1 /*
2 * Kernel Debug Core
3 *
4 * Maintainer: Jason Wessel <jason.wessel@windriver.com>
5 *
6 * Copyright (C) 2000-2001 VERITAS Software Corporation.
7 * Copyright (C) 2002-2004 Timesys Corporation
8 * Copyright (C) 2003-2004 Amit S. Kale <amitkale@linsyssoft.com>
9 * Copyright (C) 2004 Pavel Machek <pavel@ucw.cz>
10 * Copyright (C) 2004-2006 Tom Rini <trini@kernel.crashing.org>
11 * Copyright (C) 2004-2006 LinSysSoft Technologies Pvt. Ltd.
12 * Copyright (C) 2005-2009 Wind River Systems, Inc.
13 * Copyright (C) 2007 MontaVista Software, Inc.
14 * Copyright (C) 2008 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
15 *
16 * Contributors at various stages not listed above:
17 * Jason Wessel ( jason.wessel@windriver.com )
18 * George Anzinger <george@mvista.com>
19 * Anurekh Saxena (anurekh.saxena@timesys.com)
20 * Lake Stevens Instrument Division (Glenn Engel)
21 * Jim Kingdon, Cygnus Support.
22 *
23 * Original KGDB stub: David Grothe <dave@gcom.com>,
24 * Tigran Aivazian <tigran@sco.com>
25 *
26 * This file is licensed under the terms of the GNU General Public License
27 * version 2. This program is licensed "as is" without any warranty of any
28 * kind, whether express or implied.
29 */
30
31 #define pr_fmt(fmt) "KGDB: " fmt
32
33 #include <linux/pid_namespace.h>
34 #include <linux/clocksource.h>
35 #include <linux/serial_core.h>
36 #include <linux/interrupt.h>
37 #include <linux/spinlock.h>
38 #include <linux/console.h>
39 #include <linux/threads.h>
40 #include <linux/uaccess.h>
41 #include <linux/kernel.h>
42 #include <linux/module.h>
43 #include <linux/ptrace.h>
44 #include <linux/string.h>
45 #include <linux/delay.h>
46 #include <linux/sched.h>
47 #include <linux/sysrq.h>
48 #include <linux/reboot.h>
49 #include <linux/init.h>
50 #include <linux/kgdb.h>
51 #include <linux/kdb.h>
52 #include <linux/nmi.h>
53 #include <linux/pid.h>
54 #include <linux/smp.h>
55 #include <linux/mm.h>
56 #include <linux/vmacache.h>
57 #include <linux/rcupdate.h>
58 #include <linux/irq.h>
59
60 #include <asm/cacheflush.h>
61 #include <asm/byteorder.h>
62 #include <linux/atomic.h>
63
64 #include "debug_core.h"
65
66 static int kgdb_break_asap;
67
68 struct debuggerinfo_struct kgdb_info[NR_CPUS];
69
70 /* kgdb_connected - Is a host GDB connected to us? */
71 int kgdb_connected;
72 EXPORT_SYMBOL_GPL(kgdb_connected);
73
74 /* All the KGDB handlers are installed */
75 int kgdb_io_module_registered;
76
77 /* Guard for recursive entry */
78 static int exception_level;
79
80 struct kgdb_io *dbg_io_ops;
81 static DEFINE_SPINLOCK(kgdb_registration_lock);
82
83 /* Action for the reboot notifier, a global allow kdb to change it */
84 static int kgdbreboot;
85 /* kgdb console driver is loaded */
86 static int kgdb_con_registered;
87 /* determine if kgdb console output should be used */
88 static int kgdb_use_con;
89 /* Flag for alternate operations for early debugging */
90 bool dbg_is_early = true;
91 /* Next cpu to become the master debug core */
92 int dbg_switch_cpu;
93
94 /* Use kdb or gdbserver mode */
95 int dbg_kdb_mode = 1;
96
97 module_param(kgdb_use_con, int, 0644);
98 module_param(kgdbreboot, int, 0644);
99
100 /*
101 * Holds information about breakpoints in a kernel. These breakpoints are
102 * added and removed by gdb.
103 */
104 static struct kgdb_bkpt kgdb_break[KGDB_MAX_BREAKPOINTS] = {
105 [0 ... KGDB_MAX_BREAKPOINTS-1] = { .state = BP_UNDEFINED }
106 };
107
108 /*
109 * The CPU# of the active CPU, or -1 if none:
110 */
111 atomic_t kgdb_active = ATOMIC_INIT(-1);
112 EXPORT_SYMBOL_GPL(kgdb_active);
113 static DEFINE_RAW_SPINLOCK(dbg_master_lock);
114 static DEFINE_RAW_SPINLOCK(dbg_slave_lock);
115
116 /*
117 * We use NR_CPUs not PERCPU, in case kgdb is used to debug early
118 * bootup code (which might not have percpu set up yet):
119 */
120 static atomic_t masters_in_kgdb;
121 static atomic_t slaves_in_kgdb;
122 static atomic_t kgdb_break_tasklet_var;
123 atomic_t kgdb_setting_breakpoint;
124
125 struct task_struct *kgdb_usethread;
126 struct task_struct *kgdb_contthread;
127
128 int kgdb_single_step;
129 static pid_t kgdb_sstep_pid;
130
131 /* to keep track of the CPU which is doing the single stepping*/
132 atomic_t kgdb_cpu_doing_single_step = ATOMIC_INIT(-1);
133
134 /*
135 * If you are debugging a problem where roundup (the collection of
136 * all other CPUs) is a problem [this should be extremely rare],
137 * then use the nokgdbroundup option to avoid roundup. In that case
138 * the other CPUs might interfere with your debugging context, so
139 * use this with care:
140 */
141 static int kgdb_do_roundup = 1;
142
opt_nokgdbroundup(char * str)143 static int __init opt_nokgdbroundup(char *str)
144 {
145 kgdb_do_roundup = 0;
146
147 return 0;
148 }
149
150 early_param("nokgdbroundup", opt_nokgdbroundup);
151
152 /*
153 * Finally, some KGDB code :-)
154 */
155
156 /*
157 * Weak aliases for breakpoint management,
158 * can be overridden by architectures when needed:
159 */
kgdb_arch_set_breakpoint(struct kgdb_bkpt * bpt)160 int __weak kgdb_arch_set_breakpoint(struct kgdb_bkpt *bpt)
161 {
162 int err;
163
164 err = copy_from_kernel_nofault(bpt->saved_instr, (char *)bpt->bpt_addr,
165 BREAK_INSTR_SIZE);
166 if (err)
167 return err;
168 err = copy_to_kernel_nofault((char *)bpt->bpt_addr,
169 arch_kgdb_ops.gdb_bpt_instr, BREAK_INSTR_SIZE);
170 return err;
171 }
172 NOKPROBE_SYMBOL(kgdb_arch_set_breakpoint);
173
kgdb_arch_remove_breakpoint(struct kgdb_bkpt * bpt)174 int __weak kgdb_arch_remove_breakpoint(struct kgdb_bkpt *bpt)
175 {
176 return copy_to_kernel_nofault((char *)bpt->bpt_addr,
177 (char *)bpt->saved_instr, BREAK_INSTR_SIZE);
178 }
179 NOKPROBE_SYMBOL(kgdb_arch_remove_breakpoint);
180
kgdb_validate_break_address(unsigned long addr)181 int __weak kgdb_validate_break_address(unsigned long addr)
182 {
183 struct kgdb_bkpt tmp;
184 int err;
185
186 if (kgdb_within_blocklist(addr))
187 return -EINVAL;
188
189 /* Validate setting the breakpoint and then removing it. If the
190 * remove fails, the kernel needs to emit a bad message because we
191 * are deep trouble not being able to put things back the way we
192 * found them.
193 */
194 tmp.bpt_addr = addr;
195 err = kgdb_arch_set_breakpoint(&tmp);
196 if (err)
197 return err;
198 err = kgdb_arch_remove_breakpoint(&tmp);
199 if (err)
200 pr_err("Critical breakpoint error, kernel memory destroyed at: %lx\n",
201 addr);
202 return err;
203 }
204
kgdb_arch_pc(int exception,struct pt_regs * regs)205 unsigned long __weak kgdb_arch_pc(int exception, struct pt_regs *regs)
206 {
207 return instruction_pointer(regs);
208 }
209 NOKPROBE_SYMBOL(kgdb_arch_pc);
210
kgdb_arch_init(void)211 int __weak kgdb_arch_init(void)
212 {
213 return 0;
214 }
215
kgdb_skipexception(int exception,struct pt_regs * regs)216 int __weak kgdb_skipexception(int exception, struct pt_regs *regs)
217 {
218 return 0;
219 }
220 NOKPROBE_SYMBOL(kgdb_skipexception);
221
222 #ifdef CONFIG_SMP
223
224 /*
225 * Default (weak) implementation for kgdb_roundup_cpus
226 */
227
228 static DEFINE_PER_CPU(call_single_data_t, kgdb_roundup_csd);
229
kgdb_call_nmi_hook(void * ignored)230 void __weak kgdb_call_nmi_hook(void *ignored)
231 {
232 /*
233 * NOTE: get_irq_regs() is supposed to get the registers from
234 * before the IPI interrupt happened and so is supposed to
235 * show where the processor was. In some situations it's
236 * possible we might be called without an IPI, so it might be
237 * safer to figure out how to make kgdb_breakpoint() work
238 * properly here.
239 */
240 kgdb_nmicallback(raw_smp_processor_id(), get_irq_regs());
241 }
242 NOKPROBE_SYMBOL(kgdb_call_nmi_hook);
243
kgdb_roundup_cpus(void)244 void __weak kgdb_roundup_cpus(void)
245 {
246 call_single_data_t *csd;
247 int this_cpu = raw_smp_processor_id();
248 int cpu;
249 int ret;
250
251 for_each_online_cpu(cpu) {
252 /* No need to roundup ourselves */
253 if (cpu == this_cpu)
254 continue;
255
256 csd = &per_cpu(kgdb_roundup_csd, cpu);
257
258 /*
259 * If it didn't round up last time, don't try again
260 * since smp_call_function_single_async() will block.
261 *
262 * If rounding_up is false then we know that the
263 * previous call must have at least started and that
264 * means smp_call_function_single_async() won't block.
265 */
266 if (kgdb_info[cpu].rounding_up)
267 continue;
268 kgdb_info[cpu].rounding_up = true;
269
270 csd->func = kgdb_call_nmi_hook;
271 ret = smp_call_function_single_async(cpu, csd);
272 if (ret)
273 kgdb_info[cpu].rounding_up = false;
274 }
275 }
276 NOKPROBE_SYMBOL(kgdb_roundup_cpus);
277
278 #endif
279
280 /*
281 * Some architectures need cache flushes when we set/clear a
282 * breakpoint:
283 */
kgdb_flush_swbreak_addr(unsigned long addr)284 static void kgdb_flush_swbreak_addr(unsigned long addr)
285 {
286 if (!CACHE_FLUSH_IS_SAFE)
287 return;
288
289 if (current->mm) {
290 int i;
291
292 for (i = 0; i < VMACACHE_SIZE; i++) {
293 if (!current->vmacache.vmas[i])
294 continue;
295 flush_cache_range(current->vmacache.vmas[i],
296 addr, addr + BREAK_INSTR_SIZE);
297 }
298 }
299
300 /* Force flush instruction cache if it was outside the mm */
301 flush_icache_range(addr, addr + BREAK_INSTR_SIZE);
302 }
303 NOKPROBE_SYMBOL(kgdb_flush_swbreak_addr);
304
305 /*
306 * SW breakpoint management:
307 */
dbg_activate_sw_breakpoints(void)308 int dbg_activate_sw_breakpoints(void)
309 {
310 int error;
311 int ret = 0;
312 int i;
313
314 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
315 if (kgdb_break[i].state != BP_SET)
316 continue;
317
318 error = kgdb_arch_set_breakpoint(&kgdb_break[i]);
319 if (error) {
320 ret = error;
321 pr_info("BP install failed: %lx\n",
322 kgdb_break[i].bpt_addr);
323 continue;
324 }
325
326 kgdb_flush_swbreak_addr(kgdb_break[i].bpt_addr);
327 kgdb_break[i].state = BP_ACTIVE;
328 }
329 return ret;
330 }
331 NOKPROBE_SYMBOL(dbg_activate_sw_breakpoints);
332
dbg_set_sw_break(unsigned long addr)333 int dbg_set_sw_break(unsigned long addr)
334 {
335 int err = kgdb_validate_break_address(addr);
336 int breakno = -1;
337 int i;
338
339 if (err)
340 return err;
341
342 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
343 if ((kgdb_break[i].state == BP_SET) &&
344 (kgdb_break[i].bpt_addr == addr))
345 return -EEXIST;
346 }
347 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
348 if (kgdb_break[i].state == BP_REMOVED &&
349 kgdb_break[i].bpt_addr == addr) {
350 breakno = i;
351 break;
352 }
353 }
354
355 if (breakno == -1) {
356 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
357 if (kgdb_break[i].state == BP_UNDEFINED) {
358 breakno = i;
359 break;
360 }
361 }
362 }
363
364 if (breakno == -1)
365 return -E2BIG;
366
367 kgdb_break[breakno].state = BP_SET;
368 kgdb_break[breakno].type = BP_BREAKPOINT;
369 kgdb_break[breakno].bpt_addr = addr;
370
371 return 0;
372 }
373
dbg_deactivate_sw_breakpoints(void)374 int dbg_deactivate_sw_breakpoints(void)
375 {
376 int error;
377 int ret = 0;
378 int i;
379
380 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
381 if (kgdb_break[i].state != BP_ACTIVE)
382 continue;
383 error = kgdb_arch_remove_breakpoint(&kgdb_break[i]);
384 if (error) {
385 pr_info("BP remove failed: %lx\n",
386 kgdb_break[i].bpt_addr);
387 ret = error;
388 }
389
390 kgdb_flush_swbreak_addr(kgdb_break[i].bpt_addr);
391 kgdb_break[i].state = BP_SET;
392 }
393 return ret;
394 }
395 NOKPROBE_SYMBOL(dbg_deactivate_sw_breakpoints);
396
dbg_remove_sw_break(unsigned long addr)397 int dbg_remove_sw_break(unsigned long addr)
398 {
399 int i;
400
401 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
402 if ((kgdb_break[i].state == BP_SET) &&
403 (kgdb_break[i].bpt_addr == addr)) {
404 kgdb_break[i].state = BP_REMOVED;
405 return 0;
406 }
407 }
408 return -ENOENT;
409 }
410
kgdb_isremovedbreak(unsigned long addr)411 int kgdb_isremovedbreak(unsigned long addr)
412 {
413 int i;
414
415 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
416 if ((kgdb_break[i].state == BP_REMOVED) &&
417 (kgdb_break[i].bpt_addr == addr))
418 return 1;
419 }
420 return 0;
421 }
422
kgdb_has_hit_break(unsigned long addr)423 int kgdb_has_hit_break(unsigned long addr)
424 {
425 int i;
426
427 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
428 if (kgdb_break[i].state == BP_ACTIVE &&
429 kgdb_break[i].bpt_addr == addr)
430 return 1;
431 }
432 return 0;
433 }
434
dbg_remove_all_break(void)435 int dbg_remove_all_break(void)
436 {
437 int error;
438 int i;
439
440 /* Clear memory breakpoints. */
441 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
442 if (kgdb_break[i].state != BP_ACTIVE)
443 goto setundefined;
444 error = kgdb_arch_remove_breakpoint(&kgdb_break[i]);
445 if (error)
446 pr_err("breakpoint remove failed: %lx\n",
447 kgdb_break[i].bpt_addr);
448 setundefined:
449 kgdb_break[i].state = BP_UNDEFINED;
450 }
451
452 /* Clear hardware breakpoints. */
453 if (arch_kgdb_ops.remove_all_hw_break)
454 arch_kgdb_ops.remove_all_hw_break();
455
456 return 0;
457 }
458
459 #ifdef CONFIG_KGDB_KDB
kdb_dump_stack_on_cpu(int cpu)460 void kdb_dump_stack_on_cpu(int cpu)
461 {
462 if (cpu == raw_smp_processor_id() || !IS_ENABLED(CONFIG_SMP)) {
463 dump_stack();
464 return;
465 }
466
467 if (!(kgdb_info[cpu].exception_state & DCPU_IS_SLAVE)) {
468 kdb_printf("ERROR: Task on cpu %d didn't stop in the debugger\n",
469 cpu);
470 return;
471 }
472
473 /*
474 * In general, architectures don't support dumping the stack of a
475 * "running" process that's not the current one. From the point of
476 * view of the Linux, kernel processes that are looping in the kgdb
477 * slave loop are still "running". There's also no API (that actually
478 * works across all architectures) that can do a stack crawl based
479 * on registers passed as a parameter.
480 *
481 * Solve this conundrum by asking slave CPUs to do the backtrace
482 * themselves.
483 */
484 kgdb_info[cpu].exception_state |= DCPU_WANT_BT;
485 while (kgdb_info[cpu].exception_state & DCPU_WANT_BT)
486 cpu_relax();
487 }
488 #endif
489
490 /*
491 * Return true if there is a valid kgdb I/O module. Also if no
492 * debugger is attached a message can be printed to the console about
493 * waiting for the debugger to attach.
494 *
495 * The print_wait argument is only to be true when called from inside
496 * the core kgdb_handle_exception, because it will wait for the
497 * debugger to attach.
498 */
kgdb_io_ready(int print_wait)499 static int kgdb_io_ready(int print_wait)
500 {
501 if (!dbg_io_ops)
502 return 0;
503 if (kgdb_connected)
504 return 1;
505 if (atomic_read(&kgdb_setting_breakpoint))
506 return 1;
507 if (print_wait) {
508 #ifdef CONFIG_KGDB_KDB
509 if (!dbg_kdb_mode)
510 pr_crit("waiting... or $3#33 for KDB\n");
511 #else
512 pr_crit("Waiting for remote debugger\n");
513 #endif
514 }
515 return 1;
516 }
517 NOKPROBE_SYMBOL(kgdb_io_ready);
518
kgdb_reenter_check(struct kgdb_state * ks)519 static int kgdb_reenter_check(struct kgdb_state *ks)
520 {
521 unsigned long addr;
522
523 if (atomic_read(&kgdb_active) != raw_smp_processor_id())
524 return 0;
525
526 /* Panic on recursive debugger calls: */
527 exception_level++;
528 addr = kgdb_arch_pc(ks->ex_vector, ks->linux_regs);
529 dbg_deactivate_sw_breakpoints();
530
531 /*
532 * If the break point removed ok at the place exception
533 * occurred, try to recover and print a warning to the end
534 * user because the user planted a breakpoint in a place that
535 * KGDB needs in order to function.
536 */
537 if (dbg_remove_sw_break(addr) == 0) {
538 exception_level = 0;
539 kgdb_skipexception(ks->ex_vector, ks->linux_regs);
540 dbg_activate_sw_breakpoints();
541 pr_crit("re-enter error: breakpoint removed %lx\n", addr);
542 WARN_ON_ONCE(1);
543
544 return 1;
545 }
546 dbg_remove_all_break();
547 kgdb_skipexception(ks->ex_vector, ks->linux_regs);
548
549 if (exception_level > 1) {
550 dump_stack();
551 kgdb_io_module_registered = false;
552 panic("Recursive entry to debugger");
553 }
554
555 pr_crit("re-enter exception: ALL breakpoints killed\n");
556 #ifdef CONFIG_KGDB_KDB
557 /* Allow kdb to debug itself one level */
558 return 0;
559 #endif
560 dump_stack();
561 panic("Recursive entry to debugger");
562
563 return 1;
564 }
565 NOKPROBE_SYMBOL(kgdb_reenter_check);
566
dbg_touch_watchdogs(void)567 static void dbg_touch_watchdogs(void)
568 {
569 touch_softlockup_watchdog_sync();
570 clocksource_touch_watchdog();
571 rcu_cpu_stall_reset();
572 }
573 NOKPROBE_SYMBOL(dbg_touch_watchdogs);
574
kgdb_cpu_enter(struct kgdb_state * ks,struct pt_regs * regs,int exception_state)575 static int kgdb_cpu_enter(struct kgdb_state *ks, struct pt_regs *regs,
576 int exception_state)
577 {
578 unsigned long flags;
579 int sstep_tries = 100;
580 int error;
581 int cpu;
582 int trace_on = 0;
583 int online_cpus = num_online_cpus();
584 u64 time_left;
585
586 kgdb_info[ks->cpu].enter_kgdb++;
587 kgdb_info[ks->cpu].exception_state |= exception_state;
588
589 if (exception_state == DCPU_WANT_MASTER)
590 atomic_inc(&masters_in_kgdb);
591 else
592 atomic_inc(&slaves_in_kgdb);
593
594 if (arch_kgdb_ops.disable_hw_break)
595 arch_kgdb_ops.disable_hw_break(regs);
596
597 acquirelock:
598 rcu_read_lock();
599 /*
600 * Interrupts will be restored by the 'trap return' code, except when
601 * single stepping.
602 */
603 local_irq_save(flags);
604
605 cpu = ks->cpu;
606 kgdb_info[cpu].debuggerinfo = regs;
607 kgdb_info[cpu].task = current;
608 kgdb_info[cpu].ret_state = 0;
609 kgdb_info[cpu].irq_depth = hardirq_count() >> HARDIRQ_SHIFT;
610
611 /* Make sure the above info reaches the primary CPU */
612 smp_mb();
613
614 if (exception_level == 1) {
615 if (raw_spin_trylock(&dbg_master_lock))
616 atomic_xchg(&kgdb_active, cpu);
617 goto cpu_master_loop;
618 }
619
620 /*
621 * CPU will loop if it is a slave or request to become a kgdb
622 * master cpu and acquire the kgdb_active lock:
623 */
624 while (1) {
625 cpu_loop:
626 if (kgdb_info[cpu].exception_state & DCPU_NEXT_MASTER) {
627 kgdb_info[cpu].exception_state &= ~DCPU_NEXT_MASTER;
628 goto cpu_master_loop;
629 } else if (kgdb_info[cpu].exception_state & DCPU_WANT_MASTER) {
630 if (raw_spin_trylock(&dbg_master_lock)) {
631 atomic_xchg(&kgdb_active, cpu);
632 break;
633 }
634 } else if (kgdb_info[cpu].exception_state & DCPU_WANT_BT) {
635 dump_stack();
636 kgdb_info[cpu].exception_state &= ~DCPU_WANT_BT;
637 } else if (kgdb_info[cpu].exception_state & DCPU_IS_SLAVE) {
638 if (!raw_spin_is_locked(&dbg_slave_lock))
639 goto return_normal;
640 } else {
641 return_normal:
642 /* Return to normal operation by executing any
643 * hw breakpoint fixup.
644 */
645 if (arch_kgdb_ops.correct_hw_break)
646 arch_kgdb_ops.correct_hw_break();
647 if (trace_on)
648 tracing_on();
649 kgdb_info[cpu].debuggerinfo = NULL;
650 kgdb_info[cpu].task = NULL;
651 kgdb_info[cpu].exception_state &=
652 ~(DCPU_WANT_MASTER | DCPU_IS_SLAVE);
653 kgdb_info[cpu].enter_kgdb--;
654 smp_mb__before_atomic();
655 atomic_dec(&slaves_in_kgdb);
656 dbg_touch_watchdogs();
657 local_irq_restore(flags);
658 rcu_read_unlock();
659 return 0;
660 }
661 cpu_relax();
662 }
663
664 /*
665 * For single stepping, try to only enter on the processor
666 * that was single stepping. To guard against a deadlock, the
667 * kernel will only try for the value of sstep_tries before
668 * giving up and continuing on.
669 */
670 if (atomic_read(&kgdb_cpu_doing_single_step) != -1 &&
671 (kgdb_info[cpu].task &&
672 kgdb_info[cpu].task->pid != kgdb_sstep_pid) && --sstep_tries) {
673 atomic_set(&kgdb_active, -1);
674 raw_spin_unlock(&dbg_master_lock);
675 dbg_touch_watchdogs();
676 local_irq_restore(flags);
677 rcu_read_unlock();
678
679 goto acquirelock;
680 }
681
682 if (!kgdb_io_ready(1)) {
683 kgdb_info[cpu].ret_state = 1;
684 goto kgdb_restore; /* No I/O connection, resume the system */
685 }
686
687 /*
688 * Don't enter if we have hit a removed breakpoint.
689 */
690 if (kgdb_skipexception(ks->ex_vector, ks->linux_regs))
691 goto kgdb_restore;
692
693 atomic_inc(&ignore_console_lock_warning);
694
695 /* Call the I/O driver's pre_exception routine */
696 if (dbg_io_ops->pre_exception)
697 dbg_io_ops->pre_exception();
698
699 /*
700 * Get the passive CPU lock which will hold all the non-primary
701 * CPU in a spin state while the debugger is active
702 */
703 if (!kgdb_single_step)
704 raw_spin_lock(&dbg_slave_lock);
705
706 #ifdef CONFIG_SMP
707 /* If send_ready set, slaves are already waiting */
708 if (ks->send_ready)
709 atomic_set(ks->send_ready, 1);
710
711 /* Signal the other CPUs to enter kgdb_wait() */
712 else if ((!kgdb_single_step) && kgdb_do_roundup)
713 kgdb_roundup_cpus();
714 #endif
715
716 /*
717 * Wait for the other CPUs to be notified and be waiting for us:
718 */
719 time_left = MSEC_PER_SEC;
720 while (kgdb_do_roundup && --time_left &&
721 (atomic_read(&masters_in_kgdb) + atomic_read(&slaves_in_kgdb)) !=
722 online_cpus)
723 udelay(1000);
724 if (!time_left)
725 pr_crit("Timed out waiting for secondary CPUs.\n");
726
727 /*
728 * At this point the primary processor is completely
729 * in the debugger and all secondary CPUs are quiescent
730 */
731 dbg_deactivate_sw_breakpoints();
732 kgdb_single_step = 0;
733 kgdb_contthread = current;
734 exception_level = 0;
735 trace_on = tracing_is_on();
736 if (trace_on)
737 tracing_off();
738
739 while (1) {
740 cpu_master_loop:
741 if (dbg_kdb_mode) {
742 kgdb_connected = 1;
743 error = kdb_stub(ks);
744 if (error == -1)
745 continue;
746 kgdb_connected = 0;
747 } else {
748 error = gdb_serial_stub(ks);
749 }
750
751 if (error == DBG_PASS_EVENT) {
752 dbg_kdb_mode = !dbg_kdb_mode;
753 } else if (error == DBG_SWITCH_CPU_EVENT) {
754 kgdb_info[dbg_switch_cpu].exception_state |=
755 DCPU_NEXT_MASTER;
756 goto cpu_loop;
757 } else {
758 kgdb_info[cpu].ret_state = error;
759 break;
760 }
761 }
762
763 dbg_activate_sw_breakpoints();
764
765 /* Call the I/O driver's post_exception routine */
766 if (dbg_io_ops->post_exception)
767 dbg_io_ops->post_exception();
768
769 atomic_dec(&ignore_console_lock_warning);
770
771 if (!kgdb_single_step) {
772 raw_spin_unlock(&dbg_slave_lock);
773 /* Wait till all the CPUs have quit from the debugger. */
774 while (kgdb_do_roundup && atomic_read(&slaves_in_kgdb))
775 cpu_relax();
776 }
777
778 kgdb_restore:
779 if (atomic_read(&kgdb_cpu_doing_single_step) != -1) {
780 int sstep_cpu = atomic_read(&kgdb_cpu_doing_single_step);
781 if (kgdb_info[sstep_cpu].task)
782 kgdb_sstep_pid = kgdb_info[sstep_cpu].task->pid;
783 else
784 kgdb_sstep_pid = 0;
785 }
786 if (arch_kgdb_ops.correct_hw_break)
787 arch_kgdb_ops.correct_hw_break();
788 if (trace_on)
789 tracing_on();
790
791 kgdb_info[cpu].debuggerinfo = NULL;
792 kgdb_info[cpu].task = NULL;
793 kgdb_info[cpu].exception_state &=
794 ~(DCPU_WANT_MASTER | DCPU_IS_SLAVE);
795 kgdb_info[cpu].enter_kgdb--;
796 smp_mb__before_atomic();
797 atomic_dec(&masters_in_kgdb);
798 /* Free kgdb_active */
799 atomic_set(&kgdb_active, -1);
800 raw_spin_unlock(&dbg_master_lock);
801 dbg_touch_watchdogs();
802 local_irq_restore(flags);
803 rcu_read_unlock();
804
805 return kgdb_info[cpu].ret_state;
806 }
807 NOKPROBE_SYMBOL(kgdb_cpu_enter);
808
809 /*
810 * kgdb_handle_exception() - main entry point from a kernel exception
811 *
812 * Locking hierarchy:
813 * interface locks, if any (begin_session)
814 * kgdb lock (kgdb_active)
815 */
816 int
kgdb_handle_exception(int evector,int signo,int ecode,struct pt_regs * regs)817 kgdb_handle_exception(int evector, int signo, int ecode, struct pt_regs *regs)
818 {
819 struct kgdb_state kgdb_var;
820 struct kgdb_state *ks = &kgdb_var;
821 int ret = 0;
822
823 if (arch_kgdb_ops.enable_nmi)
824 arch_kgdb_ops.enable_nmi(0);
825 /*
826 * Avoid entering the debugger if we were triggered due to an oops
827 * but panic_timeout indicates the system should automatically
828 * reboot on panic. We don't want to get stuck waiting for input
829 * on such systems, especially if its "just" an oops.
830 */
831 if (signo != SIGTRAP && panic_timeout)
832 return 1;
833
834 memset(ks, 0, sizeof(struct kgdb_state));
835 ks->cpu = raw_smp_processor_id();
836 ks->ex_vector = evector;
837 ks->signo = signo;
838 ks->err_code = ecode;
839 ks->linux_regs = regs;
840
841 if (kgdb_reenter_check(ks))
842 goto out; /* Ouch, double exception ! */
843 if (kgdb_info[ks->cpu].enter_kgdb != 0)
844 goto out;
845
846 ret = kgdb_cpu_enter(ks, regs, DCPU_WANT_MASTER);
847 out:
848 if (arch_kgdb_ops.enable_nmi)
849 arch_kgdb_ops.enable_nmi(1);
850 return ret;
851 }
852 NOKPROBE_SYMBOL(kgdb_handle_exception);
853
854 /*
855 * GDB places a breakpoint at this function to know dynamically loaded objects.
856 */
module_event(struct notifier_block * self,unsigned long val,void * data)857 static int module_event(struct notifier_block *self, unsigned long val,
858 void *data)
859 {
860 return 0;
861 }
862
863 static struct notifier_block dbg_module_load_nb = {
864 .notifier_call = module_event,
865 };
866
kgdb_nmicallback(int cpu,void * regs)867 int kgdb_nmicallback(int cpu, void *regs)
868 {
869 #ifdef CONFIG_SMP
870 struct kgdb_state kgdb_var;
871 struct kgdb_state *ks = &kgdb_var;
872
873 kgdb_info[cpu].rounding_up = false;
874
875 memset(ks, 0, sizeof(struct kgdb_state));
876 ks->cpu = cpu;
877 ks->linux_regs = regs;
878
879 if (kgdb_info[ks->cpu].enter_kgdb == 0 &&
880 raw_spin_is_locked(&dbg_master_lock)) {
881 kgdb_cpu_enter(ks, regs, DCPU_IS_SLAVE);
882 return 0;
883 }
884 #endif
885 return 1;
886 }
887 NOKPROBE_SYMBOL(kgdb_nmicallback);
888
kgdb_nmicallin(int cpu,int trapnr,void * regs,int err_code,atomic_t * send_ready)889 int kgdb_nmicallin(int cpu, int trapnr, void *regs, int err_code,
890 atomic_t *send_ready)
891 {
892 #ifdef CONFIG_SMP
893 if (!kgdb_io_ready(0) || !send_ready)
894 return 1;
895
896 if (kgdb_info[cpu].enter_kgdb == 0) {
897 struct kgdb_state kgdb_var;
898 struct kgdb_state *ks = &kgdb_var;
899
900 memset(ks, 0, sizeof(struct kgdb_state));
901 ks->cpu = cpu;
902 ks->ex_vector = trapnr;
903 ks->signo = SIGTRAP;
904 ks->err_code = err_code;
905 ks->linux_regs = regs;
906 ks->send_ready = send_ready;
907 kgdb_cpu_enter(ks, regs, DCPU_WANT_MASTER);
908 return 0;
909 }
910 #endif
911 return 1;
912 }
913 NOKPROBE_SYMBOL(kgdb_nmicallin);
914
kgdb_console_write(struct console * co,const char * s,unsigned count)915 static void kgdb_console_write(struct console *co, const char *s,
916 unsigned count)
917 {
918 unsigned long flags;
919
920 /* If we're debugging, or KGDB has not connected, don't try
921 * and print. */
922 if (!kgdb_connected || atomic_read(&kgdb_active) != -1 || dbg_kdb_mode)
923 return;
924
925 local_irq_save(flags);
926 gdbstub_msg_write(s, count);
927 local_irq_restore(flags);
928 }
929
930 static struct console kgdbcons = {
931 .name = "kgdb",
932 .write = kgdb_console_write,
933 .flags = CON_PRINTBUFFER | CON_ENABLED,
934 .index = -1,
935 };
936
opt_kgdb_con(char * str)937 static int __init opt_kgdb_con(char *str)
938 {
939 kgdb_use_con = 1;
940
941 if (kgdb_io_module_registered && !kgdb_con_registered) {
942 register_console(&kgdbcons);
943 kgdb_con_registered = 1;
944 }
945
946 return 0;
947 }
948
949 early_param("kgdbcon", opt_kgdb_con);
950
951 #ifdef CONFIG_MAGIC_SYSRQ
sysrq_handle_dbg(int key)952 static void sysrq_handle_dbg(int key)
953 {
954 if (!dbg_io_ops) {
955 pr_crit("ERROR: No KGDB I/O module available\n");
956 return;
957 }
958 if (!kgdb_connected) {
959 #ifdef CONFIG_KGDB_KDB
960 if (!dbg_kdb_mode)
961 pr_crit("KGDB or $3#33 for KDB\n");
962 #else
963 pr_crit("Entering KGDB\n");
964 #endif
965 }
966
967 kgdb_breakpoint();
968 }
969
970 static const struct sysrq_key_op sysrq_dbg_op = {
971 .handler = sysrq_handle_dbg,
972 .help_msg = "debug(g)",
973 .action_msg = "DEBUG",
974 };
975 #endif
976
kgdb_panic(const char * msg)977 void kgdb_panic(const char *msg)
978 {
979 if (!kgdb_io_module_registered)
980 return;
981
982 /*
983 * We don't want to get stuck waiting for input from user if
984 * "panic_timeout" indicates the system should automatically
985 * reboot on panic.
986 */
987 if (panic_timeout)
988 return;
989
990 if (dbg_kdb_mode)
991 kdb_printf("PANIC: %s\n", msg);
992
993 kgdb_breakpoint();
994 }
995
kgdb_initial_breakpoint(void)996 static void kgdb_initial_breakpoint(void)
997 {
998 kgdb_break_asap = 0;
999
1000 pr_crit("Waiting for connection from remote gdb...\n");
1001 kgdb_breakpoint();
1002 }
1003
kgdb_arch_late(void)1004 void __weak kgdb_arch_late(void)
1005 {
1006 }
1007
dbg_late_init(void)1008 void __init dbg_late_init(void)
1009 {
1010 dbg_is_early = false;
1011 if (kgdb_io_module_registered)
1012 kgdb_arch_late();
1013 kdb_init(KDB_INIT_FULL);
1014
1015 if (kgdb_io_module_registered && kgdb_break_asap)
1016 kgdb_initial_breakpoint();
1017 }
1018
1019 static int
dbg_notify_reboot(struct notifier_block * this,unsigned long code,void * x)1020 dbg_notify_reboot(struct notifier_block *this, unsigned long code, void *x)
1021 {
1022 /*
1023 * Take the following action on reboot notify depending on value:
1024 * 1 == Enter debugger
1025 * 0 == [the default] detatch debug client
1026 * -1 == Do nothing... and use this until the board resets
1027 */
1028 switch (kgdbreboot) {
1029 case 1:
1030 kgdb_breakpoint();
1031 case -1:
1032 goto done;
1033 }
1034 if (!dbg_kdb_mode)
1035 gdbstub_exit(code);
1036 done:
1037 return NOTIFY_DONE;
1038 }
1039
1040 static struct notifier_block dbg_reboot_notifier = {
1041 .notifier_call = dbg_notify_reboot,
1042 .next = NULL,
1043 .priority = INT_MAX,
1044 };
1045
kgdb_register_callbacks(void)1046 static void kgdb_register_callbacks(void)
1047 {
1048 if (!kgdb_io_module_registered) {
1049 kgdb_io_module_registered = 1;
1050 kgdb_arch_init();
1051 if (!dbg_is_early)
1052 kgdb_arch_late();
1053 register_module_notifier(&dbg_module_load_nb);
1054 register_reboot_notifier(&dbg_reboot_notifier);
1055 #ifdef CONFIG_MAGIC_SYSRQ
1056 register_sysrq_key('g', &sysrq_dbg_op);
1057 #endif
1058 if (kgdb_use_con && !kgdb_con_registered) {
1059 register_console(&kgdbcons);
1060 kgdb_con_registered = 1;
1061 }
1062 }
1063 }
1064
kgdb_unregister_callbacks(void)1065 static void kgdb_unregister_callbacks(void)
1066 {
1067 /*
1068 * When this routine is called KGDB should unregister from
1069 * handlers and clean up, making sure it is not handling any
1070 * break exceptions at the time.
1071 */
1072 if (kgdb_io_module_registered) {
1073 kgdb_io_module_registered = 0;
1074 unregister_reboot_notifier(&dbg_reboot_notifier);
1075 unregister_module_notifier(&dbg_module_load_nb);
1076 kgdb_arch_exit();
1077 #ifdef CONFIG_MAGIC_SYSRQ
1078 unregister_sysrq_key('g', &sysrq_dbg_op);
1079 #endif
1080 if (kgdb_con_registered) {
1081 unregister_console(&kgdbcons);
1082 kgdb_con_registered = 0;
1083 }
1084 }
1085 }
1086
1087 /*
1088 * There are times a tasklet needs to be used vs a compiled in
1089 * break point so as to cause an exception outside a kgdb I/O module,
1090 * such as is the case with kgdboe, where calling a breakpoint in the
1091 * I/O driver itself would be fatal.
1092 */
kgdb_tasklet_bpt(unsigned long ing)1093 static void kgdb_tasklet_bpt(unsigned long ing)
1094 {
1095 kgdb_breakpoint();
1096 atomic_set(&kgdb_break_tasklet_var, 0);
1097 }
1098
1099 static DECLARE_TASKLET_OLD(kgdb_tasklet_breakpoint, kgdb_tasklet_bpt);
1100
kgdb_schedule_breakpoint(void)1101 void kgdb_schedule_breakpoint(void)
1102 {
1103 if (atomic_read(&kgdb_break_tasklet_var) ||
1104 atomic_read(&kgdb_active) != -1 ||
1105 atomic_read(&kgdb_setting_breakpoint))
1106 return;
1107 atomic_inc(&kgdb_break_tasklet_var);
1108 tasklet_schedule(&kgdb_tasklet_breakpoint);
1109 }
1110 EXPORT_SYMBOL_GPL(kgdb_schedule_breakpoint);
1111
1112 /**
1113 * kgdb_register_io_module - register KGDB IO module
1114 * @new_dbg_io_ops: the io ops vector
1115 *
1116 * Register it with the KGDB core.
1117 */
kgdb_register_io_module(struct kgdb_io * new_dbg_io_ops)1118 int kgdb_register_io_module(struct kgdb_io *new_dbg_io_ops)
1119 {
1120 struct kgdb_io *old_dbg_io_ops;
1121 int err;
1122
1123 spin_lock(&kgdb_registration_lock);
1124
1125 old_dbg_io_ops = dbg_io_ops;
1126 if (old_dbg_io_ops) {
1127 if (!old_dbg_io_ops->deinit) {
1128 spin_unlock(&kgdb_registration_lock);
1129
1130 pr_err("KGDB I/O driver %s can't replace %s.\n",
1131 new_dbg_io_ops->name, old_dbg_io_ops->name);
1132 return -EBUSY;
1133 }
1134 pr_info("Replacing I/O driver %s with %s\n",
1135 old_dbg_io_ops->name, new_dbg_io_ops->name);
1136 }
1137
1138 if (new_dbg_io_ops->init) {
1139 err = new_dbg_io_ops->init();
1140 if (err) {
1141 spin_unlock(&kgdb_registration_lock);
1142 return err;
1143 }
1144 }
1145
1146 dbg_io_ops = new_dbg_io_ops;
1147
1148 spin_unlock(&kgdb_registration_lock);
1149
1150 if (old_dbg_io_ops) {
1151 old_dbg_io_ops->deinit();
1152 return 0;
1153 }
1154
1155 pr_info("Registered I/O driver %s\n", new_dbg_io_ops->name);
1156
1157 /* Arm KGDB now. */
1158 kgdb_register_callbacks();
1159
1160 if (kgdb_break_asap &&
1161 (!dbg_is_early || IS_ENABLED(CONFIG_ARCH_HAS_EARLY_DEBUG)))
1162 kgdb_initial_breakpoint();
1163
1164 return 0;
1165 }
1166 EXPORT_SYMBOL_GPL(kgdb_register_io_module);
1167
1168 /**
1169 * kkgdb_unregister_io_module - unregister KGDB IO module
1170 * @old_dbg_io_ops: the io ops vector
1171 *
1172 * Unregister it with the KGDB core.
1173 */
kgdb_unregister_io_module(struct kgdb_io * old_dbg_io_ops)1174 void kgdb_unregister_io_module(struct kgdb_io *old_dbg_io_ops)
1175 {
1176 BUG_ON(kgdb_connected);
1177
1178 /*
1179 * KGDB is no longer able to communicate out, so
1180 * unregister our callbacks and reset state.
1181 */
1182 kgdb_unregister_callbacks();
1183
1184 spin_lock(&kgdb_registration_lock);
1185
1186 WARN_ON_ONCE(dbg_io_ops != old_dbg_io_ops);
1187 dbg_io_ops = NULL;
1188
1189 spin_unlock(&kgdb_registration_lock);
1190
1191 if (old_dbg_io_ops->deinit)
1192 old_dbg_io_ops->deinit();
1193
1194 pr_info("Unregistered I/O driver %s, debugger disabled\n",
1195 old_dbg_io_ops->name);
1196 }
1197 EXPORT_SYMBOL_GPL(kgdb_unregister_io_module);
1198
dbg_io_get_char(void)1199 int dbg_io_get_char(void)
1200 {
1201 int ret = dbg_io_ops->read_char();
1202 if (ret == NO_POLL_CHAR)
1203 return -1;
1204 if (!dbg_kdb_mode)
1205 return ret;
1206 if (ret == 127)
1207 return 8;
1208 return ret;
1209 }
1210
1211 /**
1212 * kgdb_breakpoint - generate breakpoint exception
1213 *
1214 * This function will generate a breakpoint exception. It is used at the
1215 * beginning of a program to sync up with a debugger and can be used
1216 * otherwise as a quick means to stop program execution and "break" into
1217 * the debugger.
1218 */
kgdb_breakpoint(void)1219 noinline void kgdb_breakpoint(void)
1220 {
1221 atomic_inc(&kgdb_setting_breakpoint);
1222 wmb(); /* Sync point before breakpoint */
1223 arch_kgdb_breakpoint();
1224 wmb(); /* Sync point after breakpoint */
1225 atomic_dec(&kgdb_setting_breakpoint);
1226 }
1227 EXPORT_SYMBOL_GPL(kgdb_breakpoint);
1228
opt_kgdb_wait(char * str)1229 static int __init opt_kgdb_wait(char *str)
1230 {
1231 kgdb_break_asap = 1;
1232
1233 kdb_init(KDB_INIT_EARLY);
1234 if (kgdb_io_module_registered &&
1235 IS_ENABLED(CONFIG_ARCH_HAS_EARLY_DEBUG))
1236 kgdb_initial_breakpoint();
1237
1238 return 0;
1239 }
1240
1241 early_param("kgdbwait", opt_kgdb_wait);
1242