
8651 * page protected, we can zap the shadow page and retry this
8652 * instruction directly.
8653 *
8654 * Note: if the guest uses a non-page-table modifying instruction
8655 * on the PDE that points to the instruction, then we will unmap
8656 * the instruction and go to an infinite loop. So, we cache the
8657 * last retried eip and the last fault address, if we meet the eip
8658 * and the address again, we can break out of the potential infinite
8659 * loop.
8660 */
8661 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
8662
8663 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8664 return false;
8665
8666 if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8667 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8668 return false;
8669
8670 if (x86_page_table_writing_insn(ctxt))
8671 return false;
8672
8673 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
8674 return false;
8675
8676 vcpu->arch.last_retry_eip = ctxt->eip;
8677 vcpu->arch.last_retry_addr = cr2_or_gpa;
8678
8679 if (!vcpu->arch.mmu->root_role.direct)
8680 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8681
8682 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8683
8684 return true;
8685 }
8686
8687 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
8688 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
8689
kvm_vcpu_check_hw_bp(unsigned long addr,u32 type,u32 dr7,unsigned long * db)8690 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
8691 unsigned long *db)
8692 {
8693 u32 dr6 = 0;
8694 int i;
8695 u32 enable, rwlen;
8696
8697 enable = dr7;
8698 rwlen = dr7 >> 16;
8699 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
8700 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
8701 dr6 |= (1 << i);
8702 return dr6;
8703 }
8704
kvm_vcpu_do_singlestep(struct kvm_vcpu * vcpu)8705 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
8706 {
8707 struct kvm_run *kvm_run = vcpu->run;
8708
8709 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
8710 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
8711 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
8712 kvm_run->debug.arch.exception = DB_VECTOR;
8713 kvm_run->exit_reason = KVM_EXIT_DEBUG;
8714 return 0;
8715 }
8716 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
8717 return 1;
8718 }
8719
kvm_skip_emulated_instruction(struct kvm_vcpu * vcpu)8720 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
8721 {
8722 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8723 int r;
8724
8725 r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
8726 if (unlikely(!r))
8727 return 0;
8728
8729 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8730
8731 /*
8732 * rflags is the old, "raw" value of the flags. The new value has
8733 * not been saved yet.
8734 *
8735 * This is correct even for TF set by the guest, because "the
8736 * processor will not generate this exception after the instruction
8737 * that sets the TF flag".
8738 */
8739 if (unlikely(rflags & X86_EFLAGS_TF))
8740 r = kvm_vcpu_do_singlestep(vcpu);
8741 return r;
8742 }
8743 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
8744
kvm_is_code_breakpoint_inhibited(struct kvm_vcpu * vcpu)8745 static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu)
8746 {
8747 u32 shadow;
8748
8749 if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF)
8750 return true;
8751
8752 /*
8753 * Intel CPUs inhibit code #DBs when MOV/POP SS blocking is active,
8754 * but AMD CPUs do not. MOV/POP SS blocking is rare, check that first
8755 * to avoid the relatively expensive CPUID lookup.
8756 */
8757 shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
8758 return (shadow & KVM_X86_SHADOW_INT_MOV_SS) &&
8759 guest_cpuid_is_intel(vcpu);
8760 }
8761
kvm_vcpu_check_code_breakpoint(struct kvm_vcpu * vcpu,int emulation_type,int * r)8762 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu,
8763 int emulation_type, int *r)
8764 {
8765 WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE);
8766
8767 /*
8768 * Do not check for code breakpoints if hardware has already done the
8769 * checks, as inferred from the emulation type. On NO_DECODE and SKIP,
8770 * the instruction has passed all exception checks, and all intercepted
8771 * exceptions that trigger emulation have lower priority than code
8772 * breakpoints, i.e. the fact that the intercepted exception occurred
8773 * means any code breakpoints have already been serviced.
8774 *
8775 * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as
8776 * hardware has checked the RIP of the magic prefix, but not the RIP of
8777 * the instruction being emulated. The intent of forced emulation is
8778 * to behave as if KVM intercepted the instruction without an exception
8779 * and without a prefix.
8780 */
8781 if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
8782 EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF))
8783 return false;
8784
8785 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
8786 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
8787 struct kvm_run *kvm_run = vcpu->run;
8788 unsigned long eip = kvm_get_linear_rip(vcpu);
8789 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8790 vcpu->arch.guest_debug_dr7,
8791 vcpu->arch.eff_db);
8792
8793 if (dr6 != 0) {
8794 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
8795 kvm_run->debug.arch.pc = eip;
8796 kvm_run->debug.arch.exception = DB_VECTOR;
8797 kvm_run->exit_reason = KVM_EXIT_DEBUG;
8798 *r = 0;
8799 return true;
8800 }
8801 }
8802
8803 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
8804 !kvm_is_code_breakpoint_inhibited(vcpu)) {
8805 unsigned long eip = kvm_get_linear_rip(vcpu);
8806 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8807 vcpu->arch.dr7,
8808 vcpu->arch.db);
8809
8810 if (dr6 != 0) {
8811 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
8812 *r = 1;
8813 return true;
8814 }
8815 }
8816
8817 return false;
8818 }
8819
is_vmware_backdoor_opcode(struct x86_emulate_ctxt * ctxt)8820 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
8821 {
8822 switch (ctxt->opcode_len) {
8823 case 1:
8824 switch (ctxt->b) {
8825 case 0xe4: /* IN */
8826 case 0xe5:
8827 case 0xec:
8828 case 0xed:
8829 case 0xe6: /* OUT */
8830 case 0xe7:
8831 case 0xee:
8832 case 0xef:
8833 case 0x6c: /* INS */
8834 case 0x6d:
8835 case 0x6e: /* OUTS */
8836 case 0x6f:
8837 return true;
8838 }
8839 break;
8840 case 2:
8841 switch (ctxt->b) {
8842 case 0x33: /* RDPMC */
8843 return true;
8844 }
8845 break;
8846 }
8847
8848 return false;
8849 }
8850
8851 /*
8852 * Decode an instruction for emulation. The caller is responsible for handling
8853 * code breakpoints. Note, manually detecting code breakpoints is unnecessary
8854 * (and wrong) when emulating on an intercepted fault-like exception[*], as
8855 * code breakpoints have higher priority and thus have already been done by
8856 * hardware.
8857 *
8858 * [*] Except #MC, which is higher priority, but KVM should never emulate in
8859 * response to a machine check.
8860 */
x86_decode_emulated_instruction(struct kvm_vcpu * vcpu,int emulation_type,void * insn,int insn_len)8861 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
8862 void *insn, int insn_len)
8863 {
8864 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8865 int r;
8866
8867 init_emulate_ctxt(vcpu);
8868
8869 r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
8870
8871 trace_kvm_emulate_insn_start(vcpu);
8872 ++vcpu->stat.insn_emulation;
8873
8874 return r;
8875 }
8876 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
8877
x86_emulate_instruction(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,int emulation_type,void * insn,int insn_len)8878 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8879 int emulation_type, void *insn, int insn_len)
8880 {
8881 int r;
8882 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8883 bool writeback = true;
8884
8885 if (unlikely(!kvm_can_emulate_insn(vcpu, emulation_type, insn, insn_len)))
8886 return 1;
8887
8888 vcpu->arch.l1tf_flush_l1d = true;
8889
8890 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
8891 kvm_clear_exception_queue(vcpu);
8892
8893 /*
8894 * Return immediately if RIP hits a code breakpoint, such #DBs
8895 * are fault-like and are higher priority than any faults on
8896 * the code fetch itself.
8897 */
8898 if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r))
8899 return r;
8900
8901 r = x86_decode_emulated_instruction(vcpu, emulation_type,
8902 insn, insn_len);
8903 if (r != EMULATION_OK) {
8904 if ((emulation_type & EMULTYPE_TRAP_UD) ||
8905 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
8906 kvm_queue_exception(vcpu, UD_VECTOR);
8907 return 1;
8908 }
8909 if (reexecute_instruction(vcpu, cr2_or_gpa,
8910 emulation_type))
8911 return 1;
8912
8913 if (ctxt->have_exception &&
8914 !(emulation_type & EMULTYPE_SKIP)) {
8915 /*
8916 * #UD should result in just EMULATION_FAILED, and trap-like
8917 * exception should not be encountered during decode.
8918 */
8919 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
8920 exception_type(ctxt->exception.vector) == EXCPT_TRAP);
8921 inject_emulated_exception(vcpu);
8922 return 1;
8923 }
8924 return handle_emulation_failure(vcpu, emulation_type);
8925 }
8926 }
8927
8928 if ((emulation_type & EMULTYPE_VMWARE_GP) &&
8929 !is_vmware_backdoor_opcode(ctxt)) {
8930 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8931 return 1;
8932 }
8933
8934 /*
8935 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for
8936 * use *only* by vendor callbacks for kvm_skip_emulated_instruction().
8937 * The caller is responsible for updating interruptibility state and
8938 * injecting single-step #DBs.
8939 */
8940 if (emulation_type & EMULTYPE_SKIP) {
8941 if (ctxt->mode != X86EMUL_MODE_PROT64)
8942 ctxt->eip = (u32)ctxt->_eip;
8943 else
8944 ctxt->eip = ctxt->_eip;
8945
8946 if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) {
8947 r = 1;
8948 goto writeback;
8949 }
8950
8951 kvm_rip_write(vcpu, ctxt->eip);
8952 if (ctxt->eflags & X86_EFLAGS_RF)
8953 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
8954 return 1;
8955 }
8956
8957 if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
8958 return 1;
8959
8960 /* this is needed for vmware backdoor interface to work since it
8961 changes registers values during IO operation */
8962 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
8963 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8964 emulator_invalidate_register_cache(ctxt);
8965 }
8966
8967 restart:
8968 if (emulation_type & EMULTYPE_PF) {
8969 /* Save the faulting GPA (cr2) in the address field */
8970 ctxt->exception.address = cr2_or_gpa;
8971
8972 /* With shadow page tables, cr2 contains a GVA or nGPA. */
8973 if (vcpu->arch.mmu->root_role.direct) {
8974 ctxt->gpa_available = true;
8975 ctxt->gpa_val = cr2_or_gpa;
8976 }
8977 } else {
8978 /* Sanitize the address out of an abundance of paranoia. */
8979 ctxt->exception.address = 0;
8980 }
8981
8982 r = x86_emulate_insn(ctxt);
8983
8984 if (r == EMULATION_INTERCEPTED)
8985 return 1;
8986
8987 if (r == EMULATION_FAILED) {
8988 if (reexecute_instruction(vcpu, cr2_or_gpa, emulation_type))
8989 return 1;
8990
8991 return handle_emulation_failure(vcpu, emulation_type);
8992 }
8993
8994 if (ctxt->have_exception) {
8995 WARN_ON_ONCE(vcpu->mmio_needed && !vcpu->mmio_is_write);
8996 vcpu->mmio_needed = false;
8997 r = 1;
8998 inject_emulated_exception(vcpu);
8999 } else if (vcpu->arch.pio.count) {
9000 if (!vcpu->arch.pio.in) {
9001 /* FIXME: return into emulator if single-stepping. */
9002 vcpu->arch.pio.count = 0;
9003 } else {
9004 writeback = false;
9005 vcpu->arch.complete_userspace_io = complete_emulated_pio;
9006 }
9007 r = 0;
9008 } else if (vcpu->mmio_needed) {
9009 ++vcpu->stat.mmio_exits;
9010
9011 if (!vcpu->mmio_is_write)
9012 writeback = false;
9013 r = 0;
9014 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
9015 } else if (vcpu->arch.complete_userspace_io) {
9016 writeback = false;
9017 r = 0;
9018 } else if (r == EMULATION_RESTART)
9019 goto restart;
9020 else
9021 r = 1;
9022
9023 writeback:
9024 if (writeback) {
9025 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
9026 toggle_interruptibility(vcpu, ctxt->interruptibility);
9027 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9028
9029 /*
9030 * Note, EXCPT_DB is assumed to be fault-like as the emulator
9031 * only supports code breakpoints and general detect #DB, both
9032 * of which are fault-like.
9033 */
9034 if (!ctxt->have_exception ||
9035 exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
9036 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
9037 if (ctxt->is_branch)
9038 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
9039 kvm_rip_write(vcpu, ctxt->eip);
9040 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
9041 r = kvm_vcpu_do_singlestep(vcpu);
9042 static_call_cond(kvm_x86_update_emulated_instruction)(vcpu);
9043 __kvm_set_rflags(vcpu, ctxt->eflags);
9044 }
9045
9046 /*
9047 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
9048 * do nothing, and it will be requested again as soon as
9049 * the shadow expires. But we still need to check here,
9050 * because POPF has no interrupt shadow.
9051 */
9052 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
9053 kvm_make_request(KVM_REQ_EVENT, vcpu);
9054 } else
9055 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
9056
9057 return r;
9058 }
9059
kvm_emulate_instruction(struct kvm_vcpu * vcpu,int emulation_type)9060 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
9061 {
9062 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
9063 }
9064 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
9065
kvm_emulate_instruction_from_buffer(struct kvm_vcpu * vcpu,void * insn,int insn_len)9066 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
9067 void *insn, int insn_len)
9068 {
9069 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
9070 }
9071 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
9072
complete_fast_pio_out_port_0x7e(struct kvm_vcpu * vcpu)9073 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
9074 {
9075 vcpu->arch.pio.count = 0;
9076 return 1;
9077 }
9078
complete_fast_pio_out(struct kvm_vcpu * vcpu)9079 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
9080 {
9081 vcpu->arch.pio.count = 0;
9082
9083 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
9084 return 1;
9085
9086 return kvm_skip_emulated_instruction(vcpu);
9087 }
9088
kvm_fast_pio_out(struct kvm_vcpu * vcpu,int size,unsigned short port)9089 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
9090 unsigned short port)
9091 {
9092 unsigned long val = kvm_rax_read(vcpu);
9093 int ret = emulator_pio_out(vcpu, size, port, &val, 1);
9094
9095 if (ret)
9096 return ret;
9097
9098 /*
9099 * Workaround userspace that relies on old KVM behavior of %rip being
9100 * incremented prior to exiting to userspace to handle "OUT 0x7e".
9101 */
9102 if (port == 0x7e &&
9103 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
9104 vcpu->arch.complete_userspace_io =
9105 complete_fast_pio_out_port_0x7e;
9106 kvm_skip_emulated_instruction(vcpu);
9107 } else {
9108 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9109 vcpu->arch.complete_userspace_io = complete_fast_pio_out;
9110 }
9111 return 0;
9112 }
9113
complete_fast_pio_in(struct kvm_vcpu * vcpu)9114 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
9115 {
9116 unsigned long val;
9117
9118 /* We should only ever be called with arch.pio.count equal to 1 */
9119 BUG_ON(vcpu->arch.pio.count != 1);
9120
9121 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
9122 vcpu->arch.pio.count = 0;
9123 return 1;
9124 }
9125
9126 /* For size less than 4 we merge, else we zero extend */
9127 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
9128
9129 complete_emulator_pio_in(vcpu, &val);
9130 kvm_rax_write(vcpu, val);
9131
9132 return kvm_skip_emulated_instruction(vcpu);
9133 }
9134
kvm_fast_pio_in(struct kvm_vcpu * vcpu,int size,unsigned short port)9135 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
9136 unsigned short port)
9137 {
9138 unsigned long val;
9139 int ret;
9140
9141 /* For size less than 4 we merge, else we zero extend */
9142 val = (size < 4) ? kvm_rax_read(vcpu) : 0;
9143
9144 ret = emulator_pio_in(vcpu, size, port, &val, 1);
9145 if (ret) {
9146 kvm_rax_write(vcpu, val);
9147 return ret;
9148 }
9149
9150 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9151 vcpu->arch.complete_userspace_io = complete_fast_pio_in;
9152
9153 return 0;
9154 }
9155
kvm_fast_pio(struct kvm_vcpu * vcpu,int size,unsigned short port,int in)9156 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
9157 {
9158 int ret;
9159
9160 if (in)
9161 ret = kvm_fast_pio_in(vcpu, size, port);
9162 else
9163 ret = kvm_fast_pio_out(vcpu, size, port);
9164 return ret && kvm_skip_emulated_instruction(vcpu);
9165 }
9166 EXPORT_SYMBOL_GPL(kvm_fast_pio);
9167
kvmclock_cpu_down_prep(unsigned int cpu)9168 static int kvmclock_cpu_down_prep(unsigned int cpu)
9169 {
9170 __this_cpu_write(cpu_tsc_khz, 0);
9171 return 0;
9172 }
9173
tsc_khz_changed(void * data)9174 static void tsc_khz_changed(void *data)
9175 {
9176 struct cpufreq_freqs *freq = data;
9177 unsigned long khz;
9178
9179 WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC));
9180
9181 if (data)
9182 khz = freq->new;
9183 else
9184 khz = cpufreq_quick_get(raw_smp_processor_id());
9185 if (!khz)
9186 khz = tsc_khz;
9187 __this_cpu_write(cpu_tsc_khz, khz);
9188 }
9189
9190 #ifdef CONFIG_X86_64
kvm_hyperv_tsc_notifier(void)9191 static void kvm_hyperv_tsc_notifier(void)
9192 {
9193 struct kvm *kvm;
9194 int cpu;
9195
9196 mutex_lock(&kvm_lock);
9197 list_for_each_entry(kvm, &vm_list, vm_list)
9198 kvm_make_mclock_inprogress_request(kvm);
9199
9200 /* no guest entries from this point */
9201 hyperv_stop_tsc_emulation();
9202
9203 /* TSC frequency always matches when on Hyper-V */
9204 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9205 for_each_present_cpu(cpu)
9206 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
9207 }
9208 kvm_caps.max_guest_tsc_khz = tsc_khz;
9209
9210 list_for_each_entry(kvm, &vm_list, vm_list) {
9211 __kvm_start_pvclock_update(kvm);
9212 pvclock_update_vm_gtod_copy(kvm);
9213 kvm_end_pvclock_update(kvm);
9214 }
9215
9216 mutex_unlock(&kvm_lock);
9217 }
9218 #endif
9219
__kvmclock_cpufreq_notifier(struct cpufreq_freqs * freq,int cpu)9220 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
9221 {
9222 struct kvm *kvm;
9223 struct kvm_vcpu *vcpu;
9224 int send_ipi = 0;
9225 unsigned long i;
9226
9227 /*
9228 * We allow guests to temporarily run on slowing clocks,
9229 * provided we notify them after, or to run on accelerating
9230 * clocks, provided we notify them before. Thus time never
9231 * goes backwards.
9232 *
9233 * However, we have a problem. We can't atomically update
9234 * the frequency of a given CPU from this function; it is
9235 * merely a notifier, which can be called from any CPU.
9236 * Changing the TSC frequency at arbitrary points in time
9237 * requires a recomputation of local variables related to
9238 * the TSC for each VCPU. We must flag these local variables
9239 * to be updated and be sure the update takes place with the
9240 * new frequency before any guests proceed.
9241 *
9242 * Unfortunately, the combination of hotplug CPU and frequency
9243 * change creates an intractable locking scenario; the order
9244 * of when these callouts happen is undefined with respect to
9245 * CPU hotplug, and they can race with each other. As such,
9246 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
9247 * undefined; you can actually have a CPU frequency change take
9248 * place in between the computation of X and the setting of the
9249 * variable. To protect against this problem, all updates of
9250 * the per_cpu tsc_khz variable are done in an interrupt
9251 * protected IPI, and all callers wishing to update the value
9252 * must wait for a synchronous IPI to complete (which is trivial
9253 * if the caller is on the CPU already). This establishes the
9254 * necessary total order on variable updates.
9255 *
9256 * Note that because a guest time update may take place
9257 * anytime after the setting of the VCPU's request bit, the
9258 * correct TSC value must be set before the request. However,
9259 * to ensure the update actually makes it to any guest which
9260 * starts running in hardware virtualization between the set
9261 * and the acquisition of the spinlock, we must also ping the
9262 * CPU after setting the request bit.
9263 *
9264 */
9265
9266 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9267
9268 mutex_lock(&kvm_lock);
9269 list_for_each_entry(kvm, &vm_list, vm_list) {
9270 kvm_for_each_vcpu(i, vcpu, kvm) {
9271 if (vcpu->cpu != cpu)
9272 continue;
9273 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9274 if (vcpu->cpu != raw_smp_processor_id())
9275 send_ipi = 1;
9276 }
9277 }
9278 mutex_unlock(&kvm_lock);
9279
9280 if (freq->old < freq->new && send_ipi) {
9281 /*
9282 * We upscale the frequency. Must make the guest
9283 * doesn't see old kvmclock values while running with
9284 * the new frequency, otherwise we risk the guest sees
9285 * time go backwards.
9286 *
9287 * In case we update the frequency for another cpu
9288 * (which might be in guest context) send an interrupt
9289 * to kick the cpu out of guest context. Next time
9290 * guest context is entered kvmclock will be updated,
9291 * so the guest will not see stale values.
9292 */
9293 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9294 }
9295 }
9296
kvmclock_cpufreq_notifier(struct notifier_block * nb,unsigned long val,void * data)9297 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
9298 void *data)
9299 {
9300 struct cpufreq_freqs *freq = data;
9301 int cpu;
9302
9303 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
9304 return 0;
9305 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
9306 return 0;
9307
9308 for_each_cpu(cpu, freq->policy->cpus)
9309 __kvmclock_cpufreq_notifier(freq, cpu);
9310
9311 return 0;
9312 }
9313
9314 static struct notifier_block kvmclock_cpufreq_notifier_block = {
9315 .notifier_call = kvmclock_cpufreq_notifier
9316 };
9317
kvmclock_cpu_online(unsigned int cpu)9318 static int kvmclock_cpu_online(unsigned int cpu)
9319 {
9320 tsc_khz_changed(NULL);
9321 return 0;
9322 }
9323
kvm_timer_init(void)9324 static void kvm_timer_init(void)
9325 {
9326 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9327 max_tsc_khz = tsc_khz;
9328
9329 if (IS_ENABLED(CONFIG_CPU_FREQ)) {
9330 struct cpufreq_policy *policy;
9331 int cpu;
9332
9333 cpu = get_cpu();
9334 policy = cpufreq_cpu_get(cpu);
9335 if (policy) {
9336 if (policy->cpuinfo.max_freq)
9337 max_tsc_khz = policy->cpuinfo.max_freq;
9338 cpufreq_cpu_put(policy);
9339 }
9340 put_cpu();
9341 }
9342 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
9343 CPUFREQ_TRANSITION_NOTIFIER);
9344
9345 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
9346 kvmclock_cpu_online, kvmclock_cpu_down_prep);
9347 }
9348 }
9349
9350 #ifdef CONFIG_X86_64
pvclock_gtod_update_fn(struct work_struct * work)9351 static void pvclock_gtod_update_fn(struct work_struct *work)
9352 {
9353 struct kvm *kvm;
9354 struct kvm_vcpu *vcpu;
9355 unsigned long i;
9356
9357 mutex_lock(&kvm_lock);
9358 list_for_each_entry(kvm, &vm_list, vm_list)
9359 kvm_for_each_vcpu(i, vcpu, kvm)
9360 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9361 atomic_set(&kvm_guest_has_master_clock, 0);
9362 mutex_unlock(&kvm_lock);
9363 }
9364
9365 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
9366
9367 /*
9368 * Indirection to move queue_work() out of the tk_core.seq write held
9369 * region to prevent possible deadlocks against time accessors which
9370 * are invoked with work related locks held.
9371 */
pvclock_irq_work_fn(struct irq_work * w)9372 static void pvclock_irq_work_fn(struct irq_work *w)
9373 {
9374 queue_work(system_long_wq, &pvclock_gtod_work);
9375 }
9376
9377 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
9378
9379 /*
9380 * Notification about pvclock gtod data update.
9381 */
pvclock_gtod_notify(struct notifier_block * nb,unsigned long unused,void * priv)9382 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
9383 void *priv)
9384 {
9385 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
9386 struct timekeeper *tk = priv;
9387
9388 update_pvclock_gtod(tk);
9389
9390 /*
9391 * Disable master clock if host does not trust, or does not use,
9392 * TSC based clocksource. Delegate queue_work() to irq_work as
9393 * this is invoked with tk_core.seq write held.
9394 */
9395 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
9396 atomic_read(&kvm_guest_has_master_clock) != 0)
9397 irq_work_queue(&pvclock_irq_work);
9398 return 0;
9399 }
9400
9401 static struct notifier_block pvclock_gtod_notifier = {
9402 .notifier_call = pvclock_gtod_notify,
9403 };
9404 #endif
9405
kvm_ops_update(struct kvm_x86_init_ops * ops)9406 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops)
9407 {
9408 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
9409
9410 #define __KVM_X86_OP(func) \
9411 static_call_update(kvm_x86_##func, kvm_x86_ops.func);
9412 #define KVM_X86_OP(func) \
9413 WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func)
9414 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP
9415 #define KVM_X86_OP_OPTIONAL_RET0(func) \
9416 static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \
9417 (void *)__static_call_return0);
9418 #include <asm/kvm-x86-ops.h>
9419 #undef __KVM_X86_OP
9420
9421 kvm_pmu_ops_update(ops->pmu_ops);
9422 }
9423
kvm_x86_check_processor_compatibility(void)9424 static int kvm_x86_check_processor_compatibility(void)
9425 {
9426 int cpu = smp_processor_id();
9427 struct cpuinfo_x86 *c = &cpu_data(cpu);
9428
9429 /*
9430 * Compatibility checks are done when loading KVM and when enabling
9431 * hardware, e.g. during CPU hotplug, to ensure all online CPUs are
9432 * compatible, i.e. KVM should never perform a compatibility check on
9433 * an offline CPU.
9434 */
9435 WARN_ON(!cpu_online(cpu));
9436
9437 if (__cr4_reserved_bits(cpu_has, c) !=
9438 __cr4_reserved_bits(cpu_has, &boot_cpu_data))
9439 return -EIO;
9440
9441 return static_call(kvm_x86_check_processor_compatibility)();
9442 }
9443
kvm_x86_check_cpu_compat(void * ret)9444 static void kvm_x86_check_cpu_compat(void *ret)
9445 {
9446 *(int *)ret = kvm_x86_check_processor_compatibility();
9447 }
9448
__kvm_x86_vendor_init(struct kvm_x86_init_ops * ops)9449 static int __kvm_x86_vendor_init(struct kvm_x86_init_ops *ops)
9450 {
9451 u64 host_pat;
9452 int r, cpu;
9453
9454 if (kvm_x86_ops.hardware_enable) {
9455 pr_err("already loaded vendor module '%s'\n", kvm_x86_ops.name);
9456 return -EEXIST;
9457 }
9458
9459 /*
9460 * KVM explicitly assumes that the guest has an FPU and
9461 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
9462 * vCPU's FPU state as a fxregs_state struct.
9463 */
9464 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
9465 pr_err("inadequate fpu\n");
9466 return -EOPNOTSUPP;
9467 }
9468
9469 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9470 pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n");
9471 return -EOPNOTSUPP;
9472 }
9473
9474 /*
9475 * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes
9476 * the PAT bits in SPTEs. Bail if PAT[0] is programmed to something
9477 * other than WB. Note, EPT doesn't utilize the PAT, but don't bother
9478 * with an exception. PAT[0] is set to WB on RESET and also by the
9479 * kernel, i.e. failure indicates a kernel bug or broken firmware.
9480 */
9481 if (rdmsrl_safe(MSR_IA32_CR_PAT, &host_pat) ||
9482 (host_pat & GENMASK(2, 0)) != 6) {
9483 pr_err("host PAT[0] is not WB\n");
9484 return -EIO;
9485 }
9486
9487 x86_emulator_cache = kvm_alloc_emulator_cache();
9488 if (!x86_emulator_cache) {
9489 pr_err("failed to allocate cache for x86 emulator\n");
9490 return -ENOMEM;
9491 }
9492
9493 user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
9494 if (!user_return_msrs) {
9495 pr_err("failed to allocate percpu kvm_user_return_msrs\n");
9496 r = -ENOMEM;
9497 goto out_free_x86_emulator_cache;
9498 }
9499 kvm_nr_uret_msrs = 0;
9500
9501 r = kvm_mmu_vendor_module_init();
9502 if (r)
9503 goto out_free_percpu;
9504
9505 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
9506 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
9507 kvm_caps.supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
9508 }
9509
9510 rdmsrl_safe(MSR_EFER, &host_efer);
9511
9512 if (boot_cpu_has(X86_FEATURE_XSAVES))
9513 rdmsrl(MSR_IA32_XSS, host_xss);
9514
9515 kvm_init_pmu_capability(ops->pmu_ops);
9516
9517 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
9518 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, host_arch_capabilities);
9519
9520 r = ops->hardware_setup();
9521 if (r != 0)
9522 goto out_mmu_exit;
9523
9524 kvm_ops_update(ops);
9525
9526 for_each_online_cpu(cpu) {
9527 smp_call_function_single(cpu, kvm_x86_check_cpu_compat, &r, 1);
9528 if (r < 0)
9529 goto out_unwind_ops;
9530 }
9531
9532 /*
9533 * Point of no return! DO NOT add error paths below this point unless
9534 * absolutely necessary, as most operations from this point forward
9535 * require unwinding.
9536 */
9537 kvm_timer_init();
9538
9539 if (pi_inject_timer == -1)
9540 pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER);
9541 #ifdef CONFIG_X86_64
9542 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
9543
9544 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9545 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
9546 #endif
9547
9548 kvm_register_perf_callbacks(ops->handle_intel_pt_intr);
9549
9550 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
9551 kvm_caps.supported_xss = 0;
9552
9553 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
9554 cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
9555 #undef __kvm_cpu_cap_has
9556
9557 if (kvm_caps.has_tsc_control) {
9558 /*
9559 * Make sure the user can only configure tsc_khz values that
9560 * fit into a signed integer.
9561 * A min value is not calculated because it will always
9562 * be 1 on all machines.
9563 */
9564 u64 max = min(0x7fffffffULL,
9565 __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz));
9566 kvm_caps.max_guest_tsc_khz = max;
9567 }
9568 kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits;
9569 kvm_init_msr_lists();
9570 return 0;
9571
9572 out_unwind_ops:
9573 kvm_x86_ops.hardware_enable = NULL;
9574 static_call(kvm_x86_hardware_unsetup)();
9575 out_mmu_exit:
9576 kvm_mmu_vendor_module_exit();
9577 out_free_percpu:
9578 free_percpu(user_return_msrs);
9579 out_free_x86_emulator_cache:
9580 kmem_cache_destroy(x86_emulator_cache);
9581 return r;
9582 }
9583
kvm_x86_vendor_init(struct kvm_x86_init_ops * ops)9584 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops)
9585 {
9586 int r;
9587
9588 mutex_lock(&vendor_module_lock);
9589 r = __kvm_x86_vendor_init(ops);
9590 mutex_unlock(&vendor_module_lock);
9591
9592 return r;
9593 }
9594 EXPORT_SYMBOL_GPL(kvm_x86_vendor_init);
9595
kvm_x86_vendor_exit(void)9596 void kvm_x86_vendor_exit(void)
9597 {
9598 kvm_unregister_perf_callbacks();
9599
9600 #ifdef CONFIG_X86_64
9601 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9602 clear_hv_tscchange_cb();
9603 #endif
9604 kvm_lapic_exit();
9605
9606 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9607 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
9608 CPUFREQ_TRANSITION_NOTIFIER);
9609 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
9610 }
9611 #ifdef CONFIG_X86_64
9612 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
9613 irq_work_sync(&pvclock_irq_work);
9614 cancel_work_sync(&pvclock_gtod_work);
9615 #endif
9616 static_call(kvm_x86_hardware_unsetup)();
9617 kvm_mmu_vendor_module_exit();
9618 free_percpu(user_return_msrs);
9619 kmem_cache_destroy(x86_emulator_cache);
9620 #ifdef CONFIG_KVM_XEN
9621 static_key_deferred_flush(&kvm_xen_enabled);
9622 WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
9623 #endif
9624 mutex_lock(&vendor_module_lock);
9625 kvm_x86_ops.hardware_enable = NULL;
9626 mutex_unlock(&vendor_module_lock);
9627 }
9628 EXPORT_SYMBOL_GPL(kvm_x86_vendor_exit);
9629
__kvm_emulate_halt(struct kvm_vcpu * vcpu,int state,int reason)9630 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason)
9631 {
9632 /*
9633 * The vCPU has halted, e.g. executed HLT. Update the run state if the
9634 * local APIC is in-kernel, the run loop will detect the non-runnable
9635 * state and halt the vCPU. Exit to userspace if the local APIC is
9636 * managed by userspace, in which case userspace is responsible for
9637 * handling wake events.
9638 */
9639 ++vcpu->stat.halt_exits;
9640 if (lapic_in_kernel(vcpu)) {
9641 vcpu->arch.mp_state = state;
9642 return 1;
9643 } else {
9644 vcpu->run->exit_reason = reason;
9645 return 0;
9646 }
9647 }
9648
kvm_emulate_halt_noskip(struct kvm_vcpu * vcpu)9649 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu)
9650 {
9651 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
9652 }
9653 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip);
9654
kvm_emulate_halt(struct kvm_vcpu * vcpu)9655 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
9656 {
9657 int ret = kvm_skip_emulated_instruction(vcpu);
9658 /*
9659 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
9660 * KVM_EXIT_DEBUG here.
9661 */
9662 return kvm_emulate_halt_noskip(vcpu) && ret;
9663 }
9664 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
9665
kvm_emulate_ap_reset_hold(struct kvm_vcpu * vcpu)9666 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
9667 {
9668 int ret = kvm_skip_emulated_instruction(vcpu);
9669
9670 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD,
9671 KVM_EXIT_AP_RESET_HOLD) && ret;
9672 }
9673 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
9674
9675 #ifdef CONFIG_X86_64
kvm_pv_clock_pairing(struct kvm_vcpu * vcpu,gpa_t paddr,unsigned long clock_type)9676 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
9677 unsigned long clock_type)
9678 {
9679 struct kvm_clock_pairing clock_pairing;
9680 struct timespec64 ts;
9681 u64 cycle;
9682 int ret;
9683
9684 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
9685 return -KVM_EOPNOTSUPP;
9686
9687 /*
9688 * When tsc is in permanent catchup mode guests won't be able to use
9689 * pvclock_read_retry loop to get consistent view of pvclock
9690 */
9691 if (vcpu->arch.tsc_always_catchup)
9692 return -KVM_EOPNOTSUPP;
9693
9694 if (!kvm_get_walltime_and_clockread(&ts, &cycle))
9695 return -KVM_EOPNOTSUPP;
9696
9697 clock_pairing.sec = ts.tv_sec;
9698 clock_pairing.nsec = ts.tv_nsec;
9699 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
9700 clock_pairing.flags = 0;
9701 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
9702
9703 ret = 0;
9704 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
9705 sizeof(struct kvm_clock_pairing)))
9706 ret = -KVM_EFAULT;
9707
9708 return ret;
9709 }
9710 #endif
9711
9712 /*
9713 * kvm_pv_kick_cpu_op: Kick a vcpu.
9714 *
9715 * @apicid - apicid of vcpu to be kicked.
9716 */
kvm_pv_kick_cpu_op(struct kvm * kvm,int apicid)9717 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid)
9718 {
9719 /*
9720 * All other fields are unused for APIC_DM_REMRD, but may be consumed by
9721 * common code, e.g. for tracing. Defer initialization to the compiler.
9722 */
9723 struct kvm_lapic_irq lapic_irq = {
9724 .delivery_mode = APIC_DM_REMRD,
9725 .dest_mode = APIC_DEST_PHYSICAL,
9726 .shorthand = APIC_DEST_NOSHORT,
9727 .dest_id = apicid,
9728 };
9729
9730 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
9731 }
9732
kvm_apicv_activated(struct kvm * kvm)9733 bool kvm_apicv_activated(struct kvm *kvm)
9734 {
9735 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
9736 }
9737 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
9738
kvm_vcpu_apicv_activated(struct kvm_vcpu * vcpu)9739 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu)
9740 {
9741 ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons);
9742 ulong vcpu_reasons = static_call(kvm_x86_vcpu_get_apicv_inhibit_reasons)(vcpu);
9743
9744 return (vm_reasons | vcpu_reasons) == 0;
9745 }
9746 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated);
9747
set_or_clear_apicv_inhibit(unsigned long * inhibits,enum kvm_apicv_inhibit reason,bool set)9748 static void set_or_clear_apicv_inhibit(unsigned long *inhibits,
9749 enum kvm_apicv_inhibit reason, bool set)
9750 {
9751 if (set)
9752 __set_bit(reason, inhibits);
9753 else
9754 __clear_bit(reason, inhibits);
9755
9756 trace_kvm_apicv_inhibit_changed(reason, set, *inhibits);
9757 }
9758
kvm_apicv_init(struct kvm * kvm)9759 static void kvm_apicv_init(struct kvm *kvm)
9760 {
9761 unsigned long *inhibits = &kvm->arch.apicv_inhibit_reasons;
9762
9763 init_rwsem(&kvm->arch.apicv_update_lock);
9764
9765 set_or_clear_apicv_inhibit(inhibits, APICV_INHIBIT_REASON_ABSENT, true);
9766
9767 if (!enable_apicv)
9768 set_or_clear_apicv_inhibit(inhibits,
9769 APICV_INHIBIT_REASON_DISABLE, true);
9770 }
9771
kvm_sched_yield(struct kvm_vcpu * vcpu,unsigned long dest_id)9772 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
9773 {
9774 struct kvm_vcpu *target = NULL;
9775 struct kvm_apic_map *map;
9776
9777 vcpu->stat.directed_yield_attempted++;
9778
9779 if (single_task_running())
9780 goto no_yield;
9781
9782 rcu_read_lock();
9783 map = rcu_dereference(vcpu->kvm->arch.apic_map);
9784
9785 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
9786 target = map->phys_map[dest_id]->vcpu;
9787
9788 rcu_read_unlock();
9789
9790 if (!target || !READ_ONCE(target->ready))
9791 goto no_yield;
9792
9793 /* Ignore requests to yield to self */
9794 if (vcpu == target)
9795 goto no_yield;
9796
9797 if (kvm_vcpu_yield_to(target) <= 0)
9798 goto no_yield;
9799
9800 vcpu->stat.directed_yield_successful++;
9801
9802 no_yield:
9803 return;
9804 }
9805
complete_hypercall_exit(struct kvm_vcpu * vcpu)9806 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
9807 {
9808 u64 ret = vcpu->run->hypercall.ret;
9809
9810 if (!is_64_bit_mode(vcpu))
9811 ret = (u32)ret;
9812 kvm_rax_write(vcpu, ret);
9813 ++vcpu->stat.hypercalls;
9814 return kvm_skip_emulated_instruction(vcpu);
9815 }
9816
kvm_emulate_hypercall(struct kvm_vcpu * vcpu)9817 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
9818 {
9819 unsigned long nr, a0, a1, a2, a3, ret;
9820 int op_64_bit;
9821
9822 if (kvm_xen_hypercall_enabled(vcpu->kvm))
9823 return kvm_xen_hypercall(vcpu);
9824
9825 if (kvm_hv_hypercall_enabled(vcpu))
9826 return kvm_hv_hypercall(vcpu);
9827
9828 nr = kvm_rax_read(vcpu);
9829 a0 = kvm_rbx_read(vcpu);
9830 a1 = kvm_rcx_read(vcpu);
9831 a2 = kvm_rdx_read(vcpu);
9832 a3 = kvm_rsi_read(vcpu);
9833
9834 trace_kvm_hypercall(nr, a0, a1, a2, a3);
9835
9836 op_64_bit = is_64_bit_hypercall(vcpu);
9837 if (!op_64_bit) {
9838 nr &= 0xFFFFFFFF;
9839 a0 &= 0xFFFFFFFF;
9840 a1 &= 0xFFFFFFFF;
9841 a2 &= 0xFFFFFFFF;
9842 a3 &= 0xFFFFFFFF;
9843 }
9844
9845 if (static_call(kvm_x86_get_cpl)(vcpu) != 0) {
9846 ret = -KVM_EPERM;
9847 goto out;
9848 }
9849
9850 ret = -KVM_ENOSYS;
9851
9852 switch (nr) {
9853 case KVM_HC_VAPIC_POLL_IRQ:
9854 ret = 0;
9855 break;
9856 case KVM_HC_KICK_CPU:
9857 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
9858 break;
9859
9860 kvm_pv_kick_cpu_op(vcpu->kvm, a1);
9861 kvm_sched_yield(vcpu, a1);
9862 ret = 0;
9863 break;
9864 #ifdef CONFIG_X86_64
9865 case KVM_HC_CLOCK_PAIRING:
9866 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
9867 break;
9868 #endif
9869 case KVM_HC_SEND_IPI:
9870 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
9871 break;
9872
9873 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
9874 break;
9875 case KVM_HC_SCHED_YIELD:
9876 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
9877 break;
9878
9879 kvm_sched_yield(vcpu, a0);
9880 ret = 0;
9881 break;
9882 case KVM_HC_MAP_GPA_RANGE: {
9883 u64 gpa = a0, npages = a1, attrs = a2;
9884
9885 ret = -KVM_ENOSYS;
9886 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE)))
9887 break;
9888
9889 if (!PAGE_ALIGNED(gpa) || !npages ||
9890 gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
9891 ret = -KVM_EINVAL;
9892 break;
9893 }
9894
9895 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL;
9896 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE;
9897 vcpu->run->hypercall.args[0] = gpa;
9898 vcpu->run->hypercall.args[1] = npages;
9899 vcpu->run->hypercall.args[2] = attrs;
9900 vcpu->run->hypercall.flags = 0;
9901 if (op_64_bit)
9902 vcpu->run->hypercall.flags |= KVM_EXIT_HYPERCALL_LONG_MODE;
9903
9904 WARN_ON_ONCE(vcpu->run->hypercall.flags & KVM_EXIT_HYPERCALL_MBZ);
9905 vcpu->arch.complete_userspace_io = complete_hypercall_exit;
9906 return 0;
9907 }
9908 default:
9909 ret = -KVM_ENOSYS;
9910 break;
9911 }
9912 out:
9913 if (!op_64_bit)
9914 ret = (u32)ret;
9915 kvm_rax_write(vcpu, ret);
9916
9917 ++vcpu->stat.hypercalls;
9918 return kvm_skip_emulated_instruction(vcpu);
9919 }
9920 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
9921
emulator_fix_hypercall(struct x86_emulate_ctxt * ctxt)9922 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
9923 {
9924 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
9925 char instruction[3];
9926 unsigned long rip = kvm_rip_read(vcpu);
9927
9928 /*
9929 * If the quirk is disabled, synthesize a #UD and let the guest pick up
9930 * the pieces.
9931 */
9932 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) {
9933 ctxt->exception.error_code_valid = false;
9934 ctxt->exception.vector = UD_VECTOR;
9935 ctxt->have_exception = true;
9936 return X86EMUL_PROPAGATE_FAULT;
9937 }
9938
9939 static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
9940
9941 return emulator_write_emulated(ctxt, rip, instruction, 3,
9942 &ctxt->exception);
9943 }
9944
dm_request_for_irq_injection(struct kvm_vcpu * vcpu)9945 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
9946 {
9947 return vcpu->run->request_interrupt_window &&
9948 likely(!pic_in_kernel(vcpu->kvm));
9949 }
9950
9951 /* Called within kvm->srcu read side. */
post_kvm_run_save(struct kvm_vcpu * vcpu)9952 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
9953 {
9954 struct kvm_run *kvm_run = vcpu->run;
9955
9956 kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu);
9957 kvm_run->cr8 = kvm_get_cr8(vcpu);
9958 kvm_run->apic_base = kvm_get_apic_base(vcpu);
9959
9960 kvm_run->ready_for_interrupt_injection =
9961 pic_in_kernel(vcpu->kvm) ||
9962 kvm_vcpu_ready_for_interrupt_injection(vcpu);
9963
9964 if (is_smm(vcpu))
9965 kvm_run->flags |= KVM_RUN_X86_SMM;
9966 }
9967
update_cr8_intercept(struct kvm_vcpu * vcpu)9968 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
9969 {
9970 int max_irr, tpr;
9971
9972 if (!kvm_x86_ops.update_cr8_intercept)
9973 return;
9974
9975 if (!lapic_in_kernel(vcpu))
9976 return;
9977
9978 if (vcpu->arch.apic->apicv_active)
9979 return;
9980
9981 if (!vcpu->arch.apic->vapic_addr)
9982 max_irr = kvm_lapic_find_highest_irr(vcpu);
9983 else
9984 max_irr = -1;
9985
9986 if (max_irr != -1)
9987 max_irr >>= 4;
9988
9989 tpr = kvm_lapic_get_cr8(vcpu);
9990
9991 static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
9992 }
9993
9994
kvm_check_nested_events(struct kvm_vcpu * vcpu)9995 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
9996 {
9997 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
9998 kvm_x86_ops.nested_ops->triple_fault(vcpu);
9999 return 1;
10000 }
10001
10002 return kvm_x86_ops.nested_ops->check_events(vcpu);
10003 }
10004
kvm_inject_exception(struct kvm_vcpu * vcpu)10005 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
10006 {
10007 /*
10008 * Suppress the error code if the vCPU is in Real Mode, as Real Mode
10009 * exceptions don't report error codes. The presence of an error code
10010 * is carried with the exception and only stripped when the exception
10011 * is injected as intercepted #PF VM-Exits for AMD's Paged Real Mode do
10012 * report an error code despite the CPU being in Real Mode.
10013 */
10014 vcpu->arch.exception.has_error_code &= is_protmode(vcpu);
10015
10016 trace_kvm_inj_exception(vcpu->arch.exception.vector,
10017 vcpu->arch.exception.has_error_code,
10018 vcpu->arch.exception.error_code,
10019 vcpu->arch.exception.injected);
10020
10021 static_call(kvm_x86_inject_exception)(vcpu);
10022 }
10023
10024 /*
10025 * Check for any event (interrupt or exception) that is ready to be injected,
10026 * and if there is at least one event, inject the event with the highest
10027 * priority. This handles both "pending" events, i.e. events that have never
10028 * been injected into the guest, and "injected" events, i.e. events that were
10029 * injected as part of a previous VM-Enter, but weren't successfully delivered
10030 * and need to be re-injected.
10031 *
10032 * Note, this is not guaranteed to be invoked on a guest instruction boundary,
10033 * i.e. doesn't guarantee that there's an event window in the guest. KVM must
10034 * be able to inject exceptions in the "middle" of an instruction, and so must
10035 * also be able to re-inject NMIs and IRQs in the middle of an instruction.
10036 * I.e. for exceptions and re-injected events, NOT invoking this on instruction
10037 * boundaries is necessary and correct.
10038 *
10039 * For simplicity, KVM uses a single path to inject all events (except events
10040 * that are injected directly from L1 to L2) and doesn't explicitly track
10041 * instruction boundaries for asynchronous events. However, because VM-Exits
10042 * that can occur during instruction execution typically result in KVM skipping
10043 * the instruction or injecting an exception, e.g. instruction and exception
10044 * intercepts, and because pending exceptions have higher priority than pending
10045 * interrupts, KVM still honors instruction boundaries in most scenarios.
10046 *
10047 * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip
10048 * the instruction or inject an exception, then KVM can incorrecty inject a new
10049 * asynchrounous event if the event became pending after the CPU fetched the
10050 * instruction (in the guest). E.g. if a page fault (#PF, #NPF, EPT violation)
10051 * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be
10052 * injected on the restarted instruction instead of being deferred until the
10053 * instruction completes.
10054 *
10055 * In practice, this virtualization hole is unlikely to be observed by the
10056 * guest, and even less likely to cause functional problems. To detect the
10057 * hole, the guest would have to trigger an event on a side effect of an early
10058 * phase of instruction execution, e.g. on the instruction fetch from memory.
10059 * And for it to be a functional problem, the guest would need to depend on the
10060 * ordering between that side effect, the instruction completing, _and_ the
10061 * delivery of the asynchronous event.
10062 */
kvm_check_and_inject_events(struct kvm_vcpu * vcpu,bool * req_immediate_exit)10063 static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu,
10064 bool *req_immediate_exit)
10065 {
10066 bool can_inject;
10067 int r;
10068
10069 /*
10070 * Process nested events first, as nested VM-Exit supercedes event
10071 * re-injection. If there's an event queued for re-injection, it will
10072 * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit.
10073 */
10074 if (is_guest_mode(vcpu))
10075 r = kvm_check_nested_events(vcpu);
10076 else
10077 r = 0;
10078
10079 /*
10080 * Re-inject exceptions and events *especially* if immediate entry+exit
10081 * to/from L2 is needed, as any event that has already been injected
10082 * into L2 needs to complete its lifecycle before injecting a new event.
10083 *
10084 * Don't re-inject an NMI or interrupt if there is a pending exception.
10085 * This collision arises if an exception occurred while vectoring the
10086 * injected event, KVM intercepted said exception, and KVM ultimately
10087 * determined the fault belongs to the guest and queues the exception
10088 * for injection back into the guest.
10089 *
10090 * "Injected" interrupts can also collide with pending exceptions if
10091 * userspace ignores the "ready for injection" flag and blindly queues
10092 * an interrupt. In that case, prioritizing the exception is correct,
10093 * as the exception "occurred" before the exit to userspace. Trap-like
10094 * exceptions, e.g. most #DBs, have higher priority than interrupts.
10095 * And while fault-like exceptions, e.g. #GP and #PF, are the lowest
10096 * priority, they're only generated (pended) during instruction
10097 * execution, and interrupts are recognized at instruction boundaries.
10098 * Thus a pending fault-like exception means the fault occurred on the
10099 * *previous* instruction and must be serviced prior to recognizing any
10100 * new events in order to fully complete the previous instruction.
10101 */
10102 if (vcpu->arch.exception.injected)
10103 kvm_inject_exception(vcpu);
10104 else if (kvm_is_exception_pending(vcpu))
10105 ; /* see above */
10106 else if (vcpu->arch.nmi_injected)
10107 static_call(kvm_x86_inject_nmi)(vcpu);
10108 else if (vcpu->arch.interrupt.injected)
10109 static_call(kvm_x86_inject_irq)(vcpu, true);
10110
10111 /*
10112 * Exceptions that morph to VM-Exits are handled above, and pending
10113 * exceptions on top of injected exceptions that do not VM-Exit should
10114 * either morph to #DF or, sadly, override the injected exception.
10115 */
10116 WARN_ON_ONCE(vcpu->arch.exception.injected &&
10117 vcpu->arch.exception.pending);
10118
10119 /*
10120 * Bail if immediate entry+exit to/from the guest is needed to complete
10121 * nested VM-Enter or event re-injection so that a different pending
10122 * event can be serviced (or if KVM needs to exit to userspace).
10123 *
10124 * Otherwise, continue processing events even if VM-Exit occurred. The
10125 * VM-Exit will have cleared exceptions that were meant for L2, but
10126 * there may now be events that can be injected into L1.
10127 */
10128 if (r < 0)
10129 goto out;
10130
10131 /*
10132 * A pending exception VM-Exit should either result in nested VM-Exit
10133 * or force an immediate re-entry and exit to/from L2, and exception
10134 * VM-Exits cannot be injected (flag should _never_ be set).
10135 */
10136 WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected ||
10137 vcpu->arch.exception_vmexit.pending);
10138
10139 /*
10140 * New events, other than exceptions, cannot be injected if KVM needs
10141 * to re-inject a previous event. See above comments on re-injecting
10142 * for why pending exceptions get priority.
10143 */
10144 can_inject = !kvm_event_needs_reinjection(vcpu);
10145
10146 if (vcpu->arch.exception.pending) {
10147 /*
10148 * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS
10149 * value pushed on the stack. Trap-like exception and all #DBs
10150 * leave RF as-is (KVM follows Intel's behavior in this regard;
10151 * AMD states that code breakpoint #DBs excplitly clear RF=0).
10152 *
10153 * Note, most versions of Intel's SDM and AMD's APM incorrectly
10154 * describe the behavior of General Detect #DBs, which are
10155 * fault-like. They do _not_ set RF, a la code breakpoints.
10156 */
10157 if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT)
10158 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
10159 X86_EFLAGS_RF);
10160
10161 if (vcpu->arch.exception.vector == DB_VECTOR) {
10162 kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception);
10163 if (vcpu->arch.dr7 & DR7_GD) {
10164 vcpu->arch.dr7 &= ~DR7_GD;
10165 kvm_update_dr7(vcpu);
10166 }
10167 }
10168
10169 kvm_inject_exception(vcpu);
10170
10171 vcpu->arch.exception.pending = false;
10172 vcpu->arch.exception.injected = true;
10173
10174 can_inject = false;
10175 }
10176
10177 /* Don't inject interrupts if the user asked to avoid doing so */
10178 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
10179 return 0;
10180
10181 /*
10182 * Finally, inject interrupt events. If an event cannot be injected
10183 * due to architectural conditions (e.g. IF=0) a window-open exit
10184 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending
10185 * and can architecturally be injected, but we cannot do it right now:
10186 * an interrupt could have arrived just now and we have to inject it
10187 * as a vmexit, or there could already an event in the queue, which is
10188 * indicated by can_inject. In that case we request an immediate exit
10189 * in order to make progress and get back here for another iteration.
10190 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
10191 */
10192 #ifdef CONFIG_KVM_SMM
10193 if (vcpu->arch.smi_pending) {
10194 r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
10195 if (r < 0)
10196 goto out;
10197 if (r) {
10198 vcpu->arch.smi_pending = false;
10199 ++vcpu->arch.smi_count;
10200 enter_smm(vcpu);
10201 can_inject = false;
10202 } else
10203 static_call(kvm_x86_enable_smi_window)(vcpu);
10204 }
10205 #endif
10206
10207 if (vcpu->arch.nmi_pending) {
10208 r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
10209 if (r < 0)
10210 goto out;
10211 if (r) {
10212 --vcpu->arch.nmi_pending;
10213 vcpu->arch.nmi_injected = true;
10214 static_call(kvm_x86_inject_nmi)(vcpu);
10215 can_inject = false;
10216 WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
10217 }
10218 if (vcpu->arch.nmi_pending)
10219 static_call(kvm_x86_enable_nmi_window)(vcpu);
10220 }
10221
10222 if (kvm_cpu_has_injectable_intr(vcpu)) {
10223 r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
10224 if (r < 0)
10225 goto out;
10226 if (r) {
10227 int irq = kvm_cpu_get_interrupt(vcpu);
10228
10229 if (!WARN_ON_ONCE(irq == -1)) {
10230 kvm_queue_interrupt(vcpu, irq, false);
10231 static_call(kvm_x86_inject_irq)(vcpu, false);
10232 WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
10233 }
10234 }
10235 if (kvm_cpu_has_injectable_intr(vcpu))
10236 static_call(kvm_x86_enable_irq_window)(vcpu);
10237 }
10238
10239 if (is_guest_mode(vcpu) &&
10240 kvm_x86_ops.nested_ops->has_events &&
10241 kvm_x86_ops.nested_ops->has_events(vcpu))
10242 *req_immediate_exit = true;
10243
10244 /*
10245 * KVM must never queue a new exception while injecting an event; KVM
10246 * is done emulating and should only propagate the to-be-injected event
10247 * to the VMCS/VMCB. Queueing a new exception can put the vCPU into an
10248 * infinite loop as KVM will bail from VM-Enter to inject the pending
10249 * exception and start the cycle all over.
10250 *
10251 * Exempt triple faults as they have special handling and won't put the
10252 * vCPU into an infinite loop. Triple fault can be queued when running
10253 * VMX without unrestricted guest, as that requires KVM to emulate Real
10254 * Mode events (see kvm_inject_realmode_interrupt()).
10255 */
10256 WARN_ON_ONCE(vcpu->arch.exception.pending ||
10257 vcpu->arch.exception_vmexit.pending);
10258 return 0;
10259
10260 out:
10261 if (r == -EBUSY) {
10262 *req_immediate_exit = true;
10263 r = 0;
10264 }
10265 return r;
10266 }
10267
process_nmi(struct kvm_vcpu * vcpu)10268 static void process_nmi(struct kvm_vcpu *vcpu)
10269 {
10270 unsigned int limit;
10271
10272 /*
10273 * x86 is limited to one NMI pending, but because KVM can't react to
10274 * incoming NMIs as quickly as bare metal, e.g. if the vCPU is
10275 * scheduled out, KVM needs to play nice with two queued NMIs showing
10276 * up at the same time. To handle this scenario, allow two NMIs to be
10277 * (temporarily) pending so long as NMIs are not blocked and KVM is not
10278 * waiting for a previous NMI injection to complete (which effectively
10279 * blocks NMIs). KVM will immediately inject one of the two NMIs, and
10280 * will request an NMI window to handle the second NMI.
10281 */
10282 if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
10283 limit = 1;
10284 else
10285 limit = 2;
10286
10287 /*
10288 * Adjust the limit to account for pending virtual NMIs, which aren't
10289 * tracked in vcpu->arch.nmi_pending.
10290 */
10291 if (static_call(kvm_x86_is_vnmi_pending)(vcpu))
10292 limit--;
10293
10294 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
10295 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
10296
10297 if (vcpu->arch.nmi_pending &&
10298 (static_call(kvm_x86_set_vnmi_pending)(vcpu)))
10299 vcpu->arch.nmi_pending--;
10300
10301 if (vcpu->arch.nmi_pending)
10302 kvm_make_request(KVM_REQ_EVENT, vcpu);
10303 }
10304
10305 /* Return total number of NMIs pending injection to the VM */
kvm_get_nr_pending_nmis(struct kvm_vcpu * vcpu)10306 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu)
10307 {
10308 return vcpu->arch.nmi_pending +
10309 static_call(kvm_x86_is_vnmi_pending)(vcpu);
10310 }
10311
kvm_make_scan_ioapic_request_mask(struct kvm * kvm,unsigned long * vcpu_bitmap)10312 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
10313 unsigned long *vcpu_bitmap)
10314 {
10315 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap);
10316 }
10317
kvm_make_scan_ioapic_request(struct kvm * kvm)10318 void kvm_make_scan_ioapic_request(struct kvm *kvm)
10319 {
10320 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
10321 }
10322
__kvm_vcpu_update_apicv(struct kvm_vcpu * vcpu)10323 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10324 {
10325 struct kvm_lapic *apic = vcpu->arch.apic;
10326 bool activate;
10327
10328 if (!lapic_in_kernel(vcpu))
10329 return;
10330
10331 down_read(&vcpu->kvm->arch.apicv_update_lock);
10332 preempt_disable();
10333
10334 /* Do not activate APICV when APIC is disabled */
10335 activate = kvm_vcpu_apicv_activated(vcpu) &&
10336 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED);
10337
10338 if (apic->apicv_active == activate)
10339 goto out;
10340
10341 apic->apicv_active = activate;
10342 kvm_apic_update_apicv(vcpu);
10343 static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
10344
10345 /*
10346 * When APICv gets disabled, we may still have injected interrupts
10347 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
10348 * still active when the interrupt got accepted. Make sure
10349 * kvm_check_and_inject_events() is called to check for that.
10350 */
10351 if (!apic->apicv_active)
10352 kvm_make_request(KVM_REQ_EVENT, vcpu);
10353
10354 out:
10355 preempt_enable();
10356 up_read(&vcpu->kvm->arch.apicv_update_lock);
10357 }
10358 EXPORT_SYMBOL_GPL(__kvm_vcpu_update_apicv);
10359
kvm_vcpu_update_apicv(struct kvm_vcpu * vcpu)10360 static void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10361 {
10362 if (!lapic_in_kernel(vcpu))
10363 return;
10364
10365 /*
10366 * Due to sharing page tables across vCPUs, the xAPIC memslot must be
10367 * deleted if any vCPU has xAPIC virtualization and x2APIC enabled, but
10368 * and hardware doesn't support x2APIC virtualization. E.g. some AMD
10369 * CPUs support AVIC but not x2APIC. KVM still allows enabling AVIC in
10370 * this case so that KVM can the AVIC doorbell to inject interrupts to
10371 * running vCPUs, but KVM must not create SPTEs for the APIC base as
10372 * the vCPU would incorrectly be able to access the vAPIC page via MMIO
10373 * despite being in x2APIC mode. For simplicity, inhibiting the APIC
10374 * access page is sticky.
10375 */
10376 if (apic_x2apic_mode(vcpu->arch.apic) &&
10377 kvm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization)
10378 kvm_inhibit_apic_access_page(vcpu);
10379
10380 __kvm_vcpu_update_apicv(vcpu);
10381 }
10382
__kvm_set_or_clear_apicv_inhibit(struct kvm * kvm,enum kvm_apicv_inhibit reason,bool set)10383 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10384 enum kvm_apicv_inhibit reason, bool set)
10385 {
10386 unsigned long old, new;
10387
10388 lockdep_assert_held_write(&kvm->arch.apicv_update_lock);
10389
10390 if (!(kvm_x86_ops.required_apicv_inhibits & BIT(reason)))
10391 return;
10392
10393 old = new = kvm->arch.apicv_inhibit_reasons;
10394
10395 set_or_clear_apicv_inhibit(&new, reason, set);
10396
10397 if (!!old != !!new) {
10398 /*
10399 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid
10400 * false positives in the sanity check WARN in svm_vcpu_run().
10401 * This task will wait for all vCPUs to ack the kick IRQ before
10402 * updating apicv_inhibit_reasons, and all other vCPUs will
10403 * block on acquiring apicv_update_lock so that vCPUs can't
10404 * redo svm_vcpu_run() without seeing the new inhibit state.
10405 *
10406 * Note, holding apicv_update_lock and taking it in the read
10407 * side (handling the request) also prevents other vCPUs from
10408 * servicing the request with a stale apicv_inhibit_reasons.
10409 */
10410 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
10411 kvm->arch.apicv_inhibit_reasons = new;
10412 if (new) {
10413 unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
10414 int idx = srcu_read_lock(&kvm->srcu);
10415
10416 kvm_zap_gfn_range(kvm, gfn, gfn+1);
10417 srcu_read_unlock(&kvm->srcu, idx);
10418 }
10419 } else {
10420 kvm->arch.apicv_inhibit_reasons = new;
10421 }
10422 }
10423
kvm_set_or_clear_apicv_inhibit(struct kvm * kvm,enum kvm_apicv_inhibit reason,bool set)10424 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10425 enum kvm_apicv_inhibit reason, bool set)
10426 {
10427 if (!enable_apicv)
10428 return;
10429
10430 down_write(&kvm->arch.apicv_update_lock);
10431 __kvm_set_or_clear_apicv_inhibit(kvm, reason, set);
10432 up_write(&kvm->arch.apicv_update_lock);
10433 }
10434 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit);
10435
vcpu_scan_ioapic(struct kvm_vcpu * vcpu)10436 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
10437 {
10438 if (!kvm_apic_present(vcpu))
10439 return;
10440
10441 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
10442
10443 if (irqchip_split(vcpu->kvm))
10444 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
10445 else {
10446 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10447 if (ioapic_in_kernel(vcpu->kvm))
10448 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
10449 }
10450
10451 if (is_guest_mode(vcpu))
10452 vcpu->arch.load_eoi_exitmap_pending = true;
10453 else
10454 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
10455 }
10456
vcpu_load_eoi_exitmap(struct kvm_vcpu * vcpu)10457 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
10458 {
10459 u64 eoi_exit_bitmap[4];
10460
10461 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
10462 return;
10463
10464 if (to_hv_vcpu(vcpu)) {
10465 bitmap_or((ulong *)eoi_exit_bitmap,
10466 vcpu->arch.ioapic_handled_vectors,
10467 to_hv_synic(vcpu)->vec_bitmap, 256);
10468 static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
10469 return;
10470 }
10471
10472 static_call_cond(kvm_x86_load_eoi_exitmap)(
10473 vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors);
10474 }
10475
kvm_arch_guest_memory_reclaimed(struct kvm * kvm)10476 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
10477 {
10478 static_call_cond(kvm_x86_guest_memory_reclaimed)(kvm);
10479 }
10480
kvm_vcpu_reload_apic_access_page(struct kvm_vcpu * vcpu)10481 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
10482 {
10483 if (!lapic_in_kernel(vcpu))
10484 return;
10485
10486 static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu);
10487 }
10488
__kvm_request_immediate_exit(struct kvm_vcpu * vcpu)10489 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
10490 {
10491 smp_send_reschedule(vcpu->cpu);
10492 }
10493 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
10494
10495 /*
10496 * Called within kvm->srcu read side.
10497 * Returns 1 to let vcpu_run() continue the guest execution loop without
10498 * exiting to the userspace. Otherwise, the value will be returned to the
10499 * userspace.
10500 */
vcpu_enter_guest(struct kvm_vcpu * vcpu)10501 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
10502 {
10503 int r;
10504 bool req_int_win =
10505 dm_request_for_irq_injection(vcpu) &&
10506 kvm_cpu_accept_dm_intr(vcpu);
10507 fastpath_t exit_fastpath;
10508
10509 bool req_immediate_exit = false;
10510
10511 if (kvm_request_pending(vcpu)) {
10512 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) {
10513 r = -EIO;
10514 goto out;
10515 }
10516
10517 if (kvm_dirty_ring_check_request(vcpu)) {
10518 r = 0;
10519 goto out;
10520 }
10521
10522 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
10523 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
10524 r = 0;
10525 goto out;
10526 }
10527 }
10528 if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
10529 kvm_mmu_free_obsolete_roots(vcpu);
10530 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
10531 __kvm_migrate_timers(vcpu);
10532 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
10533 kvm_update_masterclock(vcpu->kvm);
10534 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
10535 kvm_gen_kvmclock_update(vcpu);
10536 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
10537 r = kvm_guest_time_update(vcpu);
10538 if (unlikely(r))
10539 goto out;
10540 }
10541 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
10542 kvm_mmu_sync_roots(vcpu);
10543 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
10544 kvm_mmu_load_pgd(vcpu);
10545
10546 /*
10547 * Note, the order matters here, as flushing "all" TLB entries
10548 * also flushes the "current" TLB entries, i.e. servicing the
10549 * flush "all" will clear any request to flush "current".
10550 */
10551 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
10552 kvm_vcpu_flush_tlb_all(vcpu);
10553
10554 kvm_service_local_tlb_flush_requests(vcpu);
10555
10556 /*
10557 * Fall back to a "full" guest flush if Hyper-V's precise
10558 * flushing fails. Note, Hyper-V's flushing is per-vCPU, but
10559 * the flushes are considered "remote" and not "local" because
10560 * the requests can be initiated from other vCPUs.
10561 */
10562 if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu) &&
10563 kvm_hv_vcpu_flush_tlb(vcpu))
10564 kvm_vcpu_flush_tlb_guest(vcpu);
10565
10566 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
10567 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
10568 r = 0;
10569 goto out;
10570 }
10571 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10572 if (is_guest_mode(vcpu))
10573 kvm_x86_ops.nested_ops->triple_fault(vcpu);
10574
10575 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10576 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
10577 vcpu->mmio_needed = 0;
10578 r = 0;
10579 goto out;
10580 }
10581 }
10582 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
10583 /* Page is swapped out. Do synthetic halt */
10584 vcpu->arch.apf.halted = true;
10585 r = 1;
10586 goto out;
10587 }
10588 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
10589 record_steal_time(vcpu);
10590 #ifdef CONFIG_KVM_SMM
10591 if (kvm_check_request(KVM_REQ_SMI, vcpu))
10592 process_smi(vcpu);
10593 #endif
10594 if (kvm_check_request(KVM_REQ_NMI, vcpu))
10595 process_nmi(vcpu);
10596 if (kvm_check_request(KVM_REQ_PMU, vcpu))
10597 kvm_pmu_handle_event(vcpu);
10598 if (kvm_check_request(KVM_REQ_PMI, vcpu))
10599 kvm_pmu_deliver_pmi(vcpu);
10600 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
10601 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
10602 if (test_bit(vcpu->arch.pending_ioapic_eoi,
10603 vcpu->arch.ioapic_handled_vectors)) {
10604 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
10605 vcpu->run->eoi.vector =
10606 vcpu->arch.pending_ioapic_eoi;
10607 r = 0;
10608 goto out;
10609 }
10610 }
10611 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
10612 vcpu_scan_ioapic(vcpu);
10613 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
10614 vcpu_load_eoi_exitmap(vcpu);
10615 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
10616 kvm_vcpu_reload_apic_access_page(vcpu);
10617 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
10618 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10619 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
10620 vcpu->run->system_event.ndata = 0;
10621 r = 0;
10622 goto out;
10623 }
10624 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
10625 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10626 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
10627 vcpu->run->system_event.ndata = 0;
10628 r = 0;
10629 goto out;
10630 }
10631 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
10632 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
10633
10634 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
10635 vcpu->run->hyperv = hv_vcpu->exit;
10636 r = 0;
10637 goto out;
10638 }
10639
10640 /*
10641 * KVM_REQ_HV_STIMER has to be processed after
10642 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
10643 * depend on the guest clock being up-to-date
10644 */
10645 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
10646 kvm_hv_process_stimers(vcpu);
10647 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
10648 kvm_vcpu_update_apicv(vcpu);
10649 if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
10650 kvm_check_async_pf_completion(vcpu);
10651 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
10652 static_call(kvm_x86_msr_filter_changed)(vcpu);
10653
10654 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
10655 static_call(kvm_x86_update_cpu_dirty_logging)(vcpu);
10656 }
10657
10658 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
10659 kvm_xen_has_interrupt(vcpu)) {
10660 ++vcpu->stat.req_event;
10661 r = kvm_apic_accept_events(vcpu);
10662 if (r < 0) {
10663 r = 0;
10664 goto out;
10665 }
10666 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
10667 r = 1;
10668 goto out;
10669 }
10670
10671 r = kvm_check_and_inject_events(vcpu, &req_immediate_exit);
10672 if (r < 0) {
10673 r = 0;
10674 goto out;
10675 }
10676 if (req_int_win)
10677 static_call(kvm_x86_enable_irq_window)(vcpu);
10678
10679 if (kvm_lapic_enabled(vcpu)) {
10680 update_cr8_intercept(vcpu);
10681 kvm_lapic_sync_to_vapic(vcpu);
10682 }
10683 }
10684
10685 r = kvm_mmu_reload(vcpu);
10686 if (unlikely(r)) {
10687 goto cancel_injection;
10688 }
10689
10690 preempt_disable();
10691
10692 static_call(kvm_x86_prepare_switch_to_guest)(vcpu);
10693
10694 /*
10695 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt
10696 * IPI are then delayed after guest entry, which ensures that they
10697 * result in virtual interrupt delivery.
10698 */
10699 local_irq_disable();
10700
10701 /* Store vcpu->apicv_active before vcpu->mode. */
10702 smp_store_release(&vcpu->mode, IN_GUEST_MODE);
10703
10704 kvm_vcpu_srcu_read_unlock(vcpu);
10705
10706 /*
10707 * 1) We should set ->mode before checking ->requests. Please see
10708 * the comment in kvm_vcpu_exiting_guest_mode().
10709 *
10710 * 2) For APICv, we should set ->mode before checking PID.ON. This
10711 * pairs with the memory barrier implicit in pi_test_and_set_on
10712 * (see vmx_deliver_posted_interrupt).
10713 *
10714 * 3) This also orders the write to mode from any reads to the page
10715 * tables done while the VCPU is running. Please see the comment
10716 * in kvm_flush_remote_tlbs.
10717 */
10718 smp_mb__after_srcu_read_unlock();
10719
10720 /*
10721 * Process pending posted interrupts to handle the case where the
10722 * notification IRQ arrived in the host, or was never sent (because the
10723 * target vCPU wasn't running). Do this regardless of the vCPU's APICv
10724 * status, KVM doesn't update assigned devices when APICv is inhibited,
10725 * i.e. they can post interrupts even if APICv is temporarily disabled.
10726 */
10727 if (kvm_lapic_enabled(vcpu))
10728 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10729
10730 if (kvm_vcpu_exit_request(vcpu)) {
10731 vcpu->mode = OUTSIDE_GUEST_MODE;
10732 smp_wmb();
10733 local_irq_enable();
10734 preempt_enable();
10735 kvm_vcpu_srcu_read_lock(vcpu);
10736 r = 1;
10737 goto cancel_injection;
10738 }
10739
10740 if (req_immediate_exit) {
10741 kvm_make_request(KVM_REQ_EVENT, vcpu);
10742 static_call(kvm_x86_request_immediate_exit)(vcpu);
10743 }
10744
10745 fpregs_assert_state_consistent();
10746 if (test_thread_flag(TIF_NEED_FPU_LOAD))
10747 switch_fpu_return();
10748
10749 if (vcpu->arch.guest_fpu.xfd_err)
10750 wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
10751
10752 if (unlikely(vcpu->arch.switch_db_regs)) {
10753 set_debugreg(0, 7);
10754 set_debugreg(vcpu->arch.eff_db[0], 0);
10755 set_debugreg(vcpu->arch.eff_db[1], 1);
10756 set_debugreg(vcpu->arch.eff_db[2], 2);
10757 set_debugreg(vcpu->arch.eff_db[3], 3);
10758 } else if (unlikely(hw_breakpoint_active())) {
10759 set_debugreg(0, 7);
10760 }
10761
10762 guest_timing_enter_irqoff();
10763
10764 for (;;) {
10765 /*
10766 * Assert that vCPU vs. VM APICv state is consistent. An APICv
10767 * update must kick and wait for all vCPUs before toggling the
10768 * per-VM state, and responsing vCPUs must wait for the update
10769 * to complete before servicing KVM_REQ_APICV_UPDATE.
10770 */
10771 WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) &&
10772 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED));
10773
10774 exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu);
10775 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
10776 break;
10777
10778 if (kvm_lapic_enabled(vcpu))
10779 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10780
10781 if (unlikely(kvm_vcpu_exit_request(vcpu))) {
10782 exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
10783 break;
10784 }
10785
10786 /* Note, VM-Exits that go down the "slow" path are accounted below. */
10787 ++vcpu->stat.exits;
10788 }
10789
10790 /*
10791 * Do this here before restoring debug registers on the host. And
10792 * since we do this before handling the vmexit, a DR access vmexit
10793 * can (a) read the correct value of the debug registers, (b) set
10794 * KVM_DEBUGREG_WONT_EXIT again.
10795 */
10796 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
10797 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
10798 static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
10799 kvm_update_dr0123(vcpu);
10800 kvm_update_dr7(vcpu);
10801 }
10802
10803 /*
10804 * If the guest has used debug registers, at least dr7
10805 * will be disabled while returning to the host.
10806 * If we don't have active breakpoints in the host, we don't
10807 * care about the messed up debug address registers. But if
10808 * we have some of them active, restore the old state.
10809 */
10810 if (hw_breakpoint_active())
10811 hw_breakpoint_restore();
10812
10813 vcpu->arch.last_vmentry_cpu = vcpu->cpu;
10814 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
10815
10816 vcpu->mode = OUTSIDE_GUEST_MODE;
10817 smp_wmb();
10818
10819 /*
10820 * Sync xfd before calling handle_exit_irqoff() which may
10821 * rely on the fact that guest_fpu::xfd is up-to-date (e.g.
10822 * in #NM irqoff handler).
10823 */
10824 if (vcpu->arch.xfd_no_write_intercept)
10825 fpu_sync_guest_vmexit_xfd_state();
10826
10827 static_call(kvm_x86_handle_exit_irqoff)(vcpu);
10828
10829 if (vcpu->arch.guest_fpu.xfd_err)
10830 wrmsrl(MSR_IA32_XFD_ERR, 0);
10831
10832 /*
10833 * Consume any pending interrupts, including the possible source of
10834 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
10835 * An instruction is required after local_irq_enable() to fully unblock
10836 * interrupts on processors that implement an interrupt shadow, the
10837 * stat.exits increment will do nicely.
10838 */
10839 kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
10840 local_irq_enable();
10841 ++vcpu->stat.exits;
10842 local_irq_disable();
10843 kvm_after_interrupt(vcpu);
10844
10845 /*
10846 * Wait until after servicing IRQs to account guest time so that any
10847 * ticks that occurred while running the guest are properly accounted
10848 * to the guest. Waiting until IRQs are enabled degrades the accuracy
10849 * of accounting via context tracking, but the loss of accuracy is
10850 * acceptable for all known use cases.
10851 */
10852 guest_timing_exit_irqoff();
10853
10854 local_irq_enable();
10855 preempt_enable();
10856
10857 kvm_vcpu_srcu_read_lock(vcpu);
10858
10859 /*
10860 * Profile KVM exit RIPs:
10861 */
10862 if (unlikely(prof_on == KVM_PROFILING)) {
10863 unsigned long rip = kvm_rip_read(vcpu);
10864 profile_hit(KVM_PROFILING, (void *)rip);
10865 }
10866
10867 if (unlikely(vcpu->arch.tsc_always_catchup))
10868 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
10869
10870 if (vcpu->arch.apic_attention)
10871 kvm_lapic_sync_from_vapic(vcpu);
10872
10873 r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
10874 return r;
10875
10876 cancel_injection:
10877 if (req_immediate_exit)
10878 kvm_make_request(KVM_REQ_EVENT, vcpu);
10879 static_call(kvm_x86_cancel_injection)(vcpu);
10880 if (unlikely(vcpu->arch.apic_attention))
10881 kvm_lapic_sync_from_vapic(vcpu);
10882 out:
10883 return r;
10884 }
10885
10886 /* Called within kvm->srcu read side. */
vcpu_block(struct kvm_vcpu * vcpu)10887 static inline int vcpu_block(struct kvm_vcpu *vcpu)
10888 {
10889 bool hv_timer;
10890
10891 if (!kvm_arch_vcpu_runnable(vcpu)) {
10892 /*
10893 * Switch to the software timer before halt-polling/blocking as
10894 * the guest's timer may be a break event for the vCPU, and the
10895 * hypervisor timer runs only when the CPU is in guest mode.
10896 * Switch before halt-polling so that KVM recognizes an expired
10897 * timer before blocking.
10898 */
10899 hv_timer = kvm_lapic_hv_timer_in_use(vcpu);
10900 if (hv_timer)
10901 kvm_lapic_switch_to_sw_timer(vcpu);
10902
10903 kvm_vcpu_srcu_read_unlock(vcpu);
10904 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
10905 kvm_vcpu_halt(vcpu);
10906 else
10907 kvm_vcpu_block(vcpu);
10908 kvm_vcpu_srcu_read_lock(vcpu);
10909
10910 if (hv_timer)
10911 kvm_lapic_switch_to_hv_timer(vcpu);
10912
10913 /*
10914 * If the vCPU is not runnable, a signal or another host event
10915 * of some kind is pending; service it without changing the
10916 * vCPU's activity state.
10917 */
10918 if (!kvm_arch_vcpu_runnable(vcpu))
10919 return 1;
10920 }
10921
10922 /*
10923 * Evaluate nested events before exiting the halted state. This allows
10924 * the halt state to be recorded properly in the VMCS12's activity
10925 * state field (AMD does not have a similar field and a VM-Exit always
10926 * causes a spurious wakeup from HLT).
10927 */
10928 if (is_guest_mode(vcpu)) {
10929 if (kvm_check_nested_events(vcpu) < 0)
10930 return 0;
10931 }
10932
10933 if (kvm_apic_accept_events(vcpu) < 0)
10934 return 0;
10935 switch(vcpu->arch.mp_state) {
10936 case KVM_MP_STATE_HALTED:
10937 case KVM_MP_STATE_AP_RESET_HOLD:
10938 vcpu->arch.pv.pv_unhalted = false;
10939 vcpu->arch.mp_state =
10940 KVM_MP_STATE_RUNNABLE;
10941 fallthrough;
10942 case KVM_MP_STATE_RUNNABLE:
10943 vcpu->arch.apf.halted = false;
10944 break;
10945 case KVM_MP_STATE_INIT_RECEIVED:
10946 break;
10947 default:
10948 WARN_ON_ONCE(1);
10949 break;
10950 }
10951 return 1;
10952 }
10953
kvm_vcpu_running(struct kvm_vcpu * vcpu)10954 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
10955 {
10956 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
10957 !vcpu->arch.apf.halted);
10958 }
10959
10960 /* Called within kvm->srcu read side. */
vcpu_run(struct kvm_vcpu * vcpu)10961 static int vcpu_run(struct kvm_vcpu *vcpu)
10962 {
10963 int r;
10964
10965 vcpu->arch.l1tf_flush_l1d = true;
10966
10967 for (;;) {
10968 /*
10969 * If another guest vCPU requests a PV TLB flush in the middle
10970 * of instruction emulation, the rest of the emulation could
10971 * use a stale page translation. Assume that any code after
10972 * this point can start executing an instruction.
10973 */
10974 vcpu->arch.at_instruction_boundary = false;
10975 if (kvm_vcpu_running(vcpu)) {
10976 r = vcpu_enter_guest(vcpu);
10977 } else {
10978 r = vcpu_block(vcpu);
10979 }
10980
10981 if (r <= 0)
10982 break;
10983
10984 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
10985 if (kvm_xen_has_pending_events(vcpu))
10986 kvm_xen_inject_pending_events(vcpu);
10987
10988 if (kvm_cpu_has_pending_timer(vcpu))
10989 kvm_inject_pending_timer_irqs(vcpu);
10990
10991 if (dm_request_for_irq_injection(vcpu) &&
10992 kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
10993 r = 0;
10994 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
10995 ++vcpu->stat.request_irq_exits;
10996 break;
10997 }
10998
10999 if (__xfer_to_guest_mode_work_pending()) {
11000 kvm_vcpu_srcu_read_unlock(vcpu);
11001 r = xfer_to_guest_mode_handle_work(vcpu);
11002 kvm_vcpu_srcu_read_lock(vcpu);
11003 if (r)
11004 return r;
11005 }
11006 }
11007
11008 return r;
11009 }
11010
complete_emulated_io(struct kvm_vcpu * vcpu)11011 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
11012 {
11013 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
11014 }
11015
complete_emulated_pio(struct kvm_vcpu * vcpu)11016 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
11017 {
11018 BUG_ON(!vcpu->arch.pio.count);
11019
11020 return complete_emulated_io(vcpu);
11021 }
11022
11023 /*
11024 * Implements the following, as a state machine:
11025 *
11026 * read:
11027 * for each fragment
11028 * for each mmio piece in the fragment
11029 * write gpa, len
11030 * exit
11031 * copy data
11032 * execute insn
11033 *
11034 * write:
11035 * for each fragment
11036 * for each mmio piece in the fragment
11037 * write gpa, len
11038 * copy data
11039 * exit
11040 */
complete_emulated_mmio(struct kvm_vcpu * vcpu)11041 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
11042 {
11043 struct kvm_run *run = vcpu->run;
11044 struct kvm_mmio_fragment *frag;
11045 unsigned len;
11046
11047 BUG_ON(!vcpu->mmio_needed);
11048
11049 /* Complete previous fragment */
11050 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
11051 len = min(8u, frag->len);
11052 if (!vcpu->mmio_is_write)
11053 memcpy(frag->data, run->mmio.data, len);
11054
11055 if (frag->len <= 8) {
11056 /* Switch to the next fragment. */
11057 frag++;
11058 vcpu->mmio_cur_fragment++;
11059 } else {
11060 /* Go forward to the next mmio piece. */
11061 frag->data += len;
11062 frag->gpa += len;
11063 frag->len -= len;
11064 }
11065
11066 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
11067 vcpu->mmio_needed = 0;
11068
11069 /* FIXME: return into emulator if single-stepping. */
11070 if (vcpu->mmio_is_write)
11071 return 1;
11072 vcpu->mmio_read_completed = 1;
11073 return complete_emulated_io(vcpu);
11074 }
11075
11076 run->exit_reason = KVM_EXIT_MMIO;
11077 run->mmio.phys_addr = frag->gpa;
11078 if (vcpu->mmio_is_write)
11079 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
11080 run->mmio.len = min(8u, frag->len);
11081 run->mmio.is_write = vcpu->mmio_is_write;
11082 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
11083 return 0;
11084 }
11085
11086 /* Swap (qemu) user FPU context for the guest FPU context. */
kvm_load_guest_fpu(struct kvm_vcpu * vcpu)11087 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
11088 {
11089 /* Exclude PKRU, it's restored separately immediately after VM-Exit. */
11090 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true);
11091 trace_kvm_fpu(1);
11092 }
11093
11094 /* When vcpu_run ends, restore user space FPU context. */
kvm_put_guest_fpu(struct kvm_vcpu * vcpu)11095 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
11096 {
11097 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false);
11098 ++vcpu->stat.fpu_reload;
11099 trace_kvm_fpu(0);
11100 }
11101
kvm_arch_vcpu_ioctl_run(struct kvm_vcpu * vcpu)11102 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
11103 {
11104 struct kvm_queued_exception *ex = &vcpu->arch.exception;
11105 struct kvm_run *kvm_run = vcpu->run;
11106 int r;
11107
11108 vcpu_load(vcpu);
11109 kvm_sigset_activate(vcpu);
11110 kvm_run->flags = 0;
11111 kvm_load_guest_fpu(vcpu);
11112
11113 kvm_vcpu_srcu_read_lock(vcpu);
11114 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
11115 if (kvm_run->immediate_exit) {
11116 r = -EINTR;
11117 goto out;
11118 }
11119
11120 /*
11121 * Don't bother switching APIC timer emulation from the
11122 * hypervisor timer to the software timer, the only way for the
11123 * APIC timer to be active is if userspace stuffed vCPU state,
11124 * i.e. put the vCPU into a nonsensical state. Only an INIT
11125 * will transition the vCPU out of UNINITIALIZED (without more
11126 * state stuffing from userspace), which will reset the local
11127 * APIC and thus cancel the timer or drop the IRQ (if the timer
11128 * already expired).
11129 */
11130 kvm_vcpu_srcu_read_unlock(vcpu);
11131 kvm_vcpu_block(vcpu);
11132 kvm_vcpu_srcu_read_lock(vcpu);
11133
11134 if (kvm_apic_accept_events(vcpu) < 0) {
11135 r = 0;
11136 goto out;
11137 }
11138 r = -EAGAIN;
11139 if (signal_pending(current)) {
11140 r = -EINTR;
11141 kvm_run->exit_reason = KVM_EXIT_INTR;
11142 ++vcpu->stat.signal_exits;
11143 }
11144 goto out;
11145 }
11146
11147 if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) ||
11148 (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) {
11149 r = -EINVAL;
11150 goto out;
11151 }
11152
11153 if (kvm_run->kvm_dirty_regs) {
11154 r = sync_regs(vcpu);
11155 if (r != 0)
11156 goto out;
11157 }
11158
11159 /* re-sync apic's tpr */
11160 if (!lapic_in_kernel(vcpu)) {
11161 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
11162 r = -EINVAL;
11163 goto out;
11164 }
11165 }
11166
11167 /*
11168 * If userspace set a pending exception and L2 is active, convert it to
11169 * a pending VM-Exit if L1 wants to intercept the exception.
11170 */
11171 if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) &&
11172 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector,
11173 ex->error_code)) {
11174 kvm_queue_exception_vmexit(vcpu, ex->vector,
11175 ex->has_error_code, ex->error_code,
11176 ex->has_payload, ex->payload);
11177 ex->injected = false;
11178 ex->pending = false;
11179 }
11180 vcpu->arch.exception_from_userspace = false;
11181
11182 if (unlikely(vcpu->arch.complete_userspace_io)) {
11183 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
11184 vcpu->arch.complete_userspace_io = NULL;
11185 r = cui(vcpu);
11186 if (r <= 0)
11187 goto out;
11188 } else {
11189 WARN_ON_ONCE(vcpu->arch.pio.count);
11190 WARN_ON_ONCE(vcpu->mmio_needed);
11191 }
11192
11193 if (kvm_run->immediate_exit) {
11194 r = -EINTR;
11195 goto out;
11196 }
11197
11198 r = static_call(kvm_x86_vcpu_pre_run)(vcpu);
11199 if (r <= 0)
11200 goto out;
11201
11202 r = vcpu_run(vcpu);
11203
11204 out:
11205 kvm_put_guest_fpu(vcpu);
11206 if (kvm_run->kvm_valid_regs)
11207 store_regs(vcpu);
11208 post_kvm_run_save(vcpu);
11209 kvm_vcpu_srcu_read_unlock(vcpu);
11210
11211 kvm_sigset_deactivate(vcpu);
11212 vcpu_put(vcpu);
11213 return r;
11214 }
11215
__get_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)11216 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11217 {
11218 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
11219 /*
11220 * We are here if userspace calls get_regs() in the middle of
11221 * instruction emulation. Registers state needs to be copied
11222 * back from emulation context to vcpu. Userspace shouldn't do
11223 * that usually, but some bad designed PV devices (vmware
11224 * backdoor interface) need this to work
11225 */
11226 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
11227 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11228 }
11229 regs->rax = kvm_rax_read(vcpu);
11230 regs->rbx = kvm_rbx_read(vcpu);
11231 regs->rcx = kvm_rcx_read(vcpu);
11232 regs->rdx = kvm_rdx_read(vcpu);
11233 regs->rsi = kvm_rsi_read(vcpu);
11234 regs->rdi = kvm_rdi_read(vcpu);
11235 regs->rsp = kvm_rsp_read(vcpu);
11236 regs->rbp = kvm_rbp_read(vcpu);
11237 #ifdef CONFIG_X86_64
11238 regs->r8 = kvm_r8_read(vcpu);
11239 regs->r9 = kvm_r9_read(vcpu);
11240 regs->r10 = kvm_r10_read(vcpu);
11241 regs->r11 = kvm_r11_read(vcpu);
11242 regs->r12 = kvm_r12_read(vcpu);
11243 regs->r13 = kvm_r13_read(vcpu);
11244 regs->r14 = kvm_r14_read(vcpu);
11245 regs->r15 = kvm_r15_read(vcpu);
11246 #endif
11247
11248 regs->rip = kvm_rip_read(vcpu);
11249 regs->rflags = kvm_get_rflags(vcpu);
11250 }
11251
kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)11252 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11253 {
11254 vcpu_load(vcpu);
11255 __get_regs(vcpu, regs);
11256 vcpu_put(vcpu);
11257 return 0;
11258 }
11259
__set_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)11260 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11261 {
11262 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
11263 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11264
11265 kvm_rax_write(vcpu, regs->rax);
11266 kvm_rbx_write(vcpu, regs->rbx);
11267 kvm_rcx_write(vcpu, regs->rcx);
11268 kvm_rdx_write(vcpu, regs->rdx);
11269 kvm_rsi_write(vcpu, regs->rsi);
11270 kvm_rdi_write(vcpu, regs->rdi);
11271 kvm_rsp_write(vcpu, regs->rsp);
11272 kvm_rbp_write(vcpu, regs->rbp);
11273 #ifdef CONFIG_X86_64
11274 kvm_r8_write(vcpu, regs->r8);
11275 kvm_r9_write(vcpu, regs->r9);
11276 kvm_r10_write(vcpu, regs->r10);
11277 kvm_r11_write(vcpu, regs->r11);
11278 kvm_r12_write(vcpu, regs->r12);
11279 kvm_r13_write(vcpu, regs->r13);
11280 kvm_r14_write(vcpu, regs->r14);
11281 kvm_r15_write(vcpu, regs->r15);
11282 #endif
11283
11284 kvm_rip_write(vcpu, regs->rip);
11285 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
11286
11287 vcpu->arch.exception.pending = false;
11288 vcpu->arch.exception_vmexit.pending = false;
11289
11290 kvm_make_request(KVM_REQ_EVENT, vcpu);
11291 }
11292
kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)11293 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11294 {
11295 vcpu_load(vcpu);
11296 __set_regs(vcpu, regs);
11297 vcpu_put(vcpu);
11298 return 0;
11299 }
11300
__get_sregs_common(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)11301 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11302 {
11303 struct desc_ptr dt;
11304
11305 if (vcpu->arch.guest_state_protected)
11306 goto skip_protected_regs;
11307
11308 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11309 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11310 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11311 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11312 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11313 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11314
11315 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11316 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11317
11318 static_call(kvm_x86_get_idt)(vcpu, &dt);
11319 sregs->idt.limit = dt.size;
11320 sregs->idt.base = dt.address;
11321 static_call(kvm_x86_get_gdt)(vcpu, &dt);
11322 sregs->gdt.limit = dt.size;
11323 sregs->gdt.base = dt.address;
11324
11325 sregs->cr2 = vcpu->arch.cr2;
11326 sregs->cr3 = kvm_read_cr3(vcpu);
11327
11328 skip_protected_regs:
11329 sregs->cr0 = kvm_read_cr0(vcpu);
11330 sregs->cr4 = kvm_read_cr4(vcpu);
11331 sregs->cr8 = kvm_get_cr8(vcpu);
11332 sregs->efer = vcpu->arch.efer;
11333 sregs->apic_base = kvm_get_apic_base(vcpu);
11334 }
11335
__get_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)11336 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11337 {
11338 __get_sregs_common(vcpu, sregs);
11339
11340 if (vcpu->arch.guest_state_protected)
11341 return;
11342
11343 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
11344 set_bit(vcpu->arch.interrupt.nr,
11345 (unsigned long *)sregs->interrupt_bitmap);
11346 }
11347
__get_sregs2(struct kvm_vcpu * vcpu,struct kvm_sregs2 * sregs2)11348 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11349 {
11350 int i;
11351
11352 __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
11353
11354 if (vcpu->arch.guest_state_protected)
11355 return;
11356
11357 if (is_pae_paging(vcpu)) {
11358 for (i = 0 ; i < 4 ; i++)
11359 sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
11360 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
11361 }
11362 }
11363
kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)11364 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
11365 struct kvm_sregs *sregs)
11366 {
11367 vcpu_load(vcpu);
11368 __get_sregs(vcpu, sregs);
11369 vcpu_put(vcpu);
11370 return 0;
11371 }
11372
kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)11373 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
11374 struct kvm_mp_state *mp_state)
11375 {
11376 int r;
11377
11378 vcpu_load(vcpu);
11379 if (kvm_mpx_supported())
11380 kvm_load_guest_fpu(vcpu);
11381
11382 r = kvm_apic_accept_events(vcpu);
11383 if (r < 0)
11384 goto out;
11385 r = 0;
11386
11387 if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
11388 vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
11389 vcpu->arch.pv.pv_unhalted)
11390 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
11391 else
11392 mp_state->mp_state = vcpu->arch.mp_state;
11393
11394 out:
11395 if (kvm_mpx_supported())
11396 kvm_put_guest_fpu(vcpu);
11397 vcpu_put(vcpu);
11398 return r;
11399 }
11400
kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)11401 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
11402 struct kvm_mp_state *mp_state)
11403 {
11404 int ret = -EINVAL;
11405
11406 vcpu_load(vcpu);
11407
11408 switch (mp_state->mp_state) {
11409 case KVM_MP_STATE_UNINITIALIZED:
11410 case KVM_MP_STATE_HALTED:
11411 case KVM_MP_STATE_AP_RESET_HOLD:
11412 case KVM_MP_STATE_INIT_RECEIVED:
11413 case KVM_MP_STATE_SIPI_RECEIVED:
11414 if (!lapic_in_kernel(vcpu))
11415 goto out;
11416 break;
11417
11418 case KVM_MP_STATE_RUNNABLE:
11419 break;
11420
11421 default:
11422 goto out;
11423 }
11424
11425 /*
11426 * Pending INITs are reported using KVM_SET_VCPU_EVENTS, disallow
11427 * forcing the guest into INIT/SIPI if those events are supposed to be
11428 * blocked. KVM prioritizes SMI over INIT, so reject INIT/SIPI state
11429 * if an SMI is pending as well.
11430 */
11431 if ((!kvm_apic_init_sipi_allowed(vcpu) || vcpu->arch.smi_pending) &&
11432 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
11433 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
11434 goto out;
11435
11436 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
11437 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
11438 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
11439 } else
11440 vcpu->arch.mp_state = mp_state->mp_state;
11441 kvm_make_request(KVM_REQ_EVENT, vcpu);
11442
11443 ret = 0;
11444 out:
11445 vcpu_put(vcpu);
11446 return ret;
11447 }
11448
kvm_task_switch(struct kvm_vcpu * vcpu,u16 tss_selector,int idt_index,int reason,bool has_error_code,u32 error_code)11449 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
11450 int reason, bool has_error_code, u32 error_code)
11451 {
11452 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
11453 int ret;
11454
11455 init_emulate_ctxt(vcpu);
11456
11457 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
11458 has_error_code, error_code);
11459 if (ret) {
11460 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
11461 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
11462 vcpu->run->internal.ndata = 0;
11463 return 0;
11464 }
11465
11466 kvm_rip_write(vcpu, ctxt->eip);
11467 kvm_set_rflags(vcpu, ctxt->eflags);
11468 return 1;
11469 }
11470 EXPORT_SYMBOL_GPL(kvm_task_switch);
11471
kvm_is_valid_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)11472 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11473 {
11474 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
11475 /*
11476 * When EFER.LME and CR0.PG are set, the processor is in
11477 * 64-bit mode (though maybe in a 32-bit code segment).
11478 * CR4.PAE and EFER.LMA must be set.
11479 */
11480 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
11481 return false;
11482 if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3))
11483 return false;
11484 } else {
11485 /*
11486 * Not in 64-bit mode: EFER.LMA is clear and the code
11487 * segment cannot be 64-bit.
11488 */
11489 if (sregs->efer & EFER_LMA || sregs->cs.l)
11490 return false;
11491 }
11492
11493 return kvm_is_valid_cr4(vcpu, sregs->cr4) &&
11494 kvm_is_valid_cr0(vcpu, sregs->cr0);
11495 }
11496
__set_sregs_common(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs,int * mmu_reset_needed,bool update_pdptrs)11497 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
11498 int *mmu_reset_needed, bool update_pdptrs)
11499 {
11500 struct msr_data apic_base_msr;
11501 int idx;
11502 struct desc_ptr dt;
11503
11504 if (!kvm_is_valid_sregs(vcpu, sregs))
11505 return -EINVAL;
11506
11507 apic_base_msr.data = sregs->apic_base;
11508 apic_base_msr.host_initiated = true;
11509 if (kvm_set_apic_base(vcpu, &apic_base_msr))
11510 return -EINVAL;
11511
11512 if (vcpu->arch.guest_state_protected)
11513 return 0;
11514
11515 dt.size = sregs->idt.limit;
11516 dt.address = sregs->idt.base;
11517 static_call(kvm_x86_set_idt)(vcpu, &dt);
11518 dt.size = sregs->gdt.limit;
11519 dt.address = sregs->gdt.base;
11520 static_call(kvm_x86_set_gdt)(vcpu, &dt);
11521
11522 vcpu->arch.cr2 = sregs->cr2;
11523 *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
11524 vcpu->arch.cr3 = sregs->cr3;
11525 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11526 static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3);
11527
11528 kvm_set_cr8(vcpu, sregs->cr8);
11529
11530 *mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
11531 static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
11532
11533 *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
11534 static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
11535 vcpu->arch.cr0 = sregs->cr0;
11536
11537 *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
11538 static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
11539
11540 if (update_pdptrs) {
11541 idx = srcu_read_lock(&vcpu->kvm->srcu);
11542 if (is_pae_paging(vcpu)) {
11543 load_pdptrs(vcpu, kvm_read_cr3(vcpu));
11544 *mmu_reset_needed = 1;
11545 }
11546 srcu_read_unlock(&vcpu->kvm->srcu, idx);
11547 }
11548
11549 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11550 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11551 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11552 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11553 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11554 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11555
11556 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11557 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11558
11559 update_cr8_intercept(vcpu);
11560
11561 /* Older userspace won't unhalt the vcpu on reset. */
11562 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
11563 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
11564 !is_protmode(vcpu))
11565 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11566
11567 return 0;
11568 }
11569
__set_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)11570 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11571 {
11572 int pending_vec, max_bits;
11573 int mmu_reset_needed = 0;
11574 int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
11575
11576 if (ret)
11577 return ret;
11578
11579 if (mmu_reset_needed)
11580 kvm_mmu_reset_context(vcpu);
11581
11582 max_bits = KVM_NR_INTERRUPTS;
11583 pending_vec = find_first_bit(
11584 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
11585
11586 if (pending_vec < max_bits) {
11587 kvm_queue_interrupt(vcpu, pending_vec, false);
11588 pr_debug("Set back pending irq %d\n", pending_vec);
11589 kvm_make_request(KVM_REQ_EVENT, vcpu);
11590 }
11591 return 0;
11592 }
11593
__set_sregs2(struct kvm_vcpu * vcpu,struct kvm_sregs2 * sregs2)11594 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11595 {
11596 int mmu_reset_needed = 0;
11597 bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
11598 bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
11599 !(sregs2->efer & EFER_LMA);
11600 int i, ret;
11601
11602 if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
11603 return -EINVAL;
11604
11605 if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
11606 return -EINVAL;
11607
11608 ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
11609 &mmu_reset_needed, !valid_pdptrs);
11610 if (ret)
11611 return ret;
11612
11613 if (valid_pdptrs) {
11614 for (i = 0; i < 4 ; i++)
11615 kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
11616
11617 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
11618 mmu_reset_needed = 1;
11619 vcpu->arch.pdptrs_from_userspace = true;
11620 }
11621 if (mmu_reset_needed)
11622 kvm_mmu_reset_context(vcpu);
11623 return 0;
11624 }
11625
kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)11626 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
11627 struct kvm_sregs *sregs)
11628 {
11629 int ret;
11630
11631 vcpu_load(vcpu);
11632 ret = __set_sregs(vcpu, sregs);
11633 vcpu_put(vcpu);
11634 return ret;
11635 }
11636
kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm * kvm)11637 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm)
11638 {
11639 bool set = false;
11640 struct kvm_vcpu *vcpu;
11641 unsigned long i;
11642
11643 if (!enable_apicv)
11644 return;
11645
11646 down_write(&kvm->arch.apicv_update_lock);
11647
11648 kvm_for_each_vcpu(i, vcpu, kvm) {
11649 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) {
11650 set = true;
11651 break;
11652 }
11653 }
11654 __kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set);
11655 up_write(&kvm->arch.apicv_update_lock);
11656 }
11657
kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu * vcpu,struct kvm_guest_debug * dbg)11658 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
11659 struct kvm_guest_debug *dbg)
11660 {
11661 unsigned long rflags;
11662 int i, r;
11663
11664 if (vcpu->arch.guest_state_protected)
11665 return -EINVAL;
11666
11667 vcpu_load(vcpu);
11668
11669 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
11670 r = -EBUSY;
11671 if (kvm_is_exception_pending(vcpu))
11672 goto out;
11673 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
11674 kvm_queue_exception(vcpu, DB_VECTOR);
11675 else
11676 kvm_queue_exception(vcpu, BP_VECTOR);
11677 }
11678
11679 /*
11680 * Read rflags as long as potentially injected trace flags are still
11681 * filtered out.
11682 */
11683 rflags = kvm_get_rflags(vcpu);
11684
11685 vcpu->guest_debug = dbg->control;
11686 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
11687 vcpu->guest_debug = 0;
11688
11689 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
11690 for (i = 0; i < KVM_NR_DB_REGS; ++i)
11691 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
11692 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
11693 } else {
11694 for (i = 0; i < KVM_NR_DB_REGS; i++)
11695 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
11696 }
11697 kvm_update_dr7(vcpu);
11698
11699 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
11700 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
11701
11702 /*
11703 * Trigger an rflags update that will inject or remove the trace
11704 * flags.
11705 */
11706 kvm_set_rflags(vcpu, rflags);
11707
11708 static_call(kvm_x86_update_exception_bitmap)(vcpu);
11709
11710 kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm);
11711
11712 r = 0;
11713
11714 out:
11715 vcpu_put(vcpu);
11716 return r;
11717 }
11718
11719 /*
11720 * Translate a guest virtual address to a guest physical address.
11721 */
kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu * vcpu,struct kvm_translation * tr)11722 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
11723 struct kvm_translation *tr)
11724 {
11725 unsigned long vaddr = tr->linear_address;
11726 gpa_t gpa;
11727 int idx;
11728
11729 vcpu_load(vcpu);
11730
11731 idx = srcu_read_lock(&vcpu->kvm->srcu);
11732 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
11733 srcu_read_unlock(&vcpu->kvm->srcu, idx);
11734 tr->physical_address = gpa;
11735 tr->valid = gpa != INVALID_GPA;
11736 tr->writeable = 1;
11737 tr->usermode = 0;
11738
11739 vcpu_put(vcpu);
11740 return 0;
11741 }
11742
kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)11743 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11744 {
11745 struct fxregs_state *fxsave;
11746
11747 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11748 return 0;
11749
11750 vcpu_load(vcpu);
11751
11752 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11753 memcpy(fpu->fpr, fxsave->st_space, 128);
11754 fpu->fcw = fxsave->cwd;
11755 fpu->fsw = fxsave->swd;
11756 fpu->ftwx = fxsave->twd;
11757 fpu->last_opcode = fxsave->fop;
11758 fpu->last_ip = fxsave->rip;
11759 fpu->last_dp = fxsave->rdp;
11760 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
11761
11762 vcpu_put(vcpu);
11763 return 0;
11764 }
11765
kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)11766 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11767 {
11768 struct fxregs_state *fxsave;
11769
11770 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11771 return 0;
11772
11773 vcpu_load(vcpu);
11774
11775 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11776
11777 memcpy(fxsave->st_space, fpu->fpr, 128);
11778 fxsave->cwd = fpu->fcw;
11779 fxsave->swd = fpu->fsw;
11780 fxsave->twd = fpu->ftwx;
11781 fxsave->fop = fpu->last_opcode;
11782 fxsave->rip = fpu->last_ip;
11783 fxsave->rdp = fpu->last_dp;
11784 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
11785
11786 vcpu_put(vcpu);
11787 return 0;
11788 }
11789
store_regs(struct kvm_vcpu * vcpu)11790 static void store_regs(struct kvm_vcpu *vcpu)
11791 {
11792 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
11793
11794 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
11795 __get_regs(vcpu, &vcpu->run->s.regs.regs);
11796
11797 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
11798 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
11799
11800 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
11801 kvm_vcpu_ioctl_x86_get_vcpu_events(
11802 vcpu, &vcpu->run->s.regs.events);
11803 }
11804
sync_regs(struct kvm_vcpu * vcpu)11805 static int sync_regs(struct kvm_vcpu *vcpu)
11806 {
11807 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
11808 __set_regs(vcpu, &vcpu->run->s.regs.regs);
11809 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
11810 }
11811
11812 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
11813 struct kvm_sregs sregs = vcpu->run->s.regs.sregs;
11814
11815 if (__set_sregs(vcpu, &sregs))
11816 return -EINVAL;
11817
11818 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
11819 }
11820
11821 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
11822 struct kvm_vcpu_events events = vcpu->run->s.regs.events;
11823
11824 if (kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events))
11825 return -EINVAL;
11826
11827 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
11828 }
11829
11830 return 0;
11831 }
11832
kvm_arch_vcpu_precreate(struct kvm * kvm,unsigned int id)11833 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
11834 {
11835 if (kvm_check_tsc_unstable() && kvm->created_vcpus)
11836 pr_warn_once("SMP vm created on host with unstable TSC; "
11837 "guest TSC will not be reliable\n");
11838
11839 if (!kvm->arch.max_vcpu_ids)
11840 kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS;
11841
11842 if (id >= kvm->arch.max_vcpu_ids)
11843 return -EINVAL;
11844
11845 return static_call(kvm_x86_vcpu_precreate)(kvm);
11846 }
11847
kvm_arch_vcpu_create(struct kvm_vcpu * vcpu)11848 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
11849 {
11850 struct page *page;
11851 int r;
11852
11853 vcpu->arch.last_vmentry_cpu = -1;
11854 vcpu->arch.regs_avail = ~0;
11855 vcpu->arch.regs_dirty = ~0;
11856
11857 kvm_gpc_init(&vcpu->arch.pv_time, vcpu->kvm, vcpu, KVM_HOST_USES_PFN);
11858
11859 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
11860 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11861 else
11862 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
11863
11864 r = kvm_mmu_create(vcpu);
11865 if (r < 0)
11866 return r;
11867
11868 if (irqchip_in_kernel(vcpu->kvm)) {
11869 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
11870 if (r < 0)
11871 goto fail_mmu_destroy;
11872
11873 /*
11874 * Defer evaluating inhibits until the vCPU is first run, as
11875 * this vCPU will not get notified of any changes until this
11876 * vCPU is visible to other vCPUs (marked online and added to
11877 * the set of vCPUs). Opportunistically mark APICv active as
11878 * VMX in particularly is highly unlikely to have inhibits.
11879 * Ignore the current per-VM APICv state so that vCPU creation
11880 * is guaranteed to run with a deterministic value, the request
11881 * will ensure the vCPU gets the correct state before VM-Entry.
11882 */
11883 if (enable_apicv) {
11884 vcpu->arch.apic->apicv_active = true;
11885 kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
11886 }
11887 } else
11888 static_branch_inc(&kvm_has_noapic_vcpu);
11889
11890 r = -ENOMEM;
11891
11892 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
11893 if (!page)
11894 goto fail_free_lapic;
11895 vcpu->arch.pio_data = page_address(page);
11896
11897 vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64),
11898 GFP_KERNEL_ACCOUNT);
11899 vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64),
11900 GFP_KERNEL_ACCOUNT);
11901 if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks)
11902 goto fail_free_mce_banks;
11903 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
11904
11905 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
11906 GFP_KERNEL_ACCOUNT))
11907 goto fail_free_mce_banks;
11908
11909 if (!alloc_emulate_ctxt(vcpu))
11910 goto free_wbinvd_dirty_mask;
11911
11912 if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) {
11913 pr_err("failed to allocate vcpu's fpu\n");
11914 goto free_emulate_ctxt;
11915 }
11916
11917 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
11918 vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
11919
11920 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
11921
11922 kvm_async_pf_hash_reset(vcpu);
11923
11924 vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap;
11925 kvm_pmu_init(vcpu);
11926
11927 vcpu->arch.pending_external_vector = -1;
11928 vcpu->arch.preempted_in_kernel = false;
11929
11930 #if IS_ENABLED(CONFIG_HYPERV)
11931 vcpu->arch.hv_root_tdp = INVALID_PAGE;
11932 #endif
11933
11934 r = static_call(kvm_x86_vcpu_create)(vcpu);
11935 if (r)
11936 goto free_guest_fpu;
11937
11938 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
11939 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
11940 kvm_xen_init_vcpu(vcpu);
11941 kvm_vcpu_mtrr_init(vcpu);
11942 vcpu_load(vcpu);
11943 kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz);
11944 kvm_vcpu_reset(vcpu, false);
11945 kvm_init_mmu(vcpu);
11946 vcpu_put(vcpu);
11947 return 0;
11948
11949 free_guest_fpu:
11950 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
11951 free_emulate_ctxt:
11952 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11953 free_wbinvd_dirty_mask:
11954 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11955 fail_free_mce_banks:
11956 kfree(vcpu->arch.mce_banks);
11957 kfree(vcpu->arch.mci_ctl2_banks);
11958 free_page((unsigned long)vcpu->arch.pio_data);
11959 fail_free_lapic:
11960 kvm_free_lapic(vcpu);
11961 fail_mmu_destroy:
11962 kvm_mmu_destroy(vcpu);
11963 return r;
11964 }
11965
kvm_arch_vcpu_postcreate(struct kvm_vcpu * vcpu)11966 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
11967 {
11968 struct kvm *kvm = vcpu->kvm;
11969
11970 if (mutex_lock_killable(&vcpu->mutex))
11971 return;
11972 vcpu_load(vcpu);
11973 kvm_synchronize_tsc(vcpu, 0);
11974 vcpu_put(vcpu);
11975
11976 /* poll control enabled by default */
11977 vcpu->arch.msr_kvm_poll_control = 1;
11978
11979 mutex_unlock(&vcpu->mutex);
11980
11981 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
11982 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
11983 KVMCLOCK_SYNC_PERIOD);
11984 }
11985
kvm_arch_vcpu_destroy(struct kvm_vcpu * vcpu)11986 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
11987 {
11988 int idx;
11989
11990 kvmclock_reset(vcpu);
11991
11992 static_call(kvm_x86_vcpu_free)(vcpu);
11993
11994 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11995 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11996 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
11997
11998 kvm_xen_destroy_vcpu(vcpu);
11999 kvm_hv_vcpu_uninit(vcpu);
12000 kvm_pmu_destroy(vcpu);
12001 kfree(vcpu->arch.mce_banks);
12002 kfree(vcpu->arch.mci_ctl2_banks);
12003 kvm_free_lapic(vcpu);
12004 idx = srcu_read_lock(&vcpu->kvm->srcu);
12005 kvm_mmu_destroy(vcpu);
12006 srcu_read_unlock(&vcpu->kvm->srcu, idx);
12007 free_page((unsigned long)vcpu->arch.pio_data);
12008 kvfree(vcpu->arch.cpuid_entries);
12009 if (!lapic_in_kernel(vcpu))
12010 static_branch_dec(&kvm_has_noapic_vcpu);
12011 }
12012
kvm_vcpu_reset(struct kvm_vcpu * vcpu,bool init_event)12013 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
12014 {
12015 struct kvm_cpuid_entry2 *cpuid_0x1;
12016 unsigned long old_cr0 = kvm_read_cr0(vcpu);
12017 unsigned long new_cr0;
12018
12019 /*
12020 * Several of the "set" flows, e.g. ->set_cr0(), read other registers
12021 * to handle side effects. RESET emulation hits those flows and relies
12022 * on emulated/virtualized registers, including those that are loaded
12023 * into hardware, to be zeroed at vCPU creation. Use CRs as a sentinel
12024 * to detect improper or missing initialization.
12025 */
12026 WARN_ON_ONCE(!init_event &&
12027 (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu)));
12028
12029 /*
12030 * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's
12031 * possible to INIT the vCPU while L2 is active. Force the vCPU back
12032 * into L1 as EFER.SVME is cleared on INIT (along with all other EFER
12033 * bits), i.e. virtualization is disabled.
12034 */
12035 if (is_guest_mode(vcpu))
12036 kvm_leave_nested(vcpu);
12037
12038 kvm_lapic_reset(vcpu, init_event);
12039
12040 WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu));
12041 vcpu->arch.hflags = 0;
12042
12043 vcpu->arch.smi_pending = 0;
12044 vcpu->arch.smi_count = 0;
12045 atomic_set(&vcpu->arch.nmi_queued, 0);
12046 vcpu->arch.nmi_pending = 0;
12047 vcpu->arch.nmi_injected = false;
12048 kvm_clear_interrupt_queue(vcpu);
12049 kvm_clear_exception_queue(vcpu);
12050
12051 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
12052 kvm_update_dr0123(vcpu);
12053 vcpu->arch.dr6 = DR6_ACTIVE_LOW;
12054 vcpu->arch.dr7 = DR7_FIXED_1;
12055 kvm_update_dr7(vcpu);
12056
12057 vcpu->arch.cr2 = 0;
12058
12059 kvm_make_request(KVM_REQ_EVENT, vcpu);
12060 vcpu->arch.apf.msr_en_val = 0;
12061 vcpu->arch.apf.msr_int_val = 0;
12062 vcpu->arch.st.msr_val = 0;
12063
12064 kvmclock_reset(vcpu);
12065
12066 kvm_clear_async_pf_completion_queue(vcpu);
12067 kvm_async_pf_hash_reset(vcpu);
12068 vcpu->arch.apf.halted = false;
12069
12070 if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) {
12071 struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate;
12072
12073 /*
12074 * All paths that lead to INIT are required to load the guest's
12075 * FPU state (because most paths are buried in KVM_RUN).
12076 */
12077 if (init_event)
12078 kvm_put_guest_fpu(vcpu);
12079
12080 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS);
12081 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR);
12082
12083 if (init_event)
12084 kvm_load_guest_fpu(vcpu);
12085 }
12086
12087 if (!init_event) {
12088 kvm_pmu_reset(vcpu);
12089 vcpu->arch.smbase = 0x30000;
12090
12091 vcpu->arch.msr_misc_features_enables = 0;
12092 vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL |
12093 MSR_IA32_MISC_ENABLE_BTS_UNAVAIL;
12094
12095 __kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP);
12096 __kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true);
12097 }
12098
12099 /* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */
12100 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
12101 kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP);
12102
12103 /*
12104 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
12105 * if no CPUID match is found. Note, it's impossible to get a match at
12106 * RESET since KVM emulates RESET before exposing the vCPU to userspace,
12107 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry
12108 * on RESET. But, go through the motions in case that's ever remedied.
12109 */
12110 cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1);
12111 kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600);
12112
12113 static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
12114
12115 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
12116 kvm_rip_write(vcpu, 0xfff0);
12117
12118 vcpu->arch.cr3 = 0;
12119 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
12120
12121 /*
12122 * CR0.CD/NW are set on RESET, preserved on INIT. Note, some versions
12123 * of Intel's SDM list CD/NW as being set on INIT, but they contradict
12124 * (or qualify) that with a footnote stating that CD/NW are preserved.
12125 */
12126 new_cr0 = X86_CR0_ET;
12127 if (init_event)
12128 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
12129 else
12130 new_cr0 |= X86_CR0_NW | X86_CR0_CD;
12131
12132 static_call(kvm_x86_set_cr0)(vcpu, new_cr0);
12133 static_call(kvm_x86_set_cr4)(vcpu, 0);
12134 static_call(kvm_x86_set_efer)(vcpu, 0);
12135 static_call(kvm_x86_update_exception_bitmap)(vcpu);
12136
12137 /*
12138 * On the standard CR0/CR4/EFER modification paths, there are several
12139 * complex conditions determining whether the MMU has to be reset and/or
12140 * which PCIDs have to be flushed. However, CR0.WP and the paging-related
12141 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush
12142 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as
12143 * CR0 will be '0' prior to RESET). So we only need to check CR0.PG here.
12144 */
12145 if (old_cr0 & X86_CR0_PG) {
12146 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12147 kvm_mmu_reset_context(vcpu);
12148 }
12149
12150 /*
12151 * Intel's SDM states that all TLB entries are flushed on INIT. AMD's
12152 * APM states the TLBs are untouched by INIT, but it also states that
12153 * the TLBs are flushed on "External initialization of the processor."
12154 * Flush the guest TLB regardless of vendor, there is no meaningful
12155 * benefit in relying on the guest to flush the TLB immediately after
12156 * INIT. A spurious TLB flush is benign and likely negligible from a
12157 * performance perspective.
12158 */
12159 if (init_event)
12160 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12161 }
12162 EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
12163
kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu * vcpu,u8 vector)12164 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
12165 {
12166 struct kvm_segment cs;
12167
12168 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
12169 cs.selector = vector << 8;
12170 cs.base = vector << 12;
12171 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
12172 kvm_rip_write(vcpu, 0);
12173 }
12174 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
12175
kvm_arch_hardware_enable(void)12176 int kvm_arch_hardware_enable(void)
12177 {
12178 struct kvm *kvm;
12179 struct kvm_vcpu *vcpu;
12180 unsigned long i;
12181 int ret;
12182 u64 local_tsc;
12183 u64 max_tsc = 0;
12184 bool stable, backwards_tsc = false;
12185
12186 kvm_user_return_msr_cpu_online();
12187
12188 ret = kvm_x86_check_processor_compatibility();
12189 if (ret)
12190 return ret;
12191
12192 ret = static_call(kvm_x86_hardware_enable)();
12193 if (ret != 0)
12194 return ret;
12195
12196 local_tsc = rdtsc();
12197 stable = !kvm_check_tsc_unstable();
12198 list_for_each_entry(kvm, &vm_list, vm_list) {
12199 kvm_for_each_vcpu(i, vcpu, kvm) {
12200 if (!stable && vcpu->cpu == smp_processor_id())
12201 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
12202 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
12203 backwards_tsc = true;
12204 if (vcpu->arch.last_host_tsc > max_tsc)
12205 max_tsc = vcpu->arch.last_host_tsc;
12206 }
12207 }
12208 }
12209
12210 /*
12211 * Sometimes, even reliable TSCs go backwards. This happens on
12212 * platforms that reset TSC during suspend or hibernate actions, but
12213 * maintain synchronization. We must compensate. Fortunately, we can
12214 * detect that condition here, which happens early in CPU bringup,
12215 * before any KVM threads can be running. Unfortunately, we can't
12216 * bring the TSCs fully up to date with real time, as we aren't yet far
12217 * enough into CPU bringup that we know how much real time has actually
12218 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
12219 * variables that haven't been updated yet.
12220 *
12221 * So we simply find the maximum observed TSC above, then record the
12222 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
12223 * the adjustment will be applied. Note that we accumulate
12224 * adjustments, in case multiple suspend cycles happen before some VCPU
12225 * gets a chance to run again. In the event that no KVM threads get a
12226 * chance to run, we will miss the entire elapsed period, as we'll have
12227 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
12228 * loose cycle time. This isn't too big a deal, since the loss will be
12229 * uniform across all VCPUs (not to mention the scenario is extremely
12230 * unlikely). It is possible that a second hibernate recovery happens
12231 * much faster than a first, causing the observed TSC here to be
12232 * smaller; this would require additional padding adjustment, which is
12233 * why we set last_host_tsc to the local tsc observed here.
12234 *
12235 * N.B. - this code below runs only on platforms with reliable TSC,
12236 * as that is the only way backwards_tsc is set above. Also note
12237 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
12238 * have the same delta_cyc adjustment applied if backwards_tsc
12239 * is detected. Note further, this adjustment is only done once,
12240 * as we reset last_host_tsc on all VCPUs to stop this from being
12241 * called multiple times (one for each physical CPU bringup).
12242 *
12243 * Platforms with unreliable TSCs don't have to deal with this, they
12244 * will be compensated by the logic in vcpu_load, which sets the TSC to
12245 * catchup mode. This will catchup all VCPUs to real time, but cannot
12246 * guarantee that they stay in perfect synchronization.
12247 */
12248 if (backwards_tsc) {
12249 u64 delta_cyc = max_tsc - local_tsc;
12250 list_for_each_entry(kvm, &vm_list, vm_list) {
12251 kvm->arch.backwards_tsc_observed = true;
12252 kvm_for_each_vcpu(i, vcpu, kvm) {
12253 vcpu->arch.tsc_offset_adjustment += delta_cyc;
12254 vcpu->arch.last_host_tsc = local_tsc;
12255 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
12256 }
12257
12258 /*
12259 * We have to disable TSC offset matching.. if you were
12260 * booting a VM while issuing an S4 host suspend....
12261 * you may have some problem. Solving this issue is
12262 * left as an exercise to the reader.
12263 */
12264 kvm->arch.last_tsc_nsec = 0;
12265 kvm->arch.last_tsc_write = 0;
12266 }
12267
12268 }
12269 return 0;
12270 }
12271
kvm_arch_hardware_disable(void)12272 void kvm_arch_hardware_disable(void)
12273 {
12274 static_call(kvm_x86_hardware_disable)();
12275 drop_user_return_notifiers();
12276 }
12277
kvm_vcpu_is_reset_bsp(struct kvm_vcpu * vcpu)12278 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
12279 {
12280 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
12281 }
12282
kvm_vcpu_is_bsp(struct kvm_vcpu * vcpu)12283 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
12284 {
12285 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
12286 }
12287
12288 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
12289 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
12290
kvm_arch_sched_in(struct kvm_vcpu * vcpu,int cpu)12291 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
12292 {
12293 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
12294
12295 vcpu->arch.l1tf_flush_l1d = true;
12296 if (pmu->version && unlikely(pmu->event_count)) {
12297 pmu->need_cleanup = true;
12298 kvm_make_request(KVM_REQ_PMU, vcpu);
12299 }
12300 static_call(kvm_x86_sched_in)(vcpu, cpu);
12301 }
12302
kvm_arch_free_vm(struct kvm * kvm)12303 void kvm_arch_free_vm(struct kvm *kvm)
12304 {
12305 kfree(to_kvm_hv(kvm)->hv_pa_pg);
12306 __kvm_arch_free_vm(kvm);
12307 }
12308
12309
kvm_arch_init_vm(struct kvm * kvm,unsigned long type)12310 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
12311 {
12312 int ret;
12313 unsigned long flags;
12314
12315 if (type)
12316 return -EINVAL;
12317
12318 ret = kvm_page_track_init(kvm);
12319 if (ret)
12320 goto out;
12321
12322 kvm_mmu_init_vm(kvm);
12323
12324 ret = static_call(kvm_x86_vm_init)(kvm);
12325 if (ret)
12326 goto out_uninit_mmu;
12327
12328 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
12329 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
12330 atomic_set(&kvm->arch.noncoherent_dma_count, 0);
12331
12332 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
12333 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
12334 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
12335 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
12336 &kvm->arch.irq_sources_bitmap);
12337
12338 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
12339 mutex_init(&kvm->arch.apic_map_lock);
12340 seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock);
12341 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
12342
12343 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
12344 pvclock_update_vm_gtod_copy(kvm);
12345 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
12346
12347 kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz;
12348 kvm->arch.guest_can_read_msr_platform_info = true;
12349 kvm->arch.enable_pmu = enable_pmu;
12350
12351 #if IS_ENABLED(CONFIG_HYPERV)
12352 spin_lock_init(&kvm->arch.hv_root_tdp_lock);
12353 kvm->arch.hv_root_tdp = INVALID_PAGE;
12354 #endif
12355
12356 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
12357 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
12358
12359 kvm_apicv_init(kvm);
12360 kvm_hv_init_vm(kvm);
12361 kvm_xen_init_vm(kvm);
12362
12363 return 0;
12364
12365 out_uninit_mmu:
12366 kvm_mmu_uninit_vm(kvm);
12367 kvm_page_track_cleanup(kvm);
12368 out:
12369 return ret;
12370 }
12371
kvm_arch_post_init_vm(struct kvm * kvm)12372 int kvm_arch_post_init_vm(struct kvm *kvm)
12373 {
12374 return kvm_mmu_post_init_vm(kvm);
12375 }
12376
kvm_unload_vcpu_mmu(struct kvm_vcpu * vcpu)12377 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
12378 {
12379 vcpu_load(vcpu);
12380 kvm_mmu_unload(vcpu);
12381 vcpu_put(vcpu);
12382 }
12383
kvm_unload_vcpu_mmus(struct kvm * kvm)12384 static void kvm_unload_vcpu_mmus(struct kvm *kvm)
12385 {
12386 unsigned long i;
12387 struct kvm_vcpu *vcpu;
12388
12389 kvm_for_each_vcpu(i, vcpu, kvm) {
12390 kvm_clear_async_pf_completion_queue(vcpu);
12391 kvm_unload_vcpu_mmu(vcpu);
12392 }
12393 }
12394
kvm_arch_sync_events(struct kvm * kvm)12395 void kvm_arch_sync_events(struct kvm *kvm)
12396 {
12397 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
12398 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
12399 kvm_free_pit(kvm);
12400 }
12401
12402 /**
12403 * __x86_set_memory_region: Setup KVM internal memory slot
12404 *
12405 * @kvm: the kvm pointer to the VM.
12406 * @id: the slot ID to setup.
12407 * @gpa: the GPA to install the slot (unused when @size == 0).
12408 * @size: the size of the slot. Set to zero to uninstall a slot.
12409 *
12410 * This function helps to setup a KVM internal memory slot. Specify
12411 * @size > 0 to install a new slot, while @size == 0 to uninstall a
12412 * slot. The return code can be one of the following:
12413 *
12414 * HVA: on success (uninstall will return a bogus HVA)
12415 * -errno: on error
12416 *
12417 * The caller should always use IS_ERR() to check the return value
12418 * before use. Note, the KVM internal memory slots are guaranteed to
12419 * remain valid and unchanged until the VM is destroyed, i.e., the
12420 * GPA->HVA translation will not change. However, the HVA is a user
12421 * address, i.e. its accessibility is not guaranteed, and must be
12422 * accessed via __copy_{to,from}_user().
12423 */
__x86_set_memory_region(struct kvm * kvm,int id,gpa_t gpa,u32 size)12424 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
12425 u32 size)
12426 {
12427 int i, r;
12428 unsigned long hva, old_npages;
12429 struct kvm_memslots *slots = kvm_memslots(kvm);
12430 struct kvm_memory_slot *slot;
12431
12432 /* Called with kvm->slots_lock held. */
12433 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
12434 return ERR_PTR_USR(-EINVAL);
12435
12436 slot = id_to_memslot(slots, id);
12437 if (size) {
12438 if (slot && slot->npages)
12439 return ERR_PTR_USR(-EEXIST);
12440
12441 /*
12442 * MAP_SHARED to prevent internal slot pages from being moved
12443 * by fork()/COW.
12444 */
12445 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
12446 MAP_SHARED | MAP_ANONYMOUS, 0);
12447 if (IS_ERR_VALUE(hva))
12448 return (void __user *)hva;
12449 } else {
12450 if (!slot || !slot->npages)
12451 return NULL;
12452
12453 old_npages = slot->npages;
12454 hva = slot->userspace_addr;
12455 }
12456
12457 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
12458 struct kvm_userspace_memory_region m;
12459
12460 m.slot = id | (i << 16);
12461 m.flags = 0;
12462 m.guest_phys_addr = gpa;
12463 m.userspace_addr = hva;
12464 m.memory_size = size;
12465 r = __kvm_set_memory_region(kvm, &m);
12466 if (r < 0)
12467 return ERR_PTR_USR(r);
12468 }
12469
12470 if (!size)
12471 vm_munmap(hva, old_npages * PAGE_SIZE);
12472
12473 return (void __user *)hva;
12474 }
12475 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
12476
kvm_arch_pre_destroy_vm(struct kvm * kvm)12477 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
12478 {
12479 kvm_mmu_pre_destroy_vm(kvm);
12480 }
12481
kvm_arch_destroy_vm(struct kvm * kvm)12482 void kvm_arch_destroy_vm(struct kvm *kvm)
12483 {
12484 if (current->mm == kvm->mm) {
12485 /*
12486 * Free memory regions allocated on behalf of userspace,
12487 * unless the memory map has changed due to process exit
12488 * or fd copying.
12489 */
12490 mutex_lock(&kvm->slots_lock);
12491 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
12492 0, 0);
12493 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
12494 0, 0);
12495 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
12496 mutex_unlock(&kvm->slots_lock);
12497 }
12498 kvm_unload_vcpu_mmus(kvm);
12499 static_call_cond(kvm_x86_vm_destroy)(kvm);
12500 kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
12501 kvm_pic_destroy(kvm);
12502 kvm_ioapic_destroy(kvm);
12503 kvm_destroy_vcpus(kvm);
12504 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
12505 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
12506 kvm_mmu_uninit_vm(kvm);
12507 kvm_page_track_cleanup(kvm);
12508 kvm_xen_destroy_vm(kvm);
12509 kvm_hv_destroy_vm(kvm);
12510 }
12511
memslot_rmap_free(struct kvm_memory_slot * slot)12512 static void memslot_rmap_free(struct kvm_memory_slot *slot)
12513 {
12514 int i;
12515
12516 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12517 kvfree(slot->arch.rmap[i]);
12518 slot->arch.rmap[i] = NULL;
12519 }
12520 }
12521
kvm_arch_free_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)12522 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
12523 {
12524 int i;
12525
12526 memslot_rmap_free(slot);
12527
12528 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12529 kvfree(slot->arch.lpage_info[i - 1]);
12530 slot->arch.lpage_info[i - 1] = NULL;
12531 }
12532
12533 kvm_page_track_free_memslot(slot);
12534 }
12535
memslot_rmap_alloc(struct kvm_memory_slot * slot,unsigned long npages)12536 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages)
12537 {
12538 const int sz = sizeof(*slot->arch.rmap[0]);
12539 int i;
12540
12541 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12542 int level = i + 1;
12543 int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12544
12545 if (slot->arch.rmap[i])
12546 continue;
12547
12548 slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
12549 if (!slot->arch.rmap[i]) {
12550 memslot_rmap_free(slot);
12551 return -ENOMEM;
12552 }
12553 }
12554
12555 return 0;
12556 }
12557
kvm_alloc_memslot_metadata(struct kvm * kvm,struct kvm_memory_slot * slot)12558 static int kvm_alloc_memslot_metadata(struct kvm *kvm,
12559 struct kvm_memory_slot *slot)
12560 {
12561 unsigned long npages = slot->npages;
12562 int i, r;
12563
12564 /*
12565 * Clear out the previous array pointers for the KVM_MR_MOVE case. The
12566 * old arrays will be freed by __kvm_set_memory_region() if installing
12567 * the new memslot is successful.
12568 */
12569 memset(&slot->arch, 0, sizeof(slot->arch));
12570
12571 if (kvm_memslots_have_rmaps(kvm)) {
12572 r = memslot_rmap_alloc(slot, npages);
12573 if (r)
12574 return r;
12575 }
12576
12577 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12578 struct kvm_lpage_info *linfo;
12579 unsigned long ugfn;
12580 int lpages;
12581 int level = i + 1;
12582
12583 lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12584
12585 linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
12586 if (!linfo)
12587 goto out_free;
12588
12589 slot->arch.lpage_info[i - 1] = linfo;
12590
12591 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
12592 linfo[0].disallow_lpage = 1;
12593 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
12594 linfo[lpages - 1].disallow_lpage = 1;
12595 ugfn = slot->userspace_addr >> PAGE_SHIFT;
12596 /*
12597 * If the gfn and userspace address are not aligned wrt each
12598 * other, disable large page support for this slot.
12599 */
12600 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
12601 unsigned long j;
12602
12603 for (j = 0; j < lpages; ++j)
12604 linfo[j].disallow_lpage = 1;
12605 }
12606 }
12607
12608 if (kvm_page_track_create_memslot(kvm, slot, npages))
12609 goto out_free;
12610
12611 return 0;
12612
12613 out_free:
12614 memslot_rmap_free(slot);
12615
12616 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12617 kvfree(slot->arch.lpage_info[i - 1]);
12618 slot->arch.lpage_info[i - 1] = NULL;
12619 }
12620 return -ENOMEM;
12621 }
12622
kvm_arch_memslots_updated(struct kvm * kvm,u64 gen)12623 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
12624 {
12625 struct kvm_vcpu *vcpu;
12626 unsigned long i;
12627
12628 /*
12629 * memslots->generation has been incremented.
12630 * mmio generation may have reached its maximum value.
12631 */
12632 kvm_mmu_invalidate_mmio_sptes(kvm, gen);
12633
12634 /* Force re-initialization of steal_time cache */
12635 kvm_for_each_vcpu(i, vcpu, kvm)
12636 kvm_vcpu_kick(vcpu);
12637 }
12638
kvm_arch_prepare_memory_region(struct kvm * kvm,const struct kvm_memory_slot * old,struct kvm_memory_slot * new,enum kvm_mr_change change)12639 int kvm_arch_prepare_memory_region(struct kvm *kvm,
12640 const struct kvm_memory_slot *old,
12641 struct kvm_memory_slot *new,
12642 enum kvm_mr_change change)
12643 {
12644 /*
12645 * KVM doesn't support moving memslots when there are external page
12646 * trackers attached to the VM, i.e. if KVMGT is in use.
12647 */
12648 if (change == KVM_MR_MOVE && kvm_page_track_has_external_user(kvm))
12649 return -EINVAL;
12650
12651 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) {
12652 if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn())
12653 return -EINVAL;
12654
12655 return kvm_alloc_memslot_metadata(kvm, new);
12656 }
12657
12658 if (change == KVM_MR_FLAGS_ONLY)
12659 memcpy(&new->arch, &old->arch, sizeof(old->arch));
12660 else if (WARN_ON_ONCE(change != KVM_MR_DELETE))
12661 return -EIO;
12662
12663 return 0;
12664 }
12665
12666
kvm_mmu_update_cpu_dirty_logging(struct kvm * kvm,bool enable)12667 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
12668 {
12669 int nr_slots;
12670
12671 if (!kvm_x86_ops.cpu_dirty_log_size)
12672 return;
12673
12674 nr_slots = atomic_read(&kvm->nr_memslots_dirty_logging);
12675 if ((enable && nr_slots == 1) || !nr_slots)
12676 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
12677 }
12678
kvm_mmu_slot_apply_flags(struct kvm * kvm,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)12679 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
12680 struct kvm_memory_slot *old,
12681 const struct kvm_memory_slot *new,
12682 enum kvm_mr_change change)
12683 {
12684 u32 old_flags = old ? old->flags : 0;
12685 u32 new_flags = new ? new->flags : 0;
12686 bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES;
12687
12688 /*
12689 * Update CPU dirty logging if dirty logging is being toggled. This
12690 * applies to all operations.
12691 */
12692 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)
12693 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
12694
12695 /*
12696 * Nothing more to do for RO slots (which can't be dirtied and can't be
12697 * made writable) or CREATE/MOVE/DELETE of a slot.
12698 *
12699 * For a memslot with dirty logging disabled:
12700 * CREATE: No dirty mappings will already exist.
12701 * MOVE/DELETE: The old mappings will already have been cleaned up by
12702 * kvm_arch_flush_shadow_memslot()
12703 *
12704 * For a memslot with dirty logging enabled:
12705 * CREATE: No shadow pages exist, thus nothing to write-protect
12706 * and no dirty bits to clear.
12707 * MOVE/DELETE: The old mappings will already have been cleaned up by
12708 * kvm_arch_flush_shadow_memslot().
12709 */
12710 if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY))
12711 return;
12712
12713 /*
12714 * READONLY and non-flags changes were filtered out above, and the only
12715 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
12716 * logging isn't being toggled on or off.
12717 */
12718 if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)))
12719 return;
12720
12721 if (!log_dirty_pages) {
12722 /*
12723 * Dirty logging tracks sptes in 4k granularity, meaning that
12724 * large sptes have to be split. If live migration succeeds,
12725 * the guest in the source machine will be destroyed and large
12726 * sptes will be created in the destination. However, if the
12727 * guest continues to run in the source machine (for example if
12728 * live migration fails), small sptes will remain around and
12729 * cause bad performance.
12730 *
12731 * Scan sptes if dirty logging has been stopped, dropping those
12732 * which can be collapsed into a single large-page spte. Later
12733 * page faults will create the large-page sptes.
12734 */
12735 kvm_mmu_zap_collapsible_sptes(kvm, new);
12736 } else {
12737 /*
12738 * Initially-all-set does not require write protecting any page,
12739 * because they're all assumed to be dirty.
12740 */
12741 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
12742 return;
12743
12744 if (READ_ONCE(eager_page_split))
12745 kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K);
12746
12747 if (kvm_x86_ops.cpu_dirty_log_size) {
12748 kvm_mmu_slot_leaf_clear_dirty(kvm, new);
12749 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
12750 } else {
12751 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
12752 }
12753
12754 /*
12755 * Unconditionally flush the TLBs after enabling dirty logging.
12756 * A flush is almost always going to be necessary (see below),
12757 * and unconditionally flushing allows the helpers to omit
12758 * the subtly complex checks when removing write access.
12759 *
12760 * Do the flush outside of mmu_lock to reduce the amount of
12761 * time mmu_lock is held. Flushing after dropping mmu_lock is
12762 * safe as KVM only needs to guarantee the slot is fully
12763 * write-protected before returning to userspace, i.e. before
12764 * userspace can consume the dirty status.
12765 *
12766 * Flushing outside of mmu_lock requires KVM to be careful when
12767 * making decisions based on writable status of an SPTE, e.g. a
12768 * !writable SPTE doesn't guarantee a CPU can't perform writes.
12769 *
12770 * Specifically, KVM also write-protects guest page tables to
12771 * monitor changes when using shadow paging, and must guarantee
12772 * no CPUs can write to those page before mmu_lock is dropped.
12773 * Because CPUs may have stale TLB entries at this point, a
12774 * !writable SPTE doesn't guarantee CPUs can't perform writes.
12775 *
12776 * KVM also allows making SPTES writable outside of mmu_lock,
12777 * e.g. to allow dirty logging without taking mmu_lock.
12778 *
12779 * To handle these scenarios, KVM uses a separate software-only
12780 * bit (MMU-writable) to track if a SPTE is !writable due to
12781 * a guest page table being write-protected (KVM clears the
12782 * MMU-writable flag when write-protecting for shadow paging).
12783 *
12784 * The use of MMU-writable is also the primary motivation for
12785 * the unconditional flush. Because KVM must guarantee that a
12786 * CPU doesn't contain stale, writable TLB entries for a
12787 * !MMU-writable SPTE, KVM must flush if it encounters any
12788 * MMU-writable SPTE regardless of whether the actual hardware
12789 * writable bit was set. I.e. KVM is almost guaranteed to need
12790 * to flush, while unconditionally flushing allows the "remove
12791 * write access" helpers to ignore MMU-writable entirely.
12792 *
12793 * See is_writable_pte() for more details (the case involving
12794 * access-tracked SPTEs is particularly relevant).
12795 */
12796 kvm_flush_remote_tlbs_memslot(kvm, new);
12797 }
12798 }
12799
kvm_arch_commit_memory_region(struct kvm * kvm,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)12800 void kvm_arch_commit_memory_region(struct kvm *kvm,
12801 struct kvm_memory_slot *old,
12802 const struct kvm_memory_slot *new,
12803 enum kvm_mr_change change)
12804 {
12805 if (change == KVM_MR_DELETE)
12806 kvm_page_track_delete_slot(kvm, old);
12807
12808 if (!kvm->arch.n_requested_mmu_pages &&
12809 (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) {
12810 unsigned long nr_mmu_pages;
12811
12812 nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO;
12813 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
12814 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
12815 }
12816
12817 kvm_mmu_slot_apply_flags(kvm, old, new, change);
12818
12819 /* Free the arrays associated with the old memslot. */
12820 if (change == KVM_MR_MOVE)
12821 kvm_arch_free_memslot(kvm, old);
12822 }
12823
kvm_guest_apic_has_interrupt(struct kvm_vcpu * vcpu)12824 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
12825 {
12826 return (is_guest_mode(vcpu) &&
12827 static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
12828 }
12829
kvm_vcpu_has_events(struct kvm_vcpu * vcpu)12830 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
12831 {
12832 if (!list_empty_careful(&vcpu->async_pf.done))
12833 return true;
12834
12835 if (kvm_apic_has_pending_init_or_sipi(vcpu) &&
12836 kvm_apic_init_sipi_allowed(vcpu))
12837 return true;
12838
12839 if (vcpu->arch.pv.pv_unhalted)
12840 return true;
12841
12842 if (kvm_is_exception_pending(vcpu))
12843 return true;
12844
12845 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12846 (vcpu->arch.nmi_pending &&
12847 static_call(kvm_x86_nmi_allowed)(vcpu, false)))
12848 return true;
12849
12850 #ifdef CONFIG_KVM_SMM
12851 if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
12852 (vcpu->arch.smi_pending &&
12853 static_call(kvm_x86_smi_allowed)(vcpu, false)))
12854 return true;
12855 #endif
12856
12857 if (kvm_test_request(KVM_REQ_PMI, vcpu))
12858 return true;
12859
12860 if (kvm_arch_interrupt_allowed(vcpu) &&
12861 (kvm_cpu_has_interrupt(vcpu) ||
12862 kvm_guest_apic_has_interrupt(vcpu)))
12863 return true;
12864
12865 if (kvm_hv_has_stimer_pending(vcpu))
12866 return true;
12867
12868 if (is_guest_mode(vcpu) &&
12869 kvm_x86_ops.nested_ops->has_events &&
12870 kvm_x86_ops.nested_ops->has_events(vcpu))
12871 return true;
12872
12873 if (kvm_xen_has_pending_events(vcpu))
12874 return true;
12875
12876 return false;
12877 }
12878
kvm_arch_vcpu_runnable(struct kvm_vcpu * vcpu)12879 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
12880 {
12881 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
12882 }
12883
kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu * vcpu)12884 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
12885 {
12886 if (kvm_vcpu_apicv_active(vcpu) &&
12887 static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu))
12888 return true;
12889
12890 return false;
12891 }
12892
kvm_arch_dy_runnable(struct kvm_vcpu * vcpu)12893 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
12894 {
12895 if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
12896 return true;
12897
12898 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12899 #ifdef CONFIG_KVM_SMM
12900 kvm_test_request(KVM_REQ_SMI, vcpu) ||
12901 #endif
12902 kvm_test_request(KVM_REQ_EVENT, vcpu))
12903 return true;
12904
12905 return kvm_arch_dy_has_pending_interrupt(vcpu);
12906 }
12907
kvm_arch_vcpu_in_kernel(struct kvm_vcpu * vcpu)12908 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
12909 {
12910 if (vcpu->arch.guest_state_protected)
12911 return true;
12912
12913 return vcpu->arch.preempted_in_kernel;
12914 }
12915
kvm_arch_vcpu_get_ip(struct kvm_vcpu * vcpu)12916 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
12917 {
12918 return kvm_rip_read(vcpu);
12919 }
12920
kvm_arch_vcpu_should_kick(struct kvm_vcpu * vcpu)12921 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
12922 {
12923 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
12924 }
12925
kvm_arch_interrupt_allowed(struct kvm_vcpu * vcpu)12926 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
12927 {
12928 return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
12929 }
12930
kvm_get_linear_rip(struct kvm_vcpu * vcpu)12931 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
12932 {
12933 /* Can't read the RIP when guest state is protected, just return 0 */
12934 if (vcpu->arch.guest_state_protected)
12935 return 0;
12936
12937 if (is_64_bit_mode(vcpu))
12938 return kvm_rip_read(vcpu);
12939 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
12940 kvm_rip_read(vcpu));
12941 }
12942 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
12943
kvm_is_linear_rip(struct kvm_vcpu * vcpu,unsigned long linear_rip)12944 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
12945 {
12946 return kvm_get_linear_rip(vcpu) == linear_rip;
12947 }
12948 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
12949
kvm_get_rflags(struct kvm_vcpu * vcpu)12950 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
12951 {
12952 unsigned long rflags;
12953
12954 rflags = static_call(kvm_x86_get_rflags)(vcpu);
12955 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
12956 rflags &= ~X86_EFLAGS_TF;
12957 return rflags;
12958 }
12959 EXPORT_SYMBOL_GPL(kvm_get_rflags);
12960
__kvm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)12961 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12962 {
12963 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
12964 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
12965 rflags |= X86_EFLAGS_TF;
12966 static_call(kvm_x86_set_rflags)(vcpu, rflags);
12967 }
12968
kvm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)12969 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12970 {
12971 __kvm_set_rflags(vcpu, rflags);
12972 kvm_make_request(KVM_REQ_EVENT, vcpu);
12973 }
12974 EXPORT_SYMBOL_GPL(kvm_set_rflags);
12975
kvm_async_pf_hash_fn(gfn_t gfn)12976 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
12977 {
12978 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
12979
12980 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
12981 }
12982
kvm_async_pf_next_probe(u32 key)12983 static inline u32 kvm_async_pf_next_probe(u32 key)
12984 {
12985 return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
12986 }
12987
kvm_add_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)12988 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12989 {
12990 u32 key = kvm_async_pf_hash_fn(gfn);
12991
12992 while (vcpu->arch.apf.gfns[key] != ~0)
12993 key = kvm_async_pf_next_probe(key);
12994
12995 vcpu->arch.apf.gfns[key] = gfn;
12996 }
12997
kvm_async_pf_gfn_slot(struct kvm_vcpu * vcpu,gfn_t gfn)12998 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
12999 {
13000 int i;
13001 u32 key = kvm_async_pf_hash_fn(gfn);
13002
13003 for (i = 0; i < ASYNC_PF_PER_VCPU &&
13004 (vcpu->arch.apf.gfns[key] != gfn &&
13005 vcpu->arch.apf.gfns[key] != ~0); i++)
13006 key = kvm_async_pf_next_probe(key);
13007
13008 return key;
13009 }
13010
kvm_find_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)13011 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13012 {
13013 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
13014 }
13015
kvm_del_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)13016 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13017 {
13018 u32 i, j, k;
13019
13020 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
13021
13022 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
13023 return;
13024
13025 while (true) {
13026 vcpu->arch.apf.gfns[i] = ~0;
13027 do {
13028 j = kvm_async_pf_next_probe(j);
13029 if (vcpu->arch.apf.gfns[j] == ~0)
13030 return;
13031 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
13032 /*
13033 * k lies cyclically in ]i,j]
13034 * | i.k.j |
13035 * |....j i.k.| or |.k..j i...|
13036 */
13037 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
13038 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
13039 i = j;
13040 }
13041 }
13042
apf_put_user_notpresent(struct kvm_vcpu * vcpu)13043 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
13044 {
13045 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
13046
13047 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
13048 sizeof(reason));
13049 }
13050
apf_put_user_ready(struct kvm_vcpu * vcpu,u32 token)13051 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
13052 {
13053 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13054
13055 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13056 &token, offset, sizeof(token));
13057 }
13058
apf_pageready_slot_free(struct kvm_vcpu * vcpu)13059 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
13060 {
13061 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13062 u32 val;
13063
13064 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13065 &val, offset, sizeof(val)))
13066 return false;
13067
13068 return !val;
13069 }
13070
kvm_can_deliver_async_pf(struct kvm_vcpu * vcpu)13071 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
13072 {
13073
13074 if (!kvm_pv_async_pf_enabled(vcpu))
13075 return false;
13076
13077 if (vcpu->arch.apf.send_user_only &&
13078 static_call(kvm_x86_get_cpl)(vcpu) == 0)
13079 return false;
13080
13081 if (is_guest_mode(vcpu)) {
13082 /*
13083 * L1 needs to opt into the special #PF vmexits that are
13084 * used to deliver async page faults.
13085 */
13086 return vcpu->arch.apf.delivery_as_pf_vmexit;
13087 } else {
13088 /*
13089 * Play it safe in case the guest temporarily disables paging.
13090 * The real mode IDT in particular is unlikely to have a #PF
13091 * exception setup.
13092 */
13093 return is_paging(vcpu);
13094 }
13095 }
13096
kvm_can_do_async_pf(struct kvm_vcpu * vcpu)13097 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
13098 {
13099 if (unlikely(!lapic_in_kernel(vcpu) ||
13100 kvm_event_needs_reinjection(vcpu) ||
13101 kvm_is_exception_pending(vcpu)))
13102 return false;
13103
13104 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
13105 return false;
13106
13107 /*
13108 * If interrupts are off we cannot even use an artificial
13109 * halt state.
13110 */
13111 return kvm_arch_interrupt_allowed(vcpu);
13112 }
13113
kvm_arch_async_page_not_present(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)13114 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
13115 struct kvm_async_pf *work)
13116 {
13117 struct x86_exception fault;
13118
13119 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
13120 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
13121
13122 if (kvm_can_deliver_async_pf(vcpu) &&
13123 !apf_put_user_notpresent(vcpu)) {
13124 fault.vector = PF_VECTOR;
13125 fault.error_code_valid = true;
13126 fault.error_code = 0;
13127 fault.nested_page_fault = false;
13128 fault.address = work->arch.token;
13129 fault.async_page_fault = true;
13130 kvm_inject_page_fault(vcpu, &fault);
13131 return true;
13132 } else {
13133 /*
13134 * It is not possible to deliver a paravirtualized asynchronous
13135 * page fault, but putting the guest in an artificial halt state
13136 * can be beneficial nevertheless: if an interrupt arrives, we
13137 * can deliver it timely and perhaps the guest will schedule
13138 * another process. When the instruction that triggered a page
13139 * fault is retried, hopefully the page will be ready in the host.
13140 */
13141 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
13142 return false;
13143 }
13144 }
13145
kvm_arch_async_page_present(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)13146 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
13147 struct kvm_async_pf *work)
13148 {
13149 struct kvm_lapic_irq irq = {
13150 .delivery_mode = APIC_DM_FIXED,
13151 .vector = vcpu->arch.apf.vec
13152 };
13153
13154 if (work->wakeup_all)
13155 work->arch.token = ~0; /* broadcast wakeup */
13156 else
13157 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
13158 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
13159
13160 if ((work->wakeup_all || work->notpresent_injected) &&
13161 kvm_pv_async_pf_enabled(vcpu) &&
13162 !apf_put_user_ready(vcpu, work->arch.token)) {
13163 vcpu->arch.apf.pageready_pending = true;
13164 kvm_apic_set_irq(vcpu, &irq, NULL);
13165 }
13166
13167 vcpu->arch.apf.halted = false;
13168 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
13169 }
13170
kvm_arch_async_page_present_queued(struct kvm_vcpu * vcpu)13171 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
13172 {
13173 kvm_make_request(KVM_REQ_APF_READY, vcpu);
13174 if (!vcpu->arch.apf.pageready_pending)
13175 kvm_vcpu_kick(vcpu);
13176 }
13177
kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu * vcpu)13178 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
13179 {
13180 if (!kvm_pv_async_pf_enabled(vcpu))
13181 return true;
13182 else
13183 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
13184 }
13185
kvm_arch_start_assignment(struct kvm * kvm)13186 void kvm_arch_start_assignment(struct kvm *kvm)
13187 {
13188 if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
13189 static_call_cond(kvm_x86_pi_start_assignment)(kvm);
13190 }
13191 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
13192
kvm_arch_end_assignment(struct kvm * kvm)13193 void kvm_arch_end_assignment(struct kvm *kvm)
13194 {
13195 atomic_dec(&kvm->arch.assigned_device_count);
13196 }
13197 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
13198
kvm_arch_has_assigned_device(struct kvm * kvm)13199 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm)
13200 {
13201 return raw_atomic_read(&kvm->arch.assigned_device_count);
13202 }
13203 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
13204
kvm_arch_register_noncoherent_dma(struct kvm * kvm)13205 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
13206 {
13207 atomic_inc(&kvm->arch.noncoherent_dma_count);
13208 }
13209 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
13210
kvm_arch_unregister_noncoherent_dma(struct kvm * kvm)13211 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
13212 {
13213 atomic_dec(&kvm->arch.noncoherent_dma_count);
13214 }
13215 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
13216
kvm_arch_has_noncoherent_dma(struct kvm * kvm)13217 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
13218 {
13219 return atomic_read(&kvm->arch.noncoherent_dma_count);
13220 }
13221 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
13222
kvm_arch_has_irq_bypass(void)13223 bool kvm_arch_has_irq_bypass(void)
13224 {
13225 return enable_apicv && irq_remapping_cap(IRQ_POSTING_CAP);
13226 }
13227
kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)13228 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
13229 struct irq_bypass_producer *prod)
13230 {
13231 struct kvm_kernel_irqfd *irqfd =
13232 container_of(cons, struct kvm_kernel_irqfd, consumer);
13233 int ret;
13234
13235 irqfd->producer = prod;
13236 kvm_arch_start_assignment(irqfd->kvm);
13237 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm,
13238 prod->irq, irqfd->gsi, 1);
13239
13240 if (ret)
13241 kvm_arch_end_assignment(irqfd->kvm);
13242
13243 return ret;
13244 }
13245
kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)13246 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
13247 struct irq_bypass_producer *prod)
13248 {
13249 int ret;
13250 struct kvm_kernel_irqfd *irqfd =
13251 container_of(cons, struct kvm_kernel_irqfd, consumer);
13252
13253 WARN_ON(irqfd->producer != prod);
13254 irqfd->producer = NULL;
13255
13256 /*
13257 * When producer of consumer is unregistered, we change back to
13258 * remapped mode, so we can re-use the current implementation
13259 * when the irq is masked/disabled or the consumer side (KVM
13260 * int this case doesn't want to receive the interrupts.
13261 */
13262 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
13263 if (ret)
13264 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
13265 " fails: %d\n", irqfd->consumer.token, ret);
13266
13267 kvm_arch_end_assignment(irqfd->kvm);
13268 }
13269
kvm_arch_update_irqfd_routing(struct kvm * kvm,unsigned int host_irq,uint32_t guest_irq,bool set)13270 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
13271 uint32_t guest_irq, bool set)
13272 {
13273 return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set);
13274 }
13275
kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry * old,struct kvm_kernel_irq_routing_entry * new)13276 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old,
13277 struct kvm_kernel_irq_routing_entry *new)
13278 {
13279 if (new->type != KVM_IRQ_ROUTING_MSI)
13280 return true;
13281
13282 return !!memcmp(&old->msi, &new->msi, sizeof(new->msi));
13283 }
13284
kvm_vector_hashing_enabled(void)13285 bool kvm_vector_hashing_enabled(void)
13286 {
13287 return vector_hashing;
13288 }
13289
kvm_arch_no_poll(struct kvm_vcpu * vcpu)13290 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
13291 {
13292 return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
13293 }
13294 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
13295
13296
kvm_spec_ctrl_test_value(u64 value)13297 int kvm_spec_ctrl_test_value(u64 value)
13298 {
13299 /*
13300 * test that setting IA32_SPEC_CTRL to given value
13301 * is allowed by the host processor
13302 */
13303
13304 u64 saved_value;
13305 unsigned long flags;
13306 int ret = 0;
13307
13308 local_irq_save(flags);
13309
13310 if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
13311 ret = 1;
13312 else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
13313 ret = 1;
13314 else
13315 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
13316
13317 local_irq_restore(flags);
13318
13319 return ret;
13320 }
13321 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
13322
kvm_fixup_and_inject_pf_error(struct kvm_vcpu * vcpu,gva_t gva,u16 error_code)13323 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
13324 {
13325 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
13326 struct x86_exception fault;
13327 u64 access = error_code &
13328 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
13329
13330 if (!(error_code & PFERR_PRESENT_MASK) ||
13331 mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) {
13332 /*
13333 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
13334 * tables probably do not match the TLB. Just proceed
13335 * with the error code that the processor gave.
13336 */
13337 fault.vector = PF_VECTOR;
13338 fault.error_code_valid = true;
13339 fault.error_code = error_code;
13340 fault.nested_page_fault = false;
13341 fault.address = gva;
13342 fault.async_page_fault = false;
13343 }
13344 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
13345 }
13346 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
13347
13348 /*
13349 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
13350 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
13351 * indicates whether exit to userspace is needed.
13352 */
kvm_handle_memory_failure(struct kvm_vcpu * vcpu,int r,struct x86_exception * e)13353 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
13354 struct x86_exception *e)
13355 {
13356 if (r == X86EMUL_PROPAGATE_FAULT) {
13357 if (KVM_BUG_ON(!e, vcpu->kvm))
13358 return -EIO;
13359
13360 kvm_inject_emulated_page_fault(vcpu, e);
13361 return 1;
13362 }
13363
13364 /*
13365 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
13366 * while handling a VMX instruction KVM could've handled the request
13367 * correctly by exiting to userspace and performing I/O but there
13368 * doesn't seem to be a real use-case behind such requests, just return
13369 * KVM_EXIT_INTERNAL_ERROR for now.
13370 */
13371 kvm_prepare_emulation_failure_exit(vcpu);
13372
13373 return 0;
13374 }
13375 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
13376
kvm_handle_invpcid(struct kvm_vcpu * vcpu,unsigned long type,gva_t gva)13377 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
13378 {
13379 bool pcid_enabled;
13380 struct x86_exception e;
13381 struct {
13382 u64 pcid;
13383 u64 gla;
13384 } operand;
13385 int r;
13386
13387 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
13388 if (r != X86EMUL_CONTINUE)
13389 return kvm_handle_memory_failure(vcpu, r, &e);
13390
13391 if (operand.pcid >> 12 != 0) {
13392 kvm_inject_gp(vcpu, 0);
13393 return 1;
13394 }
13395
13396 pcid_enabled = kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE);
13397
13398 switch (type) {
13399 case INVPCID_TYPE_INDIV_ADDR:
13400 if ((!pcid_enabled && (operand.pcid != 0)) ||
13401 is_noncanonical_address(operand.gla, vcpu)) {
13402 kvm_inject_gp(vcpu, 0);
13403 return 1;
13404 }
13405 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
13406 return kvm_skip_emulated_instruction(vcpu);
13407
13408 case INVPCID_TYPE_SINGLE_CTXT:
13409 if (!pcid_enabled && (operand.pcid != 0)) {
13410 kvm_inject_gp(vcpu, 0);
13411 return 1;
13412 }
13413
13414 kvm_invalidate_pcid(vcpu, operand.pcid);
13415 return kvm_skip_emulated_instruction(vcpu);
13416
13417 case INVPCID_TYPE_ALL_NON_GLOBAL:
13418 /*
13419 * Currently, KVM doesn't mark global entries in the shadow
13420 * page tables, so a non-global flush just degenerates to a
13421 * global flush. If needed, we could optimize this later by
13422 * keeping track of global entries in shadow page tables.
13423 */
13424
13425 fallthrough;
13426 case INVPCID_TYPE_ALL_INCL_GLOBAL:
13427 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
13428 return kvm_skip_emulated_instruction(vcpu);
13429
13430 default:
13431 kvm_inject_gp(vcpu, 0);
13432 return 1;
13433 }
13434 }
13435 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
13436
complete_sev_es_emulated_mmio(struct kvm_vcpu * vcpu)13437 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
13438 {
13439 struct kvm_run *run = vcpu->run;
13440 struct kvm_mmio_fragment *frag;
13441 unsigned int len;
13442
13443 BUG_ON(!vcpu->mmio_needed);
13444
13445 /* Complete previous fragment */
13446 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
13447 len = min(8u, frag->len);
13448 if (!vcpu->mmio_is_write)
13449 memcpy(frag->data, run->mmio.data, len);
13450
13451 if (frag->len <= 8) {
13452 /* Switch to the next fragment. */
13453 frag++;
13454 vcpu->mmio_cur_fragment++;
13455 } else {
13456 /* Go forward to the next mmio piece. */
13457 frag->data += len;
13458 frag->gpa += len;
13459 frag->len -= len;
13460 }
13461
13462 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
13463 vcpu->mmio_needed = 0;
13464
13465 // VMG change, at this point, we're always done
13466 // RIP has already been advanced
13467 return 1;
13468 }
13469
13470 // More MMIO is needed
13471 run->mmio.phys_addr = frag->gpa;
13472 run->mmio.len = min(8u, frag->len);
13473 run->mmio.is_write = vcpu->mmio_is_write;
13474 if (run->mmio.is_write)
13475 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
13476 run->exit_reason = KVM_EXIT_MMIO;
13477
13478 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13479
13480 return 0;
13481 }
13482
kvm_sev_es_mmio_write(struct kvm_vcpu * vcpu,gpa_t gpa,unsigned int bytes,void * data)13483 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13484 void *data)
13485 {
13486 int handled;
13487 struct kvm_mmio_fragment *frag;
13488
13489 if (!data)
13490 return -EINVAL;
13491
13492 handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13493 if (handled == bytes)
13494 return 1;
13495
13496 bytes -= handled;
13497 gpa += handled;
13498 data += handled;
13499
13500 /*TODO: Check if need to increment number of frags */
13501 frag = vcpu->mmio_fragments;
13502 vcpu->mmio_nr_fragments = 1;
13503 frag->len = bytes;
13504 frag->gpa = gpa;
13505 frag->data = data;
13506
13507 vcpu->mmio_needed = 1;
13508 vcpu->mmio_cur_fragment = 0;
13509
13510 vcpu->run->mmio.phys_addr = gpa;
13511 vcpu->run->mmio.len = min(8u, frag->len);
13512 vcpu->run->mmio.is_write = 1;
13513 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
13514 vcpu->run->exit_reason = KVM_EXIT_MMIO;
13515
13516 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13517
13518 return 0;
13519 }
13520 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
13521
kvm_sev_es_mmio_read(struct kvm_vcpu * vcpu,gpa_t gpa,unsigned int bytes,void * data)13522 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13523 void *data)
13524 {
13525 int handled;
13526 struct kvm_mmio_fragment *frag;
13527
13528 if (!data)
13529 return -EINVAL;
13530
13531 handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13532 if (handled == bytes)
13533 return 1;
13534
13535 bytes -= handled;
13536 gpa += handled;
13537 data += handled;
13538
13539 /*TODO: Check if need to increment number of frags */
13540 frag = vcpu->mmio_fragments;
13541 vcpu->mmio_nr_fragments = 1;
13542 frag->len = bytes;
13543 frag->gpa = gpa;
13544 frag->data = data;
13545
13546 vcpu->mmio_needed = 1;
13547 vcpu->mmio_cur_fragment = 0;
13548
13549 vcpu->run->mmio.phys_addr = gpa;
13550 vcpu->run->mmio.len = min(8u, frag->len);
13551 vcpu->run->mmio.is_write = 0;
13552 vcpu->run->exit_reason = KVM_EXIT_MMIO;
13553
13554 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13555
13556 return 0;
13557 }
13558 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
13559
advance_sev_es_emulated_pio(struct kvm_vcpu * vcpu,unsigned count,int size)13560 static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size)
13561 {
13562 vcpu->arch.sev_pio_count -= count;
13563 vcpu->arch.sev_pio_data += count * size;
13564 }
13565
13566 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13567 unsigned int port);
13568
complete_sev_es_emulated_outs(struct kvm_vcpu * vcpu)13569 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
13570 {
13571 int size = vcpu->arch.pio.size;
13572 int port = vcpu->arch.pio.port;
13573
13574 vcpu->arch.pio.count = 0;
13575 if (vcpu->arch.sev_pio_count)
13576 return kvm_sev_es_outs(vcpu, size, port);
13577 return 1;
13578 }
13579
kvm_sev_es_outs(struct kvm_vcpu * vcpu,unsigned int size,unsigned int port)13580 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13581 unsigned int port)
13582 {
13583 for (;;) {
13584 unsigned int count =
13585 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13586 int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
13587
13588 /* memcpy done already by emulator_pio_out. */
13589 advance_sev_es_emulated_pio(vcpu, count, size);
13590 if (!ret)
13591 break;
13592
13593 /* Emulation done by the kernel. */
13594 if (!vcpu->arch.sev_pio_count)
13595 return 1;
13596 }
13597
13598 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
13599 return 0;
13600 }
13601
13602 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13603 unsigned int port);
13604
complete_sev_es_emulated_ins(struct kvm_vcpu * vcpu)13605 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
13606 {
13607 unsigned count = vcpu->arch.pio.count;
13608 int size = vcpu->arch.pio.size;
13609 int port = vcpu->arch.pio.port;
13610
13611 complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
13612 advance_sev_es_emulated_pio(vcpu, count, size);
13613 if (vcpu->arch.sev_pio_count)
13614 return kvm_sev_es_ins(vcpu, size, port);
13615 return 1;
13616 }
13617
kvm_sev_es_ins(struct kvm_vcpu * vcpu,unsigned int size,unsigned int port)13618 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13619 unsigned int port)
13620 {
13621 for (;;) {
13622 unsigned int count =
13623 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13624 if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count))
13625 break;
13626
13627 /* Emulation done by the kernel. */
13628 advance_sev_es_emulated_pio(vcpu, count, size);
13629 if (!vcpu->arch.sev_pio_count)
13630 return 1;
13631 }
13632
13633 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
13634 return 0;
13635 }
13636
kvm_sev_es_string_io(struct kvm_vcpu * vcpu,unsigned int size,unsigned int port,void * data,unsigned int count,int in)13637 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
13638 unsigned int port, void *data, unsigned int count,
13639 int in)
13640 {
13641 vcpu->arch.sev_pio_data = data;
13642 vcpu->arch.sev_pio_count = count;
13643 return in ? kvm_sev_es_ins(vcpu, size, port)
13644 : kvm_sev_es_outs(vcpu, size, port);
13645 }
13646 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
13647
13648 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
13649 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
13650 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
13651 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
13652 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
13653 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
13654 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
13655 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter);
13656 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
13657 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
13658 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
13659 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
13660 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
13661 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
13662 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
13663 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
13664 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
13665 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
13666 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
13667 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
13668 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
13669 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
13670 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath);
13671 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell);
13672 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq);
13673 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
13674 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
13675 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
13676 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);
13677
kvm_x86_init(void)13678 static int __init kvm_x86_init(void)
13679 {
13680 kvm_mmu_x86_module_init();
13681 mitigate_smt_rsb &= boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible();
13682 return 0;
13683 }
13684 module_init(kvm_x86_init);
13685
kvm_x86_exit(void)13686 static void __exit kvm_x86_exit(void)
13687 {
13688 /*
13689 * If module_init() is implemented, module_exit() must also be
13690 * implemented to allow module unload.
13691 */
13692 }
13693 module_exit(kvm_x86_exit);
13694