1 /*
2 * Copyright 2014 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 */
22
23 #include <linux/bsearch.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include "kfd_priv.h"
27 #include "kfd_device_queue_manager.h"
28 #include "kfd_pm4_headers_vi.h"
29 #include "cwsr_trap_handler.h"
30 #include "kfd_iommu.h"
31
32 #define MQD_SIZE_ALIGNED 768
33
34 /*
35 * kfd_locked is used to lock the kfd driver during suspend or reset
36 * once locked, kfd driver will stop any further GPU execution.
37 * create process (open) will return -EAGAIN.
38 */
39 static atomic_t kfd_locked = ATOMIC_INIT(0);
40
41 #ifdef KFD_SUPPORT_IOMMU_V2
42 static const struct kfd_device_info kaveri_device_info = {
43 .asic_family = CHIP_KAVERI,
44 .max_pasid_bits = 16,
45 /* max num of queues for KV.TODO should be a dynamic value */
46 .max_no_of_hqd = 24,
47 .doorbell_size = 4,
48 .ih_ring_entry_size = 4 * sizeof(uint32_t),
49 .event_interrupt_class = &event_interrupt_class_cik,
50 .num_of_watch_points = 4,
51 .mqd_size_aligned = MQD_SIZE_ALIGNED,
52 .supports_cwsr = false,
53 .needs_iommu_device = true,
54 .needs_pci_atomics = false,
55 .num_sdma_engines = 2,
56 };
57
58 static const struct kfd_device_info carrizo_device_info = {
59 .asic_family = CHIP_CARRIZO,
60 .max_pasid_bits = 16,
61 /* max num of queues for CZ.TODO should be a dynamic value */
62 .max_no_of_hqd = 24,
63 .doorbell_size = 4,
64 .ih_ring_entry_size = 4 * sizeof(uint32_t),
65 .event_interrupt_class = &event_interrupt_class_cik,
66 .num_of_watch_points = 4,
67 .mqd_size_aligned = MQD_SIZE_ALIGNED,
68 .supports_cwsr = true,
69 .needs_iommu_device = true,
70 .needs_pci_atomics = false,
71 .num_sdma_engines = 2,
72 };
73
74 static const struct kfd_device_info raven_device_info = {
75 .asic_family = CHIP_RAVEN,
76 .max_pasid_bits = 16,
77 .max_no_of_hqd = 24,
78 .doorbell_size = 8,
79 .ih_ring_entry_size = 8 * sizeof(uint32_t),
80 .event_interrupt_class = &event_interrupt_class_v9,
81 .num_of_watch_points = 4,
82 .mqd_size_aligned = MQD_SIZE_ALIGNED,
83 .supports_cwsr = true,
84 .needs_iommu_device = true,
85 .needs_pci_atomics = true,
86 .num_sdma_engines = 1,
87 };
88 #endif
89
90 static const struct kfd_device_info hawaii_device_info = {
91 .asic_family = CHIP_HAWAII,
92 .max_pasid_bits = 16,
93 /* max num of queues for KV.TODO should be a dynamic value */
94 .max_no_of_hqd = 24,
95 .doorbell_size = 4,
96 .ih_ring_entry_size = 4 * sizeof(uint32_t),
97 .event_interrupt_class = &event_interrupt_class_cik,
98 .num_of_watch_points = 4,
99 .mqd_size_aligned = MQD_SIZE_ALIGNED,
100 .supports_cwsr = false,
101 .needs_iommu_device = false,
102 .needs_pci_atomics = false,
103 .num_sdma_engines = 2,
104 };
105
106 static const struct kfd_device_info tonga_device_info = {
107 .asic_family = CHIP_TONGA,
108 .max_pasid_bits = 16,
109 .max_no_of_hqd = 24,
110 .doorbell_size = 4,
111 .ih_ring_entry_size = 4 * sizeof(uint32_t),
112 .event_interrupt_class = &event_interrupt_class_cik,
113 .num_of_watch_points = 4,
114 .mqd_size_aligned = MQD_SIZE_ALIGNED,
115 .supports_cwsr = false,
116 .needs_iommu_device = false,
117 .needs_pci_atomics = true,
118 .num_sdma_engines = 2,
119 };
120
121 static const struct kfd_device_info tonga_vf_device_info = {
122 .asic_family = CHIP_TONGA,
123 .max_pasid_bits = 16,
124 .max_no_of_hqd = 24,
125 .doorbell_size = 4,
126 .ih_ring_entry_size = 4 * sizeof(uint32_t),
127 .event_interrupt_class = &event_interrupt_class_cik,
128 .num_of_watch_points = 4,
129 .mqd_size_aligned = MQD_SIZE_ALIGNED,
130 .supports_cwsr = false,
131 .needs_iommu_device = false,
132 .needs_pci_atomics = false,
133 .num_sdma_engines = 2,
134 };
135
136 static const struct kfd_device_info fiji_device_info = {
137 .asic_family = CHIP_FIJI,
138 .max_pasid_bits = 16,
139 .max_no_of_hqd = 24,
140 .doorbell_size = 4,
141 .ih_ring_entry_size = 4 * sizeof(uint32_t),
142 .event_interrupt_class = &event_interrupt_class_cik,
143 .num_of_watch_points = 4,
144 .mqd_size_aligned = MQD_SIZE_ALIGNED,
145 .supports_cwsr = true,
146 .needs_iommu_device = false,
147 .needs_pci_atomics = true,
148 .num_sdma_engines = 2,
149 };
150
151 static const struct kfd_device_info fiji_vf_device_info = {
152 .asic_family = CHIP_FIJI,
153 .max_pasid_bits = 16,
154 .max_no_of_hqd = 24,
155 .doorbell_size = 4,
156 .ih_ring_entry_size = 4 * sizeof(uint32_t),
157 .event_interrupt_class = &event_interrupt_class_cik,
158 .num_of_watch_points = 4,
159 .mqd_size_aligned = MQD_SIZE_ALIGNED,
160 .supports_cwsr = true,
161 .needs_iommu_device = false,
162 .needs_pci_atomics = false,
163 .num_sdma_engines = 2,
164 };
165
166
167 static const struct kfd_device_info polaris10_device_info = {
168 .asic_family = CHIP_POLARIS10,
169 .max_pasid_bits = 16,
170 .max_no_of_hqd = 24,
171 .doorbell_size = 4,
172 .ih_ring_entry_size = 4 * sizeof(uint32_t),
173 .event_interrupt_class = &event_interrupt_class_cik,
174 .num_of_watch_points = 4,
175 .mqd_size_aligned = MQD_SIZE_ALIGNED,
176 .supports_cwsr = true,
177 .needs_iommu_device = false,
178 .needs_pci_atomics = true,
179 .num_sdma_engines = 2,
180 };
181
182 static const struct kfd_device_info polaris10_vf_device_info = {
183 .asic_family = CHIP_POLARIS10,
184 .max_pasid_bits = 16,
185 .max_no_of_hqd = 24,
186 .doorbell_size = 4,
187 .ih_ring_entry_size = 4 * sizeof(uint32_t),
188 .event_interrupt_class = &event_interrupt_class_cik,
189 .num_of_watch_points = 4,
190 .mqd_size_aligned = MQD_SIZE_ALIGNED,
191 .supports_cwsr = true,
192 .needs_iommu_device = false,
193 .needs_pci_atomics = false,
194 .num_sdma_engines = 2,
195 };
196
197 static const struct kfd_device_info polaris11_device_info = {
198 .asic_family = CHIP_POLARIS11,
199 .max_pasid_bits = 16,
200 .max_no_of_hqd = 24,
201 .doorbell_size = 4,
202 .ih_ring_entry_size = 4 * sizeof(uint32_t),
203 .event_interrupt_class = &event_interrupt_class_cik,
204 .num_of_watch_points = 4,
205 .mqd_size_aligned = MQD_SIZE_ALIGNED,
206 .supports_cwsr = true,
207 .needs_iommu_device = false,
208 .needs_pci_atomics = true,
209 .num_sdma_engines = 2,
210 };
211
212 static const struct kfd_device_info vega10_device_info = {
213 .asic_family = CHIP_VEGA10,
214 .max_pasid_bits = 16,
215 .max_no_of_hqd = 24,
216 .doorbell_size = 8,
217 .ih_ring_entry_size = 8 * sizeof(uint32_t),
218 .event_interrupt_class = &event_interrupt_class_v9,
219 .num_of_watch_points = 4,
220 .mqd_size_aligned = MQD_SIZE_ALIGNED,
221 .supports_cwsr = true,
222 .needs_iommu_device = false,
223 .needs_pci_atomics = false,
224 .num_sdma_engines = 2,
225 };
226
227 static const struct kfd_device_info vega10_vf_device_info = {
228 .asic_family = CHIP_VEGA10,
229 .max_pasid_bits = 16,
230 .max_no_of_hqd = 24,
231 .doorbell_size = 8,
232 .ih_ring_entry_size = 8 * sizeof(uint32_t),
233 .event_interrupt_class = &event_interrupt_class_v9,
234 .num_of_watch_points = 4,
235 .mqd_size_aligned = MQD_SIZE_ALIGNED,
236 .supports_cwsr = true,
237 .needs_iommu_device = false,
238 .needs_pci_atomics = false,
239 .num_sdma_engines = 2,
240 };
241
242
243 struct kfd_deviceid {
244 unsigned short did;
245 const struct kfd_device_info *device_info;
246 };
247
248 static const struct kfd_deviceid supported_devices[] = {
249 #ifdef KFD_SUPPORT_IOMMU_V2
250 { 0x1304, &kaveri_device_info }, /* Kaveri */
251 { 0x1305, &kaveri_device_info }, /* Kaveri */
252 { 0x1306, &kaveri_device_info }, /* Kaveri */
253 { 0x1307, &kaveri_device_info }, /* Kaveri */
254 { 0x1309, &kaveri_device_info }, /* Kaveri */
255 { 0x130A, &kaveri_device_info }, /* Kaveri */
256 { 0x130B, &kaveri_device_info }, /* Kaveri */
257 { 0x130C, &kaveri_device_info }, /* Kaveri */
258 { 0x130D, &kaveri_device_info }, /* Kaveri */
259 { 0x130E, &kaveri_device_info }, /* Kaveri */
260 { 0x130F, &kaveri_device_info }, /* Kaveri */
261 { 0x1310, &kaveri_device_info }, /* Kaveri */
262 { 0x1311, &kaveri_device_info }, /* Kaveri */
263 { 0x1312, &kaveri_device_info }, /* Kaveri */
264 { 0x1313, &kaveri_device_info }, /* Kaveri */
265 { 0x1315, &kaveri_device_info }, /* Kaveri */
266 { 0x1316, &kaveri_device_info }, /* Kaveri */
267 { 0x1317, &kaveri_device_info }, /* Kaveri */
268 { 0x1318, &kaveri_device_info }, /* Kaveri */
269 { 0x131B, &kaveri_device_info }, /* Kaveri */
270 { 0x131C, &kaveri_device_info }, /* Kaveri */
271 { 0x131D, &kaveri_device_info }, /* Kaveri */
272 { 0x9870, &carrizo_device_info }, /* Carrizo */
273 { 0x9874, &carrizo_device_info }, /* Carrizo */
274 { 0x9875, &carrizo_device_info }, /* Carrizo */
275 { 0x9876, &carrizo_device_info }, /* Carrizo */
276 { 0x9877, &carrizo_device_info }, /* Carrizo */
277 { 0x15DD, &raven_device_info }, /* Raven */
278 #endif
279 { 0x67A0, &hawaii_device_info }, /* Hawaii */
280 { 0x67A1, &hawaii_device_info }, /* Hawaii */
281 { 0x67A2, &hawaii_device_info }, /* Hawaii */
282 { 0x67A8, &hawaii_device_info }, /* Hawaii */
283 { 0x67A9, &hawaii_device_info }, /* Hawaii */
284 { 0x67AA, &hawaii_device_info }, /* Hawaii */
285 { 0x67B0, &hawaii_device_info }, /* Hawaii */
286 { 0x67B1, &hawaii_device_info }, /* Hawaii */
287 { 0x67B8, &hawaii_device_info }, /* Hawaii */
288 { 0x67B9, &hawaii_device_info }, /* Hawaii */
289 { 0x67BA, &hawaii_device_info }, /* Hawaii */
290 { 0x67BE, &hawaii_device_info }, /* Hawaii */
291 { 0x6920, &tonga_device_info }, /* Tonga */
292 { 0x6921, &tonga_device_info }, /* Tonga */
293 { 0x6928, &tonga_device_info }, /* Tonga */
294 { 0x6929, &tonga_device_info }, /* Tonga */
295 { 0x692B, &tonga_device_info }, /* Tonga */
296 { 0x692F, &tonga_vf_device_info }, /* Tonga vf */
297 { 0x6938, &tonga_device_info }, /* Tonga */
298 { 0x6939, &tonga_device_info }, /* Tonga */
299 { 0x7300, &fiji_device_info }, /* Fiji */
300 { 0x730F, &fiji_vf_device_info }, /* Fiji vf*/
301 { 0x67C0, &polaris10_device_info }, /* Polaris10 */
302 { 0x67C1, &polaris10_device_info }, /* Polaris10 */
303 { 0x67C2, &polaris10_device_info }, /* Polaris10 */
304 { 0x67C4, &polaris10_device_info }, /* Polaris10 */
305 { 0x67C7, &polaris10_device_info }, /* Polaris10 */
306 { 0x67C8, &polaris10_device_info }, /* Polaris10 */
307 { 0x67C9, &polaris10_device_info }, /* Polaris10 */
308 { 0x67CA, &polaris10_device_info }, /* Polaris10 */
309 { 0x67CC, &polaris10_device_info }, /* Polaris10 */
310 { 0x67CF, &polaris10_device_info }, /* Polaris10 */
311 { 0x67D0, &polaris10_vf_device_info }, /* Polaris10 vf*/
312 { 0x67DF, &polaris10_device_info }, /* Polaris10 */
313 { 0x67E0, &polaris11_device_info }, /* Polaris11 */
314 { 0x67E1, &polaris11_device_info }, /* Polaris11 */
315 { 0x67E3, &polaris11_device_info }, /* Polaris11 */
316 { 0x67E7, &polaris11_device_info }, /* Polaris11 */
317 { 0x67E8, &polaris11_device_info }, /* Polaris11 */
318 { 0x67E9, &polaris11_device_info }, /* Polaris11 */
319 { 0x67EB, &polaris11_device_info }, /* Polaris11 */
320 { 0x67EF, &polaris11_device_info }, /* Polaris11 */
321 { 0x67FF, &polaris11_device_info }, /* Polaris11 */
322 { 0x6860, &vega10_device_info }, /* Vega10 */
323 { 0x6861, &vega10_device_info }, /* Vega10 */
324 { 0x6862, &vega10_device_info }, /* Vega10 */
325 { 0x6863, &vega10_device_info }, /* Vega10 */
326 { 0x6864, &vega10_device_info }, /* Vega10 */
327 { 0x6867, &vega10_device_info }, /* Vega10 */
328 { 0x6868, &vega10_device_info }, /* Vega10 */
329 { 0x686C, &vega10_vf_device_info }, /* Vega10 vf*/
330 { 0x687F, &vega10_device_info }, /* Vega10 */
331 };
332
333 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
334 unsigned int chunk_size);
335 static void kfd_gtt_sa_fini(struct kfd_dev *kfd);
336
337 static int kfd_resume(struct kfd_dev *kfd);
338
lookup_device_info(unsigned short did)339 static const struct kfd_device_info *lookup_device_info(unsigned short did)
340 {
341 size_t i;
342
343 for (i = 0; i < ARRAY_SIZE(supported_devices); i++) {
344 if (supported_devices[i].did == did) {
345 WARN_ON(!supported_devices[i].device_info);
346 return supported_devices[i].device_info;
347 }
348 }
349
350 dev_warn(kfd_device, "DID %04x is missing in supported_devices\n",
351 did);
352
353 return NULL;
354 }
355
kgd2kfd_probe(struct kgd_dev * kgd,struct pci_dev * pdev,const struct kfd2kgd_calls * f2g)356 struct kfd_dev *kgd2kfd_probe(struct kgd_dev *kgd,
357 struct pci_dev *pdev, const struct kfd2kgd_calls *f2g)
358 {
359 struct kfd_dev *kfd;
360 int ret;
361 const struct kfd_device_info *device_info =
362 lookup_device_info(pdev->device);
363
364 if (!device_info) {
365 dev_err(kfd_device, "kgd2kfd_probe failed\n");
366 return NULL;
367 }
368
369 /* Allow BIF to recode atomics to PCIe 3.0 AtomicOps.
370 * 32 and 64-bit requests are possible and must be
371 * supported.
372 */
373 ret = pci_enable_atomic_ops_to_root(pdev,
374 PCI_EXP_DEVCAP2_ATOMIC_COMP32 |
375 PCI_EXP_DEVCAP2_ATOMIC_COMP64);
376 if (device_info->needs_pci_atomics && ret < 0) {
377 dev_info(kfd_device,
378 "skipped device %x:%x, PCI rejects atomics\n",
379 pdev->vendor, pdev->device);
380 return NULL;
381 }
382
383 kfd = kzalloc(sizeof(*kfd), GFP_KERNEL);
384 if (!kfd)
385 return NULL;
386
387 kfd->kgd = kgd;
388 kfd->device_info = device_info;
389 kfd->pdev = pdev;
390 kfd->init_complete = false;
391 kfd->kfd2kgd = f2g;
392
393 mutex_init(&kfd->doorbell_mutex);
394 memset(&kfd->doorbell_available_index, 0,
395 sizeof(kfd->doorbell_available_index));
396
397 return kfd;
398 }
399
kfd_cwsr_init(struct kfd_dev * kfd)400 static void kfd_cwsr_init(struct kfd_dev *kfd)
401 {
402 if (cwsr_enable && kfd->device_info->supports_cwsr) {
403 if (kfd->device_info->asic_family < CHIP_VEGA10) {
404 BUILD_BUG_ON(sizeof(cwsr_trap_gfx8_hex) > PAGE_SIZE);
405 kfd->cwsr_isa = cwsr_trap_gfx8_hex;
406 kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx8_hex);
407 } else {
408 BUILD_BUG_ON(sizeof(cwsr_trap_gfx9_hex) > PAGE_SIZE);
409 kfd->cwsr_isa = cwsr_trap_gfx9_hex;
410 kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx9_hex);
411 }
412
413 kfd->cwsr_enabled = true;
414 }
415 }
416
kgd2kfd_device_init(struct kfd_dev * kfd,const struct kgd2kfd_shared_resources * gpu_resources)417 bool kgd2kfd_device_init(struct kfd_dev *kfd,
418 const struct kgd2kfd_shared_resources *gpu_resources)
419 {
420 unsigned int size;
421
422 kfd->shared_resources = *gpu_resources;
423
424 kfd->vm_info.first_vmid_kfd = ffs(gpu_resources->compute_vmid_bitmap)-1;
425 kfd->vm_info.last_vmid_kfd = fls(gpu_resources->compute_vmid_bitmap)-1;
426 kfd->vm_info.vmid_num_kfd = kfd->vm_info.last_vmid_kfd
427 - kfd->vm_info.first_vmid_kfd + 1;
428
429 /* Verify module parameters regarding mapped process number*/
430 if ((hws_max_conc_proc < 0)
431 || (hws_max_conc_proc > kfd->vm_info.vmid_num_kfd)) {
432 dev_err(kfd_device,
433 "hws_max_conc_proc %d must be between 0 and %d, use %d instead\n",
434 hws_max_conc_proc, kfd->vm_info.vmid_num_kfd,
435 kfd->vm_info.vmid_num_kfd);
436 kfd->max_proc_per_quantum = kfd->vm_info.vmid_num_kfd;
437 } else
438 kfd->max_proc_per_quantum = hws_max_conc_proc;
439
440 /* calculate max size of mqds needed for queues */
441 size = max_num_of_queues_per_device *
442 kfd->device_info->mqd_size_aligned;
443
444 /*
445 * calculate max size of runlist packet.
446 * There can be only 2 packets at once
447 */
448 size += (KFD_MAX_NUM_OF_PROCESSES * sizeof(struct pm4_mes_map_process) +
449 max_num_of_queues_per_device * sizeof(struct pm4_mes_map_queues)
450 + sizeof(struct pm4_mes_runlist)) * 2;
451
452 /* Add size of HIQ & DIQ */
453 size += KFD_KERNEL_QUEUE_SIZE * 2;
454
455 /* add another 512KB for all other allocations on gart (HPD, fences) */
456 size += 512 * 1024;
457
458 if (kfd->kfd2kgd->init_gtt_mem_allocation(
459 kfd->kgd, size, &kfd->gtt_mem,
460 &kfd->gtt_start_gpu_addr, &kfd->gtt_start_cpu_ptr,
461 false)) {
462 dev_err(kfd_device, "Could not allocate %d bytes\n", size);
463 goto out;
464 }
465
466 dev_info(kfd_device, "Allocated %d bytes on gart\n", size);
467
468 /* Initialize GTT sa with 512 byte chunk size */
469 if (kfd_gtt_sa_init(kfd, size, 512) != 0) {
470 dev_err(kfd_device, "Error initializing gtt sub-allocator\n");
471 goto kfd_gtt_sa_init_error;
472 }
473
474 if (kfd_doorbell_init(kfd)) {
475 dev_err(kfd_device,
476 "Error initializing doorbell aperture\n");
477 goto kfd_doorbell_error;
478 }
479
480 if (kfd_topology_add_device(kfd)) {
481 dev_err(kfd_device, "Error adding device to topology\n");
482 goto kfd_topology_add_device_error;
483 }
484
485 if (kfd_interrupt_init(kfd)) {
486 dev_err(kfd_device, "Error initializing interrupts\n");
487 goto kfd_interrupt_error;
488 }
489
490 kfd->dqm = device_queue_manager_init(kfd);
491 if (!kfd->dqm) {
492 dev_err(kfd_device, "Error initializing queue manager\n");
493 goto device_queue_manager_error;
494 }
495
496 if (kfd_iommu_device_init(kfd)) {
497 dev_err(kfd_device, "Error initializing iommuv2\n");
498 goto device_iommu_error;
499 }
500
501 kfd_cwsr_init(kfd);
502
503 if (kfd_resume(kfd))
504 goto kfd_resume_error;
505
506 kfd->dbgmgr = NULL;
507
508 kfd->init_complete = true;
509 dev_info(kfd_device, "added device %x:%x\n", kfd->pdev->vendor,
510 kfd->pdev->device);
511
512 pr_debug("Starting kfd with the following scheduling policy %d\n",
513 kfd->dqm->sched_policy);
514
515 goto out;
516
517 kfd_resume_error:
518 device_iommu_error:
519 device_queue_manager_uninit(kfd->dqm);
520 device_queue_manager_error:
521 kfd_interrupt_exit(kfd);
522 kfd_interrupt_error:
523 kfd_topology_remove_device(kfd);
524 kfd_topology_add_device_error:
525 kfd_doorbell_fini(kfd);
526 kfd_doorbell_error:
527 kfd_gtt_sa_fini(kfd);
528 kfd_gtt_sa_init_error:
529 kfd->kfd2kgd->free_gtt_mem(kfd->kgd, kfd->gtt_mem);
530 dev_err(kfd_device,
531 "device %x:%x NOT added due to errors\n",
532 kfd->pdev->vendor, kfd->pdev->device);
533 out:
534 return kfd->init_complete;
535 }
536
kgd2kfd_device_exit(struct kfd_dev * kfd)537 void kgd2kfd_device_exit(struct kfd_dev *kfd)
538 {
539 if (kfd->init_complete) {
540 kgd2kfd_suspend(kfd);
541 device_queue_manager_uninit(kfd->dqm);
542 kfd_interrupt_exit(kfd);
543 kfd_topology_remove_device(kfd);
544 kfd_doorbell_fini(kfd);
545 kfd_gtt_sa_fini(kfd);
546 kfd->kfd2kgd->free_gtt_mem(kfd->kgd, kfd->gtt_mem);
547 }
548
549 kfree(kfd);
550 }
551
kgd2kfd_pre_reset(struct kfd_dev * kfd)552 int kgd2kfd_pre_reset(struct kfd_dev *kfd)
553 {
554 if (!kfd->init_complete)
555 return 0;
556 kgd2kfd_suspend(kfd);
557
558 /* hold dqm->lock to prevent further execution*/
559 dqm_lock(kfd->dqm);
560
561 kfd_signal_reset_event(kfd);
562 return 0;
563 }
564
565 /*
566 * Fix me. KFD won't be able to resume existing process for now.
567 * We will keep all existing process in a evicted state and
568 * wait the process to be terminated.
569 */
570
kgd2kfd_post_reset(struct kfd_dev * kfd)571 int kgd2kfd_post_reset(struct kfd_dev *kfd)
572 {
573 int ret, count;
574
575 if (!kfd->init_complete)
576 return 0;
577
578 dqm_unlock(kfd->dqm);
579
580 ret = kfd_resume(kfd);
581 if (ret)
582 return ret;
583 count = atomic_dec_return(&kfd_locked);
584 WARN_ONCE(count != 0, "KFD reset ref. error");
585 return 0;
586 }
587
kfd_is_locked(void)588 bool kfd_is_locked(void)
589 {
590 return (atomic_read(&kfd_locked) > 0);
591 }
592
kgd2kfd_suspend(struct kfd_dev * kfd)593 void kgd2kfd_suspend(struct kfd_dev *kfd)
594 {
595 if (!kfd->init_complete)
596 return;
597
598 /* For first KFD device suspend all the KFD processes */
599 if (atomic_inc_return(&kfd_locked) == 1)
600 kfd_suspend_all_processes();
601
602 kfd->dqm->ops.stop(kfd->dqm);
603
604 kfd_iommu_suspend(kfd);
605 }
606
kgd2kfd_resume(struct kfd_dev * kfd)607 int kgd2kfd_resume(struct kfd_dev *kfd)
608 {
609 int ret, count;
610
611 if (!kfd->init_complete)
612 return 0;
613
614 ret = kfd_resume(kfd);
615 if (ret)
616 return ret;
617
618 count = atomic_dec_return(&kfd_locked);
619 WARN_ONCE(count < 0, "KFD suspend / resume ref. error");
620 if (count == 0)
621 ret = kfd_resume_all_processes();
622
623 return ret;
624 }
625
kfd_resume(struct kfd_dev * kfd)626 static int kfd_resume(struct kfd_dev *kfd)
627 {
628 int err = 0;
629
630 err = kfd_iommu_resume(kfd);
631 if (err) {
632 dev_err(kfd_device,
633 "Failed to resume IOMMU for device %x:%x\n",
634 kfd->pdev->vendor, kfd->pdev->device);
635 return err;
636 }
637
638 err = kfd->dqm->ops.start(kfd->dqm);
639 if (err) {
640 dev_err(kfd_device,
641 "Error starting queue manager for device %x:%x\n",
642 kfd->pdev->vendor, kfd->pdev->device);
643 goto dqm_start_error;
644 }
645
646 return err;
647
648 dqm_start_error:
649 kfd_iommu_suspend(kfd);
650 return err;
651 }
652
653 /* This is called directly from KGD at ISR. */
kgd2kfd_interrupt(struct kfd_dev * kfd,const void * ih_ring_entry)654 void kgd2kfd_interrupt(struct kfd_dev *kfd, const void *ih_ring_entry)
655 {
656 uint32_t patched_ihre[KFD_MAX_RING_ENTRY_SIZE];
657 bool is_patched = false;
658
659 if (!kfd->init_complete)
660 return;
661
662 if (kfd->device_info->ih_ring_entry_size > sizeof(patched_ihre)) {
663 dev_err_once(kfd_device, "Ring entry too small\n");
664 return;
665 }
666
667 spin_lock(&kfd->interrupt_lock);
668
669 if (kfd->interrupts_active
670 && interrupt_is_wanted(kfd, ih_ring_entry,
671 patched_ihre, &is_patched)
672 && enqueue_ih_ring_entry(kfd,
673 is_patched ? patched_ihre : ih_ring_entry))
674 queue_work(kfd->ih_wq, &kfd->interrupt_work);
675
676 spin_unlock(&kfd->interrupt_lock);
677 }
678
kgd2kfd_quiesce_mm(struct mm_struct * mm)679 int kgd2kfd_quiesce_mm(struct mm_struct *mm)
680 {
681 struct kfd_process *p;
682 int r;
683
684 /* Because we are called from arbitrary context (workqueue) as opposed
685 * to process context, kfd_process could attempt to exit while we are
686 * running so the lookup function increments the process ref count.
687 */
688 p = kfd_lookup_process_by_mm(mm);
689 if (!p)
690 return -ESRCH;
691
692 r = kfd_process_evict_queues(p);
693
694 kfd_unref_process(p);
695 return r;
696 }
697
kgd2kfd_resume_mm(struct mm_struct * mm)698 int kgd2kfd_resume_mm(struct mm_struct *mm)
699 {
700 struct kfd_process *p;
701 int r;
702
703 /* Because we are called from arbitrary context (workqueue) as opposed
704 * to process context, kfd_process could attempt to exit while we are
705 * running so the lookup function increments the process ref count.
706 */
707 p = kfd_lookup_process_by_mm(mm);
708 if (!p)
709 return -ESRCH;
710
711 r = kfd_process_restore_queues(p);
712
713 kfd_unref_process(p);
714 return r;
715 }
716
717 /** kgd2kfd_schedule_evict_and_restore_process - Schedules work queue that will
718 * prepare for safe eviction of KFD BOs that belong to the specified
719 * process.
720 *
721 * @mm: mm_struct that identifies the specified KFD process
722 * @fence: eviction fence attached to KFD process BOs
723 *
724 */
kgd2kfd_schedule_evict_and_restore_process(struct mm_struct * mm,struct dma_fence * fence)725 int kgd2kfd_schedule_evict_and_restore_process(struct mm_struct *mm,
726 struct dma_fence *fence)
727 {
728 struct kfd_process *p;
729 unsigned long active_time;
730 unsigned long delay_jiffies = msecs_to_jiffies(PROCESS_ACTIVE_TIME_MS);
731
732 if (!fence)
733 return -EINVAL;
734
735 if (dma_fence_is_signaled(fence))
736 return 0;
737
738 p = kfd_lookup_process_by_mm(mm);
739 if (!p)
740 return -ENODEV;
741
742 if (fence->seqno == p->last_eviction_seqno)
743 goto out;
744
745 p->last_eviction_seqno = fence->seqno;
746
747 /* Avoid KFD process starvation. Wait for at least
748 * PROCESS_ACTIVE_TIME_MS before evicting the process again
749 */
750 active_time = get_jiffies_64() - p->last_restore_timestamp;
751 if (delay_jiffies > active_time)
752 delay_jiffies -= active_time;
753 else
754 delay_jiffies = 0;
755
756 /* During process initialization eviction_work.dwork is initialized
757 * to kfd_evict_bo_worker
758 */
759 schedule_delayed_work(&p->eviction_work, delay_jiffies);
760 out:
761 kfd_unref_process(p);
762 return 0;
763 }
764
kfd_gtt_sa_init(struct kfd_dev * kfd,unsigned int buf_size,unsigned int chunk_size)765 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
766 unsigned int chunk_size)
767 {
768 unsigned int num_of_longs;
769
770 if (WARN_ON(buf_size < chunk_size))
771 return -EINVAL;
772 if (WARN_ON(buf_size == 0))
773 return -EINVAL;
774 if (WARN_ON(chunk_size == 0))
775 return -EINVAL;
776
777 kfd->gtt_sa_chunk_size = chunk_size;
778 kfd->gtt_sa_num_of_chunks = buf_size / chunk_size;
779
780 num_of_longs = (kfd->gtt_sa_num_of_chunks + BITS_PER_LONG - 1) /
781 BITS_PER_LONG;
782
783 kfd->gtt_sa_bitmap = kcalloc(num_of_longs, sizeof(long), GFP_KERNEL);
784
785 if (!kfd->gtt_sa_bitmap)
786 return -ENOMEM;
787
788 pr_debug("gtt_sa_num_of_chunks = %d, gtt_sa_bitmap = %p\n",
789 kfd->gtt_sa_num_of_chunks, kfd->gtt_sa_bitmap);
790
791 mutex_init(&kfd->gtt_sa_lock);
792
793 return 0;
794
795 }
796
kfd_gtt_sa_fini(struct kfd_dev * kfd)797 static void kfd_gtt_sa_fini(struct kfd_dev *kfd)
798 {
799 mutex_destroy(&kfd->gtt_sa_lock);
800 kfree(kfd->gtt_sa_bitmap);
801 }
802
kfd_gtt_sa_calc_gpu_addr(uint64_t start_addr,unsigned int bit_num,unsigned int chunk_size)803 static inline uint64_t kfd_gtt_sa_calc_gpu_addr(uint64_t start_addr,
804 unsigned int bit_num,
805 unsigned int chunk_size)
806 {
807 return start_addr + bit_num * chunk_size;
808 }
809
kfd_gtt_sa_calc_cpu_addr(void * start_addr,unsigned int bit_num,unsigned int chunk_size)810 static inline uint32_t *kfd_gtt_sa_calc_cpu_addr(void *start_addr,
811 unsigned int bit_num,
812 unsigned int chunk_size)
813 {
814 return (uint32_t *) ((uint64_t) start_addr + bit_num * chunk_size);
815 }
816
kfd_gtt_sa_allocate(struct kfd_dev * kfd,unsigned int size,struct kfd_mem_obj ** mem_obj)817 int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size,
818 struct kfd_mem_obj **mem_obj)
819 {
820 unsigned int found, start_search, cur_size;
821
822 if (size == 0)
823 return -EINVAL;
824
825 if (size > kfd->gtt_sa_num_of_chunks * kfd->gtt_sa_chunk_size)
826 return -ENOMEM;
827
828 *mem_obj = kzalloc(sizeof(struct kfd_mem_obj), GFP_KERNEL);
829 if (!(*mem_obj))
830 return -ENOMEM;
831
832 pr_debug("Allocated mem_obj = %p for size = %d\n", *mem_obj, size);
833
834 start_search = 0;
835
836 mutex_lock(&kfd->gtt_sa_lock);
837
838 kfd_gtt_restart_search:
839 /* Find the first chunk that is free */
840 found = find_next_zero_bit(kfd->gtt_sa_bitmap,
841 kfd->gtt_sa_num_of_chunks,
842 start_search);
843
844 pr_debug("Found = %d\n", found);
845
846 /* If there wasn't any free chunk, bail out */
847 if (found == kfd->gtt_sa_num_of_chunks)
848 goto kfd_gtt_no_free_chunk;
849
850 /* Update fields of mem_obj */
851 (*mem_obj)->range_start = found;
852 (*mem_obj)->range_end = found;
853 (*mem_obj)->gpu_addr = kfd_gtt_sa_calc_gpu_addr(
854 kfd->gtt_start_gpu_addr,
855 found,
856 kfd->gtt_sa_chunk_size);
857 (*mem_obj)->cpu_ptr = kfd_gtt_sa_calc_cpu_addr(
858 kfd->gtt_start_cpu_ptr,
859 found,
860 kfd->gtt_sa_chunk_size);
861
862 pr_debug("gpu_addr = %p, cpu_addr = %p\n",
863 (uint64_t *) (*mem_obj)->gpu_addr, (*mem_obj)->cpu_ptr);
864
865 /* If we need only one chunk, mark it as allocated and get out */
866 if (size <= kfd->gtt_sa_chunk_size) {
867 pr_debug("Single bit\n");
868 set_bit(found, kfd->gtt_sa_bitmap);
869 goto kfd_gtt_out;
870 }
871
872 /* Otherwise, try to see if we have enough contiguous chunks */
873 cur_size = size - kfd->gtt_sa_chunk_size;
874 do {
875 (*mem_obj)->range_end =
876 find_next_zero_bit(kfd->gtt_sa_bitmap,
877 kfd->gtt_sa_num_of_chunks, ++found);
878 /*
879 * If next free chunk is not contiguous than we need to
880 * restart our search from the last free chunk we found (which
881 * wasn't contiguous to the previous ones
882 */
883 if ((*mem_obj)->range_end != found) {
884 start_search = found;
885 goto kfd_gtt_restart_search;
886 }
887
888 /*
889 * If we reached end of buffer, bail out with error
890 */
891 if (found == kfd->gtt_sa_num_of_chunks)
892 goto kfd_gtt_no_free_chunk;
893
894 /* Check if we don't need another chunk */
895 if (cur_size <= kfd->gtt_sa_chunk_size)
896 cur_size = 0;
897 else
898 cur_size -= kfd->gtt_sa_chunk_size;
899
900 } while (cur_size > 0);
901
902 pr_debug("range_start = %d, range_end = %d\n",
903 (*mem_obj)->range_start, (*mem_obj)->range_end);
904
905 /* Mark the chunks as allocated */
906 for (found = (*mem_obj)->range_start;
907 found <= (*mem_obj)->range_end;
908 found++)
909 set_bit(found, kfd->gtt_sa_bitmap);
910
911 kfd_gtt_out:
912 mutex_unlock(&kfd->gtt_sa_lock);
913 return 0;
914
915 kfd_gtt_no_free_chunk:
916 pr_debug("Allocation failed with mem_obj = %p\n", mem_obj);
917 mutex_unlock(&kfd->gtt_sa_lock);
918 kfree(mem_obj);
919 return -ENOMEM;
920 }
921
kfd_gtt_sa_free(struct kfd_dev * kfd,struct kfd_mem_obj * mem_obj)922 int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj)
923 {
924 unsigned int bit;
925
926 /* Act like kfree when trying to free a NULL object */
927 if (!mem_obj)
928 return 0;
929
930 pr_debug("Free mem_obj = %p, range_start = %d, range_end = %d\n",
931 mem_obj, mem_obj->range_start, mem_obj->range_end);
932
933 mutex_lock(&kfd->gtt_sa_lock);
934
935 /* Mark the chunks as free */
936 for (bit = mem_obj->range_start;
937 bit <= mem_obj->range_end;
938 bit++)
939 clear_bit(bit, kfd->gtt_sa_bitmap);
940
941 mutex_unlock(&kfd->gtt_sa_lock);
942
943 kfree(mem_obj);
944 return 0;
945 }
946
947 #if defined(CONFIG_DEBUG_FS)
948
949 /* This function will send a package to HIQ to hang the HWS
950 * which will trigger a GPU reset and bring the HWS back to normal state
951 */
kfd_debugfs_hang_hws(struct kfd_dev * dev)952 int kfd_debugfs_hang_hws(struct kfd_dev *dev)
953 {
954 int r = 0;
955
956 if (dev->dqm->sched_policy != KFD_SCHED_POLICY_HWS) {
957 pr_err("HWS is not enabled");
958 return -EINVAL;
959 }
960
961 r = pm_debugfs_hang_hws(&dev->dqm->packets);
962 if (!r)
963 r = dqm_debugfs_execute_queues(dev->dqm);
964
965 return r;
966 }
967
968 #endif
969