1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   *  linux/fs/super.c
4   *
5   *  Copyright (C) 1991, 1992  Linus Torvalds
6   *
7   *  super.c contains code to handle: - mount structures
8   *                                   - super-block tables
9   *                                   - filesystem drivers list
10   *                                   - mount system call
11   *                                   - umount system call
12   *                                   - ustat system call
13   *
14   * GK 2/5/95  -  Changed to support mounting the root fs via NFS
15   *
16   *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
17   *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
18   *  Added options to /proc/mounts:
19   *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
20   *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
21   *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
22   */
23  
24  #include <linux/export.h>
25  #include <linux/slab.h>
26  #include <linux/blkdev.h>
27  #include <linux/mount.h>
28  #include <linux/security.h>
29  #include <linux/writeback.h>		/* for the emergency remount stuff */
30  #include <linux/idr.h>
31  #include <linux/mutex.h>
32  #include <linux/backing-dev.h>
33  #include <linux/rculist_bl.h>
34  #include <linux/fscrypt.h>
35  #include <linux/fsnotify.h>
36  #include <linux/lockdep.h>
37  #include <linux/user_namespace.h>
38  #include <linux/fs_context.h>
39  #include <uapi/linux/mount.h>
40  #include "internal.h"
41  
42  static int thaw_super_locked(struct super_block *sb);
43  
44  static LIST_HEAD(super_blocks);
45  static DEFINE_SPINLOCK(sb_lock);
46  
47  static char *sb_writers_name[SB_FREEZE_LEVELS] = {
48  	"sb_writers",
49  	"sb_pagefaults",
50  	"sb_internal",
51  };
52  
53  /*
54   * One thing we have to be careful of with a per-sb shrinker is that we don't
55   * drop the last active reference to the superblock from within the shrinker.
56   * If that happens we could trigger unregistering the shrinker from within the
57   * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
58   * take a passive reference to the superblock to avoid this from occurring.
59   */
super_cache_scan(struct shrinker * shrink,struct shrink_control * sc)60  static unsigned long super_cache_scan(struct shrinker *shrink,
61  				      struct shrink_control *sc)
62  {
63  	struct super_block *sb;
64  	long	fs_objects = 0;
65  	long	total_objects;
66  	long	freed = 0;
67  	long	dentries;
68  	long	inodes;
69  
70  	sb = container_of(shrink, struct super_block, s_shrink);
71  
72  	/*
73  	 * Deadlock avoidance.  We may hold various FS locks, and we don't want
74  	 * to recurse into the FS that called us in clear_inode() and friends..
75  	 */
76  	if (!(sc->gfp_mask & __GFP_FS))
77  		return SHRINK_STOP;
78  
79  	if (!trylock_super(sb))
80  		return SHRINK_STOP;
81  
82  	if (sb->s_op->nr_cached_objects)
83  		fs_objects = sb->s_op->nr_cached_objects(sb, sc);
84  
85  	inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
86  	dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
87  	total_objects = dentries + inodes + fs_objects + 1;
88  	if (!total_objects)
89  		total_objects = 1;
90  
91  	/* proportion the scan between the caches */
92  	dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
93  	inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
94  	fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
95  
96  	/*
97  	 * prune the dcache first as the icache is pinned by it, then
98  	 * prune the icache, followed by the filesystem specific caches
99  	 *
100  	 * Ensure that we always scan at least one object - memcg kmem
101  	 * accounting uses this to fully empty the caches.
102  	 */
103  	sc->nr_to_scan = dentries + 1;
104  	freed = prune_dcache_sb(sb, sc);
105  	sc->nr_to_scan = inodes + 1;
106  	freed += prune_icache_sb(sb, sc);
107  
108  	if (fs_objects) {
109  		sc->nr_to_scan = fs_objects + 1;
110  		freed += sb->s_op->free_cached_objects(sb, sc);
111  	}
112  
113  	up_read(&sb->s_umount);
114  	return freed;
115  }
116  
super_cache_count(struct shrinker * shrink,struct shrink_control * sc)117  static unsigned long super_cache_count(struct shrinker *shrink,
118  				       struct shrink_control *sc)
119  {
120  	struct super_block *sb;
121  	long	total_objects = 0;
122  
123  	sb = container_of(shrink, struct super_block, s_shrink);
124  
125  	/*
126  	 * We don't call trylock_super() here as it is a scalability bottleneck,
127  	 * so we're exposed to partial setup state. The shrinker rwsem does not
128  	 * protect filesystem operations backing list_lru_shrink_count() or
129  	 * s_op->nr_cached_objects(). Counts can change between
130  	 * super_cache_count and super_cache_scan, so we really don't need locks
131  	 * here.
132  	 *
133  	 * However, if we are currently mounting the superblock, the underlying
134  	 * filesystem might be in a state of partial construction and hence it
135  	 * is dangerous to access it.  trylock_super() uses a SB_BORN check to
136  	 * avoid this situation, so do the same here. The memory barrier is
137  	 * matched with the one in mount_fs() as we don't hold locks here.
138  	 */
139  	if (!(sb->s_flags & SB_BORN))
140  		return 0;
141  	smp_rmb();
142  
143  	if (sb->s_op && sb->s_op->nr_cached_objects)
144  		total_objects = sb->s_op->nr_cached_objects(sb, sc);
145  
146  	total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
147  	total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
148  
149  	if (!total_objects)
150  		return SHRINK_EMPTY;
151  
152  	total_objects = vfs_pressure_ratio(total_objects);
153  	return total_objects;
154  }
155  
destroy_super_work(struct work_struct * work)156  static void destroy_super_work(struct work_struct *work)
157  {
158  	struct super_block *s = container_of(work, struct super_block,
159  							destroy_work);
160  	int i;
161  
162  	for (i = 0; i < SB_FREEZE_LEVELS; i++)
163  		percpu_free_rwsem(&s->s_writers.rw_sem[i]);
164  	kfree(s);
165  }
166  
destroy_super_rcu(struct rcu_head * head)167  static void destroy_super_rcu(struct rcu_head *head)
168  {
169  	struct super_block *s = container_of(head, struct super_block, rcu);
170  	INIT_WORK(&s->destroy_work, destroy_super_work);
171  	schedule_work(&s->destroy_work);
172  }
173  
174  /* Free a superblock that has never been seen by anyone */
destroy_unused_super(struct super_block * s)175  static void destroy_unused_super(struct super_block *s)
176  {
177  	if (!s)
178  		return;
179  	up_write(&s->s_umount);
180  	list_lru_destroy(&s->s_dentry_lru);
181  	list_lru_destroy(&s->s_inode_lru);
182  	security_sb_free(s);
183  	put_user_ns(s->s_user_ns);
184  	kfree(s->s_subtype);
185  	free_prealloced_shrinker(&s->s_shrink);
186  	/* no delays needed */
187  	destroy_super_work(&s->destroy_work);
188  }
189  
190  /**
191   *	alloc_super	-	create new superblock
192   *	@type:	filesystem type superblock should belong to
193   *	@flags: the mount flags
194   *	@user_ns: User namespace for the super_block
195   *
196   *	Allocates and initializes a new &struct super_block.  alloc_super()
197   *	returns a pointer new superblock or %NULL if allocation had failed.
198   */
alloc_super(struct file_system_type * type,int flags,struct user_namespace * user_ns)199  static struct super_block *alloc_super(struct file_system_type *type, int flags,
200  				       struct user_namespace *user_ns)
201  {
202  	struct super_block *s = kzalloc(sizeof(struct super_block),  GFP_USER);
203  	static const struct super_operations default_op;
204  	int i;
205  
206  	if (!s)
207  		return NULL;
208  
209  	INIT_LIST_HEAD(&s->s_mounts);
210  	s->s_user_ns = get_user_ns(user_ns);
211  	init_rwsem(&s->s_umount);
212  	lockdep_set_class(&s->s_umount, &type->s_umount_key);
213  	/*
214  	 * sget() can have s_umount recursion.
215  	 *
216  	 * When it cannot find a suitable sb, it allocates a new
217  	 * one (this one), and tries again to find a suitable old
218  	 * one.
219  	 *
220  	 * In case that succeeds, it will acquire the s_umount
221  	 * lock of the old one. Since these are clearly distrinct
222  	 * locks, and this object isn't exposed yet, there's no
223  	 * risk of deadlocks.
224  	 *
225  	 * Annotate this by putting this lock in a different
226  	 * subclass.
227  	 */
228  	down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
229  
230  	if (security_sb_alloc(s))
231  		goto fail;
232  
233  	for (i = 0; i < SB_FREEZE_LEVELS; i++) {
234  		if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
235  					sb_writers_name[i],
236  					&type->s_writers_key[i]))
237  			goto fail;
238  	}
239  	init_waitqueue_head(&s->s_writers.wait_unfrozen);
240  	s->s_bdi = &noop_backing_dev_info;
241  	s->s_flags = flags;
242  	if (s->s_user_ns != &init_user_ns)
243  		s->s_iflags |= SB_I_NODEV;
244  	INIT_HLIST_NODE(&s->s_instances);
245  	INIT_HLIST_BL_HEAD(&s->s_roots);
246  	mutex_init(&s->s_sync_lock);
247  	INIT_LIST_HEAD(&s->s_inodes);
248  	spin_lock_init(&s->s_inode_list_lock);
249  	INIT_LIST_HEAD(&s->s_inodes_wb);
250  	spin_lock_init(&s->s_inode_wblist_lock);
251  
252  	s->s_count = 1;
253  	atomic_set(&s->s_active, 1);
254  	mutex_init(&s->s_vfs_rename_mutex);
255  	lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
256  	init_rwsem(&s->s_dquot.dqio_sem);
257  	s->s_maxbytes = MAX_NON_LFS;
258  	s->s_op = &default_op;
259  	s->s_time_gran = 1000000000;
260  	s->s_time_min = TIME64_MIN;
261  	s->s_time_max = TIME64_MAX;
262  
263  	s->s_shrink.seeks = DEFAULT_SEEKS;
264  	s->s_shrink.scan_objects = super_cache_scan;
265  	s->s_shrink.count_objects = super_cache_count;
266  	s->s_shrink.batch = 1024;
267  	s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE;
268  	if (prealloc_shrinker(&s->s_shrink, "sb-%s", type->name))
269  		goto fail;
270  	if (list_lru_init_memcg(&s->s_dentry_lru, &s->s_shrink))
271  		goto fail;
272  	if (list_lru_init_memcg(&s->s_inode_lru, &s->s_shrink))
273  		goto fail;
274  	return s;
275  
276  fail:
277  	destroy_unused_super(s);
278  	return NULL;
279  }
280  
281  /* Superblock refcounting  */
282  
283  /*
284   * Drop a superblock's refcount.  The caller must hold sb_lock.
285   */
__put_super(struct super_block * s)286  static void __put_super(struct super_block *s)
287  {
288  	if (!--s->s_count) {
289  		list_del_init(&s->s_list);
290  		WARN_ON(s->s_dentry_lru.node);
291  		WARN_ON(s->s_inode_lru.node);
292  		WARN_ON(!list_empty(&s->s_mounts));
293  		security_sb_free(s);
294  		fscrypt_destroy_keyring(s);
295  		put_user_ns(s->s_user_ns);
296  		kfree(s->s_subtype);
297  		call_rcu(&s->rcu, destroy_super_rcu);
298  	}
299  }
300  
301  /**
302   *	put_super	-	drop a temporary reference to superblock
303   *	@sb: superblock in question
304   *
305   *	Drops a temporary reference, frees superblock if there's no
306   *	references left.
307   */
put_super(struct super_block * sb)308  void put_super(struct super_block *sb)
309  {
310  	spin_lock(&sb_lock);
311  	__put_super(sb);
312  	spin_unlock(&sb_lock);
313  }
314  
315  
316  /**
317   *	deactivate_locked_super	-	drop an active reference to superblock
318   *	@s: superblock to deactivate
319   *
320   *	Drops an active reference to superblock, converting it into a temporary
321   *	one if there is no other active references left.  In that case we
322   *	tell fs driver to shut it down and drop the temporary reference we
323   *	had just acquired.
324   *
325   *	Caller holds exclusive lock on superblock; that lock is released.
326   */
deactivate_locked_super(struct super_block * s)327  void deactivate_locked_super(struct super_block *s)
328  {
329  	struct file_system_type *fs = s->s_type;
330  	if (atomic_dec_and_test(&s->s_active)) {
331  		unregister_shrinker(&s->s_shrink);
332  		fs->kill_sb(s);
333  
334  		/*
335  		 * Since list_lru_destroy() may sleep, we cannot call it from
336  		 * put_super(), where we hold the sb_lock. Therefore we destroy
337  		 * the lru lists right now.
338  		 */
339  		list_lru_destroy(&s->s_dentry_lru);
340  		list_lru_destroy(&s->s_inode_lru);
341  
342  		put_filesystem(fs);
343  		put_super(s);
344  	} else {
345  		up_write(&s->s_umount);
346  	}
347  }
348  
349  EXPORT_SYMBOL(deactivate_locked_super);
350  
351  /**
352   *	deactivate_super	-	drop an active reference to superblock
353   *	@s: superblock to deactivate
354   *
355   *	Variant of deactivate_locked_super(), except that superblock is *not*
356   *	locked by caller.  If we are going to drop the final active reference,
357   *	lock will be acquired prior to that.
358   */
deactivate_super(struct super_block * s)359  void deactivate_super(struct super_block *s)
360  {
361  	if (!atomic_add_unless(&s->s_active, -1, 1)) {
362  		down_write(&s->s_umount);
363  		deactivate_locked_super(s);
364  	}
365  }
366  
367  EXPORT_SYMBOL(deactivate_super);
368  
369  /**
370   *	grab_super - acquire an active reference
371   *	@s: reference we are trying to make active
372   *
373   *	Tries to acquire an active reference.  grab_super() is used when we
374   * 	had just found a superblock in super_blocks or fs_type->fs_supers
375   *	and want to turn it into a full-blown active reference.  grab_super()
376   *	is called with sb_lock held and drops it.  Returns 1 in case of
377   *	success, 0 if we had failed (superblock contents was already dead or
378   *	dying when grab_super() had been called).  Note that this is only
379   *	called for superblocks not in rundown mode (== ones still on ->fs_supers
380   *	of their type), so increment of ->s_count is OK here.
381   */
grab_super(struct super_block * s)382  static int grab_super(struct super_block *s) __releases(sb_lock)
383  {
384  	s->s_count++;
385  	spin_unlock(&sb_lock);
386  	down_write(&s->s_umount);
387  	if ((s->s_flags & SB_BORN) && atomic_inc_not_zero(&s->s_active)) {
388  		put_super(s);
389  		return 1;
390  	}
391  	up_write(&s->s_umount);
392  	put_super(s);
393  	return 0;
394  }
395  
396  /*
397   *	trylock_super - try to grab ->s_umount shared
398   *	@sb: reference we are trying to grab
399   *
400   *	Try to prevent fs shutdown.  This is used in places where we
401   *	cannot take an active reference but we need to ensure that the
402   *	filesystem is not shut down while we are working on it. It returns
403   *	false if we cannot acquire s_umount or if we lose the race and
404   *	filesystem already got into shutdown, and returns true with the s_umount
405   *	lock held in read mode in case of success. On successful return,
406   *	the caller must drop the s_umount lock when done.
407   *
408   *	Note that unlike get_super() et.al. this one does *not* bump ->s_count.
409   *	The reason why it's safe is that we are OK with doing trylock instead
410   *	of down_read().  There's a couple of places that are OK with that, but
411   *	it's very much not a general-purpose interface.
412   */
trylock_super(struct super_block * sb)413  bool trylock_super(struct super_block *sb)
414  {
415  	if (down_read_trylock(&sb->s_umount)) {
416  		if (!hlist_unhashed(&sb->s_instances) &&
417  		    sb->s_root && (sb->s_flags & SB_BORN))
418  			return true;
419  		up_read(&sb->s_umount);
420  	}
421  
422  	return false;
423  }
424  
425  /**
426   *	retire_super	-	prevents superblock from being reused
427   *	@sb: superblock to retire
428   *
429   *	The function marks superblock to be ignored in superblock test, which
430   *	prevents it from being reused for any new mounts.  If the superblock has
431   *	a private bdi, it also unregisters it, but doesn't reduce the refcount
432   *	of the superblock to prevent potential races.  The refcount is reduced
433   *	by generic_shutdown_super().  The function can not be called
434   *	concurrently with generic_shutdown_super().  It is safe to call the
435   *	function multiple times, subsequent calls have no effect.
436   *
437   *	The marker will affect the re-use only for block-device-based
438   *	superblocks.  Other superblocks will still get marked if this function
439   *	is used, but that will not affect their reusability.
440   */
retire_super(struct super_block * sb)441  void retire_super(struct super_block *sb)
442  {
443  	WARN_ON(!sb->s_bdev);
444  	down_write(&sb->s_umount);
445  	if (sb->s_iflags & SB_I_PERSB_BDI) {
446  		bdi_unregister(sb->s_bdi);
447  		sb->s_iflags &= ~SB_I_PERSB_BDI;
448  	}
449  	sb->s_iflags |= SB_I_RETIRED;
450  	up_write(&sb->s_umount);
451  }
452  EXPORT_SYMBOL(retire_super);
453  
454  /**
455   *	generic_shutdown_super	-	common helper for ->kill_sb()
456   *	@sb: superblock to kill
457   *
458   *	generic_shutdown_super() does all fs-independent work on superblock
459   *	shutdown.  Typical ->kill_sb() should pick all fs-specific objects
460   *	that need destruction out of superblock, call generic_shutdown_super()
461   *	and release aforementioned objects.  Note: dentries and inodes _are_
462   *	taken care of and do not need specific handling.
463   *
464   *	Upon calling this function, the filesystem may no longer alter or
465   *	rearrange the set of dentries belonging to this super_block, nor may it
466   *	change the attachments of dentries to inodes.
467   */
generic_shutdown_super(struct super_block * sb)468  void generic_shutdown_super(struct super_block *sb)
469  {
470  	const struct super_operations *sop = sb->s_op;
471  
472  	if (sb->s_root) {
473  		shrink_dcache_for_umount(sb);
474  		sync_filesystem(sb);
475  		sb->s_flags &= ~SB_ACTIVE;
476  
477  		cgroup_writeback_umount();
478  
479  		/* evict all inodes with zero refcount */
480  		evict_inodes(sb);
481  		/* only nonzero refcount inodes can have marks */
482  		fsnotify_sb_delete(sb);
483  		fscrypt_destroy_keyring(sb);
484  		security_sb_delete(sb);
485  
486  		if (sb->s_dio_done_wq) {
487  			destroy_workqueue(sb->s_dio_done_wq);
488  			sb->s_dio_done_wq = NULL;
489  		}
490  
491  		if (sop->put_super)
492  			sop->put_super(sb);
493  
494  		if (!list_empty(&sb->s_inodes)) {
495  			printk("VFS: Busy inodes after unmount of %s. "
496  			   "Self-destruct in 5 seconds.  Have a nice day...\n",
497  			   sb->s_id);
498  		}
499  	}
500  	spin_lock(&sb_lock);
501  	/* should be initialized for __put_super_and_need_restart() */
502  	hlist_del_init(&sb->s_instances);
503  	spin_unlock(&sb_lock);
504  	up_write(&sb->s_umount);
505  	if (sb->s_bdi != &noop_backing_dev_info) {
506  		if (sb->s_iflags & SB_I_PERSB_BDI)
507  			bdi_unregister(sb->s_bdi);
508  		bdi_put(sb->s_bdi);
509  		sb->s_bdi = &noop_backing_dev_info;
510  	}
511  }
512  
513  EXPORT_SYMBOL(generic_shutdown_super);
514  
mount_capable(struct fs_context * fc)515  bool mount_capable(struct fs_context *fc)
516  {
517  	if (!(fc->fs_type->fs_flags & FS_USERNS_MOUNT))
518  		return capable(CAP_SYS_ADMIN);
519  	else
520  		return ns_capable(fc->user_ns, CAP_SYS_ADMIN);
521  }
522  
523  /**
524   * sget_fc - Find or create a superblock
525   * @fc:	Filesystem context.
526   * @test: Comparison callback
527   * @set: Setup callback
528   *
529   * Find or create a superblock using the parameters stored in the filesystem
530   * context and the two callback functions.
531   *
532   * If an extant superblock is matched, then that will be returned with an
533   * elevated reference count that the caller must transfer or discard.
534   *
535   * If no match is made, a new superblock will be allocated and basic
536   * initialisation will be performed (s_type, s_fs_info and s_id will be set and
537   * the set() callback will be invoked), the superblock will be published and it
538   * will be returned in a partially constructed state with SB_BORN and SB_ACTIVE
539   * as yet unset.
540   */
sget_fc(struct fs_context * fc,int (* test)(struct super_block *,struct fs_context *),int (* set)(struct super_block *,struct fs_context *))541  struct super_block *sget_fc(struct fs_context *fc,
542  			    int (*test)(struct super_block *, struct fs_context *),
543  			    int (*set)(struct super_block *, struct fs_context *))
544  {
545  	struct super_block *s = NULL;
546  	struct super_block *old;
547  	struct user_namespace *user_ns = fc->global ? &init_user_ns : fc->user_ns;
548  	int err;
549  
550  retry:
551  	spin_lock(&sb_lock);
552  	if (test) {
553  		hlist_for_each_entry(old, &fc->fs_type->fs_supers, s_instances) {
554  			if (test(old, fc))
555  				goto share_extant_sb;
556  		}
557  	}
558  	if (!s) {
559  		spin_unlock(&sb_lock);
560  		s = alloc_super(fc->fs_type, fc->sb_flags, user_ns);
561  		if (!s)
562  			return ERR_PTR(-ENOMEM);
563  		goto retry;
564  	}
565  
566  	s->s_fs_info = fc->s_fs_info;
567  	err = set(s, fc);
568  	if (err) {
569  		s->s_fs_info = NULL;
570  		spin_unlock(&sb_lock);
571  		destroy_unused_super(s);
572  		return ERR_PTR(err);
573  	}
574  	fc->s_fs_info = NULL;
575  	s->s_type = fc->fs_type;
576  	s->s_iflags |= fc->s_iflags;
577  	strlcpy(s->s_id, s->s_type->name, sizeof(s->s_id));
578  	list_add_tail(&s->s_list, &super_blocks);
579  	hlist_add_head(&s->s_instances, &s->s_type->fs_supers);
580  	spin_unlock(&sb_lock);
581  	get_filesystem(s->s_type);
582  	register_shrinker_prepared(&s->s_shrink);
583  	return s;
584  
585  share_extant_sb:
586  	if (user_ns != old->s_user_ns) {
587  		spin_unlock(&sb_lock);
588  		destroy_unused_super(s);
589  		return ERR_PTR(-EBUSY);
590  	}
591  	if (!grab_super(old))
592  		goto retry;
593  	destroy_unused_super(s);
594  	return old;
595  }
596  EXPORT_SYMBOL(sget_fc);
597  
598  /**
599   *	sget	-	find or create a superblock
600   *	@type:	  filesystem type superblock should belong to
601   *	@test:	  comparison callback
602   *	@set:	  setup callback
603   *	@flags:	  mount flags
604   *	@data:	  argument to each of them
605   */
sget(struct file_system_type * type,int (* test)(struct super_block *,void *),int (* set)(struct super_block *,void *),int flags,void * data)606  struct super_block *sget(struct file_system_type *type,
607  			int (*test)(struct super_block *,void *),
608  			int (*set)(struct super_block *,void *),
609  			int flags,
610  			void *data)
611  {
612  	struct user_namespace *user_ns = current_user_ns();
613  	struct super_block *s = NULL;
614  	struct super_block *old;
615  	int err;
616  
617  	/* We don't yet pass the user namespace of the parent
618  	 * mount through to here so always use &init_user_ns
619  	 * until that changes.
620  	 */
621  	if (flags & SB_SUBMOUNT)
622  		user_ns = &init_user_ns;
623  
624  retry:
625  	spin_lock(&sb_lock);
626  	if (test) {
627  		hlist_for_each_entry(old, &type->fs_supers, s_instances) {
628  			if (!test(old, data))
629  				continue;
630  			if (user_ns != old->s_user_ns) {
631  				spin_unlock(&sb_lock);
632  				destroy_unused_super(s);
633  				return ERR_PTR(-EBUSY);
634  			}
635  			if (!grab_super(old))
636  				goto retry;
637  			destroy_unused_super(s);
638  			return old;
639  		}
640  	}
641  	if (!s) {
642  		spin_unlock(&sb_lock);
643  		s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns);
644  		if (!s)
645  			return ERR_PTR(-ENOMEM);
646  		goto retry;
647  	}
648  
649  	err = set(s, data);
650  	if (err) {
651  		spin_unlock(&sb_lock);
652  		destroy_unused_super(s);
653  		return ERR_PTR(err);
654  	}
655  	s->s_type = type;
656  	strlcpy(s->s_id, type->name, sizeof(s->s_id));
657  	list_add_tail(&s->s_list, &super_blocks);
658  	hlist_add_head(&s->s_instances, &type->fs_supers);
659  	spin_unlock(&sb_lock);
660  	get_filesystem(type);
661  	register_shrinker_prepared(&s->s_shrink);
662  	return s;
663  }
664  EXPORT_SYMBOL(sget);
665  
drop_super(struct super_block * sb)666  void drop_super(struct super_block *sb)
667  {
668  	up_read(&sb->s_umount);
669  	put_super(sb);
670  }
671  
672  EXPORT_SYMBOL(drop_super);
673  
drop_super_exclusive(struct super_block * sb)674  void drop_super_exclusive(struct super_block *sb)
675  {
676  	up_write(&sb->s_umount);
677  	put_super(sb);
678  }
679  EXPORT_SYMBOL(drop_super_exclusive);
680  
__iterate_supers(void (* f)(struct super_block *))681  static void __iterate_supers(void (*f)(struct super_block *))
682  {
683  	struct super_block *sb, *p = NULL;
684  
685  	spin_lock(&sb_lock);
686  	list_for_each_entry(sb, &super_blocks, s_list) {
687  		if (hlist_unhashed(&sb->s_instances))
688  			continue;
689  		sb->s_count++;
690  		spin_unlock(&sb_lock);
691  
692  		f(sb);
693  
694  		spin_lock(&sb_lock);
695  		if (p)
696  			__put_super(p);
697  		p = sb;
698  	}
699  	if (p)
700  		__put_super(p);
701  	spin_unlock(&sb_lock);
702  }
703  /**
704   *	iterate_supers - call function for all active superblocks
705   *	@f: function to call
706   *	@arg: argument to pass to it
707   *
708   *	Scans the superblock list and calls given function, passing it
709   *	locked superblock and given argument.
710   */
iterate_supers(void (* f)(struct super_block *,void *),void * arg)711  void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
712  {
713  	struct super_block *sb, *p = NULL;
714  
715  	spin_lock(&sb_lock);
716  	list_for_each_entry(sb, &super_blocks, s_list) {
717  		if (hlist_unhashed(&sb->s_instances))
718  			continue;
719  		sb->s_count++;
720  		spin_unlock(&sb_lock);
721  
722  		down_read(&sb->s_umount);
723  		if (sb->s_root && (sb->s_flags & SB_BORN))
724  			f(sb, arg);
725  		up_read(&sb->s_umount);
726  
727  		spin_lock(&sb_lock);
728  		if (p)
729  			__put_super(p);
730  		p = sb;
731  	}
732  	if (p)
733  		__put_super(p);
734  	spin_unlock(&sb_lock);
735  }
736  
737  /**
738   *	iterate_supers_type - call function for superblocks of given type
739   *	@type: fs type
740   *	@f: function to call
741   *	@arg: argument to pass to it
742   *
743   *	Scans the superblock list and calls given function, passing it
744   *	locked superblock and given argument.
745   */
iterate_supers_type(struct file_system_type * type,void (* f)(struct super_block *,void *),void * arg)746  void iterate_supers_type(struct file_system_type *type,
747  	void (*f)(struct super_block *, void *), void *arg)
748  {
749  	struct super_block *sb, *p = NULL;
750  
751  	spin_lock(&sb_lock);
752  	hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
753  		sb->s_count++;
754  		spin_unlock(&sb_lock);
755  
756  		down_read(&sb->s_umount);
757  		if (sb->s_root && (sb->s_flags & SB_BORN))
758  			f(sb, arg);
759  		up_read(&sb->s_umount);
760  
761  		spin_lock(&sb_lock);
762  		if (p)
763  			__put_super(p);
764  		p = sb;
765  	}
766  	if (p)
767  		__put_super(p);
768  	spin_unlock(&sb_lock);
769  }
770  
771  EXPORT_SYMBOL(iterate_supers_type);
772  
773  /**
774   * get_super - get the superblock of a device
775   * @bdev: device to get the superblock for
776   *
777   * Scans the superblock list and finds the superblock of the file system
778   * mounted on the device given. %NULL is returned if no match is found.
779   */
get_super(struct block_device * bdev)780  struct super_block *get_super(struct block_device *bdev)
781  {
782  	struct super_block *sb;
783  
784  	if (!bdev)
785  		return NULL;
786  
787  	spin_lock(&sb_lock);
788  rescan:
789  	list_for_each_entry(sb, &super_blocks, s_list) {
790  		if (hlist_unhashed(&sb->s_instances))
791  			continue;
792  		if (sb->s_bdev == bdev) {
793  			sb->s_count++;
794  			spin_unlock(&sb_lock);
795  			down_read(&sb->s_umount);
796  			/* still alive? */
797  			if (sb->s_root && (sb->s_flags & SB_BORN))
798  				return sb;
799  			up_read(&sb->s_umount);
800  			/* nope, got unmounted */
801  			spin_lock(&sb_lock);
802  			__put_super(sb);
803  			goto rescan;
804  		}
805  	}
806  	spin_unlock(&sb_lock);
807  	return NULL;
808  }
809  
810  /**
811   * get_active_super - get an active reference to the superblock of a device
812   * @bdev: device to get the superblock for
813   *
814   * Scans the superblock list and finds the superblock of the file system
815   * mounted on the device given.  Returns the superblock with an active
816   * reference or %NULL if none was found.
817   */
get_active_super(struct block_device * bdev)818  struct super_block *get_active_super(struct block_device *bdev)
819  {
820  	struct super_block *sb;
821  
822  	if (!bdev)
823  		return NULL;
824  
825  restart:
826  	spin_lock(&sb_lock);
827  	list_for_each_entry(sb, &super_blocks, s_list) {
828  		if (hlist_unhashed(&sb->s_instances))
829  			continue;
830  		if (sb->s_bdev == bdev) {
831  			if (!grab_super(sb))
832  				goto restart;
833  			up_write(&sb->s_umount);
834  			return sb;
835  		}
836  	}
837  	spin_unlock(&sb_lock);
838  	return NULL;
839  }
840  
user_get_super(dev_t dev,bool excl)841  struct super_block *user_get_super(dev_t dev, bool excl)
842  {
843  	struct super_block *sb;
844  
845  	spin_lock(&sb_lock);
846  rescan:
847  	list_for_each_entry(sb, &super_blocks, s_list) {
848  		if (hlist_unhashed(&sb->s_instances))
849  			continue;
850  		if (sb->s_dev ==  dev) {
851  			sb->s_count++;
852  			spin_unlock(&sb_lock);
853  			if (excl)
854  				down_write(&sb->s_umount);
855  			else
856  				down_read(&sb->s_umount);
857  			/* still alive? */
858  			if (sb->s_root && (sb->s_flags & SB_BORN))
859  				return sb;
860  			if (excl)
861  				up_write(&sb->s_umount);
862  			else
863  				up_read(&sb->s_umount);
864  			/* nope, got unmounted */
865  			spin_lock(&sb_lock);
866  			__put_super(sb);
867  			goto rescan;
868  		}
869  	}
870  	spin_unlock(&sb_lock);
871  	return NULL;
872  }
873  
874  /**
875   * reconfigure_super - asks filesystem to change superblock parameters
876   * @fc: The superblock and configuration
877   *
878   * Alters the configuration parameters of a live superblock.
879   */
reconfigure_super(struct fs_context * fc)880  int reconfigure_super(struct fs_context *fc)
881  {
882  	struct super_block *sb = fc->root->d_sb;
883  	int retval;
884  	bool remount_ro = false;
885  	bool force = fc->sb_flags & SB_FORCE;
886  
887  	if (fc->sb_flags_mask & ~MS_RMT_MASK)
888  		return -EINVAL;
889  	if (sb->s_writers.frozen != SB_UNFROZEN)
890  		return -EBUSY;
891  
892  	retval = security_sb_remount(sb, fc->security);
893  	if (retval)
894  		return retval;
895  
896  	if (fc->sb_flags_mask & SB_RDONLY) {
897  #ifdef CONFIG_BLOCK
898  		if (!(fc->sb_flags & SB_RDONLY) && sb->s_bdev &&
899  		    bdev_read_only(sb->s_bdev))
900  			return -EACCES;
901  #endif
902  
903  		remount_ro = (fc->sb_flags & SB_RDONLY) && !sb_rdonly(sb);
904  	}
905  
906  	if (remount_ro) {
907  		if (!hlist_empty(&sb->s_pins)) {
908  			up_write(&sb->s_umount);
909  			group_pin_kill(&sb->s_pins);
910  			down_write(&sb->s_umount);
911  			if (!sb->s_root)
912  				return 0;
913  			if (sb->s_writers.frozen != SB_UNFROZEN)
914  				return -EBUSY;
915  			remount_ro = !sb_rdonly(sb);
916  		}
917  	}
918  	shrink_dcache_sb(sb);
919  
920  	/* If we are reconfiguring to RDONLY and current sb is read/write,
921  	 * make sure there are no files open for writing.
922  	 */
923  	if (remount_ro) {
924  		if (force) {
925  			sb->s_readonly_remount = 1;
926  			smp_wmb();
927  		} else {
928  			retval = sb_prepare_remount_readonly(sb);
929  			if (retval)
930  				return retval;
931  		}
932  	}
933  
934  	if (fc->ops->reconfigure) {
935  		retval = fc->ops->reconfigure(fc);
936  		if (retval) {
937  			if (!force)
938  				goto cancel_readonly;
939  			/* If forced remount, go ahead despite any errors */
940  			WARN(1, "forced remount of a %s fs returned %i\n",
941  			     sb->s_type->name, retval);
942  		}
943  	}
944  
945  	WRITE_ONCE(sb->s_flags, ((sb->s_flags & ~fc->sb_flags_mask) |
946  				 (fc->sb_flags & fc->sb_flags_mask)));
947  	/* Needs to be ordered wrt mnt_is_readonly() */
948  	smp_wmb();
949  	sb->s_readonly_remount = 0;
950  
951  	/*
952  	 * Some filesystems modify their metadata via some other path than the
953  	 * bdev buffer cache (eg. use a private mapping, or directories in
954  	 * pagecache, etc). Also file data modifications go via their own
955  	 * mappings. So If we try to mount readonly then copy the filesystem
956  	 * from bdev, we could get stale data, so invalidate it to give a best
957  	 * effort at coherency.
958  	 */
959  	if (remount_ro && sb->s_bdev)
960  		invalidate_bdev(sb->s_bdev);
961  	return 0;
962  
963  cancel_readonly:
964  	sb->s_readonly_remount = 0;
965  	return retval;
966  }
967  
do_emergency_remount_callback(struct super_block * sb)968  static void do_emergency_remount_callback(struct super_block *sb)
969  {
970  	down_write(&sb->s_umount);
971  	if (sb->s_root && sb->s_bdev && (sb->s_flags & SB_BORN) &&
972  	    !sb_rdonly(sb)) {
973  		struct fs_context *fc;
974  
975  		fc = fs_context_for_reconfigure(sb->s_root,
976  					SB_RDONLY | SB_FORCE, SB_RDONLY);
977  		if (!IS_ERR(fc)) {
978  			if (parse_monolithic_mount_data(fc, NULL) == 0)
979  				(void)reconfigure_super(fc);
980  			put_fs_context(fc);
981  		}
982  	}
983  	up_write(&sb->s_umount);
984  }
985  
do_emergency_remount(struct work_struct * work)986  static void do_emergency_remount(struct work_struct *work)
987  {
988  	__iterate_supers(do_emergency_remount_callback);
989  	kfree(work);
990  	printk("Emergency Remount complete\n");
991  }
992  
emergency_remount(void)993  void emergency_remount(void)
994  {
995  	struct work_struct *work;
996  
997  	work = kmalloc(sizeof(*work), GFP_ATOMIC);
998  	if (work) {
999  		INIT_WORK(work, do_emergency_remount);
1000  		schedule_work(work);
1001  	}
1002  }
1003  
do_thaw_all_callback(struct super_block * sb)1004  static void do_thaw_all_callback(struct super_block *sb)
1005  {
1006  	down_write(&sb->s_umount);
1007  	if (sb->s_root && sb->s_flags & SB_BORN) {
1008  		emergency_thaw_bdev(sb);
1009  		thaw_super_locked(sb);
1010  	} else {
1011  		up_write(&sb->s_umount);
1012  	}
1013  }
1014  
do_thaw_all(struct work_struct * work)1015  static void do_thaw_all(struct work_struct *work)
1016  {
1017  	__iterate_supers(do_thaw_all_callback);
1018  	kfree(work);
1019  	printk(KERN_WARNING "Emergency Thaw complete\n");
1020  }
1021  
1022  /**
1023   * emergency_thaw_all -- forcibly thaw every frozen filesystem
1024   *
1025   * Used for emergency unfreeze of all filesystems via SysRq
1026   */
emergency_thaw_all(void)1027  void emergency_thaw_all(void)
1028  {
1029  	struct work_struct *work;
1030  
1031  	work = kmalloc(sizeof(*work), GFP_ATOMIC);
1032  	if (work) {
1033  		INIT_WORK(work, do_thaw_all);
1034  		schedule_work(work);
1035  	}
1036  }
1037  
1038  static DEFINE_IDA(unnamed_dev_ida);
1039  
1040  /**
1041   * get_anon_bdev - Allocate a block device for filesystems which don't have one.
1042   * @p: Pointer to a dev_t.
1043   *
1044   * Filesystems which don't use real block devices can call this function
1045   * to allocate a virtual block device.
1046   *
1047   * Context: Any context.  Frequently called while holding sb_lock.
1048   * Return: 0 on success, -EMFILE if there are no anonymous bdevs left
1049   * or -ENOMEM if memory allocation failed.
1050   */
get_anon_bdev(dev_t * p)1051  int get_anon_bdev(dev_t *p)
1052  {
1053  	int dev;
1054  
1055  	/*
1056  	 * Many userspace utilities consider an FSID of 0 invalid.
1057  	 * Always return at least 1 from get_anon_bdev.
1058  	 */
1059  	dev = ida_alloc_range(&unnamed_dev_ida, 1, (1 << MINORBITS) - 1,
1060  			GFP_ATOMIC);
1061  	if (dev == -ENOSPC)
1062  		dev = -EMFILE;
1063  	if (dev < 0)
1064  		return dev;
1065  
1066  	*p = MKDEV(0, dev);
1067  	return 0;
1068  }
1069  EXPORT_SYMBOL(get_anon_bdev);
1070  
free_anon_bdev(dev_t dev)1071  void free_anon_bdev(dev_t dev)
1072  {
1073  	ida_free(&unnamed_dev_ida, MINOR(dev));
1074  }
1075  EXPORT_SYMBOL(free_anon_bdev);
1076  
set_anon_super(struct super_block * s,void * data)1077  int set_anon_super(struct super_block *s, void *data)
1078  {
1079  	return get_anon_bdev(&s->s_dev);
1080  }
1081  EXPORT_SYMBOL(set_anon_super);
1082  
kill_anon_super(struct super_block * sb)1083  void kill_anon_super(struct super_block *sb)
1084  {
1085  	dev_t dev = sb->s_dev;
1086  	generic_shutdown_super(sb);
1087  	free_anon_bdev(dev);
1088  }
1089  EXPORT_SYMBOL(kill_anon_super);
1090  
kill_litter_super(struct super_block * sb)1091  void kill_litter_super(struct super_block *sb)
1092  {
1093  	if (sb->s_root)
1094  		d_genocide(sb->s_root);
1095  	kill_anon_super(sb);
1096  }
1097  EXPORT_SYMBOL(kill_litter_super);
1098  
set_anon_super_fc(struct super_block * sb,struct fs_context * fc)1099  int set_anon_super_fc(struct super_block *sb, struct fs_context *fc)
1100  {
1101  	return set_anon_super(sb, NULL);
1102  }
1103  EXPORT_SYMBOL(set_anon_super_fc);
1104  
test_keyed_super(struct super_block * sb,struct fs_context * fc)1105  static int test_keyed_super(struct super_block *sb, struct fs_context *fc)
1106  {
1107  	return sb->s_fs_info == fc->s_fs_info;
1108  }
1109  
test_single_super(struct super_block * s,struct fs_context * fc)1110  static int test_single_super(struct super_block *s, struct fs_context *fc)
1111  {
1112  	return 1;
1113  }
1114  
1115  /**
1116   * vfs_get_super - Get a superblock with a search key set in s_fs_info.
1117   * @fc: The filesystem context holding the parameters
1118   * @keying: How to distinguish superblocks
1119   * @fill_super: Helper to initialise a new superblock
1120   *
1121   * Search for a superblock and create a new one if not found.  The search
1122   * criterion is controlled by @keying.  If the search fails, a new superblock
1123   * is created and @fill_super() is called to initialise it.
1124   *
1125   * @keying can take one of a number of values:
1126   *
1127   * (1) vfs_get_single_super - Only one superblock of this type may exist on the
1128   *     system.  This is typically used for special system filesystems.
1129   *
1130   * (2) vfs_get_keyed_super - Multiple superblocks may exist, but they must have
1131   *     distinct keys (where the key is in s_fs_info).  Searching for the same
1132   *     key again will turn up the superblock for that key.
1133   *
1134   * (3) vfs_get_independent_super - Multiple superblocks may exist and are
1135   *     unkeyed.  Each call will get a new superblock.
1136   *
1137   * A permissions check is made by sget_fc() unless we're getting a superblock
1138   * for a kernel-internal mount or a submount.
1139   */
vfs_get_super(struct fs_context * fc,enum vfs_get_super_keying keying,int (* fill_super)(struct super_block * sb,struct fs_context * fc))1140  int vfs_get_super(struct fs_context *fc,
1141  		  enum vfs_get_super_keying keying,
1142  		  int (*fill_super)(struct super_block *sb,
1143  				    struct fs_context *fc))
1144  {
1145  	int (*test)(struct super_block *, struct fs_context *);
1146  	struct super_block *sb;
1147  	int err;
1148  
1149  	switch (keying) {
1150  	case vfs_get_single_super:
1151  	case vfs_get_single_reconf_super:
1152  		test = test_single_super;
1153  		break;
1154  	case vfs_get_keyed_super:
1155  		test = test_keyed_super;
1156  		break;
1157  	case vfs_get_independent_super:
1158  		test = NULL;
1159  		break;
1160  	default:
1161  		BUG();
1162  	}
1163  
1164  	sb = sget_fc(fc, test, set_anon_super_fc);
1165  	if (IS_ERR(sb))
1166  		return PTR_ERR(sb);
1167  
1168  	if (!sb->s_root) {
1169  		err = fill_super(sb, fc);
1170  		if (err)
1171  			goto error;
1172  
1173  		sb->s_flags |= SB_ACTIVE;
1174  		fc->root = dget(sb->s_root);
1175  	} else {
1176  		fc->root = dget(sb->s_root);
1177  		if (keying == vfs_get_single_reconf_super) {
1178  			err = reconfigure_super(fc);
1179  			if (err < 0) {
1180  				dput(fc->root);
1181  				fc->root = NULL;
1182  				goto error;
1183  			}
1184  		}
1185  	}
1186  
1187  	return 0;
1188  
1189  error:
1190  	deactivate_locked_super(sb);
1191  	return err;
1192  }
1193  EXPORT_SYMBOL(vfs_get_super);
1194  
get_tree_nodev(struct fs_context * fc,int (* fill_super)(struct super_block * sb,struct fs_context * fc))1195  int get_tree_nodev(struct fs_context *fc,
1196  		  int (*fill_super)(struct super_block *sb,
1197  				    struct fs_context *fc))
1198  {
1199  	return vfs_get_super(fc, vfs_get_independent_super, fill_super);
1200  }
1201  EXPORT_SYMBOL(get_tree_nodev);
1202  
get_tree_single(struct fs_context * fc,int (* fill_super)(struct super_block * sb,struct fs_context * fc))1203  int get_tree_single(struct fs_context *fc,
1204  		  int (*fill_super)(struct super_block *sb,
1205  				    struct fs_context *fc))
1206  {
1207  	return vfs_get_super(fc, vfs_get_single_super, fill_super);
1208  }
1209  EXPORT_SYMBOL(get_tree_single);
1210  
get_tree_single_reconf(struct fs_context * fc,int (* fill_super)(struct super_block * sb,struct fs_context * fc))1211  int get_tree_single_reconf(struct fs_context *fc,
1212  		  int (*fill_super)(struct super_block *sb,
1213  				    struct fs_context *fc))
1214  {
1215  	return vfs_get_super(fc, vfs_get_single_reconf_super, fill_super);
1216  }
1217  EXPORT_SYMBOL(get_tree_single_reconf);
1218  
get_tree_keyed(struct fs_context * fc,int (* fill_super)(struct super_block * sb,struct fs_context * fc),void * key)1219  int get_tree_keyed(struct fs_context *fc,
1220  		  int (*fill_super)(struct super_block *sb,
1221  				    struct fs_context *fc),
1222  		void *key)
1223  {
1224  	fc->s_fs_info = key;
1225  	return vfs_get_super(fc, vfs_get_keyed_super, fill_super);
1226  }
1227  EXPORT_SYMBOL(get_tree_keyed);
1228  
1229  #ifdef CONFIG_BLOCK
1230  
set_bdev_super(struct super_block * s,void * data)1231  static int set_bdev_super(struct super_block *s, void *data)
1232  {
1233  	s->s_bdev = data;
1234  	s->s_dev = s->s_bdev->bd_dev;
1235  	s->s_bdi = bdi_get(s->s_bdev->bd_disk->bdi);
1236  
1237  	if (bdev_stable_writes(s->s_bdev))
1238  		s->s_iflags |= SB_I_STABLE_WRITES;
1239  	return 0;
1240  }
1241  
set_bdev_super_fc(struct super_block * s,struct fs_context * fc)1242  static int set_bdev_super_fc(struct super_block *s, struct fs_context *fc)
1243  {
1244  	return set_bdev_super(s, fc->sget_key);
1245  }
1246  
test_bdev_super_fc(struct super_block * s,struct fs_context * fc)1247  static int test_bdev_super_fc(struct super_block *s, struct fs_context *fc)
1248  {
1249  	return !(s->s_iflags & SB_I_RETIRED) && s->s_bdev == fc->sget_key;
1250  }
1251  
1252  /**
1253   * get_tree_bdev - Get a superblock based on a single block device
1254   * @fc: The filesystem context holding the parameters
1255   * @fill_super: Helper to initialise a new superblock
1256   */
get_tree_bdev(struct fs_context * fc,int (* fill_super)(struct super_block *,struct fs_context *))1257  int get_tree_bdev(struct fs_context *fc,
1258  		int (*fill_super)(struct super_block *,
1259  				  struct fs_context *))
1260  {
1261  	struct block_device *bdev;
1262  	struct super_block *s;
1263  	fmode_t mode = FMODE_READ | FMODE_EXCL;
1264  	int error = 0;
1265  
1266  	if (!(fc->sb_flags & SB_RDONLY))
1267  		mode |= FMODE_WRITE;
1268  
1269  	if (!fc->source)
1270  		return invalf(fc, "No source specified");
1271  
1272  	bdev = blkdev_get_by_path(fc->source, mode, fc->fs_type);
1273  	if (IS_ERR(bdev)) {
1274  		errorf(fc, "%s: Can't open blockdev", fc->source);
1275  		return PTR_ERR(bdev);
1276  	}
1277  
1278  	/* Once the superblock is inserted into the list by sget_fc(), s_umount
1279  	 * will protect the lockfs code from trying to start a snapshot while
1280  	 * we are mounting
1281  	 */
1282  	mutex_lock(&bdev->bd_fsfreeze_mutex);
1283  	if (bdev->bd_fsfreeze_count > 0) {
1284  		mutex_unlock(&bdev->bd_fsfreeze_mutex);
1285  		warnf(fc, "%pg: Can't mount, blockdev is frozen", bdev);
1286  		blkdev_put(bdev, mode);
1287  		return -EBUSY;
1288  	}
1289  
1290  	fc->sb_flags |= SB_NOSEC;
1291  	fc->sget_key = bdev;
1292  	s = sget_fc(fc, test_bdev_super_fc, set_bdev_super_fc);
1293  	mutex_unlock(&bdev->bd_fsfreeze_mutex);
1294  	if (IS_ERR(s)) {
1295  		blkdev_put(bdev, mode);
1296  		return PTR_ERR(s);
1297  	}
1298  
1299  	if (s->s_root) {
1300  		/* Don't summarily change the RO/RW state. */
1301  		if ((fc->sb_flags ^ s->s_flags) & SB_RDONLY) {
1302  			warnf(fc, "%pg: Can't mount, would change RO state", bdev);
1303  			deactivate_locked_super(s);
1304  			blkdev_put(bdev, mode);
1305  			return -EBUSY;
1306  		}
1307  
1308  		/*
1309  		 * s_umount nests inside open_mutex during
1310  		 * __invalidate_device().  blkdev_put() acquires
1311  		 * open_mutex and can't be called under s_umount.  Drop
1312  		 * s_umount temporarily.  This is safe as we're
1313  		 * holding an active reference.
1314  		 */
1315  		up_write(&s->s_umount);
1316  		blkdev_put(bdev, mode);
1317  		down_write(&s->s_umount);
1318  	} else {
1319  		s->s_mode = mode;
1320  		snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1321  		shrinker_debugfs_rename(&s->s_shrink, "sb-%s:%s",
1322  					fc->fs_type->name, s->s_id);
1323  		sb_set_blocksize(s, block_size(bdev));
1324  		error = fill_super(s, fc);
1325  		if (error) {
1326  			deactivate_locked_super(s);
1327  			return error;
1328  		}
1329  
1330  		s->s_flags |= SB_ACTIVE;
1331  		bdev->bd_super = s;
1332  	}
1333  
1334  	BUG_ON(fc->root);
1335  	fc->root = dget(s->s_root);
1336  	return 0;
1337  }
1338  EXPORT_SYMBOL(get_tree_bdev);
1339  
test_bdev_super(struct super_block * s,void * data)1340  static int test_bdev_super(struct super_block *s, void *data)
1341  {
1342  	return !(s->s_iflags & SB_I_RETIRED) && (void *)s->s_bdev == data;
1343  }
1344  
mount_bdev(struct file_system_type * fs_type,int flags,const char * dev_name,void * data,int (* fill_super)(struct super_block *,void *,int))1345  struct dentry *mount_bdev(struct file_system_type *fs_type,
1346  	int flags, const char *dev_name, void *data,
1347  	int (*fill_super)(struct super_block *, void *, int))
1348  {
1349  	struct block_device *bdev;
1350  	struct super_block *s;
1351  	fmode_t mode = FMODE_READ | FMODE_EXCL;
1352  	int error = 0;
1353  
1354  	if (!(flags & SB_RDONLY))
1355  		mode |= FMODE_WRITE;
1356  
1357  	bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1358  	if (IS_ERR(bdev))
1359  		return ERR_CAST(bdev);
1360  
1361  	/*
1362  	 * once the super is inserted into the list by sget, s_umount
1363  	 * will protect the lockfs code from trying to start a snapshot
1364  	 * while we are mounting
1365  	 */
1366  	mutex_lock(&bdev->bd_fsfreeze_mutex);
1367  	if (bdev->bd_fsfreeze_count > 0) {
1368  		mutex_unlock(&bdev->bd_fsfreeze_mutex);
1369  		error = -EBUSY;
1370  		goto error_bdev;
1371  	}
1372  	s = sget(fs_type, test_bdev_super, set_bdev_super, flags | SB_NOSEC,
1373  		 bdev);
1374  	mutex_unlock(&bdev->bd_fsfreeze_mutex);
1375  	if (IS_ERR(s))
1376  		goto error_s;
1377  
1378  	if (s->s_root) {
1379  		if ((flags ^ s->s_flags) & SB_RDONLY) {
1380  			deactivate_locked_super(s);
1381  			error = -EBUSY;
1382  			goto error_bdev;
1383  		}
1384  
1385  		/*
1386  		 * s_umount nests inside open_mutex during
1387  		 * __invalidate_device().  blkdev_put() acquires
1388  		 * open_mutex and can't be called under s_umount.  Drop
1389  		 * s_umount temporarily.  This is safe as we're
1390  		 * holding an active reference.
1391  		 */
1392  		up_write(&s->s_umount);
1393  		blkdev_put(bdev, mode);
1394  		down_write(&s->s_umount);
1395  	} else {
1396  		s->s_mode = mode;
1397  		snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1398  		shrinker_debugfs_rename(&s->s_shrink, "sb-%s:%s",
1399  					fs_type->name, s->s_id);
1400  		sb_set_blocksize(s, block_size(bdev));
1401  		error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1402  		if (error) {
1403  			deactivate_locked_super(s);
1404  			goto error;
1405  		}
1406  
1407  		s->s_flags |= SB_ACTIVE;
1408  		bdev->bd_super = s;
1409  	}
1410  
1411  	return dget(s->s_root);
1412  
1413  error_s:
1414  	error = PTR_ERR(s);
1415  error_bdev:
1416  	blkdev_put(bdev, mode);
1417  error:
1418  	return ERR_PTR(error);
1419  }
1420  EXPORT_SYMBOL(mount_bdev);
1421  
kill_block_super(struct super_block * sb)1422  void kill_block_super(struct super_block *sb)
1423  {
1424  	struct block_device *bdev = sb->s_bdev;
1425  	fmode_t mode = sb->s_mode;
1426  
1427  	bdev->bd_super = NULL;
1428  	generic_shutdown_super(sb);
1429  	sync_blockdev(bdev);
1430  	WARN_ON_ONCE(!(mode & FMODE_EXCL));
1431  	blkdev_put(bdev, mode | FMODE_EXCL);
1432  }
1433  
1434  EXPORT_SYMBOL(kill_block_super);
1435  #endif
1436  
mount_nodev(struct file_system_type * fs_type,int flags,void * data,int (* fill_super)(struct super_block *,void *,int))1437  struct dentry *mount_nodev(struct file_system_type *fs_type,
1438  	int flags, void *data,
1439  	int (*fill_super)(struct super_block *, void *, int))
1440  {
1441  	int error;
1442  	struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1443  
1444  	if (IS_ERR(s))
1445  		return ERR_CAST(s);
1446  
1447  	error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1448  	if (error) {
1449  		deactivate_locked_super(s);
1450  		return ERR_PTR(error);
1451  	}
1452  	s->s_flags |= SB_ACTIVE;
1453  	return dget(s->s_root);
1454  }
1455  EXPORT_SYMBOL(mount_nodev);
1456  
reconfigure_single(struct super_block * s,int flags,void * data)1457  int reconfigure_single(struct super_block *s,
1458  		       int flags, void *data)
1459  {
1460  	struct fs_context *fc;
1461  	int ret;
1462  
1463  	/* The caller really need to be passing fc down into mount_single(),
1464  	 * then a chunk of this can be removed.  [Bollocks -- AV]
1465  	 * Better yet, reconfiguration shouldn't happen, but rather the second
1466  	 * mount should be rejected if the parameters are not compatible.
1467  	 */
1468  	fc = fs_context_for_reconfigure(s->s_root, flags, MS_RMT_MASK);
1469  	if (IS_ERR(fc))
1470  		return PTR_ERR(fc);
1471  
1472  	ret = parse_monolithic_mount_data(fc, data);
1473  	if (ret < 0)
1474  		goto out;
1475  
1476  	ret = reconfigure_super(fc);
1477  out:
1478  	put_fs_context(fc);
1479  	return ret;
1480  }
1481  
compare_single(struct super_block * s,void * p)1482  static int compare_single(struct super_block *s, void *p)
1483  {
1484  	return 1;
1485  }
1486  
mount_single(struct file_system_type * fs_type,int flags,void * data,int (* fill_super)(struct super_block *,void *,int))1487  struct dentry *mount_single(struct file_system_type *fs_type,
1488  	int flags, void *data,
1489  	int (*fill_super)(struct super_block *, void *, int))
1490  {
1491  	struct super_block *s;
1492  	int error;
1493  
1494  	s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1495  	if (IS_ERR(s))
1496  		return ERR_CAST(s);
1497  	if (!s->s_root) {
1498  		error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1499  		if (!error)
1500  			s->s_flags |= SB_ACTIVE;
1501  	} else {
1502  		error = reconfigure_single(s, flags, data);
1503  	}
1504  	if (unlikely(error)) {
1505  		deactivate_locked_super(s);
1506  		return ERR_PTR(error);
1507  	}
1508  	return dget(s->s_root);
1509  }
1510  EXPORT_SYMBOL(mount_single);
1511  
1512  /**
1513   * vfs_get_tree - Get the mountable root
1514   * @fc: The superblock configuration context.
1515   *
1516   * The filesystem is invoked to get or create a superblock which can then later
1517   * be used for mounting.  The filesystem places a pointer to the root to be
1518   * used for mounting in @fc->root.
1519   */
vfs_get_tree(struct fs_context * fc)1520  int vfs_get_tree(struct fs_context *fc)
1521  {
1522  	struct super_block *sb;
1523  	int error;
1524  
1525  	if (fc->root)
1526  		return -EBUSY;
1527  
1528  	/* Get the mountable root in fc->root, with a ref on the root and a ref
1529  	 * on the superblock.
1530  	 */
1531  	error = fc->ops->get_tree(fc);
1532  	if (error < 0)
1533  		return error;
1534  
1535  	if (!fc->root) {
1536  		pr_err("Filesystem %s get_tree() didn't set fc->root\n",
1537  		       fc->fs_type->name);
1538  		/* We don't know what the locking state of the superblock is -
1539  		 * if there is a superblock.
1540  		 */
1541  		BUG();
1542  	}
1543  
1544  	sb = fc->root->d_sb;
1545  	WARN_ON(!sb->s_bdi);
1546  
1547  	/*
1548  	 * Write barrier is for super_cache_count(). We place it before setting
1549  	 * SB_BORN as the data dependency between the two functions is the
1550  	 * superblock structure contents that we just set up, not the SB_BORN
1551  	 * flag.
1552  	 */
1553  	smp_wmb();
1554  	sb->s_flags |= SB_BORN;
1555  
1556  	error = security_sb_set_mnt_opts(sb, fc->security, 0, NULL);
1557  	if (unlikely(error)) {
1558  		fc_drop_locked(fc);
1559  		return error;
1560  	}
1561  
1562  	/*
1563  	 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1564  	 * but s_maxbytes was an unsigned long long for many releases. Throw
1565  	 * this warning for a little while to try and catch filesystems that
1566  	 * violate this rule.
1567  	 */
1568  	WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1569  		"negative value (%lld)\n", fc->fs_type->name, sb->s_maxbytes);
1570  
1571  	return 0;
1572  }
1573  EXPORT_SYMBOL(vfs_get_tree);
1574  
1575  /*
1576   * Setup private BDI for given superblock. It gets automatically cleaned up
1577   * in generic_shutdown_super().
1578   */
super_setup_bdi_name(struct super_block * sb,char * fmt,...)1579  int super_setup_bdi_name(struct super_block *sb, char *fmt, ...)
1580  {
1581  	struct backing_dev_info *bdi;
1582  	int err;
1583  	va_list args;
1584  
1585  	bdi = bdi_alloc(NUMA_NO_NODE);
1586  	if (!bdi)
1587  		return -ENOMEM;
1588  
1589  	va_start(args, fmt);
1590  	err = bdi_register_va(bdi, fmt, args);
1591  	va_end(args);
1592  	if (err) {
1593  		bdi_put(bdi);
1594  		return err;
1595  	}
1596  	WARN_ON(sb->s_bdi != &noop_backing_dev_info);
1597  	sb->s_bdi = bdi;
1598  	sb->s_iflags |= SB_I_PERSB_BDI;
1599  
1600  	return 0;
1601  }
1602  EXPORT_SYMBOL(super_setup_bdi_name);
1603  
1604  /*
1605   * Setup private BDI for given superblock. I gets automatically cleaned up
1606   * in generic_shutdown_super().
1607   */
super_setup_bdi(struct super_block * sb)1608  int super_setup_bdi(struct super_block *sb)
1609  {
1610  	static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0);
1611  
1612  	return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name,
1613  				    atomic_long_inc_return(&bdi_seq));
1614  }
1615  EXPORT_SYMBOL(super_setup_bdi);
1616  
1617  /**
1618   * sb_wait_write - wait until all writers to given file system finish
1619   * @sb: the super for which we wait
1620   * @level: type of writers we wait for (normal vs page fault)
1621   *
1622   * This function waits until there are no writers of given type to given file
1623   * system.
1624   */
sb_wait_write(struct super_block * sb,int level)1625  static void sb_wait_write(struct super_block *sb, int level)
1626  {
1627  	percpu_down_write(sb->s_writers.rw_sem + level-1);
1628  }
1629  
1630  /*
1631   * We are going to return to userspace and forget about these locks, the
1632   * ownership goes to the caller of thaw_super() which does unlock().
1633   */
lockdep_sb_freeze_release(struct super_block * sb)1634  static void lockdep_sb_freeze_release(struct super_block *sb)
1635  {
1636  	int level;
1637  
1638  	for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1639  		percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1640  }
1641  
1642  /*
1643   * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb).
1644   */
lockdep_sb_freeze_acquire(struct super_block * sb)1645  static void lockdep_sb_freeze_acquire(struct super_block *sb)
1646  {
1647  	int level;
1648  
1649  	for (level = 0; level < SB_FREEZE_LEVELS; ++level)
1650  		percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1651  }
1652  
sb_freeze_unlock(struct super_block * sb,int level)1653  static void sb_freeze_unlock(struct super_block *sb, int level)
1654  {
1655  	for (level--; level >= 0; level--)
1656  		percpu_up_write(sb->s_writers.rw_sem + level);
1657  }
1658  
1659  /**
1660   * freeze_super - lock the filesystem and force it into a consistent state
1661   * @sb: the super to lock
1662   *
1663   * Syncs the super to make sure the filesystem is consistent and calls the fs's
1664   * freeze_fs.  Subsequent calls to this without first thawing the fs will return
1665   * -EBUSY.
1666   *
1667   * During this function, sb->s_writers.frozen goes through these values:
1668   *
1669   * SB_UNFROZEN: File system is normal, all writes progress as usual.
1670   *
1671   * SB_FREEZE_WRITE: The file system is in the process of being frozen.  New
1672   * writes should be blocked, though page faults are still allowed. We wait for
1673   * all writes to complete and then proceed to the next stage.
1674   *
1675   * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1676   * but internal fs threads can still modify the filesystem (although they
1677   * should not dirty new pages or inodes), writeback can run etc. After waiting
1678   * for all running page faults we sync the filesystem which will clean all
1679   * dirty pages and inodes (no new dirty pages or inodes can be created when
1680   * sync is running).
1681   *
1682   * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1683   * modification are blocked (e.g. XFS preallocation truncation on inode
1684   * reclaim). This is usually implemented by blocking new transactions for
1685   * filesystems that have them and need this additional guard. After all
1686   * internal writers are finished we call ->freeze_fs() to finish filesystem
1687   * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1688   * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1689   *
1690   * sb->s_writers.frozen is protected by sb->s_umount.
1691   */
freeze_super(struct super_block * sb)1692  int freeze_super(struct super_block *sb)
1693  {
1694  	int ret;
1695  
1696  	atomic_inc(&sb->s_active);
1697  	down_write(&sb->s_umount);
1698  	if (sb->s_writers.frozen != SB_UNFROZEN) {
1699  		deactivate_locked_super(sb);
1700  		return -EBUSY;
1701  	}
1702  
1703  	if (!(sb->s_flags & SB_BORN)) {
1704  		up_write(&sb->s_umount);
1705  		return 0;	/* sic - it's "nothing to do" */
1706  	}
1707  
1708  	if (sb_rdonly(sb)) {
1709  		/* Nothing to do really... */
1710  		sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1711  		up_write(&sb->s_umount);
1712  		return 0;
1713  	}
1714  
1715  	sb->s_writers.frozen = SB_FREEZE_WRITE;
1716  	/* Release s_umount to preserve sb_start_write -> s_umount ordering */
1717  	up_write(&sb->s_umount);
1718  	sb_wait_write(sb, SB_FREEZE_WRITE);
1719  	down_write(&sb->s_umount);
1720  
1721  	/* Now we go and block page faults... */
1722  	sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1723  	sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1724  
1725  	/* All writers are done so after syncing there won't be dirty data */
1726  	ret = sync_filesystem(sb);
1727  	if (ret) {
1728  		sb->s_writers.frozen = SB_UNFROZEN;
1729  		sb_freeze_unlock(sb, SB_FREEZE_PAGEFAULT);
1730  		wake_up(&sb->s_writers.wait_unfrozen);
1731  		deactivate_locked_super(sb);
1732  		return ret;
1733  	}
1734  
1735  	/* Now wait for internal filesystem counter */
1736  	sb->s_writers.frozen = SB_FREEZE_FS;
1737  	sb_wait_write(sb, SB_FREEZE_FS);
1738  
1739  	if (sb->s_op->freeze_fs) {
1740  		ret = sb->s_op->freeze_fs(sb);
1741  		if (ret) {
1742  			printk(KERN_ERR
1743  				"VFS:Filesystem freeze failed\n");
1744  			sb->s_writers.frozen = SB_UNFROZEN;
1745  			sb_freeze_unlock(sb, SB_FREEZE_FS);
1746  			wake_up(&sb->s_writers.wait_unfrozen);
1747  			deactivate_locked_super(sb);
1748  			return ret;
1749  		}
1750  	}
1751  	/*
1752  	 * For debugging purposes so that fs can warn if it sees write activity
1753  	 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
1754  	 */
1755  	sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1756  	lockdep_sb_freeze_release(sb);
1757  	up_write(&sb->s_umount);
1758  	return 0;
1759  }
1760  EXPORT_SYMBOL(freeze_super);
1761  
thaw_super_locked(struct super_block * sb)1762  static int thaw_super_locked(struct super_block *sb)
1763  {
1764  	int error;
1765  
1766  	if (sb->s_writers.frozen != SB_FREEZE_COMPLETE) {
1767  		up_write(&sb->s_umount);
1768  		return -EINVAL;
1769  	}
1770  
1771  	if (sb_rdonly(sb)) {
1772  		sb->s_writers.frozen = SB_UNFROZEN;
1773  		goto out;
1774  	}
1775  
1776  	lockdep_sb_freeze_acquire(sb);
1777  
1778  	if (sb->s_op->unfreeze_fs) {
1779  		error = sb->s_op->unfreeze_fs(sb);
1780  		if (error) {
1781  			printk(KERN_ERR
1782  				"VFS:Filesystem thaw failed\n");
1783  			lockdep_sb_freeze_release(sb);
1784  			up_write(&sb->s_umount);
1785  			return error;
1786  		}
1787  	}
1788  
1789  	sb->s_writers.frozen = SB_UNFROZEN;
1790  	sb_freeze_unlock(sb, SB_FREEZE_FS);
1791  out:
1792  	wake_up(&sb->s_writers.wait_unfrozen);
1793  	deactivate_locked_super(sb);
1794  	return 0;
1795  }
1796  
1797  /**
1798   * thaw_super -- unlock filesystem
1799   * @sb: the super to thaw
1800   *
1801   * Unlocks the filesystem and marks it writeable again after freeze_super().
1802   */
thaw_super(struct super_block * sb)1803  int thaw_super(struct super_block *sb)
1804  {
1805  	down_write(&sb->s_umount);
1806  	return thaw_super_locked(sb);
1807  }
1808  EXPORT_SYMBOL(thaw_super);
1809