1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3 * Copyright 2014-2022 Advanced Micro Devices, Inc.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice shall be included in
13 * all copies or substantial portions of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21 * OTHER DEALINGS IN THE SOFTWARE.
22 */
23
24 #include <linux/mutex.h>
25 #include <linux/log2.h>
26 #include <linux/sched.h>
27 #include <linux/sched/mm.h>
28 #include <linux/sched/task.h>
29 #include <linux/mmu_context.h>
30 #include <linux/slab.h>
31 #include <linux/amd-iommu.h>
32 #include <linux/notifier.h>
33 #include <linux/compat.h>
34 #include <linux/mman.h>
35 #include <linux/file.h>
36 #include <linux/pm_runtime.h>
37 #include "amdgpu_amdkfd.h"
38 #include "amdgpu.h"
39
40 struct mm_struct;
41
42 #include "kfd_priv.h"
43 #include "kfd_device_queue_manager.h"
44 #include "kfd_iommu.h"
45 #include "kfd_svm.h"
46 #include "kfd_smi_events.h"
47
48 /*
49 * List of struct kfd_process (field kfd_process).
50 * Unique/indexed by mm_struct*
51 */
52 DEFINE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE);
53 static DEFINE_MUTEX(kfd_processes_mutex);
54
55 DEFINE_SRCU(kfd_processes_srcu);
56
57 /* For process termination handling */
58 static struct workqueue_struct *kfd_process_wq;
59
60 /* Ordered, single-threaded workqueue for restoring evicted
61 * processes. Restoring multiple processes concurrently under memory
62 * pressure can lead to processes blocking each other from validating
63 * their BOs and result in a live-lock situation where processes
64 * remain evicted indefinitely.
65 */
66 static struct workqueue_struct *kfd_restore_wq;
67
68 static struct kfd_process *find_process(const struct task_struct *thread,
69 bool ref);
70 static void kfd_process_ref_release(struct kref *ref);
71 static struct kfd_process *create_process(const struct task_struct *thread);
72 static int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep);
73
74 static void evict_process_worker(struct work_struct *work);
75 static void restore_process_worker(struct work_struct *work);
76
77 static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd);
78
79 struct kfd_procfs_tree {
80 struct kobject *kobj;
81 };
82
83 static struct kfd_procfs_tree procfs;
84
85 /*
86 * Structure for SDMA activity tracking
87 */
88 struct kfd_sdma_activity_handler_workarea {
89 struct work_struct sdma_activity_work;
90 struct kfd_process_device *pdd;
91 uint64_t sdma_activity_counter;
92 };
93
94 struct temp_sdma_queue_list {
95 uint64_t __user *rptr;
96 uint64_t sdma_val;
97 unsigned int queue_id;
98 struct list_head list;
99 };
100
kfd_sdma_activity_worker(struct work_struct * work)101 static void kfd_sdma_activity_worker(struct work_struct *work)
102 {
103 struct kfd_sdma_activity_handler_workarea *workarea;
104 struct kfd_process_device *pdd;
105 uint64_t val;
106 struct mm_struct *mm;
107 struct queue *q;
108 struct qcm_process_device *qpd;
109 struct device_queue_manager *dqm;
110 int ret = 0;
111 struct temp_sdma_queue_list sdma_q_list;
112 struct temp_sdma_queue_list *sdma_q, *next;
113
114 workarea = container_of(work, struct kfd_sdma_activity_handler_workarea,
115 sdma_activity_work);
116
117 pdd = workarea->pdd;
118 if (!pdd)
119 return;
120 dqm = pdd->dev->dqm;
121 qpd = &pdd->qpd;
122 if (!dqm || !qpd)
123 return;
124 /*
125 * Total SDMA activity is current SDMA activity + past SDMA activity
126 * Past SDMA count is stored in pdd.
127 * To get the current activity counters for all active SDMA queues,
128 * we loop over all SDMA queues and get their counts from user-space.
129 *
130 * We cannot call get_user() with dqm_lock held as it can cause
131 * a circular lock dependency situation. To read the SDMA stats,
132 * we need to do the following:
133 *
134 * 1. Create a temporary list of SDMA queue nodes from the qpd->queues_list,
135 * with dqm_lock/dqm_unlock().
136 * 2. Call get_user() for each node in temporary list without dqm_lock.
137 * Save the SDMA count for each node and also add the count to the total
138 * SDMA count counter.
139 * Its possible, during this step, a few SDMA queue nodes got deleted
140 * from the qpd->queues_list.
141 * 3. Do a second pass over qpd->queues_list to check if any nodes got deleted.
142 * If any node got deleted, its SDMA count would be captured in the sdma
143 * past activity counter. So subtract the SDMA counter stored in step 2
144 * for this node from the total SDMA count.
145 */
146 INIT_LIST_HEAD(&sdma_q_list.list);
147
148 /*
149 * Create the temp list of all SDMA queues
150 */
151 dqm_lock(dqm);
152
153 list_for_each_entry(q, &qpd->queues_list, list) {
154 if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
155 (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
156 continue;
157
158 sdma_q = kzalloc(sizeof(struct temp_sdma_queue_list), GFP_KERNEL);
159 if (!sdma_q) {
160 dqm_unlock(dqm);
161 goto cleanup;
162 }
163
164 INIT_LIST_HEAD(&sdma_q->list);
165 sdma_q->rptr = (uint64_t __user *)q->properties.read_ptr;
166 sdma_q->queue_id = q->properties.queue_id;
167 list_add_tail(&sdma_q->list, &sdma_q_list.list);
168 }
169
170 /*
171 * If the temp list is empty, then no SDMA queues nodes were found in
172 * qpd->queues_list. Return the past activity count as the total sdma
173 * count
174 */
175 if (list_empty(&sdma_q_list.list)) {
176 workarea->sdma_activity_counter = pdd->sdma_past_activity_counter;
177 dqm_unlock(dqm);
178 return;
179 }
180
181 dqm_unlock(dqm);
182
183 /*
184 * Get the usage count for each SDMA queue in temp_list.
185 */
186 mm = get_task_mm(pdd->process->lead_thread);
187 if (!mm)
188 goto cleanup;
189
190 kthread_use_mm(mm);
191
192 list_for_each_entry(sdma_q, &sdma_q_list.list, list) {
193 val = 0;
194 ret = read_sdma_queue_counter(sdma_q->rptr, &val);
195 if (ret) {
196 pr_debug("Failed to read SDMA queue active counter for queue id: %d",
197 sdma_q->queue_id);
198 } else {
199 sdma_q->sdma_val = val;
200 workarea->sdma_activity_counter += val;
201 }
202 }
203
204 kthread_unuse_mm(mm);
205 mmput(mm);
206
207 /*
208 * Do a second iteration over qpd_queues_list to check if any SDMA
209 * nodes got deleted while fetching SDMA counter.
210 */
211 dqm_lock(dqm);
212
213 workarea->sdma_activity_counter += pdd->sdma_past_activity_counter;
214
215 list_for_each_entry(q, &qpd->queues_list, list) {
216 if (list_empty(&sdma_q_list.list))
217 break;
218
219 if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
220 (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
221 continue;
222
223 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
224 if (((uint64_t __user *)q->properties.read_ptr == sdma_q->rptr) &&
225 (sdma_q->queue_id == q->properties.queue_id)) {
226 list_del(&sdma_q->list);
227 kfree(sdma_q);
228 break;
229 }
230 }
231 }
232
233 dqm_unlock(dqm);
234
235 /*
236 * If temp list is not empty, it implies some queues got deleted
237 * from qpd->queues_list during SDMA usage read. Subtract the SDMA
238 * count for each node from the total SDMA count.
239 */
240 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
241 workarea->sdma_activity_counter -= sdma_q->sdma_val;
242 list_del(&sdma_q->list);
243 kfree(sdma_q);
244 }
245
246 return;
247
248 cleanup:
249 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
250 list_del(&sdma_q->list);
251 kfree(sdma_q);
252 }
253 }
254
255 /**
256 * kfd_get_cu_occupancy - Collect number of waves in-flight on this device
257 * by current process. Translates acquired wave count into number of compute units
258 * that are occupied.
259 *
260 * @attr: Handle of attribute that allows reporting of wave count. The attribute
261 * handle encapsulates GPU device it is associated with, thereby allowing collection
262 * of waves in flight, etc
263 * @buffer: Handle of user provided buffer updated with wave count
264 *
265 * Return: Number of bytes written to user buffer or an error value
266 */
kfd_get_cu_occupancy(struct attribute * attr,char * buffer)267 static int kfd_get_cu_occupancy(struct attribute *attr, char *buffer)
268 {
269 int cu_cnt;
270 int wave_cnt;
271 int max_waves_per_cu;
272 struct kfd_dev *dev = NULL;
273 struct kfd_process *proc = NULL;
274 struct kfd_process_device *pdd = NULL;
275
276 pdd = container_of(attr, struct kfd_process_device, attr_cu_occupancy);
277 dev = pdd->dev;
278 if (dev->kfd2kgd->get_cu_occupancy == NULL)
279 return -EINVAL;
280
281 cu_cnt = 0;
282 proc = pdd->process;
283 if (pdd->qpd.queue_count == 0) {
284 pr_debug("Gpu-Id: %d has no active queues for process %d\n",
285 dev->id, proc->pasid);
286 return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
287 }
288
289 /* Collect wave count from device if it supports */
290 wave_cnt = 0;
291 max_waves_per_cu = 0;
292 dev->kfd2kgd->get_cu_occupancy(dev->adev, proc->pasid, &wave_cnt,
293 &max_waves_per_cu);
294
295 /* Translate wave count to number of compute units */
296 cu_cnt = (wave_cnt + (max_waves_per_cu - 1)) / max_waves_per_cu;
297 return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
298 }
299
kfd_procfs_show(struct kobject * kobj,struct attribute * attr,char * buffer)300 static ssize_t kfd_procfs_show(struct kobject *kobj, struct attribute *attr,
301 char *buffer)
302 {
303 if (strcmp(attr->name, "pasid") == 0) {
304 struct kfd_process *p = container_of(attr, struct kfd_process,
305 attr_pasid);
306
307 return snprintf(buffer, PAGE_SIZE, "%d\n", p->pasid);
308 } else if (strncmp(attr->name, "vram_", 5) == 0) {
309 struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
310 attr_vram);
311 return snprintf(buffer, PAGE_SIZE, "%llu\n", READ_ONCE(pdd->vram_usage));
312 } else if (strncmp(attr->name, "sdma_", 5) == 0) {
313 struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
314 attr_sdma);
315 struct kfd_sdma_activity_handler_workarea sdma_activity_work_handler;
316
317 INIT_WORK(&sdma_activity_work_handler.sdma_activity_work,
318 kfd_sdma_activity_worker);
319
320 sdma_activity_work_handler.pdd = pdd;
321 sdma_activity_work_handler.sdma_activity_counter = 0;
322
323 schedule_work(&sdma_activity_work_handler.sdma_activity_work);
324
325 flush_work(&sdma_activity_work_handler.sdma_activity_work);
326
327 return snprintf(buffer, PAGE_SIZE, "%llu\n",
328 (sdma_activity_work_handler.sdma_activity_counter)/
329 SDMA_ACTIVITY_DIVISOR);
330 } else {
331 pr_err("Invalid attribute");
332 return -EINVAL;
333 }
334
335 return 0;
336 }
337
kfd_procfs_kobj_release(struct kobject * kobj)338 static void kfd_procfs_kobj_release(struct kobject *kobj)
339 {
340 kfree(kobj);
341 }
342
343 static const struct sysfs_ops kfd_procfs_ops = {
344 .show = kfd_procfs_show,
345 };
346
347 static struct kobj_type procfs_type = {
348 .release = kfd_procfs_kobj_release,
349 .sysfs_ops = &kfd_procfs_ops,
350 };
351
kfd_procfs_init(void)352 void kfd_procfs_init(void)
353 {
354 int ret = 0;
355
356 procfs.kobj = kfd_alloc_struct(procfs.kobj);
357 if (!procfs.kobj)
358 return;
359
360 ret = kobject_init_and_add(procfs.kobj, &procfs_type,
361 &kfd_device->kobj, "proc");
362 if (ret) {
363 pr_warn("Could not create procfs proc folder");
364 /* If we fail to create the procfs, clean up */
365 kfd_procfs_shutdown();
366 }
367 }
368
kfd_procfs_shutdown(void)369 void kfd_procfs_shutdown(void)
370 {
371 if (procfs.kobj) {
372 kobject_del(procfs.kobj);
373 kobject_put(procfs.kobj);
374 procfs.kobj = NULL;
375 }
376 }
377
kfd_procfs_queue_show(struct kobject * kobj,struct attribute * attr,char * buffer)378 static ssize_t kfd_procfs_queue_show(struct kobject *kobj,
379 struct attribute *attr, char *buffer)
380 {
381 struct queue *q = container_of(kobj, struct queue, kobj);
382
383 if (!strcmp(attr->name, "size"))
384 return snprintf(buffer, PAGE_SIZE, "%llu",
385 q->properties.queue_size);
386 else if (!strcmp(attr->name, "type"))
387 return snprintf(buffer, PAGE_SIZE, "%d", q->properties.type);
388 else if (!strcmp(attr->name, "gpuid"))
389 return snprintf(buffer, PAGE_SIZE, "%u", q->device->id);
390 else
391 pr_err("Invalid attribute");
392
393 return 0;
394 }
395
kfd_procfs_stats_show(struct kobject * kobj,struct attribute * attr,char * buffer)396 static ssize_t kfd_procfs_stats_show(struct kobject *kobj,
397 struct attribute *attr, char *buffer)
398 {
399 if (strcmp(attr->name, "evicted_ms") == 0) {
400 struct kfd_process_device *pdd = container_of(attr,
401 struct kfd_process_device,
402 attr_evict);
403 uint64_t evict_jiffies;
404
405 evict_jiffies = atomic64_read(&pdd->evict_duration_counter);
406
407 return snprintf(buffer,
408 PAGE_SIZE,
409 "%llu\n",
410 jiffies64_to_msecs(evict_jiffies));
411
412 /* Sysfs handle that gets CU occupancy is per device */
413 } else if (strcmp(attr->name, "cu_occupancy") == 0) {
414 return kfd_get_cu_occupancy(attr, buffer);
415 } else {
416 pr_err("Invalid attribute");
417 }
418
419 return 0;
420 }
421
kfd_sysfs_counters_show(struct kobject * kobj,struct attribute * attr,char * buf)422 static ssize_t kfd_sysfs_counters_show(struct kobject *kobj,
423 struct attribute *attr, char *buf)
424 {
425 struct kfd_process_device *pdd;
426
427 if (!strcmp(attr->name, "faults")) {
428 pdd = container_of(attr, struct kfd_process_device,
429 attr_faults);
430 return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->faults));
431 }
432 if (!strcmp(attr->name, "page_in")) {
433 pdd = container_of(attr, struct kfd_process_device,
434 attr_page_in);
435 return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_in));
436 }
437 if (!strcmp(attr->name, "page_out")) {
438 pdd = container_of(attr, struct kfd_process_device,
439 attr_page_out);
440 return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_out));
441 }
442 return 0;
443 }
444
445 static struct attribute attr_queue_size = {
446 .name = "size",
447 .mode = KFD_SYSFS_FILE_MODE
448 };
449
450 static struct attribute attr_queue_type = {
451 .name = "type",
452 .mode = KFD_SYSFS_FILE_MODE
453 };
454
455 static struct attribute attr_queue_gpuid = {
456 .name = "gpuid",
457 .mode = KFD_SYSFS_FILE_MODE
458 };
459
460 static struct attribute *procfs_queue_attrs[] = {
461 &attr_queue_size,
462 &attr_queue_type,
463 &attr_queue_gpuid,
464 NULL
465 };
466 ATTRIBUTE_GROUPS(procfs_queue);
467
468 static const struct sysfs_ops procfs_queue_ops = {
469 .show = kfd_procfs_queue_show,
470 };
471
472 static struct kobj_type procfs_queue_type = {
473 .sysfs_ops = &procfs_queue_ops,
474 .default_groups = procfs_queue_groups,
475 };
476
477 static const struct sysfs_ops procfs_stats_ops = {
478 .show = kfd_procfs_stats_show,
479 };
480
481 static struct kobj_type procfs_stats_type = {
482 .sysfs_ops = &procfs_stats_ops,
483 .release = kfd_procfs_kobj_release,
484 };
485
486 static const struct sysfs_ops sysfs_counters_ops = {
487 .show = kfd_sysfs_counters_show,
488 };
489
490 static struct kobj_type sysfs_counters_type = {
491 .sysfs_ops = &sysfs_counters_ops,
492 .release = kfd_procfs_kobj_release,
493 };
494
kfd_procfs_add_queue(struct queue * q)495 int kfd_procfs_add_queue(struct queue *q)
496 {
497 struct kfd_process *proc;
498 int ret;
499
500 if (!q || !q->process)
501 return -EINVAL;
502 proc = q->process;
503
504 /* Create proc/<pid>/queues/<queue id> folder */
505 if (!proc->kobj_queues)
506 return -EFAULT;
507 ret = kobject_init_and_add(&q->kobj, &procfs_queue_type,
508 proc->kobj_queues, "%u", q->properties.queue_id);
509 if (ret < 0) {
510 pr_warn("Creating proc/<pid>/queues/%u failed",
511 q->properties.queue_id);
512 kobject_put(&q->kobj);
513 return ret;
514 }
515
516 return 0;
517 }
518
kfd_sysfs_create_file(struct kobject * kobj,struct attribute * attr,char * name)519 static void kfd_sysfs_create_file(struct kobject *kobj, struct attribute *attr,
520 char *name)
521 {
522 int ret;
523
524 if (!kobj || !attr || !name)
525 return;
526
527 attr->name = name;
528 attr->mode = KFD_SYSFS_FILE_MODE;
529 sysfs_attr_init(attr);
530
531 ret = sysfs_create_file(kobj, attr);
532 if (ret)
533 pr_warn("Create sysfs %s/%s failed %d", kobj->name, name, ret);
534 }
535
kfd_procfs_add_sysfs_stats(struct kfd_process * p)536 static void kfd_procfs_add_sysfs_stats(struct kfd_process *p)
537 {
538 int ret;
539 int i;
540 char stats_dir_filename[MAX_SYSFS_FILENAME_LEN];
541
542 if (!p || !p->kobj)
543 return;
544
545 /*
546 * Create sysfs files for each GPU:
547 * - proc/<pid>/stats_<gpuid>/
548 * - proc/<pid>/stats_<gpuid>/evicted_ms
549 * - proc/<pid>/stats_<gpuid>/cu_occupancy
550 */
551 for (i = 0; i < p->n_pdds; i++) {
552 struct kfd_process_device *pdd = p->pdds[i];
553
554 snprintf(stats_dir_filename, MAX_SYSFS_FILENAME_LEN,
555 "stats_%u", pdd->dev->id);
556 pdd->kobj_stats = kfd_alloc_struct(pdd->kobj_stats);
557 if (!pdd->kobj_stats)
558 return;
559
560 ret = kobject_init_and_add(pdd->kobj_stats,
561 &procfs_stats_type,
562 p->kobj,
563 stats_dir_filename);
564
565 if (ret) {
566 pr_warn("Creating KFD proc/stats_%s folder failed",
567 stats_dir_filename);
568 kobject_put(pdd->kobj_stats);
569 pdd->kobj_stats = NULL;
570 return;
571 }
572
573 kfd_sysfs_create_file(pdd->kobj_stats, &pdd->attr_evict,
574 "evicted_ms");
575 /* Add sysfs file to report compute unit occupancy */
576 if (pdd->dev->kfd2kgd->get_cu_occupancy)
577 kfd_sysfs_create_file(pdd->kobj_stats,
578 &pdd->attr_cu_occupancy,
579 "cu_occupancy");
580 }
581 }
582
kfd_procfs_add_sysfs_counters(struct kfd_process * p)583 static void kfd_procfs_add_sysfs_counters(struct kfd_process *p)
584 {
585 int ret = 0;
586 int i;
587 char counters_dir_filename[MAX_SYSFS_FILENAME_LEN];
588
589 if (!p || !p->kobj)
590 return;
591
592 /*
593 * Create sysfs files for each GPU which supports SVM
594 * - proc/<pid>/counters_<gpuid>/
595 * - proc/<pid>/counters_<gpuid>/faults
596 * - proc/<pid>/counters_<gpuid>/page_in
597 * - proc/<pid>/counters_<gpuid>/page_out
598 */
599 for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) {
600 struct kfd_process_device *pdd = p->pdds[i];
601 struct kobject *kobj_counters;
602
603 snprintf(counters_dir_filename, MAX_SYSFS_FILENAME_LEN,
604 "counters_%u", pdd->dev->id);
605 kobj_counters = kfd_alloc_struct(kobj_counters);
606 if (!kobj_counters)
607 return;
608
609 ret = kobject_init_and_add(kobj_counters, &sysfs_counters_type,
610 p->kobj, counters_dir_filename);
611 if (ret) {
612 pr_warn("Creating KFD proc/%s folder failed",
613 counters_dir_filename);
614 kobject_put(kobj_counters);
615 return;
616 }
617
618 pdd->kobj_counters = kobj_counters;
619 kfd_sysfs_create_file(kobj_counters, &pdd->attr_faults,
620 "faults");
621 kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_in,
622 "page_in");
623 kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_out,
624 "page_out");
625 }
626 }
627
kfd_procfs_add_sysfs_files(struct kfd_process * p)628 static void kfd_procfs_add_sysfs_files(struct kfd_process *p)
629 {
630 int i;
631
632 if (!p || !p->kobj)
633 return;
634
635 /*
636 * Create sysfs files for each GPU:
637 * - proc/<pid>/vram_<gpuid>
638 * - proc/<pid>/sdma_<gpuid>
639 */
640 for (i = 0; i < p->n_pdds; i++) {
641 struct kfd_process_device *pdd = p->pdds[i];
642
643 snprintf(pdd->vram_filename, MAX_SYSFS_FILENAME_LEN, "vram_%u",
644 pdd->dev->id);
645 kfd_sysfs_create_file(p->kobj, &pdd->attr_vram,
646 pdd->vram_filename);
647
648 snprintf(pdd->sdma_filename, MAX_SYSFS_FILENAME_LEN, "sdma_%u",
649 pdd->dev->id);
650 kfd_sysfs_create_file(p->kobj, &pdd->attr_sdma,
651 pdd->sdma_filename);
652 }
653 }
654
kfd_procfs_del_queue(struct queue * q)655 void kfd_procfs_del_queue(struct queue *q)
656 {
657 if (!q)
658 return;
659
660 kobject_del(&q->kobj);
661 kobject_put(&q->kobj);
662 }
663
kfd_process_create_wq(void)664 int kfd_process_create_wq(void)
665 {
666 if (!kfd_process_wq)
667 kfd_process_wq = alloc_workqueue("kfd_process_wq", 0, 0);
668 if (!kfd_restore_wq)
669 kfd_restore_wq = alloc_ordered_workqueue("kfd_restore_wq", 0);
670
671 if (!kfd_process_wq || !kfd_restore_wq) {
672 kfd_process_destroy_wq();
673 return -ENOMEM;
674 }
675
676 return 0;
677 }
678
kfd_process_destroy_wq(void)679 void kfd_process_destroy_wq(void)
680 {
681 if (kfd_process_wq) {
682 destroy_workqueue(kfd_process_wq);
683 kfd_process_wq = NULL;
684 }
685 if (kfd_restore_wq) {
686 destroy_workqueue(kfd_restore_wq);
687 kfd_restore_wq = NULL;
688 }
689 }
690
kfd_process_free_gpuvm(struct kgd_mem * mem,struct kfd_process_device * pdd,void * kptr)691 static void kfd_process_free_gpuvm(struct kgd_mem *mem,
692 struct kfd_process_device *pdd, void *kptr)
693 {
694 struct kfd_dev *dev = pdd->dev;
695
696 if (kptr) {
697 amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem);
698 kptr = NULL;
699 }
700
701 amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(dev->adev, mem, pdd->drm_priv);
702 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->adev, mem, pdd->drm_priv,
703 NULL);
704 }
705
706 /* kfd_process_alloc_gpuvm - Allocate GPU VM for the KFD process
707 * This function should be only called right after the process
708 * is created and when kfd_processes_mutex is still being held
709 * to avoid concurrency. Because of that exclusiveness, we do
710 * not need to take p->mutex.
711 */
kfd_process_alloc_gpuvm(struct kfd_process_device * pdd,uint64_t gpu_va,uint32_t size,uint32_t flags,struct kgd_mem ** mem,void ** kptr)712 static int kfd_process_alloc_gpuvm(struct kfd_process_device *pdd,
713 uint64_t gpu_va, uint32_t size,
714 uint32_t flags, struct kgd_mem **mem, void **kptr)
715 {
716 struct kfd_dev *kdev = pdd->dev;
717 int err;
718
719 err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(kdev->adev, gpu_va, size,
720 pdd->drm_priv, mem, NULL,
721 flags, false);
722 if (err)
723 goto err_alloc_mem;
724
725 err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(kdev->adev, *mem,
726 pdd->drm_priv);
727 if (err)
728 goto err_map_mem;
729
730 err = amdgpu_amdkfd_gpuvm_sync_memory(kdev->adev, *mem, true);
731 if (err) {
732 pr_debug("Sync memory failed, wait interrupted by user signal\n");
733 goto sync_memory_failed;
734 }
735
736 if (kptr) {
737 err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(
738 (struct kgd_mem *)*mem, kptr, NULL);
739 if (err) {
740 pr_debug("Map GTT BO to kernel failed\n");
741 goto sync_memory_failed;
742 }
743 }
744
745 return err;
746
747 sync_memory_failed:
748 amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(kdev->adev, *mem, pdd->drm_priv);
749
750 err_map_mem:
751 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(kdev->adev, *mem, pdd->drm_priv,
752 NULL);
753 err_alloc_mem:
754 *mem = NULL;
755 *kptr = NULL;
756 return err;
757 }
758
759 /* kfd_process_device_reserve_ib_mem - Reserve memory inside the
760 * process for IB usage The memory reserved is for KFD to submit
761 * IB to AMDGPU from kernel. If the memory is reserved
762 * successfully, ib_kaddr will have the CPU/kernel
763 * address. Check ib_kaddr before accessing the memory.
764 */
kfd_process_device_reserve_ib_mem(struct kfd_process_device * pdd)765 static int kfd_process_device_reserve_ib_mem(struct kfd_process_device *pdd)
766 {
767 struct qcm_process_device *qpd = &pdd->qpd;
768 uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT |
769 KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE |
770 KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE |
771 KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
772 struct kgd_mem *mem;
773 void *kaddr;
774 int ret;
775
776 if (qpd->ib_kaddr || !qpd->ib_base)
777 return 0;
778
779 /* ib_base is only set for dGPU */
780 ret = kfd_process_alloc_gpuvm(pdd, qpd->ib_base, PAGE_SIZE, flags,
781 &mem, &kaddr);
782 if (ret)
783 return ret;
784
785 qpd->ib_mem = mem;
786 qpd->ib_kaddr = kaddr;
787
788 return 0;
789 }
790
kfd_process_device_destroy_ib_mem(struct kfd_process_device * pdd)791 static void kfd_process_device_destroy_ib_mem(struct kfd_process_device *pdd)
792 {
793 struct qcm_process_device *qpd = &pdd->qpd;
794
795 if (!qpd->ib_kaddr || !qpd->ib_base)
796 return;
797
798 kfd_process_free_gpuvm(qpd->ib_mem, pdd, qpd->ib_kaddr);
799 }
800
kfd_create_process(struct file * filep)801 struct kfd_process *kfd_create_process(struct file *filep)
802 {
803 struct kfd_process *process;
804 struct task_struct *thread = current;
805 int ret;
806
807 if (!thread->mm)
808 return ERR_PTR(-EINVAL);
809
810 /* Only the pthreads threading model is supported. */
811 if (thread->group_leader->mm != thread->mm)
812 return ERR_PTR(-EINVAL);
813
814 /*
815 * take kfd processes mutex before starting of process creation
816 * so there won't be a case where two threads of the same process
817 * create two kfd_process structures
818 */
819 mutex_lock(&kfd_processes_mutex);
820
821 /* A prior open of /dev/kfd could have already created the process. */
822 process = find_process(thread, false);
823 if (process) {
824 pr_debug("Process already found\n");
825 } else {
826 process = create_process(thread);
827 if (IS_ERR(process))
828 goto out;
829
830 ret = kfd_process_init_cwsr_apu(process, filep);
831 if (ret)
832 goto out_destroy;
833
834 if (!procfs.kobj)
835 goto out;
836
837 process->kobj = kfd_alloc_struct(process->kobj);
838 if (!process->kobj) {
839 pr_warn("Creating procfs kobject failed");
840 goto out;
841 }
842 ret = kobject_init_and_add(process->kobj, &procfs_type,
843 procfs.kobj, "%d",
844 (int)process->lead_thread->pid);
845 if (ret) {
846 pr_warn("Creating procfs pid directory failed");
847 kobject_put(process->kobj);
848 goto out;
849 }
850
851 kfd_sysfs_create_file(process->kobj, &process->attr_pasid,
852 "pasid");
853
854 process->kobj_queues = kobject_create_and_add("queues",
855 process->kobj);
856 if (!process->kobj_queues)
857 pr_warn("Creating KFD proc/queues folder failed");
858
859 kfd_procfs_add_sysfs_stats(process);
860 kfd_procfs_add_sysfs_files(process);
861 kfd_procfs_add_sysfs_counters(process);
862 }
863 out:
864 if (!IS_ERR(process))
865 kref_get(&process->ref);
866 mutex_unlock(&kfd_processes_mutex);
867
868 return process;
869
870 out_destroy:
871 hash_del_rcu(&process->kfd_processes);
872 mutex_unlock(&kfd_processes_mutex);
873 synchronize_srcu(&kfd_processes_srcu);
874 /* kfd_process_free_notifier will trigger the cleanup */
875 mmu_notifier_put(&process->mmu_notifier);
876 return ERR_PTR(ret);
877 }
878
kfd_get_process(const struct task_struct * thread)879 struct kfd_process *kfd_get_process(const struct task_struct *thread)
880 {
881 struct kfd_process *process;
882
883 if (!thread->mm)
884 return ERR_PTR(-EINVAL);
885
886 /* Only the pthreads threading model is supported. */
887 if (thread->group_leader->mm != thread->mm)
888 return ERR_PTR(-EINVAL);
889
890 process = find_process(thread, false);
891 if (!process)
892 return ERR_PTR(-EINVAL);
893
894 return process;
895 }
896
find_process_by_mm(const struct mm_struct * mm)897 static struct kfd_process *find_process_by_mm(const struct mm_struct *mm)
898 {
899 struct kfd_process *process;
900
901 hash_for_each_possible_rcu(kfd_processes_table, process,
902 kfd_processes, (uintptr_t)mm)
903 if (process->mm == mm)
904 return process;
905
906 return NULL;
907 }
908
find_process(const struct task_struct * thread,bool ref)909 static struct kfd_process *find_process(const struct task_struct *thread,
910 bool ref)
911 {
912 struct kfd_process *p;
913 int idx;
914
915 idx = srcu_read_lock(&kfd_processes_srcu);
916 p = find_process_by_mm(thread->mm);
917 if (p && ref)
918 kref_get(&p->ref);
919 srcu_read_unlock(&kfd_processes_srcu, idx);
920
921 return p;
922 }
923
kfd_unref_process(struct kfd_process * p)924 void kfd_unref_process(struct kfd_process *p)
925 {
926 kref_put(&p->ref, kfd_process_ref_release);
927 }
928
929 /* This increments the process->ref counter. */
kfd_lookup_process_by_pid(struct pid * pid)930 struct kfd_process *kfd_lookup_process_by_pid(struct pid *pid)
931 {
932 struct task_struct *task = NULL;
933 struct kfd_process *p = NULL;
934
935 if (!pid) {
936 task = current;
937 get_task_struct(task);
938 } else {
939 task = get_pid_task(pid, PIDTYPE_PID);
940 }
941
942 if (task) {
943 p = find_process(task, true);
944 put_task_struct(task);
945 }
946
947 return p;
948 }
949
kfd_process_device_free_bos(struct kfd_process_device * pdd)950 static void kfd_process_device_free_bos(struct kfd_process_device *pdd)
951 {
952 struct kfd_process *p = pdd->process;
953 void *mem;
954 int id;
955 int i;
956
957 /*
958 * Remove all handles from idr and release appropriate
959 * local memory object
960 */
961 idr_for_each_entry(&pdd->alloc_idr, mem, id) {
962
963 for (i = 0; i < p->n_pdds; i++) {
964 struct kfd_process_device *peer_pdd = p->pdds[i];
965
966 if (!peer_pdd->drm_priv)
967 continue;
968 amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
969 peer_pdd->dev->adev, mem, peer_pdd->drm_priv);
970 }
971
972 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, mem,
973 pdd->drm_priv, NULL);
974 kfd_process_device_remove_obj_handle(pdd, id);
975 }
976 }
977
978 /*
979 * Just kunmap and unpin signal BO here. It will be freed in
980 * kfd_process_free_outstanding_kfd_bos()
981 */
kfd_process_kunmap_signal_bo(struct kfd_process * p)982 static void kfd_process_kunmap_signal_bo(struct kfd_process *p)
983 {
984 struct kfd_process_device *pdd;
985 struct kfd_dev *kdev;
986 void *mem;
987
988 kdev = kfd_device_by_id(GET_GPU_ID(p->signal_handle));
989 if (!kdev)
990 return;
991
992 mutex_lock(&p->mutex);
993
994 pdd = kfd_get_process_device_data(kdev, p);
995 if (!pdd)
996 goto out;
997
998 mem = kfd_process_device_translate_handle(
999 pdd, GET_IDR_HANDLE(p->signal_handle));
1000 if (!mem)
1001 goto out;
1002
1003 amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem);
1004
1005 out:
1006 mutex_unlock(&p->mutex);
1007 }
1008
kfd_process_free_outstanding_kfd_bos(struct kfd_process * p)1009 static void kfd_process_free_outstanding_kfd_bos(struct kfd_process *p)
1010 {
1011 int i;
1012
1013 for (i = 0; i < p->n_pdds; i++)
1014 kfd_process_device_free_bos(p->pdds[i]);
1015 }
1016
kfd_process_destroy_pdds(struct kfd_process * p)1017 static void kfd_process_destroy_pdds(struct kfd_process *p)
1018 {
1019 int i;
1020
1021 for (i = 0; i < p->n_pdds; i++) {
1022 struct kfd_process_device *pdd = p->pdds[i];
1023
1024 pr_debug("Releasing pdd (topology id %d) for process (pasid 0x%x)\n",
1025 pdd->dev->id, p->pasid);
1026
1027 kfd_process_device_destroy_cwsr_dgpu(pdd);
1028 kfd_process_device_destroy_ib_mem(pdd);
1029
1030 if (pdd->drm_file) {
1031 amdgpu_amdkfd_gpuvm_release_process_vm(
1032 pdd->dev->adev, pdd->drm_priv);
1033 fput(pdd->drm_file);
1034 }
1035
1036 if (pdd->qpd.cwsr_kaddr && !pdd->qpd.cwsr_base)
1037 free_pages((unsigned long)pdd->qpd.cwsr_kaddr,
1038 get_order(KFD_CWSR_TBA_TMA_SIZE));
1039
1040 bitmap_free(pdd->qpd.doorbell_bitmap);
1041 idr_destroy(&pdd->alloc_idr);
1042
1043 kfd_free_process_doorbells(pdd->dev, pdd->doorbell_index);
1044
1045 if (pdd->dev->shared_resources.enable_mes)
1046 amdgpu_amdkfd_free_gtt_mem(pdd->dev->adev,
1047 pdd->proc_ctx_bo);
1048 /*
1049 * before destroying pdd, make sure to report availability
1050 * for auto suspend
1051 */
1052 if (pdd->runtime_inuse) {
1053 pm_runtime_mark_last_busy(pdd->dev->ddev->dev);
1054 pm_runtime_put_autosuspend(pdd->dev->ddev->dev);
1055 pdd->runtime_inuse = false;
1056 }
1057
1058 kfree(pdd);
1059 p->pdds[i] = NULL;
1060 }
1061 p->n_pdds = 0;
1062 }
1063
kfd_process_remove_sysfs(struct kfd_process * p)1064 static void kfd_process_remove_sysfs(struct kfd_process *p)
1065 {
1066 struct kfd_process_device *pdd;
1067 int i;
1068
1069 if (!p->kobj)
1070 return;
1071
1072 sysfs_remove_file(p->kobj, &p->attr_pasid);
1073 kobject_del(p->kobj_queues);
1074 kobject_put(p->kobj_queues);
1075 p->kobj_queues = NULL;
1076
1077 for (i = 0; i < p->n_pdds; i++) {
1078 pdd = p->pdds[i];
1079
1080 sysfs_remove_file(p->kobj, &pdd->attr_vram);
1081 sysfs_remove_file(p->kobj, &pdd->attr_sdma);
1082
1083 sysfs_remove_file(pdd->kobj_stats, &pdd->attr_evict);
1084 if (pdd->dev->kfd2kgd->get_cu_occupancy)
1085 sysfs_remove_file(pdd->kobj_stats,
1086 &pdd->attr_cu_occupancy);
1087 kobject_del(pdd->kobj_stats);
1088 kobject_put(pdd->kobj_stats);
1089 pdd->kobj_stats = NULL;
1090 }
1091
1092 for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) {
1093 pdd = p->pdds[i];
1094
1095 sysfs_remove_file(pdd->kobj_counters, &pdd->attr_faults);
1096 sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_in);
1097 sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_out);
1098 kobject_del(pdd->kobj_counters);
1099 kobject_put(pdd->kobj_counters);
1100 pdd->kobj_counters = NULL;
1101 }
1102
1103 kobject_del(p->kobj);
1104 kobject_put(p->kobj);
1105 p->kobj = NULL;
1106 }
1107
1108 /* No process locking is needed in this function, because the process
1109 * is not findable any more. We must assume that no other thread is
1110 * using it any more, otherwise we couldn't safely free the process
1111 * structure in the end.
1112 */
kfd_process_wq_release(struct work_struct * work)1113 static void kfd_process_wq_release(struct work_struct *work)
1114 {
1115 struct kfd_process *p = container_of(work, struct kfd_process,
1116 release_work);
1117
1118 kfd_process_dequeue_from_all_devices(p);
1119 pqm_uninit(&p->pqm);
1120
1121 /* Signal the eviction fence after user mode queues are
1122 * destroyed. This allows any BOs to be freed without
1123 * triggering pointless evictions or waiting for fences.
1124 */
1125 dma_fence_signal(p->ef);
1126
1127 kfd_process_remove_sysfs(p);
1128 kfd_iommu_unbind_process(p);
1129
1130 kfd_process_kunmap_signal_bo(p);
1131 kfd_process_free_outstanding_kfd_bos(p);
1132 svm_range_list_fini(p);
1133
1134 kfd_process_destroy_pdds(p);
1135 dma_fence_put(p->ef);
1136
1137 kfd_event_free_process(p);
1138
1139 kfd_pasid_free(p->pasid);
1140 mutex_destroy(&p->mutex);
1141
1142 put_task_struct(p->lead_thread);
1143
1144 kfree(p);
1145 }
1146
kfd_process_ref_release(struct kref * ref)1147 static void kfd_process_ref_release(struct kref *ref)
1148 {
1149 struct kfd_process *p = container_of(ref, struct kfd_process, ref);
1150
1151 INIT_WORK(&p->release_work, kfd_process_wq_release);
1152 queue_work(kfd_process_wq, &p->release_work);
1153 }
1154
kfd_process_alloc_notifier(struct mm_struct * mm)1155 static struct mmu_notifier *kfd_process_alloc_notifier(struct mm_struct *mm)
1156 {
1157 int idx = srcu_read_lock(&kfd_processes_srcu);
1158 struct kfd_process *p = find_process_by_mm(mm);
1159
1160 srcu_read_unlock(&kfd_processes_srcu, idx);
1161
1162 return p ? &p->mmu_notifier : ERR_PTR(-ESRCH);
1163 }
1164
kfd_process_free_notifier(struct mmu_notifier * mn)1165 static void kfd_process_free_notifier(struct mmu_notifier *mn)
1166 {
1167 kfd_unref_process(container_of(mn, struct kfd_process, mmu_notifier));
1168 }
1169
kfd_process_notifier_release(struct mmu_notifier * mn,struct mm_struct * mm)1170 static void kfd_process_notifier_release(struct mmu_notifier *mn,
1171 struct mm_struct *mm)
1172 {
1173 struct kfd_process *p;
1174
1175 /*
1176 * The kfd_process structure can not be free because the
1177 * mmu_notifier srcu is read locked
1178 */
1179 p = container_of(mn, struct kfd_process, mmu_notifier);
1180 if (WARN_ON(p->mm != mm))
1181 return;
1182
1183 mutex_lock(&kfd_processes_mutex);
1184 hash_del_rcu(&p->kfd_processes);
1185 mutex_unlock(&kfd_processes_mutex);
1186 synchronize_srcu(&kfd_processes_srcu);
1187
1188 cancel_delayed_work_sync(&p->eviction_work);
1189 cancel_delayed_work_sync(&p->restore_work);
1190
1191 /* Indicate to other users that MM is no longer valid */
1192 p->mm = NULL;
1193
1194 mmu_notifier_put(&p->mmu_notifier);
1195 }
1196
1197 static const struct mmu_notifier_ops kfd_process_mmu_notifier_ops = {
1198 .release = kfd_process_notifier_release,
1199 .alloc_notifier = kfd_process_alloc_notifier,
1200 .free_notifier = kfd_process_free_notifier,
1201 };
1202
kfd_process_init_cwsr_apu(struct kfd_process * p,struct file * filep)1203 static int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep)
1204 {
1205 unsigned long offset;
1206 int i;
1207
1208 for (i = 0; i < p->n_pdds; i++) {
1209 struct kfd_dev *dev = p->pdds[i]->dev;
1210 struct qcm_process_device *qpd = &p->pdds[i]->qpd;
1211
1212 if (!dev->cwsr_enabled || qpd->cwsr_kaddr || qpd->cwsr_base)
1213 continue;
1214
1215 offset = KFD_MMAP_TYPE_RESERVED_MEM | KFD_MMAP_GPU_ID(dev->id);
1216 qpd->tba_addr = (int64_t)vm_mmap(filep, 0,
1217 KFD_CWSR_TBA_TMA_SIZE, PROT_READ | PROT_EXEC,
1218 MAP_SHARED, offset);
1219
1220 if (IS_ERR_VALUE(qpd->tba_addr)) {
1221 int err = qpd->tba_addr;
1222
1223 pr_err("Failure to set tba address. error %d.\n", err);
1224 qpd->tba_addr = 0;
1225 qpd->cwsr_kaddr = NULL;
1226 return err;
1227 }
1228
1229 memcpy(qpd->cwsr_kaddr, dev->cwsr_isa, dev->cwsr_isa_size);
1230
1231 qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
1232 pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
1233 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
1234 }
1235
1236 return 0;
1237 }
1238
kfd_process_device_init_cwsr_dgpu(struct kfd_process_device * pdd)1239 static int kfd_process_device_init_cwsr_dgpu(struct kfd_process_device *pdd)
1240 {
1241 struct kfd_dev *dev = pdd->dev;
1242 struct qcm_process_device *qpd = &pdd->qpd;
1243 uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT
1244 | KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE
1245 | KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
1246 struct kgd_mem *mem;
1247 void *kaddr;
1248 int ret;
1249
1250 if (!dev->cwsr_enabled || qpd->cwsr_kaddr || !qpd->cwsr_base)
1251 return 0;
1252
1253 /* cwsr_base is only set for dGPU */
1254 ret = kfd_process_alloc_gpuvm(pdd, qpd->cwsr_base,
1255 KFD_CWSR_TBA_TMA_SIZE, flags, &mem, &kaddr);
1256 if (ret)
1257 return ret;
1258
1259 qpd->cwsr_mem = mem;
1260 qpd->cwsr_kaddr = kaddr;
1261 qpd->tba_addr = qpd->cwsr_base;
1262
1263 memcpy(qpd->cwsr_kaddr, dev->cwsr_isa, dev->cwsr_isa_size);
1264
1265 qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
1266 pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
1267 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
1268
1269 return 0;
1270 }
1271
kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device * pdd)1272 static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd)
1273 {
1274 struct kfd_dev *dev = pdd->dev;
1275 struct qcm_process_device *qpd = &pdd->qpd;
1276
1277 if (!dev->cwsr_enabled || !qpd->cwsr_kaddr || !qpd->cwsr_base)
1278 return;
1279
1280 kfd_process_free_gpuvm(qpd->cwsr_mem, pdd, qpd->cwsr_kaddr);
1281 }
1282
kfd_process_set_trap_handler(struct qcm_process_device * qpd,uint64_t tba_addr,uint64_t tma_addr)1283 void kfd_process_set_trap_handler(struct qcm_process_device *qpd,
1284 uint64_t tba_addr,
1285 uint64_t tma_addr)
1286 {
1287 if (qpd->cwsr_kaddr) {
1288 /* KFD trap handler is bound, record as second-level TBA/TMA
1289 * in first-level TMA. First-level trap will jump to second.
1290 */
1291 uint64_t *tma =
1292 (uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET);
1293 tma[0] = tba_addr;
1294 tma[1] = tma_addr;
1295 } else {
1296 /* No trap handler bound, bind as first-level TBA/TMA. */
1297 qpd->tba_addr = tba_addr;
1298 qpd->tma_addr = tma_addr;
1299 }
1300 }
1301
kfd_process_xnack_mode(struct kfd_process * p,bool supported)1302 bool kfd_process_xnack_mode(struct kfd_process *p, bool supported)
1303 {
1304 int i;
1305
1306 /* On most GFXv9 GPUs, the retry mode in the SQ must match the
1307 * boot time retry setting. Mixing processes with different
1308 * XNACK/retry settings can hang the GPU.
1309 *
1310 * Different GPUs can have different noretry settings depending
1311 * on HW bugs or limitations. We need to find at least one
1312 * XNACK mode for this process that's compatible with all GPUs.
1313 * Fortunately GPUs with retry enabled (noretry=0) can run code
1314 * built for XNACK-off. On GFXv9 it may perform slower.
1315 *
1316 * Therefore applications built for XNACK-off can always be
1317 * supported and will be our fallback if any GPU does not
1318 * support retry.
1319 */
1320 for (i = 0; i < p->n_pdds; i++) {
1321 struct kfd_dev *dev = p->pdds[i]->dev;
1322
1323 /* Only consider GFXv9 and higher GPUs. Older GPUs don't
1324 * support the SVM APIs and don't need to be considered
1325 * for the XNACK mode selection.
1326 */
1327 if (!KFD_IS_SOC15(dev))
1328 continue;
1329 /* Aldebaran can always support XNACK because it can support
1330 * per-process XNACK mode selection. But let the dev->noretry
1331 * setting still influence the default XNACK mode.
1332 */
1333 if (supported && KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 2))
1334 continue;
1335
1336 /* GFXv10 and later GPUs do not support shader preemption
1337 * during page faults. This can lead to poor QoS for queue
1338 * management and memory-manager-related preemptions or
1339 * even deadlocks.
1340 */
1341 if (KFD_GC_VERSION(dev) >= IP_VERSION(10, 1, 1))
1342 return false;
1343
1344 if (dev->noretry)
1345 return false;
1346 }
1347
1348 return true;
1349 }
1350
1351 /*
1352 * On return the kfd_process is fully operational and will be freed when the
1353 * mm is released
1354 */
create_process(const struct task_struct * thread)1355 static struct kfd_process *create_process(const struct task_struct *thread)
1356 {
1357 struct kfd_process *process;
1358 struct mmu_notifier *mn;
1359 int err = -ENOMEM;
1360
1361 process = kzalloc(sizeof(*process), GFP_KERNEL);
1362 if (!process)
1363 goto err_alloc_process;
1364
1365 kref_init(&process->ref);
1366 mutex_init(&process->mutex);
1367 process->mm = thread->mm;
1368 process->lead_thread = thread->group_leader;
1369 process->n_pdds = 0;
1370 process->queues_paused = false;
1371 INIT_DELAYED_WORK(&process->eviction_work, evict_process_worker);
1372 INIT_DELAYED_WORK(&process->restore_work, restore_process_worker);
1373 process->last_restore_timestamp = get_jiffies_64();
1374 err = kfd_event_init_process(process);
1375 if (err)
1376 goto err_event_init;
1377 process->is_32bit_user_mode = in_compat_syscall();
1378
1379 process->pasid = kfd_pasid_alloc();
1380 if (process->pasid == 0) {
1381 err = -ENOSPC;
1382 goto err_alloc_pasid;
1383 }
1384
1385 err = pqm_init(&process->pqm, process);
1386 if (err != 0)
1387 goto err_process_pqm_init;
1388
1389 /* init process apertures*/
1390 err = kfd_init_apertures(process);
1391 if (err != 0)
1392 goto err_init_apertures;
1393
1394 /* Check XNACK support after PDDs are created in kfd_init_apertures */
1395 process->xnack_enabled = kfd_process_xnack_mode(process, false);
1396
1397 err = svm_range_list_init(process);
1398 if (err)
1399 goto err_init_svm_range_list;
1400
1401 /* alloc_notifier needs to find the process in the hash table */
1402 hash_add_rcu(kfd_processes_table, &process->kfd_processes,
1403 (uintptr_t)process->mm);
1404
1405 /* Avoid free_notifier to start kfd_process_wq_release if
1406 * mmu_notifier_get failed because of pending signal.
1407 */
1408 kref_get(&process->ref);
1409
1410 /* MMU notifier registration must be the last call that can fail
1411 * because after this point we cannot unwind the process creation.
1412 * After this point, mmu_notifier_put will trigger the cleanup by
1413 * dropping the last process reference in the free_notifier.
1414 */
1415 mn = mmu_notifier_get(&kfd_process_mmu_notifier_ops, process->mm);
1416 if (IS_ERR(mn)) {
1417 err = PTR_ERR(mn);
1418 goto err_register_notifier;
1419 }
1420 BUG_ON(mn != &process->mmu_notifier);
1421
1422 kfd_unref_process(process);
1423 get_task_struct(process->lead_thread);
1424
1425 return process;
1426
1427 err_register_notifier:
1428 hash_del_rcu(&process->kfd_processes);
1429 svm_range_list_fini(process);
1430 err_init_svm_range_list:
1431 kfd_process_free_outstanding_kfd_bos(process);
1432 kfd_process_destroy_pdds(process);
1433 err_init_apertures:
1434 pqm_uninit(&process->pqm);
1435 err_process_pqm_init:
1436 kfd_pasid_free(process->pasid);
1437 err_alloc_pasid:
1438 kfd_event_free_process(process);
1439 err_event_init:
1440 mutex_destroy(&process->mutex);
1441 kfree(process);
1442 err_alloc_process:
1443 return ERR_PTR(err);
1444 }
1445
init_doorbell_bitmap(struct qcm_process_device * qpd,struct kfd_dev * dev)1446 static int init_doorbell_bitmap(struct qcm_process_device *qpd,
1447 struct kfd_dev *dev)
1448 {
1449 unsigned int i;
1450 int range_start = dev->shared_resources.non_cp_doorbells_start;
1451 int range_end = dev->shared_resources.non_cp_doorbells_end;
1452
1453 if (!KFD_IS_SOC15(dev))
1454 return 0;
1455
1456 qpd->doorbell_bitmap = bitmap_zalloc(KFD_MAX_NUM_OF_QUEUES_PER_PROCESS,
1457 GFP_KERNEL);
1458 if (!qpd->doorbell_bitmap)
1459 return -ENOMEM;
1460
1461 /* Mask out doorbells reserved for SDMA, IH, and VCN on SOC15. */
1462 pr_debug("reserved doorbell 0x%03x - 0x%03x\n", range_start, range_end);
1463 pr_debug("reserved doorbell 0x%03x - 0x%03x\n",
1464 range_start + KFD_QUEUE_DOORBELL_MIRROR_OFFSET,
1465 range_end + KFD_QUEUE_DOORBELL_MIRROR_OFFSET);
1466
1467 for (i = 0; i < KFD_MAX_NUM_OF_QUEUES_PER_PROCESS / 2; i++) {
1468 if (i >= range_start && i <= range_end) {
1469 __set_bit(i, qpd->doorbell_bitmap);
1470 __set_bit(i + KFD_QUEUE_DOORBELL_MIRROR_OFFSET,
1471 qpd->doorbell_bitmap);
1472 }
1473 }
1474
1475 return 0;
1476 }
1477
kfd_get_process_device_data(struct kfd_dev * dev,struct kfd_process * p)1478 struct kfd_process_device *kfd_get_process_device_data(struct kfd_dev *dev,
1479 struct kfd_process *p)
1480 {
1481 int i;
1482
1483 for (i = 0; i < p->n_pdds; i++)
1484 if (p->pdds[i]->dev == dev)
1485 return p->pdds[i];
1486
1487 return NULL;
1488 }
1489
kfd_create_process_device_data(struct kfd_dev * dev,struct kfd_process * p)1490 struct kfd_process_device *kfd_create_process_device_data(struct kfd_dev *dev,
1491 struct kfd_process *p)
1492 {
1493 struct kfd_process_device *pdd = NULL;
1494 int retval = 0;
1495
1496 if (WARN_ON_ONCE(p->n_pdds >= MAX_GPU_INSTANCE))
1497 return NULL;
1498 pdd = kzalloc(sizeof(*pdd), GFP_KERNEL);
1499 if (!pdd)
1500 return NULL;
1501
1502 if (init_doorbell_bitmap(&pdd->qpd, dev)) {
1503 pr_err("Failed to init doorbell for process\n");
1504 goto err_free_pdd;
1505 }
1506
1507 pdd->dev = dev;
1508 INIT_LIST_HEAD(&pdd->qpd.queues_list);
1509 INIT_LIST_HEAD(&pdd->qpd.priv_queue_list);
1510 pdd->qpd.dqm = dev->dqm;
1511 pdd->qpd.pqm = &p->pqm;
1512 pdd->qpd.evicted = 0;
1513 pdd->qpd.mapped_gws_queue = false;
1514 pdd->process = p;
1515 pdd->bound = PDD_UNBOUND;
1516 pdd->already_dequeued = false;
1517 pdd->runtime_inuse = false;
1518 pdd->vram_usage = 0;
1519 pdd->sdma_past_activity_counter = 0;
1520 pdd->user_gpu_id = dev->id;
1521 atomic64_set(&pdd->evict_duration_counter, 0);
1522
1523 if (dev->shared_resources.enable_mes) {
1524 retval = amdgpu_amdkfd_alloc_gtt_mem(dev->adev,
1525 AMDGPU_MES_PROC_CTX_SIZE,
1526 &pdd->proc_ctx_bo,
1527 &pdd->proc_ctx_gpu_addr,
1528 &pdd->proc_ctx_cpu_ptr,
1529 false);
1530 if (retval) {
1531 pr_err("failed to allocate process context bo\n");
1532 goto err_free_pdd;
1533 }
1534 memset(pdd->proc_ctx_cpu_ptr, 0, AMDGPU_MES_PROC_CTX_SIZE);
1535 }
1536
1537 p->pdds[p->n_pdds++] = pdd;
1538
1539 /* Init idr used for memory handle translation */
1540 idr_init(&pdd->alloc_idr);
1541
1542 return pdd;
1543
1544 err_free_pdd:
1545 kfree(pdd);
1546 return NULL;
1547 }
1548
1549 /**
1550 * kfd_process_device_init_vm - Initialize a VM for a process-device
1551 *
1552 * @pdd: The process-device
1553 * @drm_file: Optional pointer to a DRM file descriptor
1554 *
1555 * If @drm_file is specified, it will be used to acquire the VM from
1556 * that file descriptor. If successful, the @pdd takes ownership of
1557 * the file descriptor.
1558 *
1559 * If @drm_file is NULL, a new VM is created.
1560 *
1561 * Returns 0 on success, -errno on failure.
1562 */
kfd_process_device_init_vm(struct kfd_process_device * pdd,struct file * drm_file)1563 int kfd_process_device_init_vm(struct kfd_process_device *pdd,
1564 struct file *drm_file)
1565 {
1566 struct kfd_process *p;
1567 struct kfd_dev *dev;
1568 int ret;
1569
1570 if (!drm_file)
1571 return -EINVAL;
1572
1573 if (pdd->drm_priv)
1574 return -EBUSY;
1575
1576 p = pdd->process;
1577 dev = pdd->dev;
1578
1579 ret = amdgpu_amdkfd_gpuvm_acquire_process_vm(
1580 dev->adev, drm_file, p->pasid,
1581 &p->kgd_process_info, &p->ef);
1582 if (ret) {
1583 pr_err("Failed to create process VM object\n");
1584 return ret;
1585 }
1586 pdd->drm_priv = drm_file->private_data;
1587 atomic64_set(&pdd->tlb_seq, 0);
1588
1589 ret = kfd_process_device_reserve_ib_mem(pdd);
1590 if (ret)
1591 goto err_reserve_ib_mem;
1592 ret = kfd_process_device_init_cwsr_dgpu(pdd);
1593 if (ret)
1594 goto err_init_cwsr;
1595
1596 pdd->drm_file = drm_file;
1597
1598 return 0;
1599
1600 err_init_cwsr:
1601 err_reserve_ib_mem:
1602 kfd_process_device_free_bos(pdd);
1603 pdd->drm_priv = NULL;
1604
1605 return ret;
1606 }
1607
1608 /*
1609 * Direct the IOMMU to bind the process (specifically the pasid->mm)
1610 * to the device.
1611 * Unbinding occurs when the process dies or the device is removed.
1612 *
1613 * Assumes that the process lock is held.
1614 */
kfd_bind_process_to_device(struct kfd_dev * dev,struct kfd_process * p)1615 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_dev *dev,
1616 struct kfd_process *p)
1617 {
1618 struct kfd_process_device *pdd;
1619 int err;
1620
1621 pdd = kfd_get_process_device_data(dev, p);
1622 if (!pdd) {
1623 pr_err("Process device data doesn't exist\n");
1624 return ERR_PTR(-ENOMEM);
1625 }
1626
1627 if (!pdd->drm_priv)
1628 return ERR_PTR(-ENODEV);
1629
1630 /*
1631 * signal runtime-pm system to auto resume and prevent
1632 * further runtime suspend once device pdd is created until
1633 * pdd is destroyed.
1634 */
1635 if (!pdd->runtime_inuse) {
1636 err = pm_runtime_get_sync(dev->ddev->dev);
1637 if (err < 0) {
1638 pm_runtime_put_autosuspend(dev->ddev->dev);
1639 return ERR_PTR(err);
1640 }
1641 }
1642
1643 err = kfd_iommu_bind_process_to_device(pdd);
1644 if (err)
1645 goto out;
1646
1647 /*
1648 * make sure that runtime_usage counter is incremented just once
1649 * per pdd
1650 */
1651 pdd->runtime_inuse = true;
1652
1653 return pdd;
1654
1655 out:
1656 /* balance runpm reference count and exit with error */
1657 if (!pdd->runtime_inuse) {
1658 pm_runtime_mark_last_busy(dev->ddev->dev);
1659 pm_runtime_put_autosuspend(dev->ddev->dev);
1660 }
1661
1662 return ERR_PTR(err);
1663 }
1664
1665 /* Create specific handle mapped to mem from process local memory idr
1666 * Assumes that the process lock is held.
1667 */
kfd_process_device_create_obj_handle(struct kfd_process_device * pdd,void * mem)1668 int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd,
1669 void *mem)
1670 {
1671 return idr_alloc(&pdd->alloc_idr, mem, 0, 0, GFP_KERNEL);
1672 }
1673
1674 /* Translate specific handle from process local memory idr
1675 * Assumes that the process lock is held.
1676 */
kfd_process_device_translate_handle(struct kfd_process_device * pdd,int handle)1677 void *kfd_process_device_translate_handle(struct kfd_process_device *pdd,
1678 int handle)
1679 {
1680 if (handle < 0)
1681 return NULL;
1682
1683 return idr_find(&pdd->alloc_idr, handle);
1684 }
1685
1686 /* Remove specific handle from process local memory idr
1687 * Assumes that the process lock is held.
1688 */
kfd_process_device_remove_obj_handle(struct kfd_process_device * pdd,int handle)1689 void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd,
1690 int handle)
1691 {
1692 if (handle >= 0)
1693 idr_remove(&pdd->alloc_idr, handle);
1694 }
1695
1696 /* This increments the process->ref counter. */
kfd_lookup_process_by_pasid(u32 pasid)1697 struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid)
1698 {
1699 struct kfd_process *p, *ret_p = NULL;
1700 unsigned int temp;
1701
1702 int idx = srcu_read_lock(&kfd_processes_srcu);
1703
1704 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1705 if (p->pasid == pasid) {
1706 kref_get(&p->ref);
1707 ret_p = p;
1708 break;
1709 }
1710 }
1711
1712 srcu_read_unlock(&kfd_processes_srcu, idx);
1713
1714 return ret_p;
1715 }
1716
1717 /* This increments the process->ref counter. */
kfd_lookup_process_by_mm(const struct mm_struct * mm)1718 struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm)
1719 {
1720 struct kfd_process *p;
1721
1722 int idx = srcu_read_lock(&kfd_processes_srcu);
1723
1724 p = find_process_by_mm(mm);
1725 if (p)
1726 kref_get(&p->ref);
1727
1728 srcu_read_unlock(&kfd_processes_srcu, idx);
1729
1730 return p;
1731 }
1732
1733 /* kfd_process_evict_queues - Evict all user queues of a process
1734 *
1735 * Eviction is reference-counted per process-device. This means multiple
1736 * evictions from different sources can be nested safely.
1737 */
kfd_process_evict_queues(struct kfd_process * p,uint32_t trigger)1738 int kfd_process_evict_queues(struct kfd_process *p, uint32_t trigger)
1739 {
1740 int r = 0;
1741 int i;
1742 unsigned int n_evicted = 0;
1743
1744 for (i = 0; i < p->n_pdds; i++) {
1745 struct kfd_process_device *pdd = p->pdds[i];
1746
1747 kfd_smi_event_queue_eviction(pdd->dev, p->lead_thread->pid,
1748 trigger);
1749
1750 r = pdd->dev->dqm->ops.evict_process_queues(pdd->dev->dqm,
1751 &pdd->qpd);
1752 /* evict return -EIO if HWS is hang or asic is resetting, in this case
1753 * we would like to set all the queues to be in evicted state to prevent
1754 * them been add back since they actually not be saved right now.
1755 */
1756 if (r && r != -EIO) {
1757 pr_err("Failed to evict process queues\n");
1758 goto fail;
1759 }
1760 n_evicted++;
1761 }
1762
1763 return r;
1764
1765 fail:
1766 /* To keep state consistent, roll back partial eviction by
1767 * restoring queues
1768 */
1769 for (i = 0; i < p->n_pdds; i++) {
1770 struct kfd_process_device *pdd = p->pdds[i];
1771
1772 if (n_evicted == 0)
1773 break;
1774
1775 kfd_smi_event_queue_restore(pdd->dev, p->lead_thread->pid);
1776
1777 if (pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
1778 &pdd->qpd))
1779 pr_err("Failed to restore queues\n");
1780
1781 n_evicted--;
1782 }
1783
1784 return r;
1785 }
1786
1787 /* kfd_process_restore_queues - Restore all user queues of a process */
kfd_process_restore_queues(struct kfd_process * p)1788 int kfd_process_restore_queues(struct kfd_process *p)
1789 {
1790 int r, ret = 0;
1791 int i;
1792
1793 for (i = 0; i < p->n_pdds; i++) {
1794 struct kfd_process_device *pdd = p->pdds[i];
1795
1796 kfd_smi_event_queue_restore(pdd->dev, p->lead_thread->pid);
1797
1798 r = pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
1799 &pdd->qpd);
1800 if (r) {
1801 pr_err("Failed to restore process queues\n");
1802 if (!ret)
1803 ret = r;
1804 }
1805 }
1806
1807 return ret;
1808 }
1809
kfd_process_gpuidx_from_gpuid(struct kfd_process * p,uint32_t gpu_id)1810 int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id)
1811 {
1812 int i;
1813
1814 for (i = 0; i < p->n_pdds; i++)
1815 if (p->pdds[i] && gpu_id == p->pdds[i]->user_gpu_id)
1816 return i;
1817 return -EINVAL;
1818 }
1819
1820 int
kfd_process_gpuid_from_adev(struct kfd_process * p,struct amdgpu_device * adev,uint32_t * gpuid,uint32_t * gpuidx)1821 kfd_process_gpuid_from_adev(struct kfd_process *p, struct amdgpu_device *adev,
1822 uint32_t *gpuid, uint32_t *gpuidx)
1823 {
1824 int i;
1825
1826 for (i = 0; i < p->n_pdds; i++)
1827 if (p->pdds[i] && p->pdds[i]->dev->adev == adev) {
1828 *gpuid = p->pdds[i]->user_gpu_id;
1829 *gpuidx = i;
1830 return 0;
1831 }
1832 return -EINVAL;
1833 }
1834
evict_process_worker(struct work_struct * work)1835 static void evict_process_worker(struct work_struct *work)
1836 {
1837 int ret;
1838 struct kfd_process *p;
1839 struct delayed_work *dwork;
1840
1841 dwork = to_delayed_work(work);
1842
1843 /* Process termination destroys this worker thread. So during the
1844 * lifetime of this thread, kfd_process p will be valid
1845 */
1846 p = container_of(dwork, struct kfd_process, eviction_work);
1847 WARN_ONCE(p->last_eviction_seqno != p->ef->seqno,
1848 "Eviction fence mismatch\n");
1849
1850 /* Narrow window of overlap between restore and evict work
1851 * item is possible. Once amdgpu_amdkfd_gpuvm_restore_process_bos
1852 * unreserves KFD BOs, it is possible to evicted again. But
1853 * restore has few more steps of finish. So lets wait for any
1854 * previous restore work to complete
1855 */
1856 flush_delayed_work(&p->restore_work);
1857
1858 pr_debug("Started evicting pasid 0x%x\n", p->pasid);
1859 ret = kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_TRIGGER_TTM);
1860 if (!ret) {
1861 dma_fence_signal(p->ef);
1862 dma_fence_put(p->ef);
1863 p->ef = NULL;
1864 queue_delayed_work(kfd_restore_wq, &p->restore_work,
1865 msecs_to_jiffies(PROCESS_RESTORE_TIME_MS));
1866
1867 pr_debug("Finished evicting pasid 0x%x\n", p->pasid);
1868 } else
1869 pr_err("Failed to evict queues of pasid 0x%x\n", p->pasid);
1870 }
1871
restore_process_worker(struct work_struct * work)1872 static void restore_process_worker(struct work_struct *work)
1873 {
1874 struct delayed_work *dwork;
1875 struct kfd_process *p;
1876 int ret = 0;
1877
1878 dwork = to_delayed_work(work);
1879
1880 /* Process termination destroys this worker thread. So during the
1881 * lifetime of this thread, kfd_process p will be valid
1882 */
1883 p = container_of(dwork, struct kfd_process, restore_work);
1884 pr_debug("Started restoring pasid 0x%x\n", p->pasid);
1885
1886 /* Setting last_restore_timestamp before successful restoration.
1887 * Otherwise this would have to be set by KGD (restore_process_bos)
1888 * before KFD BOs are unreserved. If not, the process can be evicted
1889 * again before the timestamp is set.
1890 * If restore fails, the timestamp will be set again in the next
1891 * attempt. This would mean that the minimum GPU quanta would be
1892 * PROCESS_ACTIVE_TIME_MS - (time to execute the following two
1893 * functions)
1894 */
1895
1896 p->last_restore_timestamp = get_jiffies_64();
1897 ret = amdgpu_amdkfd_gpuvm_restore_process_bos(p->kgd_process_info,
1898 &p->ef);
1899 if (ret) {
1900 pr_debug("Failed to restore BOs of pasid 0x%x, retry after %d ms\n",
1901 p->pasid, PROCESS_BACK_OFF_TIME_MS);
1902 ret = queue_delayed_work(kfd_restore_wq, &p->restore_work,
1903 msecs_to_jiffies(PROCESS_BACK_OFF_TIME_MS));
1904 WARN(!ret, "reschedule restore work failed\n");
1905 return;
1906 }
1907
1908 ret = kfd_process_restore_queues(p);
1909 if (!ret)
1910 pr_debug("Finished restoring pasid 0x%x\n", p->pasid);
1911 else
1912 pr_err("Failed to restore queues of pasid 0x%x\n", p->pasid);
1913 }
1914
kfd_suspend_all_processes(void)1915 void kfd_suspend_all_processes(void)
1916 {
1917 struct kfd_process *p;
1918 unsigned int temp;
1919 int idx = srcu_read_lock(&kfd_processes_srcu);
1920
1921 WARN(debug_evictions, "Evicting all processes");
1922 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1923 cancel_delayed_work_sync(&p->eviction_work);
1924 cancel_delayed_work_sync(&p->restore_work);
1925
1926 if (kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_TRIGGER_SUSPEND))
1927 pr_err("Failed to suspend process 0x%x\n", p->pasid);
1928 dma_fence_signal(p->ef);
1929 dma_fence_put(p->ef);
1930 p->ef = NULL;
1931 }
1932 srcu_read_unlock(&kfd_processes_srcu, idx);
1933 }
1934
kfd_resume_all_processes(void)1935 int kfd_resume_all_processes(void)
1936 {
1937 struct kfd_process *p;
1938 unsigned int temp;
1939 int ret = 0, idx = srcu_read_lock(&kfd_processes_srcu);
1940
1941 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1942 if (!queue_delayed_work(kfd_restore_wq, &p->restore_work, 0)) {
1943 pr_err("Restore process %d failed during resume\n",
1944 p->pasid);
1945 ret = -EFAULT;
1946 }
1947 }
1948 srcu_read_unlock(&kfd_processes_srcu, idx);
1949 return ret;
1950 }
1951
kfd_reserved_mem_mmap(struct kfd_dev * dev,struct kfd_process * process,struct vm_area_struct * vma)1952 int kfd_reserved_mem_mmap(struct kfd_dev *dev, struct kfd_process *process,
1953 struct vm_area_struct *vma)
1954 {
1955 struct kfd_process_device *pdd;
1956 struct qcm_process_device *qpd;
1957
1958 if ((vma->vm_end - vma->vm_start) != KFD_CWSR_TBA_TMA_SIZE) {
1959 pr_err("Incorrect CWSR mapping size.\n");
1960 return -EINVAL;
1961 }
1962
1963 pdd = kfd_get_process_device_data(dev, process);
1964 if (!pdd)
1965 return -EINVAL;
1966 qpd = &pdd->qpd;
1967
1968 qpd->cwsr_kaddr = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
1969 get_order(KFD_CWSR_TBA_TMA_SIZE));
1970 if (!qpd->cwsr_kaddr) {
1971 pr_err("Error allocating per process CWSR buffer.\n");
1972 return -ENOMEM;
1973 }
1974
1975 vma->vm_flags |= VM_IO | VM_DONTCOPY | VM_DONTEXPAND
1976 | VM_NORESERVE | VM_DONTDUMP | VM_PFNMAP;
1977 /* Mapping pages to user process */
1978 return remap_pfn_range(vma, vma->vm_start,
1979 PFN_DOWN(__pa(qpd->cwsr_kaddr)),
1980 KFD_CWSR_TBA_TMA_SIZE, vma->vm_page_prot);
1981 }
1982
kfd_flush_tlb(struct kfd_process_device * pdd,enum TLB_FLUSH_TYPE type)1983 void kfd_flush_tlb(struct kfd_process_device *pdd, enum TLB_FLUSH_TYPE type)
1984 {
1985 struct amdgpu_vm *vm = drm_priv_to_vm(pdd->drm_priv);
1986 uint64_t tlb_seq = amdgpu_vm_tlb_seq(vm);
1987 struct kfd_dev *dev = pdd->dev;
1988
1989 /*
1990 * It can be that we race and lose here, but that is extremely unlikely
1991 * and the worst thing which could happen is that we flush the changes
1992 * into the TLB once more which is harmless.
1993 */
1994 if (atomic64_xchg(&pdd->tlb_seq, tlb_seq) == tlb_seq)
1995 return;
1996
1997 if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
1998 /* Nothing to flush until a VMID is assigned, which
1999 * only happens when the first queue is created.
2000 */
2001 if (pdd->qpd.vmid)
2002 amdgpu_amdkfd_flush_gpu_tlb_vmid(dev->adev,
2003 pdd->qpd.vmid);
2004 } else {
2005 amdgpu_amdkfd_flush_gpu_tlb_pasid(dev->adev,
2006 pdd->process->pasid, type);
2007 }
2008 }
2009
kfd_process_device_data_by_id(struct kfd_process * p,uint32_t gpu_id)2010 struct kfd_process_device *kfd_process_device_data_by_id(struct kfd_process *p, uint32_t gpu_id)
2011 {
2012 int i;
2013
2014 if (gpu_id) {
2015 for (i = 0; i < p->n_pdds; i++) {
2016 struct kfd_process_device *pdd = p->pdds[i];
2017
2018 if (pdd->user_gpu_id == gpu_id)
2019 return pdd;
2020 }
2021 }
2022 return NULL;
2023 }
2024
kfd_process_get_user_gpu_id(struct kfd_process * p,uint32_t actual_gpu_id)2025 int kfd_process_get_user_gpu_id(struct kfd_process *p, uint32_t actual_gpu_id)
2026 {
2027 int i;
2028
2029 if (!actual_gpu_id)
2030 return 0;
2031
2032 for (i = 0; i < p->n_pdds; i++) {
2033 struct kfd_process_device *pdd = p->pdds[i];
2034
2035 if (pdd->dev->id == actual_gpu_id)
2036 return pdd->user_gpu_id;
2037 }
2038 return -EINVAL;
2039 }
2040
2041 #if defined(CONFIG_DEBUG_FS)
2042
kfd_debugfs_mqds_by_process(struct seq_file * m,void * data)2043 int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data)
2044 {
2045 struct kfd_process *p;
2046 unsigned int temp;
2047 int r = 0;
2048
2049 int idx = srcu_read_lock(&kfd_processes_srcu);
2050
2051 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
2052 seq_printf(m, "Process %d PASID 0x%x:\n",
2053 p->lead_thread->tgid, p->pasid);
2054
2055 mutex_lock(&p->mutex);
2056 r = pqm_debugfs_mqds(m, &p->pqm);
2057 mutex_unlock(&p->mutex);
2058
2059 if (r)
2060 break;
2061 }
2062
2063 srcu_read_unlock(&kfd_processes_srcu, idx);
2064
2065 return r;
2066 }
2067
2068 #endif
2069
2070