1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2012 - ARM Ltd
4 * Author: Marc Zyngier <marc.zyngier@arm.com>
5 */
6
7 #include <linux/arm-smccc.h>
8 #include <linux/preempt.h>
9 #include <linux/kvm_host.h>
10 #include <linux/uaccess.h>
11 #include <linux/wait.h>
12
13 #include <asm/cputype.h>
14 #include <asm/kvm_emulate.h>
15
16 #include <kvm/arm_psci.h>
17 #include <kvm/arm_hypercalls.h>
18
19 /*
20 * This is an implementation of the Power State Coordination Interface
21 * as described in ARM document number ARM DEN 0022A.
22 */
23
24 #define AFFINITY_MASK(level) ~((0x1UL << ((level) * MPIDR_LEVEL_BITS)) - 1)
25
psci_affinity_mask(unsigned long affinity_level)26 static unsigned long psci_affinity_mask(unsigned long affinity_level)
27 {
28 if (affinity_level <= 3)
29 return MPIDR_HWID_BITMASK & AFFINITY_MASK(affinity_level);
30
31 return 0;
32 }
33
kvm_psci_vcpu_suspend(struct kvm_vcpu * vcpu)34 static unsigned long kvm_psci_vcpu_suspend(struct kvm_vcpu *vcpu)
35 {
36 /*
37 * NOTE: For simplicity, we make VCPU suspend emulation to be
38 * same-as WFI (Wait-for-interrupt) emulation.
39 *
40 * This means for KVM the wakeup events are interrupts and
41 * this is consistent with intended use of StateID as described
42 * in section 5.4.1 of PSCI v0.2 specification (ARM DEN 0022A).
43 *
44 * Further, we also treat power-down request to be same as
45 * stand-by request as-per section 5.4.2 clause 3 of PSCI v0.2
46 * specification (ARM DEN 0022A). This means all suspend states
47 * for KVM will preserve the register state.
48 */
49 kvm_vcpu_block(vcpu);
50 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
51
52 return PSCI_RET_SUCCESS;
53 }
54
kvm_psci_vcpu_off(struct kvm_vcpu * vcpu)55 static void kvm_psci_vcpu_off(struct kvm_vcpu *vcpu)
56 {
57 vcpu->arch.power_off = true;
58 kvm_make_request(KVM_REQ_SLEEP, vcpu);
59 kvm_vcpu_kick(vcpu);
60 }
61
kvm_psci_valid_affinity(struct kvm_vcpu * vcpu,unsigned long affinity)62 static inline bool kvm_psci_valid_affinity(struct kvm_vcpu *vcpu,
63 unsigned long affinity)
64 {
65 return !(affinity & ~MPIDR_HWID_BITMASK);
66 }
67
kvm_psci_vcpu_on(struct kvm_vcpu * source_vcpu)68 static unsigned long kvm_psci_vcpu_on(struct kvm_vcpu *source_vcpu)
69 {
70 struct vcpu_reset_state *reset_state;
71 struct kvm *kvm = source_vcpu->kvm;
72 struct kvm_vcpu *vcpu = NULL;
73 unsigned long cpu_id;
74
75 cpu_id = smccc_get_arg1(source_vcpu);
76 if (!kvm_psci_valid_affinity(source_vcpu, cpu_id))
77 return PSCI_RET_INVALID_PARAMS;
78
79 vcpu = kvm_mpidr_to_vcpu(kvm, cpu_id);
80
81 /*
82 * Make sure the caller requested a valid CPU and that the CPU is
83 * turned off.
84 */
85 if (!vcpu)
86 return PSCI_RET_INVALID_PARAMS;
87 if (!vcpu->arch.power_off) {
88 if (kvm_psci_version(source_vcpu, kvm) != KVM_ARM_PSCI_0_1)
89 return PSCI_RET_ALREADY_ON;
90 else
91 return PSCI_RET_INVALID_PARAMS;
92 }
93
94 reset_state = &vcpu->arch.reset_state;
95
96 reset_state->pc = smccc_get_arg2(source_vcpu);
97
98 /* Propagate caller endianness */
99 reset_state->be = kvm_vcpu_is_be(source_vcpu);
100
101 /*
102 * NOTE: We always update r0 (or x0) because for PSCI v0.1
103 * the general purpose registers are undefined upon CPU_ON.
104 */
105 reset_state->r0 = smccc_get_arg3(source_vcpu);
106
107 WRITE_ONCE(reset_state->reset, true);
108 kvm_make_request(KVM_REQ_VCPU_RESET, vcpu);
109
110 /*
111 * Make sure the reset request is observed if the change to
112 * power_state is observed.
113 */
114 smp_wmb();
115
116 vcpu->arch.power_off = false;
117 kvm_vcpu_wake_up(vcpu);
118
119 return PSCI_RET_SUCCESS;
120 }
121
kvm_psci_vcpu_affinity_info(struct kvm_vcpu * vcpu)122 static unsigned long kvm_psci_vcpu_affinity_info(struct kvm_vcpu *vcpu)
123 {
124 int i, matching_cpus = 0;
125 unsigned long mpidr;
126 unsigned long target_affinity;
127 unsigned long target_affinity_mask;
128 unsigned long lowest_affinity_level;
129 struct kvm *kvm = vcpu->kvm;
130 struct kvm_vcpu *tmp;
131
132 target_affinity = smccc_get_arg1(vcpu);
133 lowest_affinity_level = smccc_get_arg2(vcpu);
134
135 if (!kvm_psci_valid_affinity(vcpu, target_affinity))
136 return PSCI_RET_INVALID_PARAMS;
137
138 /* Determine target affinity mask */
139 target_affinity_mask = psci_affinity_mask(lowest_affinity_level);
140 if (!target_affinity_mask)
141 return PSCI_RET_INVALID_PARAMS;
142
143 /* Ignore other bits of target affinity */
144 target_affinity &= target_affinity_mask;
145
146 /*
147 * If one or more VCPU matching target affinity are running
148 * then ON else OFF
149 */
150 kvm_for_each_vcpu(i, tmp, kvm) {
151 mpidr = kvm_vcpu_get_mpidr_aff(tmp);
152 if ((mpidr & target_affinity_mask) == target_affinity) {
153 matching_cpus++;
154 if (!tmp->arch.power_off)
155 return PSCI_0_2_AFFINITY_LEVEL_ON;
156 }
157 }
158
159 if (!matching_cpus)
160 return PSCI_RET_INVALID_PARAMS;
161
162 return PSCI_0_2_AFFINITY_LEVEL_OFF;
163 }
164
kvm_prepare_system_event(struct kvm_vcpu * vcpu,u32 type)165 static void kvm_prepare_system_event(struct kvm_vcpu *vcpu, u32 type)
166 {
167 int i;
168 struct kvm_vcpu *tmp;
169
170 /*
171 * The KVM ABI specifies that a system event exit may call KVM_RUN
172 * again and may perform shutdown/reboot at a later time that when the
173 * actual request is made. Since we are implementing PSCI and a
174 * caller of PSCI reboot and shutdown expects that the system shuts
175 * down or reboots immediately, let's make sure that VCPUs are not run
176 * after this call is handled and before the VCPUs have been
177 * re-initialized.
178 */
179 kvm_for_each_vcpu(i, tmp, vcpu->kvm)
180 tmp->arch.power_off = true;
181 kvm_make_all_cpus_request(vcpu->kvm, KVM_REQ_SLEEP);
182
183 memset(&vcpu->run->system_event, 0, sizeof(vcpu->run->system_event));
184 vcpu->run->system_event.type = type;
185 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
186 }
187
kvm_psci_system_off(struct kvm_vcpu * vcpu)188 static void kvm_psci_system_off(struct kvm_vcpu *vcpu)
189 {
190 kvm_prepare_system_event(vcpu, KVM_SYSTEM_EVENT_SHUTDOWN);
191 }
192
kvm_psci_system_reset(struct kvm_vcpu * vcpu)193 static void kvm_psci_system_reset(struct kvm_vcpu *vcpu)
194 {
195 kvm_prepare_system_event(vcpu, KVM_SYSTEM_EVENT_RESET);
196 }
197
kvm_psci_narrow_to_32bit(struct kvm_vcpu * vcpu)198 static void kvm_psci_narrow_to_32bit(struct kvm_vcpu *vcpu)
199 {
200 int i;
201
202 /*
203 * Zero the input registers' upper 32 bits. They will be fully
204 * zeroed on exit, so we're fine changing them in place.
205 */
206 for (i = 1; i < 4; i++)
207 vcpu_set_reg(vcpu, i, lower_32_bits(vcpu_get_reg(vcpu, i)));
208 }
209
kvm_psci_check_allowed_function(struct kvm_vcpu * vcpu,u32 fn)210 static unsigned long kvm_psci_check_allowed_function(struct kvm_vcpu *vcpu, u32 fn)
211 {
212 switch(fn) {
213 case PSCI_0_2_FN64_CPU_SUSPEND:
214 case PSCI_0_2_FN64_CPU_ON:
215 case PSCI_0_2_FN64_AFFINITY_INFO:
216 /* Disallow these functions for 32bit guests */
217 if (vcpu_mode_is_32bit(vcpu))
218 return PSCI_RET_NOT_SUPPORTED;
219 break;
220 }
221
222 return 0;
223 }
224
kvm_psci_0_2_call(struct kvm_vcpu * vcpu)225 static int kvm_psci_0_2_call(struct kvm_vcpu *vcpu)
226 {
227 struct kvm *kvm = vcpu->kvm;
228 u32 psci_fn = smccc_get_function(vcpu);
229 unsigned long val;
230 int ret = 1;
231
232 val = kvm_psci_check_allowed_function(vcpu, psci_fn);
233 if (val)
234 goto out;
235
236 switch (psci_fn) {
237 case PSCI_0_2_FN_PSCI_VERSION:
238 /*
239 * Bits[31:16] = Major Version = 0
240 * Bits[15:0] = Minor Version = 2
241 */
242 val = KVM_ARM_PSCI_0_2;
243 break;
244 case PSCI_0_2_FN_CPU_SUSPEND:
245 case PSCI_0_2_FN64_CPU_SUSPEND:
246 val = kvm_psci_vcpu_suspend(vcpu);
247 break;
248 case PSCI_0_2_FN_CPU_OFF:
249 kvm_psci_vcpu_off(vcpu);
250 val = PSCI_RET_SUCCESS;
251 break;
252 case PSCI_0_2_FN_CPU_ON:
253 kvm_psci_narrow_to_32bit(vcpu);
254 fallthrough;
255 case PSCI_0_2_FN64_CPU_ON:
256 mutex_lock(&kvm->lock);
257 val = kvm_psci_vcpu_on(vcpu);
258 mutex_unlock(&kvm->lock);
259 break;
260 case PSCI_0_2_FN_AFFINITY_INFO:
261 kvm_psci_narrow_to_32bit(vcpu);
262 fallthrough;
263 case PSCI_0_2_FN64_AFFINITY_INFO:
264 val = kvm_psci_vcpu_affinity_info(vcpu);
265 break;
266 case PSCI_0_2_FN_MIGRATE_INFO_TYPE:
267 /*
268 * Trusted OS is MP hence does not require migration
269 * or
270 * Trusted OS is not present
271 */
272 val = PSCI_0_2_TOS_MP;
273 break;
274 case PSCI_0_2_FN_SYSTEM_OFF:
275 kvm_psci_system_off(vcpu);
276 /*
277 * We shouldn't be going back to guest VCPU after
278 * receiving SYSTEM_OFF request.
279 *
280 * If user space accidentally/deliberately resumes
281 * guest VCPU after SYSTEM_OFF request then guest
282 * VCPU should see internal failure from PSCI return
283 * value. To achieve this, we preload r0 (or x0) with
284 * PSCI return value INTERNAL_FAILURE.
285 */
286 val = PSCI_RET_INTERNAL_FAILURE;
287 ret = 0;
288 break;
289 case PSCI_0_2_FN_SYSTEM_RESET:
290 kvm_psci_system_reset(vcpu);
291 /*
292 * Same reason as SYSTEM_OFF for preloading r0 (or x0)
293 * with PSCI return value INTERNAL_FAILURE.
294 */
295 val = PSCI_RET_INTERNAL_FAILURE;
296 ret = 0;
297 break;
298 default:
299 val = PSCI_RET_NOT_SUPPORTED;
300 break;
301 }
302
303 out:
304 smccc_set_retval(vcpu, val, 0, 0, 0);
305 return ret;
306 }
307
kvm_psci_1_0_call(struct kvm_vcpu * vcpu)308 static int kvm_psci_1_0_call(struct kvm_vcpu *vcpu)
309 {
310 u32 psci_fn = smccc_get_function(vcpu);
311 u32 feature;
312 unsigned long val;
313 int ret = 1;
314
315 switch(psci_fn) {
316 case PSCI_0_2_FN_PSCI_VERSION:
317 val = KVM_ARM_PSCI_1_0;
318 break;
319 case PSCI_1_0_FN_PSCI_FEATURES:
320 feature = smccc_get_arg1(vcpu);
321 val = kvm_psci_check_allowed_function(vcpu, feature);
322 if (val)
323 break;
324
325 switch(feature) {
326 case PSCI_0_2_FN_PSCI_VERSION:
327 case PSCI_0_2_FN_CPU_SUSPEND:
328 case PSCI_0_2_FN64_CPU_SUSPEND:
329 case PSCI_0_2_FN_CPU_OFF:
330 case PSCI_0_2_FN_CPU_ON:
331 case PSCI_0_2_FN64_CPU_ON:
332 case PSCI_0_2_FN_AFFINITY_INFO:
333 case PSCI_0_2_FN64_AFFINITY_INFO:
334 case PSCI_0_2_FN_MIGRATE_INFO_TYPE:
335 case PSCI_0_2_FN_SYSTEM_OFF:
336 case PSCI_0_2_FN_SYSTEM_RESET:
337 case PSCI_1_0_FN_PSCI_FEATURES:
338 case ARM_SMCCC_VERSION_FUNC_ID:
339 val = 0;
340 break;
341 default:
342 val = PSCI_RET_NOT_SUPPORTED;
343 break;
344 }
345 break;
346 default:
347 return kvm_psci_0_2_call(vcpu);
348 }
349
350 smccc_set_retval(vcpu, val, 0, 0, 0);
351 return ret;
352 }
353
kvm_psci_0_1_call(struct kvm_vcpu * vcpu)354 static int kvm_psci_0_1_call(struct kvm_vcpu *vcpu)
355 {
356 struct kvm *kvm = vcpu->kvm;
357 u32 psci_fn = smccc_get_function(vcpu);
358 unsigned long val;
359
360 switch (psci_fn) {
361 case KVM_PSCI_FN_CPU_OFF:
362 kvm_psci_vcpu_off(vcpu);
363 val = PSCI_RET_SUCCESS;
364 break;
365 case KVM_PSCI_FN_CPU_ON:
366 mutex_lock(&kvm->lock);
367 val = kvm_psci_vcpu_on(vcpu);
368 mutex_unlock(&kvm->lock);
369 break;
370 default:
371 val = PSCI_RET_NOT_SUPPORTED;
372 break;
373 }
374
375 smccc_set_retval(vcpu, val, 0, 0, 0);
376 return 1;
377 }
378
379 /**
380 * kvm_psci_call - handle PSCI call if r0 value is in range
381 * @vcpu: Pointer to the VCPU struct
382 *
383 * Handle PSCI calls from guests through traps from HVC instructions.
384 * The calling convention is similar to SMC calls to the secure world
385 * where the function number is placed in r0.
386 *
387 * This function returns: > 0 (success), 0 (success but exit to user
388 * space), and < 0 (errors)
389 *
390 * Errors:
391 * -EINVAL: Unrecognized PSCI function
392 */
kvm_psci_call(struct kvm_vcpu * vcpu)393 int kvm_psci_call(struct kvm_vcpu *vcpu)
394 {
395 switch (kvm_psci_version(vcpu, vcpu->kvm)) {
396 case KVM_ARM_PSCI_1_0:
397 return kvm_psci_1_0_call(vcpu);
398 case KVM_ARM_PSCI_0_2:
399 return kvm_psci_0_2_call(vcpu);
400 case KVM_ARM_PSCI_0_1:
401 return kvm_psci_0_1_call(vcpu);
402 default:
403 return -EINVAL;
404 };
405 }
406
kvm_arm_get_fw_num_regs(struct kvm_vcpu * vcpu)407 int kvm_arm_get_fw_num_regs(struct kvm_vcpu *vcpu)
408 {
409 return 3; /* PSCI version and two workaround registers */
410 }
411
kvm_arm_copy_fw_reg_indices(struct kvm_vcpu * vcpu,u64 __user * uindices)412 int kvm_arm_copy_fw_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
413 {
414 if (put_user(KVM_REG_ARM_PSCI_VERSION, uindices++))
415 return -EFAULT;
416
417 if (put_user(KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1, uindices++))
418 return -EFAULT;
419
420 if (put_user(KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2, uindices++))
421 return -EFAULT;
422
423 return 0;
424 }
425
426 #define KVM_REG_FEATURE_LEVEL_WIDTH 4
427 #define KVM_REG_FEATURE_LEVEL_MASK (BIT(KVM_REG_FEATURE_LEVEL_WIDTH) - 1)
428
429 /*
430 * Convert the workaround level into an easy-to-compare number, where higher
431 * values mean better protection.
432 */
get_kernel_wa_level(u64 regid)433 static int get_kernel_wa_level(u64 regid)
434 {
435 switch (regid) {
436 case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1:
437 switch (arm64_get_spectre_v2_state()) {
438 case SPECTRE_VULNERABLE:
439 return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1_NOT_AVAIL;
440 case SPECTRE_MITIGATED:
441 return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1_AVAIL;
442 case SPECTRE_UNAFFECTED:
443 return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1_NOT_REQUIRED;
444 }
445 return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1_NOT_AVAIL;
446 case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2:
447 switch (arm64_get_spectre_v4_state()) {
448 case SPECTRE_MITIGATED:
449 /*
450 * As for the hypercall discovery, we pretend we
451 * don't have any FW mitigation if SSBS is there at
452 * all times.
453 */
454 if (cpus_have_final_cap(ARM64_SSBS))
455 return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_AVAIL;
456 fallthrough;
457 case SPECTRE_UNAFFECTED:
458 return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_REQUIRED;
459 case SPECTRE_VULNERABLE:
460 return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_AVAIL;
461 }
462 }
463
464 return -EINVAL;
465 }
466
kvm_arm_get_fw_reg(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)467 int kvm_arm_get_fw_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
468 {
469 void __user *uaddr = (void __user *)(long)reg->addr;
470 u64 val;
471
472 switch (reg->id) {
473 case KVM_REG_ARM_PSCI_VERSION:
474 val = kvm_psci_version(vcpu, vcpu->kvm);
475 break;
476 case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1:
477 case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2:
478 val = get_kernel_wa_level(reg->id) & KVM_REG_FEATURE_LEVEL_MASK;
479 break;
480 default:
481 return -ENOENT;
482 }
483
484 if (copy_to_user(uaddr, &val, KVM_REG_SIZE(reg->id)))
485 return -EFAULT;
486
487 return 0;
488 }
489
kvm_arm_set_fw_reg(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)490 int kvm_arm_set_fw_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
491 {
492 void __user *uaddr = (void __user *)(long)reg->addr;
493 u64 val;
494 int wa_level;
495
496 if (copy_from_user(&val, uaddr, KVM_REG_SIZE(reg->id)))
497 return -EFAULT;
498
499 switch (reg->id) {
500 case KVM_REG_ARM_PSCI_VERSION:
501 {
502 bool wants_02;
503
504 wants_02 = test_bit(KVM_ARM_VCPU_PSCI_0_2, vcpu->arch.features);
505
506 switch (val) {
507 case KVM_ARM_PSCI_0_1:
508 if (wants_02)
509 return -EINVAL;
510 vcpu->kvm->arch.psci_version = val;
511 return 0;
512 case KVM_ARM_PSCI_0_2:
513 case KVM_ARM_PSCI_1_0:
514 if (!wants_02)
515 return -EINVAL;
516 vcpu->kvm->arch.psci_version = val;
517 return 0;
518 }
519 break;
520 }
521
522 case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1:
523 if (val & ~KVM_REG_FEATURE_LEVEL_MASK)
524 return -EINVAL;
525
526 if (get_kernel_wa_level(reg->id) < val)
527 return -EINVAL;
528
529 return 0;
530
531 case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2:
532 if (val & ~(KVM_REG_FEATURE_LEVEL_MASK |
533 KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_ENABLED))
534 return -EINVAL;
535
536 /* The enabled bit must not be set unless the level is AVAIL. */
537 if ((val & KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_ENABLED) &&
538 (val & KVM_REG_FEATURE_LEVEL_MASK) != KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_AVAIL)
539 return -EINVAL;
540
541 /*
542 * Map all the possible incoming states to the only two we
543 * really want to deal with.
544 */
545 switch (val & KVM_REG_FEATURE_LEVEL_MASK) {
546 case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_AVAIL:
547 case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_UNKNOWN:
548 wa_level = KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_AVAIL;
549 break;
550 case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_AVAIL:
551 case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_REQUIRED:
552 wa_level = KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_REQUIRED;
553 break;
554 default:
555 return -EINVAL;
556 }
557
558 /*
559 * We can deal with NOT_AVAIL on NOT_REQUIRED, but not the
560 * other way around.
561 */
562 if (get_kernel_wa_level(reg->id) < wa_level)
563 return -EINVAL;
564
565 return 0;
566 default:
567 return -ENOENT;
568 }
569
570 return -EINVAL;
571 }
572