1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 
23 #include <linux/bsearch.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include "kfd_priv.h"
27 #include "kfd_device_queue_manager.h"
28 #include "kfd_pm4_headers_vi.h"
29 #include "cwsr_trap_handler.h"
30 #include "kfd_iommu.h"
31 #include "amdgpu_amdkfd.h"
32 
33 #define MQD_SIZE_ALIGNED 768
34 
35 /*
36  * kfd_locked is used to lock the kfd driver during suspend or reset
37  * once locked, kfd driver will stop any further GPU execution.
38  * create process (open) will return -EAGAIN.
39  */
40 static atomic_t kfd_locked = ATOMIC_INIT(0);
41 
42 #ifdef KFD_SUPPORT_IOMMU_V2
43 static const struct kfd_device_info kaveri_device_info = {
44 	.asic_family = CHIP_KAVERI,
45 	.asic_name = "kaveri",
46 	.max_pasid_bits = 16,
47 	/* max num of queues for KV.TODO should be a dynamic value */
48 	.max_no_of_hqd	= 24,
49 	.doorbell_size  = 4,
50 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
51 	.event_interrupt_class = &event_interrupt_class_cik,
52 	.num_of_watch_points = 4,
53 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
54 	.supports_cwsr = false,
55 	.needs_iommu_device = true,
56 	.needs_pci_atomics = false,
57 	.num_sdma_engines = 2,
58 	.num_xgmi_sdma_engines = 0,
59 	.num_sdma_queues_per_engine = 2,
60 };
61 
62 static const struct kfd_device_info carrizo_device_info = {
63 	.asic_family = CHIP_CARRIZO,
64 	.asic_name = "carrizo",
65 	.max_pasid_bits = 16,
66 	/* max num of queues for CZ.TODO should be a dynamic value */
67 	.max_no_of_hqd	= 24,
68 	.doorbell_size  = 4,
69 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
70 	.event_interrupt_class = &event_interrupt_class_cik,
71 	.num_of_watch_points = 4,
72 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
73 	.supports_cwsr = true,
74 	.needs_iommu_device = true,
75 	.needs_pci_atomics = false,
76 	.num_sdma_engines = 2,
77 	.num_xgmi_sdma_engines = 0,
78 	.num_sdma_queues_per_engine = 2,
79 };
80 
81 static const struct kfd_device_info raven_device_info = {
82 	.asic_family = CHIP_RAVEN,
83 	.asic_name = "raven",
84 	.max_pasid_bits = 16,
85 	.max_no_of_hqd  = 24,
86 	.doorbell_size  = 8,
87 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
88 	.event_interrupt_class = &event_interrupt_class_v9,
89 	.num_of_watch_points = 4,
90 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
91 	.supports_cwsr = true,
92 	.needs_iommu_device = true,
93 	.needs_pci_atomics = true,
94 	.num_sdma_engines = 1,
95 	.num_xgmi_sdma_engines = 0,
96 	.num_sdma_queues_per_engine = 2,
97 };
98 #endif
99 
100 static const struct kfd_device_info hawaii_device_info = {
101 	.asic_family = CHIP_HAWAII,
102 	.asic_name = "hawaii",
103 	.max_pasid_bits = 16,
104 	/* max num of queues for KV.TODO should be a dynamic value */
105 	.max_no_of_hqd	= 24,
106 	.doorbell_size  = 4,
107 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
108 	.event_interrupt_class = &event_interrupt_class_cik,
109 	.num_of_watch_points = 4,
110 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
111 	.supports_cwsr = false,
112 	.needs_iommu_device = false,
113 	.needs_pci_atomics = false,
114 	.num_sdma_engines = 2,
115 	.num_xgmi_sdma_engines = 0,
116 	.num_sdma_queues_per_engine = 2,
117 };
118 
119 static const struct kfd_device_info tonga_device_info = {
120 	.asic_family = CHIP_TONGA,
121 	.asic_name = "tonga",
122 	.max_pasid_bits = 16,
123 	.max_no_of_hqd  = 24,
124 	.doorbell_size  = 4,
125 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
126 	.event_interrupt_class = &event_interrupt_class_cik,
127 	.num_of_watch_points = 4,
128 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
129 	.supports_cwsr = false,
130 	.needs_iommu_device = false,
131 	.needs_pci_atomics = true,
132 	.num_sdma_engines = 2,
133 	.num_xgmi_sdma_engines = 0,
134 	.num_sdma_queues_per_engine = 2,
135 };
136 
137 static const struct kfd_device_info fiji_device_info = {
138 	.asic_family = CHIP_FIJI,
139 	.asic_name = "fiji",
140 	.max_pasid_bits = 16,
141 	.max_no_of_hqd  = 24,
142 	.doorbell_size  = 4,
143 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
144 	.event_interrupt_class = &event_interrupt_class_cik,
145 	.num_of_watch_points = 4,
146 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
147 	.supports_cwsr = true,
148 	.needs_iommu_device = false,
149 	.needs_pci_atomics = true,
150 	.num_sdma_engines = 2,
151 	.num_xgmi_sdma_engines = 0,
152 	.num_sdma_queues_per_engine = 2,
153 };
154 
155 static const struct kfd_device_info fiji_vf_device_info = {
156 	.asic_family = CHIP_FIJI,
157 	.asic_name = "fiji",
158 	.max_pasid_bits = 16,
159 	.max_no_of_hqd  = 24,
160 	.doorbell_size  = 4,
161 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
162 	.event_interrupt_class = &event_interrupt_class_cik,
163 	.num_of_watch_points = 4,
164 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
165 	.supports_cwsr = true,
166 	.needs_iommu_device = false,
167 	.needs_pci_atomics = false,
168 	.num_sdma_engines = 2,
169 	.num_xgmi_sdma_engines = 0,
170 	.num_sdma_queues_per_engine = 2,
171 };
172 
173 
174 static const struct kfd_device_info polaris10_device_info = {
175 	.asic_family = CHIP_POLARIS10,
176 	.asic_name = "polaris10",
177 	.max_pasid_bits = 16,
178 	.max_no_of_hqd  = 24,
179 	.doorbell_size  = 4,
180 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
181 	.event_interrupt_class = &event_interrupt_class_cik,
182 	.num_of_watch_points = 4,
183 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
184 	.supports_cwsr = true,
185 	.needs_iommu_device = false,
186 	.needs_pci_atomics = true,
187 	.num_sdma_engines = 2,
188 	.num_xgmi_sdma_engines = 0,
189 	.num_sdma_queues_per_engine = 2,
190 };
191 
192 static const struct kfd_device_info polaris10_vf_device_info = {
193 	.asic_family = CHIP_POLARIS10,
194 	.asic_name = "polaris10",
195 	.max_pasid_bits = 16,
196 	.max_no_of_hqd  = 24,
197 	.doorbell_size  = 4,
198 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
199 	.event_interrupt_class = &event_interrupt_class_cik,
200 	.num_of_watch_points = 4,
201 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
202 	.supports_cwsr = true,
203 	.needs_iommu_device = false,
204 	.needs_pci_atomics = false,
205 	.num_sdma_engines = 2,
206 	.num_xgmi_sdma_engines = 0,
207 	.num_sdma_queues_per_engine = 2,
208 };
209 
210 static const struct kfd_device_info polaris11_device_info = {
211 	.asic_family = CHIP_POLARIS11,
212 	.asic_name = "polaris11",
213 	.max_pasid_bits = 16,
214 	.max_no_of_hqd  = 24,
215 	.doorbell_size  = 4,
216 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
217 	.event_interrupt_class = &event_interrupt_class_cik,
218 	.num_of_watch_points = 4,
219 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
220 	.supports_cwsr = true,
221 	.needs_iommu_device = false,
222 	.needs_pci_atomics = true,
223 	.num_sdma_engines = 2,
224 	.num_xgmi_sdma_engines = 0,
225 	.num_sdma_queues_per_engine = 2,
226 };
227 
228 static const struct kfd_device_info polaris12_device_info = {
229 	.asic_family = CHIP_POLARIS12,
230 	.asic_name = "polaris12",
231 	.max_pasid_bits = 16,
232 	.max_no_of_hqd  = 24,
233 	.doorbell_size  = 4,
234 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
235 	.event_interrupt_class = &event_interrupt_class_cik,
236 	.num_of_watch_points = 4,
237 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
238 	.supports_cwsr = true,
239 	.needs_iommu_device = false,
240 	.needs_pci_atomics = true,
241 	.num_sdma_engines = 2,
242 	.num_xgmi_sdma_engines = 0,
243 	.num_sdma_queues_per_engine = 2,
244 };
245 
246 static const struct kfd_device_info vegam_device_info = {
247 	.asic_family = CHIP_VEGAM,
248 	.asic_name = "vegam",
249 	.max_pasid_bits = 16,
250 	.max_no_of_hqd  = 24,
251 	.doorbell_size  = 4,
252 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
253 	.event_interrupt_class = &event_interrupt_class_cik,
254 	.num_of_watch_points = 4,
255 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
256 	.supports_cwsr = true,
257 	.needs_iommu_device = false,
258 	.needs_pci_atomics = true,
259 	.num_sdma_engines = 2,
260 	.num_xgmi_sdma_engines = 0,
261 	.num_sdma_queues_per_engine = 2,
262 };
263 
264 static const struct kfd_device_info vega10_device_info = {
265 	.asic_family = CHIP_VEGA10,
266 	.asic_name = "vega10",
267 	.max_pasid_bits = 16,
268 	.max_no_of_hqd  = 24,
269 	.doorbell_size  = 8,
270 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
271 	.event_interrupt_class = &event_interrupt_class_v9,
272 	.num_of_watch_points = 4,
273 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
274 	.supports_cwsr = true,
275 	.needs_iommu_device = false,
276 	.needs_pci_atomics = false,
277 	.num_sdma_engines = 2,
278 	.num_xgmi_sdma_engines = 0,
279 	.num_sdma_queues_per_engine = 2,
280 };
281 
282 static const struct kfd_device_info vega10_vf_device_info = {
283 	.asic_family = CHIP_VEGA10,
284 	.asic_name = "vega10",
285 	.max_pasid_bits = 16,
286 	.max_no_of_hqd  = 24,
287 	.doorbell_size  = 8,
288 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
289 	.event_interrupt_class = &event_interrupt_class_v9,
290 	.num_of_watch_points = 4,
291 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
292 	.supports_cwsr = true,
293 	.needs_iommu_device = false,
294 	.needs_pci_atomics = false,
295 	.num_sdma_engines = 2,
296 	.num_xgmi_sdma_engines = 0,
297 	.num_sdma_queues_per_engine = 2,
298 };
299 
300 static const struct kfd_device_info vega12_device_info = {
301 	.asic_family = CHIP_VEGA12,
302 	.asic_name = "vega12",
303 	.max_pasid_bits = 16,
304 	.max_no_of_hqd  = 24,
305 	.doorbell_size  = 8,
306 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
307 	.event_interrupt_class = &event_interrupt_class_v9,
308 	.num_of_watch_points = 4,
309 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
310 	.supports_cwsr = true,
311 	.needs_iommu_device = false,
312 	.needs_pci_atomics = false,
313 	.num_sdma_engines = 2,
314 	.num_xgmi_sdma_engines = 0,
315 	.num_sdma_queues_per_engine = 2,
316 };
317 
318 static const struct kfd_device_info vega20_device_info = {
319 	.asic_family = CHIP_VEGA20,
320 	.asic_name = "vega20",
321 	.max_pasid_bits = 16,
322 	.max_no_of_hqd	= 24,
323 	.doorbell_size	= 8,
324 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
325 	.event_interrupt_class = &event_interrupt_class_v9,
326 	.num_of_watch_points = 4,
327 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
328 	.supports_cwsr = true,
329 	.needs_iommu_device = false,
330 	.needs_pci_atomics = false,
331 	.num_sdma_engines = 2,
332 	.num_xgmi_sdma_engines = 0,
333 	.num_sdma_queues_per_engine = 8,
334 };
335 
336 static const struct kfd_device_info arcturus_device_info = {
337 	.asic_family = CHIP_ARCTURUS,
338 	.asic_name = "arcturus",
339 	.max_pasid_bits = 16,
340 	.max_no_of_hqd	= 24,
341 	.doorbell_size	= 8,
342 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
343 	.event_interrupt_class = &event_interrupt_class_v9,
344 	.num_of_watch_points = 4,
345 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
346 	.supports_cwsr = true,
347 	.needs_iommu_device = false,
348 	.needs_pci_atomics = false,
349 	.num_sdma_engines = 2,
350 	.num_xgmi_sdma_engines = 6,
351 	.num_sdma_queues_per_engine = 8,
352 };
353 
354 static const struct kfd_device_info navi10_device_info = {
355 	.asic_family = CHIP_NAVI10,
356 	.asic_name = "navi10",
357 	.max_pasid_bits = 16,
358 	.max_no_of_hqd  = 24,
359 	.doorbell_size  = 8,
360 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
361 	.event_interrupt_class = &event_interrupt_class_v9,
362 	.num_of_watch_points = 4,
363 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
364 	.needs_iommu_device = false,
365 	.supports_cwsr = true,
366 	.needs_pci_atomics = false,
367 	.num_sdma_engines = 2,
368 	.num_xgmi_sdma_engines = 0,
369 	.num_sdma_queues_per_engine = 8,
370 };
371 
372 struct kfd_deviceid {
373 	unsigned short did;
374 	const struct kfd_device_info *device_info;
375 };
376 
377 static const struct kfd_deviceid supported_devices[] = {
378 #ifdef KFD_SUPPORT_IOMMU_V2
379 	{ 0x1304, &kaveri_device_info },	/* Kaveri */
380 	{ 0x1305, &kaveri_device_info },	/* Kaveri */
381 	{ 0x1306, &kaveri_device_info },	/* Kaveri */
382 	{ 0x1307, &kaveri_device_info },	/* Kaveri */
383 	{ 0x1309, &kaveri_device_info },	/* Kaveri */
384 	{ 0x130A, &kaveri_device_info },	/* Kaveri */
385 	{ 0x130B, &kaveri_device_info },	/* Kaveri */
386 	{ 0x130C, &kaveri_device_info },	/* Kaveri */
387 	{ 0x130D, &kaveri_device_info },	/* Kaveri */
388 	{ 0x130E, &kaveri_device_info },	/* Kaveri */
389 	{ 0x130F, &kaveri_device_info },	/* Kaveri */
390 	{ 0x1310, &kaveri_device_info },	/* Kaveri */
391 	{ 0x1311, &kaveri_device_info },	/* Kaveri */
392 	{ 0x1312, &kaveri_device_info },	/* Kaveri */
393 	{ 0x1313, &kaveri_device_info },	/* Kaveri */
394 	{ 0x1315, &kaveri_device_info },	/* Kaveri */
395 	{ 0x1316, &kaveri_device_info },	/* Kaveri */
396 	{ 0x1317, &kaveri_device_info },	/* Kaveri */
397 	{ 0x1318, &kaveri_device_info },	/* Kaveri */
398 	{ 0x131B, &kaveri_device_info },	/* Kaveri */
399 	{ 0x131C, &kaveri_device_info },	/* Kaveri */
400 	{ 0x131D, &kaveri_device_info },	/* Kaveri */
401 	{ 0x9870, &carrizo_device_info },	/* Carrizo */
402 	{ 0x9874, &carrizo_device_info },	/* Carrizo */
403 	{ 0x9875, &carrizo_device_info },	/* Carrizo */
404 	{ 0x9876, &carrizo_device_info },	/* Carrizo */
405 	{ 0x9877, &carrizo_device_info },	/* Carrizo */
406 	{ 0x15DD, &raven_device_info },		/* Raven */
407 	{ 0x15D8, &raven_device_info },		/* Raven */
408 #endif
409 	{ 0x67A0, &hawaii_device_info },	/* Hawaii */
410 	{ 0x67A1, &hawaii_device_info },	/* Hawaii */
411 	{ 0x67A2, &hawaii_device_info },	/* Hawaii */
412 	{ 0x67A8, &hawaii_device_info },	/* Hawaii */
413 	{ 0x67A9, &hawaii_device_info },	/* Hawaii */
414 	{ 0x67AA, &hawaii_device_info },	/* Hawaii */
415 	{ 0x67B0, &hawaii_device_info },	/* Hawaii */
416 	{ 0x67B1, &hawaii_device_info },	/* Hawaii */
417 	{ 0x67B8, &hawaii_device_info },	/* Hawaii */
418 	{ 0x67B9, &hawaii_device_info },	/* Hawaii */
419 	{ 0x67BA, &hawaii_device_info },	/* Hawaii */
420 	{ 0x67BE, &hawaii_device_info },	/* Hawaii */
421 	{ 0x6920, &tonga_device_info },		/* Tonga */
422 	{ 0x6921, &tonga_device_info },		/* Tonga */
423 	{ 0x6928, &tonga_device_info },		/* Tonga */
424 	{ 0x6929, &tonga_device_info },		/* Tonga */
425 	{ 0x692B, &tonga_device_info },		/* Tonga */
426 	{ 0x6938, &tonga_device_info },		/* Tonga */
427 	{ 0x6939, &tonga_device_info },		/* Tonga */
428 	{ 0x7300, &fiji_device_info },		/* Fiji */
429 	{ 0x730F, &fiji_vf_device_info },	/* Fiji vf*/
430 	{ 0x67C0, &polaris10_device_info },	/* Polaris10 */
431 	{ 0x67C1, &polaris10_device_info },	/* Polaris10 */
432 	{ 0x67C2, &polaris10_device_info },	/* Polaris10 */
433 	{ 0x67C4, &polaris10_device_info },	/* Polaris10 */
434 	{ 0x67C7, &polaris10_device_info },	/* Polaris10 */
435 	{ 0x67C8, &polaris10_device_info },	/* Polaris10 */
436 	{ 0x67C9, &polaris10_device_info },	/* Polaris10 */
437 	{ 0x67CA, &polaris10_device_info },	/* Polaris10 */
438 	{ 0x67CC, &polaris10_device_info },	/* Polaris10 */
439 	{ 0x67CF, &polaris10_device_info },	/* Polaris10 */
440 	{ 0x67D0, &polaris10_vf_device_info },	/* Polaris10 vf*/
441 	{ 0x67DF, &polaris10_device_info },	/* Polaris10 */
442 	{ 0x6FDF, &polaris10_device_info },	/* Polaris10 */
443 	{ 0x67E0, &polaris11_device_info },	/* Polaris11 */
444 	{ 0x67E1, &polaris11_device_info },	/* Polaris11 */
445 	{ 0x67E3, &polaris11_device_info },	/* Polaris11 */
446 	{ 0x67E7, &polaris11_device_info },	/* Polaris11 */
447 	{ 0x67E8, &polaris11_device_info },	/* Polaris11 */
448 	{ 0x67E9, &polaris11_device_info },	/* Polaris11 */
449 	{ 0x67EB, &polaris11_device_info },	/* Polaris11 */
450 	{ 0x67EF, &polaris11_device_info },	/* Polaris11 */
451 	{ 0x67FF, &polaris11_device_info },	/* Polaris11 */
452 	{ 0x6980, &polaris12_device_info },	/* Polaris12 */
453 	{ 0x6981, &polaris12_device_info },	/* Polaris12 */
454 	{ 0x6985, &polaris12_device_info },	/* Polaris12 */
455 	{ 0x6986, &polaris12_device_info },	/* Polaris12 */
456 	{ 0x6987, &polaris12_device_info },	/* Polaris12 */
457 	{ 0x6995, &polaris12_device_info },	/* Polaris12 */
458 	{ 0x6997, &polaris12_device_info },	/* Polaris12 */
459 	{ 0x699F, &polaris12_device_info },	/* Polaris12 */
460 	{ 0x694C, &vegam_device_info },		/* VegaM */
461 	{ 0x694E, &vegam_device_info },		/* VegaM */
462 	{ 0x694F, &vegam_device_info },		/* VegaM */
463 	{ 0x6860, &vega10_device_info },	/* Vega10 */
464 	{ 0x6861, &vega10_device_info },	/* Vega10 */
465 	{ 0x6862, &vega10_device_info },	/* Vega10 */
466 	{ 0x6863, &vega10_device_info },	/* Vega10 */
467 	{ 0x6864, &vega10_device_info },	/* Vega10 */
468 	{ 0x6867, &vega10_device_info },	/* Vega10 */
469 	{ 0x6868, &vega10_device_info },	/* Vega10 */
470 	{ 0x6869, &vega10_device_info },	/* Vega10 */
471 	{ 0x686A, &vega10_device_info },	/* Vega10 */
472 	{ 0x686B, &vega10_device_info },	/* Vega10 */
473 	{ 0x686C, &vega10_vf_device_info },	/* Vega10  vf*/
474 	{ 0x686D, &vega10_device_info },	/* Vega10 */
475 	{ 0x686E, &vega10_device_info },	/* Vega10 */
476 	{ 0x686F, &vega10_device_info },	/* Vega10 */
477 	{ 0x687F, &vega10_device_info },	/* Vega10 */
478 	{ 0x69A0, &vega12_device_info },	/* Vega12 */
479 	{ 0x69A1, &vega12_device_info },	/* Vega12 */
480 	{ 0x69A2, &vega12_device_info },	/* Vega12 */
481 	{ 0x69A3, &vega12_device_info },	/* Vega12 */
482 	{ 0x69AF, &vega12_device_info },	/* Vega12 */
483 	{ 0x66a0, &vega20_device_info },	/* Vega20 */
484 	{ 0x66a1, &vega20_device_info },	/* Vega20 */
485 	{ 0x66a2, &vega20_device_info },	/* Vega20 */
486 	{ 0x66a3, &vega20_device_info },	/* Vega20 */
487 	{ 0x66a4, &vega20_device_info },	/* Vega20 */
488 	{ 0x66a7, &vega20_device_info },	/* Vega20 */
489 	{ 0x66af, &vega20_device_info },	/* Vega20 */
490 	{ 0x738C, &arcturus_device_info },	/* Arcturus */
491 	{ 0x7388, &arcturus_device_info },	/* Arcturus */
492 	{ 0x738E, &arcturus_device_info },	/* Arcturus */
493 	{ 0x7390, &arcturus_device_info },	/* Arcturus vf */
494 	{ 0x7310, &navi10_device_info },	/* Navi10 */
495 	{ 0x7312, &navi10_device_info },	/* Navi10 */
496 	{ 0x7318, &navi10_device_info },	/* Navi10 */
497 	{ 0x731a, &navi10_device_info },	/* Navi10 */
498 	{ 0x731f, &navi10_device_info },	/* Navi10 */
499 };
500 
501 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
502 				unsigned int chunk_size);
503 static void kfd_gtt_sa_fini(struct kfd_dev *kfd);
504 
505 static int kfd_resume(struct kfd_dev *kfd);
506 
lookup_device_info(unsigned short did)507 static const struct kfd_device_info *lookup_device_info(unsigned short did)
508 {
509 	size_t i;
510 
511 	for (i = 0; i < ARRAY_SIZE(supported_devices); i++) {
512 		if (supported_devices[i].did == did) {
513 			WARN_ON(!supported_devices[i].device_info);
514 			return supported_devices[i].device_info;
515 		}
516 	}
517 
518 	dev_warn(kfd_device, "DID %04x is missing in supported_devices\n",
519 		 did);
520 
521 	return NULL;
522 }
523 
kgd2kfd_probe(struct kgd_dev * kgd,struct pci_dev * pdev,const struct kfd2kgd_calls * f2g)524 struct kfd_dev *kgd2kfd_probe(struct kgd_dev *kgd,
525 	struct pci_dev *pdev, const struct kfd2kgd_calls *f2g)
526 {
527 	struct kfd_dev *kfd;
528 	const struct kfd_device_info *device_info =
529 					lookup_device_info(pdev->device);
530 
531 	if (!device_info) {
532 		dev_err(kfd_device, "kgd2kfd_probe failed\n");
533 		return NULL;
534 	}
535 
536 	kfd = kzalloc(sizeof(*kfd), GFP_KERNEL);
537 	if (!kfd)
538 		return NULL;
539 
540 	/* Allow BIF to recode atomics to PCIe 3.0 AtomicOps.
541 	 * 32 and 64-bit requests are possible and must be
542 	 * supported.
543 	 */
544 	kfd->pci_atomic_requested = amdgpu_amdkfd_have_atomics_support(kgd);
545 	if (device_info->needs_pci_atomics &&
546 	    !kfd->pci_atomic_requested) {
547 		dev_info(kfd_device,
548 			 "skipped device %x:%x, PCI rejects atomics\n",
549 			 pdev->vendor, pdev->device);
550 		kfree(kfd);
551 		return NULL;
552 	}
553 
554 	kfd->kgd = kgd;
555 	kfd->device_info = device_info;
556 	kfd->pdev = pdev;
557 	kfd->init_complete = false;
558 	kfd->kfd2kgd = f2g;
559 	atomic_set(&kfd->compute_profile, 0);
560 
561 	mutex_init(&kfd->doorbell_mutex);
562 	memset(&kfd->doorbell_available_index, 0,
563 		sizeof(kfd->doorbell_available_index));
564 
565 	atomic_set(&kfd->sram_ecc_flag, 0);
566 
567 	return kfd;
568 }
569 
kfd_cwsr_init(struct kfd_dev * kfd)570 static void kfd_cwsr_init(struct kfd_dev *kfd)
571 {
572 	if (cwsr_enable && kfd->device_info->supports_cwsr) {
573 		if (kfd->device_info->asic_family < CHIP_VEGA10) {
574 			BUILD_BUG_ON(sizeof(cwsr_trap_gfx8_hex) > PAGE_SIZE);
575 			kfd->cwsr_isa = cwsr_trap_gfx8_hex;
576 			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx8_hex);
577 		} else if (kfd->device_info->asic_family == CHIP_ARCTURUS) {
578 			BUILD_BUG_ON(sizeof(cwsr_trap_arcturus_hex) > PAGE_SIZE);
579 			kfd->cwsr_isa = cwsr_trap_arcturus_hex;
580 			kfd->cwsr_isa_size = sizeof(cwsr_trap_arcturus_hex);
581 		} else if (kfd->device_info->asic_family < CHIP_NAVI10) {
582 			BUILD_BUG_ON(sizeof(cwsr_trap_gfx9_hex) > PAGE_SIZE);
583 			kfd->cwsr_isa = cwsr_trap_gfx9_hex;
584 			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx9_hex);
585 		} else {
586 			BUILD_BUG_ON(sizeof(cwsr_trap_gfx10_hex) > PAGE_SIZE);
587 			kfd->cwsr_isa = cwsr_trap_gfx10_hex;
588 			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx10_hex);
589 		}
590 
591 		kfd->cwsr_enabled = true;
592 	}
593 }
594 
kgd2kfd_device_init(struct kfd_dev * kfd,const struct kgd2kfd_shared_resources * gpu_resources)595 bool kgd2kfd_device_init(struct kfd_dev *kfd,
596 			 const struct kgd2kfd_shared_resources *gpu_resources)
597 {
598 	unsigned int size;
599 
600 	kfd->mec_fw_version = amdgpu_amdkfd_get_fw_version(kfd->kgd,
601 			KGD_ENGINE_MEC1);
602 	kfd->sdma_fw_version = amdgpu_amdkfd_get_fw_version(kfd->kgd,
603 			KGD_ENGINE_SDMA1);
604 	kfd->shared_resources = *gpu_resources;
605 
606 	kfd->vm_info.first_vmid_kfd = ffs(gpu_resources->compute_vmid_bitmap)-1;
607 	kfd->vm_info.last_vmid_kfd = fls(gpu_resources->compute_vmid_bitmap)-1;
608 	kfd->vm_info.vmid_num_kfd = kfd->vm_info.last_vmid_kfd
609 			- kfd->vm_info.first_vmid_kfd + 1;
610 
611 	/* Verify module parameters regarding mapped process number*/
612 	if ((hws_max_conc_proc < 0)
613 			|| (hws_max_conc_proc > kfd->vm_info.vmid_num_kfd)) {
614 		dev_err(kfd_device,
615 			"hws_max_conc_proc %d must be between 0 and %d, use %d instead\n",
616 			hws_max_conc_proc, kfd->vm_info.vmid_num_kfd,
617 			kfd->vm_info.vmid_num_kfd);
618 		kfd->max_proc_per_quantum = kfd->vm_info.vmid_num_kfd;
619 	} else
620 		kfd->max_proc_per_quantum = hws_max_conc_proc;
621 
622 	/* Allocate global GWS that is shared by all KFD processes */
623 	if (hws_gws_support && amdgpu_amdkfd_alloc_gws(kfd->kgd,
624 			amdgpu_amdkfd_get_num_gws(kfd->kgd), &kfd->gws)) {
625 		dev_err(kfd_device, "Could not allocate %d gws\n",
626 			amdgpu_amdkfd_get_num_gws(kfd->kgd));
627 		goto out;
628 	}
629 	/* calculate max size of mqds needed for queues */
630 	size = max_num_of_queues_per_device *
631 			kfd->device_info->mqd_size_aligned;
632 
633 	/*
634 	 * calculate max size of runlist packet.
635 	 * There can be only 2 packets at once
636 	 */
637 	size += (KFD_MAX_NUM_OF_PROCESSES * sizeof(struct pm4_mes_map_process) +
638 		max_num_of_queues_per_device * sizeof(struct pm4_mes_map_queues)
639 		+ sizeof(struct pm4_mes_runlist)) * 2;
640 
641 	/* Add size of HIQ & DIQ */
642 	size += KFD_KERNEL_QUEUE_SIZE * 2;
643 
644 	/* add another 512KB for all other allocations on gart (HPD, fences) */
645 	size += 512 * 1024;
646 
647 	if (amdgpu_amdkfd_alloc_gtt_mem(
648 			kfd->kgd, size, &kfd->gtt_mem,
649 			&kfd->gtt_start_gpu_addr, &kfd->gtt_start_cpu_ptr,
650 			false)) {
651 		dev_err(kfd_device, "Could not allocate %d bytes\n", size);
652 		goto alloc_gtt_mem_failure;
653 	}
654 
655 	dev_info(kfd_device, "Allocated %d bytes on gart\n", size);
656 
657 	/* Initialize GTT sa with 512 byte chunk size */
658 	if (kfd_gtt_sa_init(kfd, size, 512) != 0) {
659 		dev_err(kfd_device, "Error initializing gtt sub-allocator\n");
660 		goto kfd_gtt_sa_init_error;
661 	}
662 
663 	if (kfd_doorbell_init(kfd)) {
664 		dev_err(kfd_device,
665 			"Error initializing doorbell aperture\n");
666 		goto kfd_doorbell_error;
667 	}
668 
669 	if (kfd->kfd2kgd->get_hive_id)
670 		kfd->hive_id = kfd->kfd2kgd->get_hive_id(kfd->kgd);
671 
672 	if (kfd_interrupt_init(kfd)) {
673 		dev_err(kfd_device, "Error initializing interrupts\n");
674 		goto kfd_interrupt_error;
675 	}
676 
677 	kfd->dqm = device_queue_manager_init(kfd);
678 	if (!kfd->dqm) {
679 		dev_err(kfd_device, "Error initializing queue manager\n");
680 		goto device_queue_manager_error;
681 	}
682 
683 	if (kfd_iommu_device_init(kfd)) {
684 		dev_err(kfd_device, "Error initializing iommuv2\n");
685 		goto device_iommu_error;
686 	}
687 
688 	kfd_cwsr_init(kfd);
689 
690 	if (kfd_resume(kfd))
691 		goto kfd_resume_error;
692 
693 	kfd->dbgmgr = NULL;
694 
695 	if (kfd_topology_add_device(kfd)) {
696 		dev_err(kfd_device, "Error adding device to topology\n");
697 		goto kfd_topology_add_device_error;
698 	}
699 
700 	kfd->init_complete = true;
701 	dev_info(kfd_device, "added device %x:%x\n", kfd->pdev->vendor,
702 		 kfd->pdev->device);
703 
704 	pr_debug("Starting kfd with the following scheduling policy %d\n",
705 		kfd->dqm->sched_policy);
706 
707 	goto out;
708 
709 kfd_topology_add_device_error:
710 kfd_resume_error:
711 device_iommu_error:
712 	device_queue_manager_uninit(kfd->dqm);
713 device_queue_manager_error:
714 	kfd_interrupt_exit(kfd);
715 kfd_interrupt_error:
716 	kfd_doorbell_fini(kfd);
717 kfd_doorbell_error:
718 	kfd_gtt_sa_fini(kfd);
719 kfd_gtt_sa_init_error:
720 	amdgpu_amdkfd_free_gtt_mem(kfd->kgd, kfd->gtt_mem);
721 alloc_gtt_mem_failure:
722 	if (hws_gws_support)
723 		amdgpu_amdkfd_free_gws(kfd->kgd, kfd->gws);
724 	dev_err(kfd_device,
725 		"device %x:%x NOT added due to errors\n",
726 		kfd->pdev->vendor, kfd->pdev->device);
727 out:
728 	return kfd->init_complete;
729 }
730 
kgd2kfd_device_exit(struct kfd_dev * kfd)731 void kgd2kfd_device_exit(struct kfd_dev *kfd)
732 {
733 	if (kfd->init_complete) {
734 		kgd2kfd_suspend(kfd);
735 		device_queue_manager_uninit(kfd->dqm);
736 		kfd_interrupt_exit(kfd);
737 		kfd_topology_remove_device(kfd);
738 		kfd_doorbell_fini(kfd);
739 		kfd_gtt_sa_fini(kfd);
740 		amdgpu_amdkfd_free_gtt_mem(kfd->kgd, kfd->gtt_mem);
741 		if (hws_gws_support)
742 			amdgpu_amdkfd_free_gws(kfd->kgd, kfd->gws);
743 	}
744 
745 	kfree(kfd);
746 }
747 
kgd2kfd_pre_reset(struct kfd_dev * kfd)748 int kgd2kfd_pre_reset(struct kfd_dev *kfd)
749 {
750 	if (!kfd->init_complete)
751 		return 0;
752 	kgd2kfd_suspend(kfd);
753 
754 	/* hold dqm->lock to prevent further execution*/
755 	dqm_lock(kfd->dqm);
756 
757 	kfd_signal_reset_event(kfd);
758 	return 0;
759 }
760 
761 /*
762  * Fix me. KFD won't be able to resume existing process for now.
763  * We will keep all existing process in a evicted state and
764  * wait the process to be terminated.
765  */
766 
kgd2kfd_post_reset(struct kfd_dev * kfd)767 int kgd2kfd_post_reset(struct kfd_dev *kfd)
768 {
769 	int ret, count;
770 
771 	if (!kfd->init_complete)
772 		return 0;
773 
774 	dqm_unlock(kfd->dqm);
775 
776 	ret = kfd_resume(kfd);
777 	if (ret)
778 		return ret;
779 	count = atomic_dec_return(&kfd_locked);
780 
781 	atomic_set(&kfd->sram_ecc_flag, 0);
782 
783 	return 0;
784 }
785 
kfd_is_locked(void)786 bool kfd_is_locked(void)
787 {
788 	return  (atomic_read(&kfd_locked) > 0);
789 }
790 
kgd2kfd_suspend(struct kfd_dev * kfd)791 void kgd2kfd_suspend(struct kfd_dev *kfd)
792 {
793 	if (!kfd->init_complete)
794 		return;
795 
796 	/* For first KFD device suspend all the KFD processes */
797 	if (atomic_inc_return(&kfd_locked) == 1)
798 		kfd_suspend_all_processes();
799 
800 	kfd->dqm->ops.stop(kfd->dqm);
801 
802 	kfd_iommu_suspend(kfd);
803 }
804 
kgd2kfd_resume(struct kfd_dev * kfd)805 int kgd2kfd_resume(struct kfd_dev *kfd)
806 {
807 	int ret, count;
808 
809 	if (!kfd->init_complete)
810 		return 0;
811 
812 	ret = kfd_resume(kfd);
813 	if (ret)
814 		return ret;
815 
816 	count = atomic_dec_return(&kfd_locked);
817 	WARN_ONCE(count < 0, "KFD suspend / resume ref. error");
818 	if (count == 0)
819 		ret = kfd_resume_all_processes();
820 
821 	return ret;
822 }
823 
kfd_resume(struct kfd_dev * kfd)824 static int kfd_resume(struct kfd_dev *kfd)
825 {
826 	int err = 0;
827 
828 	err = kfd_iommu_resume(kfd);
829 	if (err) {
830 		dev_err(kfd_device,
831 			"Failed to resume IOMMU for device %x:%x\n",
832 			kfd->pdev->vendor, kfd->pdev->device);
833 		return err;
834 	}
835 
836 	err = kfd->dqm->ops.start(kfd->dqm);
837 	if (err) {
838 		dev_err(kfd_device,
839 			"Error starting queue manager for device %x:%x\n",
840 			kfd->pdev->vendor, kfd->pdev->device);
841 		goto dqm_start_error;
842 	}
843 
844 	return err;
845 
846 dqm_start_error:
847 	kfd_iommu_suspend(kfd);
848 	return err;
849 }
850 
851 /* This is called directly from KGD at ISR. */
kgd2kfd_interrupt(struct kfd_dev * kfd,const void * ih_ring_entry)852 void kgd2kfd_interrupt(struct kfd_dev *kfd, const void *ih_ring_entry)
853 {
854 	uint32_t patched_ihre[KFD_MAX_RING_ENTRY_SIZE];
855 	bool is_patched = false;
856 	unsigned long flags;
857 
858 	if (!kfd->init_complete)
859 		return;
860 
861 	if (kfd->device_info->ih_ring_entry_size > sizeof(patched_ihre)) {
862 		dev_err_once(kfd_device, "Ring entry too small\n");
863 		return;
864 	}
865 
866 	spin_lock_irqsave(&kfd->interrupt_lock, flags);
867 
868 	if (kfd->interrupts_active
869 	    && interrupt_is_wanted(kfd, ih_ring_entry,
870 				   patched_ihre, &is_patched)
871 	    && enqueue_ih_ring_entry(kfd,
872 				     is_patched ? patched_ihre : ih_ring_entry))
873 		queue_work(kfd->ih_wq, &kfd->interrupt_work);
874 
875 	spin_unlock_irqrestore(&kfd->interrupt_lock, flags);
876 }
877 
kgd2kfd_quiesce_mm(struct mm_struct * mm)878 int kgd2kfd_quiesce_mm(struct mm_struct *mm)
879 {
880 	struct kfd_process *p;
881 	int r;
882 
883 	/* Because we are called from arbitrary context (workqueue) as opposed
884 	 * to process context, kfd_process could attempt to exit while we are
885 	 * running so the lookup function increments the process ref count.
886 	 */
887 	p = kfd_lookup_process_by_mm(mm);
888 	if (!p)
889 		return -ESRCH;
890 
891 	r = kfd_process_evict_queues(p);
892 
893 	kfd_unref_process(p);
894 	return r;
895 }
896 
kgd2kfd_resume_mm(struct mm_struct * mm)897 int kgd2kfd_resume_mm(struct mm_struct *mm)
898 {
899 	struct kfd_process *p;
900 	int r;
901 
902 	/* Because we are called from arbitrary context (workqueue) as opposed
903 	 * to process context, kfd_process could attempt to exit while we are
904 	 * running so the lookup function increments the process ref count.
905 	 */
906 	p = kfd_lookup_process_by_mm(mm);
907 	if (!p)
908 		return -ESRCH;
909 
910 	r = kfd_process_restore_queues(p);
911 
912 	kfd_unref_process(p);
913 	return r;
914 }
915 
916 /** kgd2kfd_schedule_evict_and_restore_process - Schedules work queue that will
917  *   prepare for safe eviction of KFD BOs that belong to the specified
918  *   process.
919  *
920  * @mm: mm_struct that identifies the specified KFD process
921  * @fence: eviction fence attached to KFD process BOs
922  *
923  */
kgd2kfd_schedule_evict_and_restore_process(struct mm_struct * mm,struct dma_fence * fence)924 int kgd2kfd_schedule_evict_and_restore_process(struct mm_struct *mm,
925 					       struct dma_fence *fence)
926 {
927 	struct kfd_process *p;
928 	unsigned long active_time;
929 	unsigned long delay_jiffies = msecs_to_jiffies(PROCESS_ACTIVE_TIME_MS);
930 
931 	if (!fence)
932 		return -EINVAL;
933 
934 	if (dma_fence_is_signaled(fence))
935 		return 0;
936 
937 	p = kfd_lookup_process_by_mm(mm);
938 	if (!p)
939 		return -ENODEV;
940 
941 	if (fence->seqno == p->last_eviction_seqno)
942 		goto out;
943 
944 	p->last_eviction_seqno = fence->seqno;
945 
946 	/* Avoid KFD process starvation. Wait for at least
947 	 * PROCESS_ACTIVE_TIME_MS before evicting the process again
948 	 */
949 	active_time = get_jiffies_64() - p->last_restore_timestamp;
950 	if (delay_jiffies > active_time)
951 		delay_jiffies -= active_time;
952 	else
953 		delay_jiffies = 0;
954 
955 	/* During process initialization eviction_work.dwork is initialized
956 	 * to kfd_evict_bo_worker
957 	 */
958 	schedule_delayed_work(&p->eviction_work, delay_jiffies);
959 out:
960 	kfd_unref_process(p);
961 	return 0;
962 }
963 
kfd_gtt_sa_init(struct kfd_dev * kfd,unsigned int buf_size,unsigned int chunk_size)964 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
965 				unsigned int chunk_size)
966 {
967 	unsigned int num_of_longs;
968 
969 	if (WARN_ON(buf_size < chunk_size))
970 		return -EINVAL;
971 	if (WARN_ON(buf_size == 0))
972 		return -EINVAL;
973 	if (WARN_ON(chunk_size == 0))
974 		return -EINVAL;
975 
976 	kfd->gtt_sa_chunk_size = chunk_size;
977 	kfd->gtt_sa_num_of_chunks = buf_size / chunk_size;
978 
979 	num_of_longs = (kfd->gtt_sa_num_of_chunks + BITS_PER_LONG - 1) /
980 		BITS_PER_LONG;
981 
982 	kfd->gtt_sa_bitmap = kcalloc(num_of_longs, sizeof(long), GFP_KERNEL);
983 
984 	if (!kfd->gtt_sa_bitmap)
985 		return -ENOMEM;
986 
987 	pr_debug("gtt_sa_num_of_chunks = %d, gtt_sa_bitmap = %p\n",
988 			kfd->gtt_sa_num_of_chunks, kfd->gtt_sa_bitmap);
989 
990 	mutex_init(&kfd->gtt_sa_lock);
991 
992 	return 0;
993 
994 }
995 
kfd_gtt_sa_fini(struct kfd_dev * kfd)996 static void kfd_gtt_sa_fini(struct kfd_dev *kfd)
997 {
998 	mutex_destroy(&kfd->gtt_sa_lock);
999 	kfree(kfd->gtt_sa_bitmap);
1000 }
1001 
kfd_gtt_sa_calc_gpu_addr(uint64_t start_addr,unsigned int bit_num,unsigned int chunk_size)1002 static inline uint64_t kfd_gtt_sa_calc_gpu_addr(uint64_t start_addr,
1003 						unsigned int bit_num,
1004 						unsigned int chunk_size)
1005 {
1006 	return start_addr + bit_num * chunk_size;
1007 }
1008 
kfd_gtt_sa_calc_cpu_addr(void * start_addr,unsigned int bit_num,unsigned int chunk_size)1009 static inline uint32_t *kfd_gtt_sa_calc_cpu_addr(void *start_addr,
1010 						unsigned int bit_num,
1011 						unsigned int chunk_size)
1012 {
1013 	return (uint32_t *) ((uint64_t) start_addr + bit_num * chunk_size);
1014 }
1015 
kfd_gtt_sa_allocate(struct kfd_dev * kfd,unsigned int size,struct kfd_mem_obj ** mem_obj)1016 int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size,
1017 			struct kfd_mem_obj **mem_obj)
1018 {
1019 	unsigned int found, start_search, cur_size;
1020 
1021 	if (size == 0)
1022 		return -EINVAL;
1023 
1024 	if (size > kfd->gtt_sa_num_of_chunks * kfd->gtt_sa_chunk_size)
1025 		return -ENOMEM;
1026 
1027 	*mem_obj = kzalloc(sizeof(struct kfd_mem_obj), GFP_KERNEL);
1028 	if (!(*mem_obj))
1029 		return -ENOMEM;
1030 
1031 	pr_debug("Allocated mem_obj = %p for size = %d\n", *mem_obj, size);
1032 
1033 	start_search = 0;
1034 
1035 	mutex_lock(&kfd->gtt_sa_lock);
1036 
1037 kfd_gtt_restart_search:
1038 	/* Find the first chunk that is free */
1039 	found = find_next_zero_bit(kfd->gtt_sa_bitmap,
1040 					kfd->gtt_sa_num_of_chunks,
1041 					start_search);
1042 
1043 	pr_debug("Found = %d\n", found);
1044 
1045 	/* If there wasn't any free chunk, bail out */
1046 	if (found == kfd->gtt_sa_num_of_chunks)
1047 		goto kfd_gtt_no_free_chunk;
1048 
1049 	/* Update fields of mem_obj */
1050 	(*mem_obj)->range_start = found;
1051 	(*mem_obj)->range_end = found;
1052 	(*mem_obj)->gpu_addr = kfd_gtt_sa_calc_gpu_addr(
1053 					kfd->gtt_start_gpu_addr,
1054 					found,
1055 					kfd->gtt_sa_chunk_size);
1056 	(*mem_obj)->cpu_ptr = kfd_gtt_sa_calc_cpu_addr(
1057 					kfd->gtt_start_cpu_ptr,
1058 					found,
1059 					kfd->gtt_sa_chunk_size);
1060 
1061 	pr_debug("gpu_addr = %p, cpu_addr = %p\n",
1062 			(uint64_t *) (*mem_obj)->gpu_addr, (*mem_obj)->cpu_ptr);
1063 
1064 	/* If we need only one chunk, mark it as allocated and get out */
1065 	if (size <= kfd->gtt_sa_chunk_size) {
1066 		pr_debug("Single bit\n");
1067 		set_bit(found, kfd->gtt_sa_bitmap);
1068 		goto kfd_gtt_out;
1069 	}
1070 
1071 	/* Otherwise, try to see if we have enough contiguous chunks */
1072 	cur_size = size - kfd->gtt_sa_chunk_size;
1073 	do {
1074 		(*mem_obj)->range_end =
1075 			find_next_zero_bit(kfd->gtt_sa_bitmap,
1076 					kfd->gtt_sa_num_of_chunks, ++found);
1077 		/*
1078 		 * If next free chunk is not contiguous than we need to
1079 		 * restart our search from the last free chunk we found (which
1080 		 * wasn't contiguous to the previous ones
1081 		 */
1082 		if ((*mem_obj)->range_end != found) {
1083 			start_search = found;
1084 			goto kfd_gtt_restart_search;
1085 		}
1086 
1087 		/*
1088 		 * If we reached end of buffer, bail out with error
1089 		 */
1090 		if (found == kfd->gtt_sa_num_of_chunks)
1091 			goto kfd_gtt_no_free_chunk;
1092 
1093 		/* Check if we don't need another chunk */
1094 		if (cur_size <= kfd->gtt_sa_chunk_size)
1095 			cur_size = 0;
1096 		else
1097 			cur_size -= kfd->gtt_sa_chunk_size;
1098 
1099 	} while (cur_size > 0);
1100 
1101 	pr_debug("range_start = %d, range_end = %d\n",
1102 		(*mem_obj)->range_start, (*mem_obj)->range_end);
1103 
1104 	/* Mark the chunks as allocated */
1105 	for (found = (*mem_obj)->range_start;
1106 		found <= (*mem_obj)->range_end;
1107 		found++)
1108 		set_bit(found, kfd->gtt_sa_bitmap);
1109 
1110 kfd_gtt_out:
1111 	mutex_unlock(&kfd->gtt_sa_lock);
1112 	return 0;
1113 
1114 kfd_gtt_no_free_chunk:
1115 	pr_debug("Allocation failed with mem_obj = %p\n", mem_obj);
1116 	mutex_unlock(&kfd->gtt_sa_lock);
1117 	kfree(mem_obj);
1118 	return -ENOMEM;
1119 }
1120 
kfd_gtt_sa_free(struct kfd_dev * kfd,struct kfd_mem_obj * mem_obj)1121 int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj)
1122 {
1123 	unsigned int bit;
1124 
1125 	/* Act like kfree when trying to free a NULL object */
1126 	if (!mem_obj)
1127 		return 0;
1128 
1129 	pr_debug("Free mem_obj = %p, range_start = %d, range_end = %d\n",
1130 			mem_obj, mem_obj->range_start, mem_obj->range_end);
1131 
1132 	mutex_lock(&kfd->gtt_sa_lock);
1133 
1134 	/* Mark the chunks as free */
1135 	for (bit = mem_obj->range_start;
1136 		bit <= mem_obj->range_end;
1137 		bit++)
1138 		clear_bit(bit, kfd->gtt_sa_bitmap);
1139 
1140 	mutex_unlock(&kfd->gtt_sa_lock);
1141 
1142 	kfree(mem_obj);
1143 	return 0;
1144 }
1145 
kgd2kfd_set_sram_ecc_flag(struct kfd_dev * kfd)1146 void kgd2kfd_set_sram_ecc_flag(struct kfd_dev *kfd)
1147 {
1148 	if (kfd)
1149 		atomic_inc(&kfd->sram_ecc_flag);
1150 }
1151 
kfd_inc_compute_active(struct kfd_dev * kfd)1152 void kfd_inc_compute_active(struct kfd_dev *kfd)
1153 {
1154 	if (atomic_inc_return(&kfd->compute_profile) == 1)
1155 		amdgpu_amdkfd_set_compute_idle(kfd->kgd, false);
1156 }
1157 
kfd_dec_compute_active(struct kfd_dev * kfd)1158 void kfd_dec_compute_active(struct kfd_dev *kfd)
1159 {
1160 	int count = atomic_dec_return(&kfd->compute_profile);
1161 
1162 	if (count == 0)
1163 		amdgpu_amdkfd_set_compute_idle(kfd->kgd, true);
1164 	WARN_ONCE(count < 0, "Compute profile ref. count error");
1165 }
1166 
1167 #if defined(CONFIG_DEBUG_FS)
1168 
1169 /* This function will send a package to HIQ to hang the HWS
1170  * which will trigger a GPU reset and bring the HWS back to normal state
1171  */
kfd_debugfs_hang_hws(struct kfd_dev * dev)1172 int kfd_debugfs_hang_hws(struct kfd_dev *dev)
1173 {
1174 	int r = 0;
1175 
1176 	if (dev->dqm->sched_policy != KFD_SCHED_POLICY_HWS) {
1177 		pr_err("HWS is not enabled");
1178 		return -EINVAL;
1179 	}
1180 
1181 	r = pm_debugfs_hang_hws(&dev->dqm->packets);
1182 	if (!r)
1183 		r = dqm_debugfs_execute_queues(dev->dqm);
1184 
1185 	return r;
1186 }
1187 
1188 #endif
1189