1 /*
2  * Copyright 2015-2017 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 
23 #include <linux/pci.h>
24 #include <linux/acpi.h>
25 #include "kfd_crat.h"
26 #include "kfd_priv.h"
27 #include "kfd_topology.h"
28 #include "kfd_iommu.h"
29 #include "amdgpu_amdkfd.h"
30 
31 /* GPU Processor ID base for dGPUs for which VCRAT needs to be created.
32  * GPU processor ID are expressed with Bit[31]=1.
33  * The base is set to 0x8000_0000 + 0x1000 to avoid collision with GPU IDs
34  * used in the CRAT.
35  */
36 static uint32_t gpu_processor_id_low = 0x80001000;
37 
38 /* Return the next available gpu_processor_id and increment it for next GPU
39  *	@total_cu_count - Total CUs present in the GPU including ones
40  *			  masked off
41  */
get_and_inc_gpu_processor_id(unsigned int total_cu_count)42 static inline unsigned int get_and_inc_gpu_processor_id(
43 				unsigned int total_cu_count)
44 {
45 	int current_id = gpu_processor_id_low;
46 
47 	gpu_processor_id_low += total_cu_count;
48 	return current_id;
49 }
50 
51 /* Static table to describe GPU Cache information */
52 struct kfd_gpu_cache_info {
53 	uint32_t	cache_size;
54 	uint32_t	cache_level;
55 	uint32_t	flags;
56 	/* Indicates how many Compute Units share this cache
57 	 * Value = 1 indicates the cache is not shared
58 	 */
59 	uint32_t	num_cu_shared;
60 };
61 
62 static struct kfd_gpu_cache_info kaveri_cache_info[] = {
63 	{
64 		/* TCP L1 Cache per CU */
65 		.cache_size = 16,
66 		.cache_level = 1,
67 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
68 				CRAT_CACHE_FLAGS_DATA_CACHE |
69 				CRAT_CACHE_FLAGS_SIMD_CACHE),
70 		.num_cu_shared = 1,
71 
72 	},
73 	{
74 		/* Scalar L1 Instruction Cache (in SQC module) per bank */
75 		.cache_size = 16,
76 		.cache_level = 1,
77 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
78 				CRAT_CACHE_FLAGS_INST_CACHE |
79 				CRAT_CACHE_FLAGS_SIMD_CACHE),
80 		.num_cu_shared = 2,
81 	},
82 	{
83 		/* Scalar L1 Data Cache (in SQC module) per bank */
84 		.cache_size = 8,
85 		.cache_level = 1,
86 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
87 				CRAT_CACHE_FLAGS_DATA_CACHE |
88 				CRAT_CACHE_FLAGS_SIMD_CACHE),
89 		.num_cu_shared = 2,
90 	},
91 
92 	/* TODO: Add L2 Cache information */
93 };
94 
95 
96 static struct kfd_gpu_cache_info carrizo_cache_info[] = {
97 	{
98 		/* TCP L1 Cache per CU */
99 		.cache_size = 16,
100 		.cache_level = 1,
101 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
102 				CRAT_CACHE_FLAGS_DATA_CACHE |
103 				CRAT_CACHE_FLAGS_SIMD_CACHE),
104 		.num_cu_shared = 1,
105 	},
106 	{
107 		/* Scalar L1 Instruction Cache (in SQC module) per bank */
108 		.cache_size = 8,
109 		.cache_level = 1,
110 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
111 				CRAT_CACHE_FLAGS_INST_CACHE |
112 				CRAT_CACHE_FLAGS_SIMD_CACHE),
113 		.num_cu_shared = 4,
114 	},
115 	{
116 		/* Scalar L1 Data Cache (in SQC module) per bank. */
117 		.cache_size = 4,
118 		.cache_level = 1,
119 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
120 				CRAT_CACHE_FLAGS_DATA_CACHE |
121 				CRAT_CACHE_FLAGS_SIMD_CACHE),
122 		.num_cu_shared = 4,
123 	},
124 
125 	/* TODO: Add L2 Cache information */
126 };
127 
128 /* NOTE: In future if more information is added to struct kfd_gpu_cache_info
129  * the following ASICs may need a separate table.
130  */
131 #define hawaii_cache_info kaveri_cache_info
132 #define tonga_cache_info carrizo_cache_info
133 #define fiji_cache_info  carrizo_cache_info
134 #define polaris10_cache_info carrizo_cache_info
135 #define polaris11_cache_info carrizo_cache_info
136 #define polaris12_cache_info carrizo_cache_info
137 #define vegam_cache_info carrizo_cache_info
138 /* TODO - check & update Vega10 cache details */
139 #define vega10_cache_info carrizo_cache_info
140 #define raven_cache_info carrizo_cache_info
141 /* TODO - check & update Navi10 cache details */
142 #define navi10_cache_info carrizo_cache_info
143 
kfd_populated_cu_info_cpu(struct kfd_topology_device * dev,struct crat_subtype_computeunit * cu)144 static void kfd_populated_cu_info_cpu(struct kfd_topology_device *dev,
145 		struct crat_subtype_computeunit *cu)
146 {
147 	dev->node_props.cpu_cores_count = cu->num_cpu_cores;
148 	dev->node_props.cpu_core_id_base = cu->processor_id_low;
149 	if (cu->hsa_capability & CRAT_CU_FLAGS_IOMMU_PRESENT)
150 		dev->node_props.capability |= HSA_CAP_ATS_PRESENT;
151 
152 	pr_debug("CU CPU: cores=%d id_base=%d\n", cu->num_cpu_cores,
153 			cu->processor_id_low);
154 }
155 
kfd_populated_cu_info_gpu(struct kfd_topology_device * dev,struct crat_subtype_computeunit * cu)156 static void kfd_populated_cu_info_gpu(struct kfd_topology_device *dev,
157 		struct crat_subtype_computeunit *cu)
158 {
159 	dev->node_props.simd_id_base = cu->processor_id_low;
160 	dev->node_props.simd_count = cu->num_simd_cores;
161 	dev->node_props.lds_size_in_kb = cu->lds_size_in_kb;
162 	dev->node_props.max_waves_per_simd = cu->max_waves_simd;
163 	dev->node_props.wave_front_size = cu->wave_front_size;
164 	dev->node_props.array_count = cu->array_count;
165 	dev->node_props.cu_per_simd_array = cu->num_cu_per_array;
166 	dev->node_props.simd_per_cu = cu->num_simd_per_cu;
167 	dev->node_props.max_slots_scratch_cu = cu->max_slots_scatch_cu;
168 	if (cu->hsa_capability & CRAT_CU_FLAGS_HOT_PLUGGABLE)
169 		dev->node_props.capability |= HSA_CAP_HOT_PLUGGABLE;
170 	pr_debug("CU GPU: id_base=%d\n", cu->processor_id_low);
171 }
172 
173 /* kfd_parse_subtype_cu - parse compute unit subtypes and attach it to correct
174  * topology device present in the device_list
175  */
kfd_parse_subtype_cu(struct crat_subtype_computeunit * cu,struct list_head * device_list)176 static int kfd_parse_subtype_cu(struct crat_subtype_computeunit *cu,
177 				struct list_head *device_list)
178 {
179 	struct kfd_topology_device *dev;
180 
181 	pr_debug("Found CU entry in CRAT table with proximity_domain=%d caps=%x\n",
182 			cu->proximity_domain, cu->hsa_capability);
183 	list_for_each_entry(dev, device_list, list) {
184 		if (cu->proximity_domain == dev->proximity_domain) {
185 			if (cu->flags & CRAT_CU_FLAGS_CPU_PRESENT)
186 				kfd_populated_cu_info_cpu(dev, cu);
187 
188 			if (cu->flags & CRAT_CU_FLAGS_GPU_PRESENT)
189 				kfd_populated_cu_info_gpu(dev, cu);
190 			break;
191 		}
192 	}
193 
194 	return 0;
195 }
196 
197 static struct kfd_mem_properties *
find_subtype_mem(uint32_t heap_type,uint32_t flags,uint32_t width,struct kfd_topology_device * dev)198 find_subtype_mem(uint32_t heap_type, uint32_t flags, uint32_t width,
199 		struct kfd_topology_device *dev)
200 {
201 	struct kfd_mem_properties *props;
202 
203 	list_for_each_entry(props, &dev->mem_props, list) {
204 		if (props->heap_type == heap_type
205 				&& props->flags == flags
206 				&& props->width == width)
207 			return props;
208 	}
209 
210 	return NULL;
211 }
212 /* kfd_parse_subtype_mem - parse memory subtypes and attach it to correct
213  * topology device present in the device_list
214  */
kfd_parse_subtype_mem(struct crat_subtype_memory * mem,struct list_head * device_list)215 static int kfd_parse_subtype_mem(struct crat_subtype_memory *mem,
216 				struct list_head *device_list)
217 {
218 	struct kfd_mem_properties *props;
219 	struct kfd_topology_device *dev;
220 	uint32_t heap_type;
221 	uint64_t size_in_bytes;
222 	uint32_t flags = 0;
223 	uint32_t width;
224 
225 	pr_debug("Found memory entry in CRAT table with proximity_domain=%d\n",
226 			mem->proximity_domain);
227 	list_for_each_entry(dev, device_list, list) {
228 		if (mem->proximity_domain == dev->proximity_domain) {
229 			/* We're on GPU node */
230 			if (dev->node_props.cpu_cores_count == 0) {
231 				/* APU */
232 				if (mem->visibility_type == 0)
233 					heap_type =
234 						HSA_MEM_HEAP_TYPE_FB_PRIVATE;
235 				/* dGPU */
236 				else
237 					heap_type = mem->visibility_type;
238 			} else
239 				heap_type = HSA_MEM_HEAP_TYPE_SYSTEM;
240 
241 			if (mem->flags & CRAT_MEM_FLAGS_HOT_PLUGGABLE)
242 				flags |= HSA_MEM_FLAGS_HOT_PLUGGABLE;
243 			if (mem->flags & CRAT_MEM_FLAGS_NON_VOLATILE)
244 				flags |= HSA_MEM_FLAGS_NON_VOLATILE;
245 
246 			size_in_bytes =
247 				((uint64_t)mem->length_high << 32) +
248 							mem->length_low;
249 			width = mem->width;
250 
251 			/* Multiple banks of the same type are aggregated into
252 			 * one. User mode doesn't care about multiple physical
253 			 * memory segments. It's managed as a single virtual
254 			 * heap for user mode.
255 			 */
256 			props = find_subtype_mem(heap_type, flags, width, dev);
257 			if (props) {
258 				props->size_in_bytes += size_in_bytes;
259 				break;
260 			}
261 
262 			props = kfd_alloc_struct(props);
263 			if (!props)
264 				return -ENOMEM;
265 
266 			props->heap_type = heap_type;
267 			props->flags = flags;
268 			props->size_in_bytes = size_in_bytes;
269 			props->width = width;
270 
271 			dev->node_props.mem_banks_count++;
272 			list_add_tail(&props->list, &dev->mem_props);
273 
274 			break;
275 		}
276 	}
277 
278 	return 0;
279 }
280 
281 /* kfd_parse_subtype_cache - parse cache subtypes and attach it to correct
282  * topology device present in the device_list
283  */
kfd_parse_subtype_cache(struct crat_subtype_cache * cache,struct list_head * device_list)284 static int kfd_parse_subtype_cache(struct crat_subtype_cache *cache,
285 			struct list_head *device_list)
286 {
287 	struct kfd_cache_properties *props;
288 	struct kfd_topology_device *dev;
289 	uint32_t id;
290 	uint32_t total_num_of_cu;
291 
292 	id = cache->processor_id_low;
293 
294 	pr_debug("Found cache entry in CRAT table with processor_id=%d\n", id);
295 	list_for_each_entry(dev, device_list, list) {
296 		total_num_of_cu = (dev->node_props.array_count *
297 					dev->node_props.cu_per_simd_array);
298 
299 		/* Cache infomration in CRAT doesn't have proximity_domain
300 		 * information as it is associated with a CPU core or GPU
301 		 * Compute Unit. So map the cache using CPU core Id or SIMD
302 		 * (GPU) ID.
303 		 * TODO: This works because currently we can safely assume that
304 		 *  Compute Units are parsed before caches are parsed. In
305 		 *  future, remove this dependency
306 		 */
307 		if ((id >= dev->node_props.cpu_core_id_base &&
308 			id <= dev->node_props.cpu_core_id_base +
309 				dev->node_props.cpu_cores_count) ||
310 			(id >= dev->node_props.simd_id_base &&
311 			id < dev->node_props.simd_id_base +
312 				total_num_of_cu)) {
313 			props = kfd_alloc_struct(props);
314 			if (!props)
315 				return -ENOMEM;
316 
317 			props->processor_id_low = id;
318 			props->cache_level = cache->cache_level;
319 			props->cache_size = cache->cache_size;
320 			props->cacheline_size = cache->cache_line_size;
321 			props->cachelines_per_tag = cache->lines_per_tag;
322 			props->cache_assoc = cache->associativity;
323 			props->cache_latency = cache->cache_latency;
324 			memcpy(props->sibling_map, cache->sibling_map,
325 					sizeof(props->sibling_map));
326 
327 			if (cache->flags & CRAT_CACHE_FLAGS_DATA_CACHE)
328 				props->cache_type |= HSA_CACHE_TYPE_DATA;
329 			if (cache->flags & CRAT_CACHE_FLAGS_INST_CACHE)
330 				props->cache_type |= HSA_CACHE_TYPE_INSTRUCTION;
331 			if (cache->flags & CRAT_CACHE_FLAGS_CPU_CACHE)
332 				props->cache_type |= HSA_CACHE_TYPE_CPU;
333 			if (cache->flags & CRAT_CACHE_FLAGS_SIMD_CACHE)
334 				props->cache_type |= HSA_CACHE_TYPE_HSACU;
335 
336 			dev->cache_count++;
337 			dev->node_props.caches_count++;
338 			list_add_tail(&props->list, &dev->cache_props);
339 
340 			break;
341 		}
342 	}
343 
344 	return 0;
345 }
346 
347 /* kfd_parse_subtype_iolink - parse iolink subtypes and attach it to correct
348  * topology device present in the device_list
349  */
kfd_parse_subtype_iolink(struct crat_subtype_iolink * iolink,struct list_head * device_list)350 static int kfd_parse_subtype_iolink(struct crat_subtype_iolink *iolink,
351 					struct list_head *device_list)
352 {
353 	struct kfd_iolink_properties *props = NULL, *props2;
354 	struct kfd_topology_device *dev, *to_dev;
355 	uint32_t id_from;
356 	uint32_t id_to;
357 
358 	id_from = iolink->proximity_domain_from;
359 	id_to = iolink->proximity_domain_to;
360 
361 	pr_debug("Found IO link entry in CRAT table with id_from=%d, id_to %d\n",
362 			id_from, id_to);
363 	list_for_each_entry(dev, device_list, list) {
364 		if (id_from == dev->proximity_domain) {
365 			props = kfd_alloc_struct(props);
366 			if (!props)
367 				return -ENOMEM;
368 
369 			props->node_from = id_from;
370 			props->node_to = id_to;
371 			props->ver_maj = iolink->version_major;
372 			props->ver_min = iolink->version_minor;
373 			props->iolink_type = iolink->io_interface_type;
374 
375 			if (props->iolink_type == CRAT_IOLINK_TYPE_PCIEXPRESS)
376 				props->weight = 20;
377 			else if (props->iolink_type == CRAT_IOLINK_TYPE_XGMI)
378 				props->weight = 15 * iolink->num_hops_xgmi;
379 			else
380 				props->weight = node_distance(id_from, id_to);
381 
382 			props->min_latency = iolink->minimum_latency;
383 			props->max_latency = iolink->maximum_latency;
384 			props->min_bandwidth = iolink->minimum_bandwidth_mbs;
385 			props->max_bandwidth = iolink->maximum_bandwidth_mbs;
386 			props->rec_transfer_size =
387 					iolink->recommended_transfer_size;
388 
389 			dev->io_link_count++;
390 			dev->node_props.io_links_count++;
391 			list_add_tail(&props->list, &dev->io_link_props);
392 			break;
393 		}
394 	}
395 
396 	/* CPU topology is created before GPUs are detected, so CPU->GPU
397 	 * links are not built at that time. If a PCIe type is discovered, it
398 	 * means a GPU is detected and we are adding GPU->CPU to the topology.
399 	 * At this time, also add the corresponded CPU->GPU link if GPU
400 	 * is large bar.
401 	 * For xGMI, we only added the link with one direction in the crat
402 	 * table, add corresponded reversed direction link now.
403 	 */
404 	if (props && (iolink->flags & CRAT_IOLINK_FLAGS_BI_DIRECTIONAL)) {
405 		to_dev = kfd_topology_device_by_proximity_domain(id_to);
406 		if (!to_dev)
407 			return -ENODEV;
408 		/* same everything but the other direction */
409 		props2 = kmemdup(props, sizeof(*props2), GFP_KERNEL);
410 		props2->node_from = id_to;
411 		props2->node_to = id_from;
412 		props2->kobj = NULL;
413 		to_dev->io_link_count++;
414 		to_dev->node_props.io_links_count++;
415 		list_add_tail(&props2->list, &to_dev->io_link_props);
416 	}
417 
418 	return 0;
419 }
420 
421 /* kfd_parse_subtype - parse subtypes and attach it to correct topology device
422  * present in the device_list
423  *	@sub_type_hdr - subtype section of crat_image
424  *	@device_list - list of topology devices present in this crat_image
425  */
kfd_parse_subtype(struct crat_subtype_generic * sub_type_hdr,struct list_head * device_list)426 static int kfd_parse_subtype(struct crat_subtype_generic *sub_type_hdr,
427 				struct list_head *device_list)
428 {
429 	struct crat_subtype_computeunit *cu;
430 	struct crat_subtype_memory *mem;
431 	struct crat_subtype_cache *cache;
432 	struct crat_subtype_iolink *iolink;
433 	int ret = 0;
434 
435 	switch (sub_type_hdr->type) {
436 	case CRAT_SUBTYPE_COMPUTEUNIT_AFFINITY:
437 		cu = (struct crat_subtype_computeunit *)sub_type_hdr;
438 		ret = kfd_parse_subtype_cu(cu, device_list);
439 		break;
440 	case CRAT_SUBTYPE_MEMORY_AFFINITY:
441 		mem = (struct crat_subtype_memory *)sub_type_hdr;
442 		ret = kfd_parse_subtype_mem(mem, device_list);
443 		break;
444 	case CRAT_SUBTYPE_CACHE_AFFINITY:
445 		cache = (struct crat_subtype_cache *)sub_type_hdr;
446 		ret = kfd_parse_subtype_cache(cache, device_list);
447 		break;
448 	case CRAT_SUBTYPE_TLB_AFFINITY:
449 		/*
450 		 * For now, nothing to do here
451 		 */
452 		pr_debug("Found TLB entry in CRAT table (not processing)\n");
453 		break;
454 	case CRAT_SUBTYPE_CCOMPUTE_AFFINITY:
455 		/*
456 		 * For now, nothing to do here
457 		 */
458 		pr_debug("Found CCOMPUTE entry in CRAT table (not processing)\n");
459 		break;
460 	case CRAT_SUBTYPE_IOLINK_AFFINITY:
461 		iolink = (struct crat_subtype_iolink *)sub_type_hdr;
462 		ret = kfd_parse_subtype_iolink(iolink, device_list);
463 		break;
464 	default:
465 		pr_warn("Unknown subtype %d in CRAT\n",
466 				sub_type_hdr->type);
467 	}
468 
469 	return ret;
470 }
471 
472 /* kfd_parse_crat_table - parse CRAT table. For each node present in CRAT
473  * create a kfd_topology_device and add in to device_list. Also parse
474  * CRAT subtypes and attach it to appropriate kfd_topology_device
475  *	@crat_image - input image containing CRAT
476  *	@device_list - [OUT] list of kfd_topology_device generated after
477  *		       parsing crat_image
478  *	@proximity_domain - Proximity domain of the first device in the table
479  *
480  *	Return - 0 if successful else -ve value
481  */
kfd_parse_crat_table(void * crat_image,struct list_head * device_list,uint32_t proximity_domain)482 int kfd_parse_crat_table(void *crat_image, struct list_head *device_list,
483 			 uint32_t proximity_domain)
484 {
485 	struct kfd_topology_device *top_dev = NULL;
486 	struct crat_subtype_generic *sub_type_hdr;
487 	uint16_t node_id;
488 	int ret = 0;
489 	struct crat_header *crat_table = (struct crat_header *)crat_image;
490 	uint16_t num_nodes;
491 	uint32_t image_len;
492 
493 	if (!crat_image)
494 		return -EINVAL;
495 
496 	if (!list_empty(device_list)) {
497 		pr_warn("Error device list should be empty\n");
498 		return -EINVAL;
499 	}
500 
501 	num_nodes = crat_table->num_domains;
502 	image_len = crat_table->length;
503 
504 	pr_info("Parsing CRAT table with %d nodes\n", num_nodes);
505 
506 	for (node_id = 0; node_id < num_nodes; node_id++) {
507 		top_dev = kfd_create_topology_device(device_list);
508 		if (!top_dev)
509 			break;
510 		top_dev->proximity_domain = proximity_domain++;
511 	}
512 
513 	if (!top_dev) {
514 		ret = -ENOMEM;
515 		goto err;
516 	}
517 
518 	memcpy(top_dev->oem_id, crat_table->oem_id, CRAT_OEMID_LENGTH);
519 	memcpy(top_dev->oem_table_id, crat_table->oem_table_id,
520 			CRAT_OEMTABLEID_LENGTH);
521 	top_dev->oem_revision = crat_table->oem_revision;
522 
523 	sub_type_hdr = (struct crat_subtype_generic *)(crat_table+1);
524 	while ((char *)sub_type_hdr + sizeof(struct crat_subtype_generic) <
525 			((char *)crat_image) + image_len) {
526 		if (sub_type_hdr->flags & CRAT_SUBTYPE_FLAGS_ENABLED) {
527 			ret = kfd_parse_subtype(sub_type_hdr, device_list);
528 			if (ret)
529 				break;
530 		}
531 
532 		sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
533 				sub_type_hdr->length);
534 	}
535 
536 err:
537 	if (ret)
538 		kfd_release_topology_device_list(device_list);
539 
540 	return ret;
541 }
542 
543 /* Helper function. See kfd_fill_gpu_cache_info for parameter description */
fill_in_pcache(struct crat_subtype_cache * pcache,struct kfd_gpu_cache_info * pcache_info,struct kfd_cu_info * cu_info,int mem_available,int cu_bitmask,int cache_type,unsigned int cu_processor_id,int cu_block)544 static int fill_in_pcache(struct crat_subtype_cache *pcache,
545 				struct kfd_gpu_cache_info *pcache_info,
546 				struct kfd_cu_info *cu_info,
547 				int mem_available,
548 				int cu_bitmask,
549 				int cache_type, unsigned int cu_processor_id,
550 				int cu_block)
551 {
552 	unsigned int cu_sibling_map_mask;
553 	int first_active_cu;
554 
555 	/* First check if enough memory is available */
556 	if (sizeof(struct crat_subtype_cache) > mem_available)
557 		return -ENOMEM;
558 
559 	cu_sibling_map_mask = cu_bitmask;
560 	cu_sibling_map_mask >>= cu_block;
561 	cu_sibling_map_mask &=
562 		((1 << pcache_info[cache_type].num_cu_shared) - 1);
563 	first_active_cu = ffs(cu_sibling_map_mask);
564 
565 	/* CU could be inactive. In case of shared cache find the first active
566 	 * CU. and incase of non-shared cache check if the CU is inactive. If
567 	 * inactive active skip it
568 	 */
569 	if (first_active_cu) {
570 		memset(pcache, 0, sizeof(struct crat_subtype_cache));
571 		pcache->type = CRAT_SUBTYPE_CACHE_AFFINITY;
572 		pcache->length = sizeof(struct crat_subtype_cache);
573 		pcache->flags = pcache_info[cache_type].flags;
574 		pcache->processor_id_low = cu_processor_id
575 					 + (first_active_cu - 1);
576 		pcache->cache_level = pcache_info[cache_type].cache_level;
577 		pcache->cache_size = pcache_info[cache_type].cache_size;
578 
579 		/* Sibling map is w.r.t processor_id_low, so shift out
580 		 * inactive CU
581 		 */
582 		cu_sibling_map_mask =
583 			cu_sibling_map_mask >> (first_active_cu - 1);
584 
585 		pcache->sibling_map[0] = (uint8_t)(cu_sibling_map_mask & 0xFF);
586 		pcache->sibling_map[1] =
587 				(uint8_t)((cu_sibling_map_mask >> 8) & 0xFF);
588 		pcache->sibling_map[2] =
589 				(uint8_t)((cu_sibling_map_mask >> 16) & 0xFF);
590 		pcache->sibling_map[3] =
591 				(uint8_t)((cu_sibling_map_mask >> 24) & 0xFF);
592 		return 0;
593 	}
594 	return 1;
595 }
596 
597 /* kfd_fill_gpu_cache_info - Fill GPU cache info using kfd_gpu_cache_info
598  * tables
599  *
600  *	@kdev - [IN] GPU device
601  *	@gpu_processor_id - [IN] GPU processor ID to which these caches
602  *			    associate
603  *	@available_size - [IN] Amount of memory available in pcache
604  *	@cu_info - [IN] Compute Unit info obtained from KGD
605  *	@pcache - [OUT] memory into which cache data is to be filled in.
606  *	@size_filled - [OUT] amount of data used up in pcache.
607  *	@num_of_entries - [OUT] number of caches added
608  */
kfd_fill_gpu_cache_info(struct kfd_dev * kdev,int gpu_processor_id,int available_size,struct kfd_cu_info * cu_info,struct crat_subtype_cache * pcache,int * size_filled,int * num_of_entries)609 static int kfd_fill_gpu_cache_info(struct kfd_dev *kdev,
610 			int gpu_processor_id,
611 			int available_size,
612 			struct kfd_cu_info *cu_info,
613 			struct crat_subtype_cache *pcache,
614 			int *size_filled,
615 			int *num_of_entries)
616 {
617 	struct kfd_gpu_cache_info *pcache_info;
618 	int num_of_cache_types = 0;
619 	int i, j, k;
620 	int ct = 0;
621 	int mem_available = available_size;
622 	unsigned int cu_processor_id;
623 	int ret;
624 
625 	switch (kdev->device_info->asic_family) {
626 	case CHIP_KAVERI:
627 		pcache_info = kaveri_cache_info;
628 		num_of_cache_types = ARRAY_SIZE(kaveri_cache_info);
629 		break;
630 	case CHIP_HAWAII:
631 		pcache_info = hawaii_cache_info;
632 		num_of_cache_types = ARRAY_SIZE(hawaii_cache_info);
633 		break;
634 	case CHIP_CARRIZO:
635 		pcache_info = carrizo_cache_info;
636 		num_of_cache_types = ARRAY_SIZE(carrizo_cache_info);
637 		break;
638 	case CHIP_TONGA:
639 		pcache_info = tonga_cache_info;
640 		num_of_cache_types = ARRAY_SIZE(tonga_cache_info);
641 		break;
642 	case CHIP_FIJI:
643 		pcache_info = fiji_cache_info;
644 		num_of_cache_types = ARRAY_SIZE(fiji_cache_info);
645 		break;
646 	case CHIP_POLARIS10:
647 		pcache_info = polaris10_cache_info;
648 		num_of_cache_types = ARRAY_SIZE(polaris10_cache_info);
649 		break;
650 	case CHIP_POLARIS11:
651 		pcache_info = polaris11_cache_info;
652 		num_of_cache_types = ARRAY_SIZE(polaris11_cache_info);
653 		break;
654 	case CHIP_POLARIS12:
655 		pcache_info = polaris12_cache_info;
656 		num_of_cache_types = ARRAY_SIZE(polaris12_cache_info);
657 		break;
658 	case CHIP_VEGAM:
659 		pcache_info = vegam_cache_info;
660 		num_of_cache_types = ARRAY_SIZE(vegam_cache_info);
661 		break;
662 	case CHIP_VEGA10:
663 	case CHIP_VEGA12:
664 	case CHIP_VEGA20:
665 	case CHIP_ARCTURUS:
666 		pcache_info = vega10_cache_info;
667 		num_of_cache_types = ARRAY_SIZE(vega10_cache_info);
668 		break;
669 	case CHIP_RAVEN:
670 		pcache_info = raven_cache_info;
671 		num_of_cache_types = ARRAY_SIZE(raven_cache_info);
672 		break;
673 	case CHIP_NAVI10:
674 		pcache_info = navi10_cache_info;
675 		num_of_cache_types = ARRAY_SIZE(navi10_cache_info);
676 		break;
677 	default:
678 		return -EINVAL;
679 	}
680 
681 	*size_filled = 0;
682 	*num_of_entries = 0;
683 
684 	/* For each type of cache listed in the kfd_gpu_cache_info table,
685 	 * go through all available Compute Units.
686 	 * The [i,j,k] loop will
687 	 *		if kfd_gpu_cache_info.num_cu_shared = 1
688 	 *			will parse through all available CU
689 	 *		If (kfd_gpu_cache_info.num_cu_shared != 1)
690 	 *			then it will consider only one CU from
691 	 *			the shared unit
692 	 */
693 
694 	for (ct = 0; ct < num_of_cache_types; ct++) {
695 		cu_processor_id = gpu_processor_id;
696 		for (i = 0; i < cu_info->num_shader_engines; i++) {
697 			for (j = 0; j < cu_info->num_shader_arrays_per_engine;
698 				j++) {
699 				for (k = 0; k < cu_info->num_cu_per_sh;
700 					k += pcache_info[ct].num_cu_shared) {
701 
702 					ret = fill_in_pcache(pcache,
703 						pcache_info,
704 						cu_info,
705 						mem_available,
706 						cu_info->cu_bitmap[i][j],
707 						ct,
708 						cu_processor_id,
709 						k);
710 
711 					if (ret < 0)
712 						break;
713 
714 					if (!ret) {
715 						pcache++;
716 						(*num_of_entries)++;
717 						mem_available -=
718 							sizeof(*pcache);
719 						(*size_filled) +=
720 							sizeof(*pcache);
721 					}
722 
723 					/* Move to next CU block */
724 					cu_processor_id +=
725 						pcache_info[ct].num_cu_shared;
726 				}
727 			}
728 		}
729 	}
730 
731 	pr_debug("Added [%d] GPU cache entries\n", *num_of_entries);
732 
733 	return 0;
734 }
735 
736 /*
737  * kfd_create_crat_image_acpi - Allocates memory for CRAT image and
738  * copies CRAT from ACPI (if available).
739  * NOTE: Call kfd_destroy_crat_image to free CRAT image memory
740  *
741  *	@crat_image: CRAT read from ACPI. If no CRAT in ACPI then
742  *		     crat_image will be NULL
743  *	@size: [OUT] size of crat_image
744  *
745  *	Return 0 if successful else return error code
746  */
kfd_create_crat_image_acpi(void ** crat_image,size_t * size)747 int kfd_create_crat_image_acpi(void **crat_image, size_t *size)
748 {
749 	struct acpi_table_header *crat_table;
750 	acpi_status status;
751 	void *pcrat_image;
752 
753 	if (!crat_image)
754 		return -EINVAL;
755 
756 	*crat_image = NULL;
757 
758 	/* Fetch the CRAT table from ACPI */
759 	status = acpi_get_table(CRAT_SIGNATURE, 0, &crat_table);
760 	if (status == AE_NOT_FOUND) {
761 		pr_warn("CRAT table not found\n");
762 		return -ENODATA;
763 	} else if (ACPI_FAILURE(status)) {
764 		const char *err = acpi_format_exception(status);
765 
766 		pr_err("CRAT table error: %s\n", err);
767 		return -EINVAL;
768 	}
769 
770 	if (ignore_crat) {
771 		pr_info("CRAT table disabled by module option\n");
772 		return -ENODATA;
773 	}
774 
775 	pcrat_image = kmemdup(crat_table, crat_table->length, GFP_KERNEL);
776 	if (!pcrat_image)
777 		return -ENOMEM;
778 
779 	*crat_image = pcrat_image;
780 	*size = crat_table->length;
781 
782 	return 0;
783 }
784 
785 /* Memory required to create Virtual CRAT.
786  * Since there is no easy way to predict the amount of memory required, the
787  * following amount are allocated for CPU and GPU Virtual CRAT. This is
788  * expected to cover all known conditions. But to be safe additional check
789  * is put in the code to ensure we don't overwrite.
790  */
791 #define VCRAT_SIZE_FOR_CPU	(2 * PAGE_SIZE)
792 #define VCRAT_SIZE_FOR_GPU	(4 * PAGE_SIZE)
793 
794 /* kfd_fill_cu_for_cpu - Fill in Compute info for the given CPU NUMA node
795  *
796  *	@numa_node_id: CPU NUMA node id
797  *	@avail_size: Available size in the memory
798  *	@sub_type_hdr: Memory into which compute info will be filled in
799  *
800  *	Return 0 if successful else return -ve value
801  */
kfd_fill_cu_for_cpu(int numa_node_id,int * avail_size,int proximity_domain,struct crat_subtype_computeunit * sub_type_hdr)802 static int kfd_fill_cu_for_cpu(int numa_node_id, int *avail_size,
803 				int proximity_domain,
804 				struct crat_subtype_computeunit *sub_type_hdr)
805 {
806 	const struct cpumask *cpumask;
807 
808 	*avail_size -= sizeof(struct crat_subtype_computeunit);
809 	if (*avail_size < 0)
810 		return -ENOMEM;
811 
812 	memset(sub_type_hdr, 0, sizeof(struct crat_subtype_computeunit));
813 
814 	/* Fill in subtype header data */
815 	sub_type_hdr->type = CRAT_SUBTYPE_COMPUTEUNIT_AFFINITY;
816 	sub_type_hdr->length = sizeof(struct crat_subtype_computeunit);
817 	sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED;
818 
819 	cpumask = cpumask_of_node(numa_node_id);
820 
821 	/* Fill in CU data */
822 	sub_type_hdr->flags |= CRAT_CU_FLAGS_CPU_PRESENT;
823 	sub_type_hdr->proximity_domain = proximity_domain;
824 	sub_type_hdr->processor_id_low = kfd_numa_node_to_apic_id(numa_node_id);
825 	if (sub_type_hdr->processor_id_low == -1)
826 		return -EINVAL;
827 
828 	sub_type_hdr->num_cpu_cores = cpumask_weight(cpumask);
829 
830 	return 0;
831 }
832 
833 /* kfd_fill_mem_info_for_cpu - Fill in Memory info for the given CPU NUMA node
834  *
835  *	@numa_node_id: CPU NUMA node id
836  *	@avail_size: Available size in the memory
837  *	@sub_type_hdr: Memory into which compute info will be filled in
838  *
839  *	Return 0 if successful else return -ve value
840  */
kfd_fill_mem_info_for_cpu(int numa_node_id,int * avail_size,int proximity_domain,struct crat_subtype_memory * sub_type_hdr)841 static int kfd_fill_mem_info_for_cpu(int numa_node_id, int *avail_size,
842 			int proximity_domain,
843 			struct crat_subtype_memory *sub_type_hdr)
844 {
845 	uint64_t mem_in_bytes = 0;
846 	pg_data_t *pgdat;
847 	int zone_type;
848 
849 	*avail_size -= sizeof(struct crat_subtype_memory);
850 	if (*avail_size < 0)
851 		return -ENOMEM;
852 
853 	memset(sub_type_hdr, 0, sizeof(struct crat_subtype_memory));
854 
855 	/* Fill in subtype header data */
856 	sub_type_hdr->type = CRAT_SUBTYPE_MEMORY_AFFINITY;
857 	sub_type_hdr->length = sizeof(struct crat_subtype_memory);
858 	sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED;
859 
860 	/* Fill in Memory Subunit data */
861 
862 	/* Unlike si_meminfo, si_meminfo_node is not exported. So
863 	 * the following lines are duplicated from si_meminfo_node
864 	 * function
865 	 */
866 	pgdat = NODE_DATA(numa_node_id);
867 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
868 		mem_in_bytes += zone_managed_pages(&pgdat->node_zones[zone_type]);
869 	mem_in_bytes <<= PAGE_SHIFT;
870 
871 	sub_type_hdr->length_low = lower_32_bits(mem_in_bytes);
872 	sub_type_hdr->length_high = upper_32_bits(mem_in_bytes);
873 	sub_type_hdr->proximity_domain = proximity_domain;
874 
875 	return 0;
876 }
877 
878 #ifdef CONFIG_X86_64
kfd_fill_iolink_info_for_cpu(int numa_node_id,int * avail_size,uint32_t * num_entries,struct crat_subtype_iolink * sub_type_hdr)879 static int kfd_fill_iolink_info_for_cpu(int numa_node_id, int *avail_size,
880 				uint32_t *num_entries,
881 				struct crat_subtype_iolink *sub_type_hdr)
882 {
883 	int nid;
884 	struct cpuinfo_x86 *c = &cpu_data(0);
885 	uint8_t link_type;
886 
887 	if (c->x86_vendor == X86_VENDOR_AMD)
888 		link_type = CRAT_IOLINK_TYPE_HYPERTRANSPORT;
889 	else
890 		link_type = CRAT_IOLINK_TYPE_QPI_1_1;
891 
892 	*num_entries = 0;
893 
894 	/* Create IO links from this node to other CPU nodes */
895 	for_each_online_node(nid) {
896 		if (nid == numa_node_id) /* node itself */
897 			continue;
898 
899 		*avail_size -= sizeof(struct crat_subtype_iolink);
900 		if (*avail_size < 0)
901 			return -ENOMEM;
902 
903 		memset(sub_type_hdr, 0, sizeof(struct crat_subtype_iolink));
904 
905 		/* Fill in subtype header data */
906 		sub_type_hdr->type = CRAT_SUBTYPE_IOLINK_AFFINITY;
907 		sub_type_hdr->length = sizeof(struct crat_subtype_iolink);
908 		sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED;
909 
910 		/* Fill in IO link data */
911 		sub_type_hdr->proximity_domain_from = numa_node_id;
912 		sub_type_hdr->proximity_domain_to = nid;
913 		sub_type_hdr->io_interface_type = link_type;
914 
915 		(*num_entries)++;
916 		sub_type_hdr++;
917 	}
918 
919 	return 0;
920 }
921 #endif
922 
923 /* kfd_create_vcrat_image_cpu - Create Virtual CRAT for CPU
924  *
925  *	@pcrat_image: Fill in VCRAT for CPU
926  *	@size:	[IN] allocated size of crat_image.
927  *		[OUT] actual size of data filled in crat_image
928  */
kfd_create_vcrat_image_cpu(void * pcrat_image,size_t * size)929 static int kfd_create_vcrat_image_cpu(void *pcrat_image, size_t *size)
930 {
931 	struct crat_header *crat_table = (struct crat_header *)pcrat_image;
932 	struct acpi_table_header *acpi_table;
933 	acpi_status status;
934 	struct crat_subtype_generic *sub_type_hdr;
935 	int avail_size = *size;
936 	int numa_node_id;
937 #ifdef CONFIG_X86_64
938 	uint32_t entries = 0;
939 #endif
940 	int ret = 0;
941 
942 	if (!pcrat_image || avail_size < VCRAT_SIZE_FOR_CPU)
943 		return -EINVAL;
944 
945 	/* Fill in CRAT Header.
946 	 * Modify length and total_entries as subunits are added.
947 	 */
948 	avail_size -= sizeof(struct crat_header);
949 	if (avail_size < 0)
950 		return -ENOMEM;
951 
952 	memset(crat_table, 0, sizeof(struct crat_header));
953 	memcpy(&crat_table->signature, CRAT_SIGNATURE,
954 			sizeof(crat_table->signature));
955 	crat_table->length = sizeof(struct crat_header);
956 
957 	status = acpi_get_table("DSDT", 0, &acpi_table);
958 	if (status != AE_OK)
959 		pr_warn("DSDT table not found for OEM information\n");
960 	else {
961 		crat_table->oem_revision = acpi_table->revision;
962 		memcpy(crat_table->oem_id, acpi_table->oem_id,
963 				CRAT_OEMID_LENGTH);
964 		memcpy(crat_table->oem_table_id, acpi_table->oem_table_id,
965 				CRAT_OEMTABLEID_LENGTH);
966 	}
967 	crat_table->total_entries = 0;
968 	crat_table->num_domains = 0;
969 
970 	sub_type_hdr = (struct crat_subtype_generic *)(crat_table+1);
971 
972 	for_each_online_node(numa_node_id) {
973 		if (kfd_numa_node_to_apic_id(numa_node_id) == -1)
974 			continue;
975 
976 		/* Fill in Subtype: Compute Unit */
977 		ret = kfd_fill_cu_for_cpu(numa_node_id, &avail_size,
978 			crat_table->num_domains,
979 			(struct crat_subtype_computeunit *)sub_type_hdr);
980 		if (ret < 0)
981 			return ret;
982 		crat_table->length += sub_type_hdr->length;
983 		crat_table->total_entries++;
984 
985 		sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
986 			sub_type_hdr->length);
987 
988 		/* Fill in Subtype: Memory */
989 		ret = kfd_fill_mem_info_for_cpu(numa_node_id, &avail_size,
990 			crat_table->num_domains,
991 			(struct crat_subtype_memory *)sub_type_hdr);
992 		if (ret < 0)
993 			return ret;
994 		crat_table->length += sub_type_hdr->length;
995 		crat_table->total_entries++;
996 
997 		sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
998 			sub_type_hdr->length);
999 
1000 		/* Fill in Subtype: IO Link */
1001 #ifdef CONFIG_X86_64
1002 		ret = kfd_fill_iolink_info_for_cpu(numa_node_id, &avail_size,
1003 				&entries,
1004 				(struct crat_subtype_iolink *)sub_type_hdr);
1005 		if (ret < 0)
1006 			return ret;
1007 		crat_table->length += (sub_type_hdr->length * entries);
1008 		crat_table->total_entries += entries;
1009 
1010 		sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
1011 				sub_type_hdr->length * entries);
1012 #else
1013 		pr_info("IO link not available for non x86 platforms\n");
1014 #endif
1015 
1016 		crat_table->num_domains++;
1017 	}
1018 
1019 	/* TODO: Add cache Subtype for CPU.
1020 	 * Currently, CPU cache information is available in function
1021 	 * detect_cache_attributes(cpu) defined in the file
1022 	 * ./arch/x86/kernel/cpu/intel_cacheinfo.c. This function is not
1023 	 * exported and to get the same information the code needs to be
1024 	 * duplicated.
1025 	 */
1026 
1027 	*size = crat_table->length;
1028 	pr_info("Virtual CRAT table created for CPU\n");
1029 
1030 	return 0;
1031 }
1032 
kfd_fill_gpu_memory_affinity(int * avail_size,struct kfd_dev * kdev,uint8_t type,uint64_t size,struct crat_subtype_memory * sub_type_hdr,uint32_t proximity_domain,const struct kfd_local_mem_info * local_mem_info)1033 static int kfd_fill_gpu_memory_affinity(int *avail_size,
1034 		struct kfd_dev *kdev, uint8_t type, uint64_t size,
1035 		struct crat_subtype_memory *sub_type_hdr,
1036 		uint32_t proximity_domain,
1037 		const struct kfd_local_mem_info *local_mem_info)
1038 {
1039 	*avail_size -= sizeof(struct crat_subtype_memory);
1040 	if (*avail_size < 0)
1041 		return -ENOMEM;
1042 
1043 	memset((void *)sub_type_hdr, 0, sizeof(struct crat_subtype_memory));
1044 	sub_type_hdr->type = CRAT_SUBTYPE_MEMORY_AFFINITY;
1045 	sub_type_hdr->length = sizeof(struct crat_subtype_memory);
1046 	sub_type_hdr->flags |= CRAT_SUBTYPE_FLAGS_ENABLED;
1047 
1048 	sub_type_hdr->proximity_domain = proximity_domain;
1049 
1050 	pr_debug("Fill gpu memory affinity - type 0x%x size 0x%llx\n",
1051 			type, size);
1052 
1053 	sub_type_hdr->length_low = lower_32_bits(size);
1054 	sub_type_hdr->length_high = upper_32_bits(size);
1055 
1056 	sub_type_hdr->width = local_mem_info->vram_width;
1057 	sub_type_hdr->visibility_type = type;
1058 
1059 	return 0;
1060 }
1061 
1062 /* kfd_fill_gpu_direct_io_link - Fill in direct io link from GPU
1063  * to its NUMA node
1064  *	@avail_size: Available size in the memory
1065  *	@kdev - [IN] GPU device
1066  *	@sub_type_hdr: Memory into which io link info will be filled in
1067  *	@proximity_domain - proximity domain of the GPU node
1068  *
1069  *	Return 0 if successful else return -ve value
1070  */
kfd_fill_gpu_direct_io_link_to_cpu(int * avail_size,struct kfd_dev * kdev,struct crat_subtype_iolink * sub_type_hdr,uint32_t proximity_domain)1071 static int kfd_fill_gpu_direct_io_link_to_cpu(int *avail_size,
1072 			struct kfd_dev *kdev,
1073 			struct crat_subtype_iolink *sub_type_hdr,
1074 			uint32_t proximity_domain)
1075 {
1076 	*avail_size -= sizeof(struct crat_subtype_iolink);
1077 	if (*avail_size < 0)
1078 		return -ENOMEM;
1079 
1080 	memset((void *)sub_type_hdr, 0, sizeof(struct crat_subtype_iolink));
1081 
1082 	/* Fill in subtype header data */
1083 	sub_type_hdr->type = CRAT_SUBTYPE_IOLINK_AFFINITY;
1084 	sub_type_hdr->length = sizeof(struct crat_subtype_iolink);
1085 	sub_type_hdr->flags |= CRAT_SUBTYPE_FLAGS_ENABLED;
1086 	if (kfd_dev_is_large_bar(kdev))
1087 		sub_type_hdr->flags |= CRAT_IOLINK_FLAGS_BI_DIRECTIONAL;
1088 
1089 	/* Fill in IOLINK subtype.
1090 	 * TODO: Fill-in other fields of iolink subtype
1091 	 */
1092 	sub_type_hdr->io_interface_type = CRAT_IOLINK_TYPE_PCIEXPRESS;
1093 	sub_type_hdr->proximity_domain_from = proximity_domain;
1094 #ifdef CONFIG_NUMA
1095 	if (kdev->pdev->dev.numa_node == NUMA_NO_NODE)
1096 		sub_type_hdr->proximity_domain_to = 0;
1097 	else
1098 		sub_type_hdr->proximity_domain_to = kdev->pdev->dev.numa_node;
1099 #else
1100 	sub_type_hdr->proximity_domain_to = 0;
1101 #endif
1102 	return 0;
1103 }
1104 
kfd_fill_gpu_xgmi_link_to_gpu(int * avail_size,struct kfd_dev * kdev,struct kfd_dev * peer_kdev,struct crat_subtype_iolink * sub_type_hdr,uint32_t proximity_domain_from,uint32_t proximity_domain_to)1105 static int kfd_fill_gpu_xgmi_link_to_gpu(int *avail_size,
1106 			struct kfd_dev *kdev,
1107 			struct kfd_dev *peer_kdev,
1108 			struct crat_subtype_iolink *sub_type_hdr,
1109 			uint32_t proximity_domain_from,
1110 			uint32_t proximity_domain_to)
1111 {
1112 	*avail_size -= sizeof(struct crat_subtype_iolink);
1113 	if (*avail_size < 0)
1114 		return -ENOMEM;
1115 
1116 	memset((void *)sub_type_hdr, 0, sizeof(struct crat_subtype_iolink));
1117 
1118 	sub_type_hdr->type = CRAT_SUBTYPE_IOLINK_AFFINITY;
1119 	sub_type_hdr->length = sizeof(struct crat_subtype_iolink);
1120 	sub_type_hdr->flags |= CRAT_SUBTYPE_FLAGS_ENABLED |
1121 			       CRAT_IOLINK_FLAGS_BI_DIRECTIONAL;
1122 
1123 	sub_type_hdr->io_interface_type = CRAT_IOLINK_TYPE_XGMI;
1124 	sub_type_hdr->proximity_domain_from = proximity_domain_from;
1125 	sub_type_hdr->proximity_domain_to = proximity_domain_to;
1126 	sub_type_hdr->num_hops_xgmi =
1127 		amdgpu_amdkfd_get_xgmi_hops_count(kdev->kgd, peer_kdev->kgd);
1128 	return 0;
1129 }
1130 
1131 /* kfd_create_vcrat_image_gpu - Create Virtual CRAT for CPU
1132  *
1133  *	@pcrat_image: Fill in VCRAT for GPU
1134  *	@size:	[IN] allocated size of crat_image.
1135  *		[OUT] actual size of data filled in crat_image
1136  */
kfd_create_vcrat_image_gpu(void * pcrat_image,size_t * size,struct kfd_dev * kdev,uint32_t proximity_domain)1137 static int kfd_create_vcrat_image_gpu(void *pcrat_image,
1138 				      size_t *size, struct kfd_dev *kdev,
1139 				      uint32_t proximity_domain)
1140 {
1141 	struct crat_header *crat_table = (struct crat_header *)pcrat_image;
1142 	struct crat_subtype_generic *sub_type_hdr;
1143 	struct kfd_local_mem_info local_mem_info;
1144 	struct kfd_topology_device *peer_dev;
1145 	struct crat_subtype_computeunit *cu;
1146 	struct kfd_cu_info cu_info;
1147 	int avail_size = *size;
1148 	uint32_t total_num_of_cu;
1149 	int num_of_cache_entries = 0;
1150 	int cache_mem_filled = 0;
1151 	uint32_t nid = 0;
1152 	int ret = 0;
1153 
1154 	if (!pcrat_image || avail_size < VCRAT_SIZE_FOR_GPU)
1155 		return -EINVAL;
1156 
1157 	/* Fill the CRAT Header.
1158 	 * Modify length and total_entries as subunits are added.
1159 	 */
1160 	avail_size -= sizeof(struct crat_header);
1161 	if (avail_size < 0)
1162 		return -ENOMEM;
1163 
1164 	memset(crat_table, 0, sizeof(struct crat_header));
1165 
1166 	memcpy(&crat_table->signature, CRAT_SIGNATURE,
1167 			sizeof(crat_table->signature));
1168 	/* Change length as we add more subtypes*/
1169 	crat_table->length = sizeof(struct crat_header);
1170 	crat_table->num_domains = 1;
1171 	crat_table->total_entries = 0;
1172 
1173 	/* Fill in Subtype: Compute Unit
1174 	 * First fill in the sub type header and then sub type data
1175 	 */
1176 	avail_size -= sizeof(struct crat_subtype_computeunit);
1177 	if (avail_size < 0)
1178 		return -ENOMEM;
1179 
1180 	sub_type_hdr = (struct crat_subtype_generic *)(crat_table + 1);
1181 	memset(sub_type_hdr, 0, sizeof(struct crat_subtype_computeunit));
1182 
1183 	sub_type_hdr->type = CRAT_SUBTYPE_COMPUTEUNIT_AFFINITY;
1184 	sub_type_hdr->length = sizeof(struct crat_subtype_computeunit);
1185 	sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED;
1186 
1187 	/* Fill CU subtype data */
1188 	cu = (struct crat_subtype_computeunit *)sub_type_hdr;
1189 	cu->flags |= CRAT_CU_FLAGS_GPU_PRESENT;
1190 	cu->proximity_domain = proximity_domain;
1191 
1192 	amdgpu_amdkfd_get_cu_info(kdev->kgd, &cu_info);
1193 	cu->num_simd_per_cu = cu_info.simd_per_cu;
1194 	cu->num_simd_cores = cu_info.simd_per_cu * cu_info.cu_active_number;
1195 	cu->max_waves_simd = cu_info.max_waves_per_simd;
1196 
1197 	cu->wave_front_size = cu_info.wave_front_size;
1198 	cu->array_count = cu_info.num_shader_arrays_per_engine *
1199 		cu_info.num_shader_engines;
1200 	total_num_of_cu = (cu->array_count * cu_info.num_cu_per_sh);
1201 	cu->processor_id_low = get_and_inc_gpu_processor_id(total_num_of_cu);
1202 	cu->num_cu_per_array = cu_info.num_cu_per_sh;
1203 	cu->max_slots_scatch_cu = cu_info.max_scratch_slots_per_cu;
1204 	cu->num_banks = cu_info.num_shader_engines;
1205 	cu->lds_size_in_kb = cu_info.lds_size;
1206 
1207 	cu->hsa_capability = 0;
1208 
1209 	/* Check if this node supports IOMMU. During parsing this flag will
1210 	 * translate to HSA_CAP_ATS_PRESENT
1211 	 */
1212 	if (!kfd_iommu_check_device(kdev))
1213 		cu->hsa_capability |= CRAT_CU_FLAGS_IOMMU_PRESENT;
1214 
1215 	crat_table->length += sub_type_hdr->length;
1216 	crat_table->total_entries++;
1217 
1218 	/* Fill in Subtype: Memory. Only on systems with large BAR (no
1219 	 * private FB), report memory as public. On other systems
1220 	 * report the total FB size (public+private) as a single
1221 	 * private heap.
1222 	 */
1223 	amdgpu_amdkfd_get_local_mem_info(kdev->kgd, &local_mem_info);
1224 	sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
1225 			sub_type_hdr->length);
1226 
1227 	if (debug_largebar)
1228 		local_mem_info.local_mem_size_private = 0;
1229 
1230 	if (local_mem_info.local_mem_size_private == 0)
1231 		ret = kfd_fill_gpu_memory_affinity(&avail_size,
1232 				kdev, HSA_MEM_HEAP_TYPE_FB_PUBLIC,
1233 				local_mem_info.local_mem_size_public,
1234 				(struct crat_subtype_memory *)sub_type_hdr,
1235 				proximity_domain,
1236 				&local_mem_info);
1237 	else
1238 		ret = kfd_fill_gpu_memory_affinity(&avail_size,
1239 				kdev, HSA_MEM_HEAP_TYPE_FB_PRIVATE,
1240 				local_mem_info.local_mem_size_public +
1241 				local_mem_info.local_mem_size_private,
1242 				(struct crat_subtype_memory *)sub_type_hdr,
1243 				proximity_domain,
1244 				&local_mem_info);
1245 	if (ret < 0)
1246 		return ret;
1247 
1248 	crat_table->length += sizeof(struct crat_subtype_memory);
1249 	crat_table->total_entries++;
1250 
1251 	/* TODO: Fill in cache information. This information is NOT readily
1252 	 * available in KGD
1253 	 */
1254 	sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
1255 		sub_type_hdr->length);
1256 	ret = kfd_fill_gpu_cache_info(kdev, cu->processor_id_low,
1257 				avail_size,
1258 				&cu_info,
1259 				(struct crat_subtype_cache *)sub_type_hdr,
1260 				&cache_mem_filled,
1261 				&num_of_cache_entries);
1262 
1263 	if (ret < 0)
1264 		return ret;
1265 
1266 	crat_table->length += cache_mem_filled;
1267 	crat_table->total_entries += num_of_cache_entries;
1268 	avail_size -= cache_mem_filled;
1269 
1270 	/* Fill in Subtype: IO_LINKS
1271 	 *  Only direct links are added here which is Link from GPU to
1272 	 *  to its NUMA node. Indirect links are added by userspace.
1273 	 */
1274 	sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
1275 		cache_mem_filled);
1276 	ret = kfd_fill_gpu_direct_io_link_to_cpu(&avail_size, kdev,
1277 		(struct crat_subtype_iolink *)sub_type_hdr, proximity_domain);
1278 
1279 	if (ret < 0)
1280 		return ret;
1281 
1282 	crat_table->length += sub_type_hdr->length;
1283 	crat_table->total_entries++;
1284 
1285 
1286 	/* Fill in Subtype: IO_LINKS
1287 	 * Direct links from GPU to other GPUs through xGMI.
1288 	 * We will loop GPUs that already be processed (with lower value
1289 	 * of proximity_domain), add the link for the GPUs with same
1290 	 * hive id (from this GPU to other GPU) . The reversed iolink
1291 	 * (from other GPU to this GPU) will be added
1292 	 * in kfd_parse_subtype_iolink.
1293 	 */
1294 	if (kdev->hive_id) {
1295 		for (nid = 0; nid < proximity_domain; ++nid) {
1296 			peer_dev = kfd_topology_device_by_proximity_domain(nid);
1297 			if (!peer_dev->gpu)
1298 				continue;
1299 			if (peer_dev->gpu->hive_id != kdev->hive_id)
1300 				continue;
1301 			sub_type_hdr = (typeof(sub_type_hdr))(
1302 				(char *)sub_type_hdr +
1303 				sizeof(struct crat_subtype_iolink));
1304 			ret = kfd_fill_gpu_xgmi_link_to_gpu(
1305 				&avail_size, kdev, peer_dev->gpu,
1306 				(struct crat_subtype_iolink *)sub_type_hdr,
1307 				proximity_domain, nid);
1308 			if (ret < 0)
1309 				return ret;
1310 			crat_table->length += sub_type_hdr->length;
1311 			crat_table->total_entries++;
1312 		}
1313 	}
1314 	*size = crat_table->length;
1315 	pr_info("Virtual CRAT table created for GPU\n");
1316 
1317 	return ret;
1318 }
1319 
1320 /* kfd_create_crat_image_virtual - Allocates memory for CRAT image and
1321  *		creates a Virtual CRAT (VCRAT) image
1322  *
1323  * NOTE: Call kfd_destroy_crat_image to free CRAT image memory
1324  *
1325  *	@crat_image: VCRAT image created because ACPI does not have a
1326  *		     CRAT for this device
1327  *	@size: [OUT] size of virtual crat_image
1328  *	@flags:	COMPUTE_UNIT_CPU - Create VCRAT for CPU device
1329  *		COMPUTE_UNIT_GPU - Create VCRAT for GPU
1330  *		(COMPUTE_UNIT_CPU | COMPUTE_UNIT_GPU) - Create VCRAT for APU
1331  *			-- this option is not currently implemented.
1332  *			The assumption is that all AMD APUs will have CRAT
1333  *	@kdev: Valid kfd_device required if flags contain COMPUTE_UNIT_GPU
1334  *
1335  *	Return 0 if successful else return -ve value
1336  */
kfd_create_crat_image_virtual(void ** crat_image,size_t * size,int flags,struct kfd_dev * kdev,uint32_t proximity_domain)1337 int kfd_create_crat_image_virtual(void **crat_image, size_t *size,
1338 				  int flags, struct kfd_dev *kdev,
1339 				  uint32_t proximity_domain)
1340 {
1341 	void *pcrat_image = NULL;
1342 	int ret = 0;
1343 
1344 	if (!crat_image)
1345 		return -EINVAL;
1346 
1347 	*crat_image = NULL;
1348 
1349 	/* Allocate one VCRAT_SIZE_FOR_CPU for CPU virtual CRAT image and
1350 	 * VCRAT_SIZE_FOR_GPU for GPU virtual CRAT image. This should cover
1351 	 * all the current conditions. A check is put not to overwrite beyond
1352 	 * allocated size
1353 	 */
1354 	switch (flags) {
1355 	case COMPUTE_UNIT_CPU:
1356 		pcrat_image = kmalloc(VCRAT_SIZE_FOR_CPU, GFP_KERNEL);
1357 		if (!pcrat_image)
1358 			return -ENOMEM;
1359 		*size = VCRAT_SIZE_FOR_CPU;
1360 		ret = kfd_create_vcrat_image_cpu(pcrat_image, size);
1361 		break;
1362 	case COMPUTE_UNIT_GPU:
1363 		if (!kdev)
1364 			return -EINVAL;
1365 		pcrat_image = kmalloc(VCRAT_SIZE_FOR_GPU, GFP_KERNEL);
1366 		if (!pcrat_image)
1367 			return -ENOMEM;
1368 		*size = VCRAT_SIZE_FOR_GPU;
1369 		ret = kfd_create_vcrat_image_gpu(pcrat_image, size, kdev,
1370 						 proximity_domain);
1371 		break;
1372 	case (COMPUTE_UNIT_CPU | COMPUTE_UNIT_GPU):
1373 		/* TODO: */
1374 		ret = -EINVAL;
1375 		pr_err("VCRAT not implemented for APU\n");
1376 		break;
1377 	default:
1378 		ret = -EINVAL;
1379 	}
1380 
1381 	if (!ret)
1382 		*crat_image = pcrat_image;
1383 	else
1384 		kfree(pcrat_image);
1385 
1386 	return ret;
1387 }
1388 
1389 
1390 /* kfd_destroy_crat_image
1391  *
1392  *	@crat_image: [IN] - crat_image from kfd_create_crat_image_xxx(..)
1393  *
1394  */
kfd_destroy_crat_image(void * crat_image)1395 void kfd_destroy_crat_image(void *crat_image)
1396 {
1397 	kfree(crat_image);
1398 }
1399