1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 
23 #include <linux/bsearch.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include "kfd_priv.h"
27 #include "kfd_device_queue_manager.h"
28 #include "kfd_pm4_headers_vi.h"
29 #include "cwsr_trap_handler.h"
30 #include "kfd_iommu.h"
31 
32 #define MQD_SIZE_ALIGNED 768
33 
34 /*
35  * kfd_locked is used to lock the kfd driver during suspend or reset
36  * once locked, kfd driver will stop any further GPU execution.
37  * create process (open) will return -EAGAIN.
38  */
39 static atomic_t kfd_locked = ATOMIC_INIT(0);
40 
41 #ifdef KFD_SUPPORT_IOMMU_V2
42 static const struct kfd_device_info kaveri_device_info = {
43 	.asic_family = CHIP_KAVERI,
44 	.max_pasid_bits = 16,
45 	/* max num of queues for KV.TODO should be a dynamic value */
46 	.max_no_of_hqd	= 24,
47 	.doorbell_size  = 4,
48 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
49 	.event_interrupt_class = &event_interrupt_class_cik,
50 	.num_of_watch_points = 4,
51 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
52 	.supports_cwsr = false,
53 	.needs_iommu_device = true,
54 	.needs_pci_atomics = false,
55 	.num_sdma_engines = 2,
56 };
57 
58 static const struct kfd_device_info carrizo_device_info = {
59 	.asic_family = CHIP_CARRIZO,
60 	.max_pasid_bits = 16,
61 	/* max num of queues for CZ.TODO should be a dynamic value */
62 	.max_no_of_hqd	= 24,
63 	.doorbell_size  = 4,
64 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
65 	.event_interrupt_class = &event_interrupt_class_cik,
66 	.num_of_watch_points = 4,
67 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
68 	.supports_cwsr = true,
69 	.needs_iommu_device = true,
70 	.needs_pci_atomics = false,
71 	.num_sdma_engines = 2,
72 };
73 
74 static const struct kfd_device_info raven_device_info = {
75 	.asic_family = CHIP_RAVEN,
76 	.max_pasid_bits = 16,
77 	.max_no_of_hqd  = 24,
78 	.doorbell_size  = 8,
79 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
80 	.event_interrupt_class = &event_interrupt_class_v9,
81 	.num_of_watch_points = 4,
82 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
83 	.supports_cwsr = true,
84 	.needs_iommu_device = true,
85 	.needs_pci_atomics = true,
86 	.num_sdma_engines = 1,
87 };
88 #endif
89 
90 static const struct kfd_device_info hawaii_device_info = {
91 	.asic_family = CHIP_HAWAII,
92 	.max_pasid_bits = 16,
93 	/* max num of queues for KV.TODO should be a dynamic value */
94 	.max_no_of_hqd	= 24,
95 	.doorbell_size  = 4,
96 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
97 	.event_interrupt_class = &event_interrupt_class_cik,
98 	.num_of_watch_points = 4,
99 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
100 	.supports_cwsr = false,
101 	.needs_iommu_device = false,
102 	.needs_pci_atomics = false,
103 	.num_sdma_engines = 2,
104 };
105 
106 static const struct kfd_device_info tonga_device_info = {
107 	.asic_family = CHIP_TONGA,
108 	.max_pasid_bits = 16,
109 	.max_no_of_hqd  = 24,
110 	.doorbell_size  = 4,
111 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
112 	.event_interrupt_class = &event_interrupt_class_cik,
113 	.num_of_watch_points = 4,
114 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
115 	.supports_cwsr = false,
116 	.needs_iommu_device = false,
117 	.needs_pci_atomics = true,
118 	.num_sdma_engines = 2,
119 };
120 
121 static const struct kfd_device_info tonga_vf_device_info = {
122 	.asic_family = CHIP_TONGA,
123 	.max_pasid_bits = 16,
124 	.max_no_of_hqd  = 24,
125 	.doorbell_size  = 4,
126 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
127 	.event_interrupt_class = &event_interrupt_class_cik,
128 	.num_of_watch_points = 4,
129 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
130 	.supports_cwsr = false,
131 	.needs_iommu_device = false,
132 	.needs_pci_atomics = false,
133 	.num_sdma_engines = 2,
134 };
135 
136 static const struct kfd_device_info fiji_device_info = {
137 	.asic_family = CHIP_FIJI,
138 	.max_pasid_bits = 16,
139 	.max_no_of_hqd  = 24,
140 	.doorbell_size  = 4,
141 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
142 	.event_interrupt_class = &event_interrupt_class_cik,
143 	.num_of_watch_points = 4,
144 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
145 	.supports_cwsr = true,
146 	.needs_iommu_device = false,
147 	.needs_pci_atomics = true,
148 	.num_sdma_engines = 2,
149 };
150 
151 static const struct kfd_device_info fiji_vf_device_info = {
152 	.asic_family = CHIP_FIJI,
153 	.max_pasid_bits = 16,
154 	.max_no_of_hqd  = 24,
155 	.doorbell_size  = 4,
156 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
157 	.event_interrupt_class = &event_interrupt_class_cik,
158 	.num_of_watch_points = 4,
159 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
160 	.supports_cwsr = true,
161 	.needs_iommu_device = false,
162 	.needs_pci_atomics = false,
163 	.num_sdma_engines = 2,
164 };
165 
166 
167 static const struct kfd_device_info polaris10_device_info = {
168 	.asic_family = CHIP_POLARIS10,
169 	.max_pasid_bits = 16,
170 	.max_no_of_hqd  = 24,
171 	.doorbell_size  = 4,
172 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
173 	.event_interrupt_class = &event_interrupt_class_cik,
174 	.num_of_watch_points = 4,
175 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
176 	.supports_cwsr = true,
177 	.needs_iommu_device = false,
178 	.needs_pci_atomics = true,
179 	.num_sdma_engines = 2,
180 };
181 
182 static const struct kfd_device_info polaris10_vf_device_info = {
183 	.asic_family = CHIP_POLARIS10,
184 	.max_pasid_bits = 16,
185 	.max_no_of_hqd  = 24,
186 	.doorbell_size  = 4,
187 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
188 	.event_interrupt_class = &event_interrupt_class_cik,
189 	.num_of_watch_points = 4,
190 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
191 	.supports_cwsr = true,
192 	.needs_iommu_device = false,
193 	.needs_pci_atomics = false,
194 	.num_sdma_engines = 2,
195 };
196 
197 static const struct kfd_device_info polaris11_device_info = {
198 	.asic_family = CHIP_POLARIS11,
199 	.max_pasid_bits = 16,
200 	.max_no_of_hqd  = 24,
201 	.doorbell_size  = 4,
202 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
203 	.event_interrupt_class = &event_interrupt_class_cik,
204 	.num_of_watch_points = 4,
205 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
206 	.supports_cwsr = true,
207 	.needs_iommu_device = false,
208 	.needs_pci_atomics = true,
209 	.num_sdma_engines = 2,
210 };
211 
212 static const struct kfd_device_info vega10_device_info = {
213 	.asic_family = CHIP_VEGA10,
214 	.max_pasid_bits = 16,
215 	.max_no_of_hqd  = 24,
216 	.doorbell_size  = 8,
217 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
218 	.event_interrupt_class = &event_interrupt_class_v9,
219 	.num_of_watch_points = 4,
220 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
221 	.supports_cwsr = true,
222 	.needs_iommu_device = false,
223 	.needs_pci_atomics = false,
224 	.num_sdma_engines = 2,
225 };
226 
227 static const struct kfd_device_info vega10_vf_device_info = {
228 	.asic_family = CHIP_VEGA10,
229 	.max_pasid_bits = 16,
230 	.max_no_of_hqd  = 24,
231 	.doorbell_size  = 8,
232 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
233 	.event_interrupt_class = &event_interrupt_class_v9,
234 	.num_of_watch_points = 4,
235 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
236 	.supports_cwsr = true,
237 	.needs_iommu_device = false,
238 	.needs_pci_atomics = false,
239 	.num_sdma_engines = 2,
240 };
241 
242 
243 struct kfd_deviceid {
244 	unsigned short did;
245 	const struct kfd_device_info *device_info;
246 };
247 
248 static const struct kfd_deviceid supported_devices[] = {
249 #ifdef KFD_SUPPORT_IOMMU_V2
250 	{ 0x1304, &kaveri_device_info },	/* Kaveri */
251 	{ 0x1305, &kaveri_device_info },	/* Kaveri */
252 	{ 0x1306, &kaveri_device_info },	/* Kaveri */
253 	{ 0x1307, &kaveri_device_info },	/* Kaveri */
254 	{ 0x1309, &kaveri_device_info },	/* Kaveri */
255 	{ 0x130A, &kaveri_device_info },	/* Kaveri */
256 	{ 0x130B, &kaveri_device_info },	/* Kaveri */
257 	{ 0x130C, &kaveri_device_info },	/* Kaveri */
258 	{ 0x130D, &kaveri_device_info },	/* Kaveri */
259 	{ 0x130E, &kaveri_device_info },	/* Kaveri */
260 	{ 0x130F, &kaveri_device_info },	/* Kaveri */
261 	{ 0x1310, &kaveri_device_info },	/* Kaveri */
262 	{ 0x1311, &kaveri_device_info },	/* Kaveri */
263 	{ 0x1312, &kaveri_device_info },	/* Kaveri */
264 	{ 0x1313, &kaveri_device_info },	/* Kaveri */
265 	{ 0x1315, &kaveri_device_info },	/* Kaveri */
266 	{ 0x1316, &kaveri_device_info },	/* Kaveri */
267 	{ 0x1317, &kaveri_device_info },	/* Kaveri */
268 	{ 0x1318, &kaveri_device_info },	/* Kaveri */
269 	{ 0x131B, &kaveri_device_info },	/* Kaveri */
270 	{ 0x131C, &kaveri_device_info },	/* Kaveri */
271 	{ 0x131D, &kaveri_device_info },	/* Kaveri */
272 	{ 0x9870, &carrizo_device_info },	/* Carrizo */
273 	{ 0x9874, &carrizo_device_info },	/* Carrizo */
274 	{ 0x9875, &carrizo_device_info },	/* Carrizo */
275 	{ 0x9876, &carrizo_device_info },	/* Carrizo */
276 	{ 0x9877, &carrizo_device_info },	/* Carrizo */
277 	{ 0x15DD, &raven_device_info },		/* Raven */
278 #endif
279 	{ 0x67A0, &hawaii_device_info },	/* Hawaii */
280 	{ 0x67A1, &hawaii_device_info },	/* Hawaii */
281 	{ 0x67A2, &hawaii_device_info },	/* Hawaii */
282 	{ 0x67A8, &hawaii_device_info },	/* Hawaii */
283 	{ 0x67A9, &hawaii_device_info },	/* Hawaii */
284 	{ 0x67AA, &hawaii_device_info },	/* Hawaii */
285 	{ 0x67B0, &hawaii_device_info },	/* Hawaii */
286 	{ 0x67B1, &hawaii_device_info },	/* Hawaii */
287 	{ 0x67B8, &hawaii_device_info },	/* Hawaii */
288 	{ 0x67B9, &hawaii_device_info },	/* Hawaii */
289 	{ 0x67BA, &hawaii_device_info },	/* Hawaii */
290 	{ 0x67BE, &hawaii_device_info },	/* Hawaii */
291 	{ 0x6920, &tonga_device_info },		/* Tonga */
292 	{ 0x6921, &tonga_device_info },		/* Tonga */
293 	{ 0x6928, &tonga_device_info },		/* Tonga */
294 	{ 0x6929, &tonga_device_info },		/* Tonga */
295 	{ 0x692B, &tonga_device_info },		/* Tonga */
296 	{ 0x692F, &tonga_vf_device_info },	/* Tonga vf */
297 	{ 0x6938, &tonga_device_info },		/* Tonga */
298 	{ 0x6939, &tonga_device_info },		/* Tonga */
299 	{ 0x7300, &fiji_device_info },		/* Fiji */
300 	{ 0x730F, &fiji_vf_device_info },	/* Fiji vf*/
301 	{ 0x67C0, &polaris10_device_info },	/* Polaris10 */
302 	{ 0x67C1, &polaris10_device_info },	/* Polaris10 */
303 	{ 0x67C2, &polaris10_device_info },	/* Polaris10 */
304 	{ 0x67C4, &polaris10_device_info },	/* Polaris10 */
305 	{ 0x67C7, &polaris10_device_info },	/* Polaris10 */
306 	{ 0x67C8, &polaris10_device_info },	/* Polaris10 */
307 	{ 0x67C9, &polaris10_device_info },	/* Polaris10 */
308 	{ 0x67CA, &polaris10_device_info },	/* Polaris10 */
309 	{ 0x67CC, &polaris10_device_info },	/* Polaris10 */
310 	{ 0x67CF, &polaris10_device_info },	/* Polaris10 */
311 	{ 0x67D0, &polaris10_vf_device_info },	/* Polaris10 vf*/
312 	{ 0x67DF, &polaris10_device_info },	/* Polaris10 */
313 	{ 0x67E0, &polaris11_device_info },	/* Polaris11 */
314 	{ 0x67E1, &polaris11_device_info },	/* Polaris11 */
315 	{ 0x67E3, &polaris11_device_info },	/* Polaris11 */
316 	{ 0x67E7, &polaris11_device_info },	/* Polaris11 */
317 	{ 0x67E8, &polaris11_device_info },	/* Polaris11 */
318 	{ 0x67E9, &polaris11_device_info },	/* Polaris11 */
319 	{ 0x67EB, &polaris11_device_info },	/* Polaris11 */
320 	{ 0x67EF, &polaris11_device_info },	/* Polaris11 */
321 	{ 0x67FF, &polaris11_device_info },	/* Polaris11 */
322 	{ 0x6860, &vega10_device_info },	/* Vega10 */
323 	{ 0x6861, &vega10_device_info },	/* Vega10 */
324 	{ 0x6862, &vega10_device_info },	/* Vega10 */
325 	{ 0x6863, &vega10_device_info },	/* Vega10 */
326 	{ 0x6864, &vega10_device_info },	/* Vega10 */
327 	{ 0x6867, &vega10_device_info },	/* Vega10 */
328 	{ 0x6868, &vega10_device_info },	/* Vega10 */
329 	{ 0x686C, &vega10_vf_device_info },	/* Vega10  vf*/
330 	{ 0x687F, &vega10_device_info },	/* Vega10 */
331 };
332 
333 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
334 				unsigned int chunk_size);
335 static void kfd_gtt_sa_fini(struct kfd_dev *kfd);
336 
337 static int kfd_resume(struct kfd_dev *kfd);
338 
lookup_device_info(unsigned short did)339 static const struct kfd_device_info *lookup_device_info(unsigned short did)
340 {
341 	size_t i;
342 
343 	for (i = 0; i < ARRAY_SIZE(supported_devices); i++) {
344 		if (supported_devices[i].did == did) {
345 			WARN_ON(!supported_devices[i].device_info);
346 			return supported_devices[i].device_info;
347 		}
348 	}
349 
350 	dev_warn(kfd_device, "DID %04x is missing in supported_devices\n",
351 		 did);
352 
353 	return NULL;
354 }
355 
kgd2kfd_probe(struct kgd_dev * kgd,struct pci_dev * pdev,const struct kfd2kgd_calls * f2g)356 struct kfd_dev *kgd2kfd_probe(struct kgd_dev *kgd,
357 	struct pci_dev *pdev, const struct kfd2kgd_calls *f2g)
358 {
359 	struct kfd_dev *kfd;
360 	int ret;
361 	const struct kfd_device_info *device_info =
362 					lookup_device_info(pdev->device);
363 
364 	if (!device_info) {
365 		dev_err(kfd_device, "kgd2kfd_probe failed\n");
366 		return NULL;
367 	}
368 
369 	/* Allow BIF to recode atomics to PCIe 3.0 AtomicOps.
370 	 * 32 and 64-bit requests are possible and must be
371 	 * supported.
372 	 */
373 	ret = pci_enable_atomic_ops_to_root(pdev,
374 			PCI_EXP_DEVCAP2_ATOMIC_COMP32 |
375 			PCI_EXP_DEVCAP2_ATOMIC_COMP64);
376 	if (device_info->needs_pci_atomics && ret < 0) {
377 		dev_info(kfd_device,
378 			 "skipped device %x:%x, PCI rejects atomics\n",
379 			 pdev->vendor, pdev->device);
380 		return NULL;
381 	}
382 
383 	kfd = kzalloc(sizeof(*kfd), GFP_KERNEL);
384 	if (!kfd)
385 		return NULL;
386 
387 	kfd->kgd = kgd;
388 	kfd->device_info = device_info;
389 	kfd->pdev = pdev;
390 	kfd->init_complete = false;
391 	kfd->kfd2kgd = f2g;
392 
393 	mutex_init(&kfd->doorbell_mutex);
394 	memset(&kfd->doorbell_available_index, 0,
395 		sizeof(kfd->doorbell_available_index));
396 
397 	return kfd;
398 }
399 
kfd_cwsr_init(struct kfd_dev * kfd)400 static void kfd_cwsr_init(struct kfd_dev *kfd)
401 {
402 	if (cwsr_enable && kfd->device_info->supports_cwsr) {
403 		if (kfd->device_info->asic_family < CHIP_VEGA10) {
404 			BUILD_BUG_ON(sizeof(cwsr_trap_gfx8_hex) > PAGE_SIZE);
405 			kfd->cwsr_isa = cwsr_trap_gfx8_hex;
406 			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx8_hex);
407 		} else {
408 			BUILD_BUG_ON(sizeof(cwsr_trap_gfx9_hex) > PAGE_SIZE);
409 			kfd->cwsr_isa = cwsr_trap_gfx9_hex;
410 			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx9_hex);
411 		}
412 
413 		kfd->cwsr_enabled = true;
414 	}
415 }
416 
kgd2kfd_device_init(struct kfd_dev * kfd,const struct kgd2kfd_shared_resources * gpu_resources)417 bool kgd2kfd_device_init(struct kfd_dev *kfd,
418 			 const struct kgd2kfd_shared_resources *gpu_resources)
419 {
420 	unsigned int size;
421 
422 	kfd->shared_resources = *gpu_resources;
423 
424 	kfd->vm_info.first_vmid_kfd = ffs(gpu_resources->compute_vmid_bitmap)-1;
425 	kfd->vm_info.last_vmid_kfd = fls(gpu_resources->compute_vmid_bitmap)-1;
426 	kfd->vm_info.vmid_num_kfd = kfd->vm_info.last_vmid_kfd
427 			- kfd->vm_info.first_vmid_kfd + 1;
428 
429 	/* Verify module parameters regarding mapped process number*/
430 	if ((hws_max_conc_proc < 0)
431 			|| (hws_max_conc_proc > kfd->vm_info.vmid_num_kfd)) {
432 		dev_err(kfd_device,
433 			"hws_max_conc_proc %d must be between 0 and %d, use %d instead\n",
434 			hws_max_conc_proc, kfd->vm_info.vmid_num_kfd,
435 			kfd->vm_info.vmid_num_kfd);
436 		kfd->max_proc_per_quantum = kfd->vm_info.vmid_num_kfd;
437 	} else
438 		kfd->max_proc_per_quantum = hws_max_conc_proc;
439 
440 	/* calculate max size of mqds needed for queues */
441 	size = max_num_of_queues_per_device *
442 			kfd->device_info->mqd_size_aligned;
443 
444 	/*
445 	 * calculate max size of runlist packet.
446 	 * There can be only 2 packets at once
447 	 */
448 	size += (KFD_MAX_NUM_OF_PROCESSES * sizeof(struct pm4_mes_map_process) +
449 		max_num_of_queues_per_device * sizeof(struct pm4_mes_map_queues)
450 		+ sizeof(struct pm4_mes_runlist)) * 2;
451 
452 	/* Add size of HIQ & DIQ */
453 	size += KFD_KERNEL_QUEUE_SIZE * 2;
454 
455 	/* add another 512KB for all other allocations on gart (HPD, fences) */
456 	size += 512 * 1024;
457 
458 	if (kfd->kfd2kgd->init_gtt_mem_allocation(
459 			kfd->kgd, size, &kfd->gtt_mem,
460 			&kfd->gtt_start_gpu_addr, &kfd->gtt_start_cpu_ptr,
461 			false)) {
462 		dev_err(kfd_device, "Could not allocate %d bytes\n", size);
463 		goto out;
464 	}
465 
466 	dev_info(kfd_device, "Allocated %d bytes on gart\n", size);
467 
468 	/* Initialize GTT sa with 512 byte chunk size */
469 	if (kfd_gtt_sa_init(kfd, size, 512) != 0) {
470 		dev_err(kfd_device, "Error initializing gtt sub-allocator\n");
471 		goto kfd_gtt_sa_init_error;
472 	}
473 
474 	if (kfd_doorbell_init(kfd)) {
475 		dev_err(kfd_device,
476 			"Error initializing doorbell aperture\n");
477 		goto kfd_doorbell_error;
478 	}
479 
480 	if (kfd_topology_add_device(kfd)) {
481 		dev_err(kfd_device, "Error adding device to topology\n");
482 		goto kfd_topology_add_device_error;
483 	}
484 
485 	if (kfd_interrupt_init(kfd)) {
486 		dev_err(kfd_device, "Error initializing interrupts\n");
487 		goto kfd_interrupt_error;
488 	}
489 
490 	kfd->dqm = device_queue_manager_init(kfd);
491 	if (!kfd->dqm) {
492 		dev_err(kfd_device, "Error initializing queue manager\n");
493 		goto device_queue_manager_error;
494 	}
495 
496 	if (kfd_iommu_device_init(kfd)) {
497 		dev_err(kfd_device, "Error initializing iommuv2\n");
498 		goto device_iommu_error;
499 	}
500 
501 	kfd_cwsr_init(kfd);
502 
503 	if (kfd_resume(kfd))
504 		goto kfd_resume_error;
505 
506 	kfd->dbgmgr = NULL;
507 
508 	kfd->init_complete = true;
509 	dev_info(kfd_device, "added device %x:%x\n", kfd->pdev->vendor,
510 		 kfd->pdev->device);
511 
512 	pr_debug("Starting kfd with the following scheduling policy %d\n",
513 		kfd->dqm->sched_policy);
514 
515 	goto out;
516 
517 kfd_resume_error:
518 device_iommu_error:
519 	device_queue_manager_uninit(kfd->dqm);
520 device_queue_manager_error:
521 	kfd_interrupt_exit(kfd);
522 kfd_interrupt_error:
523 	kfd_topology_remove_device(kfd);
524 kfd_topology_add_device_error:
525 	kfd_doorbell_fini(kfd);
526 kfd_doorbell_error:
527 	kfd_gtt_sa_fini(kfd);
528 kfd_gtt_sa_init_error:
529 	kfd->kfd2kgd->free_gtt_mem(kfd->kgd, kfd->gtt_mem);
530 	dev_err(kfd_device,
531 		"device %x:%x NOT added due to errors\n",
532 		kfd->pdev->vendor, kfd->pdev->device);
533 out:
534 	return kfd->init_complete;
535 }
536 
kgd2kfd_device_exit(struct kfd_dev * kfd)537 void kgd2kfd_device_exit(struct kfd_dev *kfd)
538 {
539 	if (kfd->init_complete) {
540 		kgd2kfd_suspend(kfd);
541 		device_queue_manager_uninit(kfd->dqm);
542 		kfd_interrupt_exit(kfd);
543 		kfd_topology_remove_device(kfd);
544 		kfd_doorbell_fini(kfd);
545 		kfd_gtt_sa_fini(kfd);
546 		kfd->kfd2kgd->free_gtt_mem(kfd->kgd, kfd->gtt_mem);
547 	}
548 
549 	kfree(kfd);
550 }
551 
kgd2kfd_pre_reset(struct kfd_dev * kfd)552 int kgd2kfd_pre_reset(struct kfd_dev *kfd)
553 {
554 	if (!kfd->init_complete)
555 		return 0;
556 	kgd2kfd_suspend(kfd);
557 
558 	/* hold dqm->lock to prevent further execution*/
559 	dqm_lock(kfd->dqm);
560 
561 	kfd_signal_reset_event(kfd);
562 	return 0;
563 }
564 
565 /*
566  * Fix me. KFD won't be able to resume existing process for now.
567  * We will keep all existing process in a evicted state and
568  * wait the process to be terminated.
569  */
570 
kgd2kfd_post_reset(struct kfd_dev * kfd)571 int kgd2kfd_post_reset(struct kfd_dev *kfd)
572 {
573 	int ret, count;
574 
575 	if (!kfd->init_complete)
576 		return 0;
577 
578 	dqm_unlock(kfd->dqm);
579 
580 	ret = kfd_resume(kfd);
581 	if (ret)
582 		return ret;
583 	count = atomic_dec_return(&kfd_locked);
584 	WARN_ONCE(count != 0, "KFD reset ref. error");
585 	return 0;
586 }
587 
kfd_is_locked(void)588 bool kfd_is_locked(void)
589 {
590 	return  (atomic_read(&kfd_locked) > 0);
591 }
592 
kgd2kfd_suspend(struct kfd_dev * kfd)593 void kgd2kfd_suspend(struct kfd_dev *kfd)
594 {
595 	if (!kfd->init_complete)
596 		return;
597 
598 	/* For first KFD device suspend all the KFD processes */
599 	if (atomic_inc_return(&kfd_locked) == 1)
600 		kfd_suspend_all_processes();
601 
602 	kfd->dqm->ops.stop(kfd->dqm);
603 
604 	kfd_iommu_suspend(kfd);
605 }
606 
kgd2kfd_resume(struct kfd_dev * kfd)607 int kgd2kfd_resume(struct kfd_dev *kfd)
608 {
609 	int ret, count;
610 
611 	if (!kfd->init_complete)
612 		return 0;
613 
614 	ret = kfd_resume(kfd);
615 	if (ret)
616 		return ret;
617 
618 	count = atomic_dec_return(&kfd_locked);
619 	WARN_ONCE(count < 0, "KFD suspend / resume ref. error");
620 	if (count == 0)
621 		ret = kfd_resume_all_processes();
622 
623 	return ret;
624 }
625 
kfd_resume(struct kfd_dev * kfd)626 static int kfd_resume(struct kfd_dev *kfd)
627 {
628 	int err = 0;
629 
630 	err = kfd_iommu_resume(kfd);
631 	if (err) {
632 		dev_err(kfd_device,
633 			"Failed to resume IOMMU for device %x:%x\n",
634 			kfd->pdev->vendor, kfd->pdev->device);
635 		return err;
636 	}
637 
638 	err = kfd->dqm->ops.start(kfd->dqm);
639 	if (err) {
640 		dev_err(kfd_device,
641 			"Error starting queue manager for device %x:%x\n",
642 			kfd->pdev->vendor, kfd->pdev->device);
643 		goto dqm_start_error;
644 	}
645 
646 	return err;
647 
648 dqm_start_error:
649 	kfd_iommu_suspend(kfd);
650 	return err;
651 }
652 
653 /* This is called directly from KGD at ISR. */
kgd2kfd_interrupt(struct kfd_dev * kfd,const void * ih_ring_entry)654 void kgd2kfd_interrupt(struct kfd_dev *kfd, const void *ih_ring_entry)
655 {
656 	uint32_t patched_ihre[KFD_MAX_RING_ENTRY_SIZE];
657 	bool is_patched = false;
658 
659 	if (!kfd->init_complete)
660 		return;
661 
662 	if (kfd->device_info->ih_ring_entry_size > sizeof(patched_ihre)) {
663 		dev_err_once(kfd_device, "Ring entry too small\n");
664 		return;
665 	}
666 
667 	spin_lock(&kfd->interrupt_lock);
668 
669 	if (kfd->interrupts_active
670 	    && interrupt_is_wanted(kfd, ih_ring_entry,
671 				   patched_ihre, &is_patched)
672 	    && enqueue_ih_ring_entry(kfd,
673 				     is_patched ? patched_ihre : ih_ring_entry))
674 		queue_work(kfd->ih_wq, &kfd->interrupt_work);
675 
676 	spin_unlock(&kfd->interrupt_lock);
677 }
678 
kgd2kfd_quiesce_mm(struct mm_struct * mm)679 int kgd2kfd_quiesce_mm(struct mm_struct *mm)
680 {
681 	struct kfd_process *p;
682 	int r;
683 
684 	/* Because we are called from arbitrary context (workqueue) as opposed
685 	 * to process context, kfd_process could attempt to exit while we are
686 	 * running so the lookup function increments the process ref count.
687 	 */
688 	p = kfd_lookup_process_by_mm(mm);
689 	if (!p)
690 		return -ESRCH;
691 
692 	r = kfd_process_evict_queues(p);
693 
694 	kfd_unref_process(p);
695 	return r;
696 }
697 
kgd2kfd_resume_mm(struct mm_struct * mm)698 int kgd2kfd_resume_mm(struct mm_struct *mm)
699 {
700 	struct kfd_process *p;
701 	int r;
702 
703 	/* Because we are called from arbitrary context (workqueue) as opposed
704 	 * to process context, kfd_process could attempt to exit while we are
705 	 * running so the lookup function increments the process ref count.
706 	 */
707 	p = kfd_lookup_process_by_mm(mm);
708 	if (!p)
709 		return -ESRCH;
710 
711 	r = kfd_process_restore_queues(p);
712 
713 	kfd_unref_process(p);
714 	return r;
715 }
716 
717 /** kgd2kfd_schedule_evict_and_restore_process - Schedules work queue that will
718  *   prepare for safe eviction of KFD BOs that belong to the specified
719  *   process.
720  *
721  * @mm: mm_struct that identifies the specified KFD process
722  * @fence: eviction fence attached to KFD process BOs
723  *
724  */
kgd2kfd_schedule_evict_and_restore_process(struct mm_struct * mm,struct dma_fence * fence)725 int kgd2kfd_schedule_evict_and_restore_process(struct mm_struct *mm,
726 					       struct dma_fence *fence)
727 {
728 	struct kfd_process *p;
729 	unsigned long active_time;
730 	unsigned long delay_jiffies = msecs_to_jiffies(PROCESS_ACTIVE_TIME_MS);
731 
732 	if (!fence)
733 		return -EINVAL;
734 
735 	if (dma_fence_is_signaled(fence))
736 		return 0;
737 
738 	p = kfd_lookup_process_by_mm(mm);
739 	if (!p)
740 		return -ENODEV;
741 
742 	if (fence->seqno == p->last_eviction_seqno)
743 		goto out;
744 
745 	p->last_eviction_seqno = fence->seqno;
746 
747 	/* Avoid KFD process starvation. Wait for at least
748 	 * PROCESS_ACTIVE_TIME_MS before evicting the process again
749 	 */
750 	active_time = get_jiffies_64() - p->last_restore_timestamp;
751 	if (delay_jiffies > active_time)
752 		delay_jiffies -= active_time;
753 	else
754 		delay_jiffies = 0;
755 
756 	/* During process initialization eviction_work.dwork is initialized
757 	 * to kfd_evict_bo_worker
758 	 */
759 	schedule_delayed_work(&p->eviction_work, delay_jiffies);
760 out:
761 	kfd_unref_process(p);
762 	return 0;
763 }
764 
kfd_gtt_sa_init(struct kfd_dev * kfd,unsigned int buf_size,unsigned int chunk_size)765 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
766 				unsigned int chunk_size)
767 {
768 	unsigned int num_of_longs;
769 
770 	if (WARN_ON(buf_size < chunk_size))
771 		return -EINVAL;
772 	if (WARN_ON(buf_size == 0))
773 		return -EINVAL;
774 	if (WARN_ON(chunk_size == 0))
775 		return -EINVAL;
776 
777 	kfd->gtt_sa_chunk_size = chunk_size;
778 	kfd->gtt_sa_num_of_chunks = buf_size / chunk_size;
779 
780 	num_of_longs = (kfd->gtt_sa_num_of_chunks + BITS_PER_LONG - 1) /
781 		BITS_PER_LONG;
782 
783 	kfd->gtt_sa_bitmap = kcalloc(num_of_longs, sizeof(long), GFP_KERNEL);
784 
785 	if (!kfd->gtt_sa_bitmap)
786 		return -ENOMEM;
787 
788 	pr_debug("gtt_sa_num_of_chunks = %d, gtt_sa_bitmap = %p\n",
789 			kfd->gtt_sa_num_of_chunks, kfd->gtt_sa_bitmap);
790 
791 	mutex_init(&kfd->gtt_sa_lock);
792 
793 	return 0;
794 
795 }
796 
kfd_gtt_sa_fini(struct kfd_dev * kfd)797 static void kfd_gtt_sa_fini(struct kfd_dev *kfd)
798 {
799 	mutex_destroy(&kfd->gtt_sa_lock);
800 	kfree(kfd->gtt_sa_bitmap);
801 }
802 
kfd_gtt_sa_calc_gpu_addr(uint64_t start_addr,unsigned int bit_num,unsigned int chunk_size)803 static inline uint64_t kfd_gtt_sa_calc_gpu_addr(uint64_t start_addr,
804 						unsigned int bit_num,
805 						unsigned int chunk_size)
806 {
807 	return start_addr + bit_num * chunk_size;
808 }
809 
kfd_gtt_sa_calc_cpu_addr(void * start_addr,unsigned int bit_num,unsigned int chunk_size)810 static inline uint32_t *kfd_gtt_sa_calc_cpu_addr(void *start_addr,
811 						unsigned int bit_num,
812 						unsigned int chunk_size)
813 {
814 	return (uint32_t *) ((uint64_t) start_addr + bit_num * chunk_size);
815 }
816 
kfd_gtt_sa_allocate(struct kfd_dev * kfd,unsigned int size,struct kfd_mem_obj ** mem_obj)817 int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size,
818 			struct kfd_mem_obj **mem_obj)
819 {
820 	unsigned int found, start_search, cur_size;
821 
822 	if (size == 0)
823 		return -EINVAL;
824 
825 	if (size > kfd->gtt_sa_num_of_chunks * kfd->gtt_sa_chunk_size)
826 		return -ENOMEM;
827 
828 	*mem_obj = kzalloc(sizeof(struct kfd_mem_obj), GFP_KERNEL);
829 	if (!(*mem_obj))
830 		return -ENOMEM;
831 
832 	pr_debug("Allocated mem_obj = %p for size = %d\n", *mem_obj, size);
833 
834 	start_search = 0;
835 
836 	mutex_lock(&kfd->gtt_sa_lock);
837 
838 kfd_gtt_restart_search:
839 	/* Find the first chunk that is free */
840 	found = find_next_zero_bit(kfd->gtt_sa_bitmap,
841 					kfd->gtt_sa_num_of_chunks,
842 					start_search);
843 
844 	pr_debug("Found = %d\n", found);
845 
846 	/* If there wasn't any free chunk, bail out */
847 	if (found == kfd->gtt_sa_num_of_chunks)
848 		goto kfd_gtt_no_free_chunk;
849 
850 	/* Update fields of mem_obj */
851 	(*mem_obj)->range_start = found;
852 	(*mem_obj)->range_end = found;
853 	(*mem_obj)->gpu_addr = kfd_gtt_sa_calc_gpu_addr(
854 					kfd->gtt_start_gpu_addr,
855 					found,
856 					kfd->gtt_sa_chunk_size);
857 	(*mem_obj)->cpu_ptr = kfd_gtt_sa_calc_cpu_addr(
858 					kfd->gtt_start_cpu_ptr,
859 					found,
860 					kfd->gtt_sa_chunk_size);
861 
862 	pr_debug("gpu_addr = %p, cpu_addr = %p\n",
863 			(uint64_t *) (*mem_obj)->gpu_addr, (*mem_obj)->cpu_ptr);
864 
865 	/* If we need only one chunk, mark it as allocated and get out */
866 	if (size <= kfd->gtt_sa_chunk_size) {
867 		pr_debug("Single bit\n");
868 		set_bit(found, kfd->gtt_sa_bitmap);
869 		goto kfd_gtt_out;
870 	}
871 
872 	/* Otherwise, try to see if we have enough contiguous chunks */
873 	cur_size = size - kfd->gtt_sa_chunk_size;
874 	do {
875 		(*mem_obj)->range_end =
876 			find_next_zero_bit(kfd->gtt_sa_bitmap,
877 					kfd->gtt_sa_num_of_chunks, ++found);
878 		/*
879 		 * If next free chunk is not contiguous than we need to
880 		 * restart our search from the last free chunk we found (which
881 		 * wasn't contiguous to the previous ones
882 		 */
883 		if ((*mem_obj)->range_end != found) {
884 			start_search = found;
885 			goto kfd_gtt_restart_search;
886 		}
887 
888 		/*
889 		 * If we reached end of buffer, bail out with error
890 		 */
891 		if (found == kfd->gtt_sa_num_of_chunks)
892 			goto kfd_gtt_no_free_chunk;
893 
894 		/* Check if we don't need another chunk */
895 		if (cur_size <= kfd->gtt_sa_chunk_size)
896 			cur_size = 0;
897 		else
898 			cur_size -= kfd->gtt_sa_chunk_size;
899 
900 	} while (cur_size > 0);
901 
902 	pr_debug("range_start = %d, range_end = %d\n",
903 		(*mem_obj)->range_start, (*mem_obj)->range_end);
904 
905 	/* Mark the chunks as allocated */
906 	for (found = (*mem_obj)->range_start;
907 		found <= (*mem_obj)->range_end;
908 		found++)
909 		set_bit(found, kfd->gtt_sa_bitmap);
910 
911 kfd_gtt_out:
912 	mutex_unlock(&kfd->gtt_sa_lock);
913 	return 0;
914 
915 kfd_gtt_no_free_chunk:
916 	pr_debug("Allocation failed with mem_obj = %p\n", mem_obj);
917 	mutex_unlock(&kfd->gtt_sa_lock);
918 	kfree(mem_obj);
919 	return -ENOMEM;
920 }
921 
kfd_gtt_sa_free(struct kfd_dev * kfd,struct kfd_mem_obj * mem_obj)922 int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj)
923 {
924 	unsigned int bit;
925 
926 	/* Act like kfree when trying to free a NULL object */
927 	if (!mem_obj)
928 		return 0;
929 
930 	pr_debug("Free mem_obj = %p, range_start = %d, range_end = %d\n",
931 			mem_obj, mem_obj->range_start, mem_obj->range_end);
932 
933 	mutex_lock(&kfd->gtt_sa_lock);
934 
935 	/* Mark the chunks as free */
936 	for (bit = mem_obj->range_start;
937 		bit <= mem_obj->range_end;
938 		bit++)
939 		clear_bit(bit, kfd->gtt_sa_bitmap);
940 
941 	mutex_unlock(&kfd->gtt_sa_lock);
942 
943 	kfree(mem_obj);
944 	return 0;
945 }
946 
947 #if defined(CONFIG_DEBUG_FS)
948 
949 /* This function will send a package to HIQ to hang the HWS
950  * which will trigger a GPU reset and bring the HWS back to normal state
951  */
kfd_debugfs_hang_hws(struct kfd_dev * dev)952 int kfd_debugfs_hang_hws(struct kfd_dev *dev)
953 {
954 	int r = 0;
955 
956 	if (dev->dqm->sched_policy != KFD_SCHED_POLICY_HWS) {
957 		pr_err("HWS is not enabled");
958 		return -EINVAL;
959 	}
960 
961 	r = pm_debugfs_hang_hws(&dev->dqm->packets);
962 	if (!r)
963 		r = dqm_debugfs_execute_queues(dev->dqm);
964 
965 	return r;
966 }
967 
968 #endif
969