1 /*
2  * Copyright 2015-2017 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 
23 #include <linux/pci.h>
24 #include <linux/acpi.h>
25 #include "kfd_crat.h"
26 #include "kfd_priv.h"
27 #include "kfd_topology.h"
28 #include "kfd_iommu.h"
29 
30 /* GPU Processor ID base for dGPUs for which VCRAT needs to be created.
31  * GPU processor ID are expressed with Bit[31]=1.
32  * The base is set to 0x8000_0000 + 0x1000 to avoid collision with GPU IDs
33  * used in the CRAT.
34  */
35 static uint32_t gpu_processor_id_low = 0x80001000;
36 
37 /* Return the next available gpu_processor_id and increment it for next GPU
38  *	@total_cu_count - Total CUs present in the GPU including ones
39  *			  masked off
40  */
get_and_inc_gpu_processor_id(unsigned int total_cu_count)41 static inline unsigned int get_and_inc_gpu_processor_id(
42 				unsigned int total_cu_count)
43 {
44 	int current_id = gpu_processor_id_low;
45 
46 	gpu_processor_id_low += total_cu_count;
47 	return current_id;
48 }
49 
50 /* Static table to describe GPU Cache information */
51 struct kfd_gpu_cache_info {
52 	uint32_t	cache_size;
53 	uint32_t	cache_level;
54 	uint32_t	flags;
55 	/* Indicates how many Compute Units share this cache
56 	 * Value = 1 indicates the cache is not shared
57 	 */
58 	uint32_t	num_cu_shared;
59 };
60 
61 static struct kfd_gpu_cache_info kaveri_cache_info[] = {
62 	{
63 		/* TCP L1 Cache per CU */
64 		.cache_size = 16,
65 		.cache_level = 1,
66 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
67 				CRAT_CACHE_FLAGS_DATA_CACHE |
68 				CRAT_CACHE_FLAGS_SIMD_CACHE),
69 		.num_cu_shared = 1,
70 
71 	},
72 	{
73 		/* Scalar L1 Instruction Cache (in SQC module) per bank */
74 		.cache_size = 16,
75 		.cache_level = 1,
76 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
77 				CRAT_CACHE_FLAGS_INST_CACHE |
78 				CRAT_CACHE_FLAGS_SIMD_CACHE),
79 		.num_cu_shared = 2,
80 	},
81 	{
82 		/* Scalar L1 Data Cache (in SQC module) per bank */
83 		.cache_size = 8,
84 		.cache_level = 1,
85 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
86 				CRAT_CACHE_FLAGS_DATA_CACHE |
87 				CRAT_CACHE_FLAGS_SIMD_CACHE),
88 		.num_cu_shared = 2,
89 	},
90 
91 	/* TODO: Add L2 Cache information */
92 };
93 
94 
95 static struct kfd_gpu_cache_info carrizo_cache_info[] = {
96 	{
97 		/* TCP L1 Cache per CU */
98 		.cache_size = 16,
99 		.cache_level = 1,
100 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
101 				CRAT_CACHE_FLAGS_DATA_CACHE |
102 				CRAT_CACHE_FLAGS_SIMD_CACHE),
103 		.num_cu_shared = 1,
104 	},
105 	{
106 		/* Scalar L1 Instruction Cache (in SQC module) per bank */
107 		.cache_size = 8,
108 		.cache_level = 1,
109 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
110 				CRAT_CACHE_FLAGS_INST_CACHE |
111 				CRAT_CACHE_FLAGS_SIMD_CACHE),
112 		.num_cu_shared = 4,
113 	},
114 	{
115 		/* Scalar L1 Data Cache (in SQC module) per bank. */
116 		.cache_size = 4,
117 		.cache_level = 1,
118 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
119 				CRAT_CACHE_FLAGS_DATA_CACHE |
120 				CRAT_CACHE_FLAGS_SIMD_CACHE),
121 		.num_cu_shared = 4,
122 	},
123 
124 	/* TODO: Add L2 Cache information */
125 };
126 
127 /* NOTE: In future if more information is added to struct kfd_gpu_cache_info
128  * the following ASICs may need a separate table.
129  */
130 #define hawaii_cache_info kaveri_cache_info
131 #define tonga_cache_info carrizo_cache_info
132 #define fiji_cache_info  carrizo_cache_info
133 #define polaris10_cache_info carrizo_cache_info
134 #define polaris11_cache_info carrizo_cache_info
135 /* TODO - check & update Vega10 cache details */
136 #define vega10_cache_info carrizo_cache_info
137 #define raven_cache_info carrizo_cache_info
138 
kfd_populated_cu_info_cpu(struct kfd_topology_device * dev,struct crat_subtype_computeunit * cu)139 static void kfd_populated_cu_info_cpu(struct kfd_topology_device *dev,
140 		struct crat_subtype_computeunit *cu)
141 {
142 	dev->node_props.cpu_cores_count = cu->num_cpu_cores;
143 	dev->node_props.cpu_core_id_base = cu->processor_id_low;
144 	if (cu->hsa_capability & CRAT_CU_FLAGS_IOMMU_PRESENT)
145 		dev->node_props.capability |= HSA_CAP_ATS_PRESENT;
146 
147 	pr_debug("CU CPU: cores=%d id_base=%d\n", cu->num_cpu_cores,
148 			cu->processor_id_low);
149 }
150 
kfd_populated_cu_info_gpu(struct kfd_topology_device * dev,struct crat_subtype_computeunit * cu)151 static void kfd_populated_cu_info_gpu(struct kfd_topology_device *dev,
152 		struct crat_subtype_computeunit *cu)
153 {
154 	dev->node_props.simd_id_base = cu->processor_id_low;
155 	dev->node_props.simd_count = cu->num_simd_cores;
156 	dev->node_props.lds_size_in_kb = cu->lds_size_in_kb;
157 	dev->node_props.max_waves_per_simd = cu->max_waves_simd;
158 	dev->node_props.wave_front_size = cu->wave_front_size;
159 	dev->node_props.array_count = cu->array_count;
160 	dev->node_props.cu_per_simd_array = cu->num_cu_per_array;
161 	dev->node_props.simd_per_cu = cu->num_simd_per_cu;
162 	dev->node_props.max_slots_scratch_cu = cu->max_slots_scatch_cu;
163 	if (cu->hsa_capability & CRAT_CU_FLAGS_HOT_PLUGGABLE)
164 		dev->node_props.capability |= HSA_CAP_HOT_PLUGGABLE;
165 	pr_debug("CU GPU: id_base=%d\n", cu->processor_id_low);
166 }
167 
168 /* kfd_parse_subtype_cu - parse compute unit subtypes and attach it to correct
169  * topology device present in the device_list
170  */
kfd_parse_subtype_cu(struct crat_subtype_computeunit * cu,struct list_head * device_list)171 static int kfd_parse_subtype_cu(struct crat_subtype_computeunit *cu,
172 				struct list_head *device_list)
173 {
174 	struct kfd_topology_device *dev;
175 
176 	pr_debug("Found CU entry in CRAT table with proximity_domain=%d caps=%x\n",
177 			cu->proximity_domain, cu->hsa_capability);
178 	list_for_each_entry(dev, device_list, list) {
179 		if (cu->proximity_domain == dev->proximity_domain) {
180 			if (cu->flags & CRAT_CU_FLAGS_CPU_PRESENT)
181 				kfd_populated_cu_info_cpu(dev, cu);
182 
183 			if (cu->flags & CRAT_CU_FLAGS_GPU_PRESENT)
184 				kfd_populated_cu_info_gpu(dev, cu);
185 			break;
186 		}
187 	}
188 
189 	return 0;
190 }
191 
192 static struct kfd_mem_properties *
find_subtype_mem(uint32_t heap_type,uint32_t flags,uint32_t width,struct kfd_topology_device * dev)193 find_subtype_mem(uint32_t heap_type, uint32_t flags, uint32_t width,
194 		struct kfd_topology_device *dev)
195 {
196 	struct kfd_mem_properties *props;
197 
198 	list_for_each_entry(props, &dev->mem_props, list) {
199 		if (props->heap_type == heap_type
200 				&& props->flags == flags
201 				&& props->width == width)
202 			return props;
203 	}
204 
205 	return NULL;
206 }
207 /* kfd_parse_subtype_mem - parse memory subtypes and attach it to correct
208  * topology device present in the device_list
209  */
kfd_parse_subtype_mem(struct crat_subtype_memory * mem,struct list_head * device_list)210 static int kfd_parse_subtype_mem(struct crat_subtype_memory *mem,
211 				struct list_head *device_list)
212 {
213 	struct kfd_mem_properties *props;
214 	struct kfd_topology_device *dev;
215 	uint32_t heap_type;
216 	uint64_t size_in_bytes;
217 	uint32_t flags = 0;
218 	uint32_t width;
219 
220 	pr_debug("Found memory entry in CRAT table with proximity_domain=%d\n",
221 			mem->proximity_domain);
222 	list_for_each_entry(dev, device_list, list) {
223 		if (mem->proximity_domain == dev->proximity_domain) {
224 			/* We're on GPU node */
225 			if (dev->node_props.cpu_cores_count == 0) {
226 				/* APU */
227 				if (mem->visibility_type == 0)
228 					heap_type =
229 						HSA_MEM_HEAP_TYPE_FB_PRIVATE;
230 				/* dGPU */
231 				else
232 					heap_type = mem->visibility_type;
233 			} else
234 				heap_type = HSA_MEM_HEAP_TYPE_SYSTEM;
235 
236 			if (mem->flags & CRAT_MEM_FLAGS_HOT_PLUGGABLE)
237 				flags |= HSA_MEM_FLAGS_HOT_PLUGGABLE;
238 			if (mem->flags & CRAT_MEM_FLAGS_NON_VOLATILE)
239 				flags |= HSA_MEM_FLAGS_NON_VOLATILE;
240 
241 			size_in_bytes =
242 				((uint64_t)mem->length_high << 32) +
243 							mem->length_low;
244 			width = mem->width;
245 
246 			/* Multiple banks of the same type are aggregated into
247 			 * one. User mode doesn't care about multiple physical
248 			 * memory segments. It's managed as a single virtual
249 			 * heap for user mode.
250 			 */
251 			props = find_subtype_mem(heap_type, flags, width, dev);
252 			if (props) {
253 				props->size_in_bytes += size_in_bytes;
254 				break;
255 			}
256 
257 			props = kfd_alloc_struct(props);
258 			if (!props)
259 				return -ENOMEM;
260 
261 			props->heap_type = heap_type;
262 			props->flags = flags;
263 			props->size_in_bytes = size_in_bytes;
264 			props->width = width;
265 
266 			dev->node_props.mem_banks_count++;
267 			list_add_tail(&props->list, &dev->mem_props);
268 
269 			break;
270 		}
271 	}
272 
273 	return 0;
274 }
275 
276 /* kfd_parse_subtype_cache - parse cache subtypes and attach it to correct
277  * topology device present in the device_list
278  */
kfd_parse_subtype_cache(struct crat_subtype_cache * cache,struct list_head * device_list)279 static int kfd_parse_subtype_cache(struct crat_subtype_cache *cache,
280 			struct list_head *device_list)
281 {
282 	struct kfd_cache_properties *props;
283 	struct kfd_topology_device *dev;
284 	uint32_t id;
285 	uint32_t total_num_of_cu;
286 
287 	id = cache->processor_id_low;
288 
289 	pr_debug("Found cache entry in CRAT table with processor_id=%d\n", id);
290 	list_for_each_entry(dev, device_list, list) {
291 		total_num_of_cu = (dev->node_props.array_count *
292 					dev->node_props.cu_per_simd_array);
293 
294 		/* Cache infomration in CRAT doesn't have proximity_domain
295 		 * information as it is associated with a CPU core or GPU
296 		 * Compute Unit. So map the cache using CPU core Id or SIMD
297 		 * (GPU) ID.
298 		 * TODO: This works because currently we can safely assume that
299 		 *  Compute Units are parsed before caches are parsed. In
300 		 *  future, remove this dependency
301 		 */
302 		if ((id >= dev->node_props.cpu_core_id_base &&
303 			id <= dev->node_props.cpu_core_id_base +
304 				dev->node_props.cpu_cores_count) ||
305 			(id >= dev->node_props.simd_id_base &&
306 			id < dev->node_props.simd_id_base +
307 				total_num_of_cu)) {
308 			props = kfd_alloc_struct(props);
309 			if (!props)
310 				return -ENOMEM;
311 
312 			props->processor_id_low = id;
313 			props->cache_level = cache->cache_level;
314 			props->cache_size = cache->cache_size;
315 			props->cacheline_size = cache->cache_line_size;
316 			props->cachelines_per_tag = cache->lines_per_tag;
317 			props->cache_assoc = cache->associativity;
318 			props->cache_latency = cache->cache_latency;
319 			memcpy(props->sibling_map, cache->sibling_map,
320 					sizeof(props->sibling_map));
321 
322 			if (cache->flags & CRAT_CACHE_FLAGS_DATA_CACHE)
323 				props->cache_type |= HSA_CACHE_TYPE_DATA;
324 			if (cache->flags & CRAT_CACHE_FLAGS_INST_CACHE)
325 				props->cache_type |= HSA_CACHE_TYPE_INSTRUCTION;
326 			if (cache->flags & CRAT_CACHE_FLAGS_CPU_CACHE)
327 				props->cache_type |= HSA_CACHE_TYPE_CPU;
328 			if (cache->flags & CRAT_CACHE_FLAGS_SIMD_CACHE)
329 				props->cache_type |= HSA_CACHE_TYPE_HSACU;
330 
331 			dev->cache_count++;
332 			dev->node_props.caches_count++;
333 			list_add_tail(&props->list, &dev->cache_props);
334 
335 			break;
336 		}
337 	}
338 
339 	return 0;
340 }
341 
342 /* kfd_parse_subtype_iolink - parse iolink subtypes and attach it to correct
343  * topology device present in the device_list
344  */
kfd_parse_subtype_iolink(struct crat_subtype_iolink * iolink,struct list_head * device_list)345 static int kfd_parse_subtype_iolink(struct crat_subtype_iolink *iolink,
346 					struct list_head *device_list)
347 {
348 	struct kfd_iolink_properties *props = NULL, *props2;
349 	struct kfd_topology_device *dev, *cpu_dev;
350 	uint32_t id_from;
351 	uint32_t id_to;
352 
353 	id_from = iolink->proximity_domain_from;
354 	id_to = iolink->proximity_domain_to;
355 
356 	pr_debug("Found IO link entry in CRAT table with id_from=%d\n",
357 			id_from);
358 	list_for_each_entry(dev, device_list, list) {
359 		if (id_from == dev->proximity_domain) {
360 			props = kfd_alloc_struct(props);
361 			if (!props)
362 				return -ENOMEM;
363 
364 			props->node_from = id_from;
365 			props->node_to = id_to;
366 			props->ver_maj = iolink->version_major;
367 			props->ver_min = iolink->version_minor;
368 			props->iolink_type = iolink->io_interface_type;
369 
370 			if (props->iolink_type == CRAT_IOLINK_TYPE_PCIEXPRESS)
371 				props->weight = 20;
372 			else
373 				props->weight = node_distance(id_from, id_to);
374 
375 			props->min_latency = iolink->minimum_latency;
376 			props->max_latency = iolink->maximum_latency;
377 			props->min_bandwidth = iolink->minimum_bandwidth_mbs;
378 			props->max_bandwidth = iolink->maximum_bandwidth_mbs;
379 			props->rec_transfer_size =
380 					iolink->recommended_transfer_size;
381 
382 			dev->io_link_count++;
383 			dev->node_props.io_links_count++;
384 			list_add_tail(&props->list, &dev->io_link_props);
385 			break;
386 		}
387 	}
388 
389 	/* CPU topology is created before GPUs are detected, so CPU->GPU
390 	 * links are not built at that time. If a PCIe type is discovered, it
391 	 * means a GPU is detected and we are adding GPU->CPU to the topology.
392 	 * At this time, also add the corresponded CPU->GPU link.
393 	 */
394 	if (props && props->iolink_type == CRAT_IOLINK_TYPE_PCIEXPRESS) {
395 		cpu_dev = kfd_topology_device_by_proximity_domain(id_to);
396 		if (!cpu_dev)
397 			return -ENODEV;
398 		/* same everything but the other direction */
399 		props2 = kmemdup(props, sizeof(*props2), GFP_KERNEL);
400 		props2->node_from = id_to;
401 		props2->node_to = id_from;
402 		props2->kobj = NULL;
403 		cpu_dev->io_link_count++;
404 		cpu_dev->node_props.io_links_count++;
405 		list_add_tail(&props2->list, &cpu_dev->io_link_props);
406 	}
407 
408 	return 0;
409 }
410 
411 /* kfd_parse_subtype - parse subtypes and attach it to correct topology device
412  * present in the device_list
413  *	@sub_type_hdr - subtype section of crat_image
414  *	@device_list - list of topology devices present in this crat_image
415  */
kfd_parse_subtype(struct crat_subtype_generic * sub_type_hdr,struct list_head * device_list)416 static int kfd_parse_subtype(struct crat_subtype_generic *sub_type_hdr,
417 				struct list_head *device_list)
418 {
419 	struct crat_subtype_computeunit *cu;
420 	struct crat_subtype_memory *mem;
421 	struct crat_subtype_cache *cache;
422 	struct crat_subtype_iolink *iolink;
423 	int ret = 0;
424 
425 	switch (sub_type_hdr->type) {
426 	case CRAT_SUBTYPE_COMPUTEUNIT_AFFINITY:
427 		cu = (struct crat_subtype_computeunit *)sub_type_hdr;
428 		ret = kfd_parse_subtype_cu(cu, device_list);
429 		break;
430 	case CRAT_SUBTYPE_MEMORY_AFFINITY:
431 		mem = (struct crat_subtype_memory *)sub_type_hdr;
432 		ret = kfd_parse_subtype_mem(mem, device_list);
433 		break;
434 	case CRAT_SUBTYPE_CACHE_AFFINITY:
435 		cache = (struct crat_subtype_cache *)sub_type_hdr;
436 		ret = kfd_parse_subtype_cache(cache, device_list);
437 		break;
438 	case CRAT_SUBTYPE_TLB_AFFINITY:
439 		/*
440 		 * For now, nothing to do here
441 		 */
442 		pr_debug("Found TLB entry in CRAT table (not processing)\n");
443 		break;
444 	case CRAT_SUBTYPE_CCOMPUTE_AFFINITY:
445 		/*
446 		 * For now, nothing to do here
447 		 */
448 		pr_debug("Found CCOMPUTE entry in CRAT table (not processing)\n");
449 		break;
450 	case CRAT_SUBTYPE_IOLINK_AFFINITY:
451 		iolink = (struct crat_subtype_iolink *)sub_type_hdr;
452 		ret = kfd_parse_subtype_iolink(iolink, device_list);
453 		break;
454 	default:
455 		pr_warn("Unknown subtype %d in CRAT\n",
456 				sub_type_hdr->type);
457 	}
458 
459 	return ret;
460 }
461 
462 /* kfd_parse_crat_table - parse CRAT table. For each node present in CRAT
463  * create a kfd_topology_device and add in to device_list. Also parse
464  * CRAT subtypes and attach it to appropriate kfd_topology_device
465  *	@crat_image - input image containing CRAT
466  *	@device_list - [OUT] list of kfd_topology_device generated after
467  *		       parsing crat_image
468  *	@proximity_domain - Proximity domain of the first device in the table
469  *
470  *	Return - 0 if successful else -ve value
471  */
kfd_parse_crat_table(void * crat_image,struct list_head * device_list,uint32_t proximity_domain)472 int kfd_parse_crat_table(void *crat_image, struct list_head *device_list,
473 			 uint32_t proximity_domain)
474 {
475 	struct kfd_topology_device *top_dev = NULL;
476 	struct crat_subtype_generic *sub_type_hdr;
477 	uint16_t node_id;
478 	int ret = 0;
479 	struct crat_header *crat_table = (struct crat_header *)crat_image;
480 	uint16_t num_nodes;
481 	uint32_t image_len;
482 
483 	if (!crat_image)
484 		return -EINVAL;
485 
486 	if (!list_empty(device_list)) {
487 		pr_warn("Error device list should be empty\n");
488 		return -EINVAL;
489 	}
490 
491 	num_nodes = crat_table->num_domains;
492 	image_len = crat_table->length;
493 
494 	pr_info("Parsing CRAT table with %d nodes\n", num_nodes);
495 
496 	for (node_id = 0; node_id < num_nodes; node_id++) {
497 		top_dev = kfd_create_topology_device(device_list);
498 		if (!top_dev)
499 			break;
500 		top_dev->proximity_domain = proximity_domain++;
501 	}
502 
503 	if (!top_dev) {
504 		ret = -ENOMEM;
505 		goto err;
506 	}
507 
508 	memcpy(top_dev->oem_id, crat_table->oem_id, CRAT_OEMID_LENGTH);
509 	memcpy(top_dev->oem_table_id, crat_table->oem_table_id,
510 			CRAT_OEMTABLEID_LENGTH);
511 	top_dev->oem_revision = crat_table->oem_revision;
512 
513 	sub_type_hdr = (struct crat_subtype_generic *)(crat_table+1);
514 	while ((char *)sub_type_hdr + sizeof(struct crat_subtype_generic) <
515 			((char *)crat_image) + image_len) {
516 		if (sub_type_hdr->flags & CRAT_SUBTYPE_FLAGS_ENABLED) {
517 			ret = kfd_parse_subtype(sub_type_hdr, device_list);
518 			if (ret)
519 				break;
520 		}
521 
522 		sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
523 				sub_type_hdr->length);
524 	}
525 
526 err:
527 	if (ret)
528 		kfd_release_topology_device_list(device_list);
529 
530 	return ret;
531 }
532 
533 /* Helper function. See kfd_fill_gpu_cache_info for parameter description */
fill_in_pcache(struct crat_subtype_cache * pcache,struct kfd_gpu_cache_info * pcache_info,struct kfd_cu_info * cu_info,int mem_available,int cu_bitmask,int cache_type,unsigned int cu_processor_id,int cu_block)534 static int fill_in_pcache(struct crat_subtype_cache *pcache,
535 				struct kfd_gpu_cache_info *pcache_info,
536 				struct kfd_cu_info *cu_info,
537 				int mem_available,
538 				int cu_bitmask,
539 				int cache_type, unsigned int cu_processor_id,
540 				int cu_block)
541 {
542 	unsigned int cu_sibling_map_mask;
543 	int first_active_cu;
544 
545 	/* First check if enough memory is available */
546 	if (sizeof(struct crat_subtype_cache) > mem_available)
547 		return -ENOMEM;
548 
549 	cu_sibling_map_mask = cu_bitmask;
550 	cu_sibling_map_mask >>= cu_block;
551 	cu_sibling_map_mask &=
552 		((1 << pcache_info[cache_type].num_cu_shared) - 1);
553 	first_active_cu = ffs(cu_sibling_map_mask);
554 
555 	/* CU could be inactive. In case of shared cache find the first active
556 	 * CU. and incase of non-shared cache check if the CU is inactive. If
557 	 * inactive active skip it
558 	 */
559 	if (first_active_cu) {
560 		memset(pcache, 0, sizeof(struct crat_subtype_cache));
561 		pcache->type = CRAT_SUBTYPE_CACHE_AFFINITY;
562 		pcache->length = sizeof(struct crat_subtype_cache);
563 		pcache->flags = pcache_info[cache_type].flags;
564 		pcache->processor_id_low = cu_processor_id
565 					 + (first_active_cu - 1);
566 		pcache->cache_level = pcache_info[cache_type].cache_level;
567 		pcache->cache_size = pcache_info[cache_type].cache_size;
568 
569 		/* Sibling map is w.r.t processor_id_low, so shift out
570 		 * inactive CU
571 		 */
572 		cu_sibling_map_mask =
573 			cu_sibling_map_mask >> (first_active_cu - 1);
574 
575 		pcache->sibling_map[0] = (uint8_t)(cu_sibling_map_mask & 0xFF);
576 		pcache->sibling_map[1] =
577 				(uint8_t)((cu_sibling_map_mask >> 8) & 0xFF);
578 		pcache->sibling_map[2] =
579 				(uint8_t)((cu_sibling_map_mask >> 16) & 0xFF);
580 		pcache->sibling_map[3] =
581 				(uint8_t)((cu_sibling_map_mask >> 24) & 0xFF);
582 		return 0;
583 	}
584 	return 1;
585 }
586 
587 /* kfd_fill_gpu_cache_info - Fill GPU cache info using kfd_gpu_cache_info
588  * tables
589  *
590  *	@kdev - [IN] GPU device
591  *	@gpu_processor_id - [IN] GPU processor ID to which these caches
592  *			    associate
593  *	@available_size - [IN] Amount of memory available in pcache
594  *	@cu_info - [IN] Compute Unit info obtained from KGD
595  *	@pcache - [OUT] memory into which cache data is to be filled in.
596  *	@size_filled - [OUT] amount of data used up in pcache.
597  *	@num_of_entries - [OUT] number of caches added
598  */
kfd_fill_gpu_cache_info(struct kfd_dev * kdev,int gpu_processor_id,int available_size,struct kfd_cu_info * cu_info,struct crat_subtype_cache * pcache,int * size_filled,int * num_of_entries)599 static int kfd_fill_gpu_cache_info(struct kfd_dev *kdev,
600 			int gpu_processor_id,
601 			int available_size,
602 			struct kfd_cu_info *cu_info,
603 			struct crat_subtype_cache *pcache,
604 			int *size_filled,
605 			int *num_of_entries)
606 {
607 	struct kfd_gpu_cache_info *pcache_info;
608 	int num_of_cache_types = 0;
609 	int i, j, k;
610 	int ct = 0;
611 	int mem_available = available_size;
612 	unsigned int cu_processor_id;
613 	int ret;
614 
615 	switch (kdev->device_info->asic_family) {
616 	case CHIP_KAVERI:
617 		pcache_info = kaveri_cache_info;
618 		num_of_cache_types = ARRAY_SIZE(kaveri_cache_info);
619 		break;
620 	case CHIP_HAWAII:
621 		pcache_info = hawaii_cache_info;
622 		num_of_cache_types = ARRAY_SIZE(hawaii_cache_info);
623 		break;
624 	case CHIP_CARRIZO:
625 		pcache_info = carrizo_cache_info;
626 		num_of_cache_types = ARRAY_SIZE(carrizo_cache_info);
627 		break;
628 	case CHIP_TONGA:
629 		pcache_info = tonga_cache_info;
630 		num_of_cache_types = ARRAY_SIZE(tonga_cache_info);
631 		break;
632 	case CHIP_FIJI:
633 		pcache_info = fiji_cache_info;
634 		num_of_cache_types = ARRAY_SIZE(fiji_cache_info);
635 		break;
636 	case CHIP_POLARIS10:
637 		pcache_info = polaris10_cache_info;
638 		num_of_cache_types = ARRAY_SIZE(polaris10_cache_info);
639 		break;
640 	case CHIP_POLARIS11:
641 		pcache_info = polaris11_cache_info;
642 		num_of_cache_types = ARRAY_SIZE(polaris11_cache_info);
643 		break;
644 	case CHIP_VEGA10:
645 		pcache_info = vega10_cache_info;
646 		num_of_cache_types = ARRAY_SIZE(vega10_cache_info);
647 		break;
648 	case CHIP_RAVEN:
649 		pcache_info = raven_cache_info;
650 		num_of_cache_types = ARRAY_SIZE(raven_cache_info);
651 		break;
652 	default:
653 		return -EINVAL;
654 	}
655 
656 	*size_filled = 0;
657 	*num_of_entries = 0;
658 
659 	/* For each type of cache listed in the kfd_gpu_cache_info table,
660 	 * go through all available Compute Units.
661 	 * The [i,j,k] loop will
662 	 *		if kfd_gpu_cache_info.num_cu_shared = 1
663 	 *			will parse through all available CU
664 	 *		If (kfd_gpu_cache_info.num_cu_shared != 1)
665 	 *			then it will consider only one CU from
666 	 *			the shared unit
667 	 */
668 
669 	for (ct = 0; ct < num_of_cache_types; ct++) {
670 		cu_processor_id = gpu_processor_id;
671 		for (i = 0; i < cu_info->num_shader_engines; i++) {
672 			for (j = 0; j < cu_info->num_shader_arrays_per_engine;
673 				j++) {
674 				for (k = 0; k < cu_info->num_cu_per_sh;
675 					k += pcache_info[ct].num_cu_shared) {
676 
677 					ret = fill_in_pcache(pcache,
678 						pcache_info,
679 						cu_info,
680 						mem_available,
681 						cu_info->cu_bitmap[i][j],
682 						ct,
683 						cu_processor_id,
684 						k);
685 
686 					if (ret < 0)
687 						break;
688 
689 					if (!ret) {
690 						pcache++;
691 						(*num_of_entries)++;
692 						mem_available -=
693 							sizeof(*pcache);
694 						(*size_filled) +=
695 							sizeof(*pcache);
696 					}
697 
698 					/* Move to next CU block */
699 					cu_processor_id +=
700 						pcache_info[ct].num_cu_shared;
701 				}
702 			}
703 		}
704 	}
705 
706 	pr_debug("Added [%d] GPU cache entries\n", *num_of_entries);
707 
708 	return 0;
709 }
710 
711 /*
712  * kfd_create_crat_image_acpi - Allocates memory for CRAT image and
713  * copies CRAT from ACPI (if available).
714  * NOTE: Call kfd_destroy_crat_image to free CRAT image memory
715  *
716  *	@crat_image: CRAT read from ACPI. If no CRAT in ACPI then
717  *		     crat_image will be NULL
718  *	@size: [OUT] size of crat_image
719  *
720  *	Return 0 if successful else return error code
721  */
kfd_create_crat_image_acpi(void ** crat_image,size_t * size)722 int kfd_create_crat_image_acpi(void **crat_image, size_t *size)
723 {
724 	struct acpi_table_header *crat_table;
725 	acpi_status status;
726 	void *pcrat_image;
727 
728 	if (!crat_image)
729 		return -EINVAL;
730 
731 	*crat_image = NULL;
732 
733 	/* Fetch the CRAT table from ACPI */
734 	status = acpi_get_table(CRAT_SIGNATURE, 0, &crat_table);
735 	if (status == AE_NOT_FOUND) {
736 		pr_warn("CRAT table not found\n");
737 		return -ENODATA;
738 	} else if (ACPI_FAILURE(status)) {
739 		const char *err = acpi_format_exception(status);
740 
741 		pr_err("CRAT table error: %s\n", err);
742 		return -EINVAL;
743 	}
744 
745 	if (ignore_crat) {
746 		pr_info("CRAT table disabled by module option\n");
747 		return -ENODATA;
748 	}
749 
750 	pcrat_image = kmalloc(crat_table->length, GFP_KERNEL);
751 	if (!pcrat_image)
752 		return -ENOMEM;
753 
754 	memcpy(pcrat_image, crat_table, crat_table->length);
755 
756 	*crat_image = pcrat_image;
757 	*size = crat_table->length;
758 
759 	return 0;
760 }
761 
762 /* Memory required to create Virtual CRAT.
763  * Since there is no easy way to predict the amount of memory required, the
764  * following amount are allocated for CPU and GPU Virtual CRAT. This is
765  * expected to cover all known conditions. But to be safe additional check
766  * is put in the code to ensure we don't overwrite.
767  */
768 #define VCRAT_SIZE_FOR_CPU	(2 * PAGE_SIZE)
769 #define VCRAT_SIZE_FOR_GPU	(3 * PAGE_SIZE)
770 
771 /* kfd_fill_cu_for_cpu - Fill in Compute info for the given CPU NUMA node
772  *
773  *	@numa_node_id: CPU NUMA node id
774  *	@avail_size: Available size in the memory
775  *	@sub_type_hdr: Memory into which compute info will be filled in
776  *
777  *	Return 0 if successful else return -ve value
778  */
kfd_fill_cu_for_cpu(int numa_node_id,int * avail_size,int proximity_domain,struct crat_subtype_computeunit * sub_type_hdr)779 static int kfd_fill_cu_for_cpu(int numa_node_id, int *avail_size,
780 				int proximity_domain,
781 				struct crat_subtype_computeunit *sub_type_hdr)
782 {
783 	const struct cpumask *cpumask;
784 
785 	*avail_size -= sizeof(struct crat_subtype_computeunit);
786 	if (*avail_size < 0)
787 		return -ENOMEM;
788 
789 	memset(sub_type_hdr, 0, sizeof(struct crat_subtype_computeunit));
790 
791 	/* Fill in subtype header data */
792 	sub_type_hdr->type = CRAT_SUBTYPE_COMPUTEUNIT_AFFINITY;
793 	sub_type_hdr->length = sizeof(struct crat_subtype_computeunit);
794 	sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED;
795 
796 	cpumask = cpumask_of_node(numa_node_id);
797 
798 	/* Fill in CU data */
799 	sub_type_hdr->flags |= CRAT_CU_FLAGS_CPU_PRESENT;
800 	sub_type_hdr->proximity_domain = proximity_domain;
801 	sub_type_hdr->processor_id_low = kfd_numa_node_to_apic_id(numa_node_id);
802 	if (sub_type_hdr->processor_id_low == -1)
803 		return -EINVAL;
804 
805 	sub_type_hdr->num_cpu_cores = cpumask_weight(cpumask);
806 
807 	return 0;
808 }
809 
810 /* kfd_fill_mem_info_for_cpu - Fill in Memory info for the given CPU NUMA node
811  *
812  *	@numa_node_id: CPU NUMA node id
813  *	@avail_size: Available size in the memory
814  *	@sub_type_hdr: Memory into which compute info will be filled in
815  *
816  *	Return 0 if successful else return -ve value
817  */
kfd_fill_mem_info_for_cpu(int numa_node_id,int * avail_size,int proximity_domain,struct crat_subtype_memory * sub_type_hdr)818 static int kfd_fill_mem_info_for_cpu(int numa_node_id, int *avail_size,
819 			int proximity_domain,
820 			struct crat_subtype_memory *sub_type_hdr)
821 {
822 	uint64_t mem_in_bytes = 0;
823 	pg_data_t *pgdat;
824 	int zone_type;
825 
826 	*avail_size -= sizeof(struct crat_subtype_memory);
827 	if (*avail_size < 0)
828 		return -ENOMEM;
829 
830 	memset(sub_type_hdr, 0, sizeof(struct crat_subtype_memory));
831 
832 	/* Fill in subtype header data */
833 	sub_type_hdr->type = CRAT_SUBTYPE_MEMORY_AFFINITY;
834 	sub_type_hdr->length = sizeof(struct crat_subtype_memory);
835 	sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED;
836 
837 	/* Fill in Memory Subunit data */
838 
839 	/* Unlike si_meminfo, si_meminfo_node is not exported. So
840 	 * the following lines are duplicated from si_meminfo_node
841 	 * function
842 	 */
843 	pgdat = NODE_DATA(numa_node_id);
844 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
845 		mem_in_bytes += pgdat->node_zones[zone_type].managed_pages;
846 	mem_in_bytes <<= PAGE_SHIFT;
847 
848 	sub_type_hdr->length_low = lower_32_bits(mem_in_bytes);
849 	sub_type_hdr->length_high = upper_32_bits(mem_in_bytes);
850 	sub_type_hdr->proximity_domain = proximity_domain;
851 
852 	return 0;
853 }
854 
kfd_fill_iolink_info_for_cpu(int numa_node_id,int * avail_size,uint32_t * num_entries,struct crat_subtype_iolink * sub_type_hdr)855 static int kfd_fill_iolink_info_for_cpu(int numa_node_id, int *avail_size,
856 				uint32_t *num_entries,
857 				struct crat_subtype_iolink *sub_type_hdr)
858 {
859 	int nid;
860 	struct cpuinfo_x86 *c = &cpu_data(0);
861 	uint8_t link_type;
862 
863 	if (c->x86_vendor == X86_VENDOR_AMD)
864 		link_type = CRAT_IOLINK_TYPE_HYPERTRANSPORT;
865 	else
866 		link_type = CRAT_IOLINK_TYPE_QPI_1_1;
867 
868 	*num_entries = 0;
869 
870 	/* Create IO links from this node to other CPU nodes */
871 	for_each_online_node(nid) {
872 		if (nid == numa_node_id) /* node itself */
873 			continue;
874 
875 		*avail_size -= sizeof(struct crat_subtype_iolink);
876 		if (*avail_size < 0)
877 			return -ENOMEM;
878 
879 		memset(sub_type_hdr, 0, sizeof(struct crat_subtype_iolink));
880 
881 		/* Fill in subtype header data */
882 		sub_type_hdr->type = CRAT_SUBTYPE_IOLINK_AFFINITY;
883 		sub_type_hdr->length = sizeof(struct crat_subtype_iolink);
884 		sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED;
885 
886 		/* Fill in IO link data */
887 		sub_type_hdr->proximity_domain_from = numa_node_id;
888 		sub_type_hdr->proximity_domain_to = nid;
889 		sub_type_hdr->io_interface_type = link_type;
890 
891 		(*num_entries)++;
892 		sub_type_hdr++;
893 	}
894 
895 	return 0;
896 }
897 
898 /* kfd_create_vcrat_image_cpu - Create Virtual CRAT for CPU
899  *
900  *	@pcrat_image: Fill in VCRAT for CPU
901  *	@size:	[IN] allocated size of crat_image.
902  *		[OUT] actual size of data filled in crat_image
903  */
kfd_create_vcrat_image_cpu(void * pcrat_image,size_t * size)904 static int kfd_create_vcrat_image_cpu(void *pcrat_image, size_t *size)
905 {
906 	struct crat_header *crat_table = (struct crat_header *)pcrat_image;
907 	struct acpi_table_header *acpi_table;
908 	acpi_status status;
909 	struct crat_subtype_generic *sub_type_hdr;
910 	int avail_size = *size;
911 	int numa_node_id;
912 	uint32_t entries = 0;
913 	int ret = 0;
914 
915 	if (!pcrat_image || avail_size < VCRAT_SIZE_FOR_CPU)
916 		return -EINVAL;
917 
918 	/* Fill in CRAT Header.
919 	 * Modify length and total_entries as subunits are added.
920 	 */
921 	avail_size -= sizeof(struct crat_header);
922 	if (avail_size < 0)
923 		return -ENOMEM;
924 
925 	memset(crat_table, 0, sizeof(struct crat_header));
926 	memcpy(&crat_table->signature, CRAT_SIGNATURE,
927 			sizeof(crat_table->signature));
928 	crat_table->length = sizeof(struct crat_header);
929 
930 	status = acpi_get_table("DSDT", 0, &acpi_table);
931 	if (status != AE_OK)
932 		pr_warn("DSDT table not found for OEM information\n");
933 	else {
934 		crat_table->oem_revision = acpi_table->revision;
935 		memcpy(crat_table->oem_id, acpi_table->oem_id,
936 				CRAT_OEMID_LENGTH);
937 		memcpy(crat_table->oem_table_id, acpi_table->oem_table_id,
938 				CRAT_OEMTABLEID_LENGTH);
939 	}
940 	crat_table->total_entries = 0;
941 	crat_table->num_domains = 0;
942 
943 	sub_type_hdr = (struct crat_subtype_generic *)(crat_table+1);
944 
945 	for_each_online_node(numa_node_id) {
946 		if (kfd_numa_node_to_apic_id(numa_node_id) == -1)
947 			continue;
948 
949 		/* Fill in Subtype: Compute Unit */
950 		ret = kfd_fill_cu_for_cpu(numa_node_id, &avail_size,
951 			crat_table->num_domains,
952 			(struct crat_subtype_computeunit *)sub_type_hdr);
953 		if (ret < 0)
954 			return ret;
955 		crat_table->length += sub_type_hdr->length;
956 		crat_table->total_entries++;
957 
958 		sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
959 			sub_type_hdr->length);
960 
961 		/* Fill in Subtype: Memory */
962 		ret = kfd_fill_mem_info_for_cpu(numa_node_id, &avail_size,
963 			crat_table->num_domains,
964 			(struct crat_subtype_memory *)sub_type_hdr);
965 		if (ret < 0)
966 			return ret;
967 		crat_table->length += sub_type_hdr->length;
968 		crat_table->total_entries++;
969 
970 		sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
971 			sub_type_hdr->length);
972 
973 		/* Fill in Subtype: IO Link */
974 		ret = kfd_fill_iolink_info_for_cpu(numa_node_id, &avail_size,
975 				&entries,
976 				(struct crat_subtype_iolink *)sub_type_hdr);
977 		if (ret < 0)
978 			return ret;
979 		crat_table->length += (sub_type_hdr->length * entries);
980 		crat_table->total_entries += entries;
981 
982 		sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
983 				sub_type_hdr->length * entries);
984 
985 		crat_table->num_domains++;
986 	}
987 
988 	/* TODO: Add cache Subtype for CPU.
989 	 * Currently, CPU cache information is available in function
990 	 * detect_cache_attributes(cpu) defined in the file
991 	 * ./arch/x86/kernel/cpu/intel_cacheinfo.c. This function is not
992 	 * exported and to get the same information the code needs to be
993 	 * duplicated.
994 	 */
995 
996 	*size = crat_table->length;
997 	pr_info("Virtual CRAT table created for CPU\n");
998 
999 	return 0;
1000 }
1001 
kfd_fill_gpu_memory_affinity(int * avail_size,struct kfd_dev * kdev,uint8_t type,uint64_t size,struct crat_subtype_memory * sub_type_hdr,uint32_t proximity_domain,const struct kfd_local_mem_info * local_mem_info)1002 static int kfd_fill_gpu_memory_affinity(int *avail_size,
1003 		struct kfd_dev *kdev, uint8_t type, uint64_t size,
1004 		struct crat_subtype_memory *sub_type_hdr,
1005 		uint32_t proximity_domain,
1006 		const struct kfd_local_mem_info *local_mem_info)
1007 {
1008 	*avail_size -= sizeof(struct crat_subtype_memory);
1009 	if (*avail_size < 0)
1010 		return -ENOMEM;
1011 
1012 	memset((void *)sub_type_hdr, 0, sizeof(struct crat_subtype_memory));
1013 	sub_type_hdr->type = CRAT_SUBTYPE_MEMORY_AFFINITY;
1014 	sub_type_hdr->length = sizeof(struct crat_subtype_memory);
1015 	sub_type_hdr->flags |= CRAT_SUBTYPE_FLAGS_ENABLED;
1016 
1017 	sub_type_hdr->proximity_domain = proximity_domain;
1018 
1019 	pr_debug("Fill gpu memory affinity - type 0x%x size 0x%llx\n",
1020 			type, size);
1021 
1022 	sub_type_hdr->length_low = lower_32_bits(size);
1023 	sub_type_hdr->length_high = upper_32_bits(size);
1024 
1025 	sub_type_hdr->width = local_mem_info->vram_width;
1026 	sub_type_hdr->visibility_type = type;
1027 
1028 	return 0;
1029 }
1030 
1031 /* kfd_fill_gpu_direct_io_link - Fill in direct io link from GPU
1032  * to its NUMA node
1033  *	@avail_size: Available size in the memory
1034  *	@kdev - [IN] GPU device
1035  *	@sub_type_hdr: Memory into which io link info will be filled in
1036  *	@proximity_domain - proximity domain of the GPU node
1037  *
1038  *	Return 0 if successful else return -ve value
1039  */
kfd_fill_gpu_direct_io_link(int * avail_size,struct kfd_dev * kdev,struct crat_subtype_iolink * sub_type_hdr,uint32_t proximity_domain)1040 static int kfd_fill_gpu_direct_io_link(int *avail_size,
1041 			struct kfd_dev *kdev,
1042 			struct crat_subtype_iolink *sub_type_hdr,
1043 			uint32_t proximity_domain)
1044 {
1045 	*avail_size -= sizeof(struct crat_subtype_iolink);
1046 	if (*avail_size < 0)
1047 		return -ENOMEM;
1048 
1049 	memset((void *)sub_type_hdr, 0, sizeof(struct crat_subtype_iolink));
1050 
1051 	/* Fill in subtype header data */
1052 	sub_type_hdr->type = CRAT_SUBTYPE_IOLINK_AFFINITY;
1053 	sub_type_hdr->length = sizeof(struct crat_subtype_iolink);
1054 	sub_type_hdr->flags |= CRAT_SUBTYPE_FLAGS_ENABLED;
1055 
1056 	/* Fill in IOLINK subtype.
1057 	 * TODO: Fill-in other fields of iolink subtype
1058 	 */
1059 	sub_type_hdr->io_interface_type = CRAT_IOLINK_TYPE_PCIEXPRESS;
1060 	sub_type_hdr->proximity_domain_from = proximity_domain;
1061 #ifdef CONFIG_NUMA
1062 	if (kdev->pdev->dev.numa_node == NUMA_NO_NODE)
1063 		sub_type_hdr->proximity_domain_to = 0;
1064 	else
1065 		sub_type_hdr->proximity_domain_to = kdev->pdev->dev.numa_node;
1066 #else
1067 	sub_type_hdr->proximity_domain_to = 0;
1068 #endif
1069 	return 0;
1070 }
1071 
1072 /* kfd_create_vcrat_image_gpu - Create Virtual CRAT for CPU
1073  *
1074  *	@pcrat_image: Fill in VCRAT for GPU
1075  *	@size:	[IN] allocated size of crat_image.
1076  *		[OUT] actual size of data filled in crat_image
1077  */
kfd_create_vcrat_image_gpu(void * pcrat_image,size_t * size,struct kfd_dev * kdev,uint32_t proximity_domain)1078 static int kfd_create_vcrat_image_gpu(void *pcrat_image,
1079 				      size_t *size, struct kfd_dev *kdev,
1080 				      uint32_t proximity_domain)
1081 {
1082 	struct crat_header *crat_table = (struct crat_header *)pcrat_image;
1083 	struct crat_subtype_generic *sub_type_hdr;
1084 	struct crat_subtype_computeunit *cu;
1085 	struct kfd_cu_info cu_info;
1086 	int avail_size = *size;
1087 	uint32_t total_num_of_cu;
1088 	int num_of_cache_entries = 0;
1089 	int cache_mem_filled = 0;
1090 	int ret = 0;
1091 	struct kfd_local_mem_info local_mem_info;
1092 
1093 	if (!pcrat_image || avail_size < VCRAT_SIZE_FOR_GPU)
1094 		return -EINVAL;
1095 
1096 	/* Fill the CRAT Header.
1097 	 * Modify length and total_entries as subunits are added.
1098 	 */
1099 	avail_size -= sizeof(struct crat_header);
1100 	if (avail_size < 0)
1101 		return -ENOMEM;
1102 
1103 	memset(crat_table, 0, sizeof(struct crat_header));
1104 
1105 	memcpy(&crat_table->signature, CRAT_SIGNATURE,
1106 			sizeof(crat_table->signature));
1107 	/* Change length as we add more subtypes*/
1108 	crat_table->length = sizeof(struct crat_header);
1109 	crat_table->num_domains = 1;
1110 	crat_table->total_entries = 0;
1111 
1112 	/* Fill in Subtype: Compute Unit
1113 	 * First fill in the sub type header and then sub type data
1114 	 */
1115 	avail_size -= sizeof(struct crat_subtype_computeunit);
1116 	if (avail_size < 0)
1117 		return -ENOMEM;
1118 
1119 	sub_type_hdr = (struct crat_subtype_generic *)(crat_table + 1);
1120 	memset(sub_type_hdr, 0, sizeof(struct crat_subtype_computeunit));
1121 
1122 	sub_type_hdr->type = CRAT_SUBTYPE_COMPUTEUNIT_AFFINITY;
1123 	sub_type_hdr->length = sizeof(struct crat_subtype_computeunit);
1124 	sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED;
1125 
1126 	/* Fill CU subtype data */
1127 	cu = (struct crat_subtype_computeunit *)sub_type_hdr;
1128 	cu->flags |= CRAT_CU_FLAGS_GPU_PRESENT;
1129 	cu->proximity_domain = proximity_domain;
1130 
1131 	kdev->kfd2kgd->get_cu_info(kdev->kgd, &cu_info);
1132 	cu->num_simd_per_cu = cu_info.simd_per_cu;
1133 	cu->num_simd_cores = cu_info.simd_per_cu * cu_info.cu_active_number;
1134 	cu->max_waves_simd = cu_info.max_waves_per_simd;
1135 
1136 	cu->wave_front_size = cu_info.wave_front_size;
1137 	cu->array_count = cu_info.num_shader_arrays_per_engine *
1138 		cu_info.num_shader_engines;
1139 	total_num_of_cu = (cu->array_count * cu_info.num_cu_per_sh);
1140 	cu->processor_id_low = get_and_inc_gpu_processor_id(total_num_of_cu);
1141 	cu->num_cu_per_array = cu_info.num_cu_per_sh;
1142 	cu->max_slots_scatch_cu = cu_info.max_scratch_slots_per_cu;
1143 	cu->num_banks = cu_info.num_shader_engines;
1144 	cu->lds_size_in_kb = cu_info.lds_size;
1145 
1146 	cu->hsa_capability = 0;
1147 
1148 	/* Check if this node supports IOMMU. During parsing this flag will
1149 	 * translate to HSA_CAP_ATS_PRESENT
1150 	 */
1151 	if (!kfd_iommu_check_device(kdev))
1152 		cu->hsa_capability |= CRAT_CU_FLAGS_IOMMU_PRESENT;
1153 
1154 	crat_table->length += sub_type_hdr->length;
1155 	crat_table->total_entries++;
1156 
1157 	/* Fill in Subtype: Memory. Only on systems with large BAR (no
1158 	 * private FB), report memory as public. On other systems
1159 	 * report the total FB size (public+private) as a single
1160 	 * private heap.
1161 	 */
1162 	kdev->kfd2kgd->get_local_mem_info(kdev->kgd, &local_mem_info);
1163 	sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
1164 			sub_type_hdr->length);
1165 
1166 	if (debug_largebar)
1167 		local_mem_info.local_mem_size_private = 0;
1168 
1169 	if (local_mem_info.local_mem_size_private == 0)
1170 		ret = kfd_fill_gpu_memory_affinity(&avail_size,
1171 				kdev, HSA_MEM_HEAP_TYPE_FB_PUBLIC,
1172 				local_mem_info.local_mem_size_public,
1173 				(struct crat_subtype_memory *)sub_type_hdr,
1174 				proximity_domain,
1175 				&local_mem_info);
1176 	else
1177 		ret = kfd_fill_gpu_memory_affinity(&avail_size,
1178 				kdev, HSA_MEM_HEAP_TYPE_FB_PRIVATE,
1179 				local_mem_info.local_mem_size_public +
1180 				local_mem_info.local_mem_size_private,
1181 				(struct crat_subtype_memory *)sub_type_hdr,
1182 				proximity_domain,
1183 				&local_mem_info);
1184 	if (ret < 0)
1185 		return ret;
1186 
1187 	crat_table->length += sizeof(struct crat_subtype_memory);
1188 	crat_table->total_entries++;
1189 
1190 	/* TODO: Fill in cache information. This information is NOT readily
1191 	 * available in KGD
1192 	 */
1193 	sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
1194 		sub_type_hdr->length);
1195 	ret = kfd_fill_gpu_cache_info(kdev, cu->processor_id_low,
1196 				avail_size,
1197 				&cu_info,
1198 				(struct crat_subtype_cache *)sub_type_hdr,
1199 				&cache_mem_filled,
1200 				&num_of_cache_entries);
1201 
1202 	if (ret < 0)
1203 		return ret;
1204 
1205 	crat_table->length += cache_mem_filled;
1206 	crat_table->total_entries += num_of_cache_entries;
1207 	avail_size -= cache_mem_filled;
1208 
1209 	/* Fill in Subtype: IO_LINKS
1210 	 *  Only direct links are added here which is Link from GPU to
1211 	 *  to its NUMA node. Indirect links are added by userspace.
1212 	 */
1213 	sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
1214 		cache_mem_filled);
1215 	ret = kfd_fill_gpu_direct_io_link(&avail_size, kdev,
1216 		(struct crat_subtype_iolink *)sub_type_hdr, proximity_domain);
1217 
1218 	if (ret < 0)
1219 		return ret;
1220 
1221 	crat_table->length += sub_type_hdr->length;
1222 	crat_table->total_entries++;
1223 
1224 	*size = crat_table->length;
1225 	pr_info("Virtual CRAT table created for GPU\n");
1226 
1227 	return ret;
1228 }
1229 
1230 /* kfd_create_crat_image_virtual - Allocates memory for CRAT image and
1231  *		creates a Virtual CRAT (VCRAT) image
1232  *
1233  * NOTE: Call kfd_destroy_crat_image to free CRAT image memory
1234  *
1235  *	@crat_image: VCRAT image created because ACPI does not have a
1236  *		     CRAT for this device
1237  *	@size: [OUT] size of virtual crat_image
1238  *	@flags:	COMPUTE_UNIT_CPU - Create VCRAT for CPU device
1239  *		COMPUTE_UNIT_GPU - Create VCRAT for GPU
1240  *		(COMPUTE_UNIT_CPU | COMPUTE_UNIT_GPU) - Create VCRAT for APU
1241  *			-- this option is not currently implemented.
1242  *			The assumption is that all AMD APUs will have CRAT
1243  *	@kdev: Valid kfd_device required if flags contain COMPUTE_UNIT_GPU
1244  *
1245  *	Return 0 if successful else return -ve value
1246  */
kfd_create_crat_image_virtual(void ** crat_image,size_t * size,int flags,struct kfd_dev * kdev,uint32_t proximity_domain)1247 int kfd_create_crat_image_virtual(void **crat_image, size_t *size,
1248 				  int flags, struct kfd_dev *kdev,
1249 				  uint32_t proximity_domain)
1250 {
1251 	void *pcrat_image = NULL;
1252 	int ret = 0;
1253 
1254 	if (!crat_image)
1255 		return -EINVAL;
1256 
1257 	*crat_image = NULL;
1258 
1259 	/* Allocate one VCRAT_SIZE_FOR_CPU for CPU virtual CRAT image and
1260 	 * VCRAT_SIZE_FOR_GPU for GPU virtual CRAT image. This should cover
1261 	 * all the current conditions. A check is put not to overwrite beyond
1262 	 * allocated size
1263 	 */
1264 	switch (flags) {
1265 	case COMPUTE_UNIT_CPU:
1266 		pcrat_image = kmalloc(VCRAT_SIZE_FOR_CPU, GFP_KERNEL);
1267 		if (!pcrat_image)
1268 			return -ENOMEM;
1269 		*size = VCRAT_SIZE_FOR_CPU;
1270 		ret = kfd_create_vcrat_image_cpu(pcrat_image, size);
1271 		break;
1272 	case COMPUTE_UNIT_GPU:
1273 		if (!kdev)
1274 			return -EINVAL;
1275 		pcrat_image = kmalloc(VCRAT_SIZE_FOR_GPU, GFP_KERNEL);
1276 		if (!pcrat_image)
1277 			return -ENOMEM;
1278 		*size = VCRAT_SIZE_FOR_GPU;
1279 		ret = kfd_create_vcrat_image_gpu(pcrat_image, size, kdev,
1280 						 proximity_domain);
1281 		break;
1282 	case (COMPUTE_UNIT_CPU | COMPUTE_UNIT_GPU):
1283 		/* TODO: */
1284 		ret = -EINVAL;
1285 		pr_err("VCRAT not implemented for APU\n");
1286 		break;
1287 	default:
1288 		ret = -EINVAL;
1289 	}
1290 
1291 	if (!ret)
1292 		*crat_image = pcrat_image;
1293 	else
1294 		kfree(pcrat_image);
1295 
1296 	return ret;
1297 }
1298 
1299 
1300 /* kfd_destroy_crat_image
1301  *
1302  *	@crat_image: [IN] - crat_image from kfd_create_crat_image_xxx(..)
1303  *
1304  */
kfd_destroy_crat_image(void * crat_image)1305 void kfd_destroy_crat_image(void *crat_image)
1306 {
1307 	kfree(crat_image);
1308 }
1309