1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Kernel Probes (KProbes)
4 *
5 * Copyright (C) IBM Corporation, 2002, 2004
6 *
7 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
8 * Probes initial implementation ( includes contributions from
9 * Rusty Russell).
10 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
11 * interface to access function arguments.
12 * 2004-Oct Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
13 * <prasanna@in.ibm.com> adapted for x86_64 from i386.
14 * 2005-Mar Roland McGrath <roland@redhat.com>
15 * Fixed to handle %rip-relative addressing mode correctly.
16 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
17 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
18 * <prasanna@in.ibm.com> added function-return probes.
19 * 2005-May Rusty Lynch <rusty.lynch@intel.com>
20 * Added function return probes functionality
21 * 2006-Feb Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added
22 * kprobe-booster and kretprobe-booster for i386.
23 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster
24 * and kretprobe-booster for x86-64
25 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven
26 * <arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com>
27 * unified x86 kprobes code.
28 */
29 #include <linux/kprobes.h>
30 #include <linux/ptrace.h>
31 #include <linux/string.h>
32 #include <linux/slab.h>
33 #include <linux/hardirq.h>
34 #include <linux/preempt.h>
35 #include <linux/sched/debug.h>
36 #include <linux/extable.h>
37 #include <linux/kdebug.h>
38 #include <linux/kallsyms.h>
39 #include <linux/ftrace.h>
40 #include <linux/frame.h>
41 #include <linux/kasan.h>
42 #include <linux/moduleloader.h>
43
44 #include <asm/text-patching.h>
45 #include <asm/cacheflush.h>
46 #include <asm/desc.h>
47 #include <asm/pgtable.h>
48 #include <linux/uaccess.h>
49 #include <asm/alternative.h>
50 #include <asm/insn.h>
51 #include <asm/debugreg.h>
52 #include <asm/set_memory.h>
53
54 #include "common.h"
55
56 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
57 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
58
59 #define stack_addr(regs) ((unsigned long *)regs->sp)
60
61 #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
62 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \
63 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \
64 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \
65 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \
66 << (row % 32))
67 /*
68 * Undefined/reserved opcodes, conditional jump, Opcode Extension
69 * Groups, and some special opcodes can not boost.
70 * This is non-const and volatile to keep gcc from statically
71 * optimizing it out, as variable_test_bit makes gcc think only
72 * *(unsigned long*) is used.
73 */
74 static volatile u32 twobyte_is_boostable[256 / 32] = {
75 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
76 /* ---------------------------------------------- */
77 W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */
78 W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) , /* 10 */
79 W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */
80 W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */
81 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
82 W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */
83 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */
84 W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */
85 W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */
86 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
87 W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */
88 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */
89 W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
90 W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */
91 W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */
92 W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0) /* f0 */
93 /* ----------------------------------------------- */
94 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
95 };
96 #undef W
97
98 struct kretprobe_blackpoint kretprobe_blacklist[] = {
99 {"__switch_to", }, /* This function switches only current task, but
100 doesn't switch kernel stack.*/
101 {NULL, NULL} /* Terminator */
102 };
103
104 const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist);
105
106 static nokprobe_inline void
__synthesize_relative_insn(void * dest,void * from,void * to,u8 op)107 __synthesize_relative_insn(void *dest, void *from, void *to, u8 op)
108 {
109 struct __arch_relative_insn {
110 u8 op;
111 s32 raddr;
112 } __packed *insn;
113
114 insn = (struct __arch_relative_insn *)dest;
115 insn->raddr = (s32)((long)(to) - ((long)(from) + 5));
116 insn->op = op;
117 }
118
119 /* Insert a jump instruction at address 'from', which jumps to address 'to'.*/
synthesize_reljump(void * dest,void * from,void * to)120 void synthesize_reljump(void *dest, void *from, void *to)
121 {
122 __synthesize_relative_insn(dest, from, to, RELATIVEJUMP_OPCODE);
123 }
124 NOKPROBE_SYMBOL(synthesize_reljump);
125
126 /* Insert a call instruction at address 'from', which calls address 'to'.*/
synthesize_relcall(void * dest,void * from,void * to)127 void synthesize_relcall(void *dest, void *from, void *to)
128 {
129 __synthesize_relative_insn(dest, from, to, RELATIVECALL_OPCODE);
130 }
131 NOKPROBE_SYMBOL(synthesize_relcall);
132
133 /*
134 * Skip the prefixes of the instruction.
135 */
skip_prefixes(kprobe_opcode_t * insn)136 static kprobe_opcode_t *skip_prefixes(kprobe_opcode_t *insn)
137 {
138 insn_attr_t attr;
139
140 attr = inat_get_opcode_attribute((insn_byte_t)*insn);
141 while (inat_is_legacy_prefix(attr)) {
142 insn++;
143 attr = inat_get_opcode_attribute((insn_byte_t)*insn);
144 }
145 #ifdef CONFIG_X86_64
146 if (inat_is_rex_prefix(attr))
147 insn++;
148 #endif
149 return insn;
150 }
151 NOKPROBE_SYMBOL(skip_prefixes);
152
153 /*
154 * Returns non-zero if INSN is boostable.
155 * RIP relative instructions are adjusted at copying time in 64 bits mode
156 */
can_boost(struct insn * insn,void * addr)157 int can_boost(struct insn *insn, void *addr)
158 {
159 kprobe_opcode_t opcode;
160
161 if (search_exception_tables((unsigned long)addr))
162 return 0; /* Page fault may occur on this address. */
163
164 /* 2nd-byte opcode */
165 if (insn->opcode.nbytes == 2)
166 return test_bit(insn->opcode.bytes[1],
167 (unsigned long *)twobyte_is_boostable);
168
169 if (insn->opcode.nbytes != 1)
170 return 0;
171
172 /* Can't boost Address-size override prefix */
173 if (unlikely(inat_is_address_size_prefix(insn->attr)))
174 return 0;
175
176 opcode = insn->opcode.bytes[0];
177
178 switch (opcode & 0xf0) {
179 case 0x60:
180 /* can't boost "bound" */
181 return (opcode != 0x62);
182 case 0x70:
183 return 0; /* can't boost conditional jump */
184 case 0x90:
185 return opcode != 0x9a; /* can't boost call far */
186 case 0xc0:
187 /* can't boost software-interruptions */
188 return (0xc1 < opcode && opcode < 0xcc) || opcode == 0xcf;
189 case 0xd0:
190 /* can boost AA* and XLAT */
191 return (opcode == 0xd4 || opcode == 0xd5 || opcode == 0xd7);
192 case 0xe0:
193 /* can boost in/out and absolute jmps */
194 return ((opcode & 0x04) || opcode == 0xea);
195 case 0xf0:
196 /* clear and set flags are boostable */
197 return (opcode == 0xf5 || (0xf7 < opcode && opcode < 0xfe));
198 default:
199 /* CS override prefix and call are not boostable */
200 return (opcode != 0x2e && opcode != 0x9a);
201 }
202 }
203
204 static unsigned long
__recover_probed_insn(kprobe_opcode_t * buf,unsigned long addr)205 __recover_probed_insn(kprobe_opcode_t *buf, unsigned long addr)
206 {
207 struct kprobe *kp;
208 unsigned long faddr;
209
210 kp = get_kprobe((void *)addr);
211 faddr = ftrace_location(addr);
212 /*
213 * Addresses inside the ftrace location are refused by
214 * arch_check_ftrace_location(). Something went terribly wrong
215 * if such an address is checked here.
216 */
217 if (WARN_ON(faddr && faddr != addr))
218 return 0UL;
219 /*
220 * Use the current code if it is not modified by Kprobe
221 * and it cannot be modified by ftrace.
222 */
223 if (!kp && !faddr)
224 return addr;
225
226 /*
227 * Basically, kp->ainsn.insn has an original instruction.
228 * However, RIP-relative instruction can not do single-stepping
229 * at different place, __copy_instruction() tweaks the displacement of
230 * that instruction. In that case, we can't recover the instruction
231 * from the kp->ainsn.insn.
232 *
233 * On the other hand, in case on normal Kprobe, kp->opcode has a copy
234 * of the first byte of the probed instruction, which is overwritten
235 * by int3. And the instruction at kp->addr is not modified by kprobes
236 * except for the first byte, we can recover the original instruction
237 * from it and kp->opcode.
238 *
239 * In case of Kprobes using ftrace, we do not have a copy of
240 * the original instruction. In fact, the ftrace location might
241 * be modified at anytime and even could be in an inconsistent state.
242 * Fortunately, we know that the original code is the ideal 5-byte
243 * long NOP.
244 */
245 if (probe_kernel_read(buf, (void *)addr,
246 MAX_INSN_SIZE * sizeof(kprobe_opcode_t)))
247 return 0UL;
248
249 if (faddr)
250 memcpy(buf, ideal_nops[NOP_ATOMIC5], 5);
251 else
252 buf[0] = kp->opcode;
253 return (unsigned long)buf;
254 }
255
256 /*
257 * Recover the probed instruction at addr for further analysis.
258 * Caller must lock kprobes by kprobe_mutex, or disable preemption
259 * for preventing to release referencing kprobes.
260 * Returns zero if the instruction can not get recovered (or access failed).
261 */
recover_probed_instruction(kprobe_opcode_t * buf,unsigned long addr)262 unsigned long recover_probed_instruction(kprobe_opcode_t *buf, unsigned long addr)
263 {
264 unsigned long __addr;
265
266 __addr = __recover_optprobed_insn(buf, addr);
267 if (__addr != addr)
268 return __addr;
269
270 return __recover_probed_insn(buf, addr);
271 }
272
273 /* Check if paddr is at an instruction boundary */
can_probe(unsigned long paddr)274 static int can_probe(unsigned long paddr)
275 {
276 unsigned long addr, __addr, offset = 0;
277 struct insn insn;
278 kprobe_opcode_t buf[MAX_INSN_SIZE];
279
280 if (!kallsyms_lookup_size_offset(paddr, NULL, &offset))
281 return 0;
282
283 /* Decode instructions */
284 addr = paddr - offset;
285 while (addr < paddr) {
286 /*
287 * Check if the instruction has been modified by another
288 * kprobe, in which case we replace the breakpoint by the
289 * original instruction in our buffer.
290 * Also, jump optimization will change the breakpoint to
291 * relative-jump. Since the relative-jump itself is
292 * normally used, we just go through if there is no kprobe.
293 */
294 __addr = recover_probed_instruction(buf, addr);
295 if (!__addr)
296 return 0;
297 kernel_insn_init(&insn, (void *)__addr, MAX_INSN_SIZE);
298 insn_get_length(&insn);
299
300 /*
301 * Another debugging subsystem might insert this breakpoint.
302 * In that case, we can't recover it.
303 */
304 if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION)
305 return 0;
306 addr += insn.length;
307 }
308
309 return (addr == paddr);
310 }
311
312 /*
313 * Returns non-zero if opcode modifies the interrupt flag.
314 */
is_IF_modifier(kprobe_opcode_t * insn)315 static int is_IF_modifier(kprobe_opcode_t *insn)
316 {
317 /* Skip prefixes */
318 insn = skip_prefixes(insn);
319
320 switch (*insn) {
321 case 0xfa: /* cli */
322 case 0xfb: /* sti */
323 case 0xcf: /* iret/iretd */
324 case 0x9d: /* popf/popfd */
325 return 1;
326 }
327
328 return 0;
329 }
330
331 /*
332 * Copy an instruction with recovering modified instruction by kprobes
333 * and adjust the displacement if the instruction uses the %rip-relative
334 * addressing mode. Note that since @real will be the final place of copied
335 * instruction, displacement must be adjust by @real, not @dest.
336 * This returns the length of copied instruction, or 0 if it has an error.
337 */
__copy_instruction(u8 * dest,u8 * src,u8 * real,struct insn * insn)338 int __copy_instruction(u8 *dest, u8 *src, u8 *real, struct insn *insn)
339 {
340 kprobe_opcode_t buf[MAX_INSN_SIZE];
341 unsigned long recovered_insn =
342 recover_probed_instruction(buf, (unsigned long)src);
343
344 if (!recovered_insn || !insn)
345 return 0;
346
347 /* This can access kernel text if given address is not recovered */
348 if (probe_kernel_read(dest, (void *)recovered_insn, MAX_INSN_SIZE))
349 return 0;
350
351 kernel_insn_init(insn, dest, MAX_INSN_SIZE);
352 insn_get_length(insn);
353
354 /* Another subsystem puts a breakpoint, failed to recover */
355 if (insn->opcode.bytes[0] == BREAKPOINT_INSTRUCTION)
356 return 0;
357
358 /* We should not singlestep on the exception masking instructions */
359 if (insn_masking_exception(insn))
360 return 0;
361
362 #ifdef CONFIG_X86_64
363 /* Only x86_64 has RIP relative instructions */
364 if (insn_rip_relative(insn)) {
365 s64 newdisp;
366 u8 *disp;
367 /*
368 * The copied instruction uses the %rip-relative addressing
369 * mode. Adjust the displacement for the difference between
370 * the original location of this instruction and the location
371 * of the copy that will actually be run. The tricky bit here
372 * is making sure that the sign extension happens correctly in
373 * this calculation, since we need a signed 32-bit result to
374 * be sign-extended to 64 bits when it's added to the %rip
375 * value and yield the same 64-bit result that the sign-
376 * extension of the original signed 32-bit displacement would
377 * have given.
378 */
379 newdisp = (u8 *) src + (s64) insn->displacement.value
380 - (u8 *) real;
381 if ((s64) (s32) newdisp != newdisp) {
382 pr_err("Kprobes error: new displacement does not fit into s32 (%llx)\n", newdisp);
383 return 0;
384 }
385 disp = (u8 *) dest + insn_offset_displacement(insn);
386 *(s32 *) disp = (s32) newdisp;
387 }
388 #endif
389 return insn->length;
390 }
391
392 /* Prepare reljump right after instruction to boost */
prepare_boost(kprobe_opcode_t * buf,struct kprobe * p,struct insn * insn)393 static int prepare_boost(kprobe_opcode_t *buf, struct kprobe *p,
394 struct insn *insn)
395 {
396 int len = insn->length;
397
398 if (can_boost(insn, p->addr) &&
399 MAX_INSN_SIZE - len >= RELATIVEJUMP_SIZE) {
400 /*
401 * These instructions can be executed directly if it
402 * jumps back to correct address.
403 */
404 synthesize_reljump(buf + len, p->ainsn.insn + len,
405 p->addr + insn->length);
406 len += RELATIVEJUMP_SIZE;
407 p->ainsn.boostable = true;
408 } else {
409 p->ainsn.boostable = false;
410 }
411
412 return len;
413 }
414
415 /* Make page to RO mode when allocate it */
alloc_insn_page(void)416 void *alloc_insn_page(void)
417 {
418 void *page;
419
420 page = module_alloc(PAGE_SIZE);
421 if (!page)
422 return NULL;
423
424 set_vm_flush_reset_perms(page);
425 /*
426 * First make the page read-only, and only then make it executable to
427 * prevent it from being W+X in between.
428 */
429 set_memory_ro((unsigned long)page, 1);
430
431 /*
432 * TODO: Once additional kernel code protection mechanisms are set, ensure
433 * that the page was not maliciously altered and it is still zeroed.
434 */
435 set_memory_x((unsigned long)page, 1);
436
437 return page;
438 }
439
440 /* Recover page to RW mode before releasing it */
free_insn_page(void * page)441 void free_insn_page(void *page)
442 {
443 module_memfree(page);
444 }
445
arch_copy_kprobe(struct kprobe * p)446 static int arch_copy_kprobe(struct kprobe *p)
447 {
448 struct insn insn;
449 kprobe_opcode_t buf[MAX_INSN_SIZE];
450 int len;
451
452 /* Copy an instruction with recovering if other optprobe modifies it.*/
453 len = __copy_instruction(buf, p->addr, p->ainsn.insn, &insn);
454 if (!len)
455 return -EINVAL;
456
457 /*
458 * __copy_instruction can modify the displacement of the instruction,
459 * but it doesn't affect boostable check.
460 */
461 len = prepare_boost(buf, p, &insn);
462
463 /* Check whether the instruction modifies Interrupt Flag or not */
464 p->ainsn.if_modifier = is_IF_modifier(buf);
465
466 /* Also, displacement change doesn't affect the first byte */
467 p->opcode = buf[0];
468
469 /* OK, write back the instruction(s) into ROX insn buffer */
470 text_poke(p->ainsn.insn, buf, len);
471
472 return 0;
473 }
474
arch_prepare_kprobe(struct kprobe * p)475 int arch_prepare_kprobe(struct kprobe *p)
476 {
477 int ret;
478
479 if (alternatives_text_reserved(p->addr, p->addr))
480 return -EINVAL;
481
482 if (!can_probe((unsigned long)p->addr))
483 return -EILSEQ;
484 /* insn: must be on special executable page on x86. */
485 p->ainsn.insn = get_insn_slot();
486 if (!p->ainsn.insn)
487 return -ENOMEM;
488
489 ret = arch_copy_kprobe(p);
490 if (ret) {
491 free_insn_slot(p->ainsn.insn, 0);
492 p->ainsn.insn = NULL;
493 }
494
495 return ret;
496 }
497
arch_arm_kprobe(struct kprobe * p)498 void arch_arm_kprobe(struct kprobe *p)
499 {
500 text_poke(p->addr, ((unsigned char []){BREAKPOINT_INSTRUCTION}), 1);
501 }
502
arch_disarm_kprobe(struct kprobe * p)503 void arch_disarm_kprobe(struct kprobe *p)
504 {
505 text_poke(p->addr, &p->opcode, 1);
506 }
507
arch_remove_kprobe(struct kprobe * p)508 void arch_remove_kprobe(struct kprobe *p)
509 {
510 if (p->ainsn.insn) {
511 free_insn_slot(p->ainsn.insn, p->ainsn.boostable);
512 p->ainsn.insn = NULL;
513 }
514 }
515
516 static nokprobe_inline void
save_previous_kprobe(struct kprobe_ctlblk * kcb)517 save_previous_kprobe(struct kprobe_ctlblk *kcb)
518 {
519 kcb->prev_kprobe.kp = kprobe_running();
520 kcb->prev_kprobe.status = kcb->kprobe_status;
521 kcb->prev_kprobe.old_flags = kcb->kprobe_old_flags;
522 kcb->prev_kprobe.saved_flags = kcb->kprobe_saved_flags;
523 }
524
525 static nokprobe_inline void
restore_previous_kprobe(struct kprobe_ctlblk * kcb)526 restore_previous_kprobe(struct kprobe_ctlblk *kcb)
527 {
528 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
529 kcb->kprobe_status = kcb->prev_kprobe.status;
530 kcb->kprobe_old_flags = kcb->prev_kprobe.old_flags;
531 kcb->kprobe_saved_flags = kcb->prev_kprobe.saved_flags;
532 }
533
534 static nokprobe_inline void
set_current_kprobe(struct kprobe * p,struct pt_regs * regs,struct kprobe_ctlblk * kcb)535 set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
536 struct kprobe_ctlblk *kcb)
537 {
538 __this_cpu_write(current_kprobe, p);
539 kcb->kprobe_saved_flags = kcb->kprobe_old_flags
540 = (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF));
541 if (p->ainsn.if_modifier)
542 kcb->kprobe_saved_flags &= ~X86_EFLAGS_IF;
543 }
544
clear_btf(void)545 static nokprobe_inline void clear_btf(void)
546 {
547 if (test_thread_flag(TIF_BLOCKSTEP)) {
548 unsigned long debugctl = get_debugctlmsr();
549
550 debugctl &= ~DEBUGCTLMSR_BTF;
551 update_debugctlmsr(debugctl);
552 }
553 }
554
restore_btf(void)555 static nokprobe_inline void restore_btf(void)
556 {
557 if (test_thread_flag(TIF_BLOCKSTEP)) {
558 unsigned long debugctl = get_debugctlmsr();
559
560 debugctl |= DEBUGCTLMSR_BTF;
561 update_debugctlmsr(debugctl);
562 }
563 }
564
arch_prepare_kretprobe(struct kretprobe_instance * ri,struct pt_regs * regs)565 void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
566 {
567 unsigned long *sara = stack_addr(regs);
568
569 ri->ret_addr = (kprobe_opcode_t *) *sara;
570 ri->fp = sara;
571
572 /* Replace the return addr with trampoline addr */
573 *sara = (unsigned long) &kretprobe_trampoline;
574 }
575 NOKPROBE_SYMBOL(arch_prepare_kretprobe);
576
setup_singlestep(struct kprobe * p,struct pt_regs * regs,struct kprobe_ctlblk * kcb,int reenter)577 static void setup_singlestep(struct kprobe *p, struct pt_regs *regs,
578 struct kprobe_ctlblk *kcb, int reenter)
579 {
580 if (setup_detour_execution(p, regs, reenter))
581 return;
582
583 #if !defined(CONFIG_PREEMPTION)
584 if (p->ainsn.boostable && !p->post_handler) {
585 /* Boost up -- we can execute copied instructions directly */
586 if (!reenter)
587 reset_current_kprobe();
588 /*
589 * Reentering boosted probe doesn't reset current_kprobe,
590 * nor set current_kprobe, because it doesn't use single
591 * stepping.
592 */
593 regs->ip = (unsigned long)p->ainsn.insn;
594 return;
595 }
596 #endif
597 if (reenter) {
598 save_previous_kprobe(kcb);
599 set_current_kprobe(p, regs, kcb);
600 kcb->kprobe_status = KPROBE_REENTER;
601 } else
602 kcb->kprobe_status = KPROBE_HIT_SS;
603 /* Prepare real single stepping */
604 clear_btf();
605 regs->flags |= X86_EFLAGS_TF;
606 regs->flags &= ~X86_EFLAGS_IF;
607 /* single step inline if the instruction is an int3 */
608 if (p->opcode == BREAKPOINT_INSTRUCTION)
609 regs->ip = (unsigned long)p->addr;
610 else
611 regs->ip = (unsigned long)p->ainsn.insn;
612 }
613 NOKPROBE_SYMBOL(setup_singlestep);
614
615 /*
616 * We have reentered the kprobe_handler(), since another probe was hit while
617 * within the handler. We save the original kprobes variables and just single
618 * step on the instruction of the new probe without calling any user handlers.
619 */
reenter_kprobe(struct kprobe * p,struct pt_regs * regs,struct kprobe_ctlblk * kcb)620 static int reenter_kprobe(struct kprobe *p, struct pt_regs *regs,
621 struct kprobe_ctlblk *kcb)
622 {
623 switch (kcb->kprobe_status) {
624 case KPROBE_HIT_SSDONE:
625 case KPROBE_HIT_ACTIVE:
626 case KPROBE_HIT_SS:
627 kprobes_inc_nmissed_count(p);
628 setup_singlestep(p, regs, kcb, 1);
629 break;
630 case KPROBE_REENTER:
631 /* A probe has been hit in the codepath leading up to, or just
632 * after, single-stepping of a probed instruction. This entire
633 * codepath should strictly reside in .kprobes.text section.
634 * Raise a BUG or we'll continue in an endless reentering loop
635 * and eventually a stack overflow.
636 */
637 pr_err("Unrecoverable kprobe detected.\n");
638 dump_kprobe(p);
639 BUG();
640 default:
641 /* impossible cases */
642 WARN_ON(1);
643 return 0;
644 }
645
646 return 1;
647 }
648 NOKPROBE_SYMBOL(reenter_kprobe);
649
650 /*
651 * Interrupts are disabled on entry as trap3 is an interrupt gate and they
652 * remain disabled throughout this function.
653 */
kprobe_int3_handler(struct pt_regs * regs)654 int kprobe_int3_handler(struct pt_regs *regs)
655 {
656 kprobe_opcode_t *addr;
657 struct kprobe *p;
658 struct kprobe_ctlblk *kcb;
659
660 if (user_mode(regs))
661 return 0;
662
663 addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t));
664 /*
665 * We don't want to be preempted for the entire duration of kprobe
666 * processing. Since int3 and debug trap disables irqs and we clear
667 * IF while singlestepping, it must be no preemptible.
668 */
669
670 kcb = get_kprobe_ctlblk();
671 p = get_kprobe(addr);
672
673 if (p) {
674 if (kprobe_running()) {
675 if (reenter_kprobe(p, regs, kcb))
676 return 1;
677 } else {
678 set_current_kprobe(p, regs, kcb);
679 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
680
681 /*
682 * If we have no pre-handler or it returned 0, we
683 * continue with normal processing. If we have a
684 * pre-handler and it returned non-zero, that means
685 * user handler setup registers to exit to another
686 * instruction, we must skip the single stepping.
687 */
688 if (!p->pre_handler || !p->pre_handler(p, regs))
689 setup_singlestep(p, regs, kcb, 0);
690 else
691 reset_current_kprobe();
692 return 1;
693 }
694 } else if (*addr != BREAKPOINT_INSTRUCTION) {
695 /*
696 * The breakpoint instruction was removed right
697 * after we hit it. Another cpu has removed
698 * either a probepoint or a debugger breakpoint
699 * at this address. In either case, no further
700 * handling of this interrupt is appropriate.
701 * Back up over the (now missing) int3 and run
702 * the original instruction.
703 */
704 regs->ip = (unsigned long)addr;
705 return 1;
706 } /* else: not a kprobe fault; let the kernel handle it */
707
708 return 0;
709 }
710 NOKPROBE_SYMBOL(kprobe_int3_handler);
711
712 /*
713 * When a retprobed function returns, this code saves registers and
714 * calls trampoline_handler() runs, which calls the kretprobe's handler.
715 */
716 asm(
717 ".text\n"
718 ".global kretprobe_trampoline\n"
719 ".type kretprobe_trampoline, @function\n"
720 "kretprobe_trampoline:\n"
721 /* We don't bother saving the ss register */
722 #ifdef CONFIG_X86_64
723 " pushq %rsp\n"
724 " pushfq\n"
725 SAVE_REGS_STRING
726 " movq %rsp, %rdi\n"
727 " call trampoline_handler\n"
728 /* Replace saved sp with true return address. */
729 " movq %rax, 19*8(%rsp)\n"
730 RESTORE_REGS_STRING
731 " popfq\n"
732 #else
733 " pushl %esp\n"
734 " pushfl\n"
735 SAVE_REGS_STRING
736 " movl %esp, %eax\n"
737 " call trampoline_handler\n"
738 /* Replace saved sp with true return address. */
739 " movl %eax, 15*4(%esp)\n"
740 RESTORE_REGS_STRING
741 " popfl\n"
742 #endif
743 " ret\n"
744 ".size kretprobe_trampoline, .-kretprobe_trampoline\n"
745 );
746 NOKPROBE_SYMBOL(kretprobe_trampoline);
747 STACK_FRAME_NON_STANDARD(kretprobe_trampoline);
748
749 static struct kprobe kretprobe_kprobe = {
750 .addr = (void *)kretprobe_trampoline,
751 };
752
753 /*
754 * Called from kretprobe_trampoline
755 */
trampoline_handler(struct pt_regs * regs)756 __used __visible void *trampoline_handler(struct pt_regs *regs)
757 {
758 struct kprobe_ctlblk *kcb;
759 struct kretprobe_instance *ri = NULL;
760 struct hlist_head *head, empty_rp;
761 struct hlist_node *tmp;
762 unsigned long flags, orig_ret_address = 0;
763 unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
764 kprobe_opcode_t *correct_ret_addr = NULL;
765 void *frame_pointer;
766 bool skipped = false;
767
768 preempt_disable();
769
770 /*
771 * Set a dummy kprobe for avoiding kretprobe recursion.
772 * Since kretprobe never run in kprobe handler, kprobe must not
773 * be running at this point.
774 */
775 kcb = get_kprobe_ctlblk();
776 __this_cpu_write(current_kprobe, &kretprobe_kprobe);
777 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
778
779 INIT_HLIST_HEAD(&empty_rp);
780 kretprobe_hash_lock(current, &head, &flags);
781 /* fixup registers */
782 regs->cs = __KERNEL_CS;
783 #ifdef CONFIG_X86_32
784 regs->cs |= get_kernel_rpl();
785 regs->gs = 0;
786 #endif
787 /* We use pt_regs->sp for return address holder. */
788 frame_pointer = ®s->sp;
789 regs->ip = trampoline_address;
790 regs->orig_ax = ~0UL;
791
792 /*
793 * It is possible to have multiple instances associated with a given
794 * task either because multiple functions in the call path have
795 * return probes installed on them, and/or more than one
796 * return probe was registered for a target function.
797 *
798 * We can handle this because:
799 * - instances are always pushed into the head of the list
800 * - when multiple return probes are registered for the same
801 * function, the (chronologically) first instance's ret_addr
802 * will be the real return address, and all the rest will
803 * point to kretprobe_trampoline.
804 */
805 hlist_for_each_entry(ri, head, hlist) {
806 if (ri->task != current)
807 /* another task is sharing our hash bucket */
808 continue;
809 /*
810 * Return probes must be pushed on this hash list correct
811 * order (same as return order) so that it can be popped
812 * correctly. However, if we find it is pushed it incorrect
813 * order, this means we find a function which should not be
814 * probed, because the wrong order entry is pushed on the
815 * path of processing other kretprobe itself.
816 */
817 if (ri->fp != frame_pointer) {
818 if (!skipped)
819 pr_warn("kretprobe is stacked incorrectly. Trying to fixup.\n");
820 skipped = true;
821 continue;
822 }
823
824 orig_ret_address = (unsigned long)ri->ret_addr;
825 if (skipped)
826 pr_warn("%ps must be blacklisted because of incorrect kretprobe order\n",
827 ri->rp->kp.addr);
828
829 if (orig_ret_address != trampoline_address)
830 /*
831 * This is the real return address. Any other
832 * instances associated with this task are for
833 * other calls deeper on the call stack
834 */
835 break;
836 }
837
838 kretprobe_assert(ri, orig_ret_address, trampoline_address);
839
840 correct_ret_addr = ri->ret_addr;
841 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
842 if (ri->task != current)
843 /* another task is sharing our hash bucket */
844 continue;
845 if (ri->fp != frame_pointer)
846 continue;
847
848 orig_ret_address = (unsigned long)ri->ret_addr;
849 if (ri->rp && ri->rp->handler) {
850 __this_cpu_write(current_kprobe, &ri->rp->kp);
851 ri->ret_addr = correct_ret_addr;
852 ri->rp->handler(ri, regs);
853 __this_cpu_write(current_kprobe, &kretprobe_kprobe);
854 }
855
856 recycle_rp_inst(ri, &empty_rp);
857
858 if (orig_ret_address != trampoline_address)
859 /*
860 * This is the real return address. Any other
861 * instances associated with this task are for
862 * other calls deeper on the call stack
863 */
864 break;
865 }
866
867 kretprobe_hash_unlock(current, &flags);
868
869 __this_cpu_write(current_kprobe, NULL);
870 preempt_enable();
871
872 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
873 hlist_del(&ri->hlist);
874 kfree(ri);
875 }
876 return (void *)orig_ret_address;
877 }
878 NOKPROBE_SYMBOL(trampoline_handler);
879
880 /*
881 * Called after single-stepping. p->addr is the address of the
882 * instruction whose first byte has been replaced by the "int 3"
883 * instruction. To avoid the SMP problems that can occur when we
884 * temporarily put back the original opcode to single-step, we
885 * single-stepped a copy of the instruction. The address of this
886 * copy is p->ainsn.insn.
887 *
888 * This function prepares to return from the post-single-step
889 * interrupt. We have to fix up the stack as follows:
890 *
891 * 0) Except in the case of absolute or indirect jump or call instructions,
892 * the new ip is relative to the copied instruction. We need to make
893 * it relative to the original instruction.
894 *
895 * 1) If the single-stepped instruction was pushfl, then the TF and IF
896 * flags are set in the just-pushed flags, and may need to be cleared.
897 *
898 * 2) If the single-stepped instruction was a call, the return address
899 * that is atop the stack is the address following the copied instruction.
900 * We need to make it the address following the original instruction.
901 *
902 * If this is the first time we've single-stepped the instruction at
903 * this probepoint, and the instruction is boostable, boost it: add a
904 * jump instruction after the copied instruction, that jumps to the next
905 * instruction after the probepoint.
906 */
resume_execution(struct kprobe * p,struct pt_regs * regs,struct kprobe_ctlblk * kcb)907 static void resume_execution(struct kprobe *p, struct pt_regs *regs,
908 struct kprobe_ctlblk *kcb)
909 {
910 unsigned long *tos = stack_addr(regs);
911 unsigned long copy_ip = (unsigned long)p->ainsn.insn;
912 unsigned long orig_ip = (unsigned long)p->addr;
913 kprobe_opcode_t *insn = p->ainsn.insn;
914
915 /* Skip prefixes */
916 insn = skip_prefixes(insn);
917
918 regs->flags &= ~X86_EFLAGS_TF;
919 switch (*insn) {
920 case 0x9c: /* pushfl */
921 *tos &= ~(X86_EFLAGS_TF | X86_EFLAGS_IF);
922 *tos |= kcb->kprobe_old_flags;
923 break;
924 case 0xc2: /* iret/ret/lret */
925 case 0xc3:
926 case 0xca:
927 case 0xcb:
928 case 0xcf:
929 case 0xea: /* jmp absolute -- ip is correct */
930 /* ip is already adjusted, no more changes required */
931 p->ainsn.boostable = true;
932 goto no_change;
933 case 0xe8: /* call relative - Fix return addr */
934 *tos = orig_ip + (*tos - copy_ip);
935 break;
936 #ifdef CONFIG_X86_32
937 case 0x9a: /* call absolute -- same as call absolute, indirect */
938 *tos = orig_ip + (*tos - copy_ip);
939 goto no_change;
940 #endif
941 case 0xff:
942 if ((insn[1] & 0x30) == 0x10) {
943 /*
944 * call absolute, indirect
945 * Fix return addr; ip is correct.
946 * But this is not boostable
947 */
948 *tos = orig_ip + (*tos - copy_ip);
949 goto no_change;
950 } else if (((insn[1] & 0x31) == 0x20) ||
951 ((insn[1] & 0x31) == 0x21)) {
952 /*
953 * jmp near and far, absolute indirect
954 * ip is correct. And this is boostable
955 */
956 p->ainsn.boostable = true;
957 goto no_change;
958 }
959 default:
960 break;
961 }
962
963 regs->ip += orig_ip - copy_ip;
964
965 no_change:
966 restore_btf();
967 }
968 NOKPROBE_SYMBOL(resume_execution);
969
970 /*
971 * Interrupts are disabled on entry as trap1 is an interrupt gate and they
972 * remain disabled throughout this function.
973 */
kprobe_debug_handler(struct pt_regs * regs)974 int kprobe_debug_handler(struct pt_regs *regs)
975 {
976 struct kprobe *cur = kprobe_running();
977 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
978
979 if (!cur)
980 return 0;
981
982 resume_execution(cur, regs, kcb);
983 regs->flags |= kcb->kprobe_saved_flags;
984
985 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
986 kcb->kprobe_status = KPROBE_HIT_SSDONE;
987 cur->post_handler(cur, regs, 0);
988 }
989
990 /* Restore back the original saved kprobes variables and continue. */
991 if (kcb->kprobe_status == KPROBE_REENTER) {
992 restore_previous_kprobe(kcb);
993 goto out;
994 }
995 reset_current_kprobe();
996 out:
997 /*
998 * if somebody else is singlestepping across a probe point, flags
999 * will have TF set, in which case, continue the remaining processing
1000 * of do_debug, as if this is not a probe hit.
1001 */
1002 if (regs->flags & X86_EFLAGS_TF)
1003 return 0;
1004
1005 return 1;
1006 }
1007 NOKPROBE_SYMBOL(kprobe_debug_handler);
1008
kprobe_fault_handler(struct pt_regs * regs,int trapnr)1009 int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
1010 {
1011 struct kprobe *cur = kprobe_running();
1012 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1013
1014 if (unlikely(regs->ip == (unsigned long)cur->ainsn.insn)) {
1015 /* This must happen on single-stepping */
1016 WARN_ON(kcb->kprobe_status != KPROBE_HIT_SS &&
1017 kcb->kprobe_status != KPROBE_REENTER);
1018 /*
1019 * We are here because the instruction being single
1020 * stepped caused a page fault. We reset the current
1021 * kprobe and the ip points back to the probe address
1022 * and allow the page fault handler to continue as a
1023 * normal page fault.
1024 */
1025 regs->ip = (unsigned long)cur->addr;
1026 /*
1027 * Trap flag (TF) has been set here because this fault
1028 * happened where the single stepping will be done.
1029 * So clear it by resetting the current kprobe:
1030 */
1031 regs->flags &= ~X86_EFLAGS_TF;
1032
1033 /*
1034 * If the TF flag was set before the kprobe hit,
1035 * don't touch it:
1036 */
1037 regs->flags |= kcb->kprobe_old_flags;
1038
1039 if (kcb->kprobe_status == KPROBE_REENTER)
1040 restore_previous_kprobe(kcb);
1041 else
1042 reset_current_kprobe();
1043 } else if (kcb->kprobe_status == KPROBE_HIT_ACTIVE ||
1044 kcb->kprobe_status == KPROBE_HIT_SSDONE) {
1045 /*
1046 * We increment the nmissed count for accounting,
1047 * we can also use npre/npostfault count for accounting
1048 * these specific fault cases.
1049 */
1050 kprobes_inc_nmissed_count(cur);
1051
1052 /*
1053 * We come here because instructions in the pre/post
1054 * handler caused the page_fault, this could happen
1055 * if handler tries to access user space by
1056 * copy_from_user(), get_user() etc. Let the
1057 * user-specified handler try to fix it first.
1058 */
1059 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
1060 return 1;
1061 }
1062
1063 return 0;
1064 }
1065 NOKPROBE_SYMBOL(kprobe_fault_handler);
1066
arch_populate_kprobe_blacklist(void)1067 int __init arch_populate_kprobe_blacklist(void)
1068 {
1069 int ret;
1070
1071 ret = kprobe_add_area_blacklist((unsigned long)__irqentry_text_start,
1072 (unsigned long)__irqentry_text_end);
1073 if (ret)
1074 return ret;
1075
1076 return kprobe_add_area_blacklist((unsigned long)__entry_text_start,
1077 (unsigned long)__entry_text_end);
1078 }
1079
arch_init_kprobes(void)1080 int __init arch_init_kprobes(void)
1081 {
1082 return 0;
1083 }
1084
arch_trampoline_kprobe(struct kprobe * p)1085 int arch_trampoline_kprobe(struct kprobe *p)
1086 {
1087 return 0;
1088 }
1089