1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 
23 #include <linux/mutex.h>
24 #include <linux/log2.h>
25 #include <linux/sched.h>
26 #include <linux/sched/mm.h>
27 #include <linux/sched/task.h>
28 #include <linux/slab.h>
29 #include <linux/amd-iommu.h>
30 #include <linux/notifier.h>
31 #include <linux/compat.h>
32 #include <linux/mman.h>
33 #include <linux/file.h>
34 
35 struct mm_struct;
36 
37 #include "kfd_priv.h"
38 #include "kfd_device_queue_manager.h"
39 #include "kfd_dbgmgr.h"
40 #include "kfd_iommu.h"
41 
42 /*
43  * List of struct kfd_process (field kfd_process).
44  * Unique/indexed by mm_struct*
45  */
46 DEFINE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE);
47 static DEFINE_MUTEX(kfd_processes_mutex);
48 
49 DEFINE_SRCU(kfd_processes_srcu);
50 
51 /* For process termination handling */
52 static struct workqueue_struct *kfd_process_wq;
53 
54 /* Ordered, single-threaded workqueue for restoring evicted
55  * processes. Restoring multiple processes concurrently under memory
56  * pressure can lead to processes blocking each other from validating
57  * their BOs and result in a live-lock situation where processes
58  * remain evicted indefinitely.
59  */
60 static struct workqueue_struct *kfd_restore_wq;
61 
62 static struct kfd_process *find_process(const struct task_struct *thread);
63 static void kfd_process_ref_release(struct kref *ref);
64 static struct kfd_process *create_process(const struct task_struct *thread,
65 					struct file *filep);
66 
67 static void evict_process_worker(struct work_struct *work);
68 static void restore_process_worker(struct work_struct *work);
69 
70 
kfd_process_create_wq(void)71 int kfd_process_create_wq(void)
72 {
73 	if (!kfd_process_wq)
74 		kfd_process_wq = alloc_workqueue("kfd_process_wq", 0, 0);
75 	if (!kfd_restore_wq)
76 		kfd_restore_wq = alloc_ordered_workqueue("kfd_restore_wq", 0);
77 
78 	if (!kfd_process_wq || !kfd_restore_wq) {
79 		kfd_process_destroy_wq();
80 		return -ENOMEM;
81 	}
82 
83 	return 0;
84 }
85 
kfd_process_destroy_wq(void)86 void kfd_process_destroy_wq(void)
87 {
88 	if (kfd_process_wq) {
89 		destroy_workqueue(kfd_process_wq);
90 		kfd_process_wq = NULL;
91 	}
92 	if (kfd_restore_wq) {
93 		destroy_workqueue(kfd_restore_wq);
94 		kfd_restore_wq = NULL;
95 	}
96 }
97 
kfd_process_free_gpuvm(struct kgd_mem * mem,struct kfd_process_device * pdd)98 static void kfd_process_free_gpuvm(struct kgd_mem *mem,
99 			struct kfd_process_device *pdd)
100 {
101 	struct kfd_dev *dev = pdd->dev;
102 
103 	dev->kfd2kgd->unmap_memory_to_gpu(dev->kgd, mem, pdd->vm);
104 	dev->kfd2kgd->free_memory_of_gpu(dev->kgd, mem);
105 }
106 
107 /* kfd_process_alloc_gpuvm - Allocate GPU VM for the KFD process
108  *	This function should be only called right after the process
109  *	is created and when kfd_processes_mutex is still being held
110  *	to avoid concurrency. Because of that exclusiveness, we do
111  *	not need to take p->mutex.
112  */
kfd_process_alloc_gpuvm(struct kfd_process_device * pdd,uint64_t gpu_va,uint32_t size,uint32_t flags,void ** kptr)113 static int kfd_process_alloc_gpuvm(struct kfd_process_device *pdd,
114 				   uint64_t gpu_va, uint32_t size,
115 				   uint32_t flags, void **kptr)
116 {
117 	struct kfd_dev *kdev = pdd->dev;
118 	struct kgd_mem *mem = NULL;
119 	int handle;
120 	int err;
121 
122 	err = kdev->kfd2kgd->alloc_memory_of_gpu(kdev->kgd, gpu_va, size,
123 						 pdd->vm, &mem, NULL, flags);
124 	if (err)
125 		goto err_alloc_mem;
126 
127 	err = kdev->kfd2kgd->map_memory_to_gpu(kdev->kgd, mem, pdd->vm);
128 	if (err)
129 		goto err_map_mem;
130 
131 	err = kdev->kfd2kgd->sync_memory(kdev->kgd, mem, true);
132 	if (err) {
133 		pr_debug("Sync memory failed, wait interrupted by user signal\n");
134 		goto sync_memory_failed;
135 	}
136 
137 	/* Create an obj handle so kfd_process_device_remove_obj_handle
138 	 * will take care of the bo removal when the process finishes.
139 	 * We do not need to take p->mutex, because the process is just
140 	 * created and the ioctls have not had the chance to run.
141 	 */
142 	handle = kfd_process_device_create_obj_handle(pdd, mem);
143 
144 	if (handle < 0) {
145 		err = handle;
146 		goto free_gpuvm;
147 	}
148 
149 	if (kptr) {
150 		err = kdev->kfd2kgd->map_gtt_bo_to_kernel(kdev->kgd,
151 				(struct kgd_mem *)mem, kptr, NULL);
152 		if (err) {
153 			pr_debug("Map GTT BO to kernel failed\n");
154 			goto free_obj_handle;
155 		}
156 	}
157 
158 	return err;
159 
160 free_obj_handle:
161 	kfd_process_device_remove_obj_handle(pdd, handle);
162 free_gpuvm:
163 sync_memory_failed:
164 	kfd_process_free_gpuvm(mem, pdd);
165 	return err;
166 
167 err_map_mem:
168 	kdev->kfd2kgd->free_memory_of_gpu(kdev->kgd, mem);
169 err_alloc_mem:
170 	*kptr = NULL;
171 	return err;
172 }
173 
174 /* kfd_process_device_reserve_ib_mem - Reserve memory inside the
175  *	process for IB usage The memory reserved is for KFD to submit
176  *	IB to AMDGPU from kernel.  If the memory is reserved
177  *	successfully, ib_kaddr will have the CPU/kernel
178  *	address. Check ib_kaddr before accessing the memory.
179  */
kfd_process_device_reserve_ib_mem(struct kfd_process_device * pdd)180 static int kfd_process_device_reserve_ib_mem(struct kfd_process_device *pdd)
181 {
182 	struct qcm_process_device *qpd = &pdd->qpd;
183 	uint32_t flags = ALLOC_MEM_FLAGS_GTT |
184 			 ALLOC_MEM_FLAGS_NO_SUBSTITUTE |
185 			 ALLOC_MEM_FLAGS_WRITABLE |
186 			 ALLOC_MEM_FLAGS_EXECUTABLE;
187 	void *kaddr;
188 	int ret;
189 
190 	if (qpd->ib_kaddr || !qpd->ib_base)
191 		return 0;
192 
193 	/* ib_base is only set for dGPU */
194 	ret = kfd_process_alloc_gpuvm(pdd, qpd->ib_base, PAGE_SIZE, flags,
195 				      &kaddr);
196 	if (ret)
197 		return ret;
198 
199 	qpd->ib_kaddr = kaddr;
200 
201 	return 0;
202 }
203 
kfd_create_process(struct file * filep)204 struct kfd_process *kfd_create_process(struct file *filep)
205 {
206 	struct kfd_process *process;
207 	struct task_struct *thread = current;
208 
209 	if (!thread->mm)
210 		return ERR_PTR(-EINVAL);
211 
212 	/* Only the pthreads threading model is supported. */
213 	if (thread->group_leader->mm != thread->mm)
214 		return ERR_PTR(-EINVAL);
215 
216 	/*
217 	 * take kfd processes mutex before starting of process creation
218 	 * so there won't be a case where two threads of the same process
219 	 * create two kfd_process structures
220 	 */
221 	mutex_lock(&kfd_processes_mutex);
222 
223 	/* A prior open of /dev/kfd could have already created the process. */
224 	process = find_process(thread);
225 	if (process)
226 		pr_debug("Process already found\n");
227 	else
228 		process = create_process(thread, filep);
229 
230 	mutex_unlock(&kfd_processes_mutex);
231 
232 	return process;
233 }
234 
kfd_get_process(const struct task_struct * thread)235 struct kfd_process *kfd_get_process(const struct task_struct *thread)
236 {
237 	struct kfd_process *process;
238 
239 	if (!thread->mm)
240 		return ERR_PTR(-EINVAL);
241 
242 	/* Only the pthreads threading model is supported. */
243 	if (thread->group_leader->mm != thread->mm)
244 		return ERR_PTR(-EINVAL);
245 
246 	process = find_process(thread);
247 	if (!process)
248 		return ERR_PTR(-EINVAL);
249 
250 	return process;
251 }
252 
find_process_by_mm(const struct mm_struct * mm)253 static struct kfd_process *find_process_by_mm(const struct mm_struct *mm)
254 {
255 	struct kfd_process *process;
256 
257 	hash_for_each_possible_rcu(kfd_processes_table, process,
258 					kfd_processes, (uintptr_t)mm)
259 		if (process->mm == mm)
260 			return process;
261 
262 	return NULL;
263 }
264 
find_process(const struct task_struct * thread)265 static struct kfd_process *find_process(const struct task_struct *thread)
266 {
267 	struct kfd_process *p;
268 	int idx;
269 
270 	idx = srcu_read_lock(&kfd_processes_srcu);
271 	p = find_process_by_mm(thread->mm);
272 	srcu_read_unlock(&kfd_processes_srcu, idx);
273 
274 	return p;
275 }
276 
kfd_unref_process(struct kfd_process * p)277 void kfd_unref_process(struct kfd_process *p)
278 {
279 	kref_put(&p->ref, kfd_process_ref_release);
280 }
281 
kfd_process_device_free_bos(struct kfd_process_device * pdd)282 static void kfd_process_device_free_bos(struct kfd_process_device *pdd)
283 {
284 	struct kfd_process *p = pdd->process;
285 	void *mem;
286 	int id;
287 
288 	/*
289 	 * Remove all handles from idr and release appropriate
290 	 * local memory object
291 	 */
292 	idr_for_each_entry(&pdd->alloc_idr, mem, id) {
293 		struct kfd_process_device *peer_pdd;
294 
295 		list_for_each_entry(peer_pdd, &p->per_device_data,
296 				    per_device_list) {
297 			if (!peer_pdd->vm)
298 				continue;
299 			peer_pdd->dev->kfd2kgd->unmap_memory_to_gpu(
300 				peer_pdd->dev->kgd, mem, peer_pdd->vm);
301 		}
302 
303 		pdd->dev->kfd2kgd->free_memory_of_gpu(pdd->dev->kgd, mem);
304 		kfd_process_device_remove_obj_handle(pdd, id);
305 	}
306 }
307 
kfd_process_free_outstanding_kfd_bos(struct kfd_process * p)308 static void kfd_process_free_outstanding_kfd_bos(struct kfd_process *p)
309 {
310 	struct kfd_process_device *pdd;
311 
312 	list_for_each_entry(pdd, &p->per_device_data, per_device_list)
313 		kfd_process_device_free_bos(pdd);
314 }
315 
kfd_process_destroy_pdds(struct kfd_process * p)316 static void kfd_process_destroy_pdds(struct kfd_process *p)
317 {
318 	struct kfd_process_device *pdd, *temp;
319 
320 	list_for_each_entry_safe(pdd, temp, &p->per_device_data,
321 				 per_device_list) {
322 		pr_debug("Releasing pdd (topology id %d) for process (pasid %d)\n",
323 				pdd->dev->id, p->pasid);
324 
325 		if (pdd->drm_file)
326 			fput(pdd->drm_file);
327 		else if (pdd->vm)
328 			pdd->dev->kfd2kgd->destroy_process_vm(
329 				pdd->dev->kgd, pdd->vm);
330 
331 		list_del(&pdd->per_device_list);
332 
333 		if (pdd->qpd.cwsr_kaddr && !pdd->qpd.cwsr_base)
334 			free_pages((unsigned long)pdd->qpd.cwsr_kaddr,
335 				get_order(KFD_CWSR_TBA_TMA_SIZE));
336 
337 		kfree(pdd->qpd.doorbell_bitmap);
338 		idr_destroy(&pdd->alloc_idr);
339 
340 		kfree(pdd);
341 	}
342 }
343 
344 /* No process locking is needed in this function, because the process
345  * is not findable any more. We must assume that no other thread is
346  * using it any more, otherwise we couldn't safely free the process
347  * structure in the end.
348  */
kfd_process_wq_release(struct work_struct * work)349 static void kfd_process_wq_release(struct work_struct *work)
350 {
351 	struct kfd_process *p = container_of(work, struct kfd_process,
352 					     release_work);
353 
354 	kfd_iommu_unbind_process(p);
355 
356 	kfd_process_free_outstanding_kfd_bos(p);
357 
358 	kfd_process_destroy_pdds(p);
359 	dma_fence_put(p->ef);
360 
361 	kfd_event_free_process(p);
362 
363 	kfd_pasid_free(p->pasid);
364 	kfd_free_process_doorbells(p);
365 
366 	mutex_destroy(&p->mutex);
367 
368 	put_task_struct(p->lead_thread);
369 
370 	kfree(p);
371 }
372 
kfd_process_ref_release(struct kref * ref)373 static void kfd_process_ref_release(struct kref *ref)
374 {
375 	struct kfd_process *p = container_of(ref, struct kfd_process, ref);
376 
377 	INIT_WORK(&p->release_work, kfd_process_wq_release);
378 	queue_work(kfd_process_wq, &p->release_work);
379 }
380 
kfd_process_destroy_delayed(struct rcu_head * rcu)381 static void kfd_process_destroy_delayed(struct rcu_head *rcu)
382 {
383 	struct kfd_process *p = container_of(rcu, struct kfd_process, rcu);
384 
385 	kfd_unref_process(p);
386 }
387 
kfd_process_notifier_release(struct mmu_notifier * mn,struct mm_struct * mm)388 static void kfd_process_notifier_release(struct mmu_notifier *mn,
389 					struct mm_struct *mm)
390 {
391 	struct kfd_process *p;
392 	struct kfd_process_device *pdd = NULL;
393 
394 	/*
395 	 * The kfd_process structure can not be free because the
396 	 * mmu_notifier srcu is read locked
397 	 */
398 	p = container_of(mn, struct kfd_process, mmu_notifier);
399 	if (WARN_ON(p->mm != mm))
400 		return;
401 
402 	mutex_lock(&kfd_processes_mutex);
403 	hash_del_rcu(&p->kfd_processes);
404 	mutex_unlock(&kfd_processes_mutex);
405 	synchronize_srcu(&kfd_processes_srcu);
406 
407 	cancel_delayed_work_sync(&p->eviction_work);
408 	cancel_delayed_work_sync(&p->restore_work);
409 
410 	mutex_lock(&p->mutex);
411 
412 	/* Iterate over all process device data structures and if the
413 	 * pdd is in debug mode, we should first force unregistration,
414 	 * then we will be able to destroy the queues
415 	 */
416 	list_for_each_entry(pdd, &p->per_device_data, per_device_list) {
417 		struct kfd_dev *dev = pdd->dev;
418 
419 		mutex_lock(kfd_get_dbgmgr_mutex());
420 		if (dev && dev->dbgmgr && dev->dbgmgr->pasid == p->pasid) {
421 			if (!kfd_dbgmgr_unregister(dev->dbgmgr, p)) {
422 				kfd_dbgmgr_destroy(dev->dbgmgr);
423 				dev->dbgmgr = NULL;
424 			}
425 		}
426 		mutex_unlock(kfd_get_dbgmgr_mutex());
427 	}
428 
429 	kfd_process_dequeue_from_all_devices(p);
430 	pqm_uninit(&p->pqm);
431 
432 	/* Indicate to other users that MM is no longer valid */
433 	p->mm = NULL;
434 
435 	mutex_unlock(&p->mutex);
436 
437 	mmu_notifier_unregister_no_release(&p->mmu_notifier, mm);
438 	mmu_notifier_call_srcu(&p->rcu, &kfd_process_destroy_delayed);
439 }
440 
441 static const struct mmu_notifier_ops kfd_process_mmu_notifier_ops = {
442 	.release = kfd_process_notifier_release,
443 };
444 
kfd_process_init_cwsr_apu(struct kfd_process * p,struct file * filep)445 static int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep)
446 {
447 	unsigned long  offset;
448 	struct kfd_process_device *pdd;
449 
450 	list_for_each_entry(pdd, &p->per_device_data, per_device_list) {
451 		struct kfd_dev *dev = pdd->dev;
452 		struct qcm_process_device *qpd = &pdd->qpd;
453 
454 		if (!dev->cwsr_enabled || qpd->cwsr_kaddr || qpd->cwsr_base)
455 			continue;
456 
457 		offset = (KFD_MMAP_TYPE_RESERVED_MEM | KFD_MMAP_GPU_ID(dev->id))
458 			<< PAGE_SHIFT;
459 		qpd->tba_addr = (int64_t)vm_mmap(filep, 0,
460 			KFD_CWSR_TBA_TMA_SIZE, PROT_READ | PROT_EXEC,
461 			MAP_SHARED, offset);
462 
463 		if (IS_ERR_VALUE(qpd->tba_addr)) {
464 			int err = qpd->tba_addr;
465 
466 			pr_err("Failure to set tba address. error %d.\n", err);
467 			qpd->tba_addr = 0;
468 			qpd->cwsr_kaddr = NULL;
469 			return err;
470 		}
471 
472 		memcpy(qpd->cwsr_kaddr, dev->cwsr_isa, dev->cwsr_isa_size);
473 
474 		qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
475 		pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
476 			qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
477 	}
478 
479 	return 0;
480 }
481 
kfd_process_device_init_cwsr_dgpu(struct kfd_process_device * pdd)482 static int kfd_process_device_init_cwsr_dgpu(struct kfd_process_device *pdd)
483 {
484 	struct kfd_dev *dev = pdd->dev;
485 	struct qcm_process_device *qpd = &pdd->qpd;
486 	uint32_t flags = ALLOC_MEM_FLAGS_GTT |
487 		ALLOC_MEM_FLAGS_NO_SUBSTITUTE | ALLOC_MEM_FLAGS_EXECUTABLE;
488 	void *kaddr;
489 	int ret;
490 
491 	if (!dev->cwsr_enabled || qpd->cwsr_kaddr || !qpd->cwsr_base)
492 		return 0;
493 
494 	/* cwsr_base is only set for dGPU */
495 	ret = kfd_process_alloc_gpuvm(pdd, qpd->cwsr_base,
496 				      KFD_CWSR_TBA_TMA_SIZE, flags, &kaddr);
497 	if (ret)
498 		return ret;
499 
500 	qpd->cwsr_kaddr = kaddr;
501 	qpd->tba_addr = qpd->cwsr_base;
502 
503 	memcpy(qpd->cwsr_kaddr, dev->cwsr_isa, dev->cwsr_isa_size);
504 
505 	qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
506 	pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
507 		 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
508 
509 	return 0;
510 }
511 
create_process(const struct task_struct * thread,struct file * filep)512 static struct kfd_process *create_process(const struct task_struct *thread,
513 					struct file *filep)
514 {
515 	struct kfd_process *process;
516 	int err = -ENOMEM;
517 
518 	process = kzalloc(sizeof(*process), GFP_KERNEL);
519 
520 	if (!process)
521 		goto err_alloc_process;
522 
523 	process->pasid = kfd_pasid_alloc();
524 	if (process->pasid == 0)
525 		goto err_alloc_pasid;
526 
527 	if (kfd_alloc_process_doorbells(process) < 0)
528 		goto err_alloc_doorbells;
529 
530 	kref_init(&process->ref);
531 
532 	mutex_init(&process->mutex);
533 
534 	process->mm = thread->mm;
535 
536 	/* register notifier */
537 	process->mmu_notifier.ops = &kfd_process_mmu_notifier_ops;
538 	err = mmu_notifier_register(&process->mmu_notifier, process->mm);
539 	if (err)
540 		goto err_mmu_notifier;
541 
542 	hash_add_rcu(kfd_processes_table, &process->kfd_processes,
543 			(uintptr_t)process->mm);
544 
545 	process->lead_thread = thread->group_leader;
546 	get_task_struct(process->lead_thread);
547 
548 	INIT_LIST_HEAD(&process->per_device_data);
549 
550 	kfd_event_init_process(process);
551 
552 	err = pqm_init(&process->pqm, process);
553 	if (err != 0)
554 		goto err_process_pqm_init;
555 
556 	/* init process apertures*/
557 	process->is_32bit_user_mode = in_compat_syscall();
558 	err = kfd_init_apertures(process);
559 	if (err != 0)
560 		goto err_init_apertures;
561 
562 	INIT_DELAYED_WORK(&process->eviction_work, evict_process_worker);
563 	INIT_DELAYED_WORK(&process->restore_work, restore_process_worker);
564 	process->last_restore_timestamp = get_jiffies_64();
565 
566 	err = kfd_process_init_cwsr_apu(process, filep);
567 	if (err)
568 		goto err_init_cwsr;
569 
570 	return process;
571 
572 err_init_cwsr:
573 	kfd_process_free_outstanding_kfd_bos(process);
574 	kfd_process_destroy_pdds(process);
575 err_init_apertures:
576 	pqm_uninit(&process->pqm);
577 err_process_pqm_init:
578 	hash_del_rcu(&process->kfd_processes);
579 	synchronize_rcu();
580 	mmu_notifier_unregister_no_release(&process->mmu_notifier, process->mm);
581 err_mmu_notifier:
582 	mutex_destroy(&process->mutex);
583 	kfd_free_process_doorbells(process);
584 err_alloc_doorbells:
585 	kfd_pasid_free(process->pasid);
586 err_alloc_pasid:
587 	kfree(process);
588 err_alloc_process:
589 	return ERR_PTR(err);
590 }
591 
init_doorbell_bitmap(struct qcm_process_device * qpd,struct kfd_dev * dev)592 static int init_doorbell_bitmap(struct qcm_process_device *qpd,
593 			struct kfd_dev *dev)
594 {
595 	unsigned int i;
596 
597 	if (!KFD_IS_SOC15(dev->device_info->asic_family))
598 		return 0;
599 
600 	qpd->doorbell_bitmap =
601 		kzalloc(DIV_ROUND_UP(KFD_MAX_NUM_OF_QUEUES_PER_PROCESS,
602 				     BITS_PER_BYTE), GFP_KERNEL);
603 	if (!qpd->doorbell_bitmap)
604 		return -ENOMEM;
605 
606 	/* Mask out any reserved doorbells */
607 	for (i = 0; i < KFD_MAX_NUM_OF_QUEUES_PER_PROCESS; i++)
608 		if ((dev->shared_resources.reserved_doorbell_mask & i) ==
609 		    dev->shared_resources.reserved_doorbell_val) {
610 			set_bit(i, qpd->doorbell_bitmap);
611 			pr_debug("reserved doorbell 0x%03x\n", i);
612 		}
613 
614 	return 0;
615 }
616 
kfd_get_process_device_data(struct kfd_dev * dev,struct kfd_process * p)617 struct kfd_process_device *kfd_get_process_device_data(struct kfd_dev *dev,
618 							struct kfd_process *p)
619 {
620 	struct kfd_process_device *pdd = NULL;
621 
622 	list_for_each_entry(pdd, &p->per_device_data, per_device_list)
623 		if (pdd->dev == dev)
624 			return pdd;
625 
626 	return NULL;
627 }
628 
kfd_create_process_device_data(struct kfd_dev * dev,struct kfd_process * p)629 struct kfd_process_device *kfd_create_process_device_data(struct kfd_dev *dev,
630 							struct kfd_process *p)
631 {
632 	struct kfd_process_device *pdd = NULL;
633 
634 	pdd = kzalloc(sizeof(*pdd), GFP_KERNEL);
635 	if (!pdd)
636 		return NULL;
637 
638 	if (init_doorbell_bitmap(&pdd->qpd, dev)) {
639 		pr_err("Failed to init doorbell for process\n");
640 		kfree(pdd);
641 		return NULL;
642 	}
643 
644 	pdd->dev = dev;
645 	INIT_LIST_HEAD(&pdd->qpd.queues_list);
646 	INIT_LIST_HEAD(&pdd->qpd.priv_queue_list);
647 	pdd->qpd.dqm = dev->dqm;
648 	pdd->qpd.pqm = &p->pqm;
649 	pdd->qpd.evicted = 0;
650 	pdd->process = p;
651 	pdd->bound = PDD_UNBOUND;
652 	pdd->already_dequeued = false;
653 	list_add(&pdd->per_device_list, &p->per_device_data);
654 
655 	/* Init idr used for memory handle translation */
656 	idr_init(&pdd->alloc_idr);
657 
658 	return pdd;
659 }
660 
661 /**
662  * kfd_process_device_init_vm - Initialize a VM for a process-device
663  *
664  * @pdd: The process-device
665  * @drm_file: Optional pointer to a DRM file descriptor
666  *
667  * If @drm_file is specified, it will be used to acquire the VM from
668  * that file descriptor. If successful, the @pdd takes ownership of
669  * the file descriptor.
670  *
671  * If @drm_file is NULL, a new VM is created.
672  *
673  * Returns 0 on success, -errno on failure.
674  */
kfd_process_device_init_vm(struct kfd_process_device * pdd,struct file * drm_file)675 int kfd_process_device_init_vm(struct kfd_process_device *pdd,
676 			       struct file *drm_file)
677 {
678 	struct kfd_process *p;
679 	struct kfd_dev *dev;
680 	int ret;
681 
682 	if (pdd->vm)
683 		return drm_file ? -EBUSY : 0;
684 
685 	p = pdd->process;
686 	dev = pdd->dev;
687 
688 	if (drm_file)
689 		ret = dev->kfd2kgd->acquire_process_vm(
690 			dev->kgd, drm_file,
691 			&pdd->vm, &p->kgd_process_info, &p->ef);
692 	else
693 		ret = dev->kfd2kgd->create_process_vm(
694 			dev->kgd, &pdd->vm, &p->kgd_process_info, &p->ef);
695 	if (ret) {
696 		pr_err("Failed to create process VM object\n");
697 		return ret;
698 	}
699 
700 	ret = kfd_process_device_reserve_ib_mem(pdd);
701 	if (ret)
702 		goto err_reserve_ib_mem;
703 	ret = kfd_process_device_init_cwsr_dgpu(pdd);
704 	if (ret)
705 		goto err_init_cwsr;
706 
707 	pdd->drm_file = drm_file;
708 
709 	return 0;
710 
711 err_init_cwsr:
712 err_reserve_ib_mem:
713 	kfd_process_device_free_bos(pdd);
714 	if (!drm_file)
715 		dev->kfd2kgd->destroy_process_vm(dev->kgd, pdd->vm);
716 	pdd->vm = NULL;
717 
718 	return ret;
719 }
720 
721 /*
722  * Direct the IOMMU to bind the process (specifically the pasid->mm)
723  * to the device.
724  * Unbinding occurs when the process dies or the device is removed.
725  *
726  * Assumes that the process lock is held.
727  */
kfd_bind_process_to_device(struct kfd_dev * dev,struct kfd_process * p)728 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_dev *dev,
729 							struct kfd_process *p)
730 {
731 	struct kfd_process_device *pdd;
732 	int err;
733 
734 	pdd = kfd_get_process_device_data(dev, p);
735 	if (!pdd) {
736 		pr_err("Process device data doesn't exist\n");
737 		return ERR_PTR(-ENOMEM);
738 	}
739 
740 	err = kfd_iommu_bind_process_to_device(pdd);
741 	if (err)
742 		return ERR_PTR(err);
743 
744 	err = kfd_process_device_init_vm(pdd, NULL);
745 	if (err)
746 		return ERR_PTR(err);
747 
748 	return pdd;
749 }
750 
kfd_get_first_process_device_data(struct kfd_process * p)751 struct kfd_process_device *kfd_get_first_process_device_data(
752 						struct kfd_process *p)
753 {
754 	return list_first_entry(&p->per_device_data,
755 				struct kfd_process_device,
756 				per_device_list);
757 }
758 
kfd_get_next_process_device_data(struct kfd_process * p,struct kfd_process_device * pdd)759 struct kfd_process_device *kfd_get_next_process_device_data(
760 						struct kfd_process *p,
761 						struct kfd_process_device *pdd)
762 {
763 	if (list_is_last(&pdd->per_device_list, &p->per_device_data))
764 		return NULL;
765 	return list_next_entry(pdd, per_device_list);
766 }
767 
kfd_has_process_device_data(struct kfd_process * p)768 bool kfd_has_process_device_data(struct kfd_process *p)
769 {
770 	return !(list_empty(&p->per_device_data));
771 }
772 
773 /* Create specific handle mapped to mem from process local memory idr
774  * Assumes that the process lock is held.
775  */
kfd_process_device_create_obj_handle(struct kfd_process_device * pdd,void * mem)776 int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd,
777 					void *mem)
778 {
779 	return idr_alloc(&pdd->alloc_idr, mem, 0, 0, GFP_KERNEL);
780 }
781 
782 /* Translate specific handle from process local memory idr
783  * Assumes that the process lock is held.
784  */
kfd_process_device_translate_handle(struct kfd_process_device * pdd,int handle)785 void *kfd_process_device_translate_handle(struct kfd_process_device *pdd,
786 					int handle)
787 {
788 	if (handle < 0)
789 		return NULL;
790 
791 	return idr_find(&pdd->alloc_idr, handle);
792 }
793 
794 /* Remove specific handle from process local memory idr
795  * Assumes that the process lock is held.
796  */
kfd_process_device_remove_obj_handle(struct kfd_process_device * pdd,int handle)797 void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd,
798 					int handle)
799 {
800 	if (handle >= 0)
801 		idr_remove(&pdd->alloc_idr, handle);
802 }
803 
804 /* This increments the process->ref counter. */
kfd_lookup_process_by_pasid(unsigned int pasid)805 struct kfd_process *kfd_lookup_process_by_pasid(unsigned int pasid)
806 {
807 	struct kfd_process *p, *ret_p = NULL;
808 	unsigned int temp;
809 
810 	int idx = srcu_read_lock(&kfd_processes_srcu);
811 
812 	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
813 		if (p->pasid == pasid) {
814 			kref_get(&p->ref);
815 			ret_p = p;
816 			break;
817 		}
818 	}
819 
820 	srcu_read_unlock(&kfd_processes_srcu, idx);
821 
822 	return ret_p;
823 }
824 
825 /* This increments the process->ref counter. */
kfd_lookup_process_by_mm(const struct mm_struct * mm)826 struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm)
827 {
828 	struct kfd_process *p;
829 
830 	int idx = srcu_read_lock(&kfd_processes_srcu);
831 
832 	p = find_process_by_mm(mm);
833 	if (p)
834 		kref_get(&p->ref);
835 
836 	srcu_read_unlock(&kfd_processes_srcu, idx);
837 
838 	return p;
839 }
840 
841 /* process_evict_queues - Evict all user queues of a process
842  *
843  * Eviction is reference-counted per process-device. This means multiple
844  * evictions from different sources can be nested safely.
845  */
kfd_process_evict_queues(struct kfd_process * p)846 int kfd_process_evict_queues(struct kfd_process *p)
847 {
848 	struct kfd_process_device *pdd;
849 	int r = 0;
850 	unsigned int n_evicted = 0;
851 
852 	list_for_each_entry(pdd, &p->per_device_data, per_device_list) {
853 		r = pdd->dev->dqm->ops.evict_process_queues(pdd->dev->dqm,
854 							    &pdd->qpd);
855 		if (r) {
856 			pr_err("Failed to evict process queues\n");
857 			goto fail;
858 		}
859 		n_evicted++;
860 	}
861 
862 	return r;
863 
864 fail:
865 	/* To keep state consistent, roll back partial eviction by
866 	 * restoring queues
867 	 */
868 	list_for_each_entry(pdd, &p->per_device_data, per_device_list) {
869 		if (n_evicted == 0)
870 			break;
871 		if (pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
872 							      &pdd->qpd))
873 			pr_err("Failed to restore queues\n");
874 
875 		n_evicted--;
876 	}
877 
878 	return r;
879 }
880 
881 /* process_restore_queues - Restore all user queues of a process */
kfd_process_restore_queues(struct kfd_process * p)882 int kfd_process_restore_queues(struct kfd_process *p)
883 {
884 	struct kfd_process_device *pdd;
885 	int r, ret = 0;
886 
887 	list_for_each_entry(pdd, &p->per_device_data, per_device_list) {
888 		r = pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
889 							      &pdd->qpd);
890 		if (r) {
891 			pr_err("Failed to restore process queues\n");
892 			if (!ret)
893 				ret = r;
894 		}
895 	}
896 
897 	return ret;
898 }
899 
evict_process_worker(struct work_struct * work)900 static void evict_process_worker(struct work_struct *work)
901 {
902 	int ret;
903 	struct kfd_process *p;
904 	struct delayed_work *dwork;
905 
906 	dwork = to_delayed_work(work);
907 
908 	/* Process termination destroys this worker thread. So during the
909 	 * lifetime of this thread, kfd_process p will be valid
910 	 */
911 	p = container_of(dwork, struct kfd_process, eviction_work);
912 	WARN_ONCE(p->last_eviction_seqno != p->ef->seqno,
913 		  "Eviction fence mismatch\n");
914 
915 	/* Narrow window of overlap between restore and evict work
916 	 * item is possible. Once amdgpu_amdkfd_gpuvm_restore_process_bos
917 	 * unreserves KFD BOs, it is possible to evicted again. But
918 	 * restore has few more steps of finish. So lets wait for any
919 	 * previous restore work to complete
920 	 */
921 	flush_delayed_work(&p->restore_work);
922 
923 	pr_debug("Started evicting pasid %d\n", p->pasid);
924 	ret = kfd_process_evict_queues(p);
925 	if (!ret) {
926 		dma_fence_signal(p->ef);
927 		dma_fence_put(p->ef);
928 		p->ef = NULL;
929 		queue_delayed_work(kfd_restore_wq, &p->restore_work,
930 				msecs_to_jiffies(PROCESS_RESTORE_TIME_MS));
931 
932 		pr_debug("Finished evicting pasid %d\n", p->pasid);
933 	} else
934 		pr_err("Failed to evict queues of pasid %d\n", p->pasid);
935 }
936 
restore_process_worker(struct work_struct * work)937 static void restore_process_worker(struct work_struct *work)
938 {
939 	struct delayed_work *dwork;
940 	struct kfd_process *p;
941 	struct kfd_process_device *pdd;
942 	int ret = 0;
943 
944 	dwork = to_delayed_work(work);
945 
946 	/* Process termination destroys this worker thread. So during the
947 	 * lifetime of this thread, kfd_process p will be valid
948 	 */
949 	p = container_of(dwork, struct kfd_process, restore_work);
950 
951 	/* Call restore_process_bos on the first KGD device. This function
952 	 * takes care of restoring the whole process including other devices.
953 	 * Restore can fail if enough memory is not available. If so,
954 	 * reschedule again.
955 	 */
956 	pdd = list_first_entry(&p->per_device_data,
957 			       struct kfd_process_device,
958 			       per_device_list);
959 
960 	pr_debug("Started restoring pasid %d\n", p->pasid);
961 
962 	/* Setting last_restore_timestamp before successful restoration.
963 	 * Otherwise this would have to be set by KGD (restore_process_bos)
964 	 * before KFD BOs are unreserved. If not, the process can be evicted
965 	 * again before the timestamp is set.
966 	 * If restore fails, the timestamp will be set again in the next
967 	 * attempt. This would mean that the minimum GPU quanta would be
968 	 * PROCESS_ACTIVE_TIME_MS - (time to execute the following two
969 	 * functions)
970 	 */
971 
972 	p->last_restore_timestamp = get_jiffies_64();
973 	ret = pdd->dev->kfd2kgd->restore_process_bos(p->kgd_process_info,
974 						     &p->ef);
975 	if (ret) {
976 		pr_debug("Failed to restore BOs of pasid %d, retry after %d ms\n",
977 			 p->pasid, PROCESS_BACK_OFF_TIME_MS);
978 		ret = queue_delayed_work(kfd_restore_wq, &p->restore_work,
979 				msecs_to_jiffies(PROCESS_BACK_OFF_TIME_MS));
980 		WARN(!ret, "reschedule restore work failed\n");
981 		return;
982 	}
983 
984 	ret = kfd_process_restore_queues(p);
985 	if (!ret)
986 		pr_debug("Finished restoring pasid %d\n", p->pasid);
987 	else
988 		pr_err("Failed to restore queues of pasid %d\n", p->pasid);
989 }
990 
kfd_suspend_all_processes(void)991 void kfd_suspend_all_processes(void)
992 {
993 	struct kfd_process *p;
994 	unsigned int temp;
995 	int idx = srcu_read_lock(&kfd_processes_srcu);
996 
997 	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
998 		cancel_delayed_work_sync(&p->eviction_work);
999 		cancel_delayed_work_sync(&p->restore_work);
1000 
1001 		if (kfd_process_evict_queues(p))
1002 			pr_err("Failed to suspend process %d\n", p->pasid);
1003 		dma_fence_signal(p->ef);
1004 		dma_fence_put(p->ef);
1005 		p->ef = NULL;
1006 	}
1007 	srcu_read_unlock(&kfd_processes_srcu, idx);
1008 }
1009 
kfd_resume_all_processes(void)1010 int kfd_resume_all_processes(void)
1011 {
1012 	struct kfd_process *p;
1013 	unsigned int temp;
1014 	int ret = 0, idx = srcu_read_lock(&kfd_processes_srcu);
1015 
1016 	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1017 		if (!queue_delayed_work(kfd_restore_wq, &p->restore_work, 0)) {
1018 			pr_err("Restore process %d failed during resume\n",
1019 			       p->pasid);
1020 			ret = -EFAULT;
1021 		}
1022 	}
1023 	srcu_read_unlock(&kfd_processes_srcu, idx);
1024 	return ret;
1025 }
1026 
kfd_reserved_mem_mmap(struct kfd_dev * dev,struct kfd_process * process,struct vm_area_struct * vma)1027 int kfd_reserved_mem_mmap(struct kfd_dev *dev, struct kfd_process *process,
1028 			  struct vm_area_struct *vma)
1029 {
1030 	struct kfd_process_device *pdd;
1031 	struct qcm_process_device *qpd;
1032 
1033 	if ((vma->vm_end - vma->vm_start) != KFD_CWSR_TBA_TMA_SIZE) {
1034 		pr_err("Incorrect CWSR mapping size.\n");
1035 		return -EINVAL;
1036 	}
1037 
1038 	pdd = kfd_get_process_device_data(dev, process);
1039 	if (!pdd)
1040 		return -EINVAL;
1041 	qpd = &pdd->qpd;
1042 
1043 	qpd->cwsr_kaddr = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
1044 					get_order(KFD_CWSR_TBA_TMA_SIZE));
1045 	if (!qpd->cwsr_kaddr) {
1046 		pr_err("Error allocating per process CWSR buffer.\n");
1047 		return -ENOMEM;
1048 	}
1049 
1050 	vma->vm_flags |= VM_IO | VM_DONTCOPY | VM_DONTEXPAND
1051 		| VM_NORESERVE | VM_DONTDUMP | VM_PFNMAP;
1052 	/* Mapping pages to user process */
1053 	return remap_pfn_range(vma, vma->vm_start,
1054 			       PFN_DOWN(__pa(qpd->cwsr_kaddr)),
1055 			       KFD_CWSR_TBA_TMA_SIZE, vma->vm_page_prot);
1056 }
1057 
kfd_flush_tlb(struct kfd_process_device * pdd)1058 void kfd_flush_tlb(struct kfd_process_device *pdd)
1059 {
1060 	struct kfd_dev *dev = pdd->dev;
1061 	const struct kfd2kgd_calls *f2g = dev->kfd2kgd;
1062 
1063 	if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
1064 		/* Nothing to flush until a VMID is assigned, which
1065 		 * only happens when the first queue is created.
1066 		 */
1067 		if (pdd->qpd.vmid)
1068 			f2g->invalidate_tlbs_vmid(dev->kgd, pdd->qpd.vmid);
1069 	} else {
1070 		f2g->invalidate_tlbs(dev->kgd, pdd->process->pasid);
1071 	}
1072 }
1073 
1074 #if defined(CONFIG_DEBUG_FS)
1075 
kfd_debugfs_mqds_by_process(struct seq_file * m,void * data)1076 int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data)
1077 {
1078 	struct kfd_process *p;
1079 	unsigned int temp;
1080 	int r = 0;
1081 
1082 	int idx = srcu_read_lock(&kfd_processes_srcu);
1083 
1084 	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1085 		seq_printf(m, "Process %d PASID %d:\n",
1086 			   p->lead_thread->tgid, p->pasid);
1087 
1088 		mutex_lock(&p->mutex);
1089 		r = pqm_debugfs_mqds(m, &p->pqm);
1090 		mutex_unlock(&p->mutex);
1091 
1092 		if (r)
1093 			break;
1094 	}
1095 
1096 	srcu_read_unlock(&kfd_processes_srcu, idx);
1097 
1098 	return r;
1099 }
1100 
1101 #endif
1102