1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel Debug Core
4 *
5 * Maintainer: Jason Wessel <jason.wessel@windriver.com>
6 *
7 * Copyright (C) 2000-2001 VERITAS Software Corporation.
8 * Copyright (C) 2002-2004 Timesys Corporation
9 * Copyright (C) 2003-2004 Amit S. Kale <amitkale@linsyssoft.com>
10 * Copyright (C) 2004 Pavel Machek <pavel@ucw.cz>
11 * Copyright (C) 2004-2006 Tom Rini <trini@kernel.crashing.org>
12 * Copyright (C) 2004-2006 LinSysSoft Technologies Pvt. Ltd.
13 * Copyright (C) 2005-2009 Wind River Systems, Inc.
14 * Copyright (C) 2007 MontaVista Software, Inc.
15 * Copyright (C) 2008 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
16 *
17 * Contributors at various stages not listed above:
18 * Jason Wessel ( jason.wessel@windriver.com )
19 * George Anzinger <george@mvista.com>
20 * Anurekh Saxena (anurekh.saxena@timesys.com)
21 * Lake Stevens Instrument Division (Glenn Engel)
22 * Jim Kingdon, Cygnus Support.
23 *
24 * Original KGDB stub: David Grothe <dave@gcom.com>,
25 * Tigran Aivazian <tigran@sco.com>
26 */
27
28 #define pr_fmt(fmt) "KGDB: " fmt
29
30 #include <linux/pid_namespace.h>
31 #include <linux/clocksource.h>
32 #include <linux/serial_core.h>
33 #include <linux/interrupt.h>
34 #include <linux/spinlock.h>
35 #include <linux/console.h>
36 #include <linux/threads.h>
37 #include <linux/uaccess.h>
38 #include <linux/kernel.h>
39 #include <linux/module.h>
40 #include <linux/ptrace.h>
41 #include <linux/string.h>
42 #include <linux/delay.h>
43 #include <linux/sched.h>
44 #include <linux/sysrq.h>
45 #include <linux/reboot.h>
46 #include <linux/init.h>
47 #include <linux/kgdb.h>
48 #include <linux/kdb.h>
49 #include <linux/nmi.h>
50 #include <linux/pid.h>
51 #include <linux/smp.h>
52 #include <linux/mm.h>
53 #include <linux/rcupdate.h>
54 #include <linux/irq.h>
55 #include <linux/security.h>
56
57 #include <asm/cacheflush.h>
58 #include <asm/byteorder.h>
59 #include <linux/atomic.h>
60
61 #include "debug_core.h"
62
63 static int kgdb_break_asap;
64
65 struct debuggerinfo_struct kgdb_info[NR_CPUS];
66
67 /* kgdb_connected - Is a host GDB connected to us? */
68 int kgdb_connected;
69 EXPORT_SYMBOL_GPL(kgdb_connected);
70
71 /* All the KGDB handlers are installed */
72 int kgdb_io_module_registered;
73
74 /* Guard for recursive entry */
75 static int exception_level;
76
77 struct kgdb_io *dbg_io_ops;
78 static DEFINE_SPINLOCK(kgdb_registration_lock);
79
80 /* Action for the reboot notifier, a global allow kdb to change it */
81 static int kgdbreboot;
82 /* kgdb console driver is loaded */
83 static int kgdb_con_registered;
84 /* determine if kgdb console output should be used */
85 static int kgdb_use_con;
86 /* Flag for alternate operations for early debugging */
87 bool dbg_is_early = true;
88 /* Next cpu to become the master debug core */
89 int dbg_switch_cpu;
90
91 /* Use kdb or gdbserver mode */
92 int dbg_kdb_mode = 1;
93
94 module_param(kgdb_use_con, int, 0644);
95 module_param(kgdbreboot, int, 0644);
96
97 /*
98 * Holds information about breakpoints in a kernel. These breakpoints are
99 * added and removed by gdb.
100 */
101 static struct kgdb_bkpt kgdb_break[KGDB_MAX_BREAKPOINTS] = {
102 [0 ... KGDB_MAX_BREAKPOINTS-1] = { .state = BP_UNDEFINED }
103 };
104
105 /*
106 * The CPU# of the active CPU, or -1 if none:
107 */
108 atomic_t kgdb_active = ATOMIC_INIT(-1);
109 EXPORT_SYMBOL_GPL(kgdb_active);
110 static DEFINE_RAW_SPINLOCK(dbg_master_lock);
111 static DEFINE_RAW_SPINLOCK(dbg_slave_lock);
112
113 /*
114 * We use NR_CPUs not PERCPU, in case kgdb is used to debug early
115 * bootup code (which might not have percpu set up yet):
116 */
117 static atomic_t masters_in_kgdb;
118 static atomic_t slaves_in_kgdb;
119 atomic_t kgdb_setting_breakpoint;
120
121 struct task_struct *kgdb_usethread;
122 struct task_struct *kgdb_contthread;
123
124 int kgdb_single_step;
125 static pid_t kgdb_sstep_pid;
126
127 /* to keep track of the CPU which is doing the single stepping*/
128 atomic_t kgdb_cpu_doing_single_step = ATOMIC_INIT(-1);
129
130 /*
131 * If you are debugging a problem where roundup (the collection of
132 * all other CPUs) is a problem [this should be extremely rare],
133 * then use the nokgdbroundup option to avoid roundup. In that case
134 * the other CPUs might interfere with your debugging context, so
135 * use this with care:
136 */
137 static int kgdb_do_roundup = 1;
138
opt_nokgdbroundup(char * str)139 static int __init opt_nokgdbroundup(char *str)
140 {
141 kgdb_do_roundup = 0;
142
143 return 0;
144 }
145
146 early_param("nokgdbroundup", opt_nokgdbroundup);
147
148 /*
149 * Finally, some KGDB code :-)
150 */
151
152 /*
153 * Weak aliases for breakpoint management,
154 * can be overridden by architectures when needed:
155 */
kgdb_arch_set_breakpoint(struct kgdb_bkpt * bpt)156 int __weak kgdb_arch_set_breakpoint(struct kgdb_bkpt *bpt)
157 {
158 int err;
159
160 err = copy_from_kernel_nofault(bpt->saved_instr, (char *)bpt->bpt_addr,
161 BREAK_INSTR_SIZE);
162 if (err)
163 return err;
164 err = copy_to_kernel_nofault((char *)bpt->bpt_addr,
165 arch_kgdb_ops.gdb_bpt_instr, BREAK_INSTR_SIZE);
166 return err;
167 }
168 NOKPROBE_SYMBOL(kgdb_arch_set_breakpoint);
169
kgdb_arch_remove_breakpoint(struct kgdb_bkpt * bpt)170 int __weak kgdb_arch_remove_breakpoint(struct kgdb_bkpt *bpt)
171 {
172 return copy_to_kernel_nofault((char *)bpt->bpt_addr,
173 (char *)bpt->saved_instr, BREAK_INSTR_SIZE);
174 }
175 NOKPROBE_SYMBOL(kgdb_arch_remove_breakpoint);
176
kgdb_validate_break_address(unsigned long addr)177 int __weak kgdb_validate_break_address(unsigned long addr)
178 {
179 struct kgdb_bkpt tmp;
180 int err;
181
182 if (kgdb_within_blocklist(addr))
183 return -EINVAL;
184
185 /* Validate setting the breakpoint and then removing it. If the
186 * remove fails, the kernel needs to emit a bad message because we
187 * are deep trouble not being able to put things back the way we
188 * found them.
189 */
190 tmp.bpt_addr = addr;
191 err = kgdb_arch_set_breakpoint(&tmp);
192 if (err)
193 return err;
194 err = kgdb_arch_remove_breakpoint(&tmp);
195 if (err)
196 pr_err("Critical breakpoint error, kernel memory destroyed at: %lx\n",
197 addr);
198 return err;
199 }
200
kgdb_arch_pc(int exception,struct pt_regs * regs)201 unsigned long __weak kgdb_arch_pc(int exception, struct pt_regs *regs)
202 {
203 return instruction_pointer(regs);
204 }
205 NOKPROBE_SYMBOL(kgdb_arch_pc);
206
kgdb_arch_init(void)207 int __weak kgdb_arch_init(void)
208 {
209 return 0;
210 }
211
kgdb_skipexception(int exception,struct pt_regs * regs)212 int __weak kgdb_skipexception(int exception, struct pt_regs *regs)
213 {
214 return 0;
215 }
216 NOKPROBE_SYMBOL(kgdb_skipexception);
217
218 #ifdef CONFIG_SMP
219
220 /*
221 * Default (weak) implementation for kgdb_roundup_cpus
222 */
223
kgdb_call_nmi_hook(void * ignored)224 void __weak kgdb_call_nmi_hook(void *ignored)
225 {
226 /*
227 * NOTE: get_irq_regs() is supposed to get the registers from
228 * before the IPI interrupt happened and so is supposed to
229 * show where the processor was. In some situations it's
230 * possible we might be called without an IPI, so it might be
231 * safer to figure out how to make kgdb_breakpoint() work
232 * properly here.
233 */
234 kgdb_nmicallback(raw_smp_processor_id(), get_irq_regs());
235 }
236 NOKPROBE_SYMBOL(kgdb_call_nmi_hook);
237
238 static DEFINE_PER_CPU(call_single_data_t, kgdb_roundup_csd) =
239 CSD_INIT(kgdb_call_nmi_hook, NULL);
240
kgdb_roundup_cpus(void)241 void __weak kgdb_roundup_cpus(void)
242 {
243 call_single_data_t *csd;
244 int this_cpu = raw_smp_processor_id();
245 int cpu;
246 int ret;
247
248 for_each_online_cpu(cpu) {
249 /* No need to roundup ourselves */
250 if (cpu == this_cpu)
251 continue;
252
253 csd = &per_cpu(kgdb_roundup_csd, cpu);
254
255 /*
256 * If it didn't round up last time, don't try again
257 * since smp_call_function_single_async() will block.
258 *
259 * If rounding_up is false then we know that the
260 * previous call must have at least started and that
261 * means smp_call_function_single_async() won't block.
262 */
263 if (kgdb_info[cpu].rounding_up)
264 continue;
265 kgdb_info[cpu].rounding_up = true;
266
267 ret = smp_call_function_single_async(cpu, csd);
268 if (ret)
269 kgdb_info[cpu].rounding_up = false;
270 }
271 }
272 NOKPROBE_SYMBOL(kgdb_roundup_cpus);
273
274 #endif
275
276 /*
277 * Some architectures need cache flushes when we set/clear a
278 * breakpoint:
279 */
kgdb_flush_swbreak_addr(unsigned long addr)280 static void kgdb_flush_swbreak_addr(unsigned long addr)
281 {
282 if (!CACHE_FLUSH_IS_SAFE)
283 return;
284
285 /* Force flush instruction cache if it was outside the mm */
286 flush_icache_range(addr, addr + BREAK_INSTR_SIZE);
287 }
288 NOKPROBE_SYMBOL(kgdb_flush_swbreak_addr);
289
290 /*
291 * SW breakpoint management:
292 */
dbg_activate_sw_breakpoints(void)293 int dbg_activate_sw_breakpoints(void)
294 {
295 int error;
296 int ret = 0;
297 int i;
298
299 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
300 if (kgdb_break[i].state != BP_SET)
301 continue;
302
303 error = kgdb_arch_set_breakpoint(&kgdb_break[i]);
304 if (error) {
305 ret = error;
306 pr_info("BP install failed: %lx\n",
307 kgdb_break[i].bpt_addr);
308 continue;
309 }
310
311 kgdb_flush_swbreak_addr(kgdb_break[i].bpt_addr);
312 kgdb_break[i].state = BP_ACTIVE;
313 }
314 return ret;
315 }
316 NOKPROBE_SYMBOL(dbg_activate_sw_breakpoints);
317
dbg_set_sw_break(unsigned long addr)318 int dbg_set_sw_break(unsigned long addr)
319 {
320 int err = kgdb_validate_break_address(addr);
321 int breakno = -1;
322 int i;
323
324 if (err)
325 return err;
326
327 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
328 if ((kgdb_break[i].state == BP_SET) &&
329 (kgdb_break[i].bpt_addr == addr))
330 return -EEXIST;
331 }
332 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
333 if (kgdb_break[i].state == BP_REMOVED &&
334 kgdb_break[i].bpt_addr == addr) {
335 breakno = i;
336 break;
337 }
338 }
339
340 if (breakno == -1) {
341 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
342 if (kgdb_break[i].state == BP_UNDEFINED) {
343 breakno = i;
344 break;
345 }
346 }
347 }
348
349 if (breakno == -1)
350 return -E2BIG;
351
352 kgdb_break[breakno].state = BP_SET;
353 kgdb_break[breakno].type = BP_BREAKPOINT;
354 kgdb_break[breakno].bpt_addr = addr;
355
356 return 0;
357 }
358
dbg_deactivate_sw_breakpoints(void)359 int dbg_deactivate_sw_breakpoints(void)
360 {
361 int error;
362 int ret = 0;
363 int i;
364
365 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
366 if (kgdb_break[i].state != BP_ACTIVE)
367 continue;
368 error = kgdb_arch_remove_breakpoint(&kgdb_break[i]);
369 if (error) {
370 pr_info("BP remove failed: %lx\n",
371 kgdb_break[i].bpt_addr);
372 ret = error;
373 }
374
375 kgdb_flush_swbreak_addr(kgdb_break[i].bpt_addr);
376 kgdb_break[i].state = BP_SET;
377 }
378 return ret;
379 }
380 NOKPROBE_SYMBOL(dbg_deactivate_sw_breakpoints);
381
dbg_remove_sw_break(unsigned long addr)382 int dbg_remove_sw_break(unsigned long addr)
383 {
384 int i;
385
386 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
387 if ((kgdb_break[i].state == BP_SET) &&
388 (kgdb_break[i].bpt_addr == addr)) {
389 kgdb_break[i].state = BP_REMOVED;
390 return 0;
391 }
392 }
393 return -ENOENT;
394 }
395
kgdb_isremovedbreak(unsigned long addr)396 int kgdb_isremovedbreak(unsigned long addr)
397 {
398 int i;
399
400 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
401 if ((kgdb_break[i].state == BP_REMOVED) &&
402 (kgdb_break[i].bpt_addr == addr))
403 return 1;
404 }
405 return 0;
406 }
407
kgdb_has_hit_break(unsigned long addr)408 int kgdb_has_hit_break(unsigned long addr)
409 {
410 int i;
411
412 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
413 if (kgdb_break[i].state == BP_ACTIVE &&
414 kgdb_break[i].bpt_addr == addr)
415 return 1;
416 }
417 return 0;
418 }
419
dbg_remove_all_break(void)420 int dbg_remove_all_break(void)
421 {
422 int error;
423 int i;
424
425 /* Clear memory breakpoints. */
426 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
427 if (kgdb_break[i].state != BP_ACTIVE)
428 goto setundefined;
429 error = kgdb_arch_remove_breakpoint(&kgdb_break[i]);
430 if (error)
431 pr_err("breakpoint remove failed: %lx\n",
432 kgdb_break[i].bpt_addr);
433 setundefined:
434 kgdb_break[i].state = BP_UNDEFINED;
435 }
436
437 /* Clear hardware breakpoints. */
438 if (arch_kgdb_ops.remove_all_hw_break)
439 arch_kgdb_ops.remove_all_hw_break();
440
441 return 0;
442 }
443
kgdb_free_init_mem(void)444 void kgdb_free_init_mem(void)
445 {
446 int i;
447
448 /* Clear init memory breakpoints. */
449 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
450 if (init_section_contains((void *)kgdb_break[i].bpt_addr, 0))
451 kgdb_break[i].state = BP_UNDEFINED;
452 }
453 }
454
455 #ifdef CONFIG_KGDB_KDB
kdb_dump_stack_on_cpu(int cpu)456 void kdb_dump_stack_on_cpu(int cpu)
457 {
458 if (cpu == raw_smp_processor_id() || !IS_ENABLED(CONFIG_SMP)) {
459 dump_stack();
460 return;
461 }
462
463 if (!(kgdb_info[cpu].exception_state & DCPU_IS_SLAVE)) {
464 kdb_printf("ERROR: Task on cpu %d didn't stop in the debugger\n",
465 cpu);
466 return;
467 }
468
469 /*
470 * In general, architectures don't support dumping the stack of a
471 * "running" process that's not the current one. From the point of
472 * view of the Linux, kernel processes that are looping in the kgdb
473 * slave loop are still "running". There's also no API (that actually
474 * works across all architectures) that can do a stack crawl based
475 * on registers passed as a parameter.
476 *
477 * Solve this conundrum by asking slave CPUs to do the backtrace
478 * themselves.
479 */
480 kgdb_info[cpu].exception_state |= DCPU_WANT_BT;
481 while (kgdb_info[cpu].exception_state & DCPU_WANT_BT)
482 cpu_relax();
483 }
484 #endif
485
486 /*
487 * Return true if there is a valid kgdb I/O module. Also if no
488 * debugger is attached a message can be printed to the console about
489 * waiting for the debugger to attach.
490 *
491 * The print_wait argument is only to be true when called from inside
492 * the core kgdb_handle_exception, because it will wait for the
493 * debugger to attach.
494 */
kgdb_io_ready(int print_wait)495 static int kgdb_io_ready(int print_wait)
496 {
497 if (!dbg_io_ops)
498 return 0;
499 if (kgdb_connected)
500 return 1;
501 if (atomic_read(&kgdb_setting_breakpoint))
502 return 1;
503 if (print_wait) {
504 #ifdef CONFIG_KGDB_KDB
505 if (!dbg_kdb_mode)
506 pr_crit("waiting... or $3#33 for KDB\n");
507 #else
508 pr_crit("Waiting for remote debugger\n");
509 #endif
510 }
511 return 1;
512 }
513 NOKPROBE_SYMBOL(kgdb_io_ready);
514
kgdb_reenter_check(struct kgdb_state * ks)515 static int kgdb_reenter_check(struct kgdb_state *ks)
516 {
517 unsigned long addr;
518
519 if (atomic_read(&kgdb_active) != raw_smp_processor_id())
520 return 0;
521
522 /* Panic on recursive debugger calls: */
523 exception_level++;
524 addr = kgdb_arch_pc(ks->ex_vector, ks->linux_regs);
525 dbg_deactivate_sw_breakpoints();
526
527 /*
528 * If the break point removed ok at the place exception
529 * occurred, try to recover and print a warning to the end
530 * user because the user planted a breakpoint in a place that
531 * KGDB needs in order to function.
532 */
533 if (dbg_remove_sw_break(addr) == 0) {
534 exception_level = 0;
535 kgdb_skipexception(ks->ex_vector, ks->linux_regs);
536 dbg_activate_sw_breakpoints();
537 pr_crit("re-enter error: breakpoint removed %lx\n", addr);
538 WARN_ON_ONCE(1);
539
540 return 1;
541 }
542 dbg_remove_all_break();
543 kgdb_skipexception(ks->ex_vector, ks->linux_regs);
544
545 if (exception_level > 1) {
546 dump_stack();
547 kgdb_io_module_registered = false;
548 panic("Recursive entry to debugger");
549 }
550
551 pr_crit("re-enter exception: ALL breakpoints killed\n");
552 #ifdef CONFIG_KGDB_KDB
553 /* Allow kdb to debug itself one level */
554 return 0;
555 #endif
556 dump_stack();
557 panic("Recursive entry to debugger");
558
559 return 1;
560 }
561 NOKPROBE_SYMBOL(kgdb_reenter_check);
562
dbg_touch_watchdogs(void)563 static void dbg_touch_watchdogs(void)
564 {
565 touch_softlockup_watchdog_sync();
566 clocksource_touch_watchdog();
567 rcu_cpu_stall_reset();
568 }
569 NOKPROBE_SYMBOL(dbg_touch_watchdogs);
570
kgdb_cpu_enter(struct kgdb_state * ks,struct pt_regs * regs,int exception_state)571 static int kgdb_cpu_enter(struct kgdb_state *ks, struct pt_regs *regs,
572 int exception_state)
573 {
574 unsigned long flags;
575 int sstep_tries = 100;
576 int error;
577 int cpu;
578 int trace_on = 0;
579 int online_cpus = num_online_cpus();
580 u64 time_left;
581
582 kgdb_info[ks->cpu].enter_kgdb++;
583 kgdb_info[ks->cpu].exception_state |= exception_state;
584
585 if (exception_state == DCPU_WANT_MASTER)
586 atomic_inc(&masters_in_kgdb);
587 else
588 atomic_inc(&slaves_in_kgdb);
589
590 if (arch_kgdb_ops.disable_hw_break)
591 arch_kgdb_ops.disable_hw_break(regs);
592
593 acquirelock:
594 rcu_read_lock();
595 /*
596 * Interrupts will be restored by the 'trap return' code, except when
597 * single stepping.
598 */
599 local_irq_save(flags);
600
601 cpu = ks->cpu;
602 kgdb_info[cpu].debuggerinfo = regs;
603 kgdb_info[cpu].task = current;
604 kgdb_info[cpu].ret_state = 0;
605 kgdb_info[cpu].irq_depth = hardirq_count() >> HARDIRQ_SHIFT;
606
607 /* Make sure the above info reaches the primary CPU */
608 smp_mb();
609
610 if (exception_level == 1) {
611 if (raw_spin_trylock(&dbg_master_lock))
612 atomic_xchg(&kgdb_active, cpu);
613 goto cpu_master_loop;
614 }
615
616 /*
617 * CPU will loop if it is a slave or request to become a kgdb
618 * master cpu and acquire the kgdb_active lock:
619 */
620 while (1) {
621 cpu_loop:
622 if (kgdb_info[cpu].exception_state & DCPU_NEXT_MASTER) {
623 kgdb_info[cpu].exception_state &= ~DCPU_NEXT_MASTER;
624 goto cpu_master_loop;
625 } else if (kgdb_info[cpu].exception_state & DCPU_WANT_MASTER) {
626 if (raw_spin_trylock(&dbg_master_lock)) {
627 atomic_xchg(&kgdb_active, cpu);
628 break;
629 }
630 } else if (kgdb_info[cpu].exception_state & DCPU_WANT_BT) {
631 dump_stack();
632 kgdb_info[cpu].exception_state &= ~DCPU_WANT_BT;
633 } else if (kgdb_info[cpu].exception_state & DCPU_IS_SLAVE) {
634 if (!raw_spin_is_locked(&dbg_slave_lock))
635 goto return_normal;
636 } else {
637 return_normal:
638 /* Return to normal operation by executing any
639 * hw breakpoint fixup.
640 */
641 if (arch_kgdb_ops.correct_hw_break)
642 arch_kgdb_ops.correct_hw_break();
643 if (trace_on)
644 tracing_on();
645 kgdb_info[cpu].debuggerinfo = NULL;
646 kgdb_info[cpu].task = NULL;
647 kgdb_info[cpu].exception_state &=
648 ~(DCPU_WANT_MASTER | DCPU_IS_SLAVE);
649 kgdb_info[cpu].enter_kgdb--;
650 smp_mb__before_atomic();
651 atomic_dec(&slaves_in_kgdb);
652 dbg_touch_watchdogs();
653 local_irq_restore(flags);
654 rcu_read_unlock();
655 return 0;
656 }
657 cpu_relax();
658 }
659
660 /*
661 * For single stepping, try to only enter on the processor
662 * that was single stepping. To guard against a deadlock, the
663 * kernel will only try for the value of sstep_tries before
664 * giving up and continuing on.
665 */
666 if (atomic_read(&kgdb_cpu_doing_single_step) != -1 &&
667 (kgdb_info[cpu].task &&
668 kgdb_info[cpu].task->pid != kgdb_sstep_pid) && --sstep_tries) {
669 atomic_set(&kgdb_active, -1);
670 raw_spin_unlock(&dbg_master_lock);
671 dbg_touch_watchdogs();
672 local_irq_restore(flags);
673 rcu_read_unlock();
674
675 goto acquirelock;
676 }
677
678 if (!kgdb_io_ready(1)) {
679 kgdb_info[cpu].ret_state = 1;
680 goto kgdb_restore; /* No I/O connection, resume the system */
681 }
682
683 /*
684 * Don't enter if we have hit a removed breakpoint.
685 */
686 if (kgdb_skipexception(ks->ex_vector, ks->linux_regs))
687 goto kgdb_restore;
688
689 atomic_inc(&ignore_console_lock_warning);
690
691 /* Call the I/O driver's pre_exception routine */
692 if (dbg_io_ops->pre_exception)
693 dbg_io_ops->pre_exception();
694
695 /*
696 * Get the passive CPU lock which will hold all the non-primary
697 * CPU in a spin state while the debugger is active
698 */
699 if (!kgdb_single_step)
700 raw_spin_lock(&dbg_slave_lock);
701
702 #ifdef CONFIG_SMP
703 /* If send_ready set, slaves are already waiting */
704 if (ks->send_ready)
705 atomic_set(ks->send_ready, 1);
706
707 /* Signal the other CPUs to enter kgdb_wait() */
708 else if ((!kgdb_single_step) && kgdb_do_roundup)
709 kgdb_roundup_cpus();
710 #endif
711
712 /*
713 * Wait for the other CPUs to be notified and be waiting for us:
714 */
715 time_left = MSEC_PER_SEC;
716 while (kgdb_do_roundup && --time_left &&
717 (atomic_read(&masters_in_kgdb) + atomic_read(&slaves_in_kgdb)) !=
718 online_cpus)
719 udelay(1000);
720 if (!time_left)
721 pr_crit("Timed out waiting for secondary CPUs.\n");
722
723 /*
724 * At this point the primary processor is completely
725 * in the debugger and all secondary CPUs are quiescent
726 */
727 dbg_deactivate_sw_breakpoints();
728 kgdb_single_step = 0;
729 kgdb_contthread = current;
730 exception_level = 0;
731 trace_on = tracing_is_on();
732 if (trace_on)
733 tracing_off();
734
735 while (1) {
736 cpu_master_loop:
737 if (dbg_kdb_mode) {
738 kgdb_connected = 1;
739 error = kdb_stub(ks);
740 if (error == -1)
741 continue;
742 kgdb_connected = 0;
743 } else {
744 /*
745 * This is a brutal way to interfere with the debugger
746 * and prevent gdb being used to poke at kernel memory.
747 * This could cause trouble if lockdown is applied when
748 * there is already an active gdb session. For now the
749 * answer is simply "don't do that". Typically lockdown
750 * *will* be applied before the debug core gets started
751 * so only developers using kgdb for fairly advanced
752 * early kernel debug can be biten by this. Hopefully
753 * they are sophisticated enough to take care of
754 * themselves, especially with help from the lockdown
755 * message printed on the console!
756 */
757 if (security_locked_down(LOCKDOWN_DBG_WRITE_KERNEL)) {
758 if (IS_ENABLED(CONFIG_KGDB_KDB)) {
759 /* Switch back to kdb if possible... */
760 dbg_kdb_mode = 1;
761 continue;
762 } else {
763 /* ... otherwise just bail */
764 break;
765 }
766 }
767 error = gdb_serial_stub(ks);
768 }
769
770 if (error == DBG_PASS_EVENT) {
771 dbg_kdb_mode = !dbg_kdb_mode;
772 } else if (error == DBG_SWITCH_CPU_EVENT) {
773 kgdb_info[dbg_switch_cpu].exception_state |=
774 DCPU_NEXT_MASTER;
775 goto cpu_loop;
776 } else {
777 kgdb_info[cpu].ret_state = error;
778 break;
779 }
780 }
781
782 dbg_activate_sw_breakpoints();
783
784 /* Call the I/O driver's post_exception routine */
785 if (dbg_io_ops->post_exception)
786 dbg_io_ops->post_exception();
787
788 atomic_dec(&ignore_console_lock_warning);
789
790 if (!kgdb_single_step) {
791 raw_spin_unlock(&dbg_slave_lock);
792 /* Wait till all the CPUs have quit from the debugger. */
793 while (kgdb_do_roundup && atomic_read(&slaves_in_kgdb))
794 cpu_relax();
795 }
796
797 kgdb_restore:
798 if (atomic_read(&kgdb_cpu_doing_single_step) != -1) {
799 int sstep_cpu = atomic_read(&kgdb_cpu_doing_single_step);
800 if (kgdb_info[sstep_cpu].task)
801 kgdb_sstep_pid = kgdb_info[sstep_cpu].task->pid;
802 else
803 kgdb_sstep_pid = 0;
804 }
805 if (arch_kgdb_ops.correct_hw_break)
806 arch_kgdb_ops.correct_hw_break();
807 if (trace_on)
808 tracing_on();
809
810 kgdb_info[cpu].debuggerinfo = NULL;
811 kgdb_info[cpu].task = NULL;
812 kgdb_info[cpu].exception_state &=
813 ~(DCPU_WANT_MASTER | DCPU_IS_SLAVE);
814 kgdb_info[cpu].enter_kgdb--;
815 smp_mb__before_atomic();
816 atomic_dec(&masters_in_kgdb);
817 /* Free kgdb_active */
818 atomic_set(&kgdb_active, -1);
819 raw_spin_unlock(&dbg_master_lock);
820 dbg_touch_watchdogs();
821 local_irq_restore(flags);
822 rcu_read_unlock();
823
824 return kgdb_info[cpu].ret_state;
825 }
826 NOKPROBE_SYMBOL(kgdb_cpu_enter);
827
828 /*
829 * kgdb_handle_exception() - main entry point from a kernel exception
830 *
831 * Locking hierarchy:
832 * interface locks, if any (begin_session)
833 * kgdb lock (kgdb_active)
834 */
835 int
kgdb_handle_exception(int evector,int signo,int ecode,struct pt_regs * regs)836 kgdb_handle_exception(int evector, int signo, int ecode, struct pt_regs *regs)
837 {
838 struct kgdb_state kgdb_var;
839 struct kgdb_state *ks = &kgdb_var;
840 int ret = 0;
841
842 if (arch_kgdb_ops.enable_nmi)
843 arch_kgdb_ops.enable_nmi(0);
844 /*
845 * Avoid entering the debugger if we were triggered due to an oops
846 * but panic_timeout indicates the system should automatically
847 * reboot on panic. We don't want to get stuck waiting for input
848 * on such systems, especially if its "just" an oops.
849 */
850 if (signo != SIGTRAP && panic_timeout)
851 return 1;
852
853 memset(ks, 0, sizeof(struct kgdb_state));
854 ks->cpu = raw_smp_processor_id();
855 ks->ex_vector = evector;
856 ks->signo = signo;
857 ks->err_code = ecode;
858 ks->linux_regs = regs;
859
860 if (kgdb_reenter_check(ks))
861 goto out; /* Ouch, double exception ! */
862 if (kgdb_info[ks->cpu].enter_kgdb != 0)
863 goto out;
864
865 ret = kgdb_cpu_enter(ks, regs, DCPU_WANT_MASTER);
866 out:
867 if (arch_kgdb_ops.enable_nmi)
868 arch_kgdb_ops.enable_nmi(1);
869 return ret;
870 }
871 NOKPROBE_SYMBOL(kgdb_handle_exception);
872
873 /*
874 * GDB places a breakpoint at this function to know dynamically loaded objects.
875 */
module_event(struct notifier_block * self,unsigned long val,void * data)876 static int module_event(struct notifier_block *self, unsigned long val,
877 void *data)
878 {
879 return 0;
880 }
881
882 static struct notifier_block dbg_module_load_nb = {
883 .notifier_call = module_event,
884 };
885
kgdb_nmicallback(int cpu,void * regs)886 int kgdb_nmicallback(int cpu, void *regs)
887 {
888 #ifdef CONFIG_SMP
889 struct kgdb_state kgdb_var;
890 struct kgdb_state *ks = &kgdb_var;
891
892 kgdb_info[cpu].rounding_up = false;
893
894 memset(ks, 0, sizeof(struct kgdb_state));
895 ks->cpu = cpu;
896 ks->linux_regs = regs;
897
898 if (kgdb_info[ks->cpu].enter_kgdb == 0 &&
899 raw_spin_is_locked(&dbg_master_lock)) {
900 kgdb_cpu_enter(ks, regs, DCPU_IS_SLAVE);
901 return 0;
902 }
903 #endif
904 return 1;
905 }
906 NOKPROBE_SYMBOL(kgdb_nmicallback);
907
kgdb_nmicallin(int cpu,int trapnr,void * regs,int err_code,atomic_t * send_ready)908 int kgdb_nmicallin(int cpu, int trapnr, void *regs, int err_code,
909 atomic_t *send_ready)
910 {
911 #ifdef CONFIG_SMP
912 if (!kgdb_io_ready(0) || !send_ready)
913 return 1;
914
915 if (kgdb_info[cpu].enter_kgdb == 0) {
916 struct kgdb_state kgdb_var;
917 struct kgdb_state *ks = &kgdb_var;
918
919 memset(ks, 0, sizeof(struct kgdb_state));
920 ks->cpu = cpu;
921 ks->ex_vector = trapnr;
922 ks->signo = SIGTRAP;
923 ks->err_code = err_code;
924 ks->linux_regs = regs;
925 ks->send_ready = send_ready;
926 kgdb_cpu_enter(ks, regs, DCPU_WANT_MASTER);
927 return 0;
928 }
929 #endif
930 return 1;
931 }
932 NOKPROBE_SYMBOL(kgdb_nmicallin);
933
kgdb_console_write(struct console * co,const char * s,unsigned count)934 static void kgdb_console_write(struct console *co, const char *s,
935 unsigned count)
936 {
937 unsigned long flags;
938
939 /* If we're debugging, or KGDB has not connected, don't try
940 * and print. */
941 if (!kgdb_connected || atomic_read(&kgdb_active) != -1 || dbg_kdb_mode)
942 return;
943
944 local_irq_save(flags);
945 gdbstub_msg_write(s, count);
946 local_irq_restore(flags);
947 }
948
949 static struct console kgdbcons = {
950 .name = "kgdb",
951 .write = kgdb_console_write,
952 .flags = CON_PRINTBUFFER | CON_ENABLED,
953 .index = -1,
954 };
955
opt_kgdb_con(char * str)956 static int __init opt_kgdb_con(char *str)
957 {
958 kgdb_use_con = 1;
959
960 if (kgdb_io_module_registered && !kgdb_con_registered) {
961 register_console(&kgdbcons);
962 kgdb_con_registered = 1;
963 }
964
965 return 0;
966 }
967
968 early_param("kgdbcon", opt_kgdb_con);
969
970 #ifdef CONFIG_MAGIC_SYSRQ
sysrq_handle_dbg(u8 key)971 static void sysrq_handle_dbg(u8 key)
972 {
973 if (!dbg_io_ops) {
974 pr_crit("ERROR: No KGDB I/O module available\n");
975 return;
976 }
977 if (!kgdb_connected) {
978 #ifdef CONFIG_KGDB_KDB
979 if (!dbg_kdb_mode)
980 pr_crit("KGDB or $3#33 for KDB\n");
981 #else
982 pr_crit("Entering KGDB\n");
983 #endif
984 }
985
986 kgdb_breakpoint();
987 }
988
989 static const struct sysrq_key_op sysrq_dbg_op = {
990 .handler = sysrq_handle_dbg,
991 .help_msg = "debug(g)",
992 .action_msg = "DEBUG",
993 };
994 #endif
995
kgdb_panic(const char * msg)996 void kgdb_panic(const char *msg)
997 {
998 if (!kgdb_io_module_registered)
999 return;
1000
1001 /*
1002 * We don't want to get stuck waiting for input from user if
1003 * "panic_timeout" indicates the system should automatically
1004 * reboot on panic.
1005 */
1006 if (panic_timeout)
1007 return;
1008
1009 if (dbg_kdb_mode)
1010 kdb_printf("PANIC: %s\n", msg);
1011
1012 kgdb_breakpoint();
1013 }
1014
kgdb_initial_breakpoint(void)1015 static void kgdb_initial_breakpoint(void)
1016 {
1017 kgdb_break_asap = 0;
1018
1019 pr_crit("Waiting for connection from remote gdb...\n");
1020 kgdb_breakpoint();
1021 }
1022
kgdb_arch_late(void)1023 void __weak kgdb_arch_late(void)
1024 {
1025 }
1026
dbg_late_init(void)1027 void __init dbg_late_init(void)
1028 {
1029 dbg_is_early = false;
1030 if (kgdb_io_module_registered)
1031 kgdb_arch_late();
1032 kdb_init(KDB_INIT_FULL);
1033
1034 if (kgdb_io_module_registered && kgdb_break_asap)
1035 kgdb_initial_breakpoint();
1036 }
1037
1038 static int
dbg_notify_reboot(struct notifier_block * this,unsigned long code,void * x)1039 dbg_notify_reboot(struct notifier_block *this, unsigned long code, void *x)
1040 {
1041 /*
1042 * Take the following action on reboot notify depending on value:
1043 * 1 == Enter debugger
1044 * 0 == [the default] detach debug client
1045 * -1 == Do nothing... and use this until the board resets
1046 */
1047 switch (kgdbreboot) {
1048 case 1:
1049 kgdb_breakpoint();
1050 goto done;
1051 case -1:
1052 goto done;
1053 }
1054 if (!dbg_kdb_mode)
1055 gdbstub_exit(code);
1056 done:
1057 return NOTIFY_DONE;
1058 }
1059
1060 static struct notifier_block dbg_reboot_notifier = {
1061 .notifier_call = dbg_notify_reboot,
1062 .next = NULL,
1063 .priority = INT_MAX,
1064 };
1065
kgdb_register_callbacks(void)1066 static void kgdb_register_callbacks(void)
1067 {
1068 if (!kgdb_io_module_registered) {
1069 kgdb_io_module_registered = 1;
1070 kgdb_arch_init();
1071 if (!dbg_is_early)
1072 kgdb_arch_late();
1073 register_module_notifier(&dbg_module_load_nb);
1074 register_reboot_notifier(&dbg_reboot_notifier);
1075 #ifdef CONFIG_MAGIC_SYSRQ
1076 register_sysrq_key('g', &sysrq_dbg_op);
1077 #endif
1078 if (kgdb_use_con && !kgdb_con_registered) {
1079 register_console(&kgdbcons);
1080 kgdb_con_registered = 1;
1081 }
1082 }
1083 }
1084
kgdb_unregister_callbacks(void)1085 static void kgdb_unregister_callbacks(void)
1086 {
1087 /*
1088 * When this routine is called KGDB should unregister from
1089 * handlers and clean up, making sure it is not handling any
1090 * break exceptions at the time.
1091 */
1092 if (kgdb_io_module_registered) {
1093 kgdb_io_module_registered = 0;
1094 unregister_reboot_notifier(&dbg_reboot_notifier);
1095 unregister_module_notifier(&dbg_module_load_nb);
1096 kgdb_arch_exit();
1097 #ifdef CONFIG_MAGIC_SYSRQ
1098 unregister_sysrq_key('g', &sysrq_dbg_op);
1099 #endif
1100 if (kgdb_con_registered) {
1101 unregister_console(&kgdbcons);
1102 kgdb_con_registered = 0;
1103 }
1104 }
1105 }
1106
1107 /**
1108 * kgdb_register_io_module - register KGDB IO module
1109 * @new_dbg_io_ops: the io ops vector
1110 *
1111 * Register it with the KGDB core.
1112 */
kgdb_register_io_module(struct kgdb_io * new_dbg_io_ops)1113 int kgdb_register_io_module(struct kgdb_io *new_dbg_io_ops)
1114 {
1115 struct kgdb_io *old_dbg_io_ops;
1116 int err;
1117
1118 spin_lock(&kgdb_registration_lock);
1119
1120 old_dbg_io_ops = dbg_io_ops;
1121 if (old_dbg_io_ops) {
1122 if (!old_dbg_io_ops->deinit) {
1123 spin_unlock(&kgdb_registration_lock);
1124
1125 pr_err("KGDB I/O driver %s can't replace %s.\n",
1126 new_dbg_io_ops->name, old_dbg_io_ops->name);
1127 return -EBUSY;
1128 }
1129 pr_info("Replacing I/O driver %s with %s\n",
1130 old_dbg_io_ops->name, new_dbg_io_ops->name);
1131 }
1132
1133 if (new_dbg_io_ops->init) {
1134 err = new_dbg_io_ops->init();
1135 if (err) {
1136 spin_unlock(&kgdb_registration_lock);
1137 return err;
1138 }
1139 }
1140
1141 dbg_io_ops = new_dbg_io_ops;
1142
1143 spin_unlock(&kgdb_registration_lock);
1144
1145 if (old_dbg_io_ops) {
1146 old_dbg_io_ops->deinit();
1147 return 0;
1148 }
1149
1150 pr_info("Registered I/O driver %s\n", new_dbg_io_ops->name);
1151
1152 /* Arm KGDB now. */
1153 kgdb_register_callbacks();
1154
1155 if (kgdb_break_asap &&
1156 (!dbg_is_early || IS_ENABLED(CONFIG_ARCH_HAS_EARLY_DEBUG)))
1157 kgdb_initial_breakpoint();
1158
1159 return 0;
1160 }
1161 EXPORT_SYMBOL_GPL(kgdb_register_io_module);
1162
1163 /**
1164 * kgdb_unregister_io_module - unregister KGDB IO module
1165 * @old_dbg_io_ops: the io ops vector
1166 *
1167 * Unregister it with the KGDB core.
1168 */
kgdb_unregister_io_module(struct kgdb_io * old_dbg_io_ops)1169 void kgdb_unregister_io_module(struct kgdb_io *old_dbg_io_ops)
1170 {
1171 BUG_ON(kgdb_connected);
1172
1173 /*
1174 * KGDB is no longer able to communicate out, so
1175 * unregister our callbacks and reset state.
1176 */
1177 kgdb_unregister_callbacks();
1178
1179 spin_lock(&kgdb_registration_lock);
1180
1181 WARN_ON_ONCE(dbg_io_ops != old_dbg_io_ops);
1182 dbg_io_ops = NULL;
1183
1184 spin_unlock(&kgdb_registration_lock);
1185
1186 if (old_dbg_io_ops->deinit)
1187 old_dbg_io_ops->deinit();
1188
1189 pr_info("Unregistered I/O driver %s, debugger disabled\n",
1190 old_dbg_io_ops->name);
1191 }
1192 EXPORT_SYMBOL_GPL(kgdb_unregister_io_module);
1193
dbg_io_get_char(void)1194 int dbg_io_get_char(void)
1195 {
1196 int ret = dbg_io_ops->read_char();
1197 if (ret == NO_POLL_CHAR)
1198 return -1;
1199 if (!dbg_kdb_mode)
1200 return ret;
1201 if (ret == 127)
1202 return 8;
1203 return ret;
1204 }
1205
1206 /**
1207 * kgdb_breakpoint - generate breakpoint exception
1208 *
1209 * This function will generate a breakpoint exception. It is used at the
1210 * beginning of a program to sync up with a debugger and can be used
1211 * otherwise as a quick means to stop program execution and "break" into
1212 * the debugger.
1213 */
kgdb_breakpoint(void)1214 noinline void kgdb_breakpoint(void)
1215 {
1216 atomic_inc(&kgdb_setting_breakpoint);
1217 wmb(); /* Sync point before breakpoint */
1218 arch_kgdb_breakpoint();
1219 wmb(); /* Sync point after breakpoint */
1220 atomic_dec(&kgdb_setting_breakpoint);
1221 }
1222 EXPORT_SYMBOL_GPL(kgdb_breakpoint);
1223
opt_kgdb_wait(char * str)1224 static int __init opt_kgdb_wait(char *str)
1225 {
1226 kgdb_break_asap = 1;
1227
1228 kdb_init(KDB_INIT_EARLY);
1229 if (kgdb_io_module_registered &&
1230 IS_ENABLED(CONFIG_ARCH_HAS_EARLY_DEBUG))
1231 kgdb_initial_breakpoint();
1232
1233 return 0;
1234 }
1235
1236 early_param("kgdbwait", opt_kgdb_wait);
1237