1 /* Keyring handling
2 *
3 * Copyright (C) 2004-2005, 2008, 2013 Red Hat, Inc. All Rights Reserved.
4 * Written by David Howells (dhowells@redhat.com)
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/sched.h>
15 #include <linux/slab.h>
16 #include <linux/security.h>
17 #include <linux/seq_file.h>
18 #include <linux/err.h>
19 #include <keys/keyring-type.h>
20 #include <keys/user-type.h>
21 #include <linux/assoc_array_priv.h>
22 #include <linux/uaccess.h>
23 #include "internal.h"
24
25 /*
26 * When plumbing the depths of the key tree, this sets a hard limit
27 * set on how deep we're willing to go.
28 */
29 #define KEYRING_SEARCH_MAX_DEPTH 6
30
31 /*
32 * We keep all named keyrings in a hash to speed looking them up.
33 */
34 #define KEYRING_NAME_HASH_SIZE (1 << 5)
35
36 /*
37 * We mark pointers we pass to the associative array with bit 1 set if
38 * they're keyrings and clear otherwise.
39 */
40 #define KEYRING_PTR_SUBTYPE 0x2UL
41
keyring_ptr_is_keyring(const struct assoc_array_ptr * x)42 static inline bool keyring_ptr_is_keyring(const struct assoc_array_ptr *x)
43 {
44 return (unsigned long)x & KEYRING_PTR_SUBTYPE;
45 }
keyring_ptr_to_key(const struct assoc_array_ptr * x)46 static inline struct key *keyring_ptr_to_key(const struct assoc_array_ptr *x)
47 {
48 void *object = assoc_array_ptr_to_leaf(x);
49 return (struct key *)((unsigned long)object & ~KEYRING_PTR_SUBTYPE);
50 }
keyring_key_to_ptr(struct key * key)51 static inline void *keyring_key_to_ptr(struct key *key)
52 {
53 if (key->type == &key_type_keyring)
54 return (void *)((unsigned long)key | KEYRING_PTR_SUBTYPE);
55 return key;
56 }
57
58 static struct list_head keyring_name_hash[KEYRING_NAME_HASH_SIZE];
59 static DEFINE_RWLOCK(keyring_name_lock);
60
keyring_hash(const char * desc)61 static inline unsigned keyring_hash(const char *desc)
62 {
63 unsigned bucket = 0;
64
65 for (; *desc; desc++)
66 bucket += (unsigned char)*desc;
67
68 return bucket & (KEYRING_NAME_HASH_SIZE - 1);
69 }
70
71 /*
72 * The keyring key type definition. Keyrings are simply keys of this type and
73 * can be treated as ordinary keys in addition to having their own special
74 * operations.
75 */
76 static int keyring_preparse(struct key_preparsed_payload *prep);
77 static void keyring_free_preparse(struct key_preparsed_payload *prep);
78 static int keyring_instantiate(struct key *keyring,
79 struct key_preparsed_payload *prep);
80 static void keyring_revoke(struct key *keyring);
81 static void keyring_destroy(struct key *keyring);
82 static void keyring_describe(const struct key *keyring, struct seq_file *m);
83 static long keyring_read(const struct key *keyring,
84 char __user *buffer, size_t buflen);
85
86 struct key_type key_type_keyring = {
87 .name = "keyring",
88 .def_datalen = 0,
89 .preparse = keyring_preparse,
90 .free_preparse = keyring_free_preparse,
91 .instantiate = keyring_instantiate,
92 .revoke = keyring_revoke,
93 .destroy = keyring_destroy,
94 .describe = keyring_describe,
95 .read = keyring_read,
96 };
97 EXPORT_SYMBOL(key_type_keyring);
98
99 /*
100 * Semaphore to serialise link/link calls to prevent two link calls in parallel
101 * introducing a cycle.
102 */
103 static DECLARE_RWSEM(keyring_serialise_link_sem);
104
105 /*
106 * Publish the name of a keyring so that it can be found by name (if it has
107 * one).
108 */
keyring_publish_name(struct key * keyring)109 static void keyring_publish_name(struct key *keyring)
110 {
111 int bucket;
112
113 if (keyring->description) {
114 bucket = keyring_hash(keyring->description);
115
116 write_lock(&keyring_name_lock);
117
118 if (!keyring_name_hash[bucket].next)
119 INIT_LIST_HEAD(&keyring_name_hash[bucket]);
120
121 list_add_tail(&keyring->name_link,
122 &keyring_name_hash[bucket]);
123
124 write_unlock(&keyring_name_lock);
125 }
126 }
127
128 /*
129 * Preparse a keyring payload
130 */
keyring_preparse(struct key_preparsed_payload * prep)131 static int keyring_preparse(struct key_preparsed_payload *prep)
132 {
133 return prep->datalen != 0 ? -EINVAL : 0;
134 }
135
136 /*
137 * Free a preparse of a user defined key payload
138 */
keyring_free_preparse(struct key_preparsed_payload * prep)139 static void keyring_free_preparse(struct key_preparsed_payload *prep)
140 {
141 }
142
143 /*
144 * Initialise a keyring.
145 *
146 * Returns 0 on success, -EINVAL if given any data.
147 */
keyring_instantiate(struct key * keyring,struct key_preparsed_payload * prep)148 static int keyring_instantiate(struct key *keyring,
149 struct key_preparsed_payload *prep)
150 {
151 assoc_array_init(&keyring->keys);
152 /* make the keyring available by name if it has one */
153 keyring_publish_name(keyring);
154 return 0;
155 }
156
157 /*
158 * Multiply 64-bits by 32-bits to 96-bits and fold back to 64-bit. Ideally we'd
159 * fold the carry back too, but that requires inline asm.
160 */
mult_64x32_and_fold(u64 x,u32 y)161 static u64 mult_64x32_and_fold(u64 x, u32 y)
162 {
163 u64 hi = (u64)(u32)(x >> 32) * y;
164 u64 lo = (u64)(u32)(x) * y;
165 return lo + ((u64)(u32)hi << 32) + (u32)(hi >> 32);
166 }
167
168 /*
169 * Hash a key type and description.
170 */
hash_key_type_and_desc(const struct keyring_index_key * index_key)171 static unsigned long hash_key_type_and_desc(const struct keyring_index_key *index_key)
172 {
173 const unsigned level_shift = ASSOC_ARRAY_LEVEL_STEP;
174 const unsigned long fan_mask = ASSOC_ARRAY_FAN_MASK;
175 const char *description = index_key->description;
176 unsigned long hash, type;
177 u32 piece;
178 u64 acc;
179 int n, desc_len = index_key->desc_len;
180
181 type = (unsigned long)index_key->type;
182
183 acc = mult_64x32_and_fold(type, desc_len + 13);
184 acc = mult_64x32_and_fold(acc, 9207);
185 for (;;) {
186 n = desc_len;
187 if (n <= 0)
188 break;
189 if (n > 4)
190 n = 4;
191 piece = 0;
192 memcpy(&piece, description, n);
193 description += n;
194 desc_len -= n;
195 acc = mult_64x32_and_fold(acc, piece);
196 acc = mult_64x32_and_fold(acc, 9207);
197 }
198
199 /* Fold the hash down to 32 bits if need be. */
200 hash = acc;
201 if (ASSOC_ARRAY_KEY_CHUNK_SIZE == 32)
202 hash ^= acc >> 32;
203
204 /* Squidge all the keyrings into a separate part of the tree to
205 * ordinary keys by making sure the lowest level segment in the hash is
206 * zero for keyrings and non-zero otherwise.
207 */
208 if (index_key->type != &key_type_keyring && (hash & fan_mask) == 0)
209 return hash | (hash >> (ASSOC_ARRAY_KEY_CHUNK_SIZE - level_shift)) | 1;
210 if (index_key->type == &key_type_keyring && (hash & fan_mask) != 0)
211 return (hash + (hash << level_shift)) & ~fan_mask;
212 return hash;
213 }
214
215 /*
216 * Build the next index key chunk.
217 *
218 * On 32-bit systems the index key is laid out as:
219 *
220 * 0 4 5 9...
221 * hash desclen typeptr desc[]
222 *
223 * On 64-bit systems:
224 *
225 * 0 8 9 17...
226 * hash desclen typeptr desc[]
227 *
228 * We return it one word-sized chunk at a time.
229 */
keyring_get_key_chunk(const void * data,int level)230 static unsigned long keyring_get_key_chunk(const void *data, int level)
231 {
232 const struct keyring_index_key *index_key = data;
233 unsigned long chunk = 0;
234 long offset = 0;
235 int desc_len = index_key->desc_len, n = sizeof(chunk);
236
237 level /= ASSOC_ARRAY_KEY_CHUNK_SIZE;
238 switch (level) {
239 case 0:
240 return hash_key_type_and_desc(index_key);
241 case 1:
242 return ((unsigned long)index_key->type << 8) | desc_len;
243 case 2:
244 if (desc_len == 0)
245 return (u8)((unsigned long)index_key->type >>
246 (ASSOC_ARRAY_KEY_CHUNK_SIZE - 8));
247 n--;
248 offset = 1;
249 default:
250 offset += sizeof(chunk) - 1;
251 offset += (level - 3) * sizeof(chunk);
252 if (offset >= desc_len)
253 return 0;
254 desc_len -= offset;
255 if (desc_len > n)
256 desc_len = n;
257 offset += desc_len;
258 do {
259 chunk <<= 8;
260 chunk |= ((u8*)index_key->description)[--offset];
261 } while (--desc_len > 0);
262
263 if (level == 2) {
264 chunk <<= 8;
265 chunk |= (u8)((unsigned long)index_key->type >>
266 (ASSOC_ARRAY_KEY_CHUNK_SIZE - 8));
267 }
268 return chunk;
269 }
270 }
271
keyring_get_object_key_chunk(const void * object,int level)272 static unsigned long keyring_get_object_key_chunk(const void *object, int level)
273 {
274 const struct key *key = keyring_ptr_to_key(object);
275 return keyring_get_key_chunk(&key->index_key, level);
276 }
277
keyring_compare_object(const void * object,const void * data)278 static bool keyring_compare_object(const void *object, const void *data)
279 {
280 const struct keyring_index_key *index_key = data;
281 const struct key *key = keyring_ptr_to_key(object);
282
283 return key->index_key.type == index_key->type &&
284 key->index_key.desc_len == index_key->desc_len &&
285 memcmp(key->index_key.description, index_key->description,
286 index_key->desc_len) == 0;
287 }
288
289 /*
290 * Compare the index keys of a pair of objects and determine the bit position
291 * at which they differ - if they differ.
292 */
keyring_diff_objects(const void * object,const void * data)293 static int keyring_diff_objects(const void *object, const void *data)
294 {
295 const struct key *key_a = keyring_ptr_to_key(object);
296 const struct keyring_index_key *a = &key_a->index_key;
297 const struct keyring_index_key *b = data;
298 unsigned long seg_a, seg_b;
299 int level, i;
300
301 level = 0;
302 seg_a = hash_key_type_and_desc(a);
303 seg_b = hash_key_type_and_desc(b);
304 if ((seg_a ^ seg_b) != 0)
305 goto differ;
306
307 /* The number of bits contributed by the hash is controlled by a
308 * constant in the assoc_array headers. Everything else thereafter we
309 * can deal with as being machine word-size dependent.
310 */
311 level += ASSOC_ARRAY_KEY_CHUNK_SIZE / 8;
312 seg_a = a->desc_len;
313 seg_b = b->desc_len;
314 if ((seg_a ^ seg_b) != 0)
315 goto differ;
316
317 /* The next bit may not work on big endian */
318 level++;
319 seg_a = (unsigned long)a->type;
320 seg_b = (unsigned long)b->type;
321 if ((seg_a ^ seg_b) != 0)
322 goto differ;
323
324 level += sizeof(unsigned long);
325 if (a->desc_len == 0)
326 goto same;
327
328 i = 0;
329 if (((unsigned long)a->description | (unsigned long)b->description) &
330 (sizeof(unsigned long) - 1)) {
331 do {
332 seg_a = *(unsigned long *)(a->description + i);
333 seg_b = *(unsigned long *)(b->description + i);
334 if ((seg_a ^ seg_b) != 0)
335 goto differ_plus_i;
336 i += sizeof(unsigned long);
337 } while (i < (a->desc_len & (sizeof(unsigned long) - 1)));
338 }
339
340 for (; i < a->desc_len; i++) {
341 seg_a = *(unsigned char *)(a->description + i);
342 seg_b = *(unsigned char *)(b->description + i);
343 if ((seg_a ^ seg_b) != 0)
344 goto differ_plus_i;
345 }
346
347 same:
348 return -1;
349
350 differ_plus_i:
351 level += i;
352 differ:
353 i = level * 8 + __ffs(seg_a ^ seg_b);
354 return i;
355 }
356
357 /*
358 * Free an object after stripping the keyring flag off of the pointer.
359 */
keyring_free_object(void * object)360 static void keyring_free_object(void *object)
361 {
362 key_put(keyring_ptr_to_key(object));
363 }
364
365 /*
366 * Operations for keyring management by the index-tree routines.
367 */
368 static const struct assoc_array_ops keyring_assoc_array_ops = {
369 .get_key_chunk = keyring_get_key_chunk,
370 .get_object_key_chunk = keyring_get_object_key_chunk,
371 .compare_object = keyring_compare_object,
372 .diff_objects = keyring_diff_objects,
373 .free_object = keyring_free_object,
374 };
375
376 /*
377 * Clean up a keyring when it is destroyed. Unpublish its name if it had one
378 * and dispose of its data.
379 *
380 * The garbage collector detects the final key_put(), removes the keyring from
381 * the serial number tree and then does RCU synchronisation before coming here,
382 * so we shouldn't need to worry about code poking around here with the RCU
383 * readlock held by this time.
384 */
keyring_destroy(struct key * keyring)385 static void keyring_destroy(struct key *keyring)
386 {
387 if (keyring->description) {
388 write_lock(&keyring_name_lock);
389
390 if (keyring->name_link.next != NULL &&
391 !list_empty(&keyring->name_link))
392 list_del(&keyring->name_link);
393
394 write_unlock(&keyring_name_lock);
395 }
396
397 if (keyring->restrict_link) {
398 struct key_restriction *keyres = keyring->restrict_link;
399
400 key_put(keyres->key);
401 kfree(keyres);
402 }
403
404 assoc_array_destroy(&keyring->keys, &keyring_assoc_array_ops);
405 }
406
407 /*
408 * Describe a keyring for /proc.
409 */
keyring_describe(const struct key * keyring,struct seq_file * m)410 static void keyring_describe(const struct key *keyring, struct seq_file *m)
411 {
412 if (keyring->description)
413 seq_puts(m, keyring->description);
414 else
415 seq_puts(m, "[anon]");
416
417 if (key_is_positive(keyring)) {
418 if (keyring->keys.nr_leaves_on_tree != 0)
419 seq_printf(m, ": %lu", keyring->keys.nr_leaves_on_tree);
420 else
421 seq_puts(m, ": empty");
422 }
423 }
424
425 struct keyring_read_iterator_context {
426 size_t buflen;
427 size_t count;
428 key_serial_t __user *buffer;
429 };
430
keyring_read_iterator(const void * object,void * data)431 static int keyring_read_iterator(const void *object, void *data)
432 {
433 struct keyring_read_iterator_context *ctx = data;
434 const struct key *key = keyring_ptr_to_key(object);
435 int ret;
436
437 kenter("{%s,%d},,{%zu/%zu}",
438 key->type->name, key->serial, ctx->count, ctx->buflen);
439
440 if (ctx->count >= ctx->buflen)
441 return 1;
442
443 ret = put_user(key->serial, ctx->buffer);
444 if (ret < 0)
445 return ret;
446 ctx->buffer++;
447 ctx->count += sizeof(key->serial);
448 return 0;
449 }
450
451 /*
452 * Read a list of key IDs from the keyring's contents in binary form
453 *
454 * The keyring's semaphore is read-locked by the caller. This prevents someone
455 * from modifying it under us - which could cause us to read key IDs multiple
456 * times.
457 */
keyring_read(const struct key * keyring,char __user * buffer,size_t buflen)458 static long keyring_read(const struct key *keyring,
459 char __user *buffer, size_t buflen)
460 {
461 struct keyring_read_iterator_context ctx;
462 long ret;
463
464 kenter("{%d},,%zu", key_serial(keyring), buflen);
465
466 if (buflen & (sizeof(key_serial_t) - 1))
467 return -EINVAL;
468
469 /* Copy as many key IDs as fit into the buffer */
470 if (buffer && buflen) {
471 ctx.buffer = (key_serial_t __user *)buffer;
472 ctx.buflen = buflen;
473 ctx.count = 0;
474 ret = assoc_array_iterate(&keyring->keys,
475 keyring_read_iterator, &ctx);
476 if (ret < 0) {
477 kleave(" = %ld [iterate]", ret);
478 return ret;
479 }
480 }
481
482 /* Return the size of the buffer needed */
483 ret = keyring->keys.nr_leaves_on_tree * sizeof(key_serial_t);
484 if (ret <= buflen)
485 kleave("= %ld [ok]", ret);
486 else
487 kleave("= %ld [buffer too small]", ret);
488 return ret;
489 }
490
491 /*
492 * Allocate a keyring and link into the destination keyring.
493 */
keyring_alloc(const char * description,kuid_t uid,kgid_t gid,const struct cred * cred,key_perm_t perm,unsigned long flags,struct key_restriction * restrict_link,struct key * dest)494 struct key *keyring_alloc(const char *description, kuid_t uid, kgid_t gid,
495 const struct cred *cred, key_perm_t perm,
496 unsigned long flags,
497 struct key_restriction *restrict_link,
498 struct key *dest)
499 {
500 struct key *keyring;
501 int ret;
502
503 keyring = key_alloc(&key_type_keyring, description,
504 uid, gid, cred, perm, flags, restrict_link);
505 if (!IS_ERR(keyring)) {
506 ret = key_instantiate_and_link(keyring, NULL, 0, dest, NULL);
507 if (ret < 0) {
508 key_put(keyring);
509 keyring = ERR_PTR(ret);
510 }
511 }
512
513 return keyring;
514 }
515 EXPORT_SYMBOL(keyring_alloc);
516
517 /**
518 * restrict_link_reject - Give -EPERM to restrict link
519 * @keyring: The keyring being added to.
520 * @type: The type of key being added.
521 * @payload: The payload of the key intended to be added.
522 * @data: Additional data for evaluating restriction.
523 *
524 * Reject the addition of any links to a keyring. It can be overridden by
525 * passing KEY_ALLOC_BYPASS_RESTRICTION to key_instantiate_and_link() when
526 * adding a key to a keyring.
527 *
528 * This is meant to be stored in a key_restriction structure which is passed
529 * in the restrict_link parameter to keyring_alloc().
530 */
restrict_link_reject(struct key * keyring,const struct key_type * type,const union key_payload * payload,struct key * restriction_key)531 int restrict_link_reject(struct key *keyring,
532 const struct key_type *type,
533 const union key_payload *payload,
534 struct key *restriction_key)
535 {
536 return -EPERM;
537 }
538
539 /*
540 * By default, we keys found by getting an exact match on their descriptions.
541 */
key_default_cmp(const struct key * key,const struct key_match_data * match_data)542 bool key_default_cmp(const struct key *key,
543 const struct key_match_data *match_data)
544 {
545 return strcmp(key->description, match_data->raw_data) == 0;
546 }
547
548 /*
549 * Iteration function to consider each key found.
550 */
keyring_search_iterator(const void * object,void * iterator_data)551 static int keyring_search_iterator(const void *object, void *iterator_data)
552 {
553 struct keyring_search_context *ctx = iterator_data;
554 const struct key *key = keyring_ptr_to_key(object);
555 unsigned long kflags = READ_ONCE(key->flags);
556 short state = READ_ONCE(key->state);
557
558 kenter("{%d}", key->serial);
559
560 /* ignore keys not of this type */
561 if (key->type != ctx->index_key.type) {
562 kleave(" = 0 [!type]");
563 return 0;
564 }
565
566 /* skip invalidated, revoked and expired keys */
567 if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) {
568 time64_t expiry = READ_ONCE(key->expiry);
569
570 if (kflags & ((1 << KEY_FLAG_INVALIDATED) |
571 (1 << KEY_FLAG_REVOKED))) {
572 ctx->result = ERR_PTR(-EKEYREVOKED);
573 kleave(" = %d [invrev]", ctx->skipped_ret);
574 goto skipped;
575 }
576
577 if (expiry && ctx->now >= expiry) {
578 if (!(ctx->flags & KEYRING_SEARCH_SKIP_EXPIRED))
579 ctx->result = ERR_PTR(-EKEYEXPIRED);
580 kleave(" = %d [expire]", ctx->skipped_ret);
581 goto skipped;
582 }
583 }
584
585 /* keys that don't match */
586 if (!ctx->match_data.cmp(key, &ctx->match_data)) {
587 kleave(" = 0 [!match]");
588 return 0;
589 }
590
591 /* key must have search permissions */
592 if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) &&
593 key_task_permission(make_key_ref(key, ctx->possessed),
594 ctx->cred, KEY_NEED_SEARCH) < 0) {
595 ctx->result = ERR_PTR(-EACCES);
596 kleave(" = %d [!perm]", ctx->skipped_ret);
597 goto skipped;
598 }
599
600 if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) {
601 /* we set a different error code if we pass a negative key */
602 if (state < 0) {
603 ctx->result = ERR_PTR(state);
604 kleave(" = %d [neg]", ctx->skipped_ret);
605 goto skipped;
606 }
607 }
608
609 /* Found */
610 ctx->result = make_key_ref(key, ctx->possessed);
611 kleave(" = 1 [found]");
612 return 1;
613
614 skipped:
615 return ctx->skipped_ret;
616 }
617
618 /*
619 * Search inside a keyring for a key. We can search by walking to it
620 * directly based on its index-key or we can iterate over the entire
621 * tree looking for it, based on the match function.
622 */
search_keyring(struct key * keyring,struct keyring_search_context * ctx)623 static int search_keyring(struct key *keyring, struct keyring_search_context *ctx)
624 {
625 if (ctx->match_data.lookup_type == KEYRING_SEARCH_LOOKUP_DIRECT) {
626 const void *object;
627
628 object = assoc_array_find(&keyring->keys,
629 &keyring_assoc_array_ops,
630 &ctx->index_key);
631 return object ? ctx->iterator(object, ctx) : 0;
632 }
633 return assoc_array_iterate(&keyring->keys, ctx->iterator, ctx);
634 }
635
636 /*
637 * Search a tree of keyrings that point to other keyrings up to the maximum
638 * depth.
639 */
search_nested_keyrings(struct key * keyring,struct keyring_search_context * ctx)640 static bool search_nested_keyrings(struct key *keyring,
641 struct keyring_search_context *ctx)
642 {
643 struct {
644 struct key *keyring;
645 struct assoc_array_node *node;
646 int slot;
647 } stack[KEYRING_SEARCH_MAX_DEPTH];
648
649 struct assoc_array_shortcut *shortcut;
650 struct assoc_array_node *node;
651 struct assoc_array_ptr *ptr;
652 struct key *key;
653 int sp = 0, slot;
654
655 kenter("{%d},{%s,%s}",
656 keyring->serial,
657 ctx->index_key.type->name,
658 ctx->index_key.description);
659
660 #define STATE_CHECKS (KEYRING_SEARCH_NO_STATE_CHECK | KEYRING_SEARCH_DO_STATE_CHECK)
661 BUG_ON((ctx->flags & STATE_CHECKS) == 0 ||
662 (ctx->flags & STATE_CHECKS) == STATE_CHECKS);
663
664 if (ctx->index_key.description)
665 ctx->index_key.desc_len = strlen(ctx->index_key.description);
666
667 /* Check to see if this top-level keyring is what we are looking for
668 * and whether it is valid or not.
669 */
670 if (ctx->match_data.lookup_type == KEYRING_SEARCH_LOOKUP_ITERATE ||
671 keyring_compare_object(keyring, &ctx->index_key)) {
672 ctx->skipped_ret = 2;
673 switch (ctx->iterator(keyring_key_to_ptr(keyring), ctx)) {
674 case 1:
675 goto found;
676 case 2:
677 return false;
678 default:
679 break;
680 }
681 }
682
683 ctx->skipped_ret = 0;
684
685 /* Start processing a new keyring */
686 descend_to_keyring:
687 kdebug("descend to %d", keyring->serial);
688 if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) |
689 (1 << KEY_FLAG_REVOKED)))
690 goto not_this_keyring;
691
692 /* Search through the keys in this keyring before its searching its
693 * subtrees.
694 */
695 if (search_keyring(keyring, ctx))
696 goto found;
697
698 /* Then manually iterate through the keyrings nested in this one.
699 *
700 * Start from the root node of the index tree. Because of the way the
701 * hash function has been set up, keyrings cluster on the leftmost
702 * branch of the root node (root slot 0) or in the root node itself.
703 * Non-keyrings avoid the leftmost branch of the root entirely (root
704 * slots 1-15).
705 */
706 ptr = READ_ONCE(keyring->keys.root);
707 if (!ptr)
708 goto not_this_keyring;
709
710 if (assoc_array_ptr_is_shortcut(ptr)) {
711 /* If the root is a shortcut, either the keyring only contains
712 * keyring pointers (everything clusters behind root slot 0) or
713 * doesn't contain any keyring pointers.
714 */
715 shortcut = assoc_array_ptr_to_shortcut(ptr);
716 if ((shortcut->index_key[0] & ASSOC_ARRAY_FAN_MASK) != 0)
717 goto not_this_keyring;
718
719 ptr = READ_ONCE(shortcut->next_node);
720 node = assoc_array_ptr_to_node(ptr);
721 goto begin_node;
722 }
723
724 node = assoc_array_ptr_to_node(ptr);
725 ptr = node->slots[0];
726 if (!assoc_array_ptr_is_meta(ptr))
727 goto begin_node;
728
729 descend_to_node:
730 /* Descend to a more distal node in this keyring's content tree and go
731 * through that.
732 */
733 kdebug("descend");
734 if (assoc_array_ptr_is_shortcut(ptr)) {
735 shortcut = assoc_array_ptr_to_shortcut(ptr);
736 ptr = READ_ONCE(shortcut->next_node);
737 BUG_ON(!assoc_array_ptr_is_node(ptr));
738 }
739 node = assoc_array_ptr_to_node(ptr);
740
741 begin_node:
742 kdebug("begin_node");
743 slot = 0;
744 ascend_to_node:
745 /* Go through the slots in a node */
746 for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
747 ptr = READ_ONCE(node->slots[slot]);
748
749 if (assoc_array_ptr_is_meta(ptr) && node->back_pointer)
750 goto descend_to_node;
751
752 if (!keyring_ptr_is_keyring(ptr))
753 continue;
754
755 key = keyring_ptr_to_key(ptr);
756
757 if (sp >= KEYRING_SEARCH_MAX_DEPTH) {
758 if (ctx->flags & KEYRING_SEARCH_DETECT_TOO_DEEP) {
759 ctx->result = ERR_PTR(-ELOOP);
760 return false;
761 }
762 goto not_this_keyring;
763 }
764
765 /* Search a nested keyring */
766 if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) &&
767 key_task_permission(make_key_ref(key, ctx->possessed),
768 ctx->cred, KEY_NEED_SEARCH) < 0)
769 continue;
770
771 /* stack the current position */
772 stack[sp].keyring = keyring;
773 stack[sp].node = node;
774 stack[sp].slot = slot;
775 sp++;
776
777 /* begin again with the new keyring */
778 keyring = key;
779 goto descend_to_keyring;
780 }
781
782 /* We've dealt with all the slots in the current node, so now we need
783 * to ascend to the parent and continue processing there.
784 */
785 ptr = READ_ONCE(node->back_pointer);
786 slot = node->parent_slot;
787
788 if (ptr && assoc_array_ptr_is_shortcut(ptr)) {
789 shortcut = assoc_array_ptr_to_shortcut(ptr);
790 ptr = READ_ONCE(shortcut->back_pointer);
791 slot = shortcut->parent_slot;
792 }
793 if (!ptr)
794 goto not_this_keyring;
795 node = assoc_array_ptr_to_node(ptr);
796 slot++;
797
798 /* If we've ascended to the root (zero backpointer), we must have just
799 * finished processing the leftmost branch rather than the root slots -
800 * so there can't be any more keyrings for us to find.
801 */
802 if (node->back_pointer) {
803 kdebug("ascend %d", slot);
804 goto ascend_to_node;
805 }
806
807 /* The keyring we're looking at was disqualified or didn't contain a
808 * matching key.
809 */
810 not_this_keyring:
811 kdebug("not_this_keyring %d", sp);
812 if (sp <= 0) {
813 kleave(" = false");
814 return false;
815 }
816
817 /* Resume the processing of a keyring higher up in the tree */
818 sp--;
819 keyring = stack[sp].keyring;
820 node = stack[sp].node;
821 slot = stack[sp].slot + 1;
822 kdebug("ascend to %d [%d]", keyring->serial, slot);
823 goto ascend_to_node;
824
825 /* We found a viable match */
826 found:
827 key = key_ref_to_ptr(ctx->result);
828 key_check(key);
829 if (!(ctx->flags & KEYRING_SEARCH_NO_UPDATE_TIME)) {
830 key->last_used_at = ctx->now;
831 keyring->last_used_at = ctx->now;
832 while (sp > 0)
833 stack[--sp].keyring->last_used_at = ctx->now;
834 }
835 kleave(" = true");
836 return true;
837 }
838
839 /**
840 * keyring_search_aux - Search a keyring tree for a key matching some criteria
841 * @keyring_ref: A pointer to the keyring with possession indicator.
842 * @ctx: The keyring search context.
843 *
844 * Search the supplied keyring tree for a key that matches the criteria given.
845 * The root keyring and any linked keyrings must grant Search permission to the
846 * caller to be searchable and keys can only be found if they too grant Search
847 * to the caller. The possession flag on the root keyring pointer controls use
848 * of the possessor bits in permissions checking of the entire tree. In
849 * addition, the LSM gets to forbid keyring searches and key matches.
850 *
851 * The search is performed as a breadth-then-depth search up to the prescribed
852 * limit (KEYRING_SEARCH_MAX_DEPTH).
853 *
854 * Keys are matched to the type provided and are then filtered by the match
855 * function, which is given the description to use in any way it sees fit. The
856 * match function may use any attributes of a key that it wishes to to
857 * determine the match. Normally the match function from the key type would be
858 * used.
859 *
860 * RCU can be used to prevent the keyring key lists from disappearing without
861 * the need to take lots of locks.
862 *
863 * Returns a pointer to the found key and increments the key usage count if
864 * successful; -EAGAIN if no matching keys were found, or if expired or revoked
865 * keys were found; -ENOKEY if only negative keys were found; -ENOTDIR if the
866 * specified keyring wasn't a keyring.
867 *
868 * In the case of a successful return, the possession attribute from
869 * @keyring_ref is propagated to the returned key reference.
870 */
keyring_search_aux(key_ref_t keyring_ref,struct keyring_search_context * ctx)871 key_ref_t keyring_search_aux(key_ref_t keyring_ref,
872 struct keyring_search_context *ctx)
873 {
874 struct key *keyring;
875 long err;
876
877 ctx->iterator = keyring_search_iterator;
878 ctx->possessed = is_key_possessed(keyring_ref);
879 ctx->result = ERR_PTR(-EAGAIN);
880
881 keyring = key_ref_to_ptr(keyring_ref);
882 key_check(keyring);
883
884 if (keyring->type != &key_type_keyring)
885 return ERR_PTR(-ENOTDIR);
886
887 if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM)) {
888 err = key_task_permission(keyring_ref, ctx->cred, KEY_NEED_SEARCH);
889 if (err < 0)
890 return ERR_PTR(err);
891 }
892
893 rcu_read_lock();
894 ctx->now = ktime_get_real_seconds();
895 if (search_nested_keyrings(keyring, ctx))
896 __key_get(key_ref_to_ptr(ctx->result));
897 rcu_read_unlock();
898 return ctx->result;
899 }
900
901 /**
902 * keyring_search - Search the supplied keyring tree for a matching key
903 * @keyring: The root of the keyring tree to be searched.
904 * @type: The type of keyring we want to find.
905 * @description: The name of the keyring we want to find.
906 *
907 * As keyring_search_aux() above, but using the current task's credentials and
908 * type's default matching function and preferred search method.
909 */
keyring_search(key_ref_t keyring,struct key_type * type,const char * description)910 key_ref_t keyring_search(key_ref_t keyring,
911 struct key_type *type,
912 const char *description)
913 {
914 struct keyring_search_context ctx = {
915 .index_key.type = type,
916 .index_key.description = description,
917 .cred = current_cred(),
918 .match_data.cmp = key_default_cmp,
919 .match_data.raw_data = description,
920 .match_data.lookup_type = KEYRING_SEARCH_LOOKUP_DIRECT,
921 .flags = KEYRING_SEARCH_DO_STATE_CHECK,
922 };
923 key_ref_t key;
924 int ret;
925
926 if (type->match_preparse) {
927 ret = type->match_preparse(&ctx.match_data);
928 if (ret < 0)
929 return ERR_PTR(ret);
930 }
931
932 key = keyring_search_aux(keyring, &ctx);
933
934 if (type->match_free)
935 type->match_free(&ctx.match_data);
936 return key;
937 }
938 EXPORT_SYMBOL(keyring_search);
939
keyring_restriction_alloc(key_restrict_link_func_t check)940 static struct key_restriction *keyring_restriction_alloc(
941 key_restrict_link_func_t check)
942 {
943 struct key_restriction *keyres =
944 kzalloc(sizeof(struct key_restriction), GFP_KERNEL);
945
946 if (!keyres)
947 return ERR_PTR(-ENOMEM);
948
949 keyres->check = check;
950
951 return keyres;
952 }
953
954 /*
955 * Semaphore to serialise restriction setup to prevent reference count
956 * cycles through restriction key pointers.
957 */
958 static DECLARE_RWSEM(keyring_serialise_restrict_sem);
959
960 /*
961 * Check for restriction cycles that would prevent keyring garbage collection.
962 * keyring_serialise_restrict_sem must be held.
963 */
keyring_detect_restriction_cycle(const struct key * dest_keyring,struct key_restriction * keyres)964 static bool keyring_detect_restriction_cycle(const struct key *dest_keyring,
965 struct key_restriction *keyres)
966 {
967 while (keyres && keyres->key &&
968 keyres->key->type == &key_type_keyring) {
969 if (keyres->key == dest_keyring)
970 return true;
971
972 keyres = keyres->key->restrict_link;
973 }
974
975 return false;
976 }
977
978 /**
979 * keyring_restrict - Look up and apply a restriction to a keyring
980 *
981 * @keyring: The keyring to be restricted
982 * @restriction: The restriction options to apply to the keyring
983 */
keyring_restrict(key_ref_t keyring_ref,const char * type,const char * restriction)984 int keyring_restrict(key_ref_t keyring_ref, const char *type,
985 const char *restriction)
986 {
987 struct key *keyring;
988 struct key_type *restrict_type = NULL;
989 struct key_restriction *restrict_link;
990 int ret = 0;
991
992 keyring = key_ref_to_ptr(keyring_ref);
993 key_check(keyring);
994
995 if (keyring->type != &key_type_keyring)
996 return -ENOTDIR;
997
998 if (!type) {
999 restrict_link = keyring_restriction_alloc(restrict_link_reject);
1000 } else {
1001 restrict_type = key_type_lookup(type);
1002
1003 if (IS_ERR(restrict_type))
1004 return PTR_ERR(restrict_type);
1005
1006 if (!restrict_type->lookup_restriction) {
1007 ret = -ENOENT;
1008 goto error;
1009 }
1010
1011 restrict_link = restrict_type->lookup_restriction(restriction);
1012 }
1013
1014 if (IS_ERR(restrict_link)) {
1015 ret = PTR_ERR(restrict_link);
1016 goto error;
1017 }
1018
1019 down_write(&keyring->sem);
1020 down_write(&keyring_serialise_restrict_sem);
1021
1022 if (keyring->restrict_link)
1023 ret = -EEXIST;
1024 else if (keyring_detect_restriction_cycle(keyring, restrict_link))
1025 ret = -EDEADLK;
1026 else
1027 keyring->restrict_link = restrict_link;
1028
1029 up_write(&keyring_serialise_restrict_sem);
1030 up_write(&keyring->sem);
1031
1032 if (ret < 0) {
1033 key_put(restrict_link->key);
1034 kfree(restrict_link);
1035 }
1036
1037 error:
1038 if (restrict_type)
1039 key_type_put(restrict_type);
1040
1041 return ret;
1042 }
1043 EXPORT_SYMBOL(keyring_restrict);
1044
1045 /*
1046 * Search the given keyring for a key that might be updated.
1047 *
1048 * The caller must guarantee that the keyring is a keyring and that the
1049 * permission is granted to modify the keyring as no check is made here. The
1050 * caller must also hold a lock on the keyring semaphore.
1051 *
1052 * Returns a pointer to the found key with usage count incremented if
1053 * successful and returns NULL if not found. Revoked and invalidated keys are
1054 * skipped over.
1055 *
1056 * If successful, the possession indicator is propagated from the keyring ref
1057 * to the returned key reference.
1058 */
find_key_to_update(key_ref_t keyring_ref,const struct keyring_index_key * index_key)1059 key_ref_t find_key_to_update(key_ref_t keyring_ref,
1060 const struct keyring_index_key *index_key)
1061 {
1062 struct key *keyring, *key;
1063 const void *object;
1064
1065 keyring = key_ref_to_ptr(keyring_ref);
1066
1067 kenter("{%d},{%s,%s}",
1068 keyring->serial, index_key->type->name, index_key->description);
1069
1070 object = assoc_array_find(&keyring->keys, &keyring_assoc_array_ops,
1071 index_key);
1072
1073 if (object)
1074 goto found;
1075
1076 kleave(" = NULL");
1077 return NULL;
1078
1079 found:
1080 key = keyring_ptr_to_key(object);
1081 if (key->flags & ((1 << KEY_FLAG_INVALIDATED) |
1082 (1 << KEY_FLAG_REVOKED))) {
1083 kleave(" = NULL [x]");
1084 return NULL;
1085 }
1086 __key_get(key);
1087 kleave(" = {%d}", key->serial);
1088 return make_key_ref(key, is_key_possessed(keyring_ref));
1089 }
1090
1091 /*
1092 * Find a keyring with the specified name.
1093 *
1094 * Only keyrings that have nonzero refcount, are not revoked, and are owned by a
1095 * user in the current user namespace are considered. If @uid_keyring is %true,
1096 * the keyring additionally must have been allocated as a user or user session
1097 * keyring; otherwise, it must grant Search permission directly to the caller.
1098 *
1099 * Returns a pointer to the keyring with the keyring's refcount having being
1100 * incremented on success. -ENOKEY is returned if a key could not be found.
1101 */
find_keyring_by_name(const char * name,bool uid_keyring)1102 struct key *find_keyring_by_name(const char *name, bool uid_keyring)
1103 {
1104 struct key *keyring;
1105 int bucket;
1106
1107 if (!name)
1108 return ERR_PTR(-EINVAL);
1109
1110 bucket = keyring_hash(name);
1111
1112 read_lock(&keyring_name_lock);
1113
1114 if (keyring_name_hash[bucket].next) {
1115 /* search this hash bucket for a keyring with a matching name
1116 * that's readable and that hasn't been revoked */
1117 list_for_each_entry(keyring,
1118 &keyring_name_hash[bucket],
1119 name_link
1120 ) {
1121 if (!kuid_has_mapping(current_user_ns(), keyring->user->uid))
1122 continue;
1123
1124 if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
1125 continue;
1126
1127 if (strcmp(keyring->description, name) != 0)
1128 continue;
1129
1130 if (uid_keyring) {
1131 if (!test_bit(KEY_FLAG_UID_KEYRING,
1132 &keyring->flags))
1133 continue;
1134 } else {
1135 if (key_permission(make_key_ref(keyring, 0),
1136 KEY_NEED_SEARCH) < 0)
1137 continue;
1138 }
1139
1140 /* we've got a match but we might end up racing with
1141 * key_cleanup() if the keyring is currently 'dead'
1142 * (ie. it has a zero usage count) */
1143 if (!refcount_inc_not_zero(&keyring->usage))
1144 continue;
1145 keyring->last_used_at = ktime_get_real_seconds();
1146 goto out;
1147 }
1148 }
1149
1150 keyring = ERR_PTR(-ENOKEY);
1151 out:
1152 read_unlock(&keyring_name_lock);
1153 return keyring;
1154 }
1155
keyring_detect_cycle_iterator(const void * object,void * iterator_data)1156 static int keyring_detect_cycle_iterator(const void *object,
1157 void *iterator_data)
1158 {
1159 struct keyring_search_context *ctx = iterator_data;
1160 const struct key *key = keyring_ptr_to_key(object);
1161
1162 kenter("{%d}", key->serial);
1163
1164 /* We might get a keyring with matching index-key that is nonetheless a
1165 * different keyring. */
1166 if (key != ctx->match_data.raw_data)
1167 return 0;
1168
1169 ctx->result = ERR_PTR(-EDEADLK);
1170 return 1;
1171 }
1172
1173 /*
1174 * See if a cycle will will be created by inserting acyclic tree B in acyclic
1175 * tree A at the topmost level (ie: as a direct child of A).
1176 *
1177 * Since we are adding B to A at the top level, checking for cycles should just
1178 * be a matter of seeing if node A is somewhere in tree B.
1179 */
keyring_detect_cycle(struct key * A,struct key * B)1180 static int keyring_detect_cycle(struct key *A, struct key *B)
1181 {
1182 struct keyring_search_context ctx = {
1183 .index_key = A->index_key,
1184 .match_data.raw_data = A,
1185 .match_data.lookup_type = KEYRING_SEARCH_LOOKUP_DIRECT,
1186 .iterator = keyring_detect_cycle_iterator,
1187 .flags = (KEYRING_SEARCH_NO_STATE_CHECK |
1188 KEYRING_SEARCH_NO_UPDATE_TIME |
1189 KEYRING_SEARCH_NO_CHECK_PERM |
1190 KEYRING_SEARCH_DETECT_TOO_DEEP),
1191 };
1192
1193 rcu_read_lock();
1194 search_nested_keyrings(B, &ctx);
1195 rcu_read_unlock();
1196 return PTR_ERR(ctx.result) == -EAGAIN ? 0 : PTR_ERR(ctx.result);
1197 }
1198
1199 /*
1200 * Preallocate memory so that a key can be linked into to a keyring.
1201 */
__key_link_begin(struct key * keyring,const struct keyring_index_key * index_key,struct assoc_array_edit ** _edit)1202 int __key_link_begin(struct key *keyring,
1203 const struct keyring_index_key *index_key,
1204 struct assoc_array_edit **_edit)
1205 __acquires(&keyring->sem)
1206 __acquires(&keyring_serialise_link_sem)
1207 {
1208 struct assoc_array_edit *edit;
1209 int ret;
1210
1211 kenter("%d,%s,%s,",
1212 keyring->serial, index_key->type->name, index_key->description);
1213
1214 BUG_ON(index_key->desc_len == 0);
1215
1216 if (keyring->type != &key_type_keyring)
1217 return -ENOTDIR;
1218
1219 down_write(&keyring->sem);
1220
1221 ret = -EKEYREVOKED;
1222 if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
1223 goto error_krsem;
1224
1225 /* serialise link/link calls to prevent parallel calls causing a cycle
1226 * when linking two keyring in opposite orders */
1227 if (index_key->type == &key_type_keyring)
1228 down_write(&keyring_serialise_link_sem);
1229
1230 /* Create an edit script that will insert/replace the key in the
1231 * keyring tree.
1232 */
1233 edit = assoc_array_insert(&keyring->keys,
1234 &keyring_assoc_array_ops,
1235 index_key,
1236 NULL);
1237 if (IS_ERR(edit)) {
1238 ret = PTR_ERR(edit);
1239 goto error_sem;
1240 }
1241
1242 /* If we're not replacing a link in-place then we're going to need some
1243 * extra quota.
1244 */
1245 if (!edit->dead_leaf) {
1246 ret = key_payload_reserve(keyring,
1247 keyring->datalen + KEYQUOTA_LINK_BYTES);
1248 if (ret < 0)
1249 goto error_cancel;
1250 }
1251
1252 *_edit = edit;
1253 kleave(" = 0");
1254 return 0;
1255
1256 error_cancel:
1257 assoc_array_cancel_edit(edit);
1258 error_sem:
1259 if (index_key->type == &key_type_keyring)
1260 up_write(&keyring_serialise_link_sem);
1261 error_krsem:
1262 up_write(&keyring->sem);
1263 kleave(" = %d", ret);
1264 return ret;
1265 }
1266
1267 /*
1268 * Check already instantiated keys aren't going to be a problem.
1269 *
1270 * The caller must have called __key_link_begin(). Don't need to call this for
1271 * keys that were created since __key_link_begin() was called.
1272 */
__key_link_check_live_key(struct key * keyring,struct key * key)1273 int __key_link_check_live_key(struct key *keyring, struct key *key)
1274 {
1275 if (key->type == &key_type_keyring)
1276 /* check that we aren't going to create a cycle by linking one
1277 * keyring to another */
1278 return keyring_detect_cycle(keyring, key);
1279 return 0;
1280 }
1281
1282 /*
1283 * Link a key into to a keyring.
1284 *
1285 * Must be called with __key_link_begin() having being called. Discards any
1286 * already extant link to matching key if there is one, so that each keyring
1287 * holds at most one link to any given key of a particular type+description
1288 * combination.
1289 */
__key_link(struct key * key,struct assoc_array_edit ** _edit)1290 void __key_link(struct key *key, struct assoc_array_edit **_edit)
1291 {
1292 __key_get(key);
1293 assoc_array_insert_set_object(*_edit, keyring_key_to_ptr(key));
1294 assoc_array_apply_edit(*_edit);
1295 *_edit = NULL;
1296 }
1297
1298 /*
1299 * Finish linking a key into to a keyring.
1300 *
1301 * Must be called with __key_link_begin() having being called.
1302 */
__key_link_end(struct key * keyring,const struct keyring_index_key * index_key,struct assoc_array_edit * edit)1303 void __key_link_end(struct key *keyring,
1304 const struct keyring_index_key *index_key,
1305 struct assoc_array_edit *edit)
1306 __releases(&keyring->sem)
1307 __releases(&keyring_serialise_link_sem)
1308 {
1309 BUG_ON(index_key->type == NULL);
1310 kenter("%d,%s,", keyring->serial, index_key->type->name);
1311
1312 if (index_key->type == &key_type_keyring)
1313 up_write(&keyring_serialise_link_sem);
1314
1315 if (edit) {
1316 if (!edit->dead_leaf) {
1317 key_payload_reserve(keyring,
1318 keyring->datalen - KEYQUOTA_LINK_BYTES);
1319 }
1320 assoc_array_cancel_edit(edit);
1321 }
1322 up_write(&keyring->sem);
1323 }
1324
1325 /*
1326 * Check addition of keys to restricted keyrings.
1327 */
__key_link_check_restriction(struct key * keyring,struct key * key)1328 static int __key_link_check_restriction(struct key *keyring, struct key *key)
1329 {
1330 if (!keyring->restrict_link || !keyring->restrict_link->check)
1331 return 0;
1332 return keyring->restrict_link->check(keyring, key->type, &key->payload,
1333 keyring->restrict_link->key);
1334 }
1335
1336 /**
1337 * key_link - Link a key to a keyring
1338 * @keyring: The keyring to make the link in.
1339 * @key: The key to link to.
1340 *
1341 * Make a link in a keyring to a key, such that the keyring holds a reference
1342 * on that key and the key can potentially be found by searching that keyring.
1343 *
1344 * This function will write-lock the keyring's semaphore and will consume some
1345 * of the user's key data quota to hold the link.
1346 *
1347 * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring,
1348 * -EKEYREVOKED if the keyring has been revoked, -ENFILE if the keyring is
1349 * full, -EDQUOT if there is insufficient key data quota remaining to add
1350 * another link or -ENOMEM if there's insufficient memory.
1351 *
1352 * It is assumed that the caller has checked that it is permitted for a link to
1353 * be made (the keyring should have Write permission and the key Link
1354 * permission).
1355 */
key_link(struct key * keyring,struct key * key)1356 int key_link(struct key *keyring, struct key *key)
1357 {
1358 struct assoc_array_edit *edit;
1359 int ret;
1360
1361 kenter("{%d,%d}", keyring->serial, refcount_read(&keyring->usage));
1362
1363 key_check(keyring);
1364 key_check(key);
1365
1366 ret = __key_link_begin(keyring, &key->index_key, &edit);
1367 if (ret == 0) {
1368 kdebug("begun {%d,%d}", keyring->serial, refcount_read(&keyring->usage));
1369 ret = __key_link_check_restriction(keyring, key);
1370 if (ret == 0)
1371 ret = __key_link_check_live_key(keyring, key);
1372 if (ret == 0)
1373 __key_link(key, &edit);
1374 __key_link_end(keyring, &key->index_key, edit);
1375 }
1376
1377 kleave(" = %d {%d,%d}", ret, keyring->serial, refcount_read(&keyring->usage));
1378 return ret;
1379 }
1380 EXPORT_SYMBOL(key_link);
1381
1382 /**
1383 * key_unlink - Unlink the first link to a key from a keyring.
1384 * @keyring: The keyring to remove the link from.
1385 * @key: The key the link is to.
1386 *
1387 * Remove a link from a keyring to a key.
1388 *
1389 * This function will write-lock the keyring's semaphore.
1390 *
1391 * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring, -ENOENT if
1392 * the key isn't linked to by the keyring or -ENOMEM if there's insufficient
1393 * memory.
1394 *
1395 * It is assumed that the caller has checked that it is permitted for a link to
1396 * be removed (the keyring should have Write permission; no permissions are
1397 * required on the key).
1398 */
key_unlink(struct key * keyring,struct key * key)1399 int key_unlink(struct key *keyring, struct key *key)
1400 {
1401 struct assoc_array_edit *edit;
1402 int ret;
1403
1404 key_check(keyring);
1405 key_check(key);
1406
1407 if (keyring->type != &key_type_keyring)
1408 return -ENOTDIR;
1409
1410 down_write(&keyring->sem);
1411
1412 edit = assoc_array_delete(&keyring->keys, &keyring_assoc_array_ops,
1413 &key->index_key);
1414 if (IS_ERR(edit)) {
1415 ret = PTR_ERR(edit);
1416 goto error;
1417 }
1418 ret = -ENOENT;
1419 if (edit == NULL)
1420 goto error;
1421
1422 assoc_array_apply_edit(edit);
1423 key_payload_reserve(keyring, keyring->datalen - KEYQUOTA_LINK_BYTES);
1424 ret = 0;
1425
1426 error:
1427 up_write(&keyring->sem);
1428 return ret;
1429 }
1430 EXPORT_SYMBOL(key_unlink);
1431
1432 /**
1433 * keyring_clear - Clear a keyring
1434 * @keyring: The keyring to clear.
1435 *
1436 * Clear the contents of the specified keyring.
1437 *
1438 * Returns 0 if successful or -ENOTDIR if the keyring isn't a keyring.
1439 */
keyring_clear(struct key * keyring)1440 int keyring_clear(struct key *keyring)
1441 {
1442 struct assoc_array_edit *edit;
1443 int ret;
1444
1445 if (keyring->type != &key_type_keyring)
1446 return -ENOTDIR;
1447
1448 down_write(&keyring->sem);
1449
1450 edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops);
1451 if (IS_ERR(edit)) {
1452 ret = PTR_ERR(edit);
1453 } else {
1454 if (edit)
1455 assoc_array_apply_edit(edit);
1456 key_payload_reserve(keyring, 0);
1457 ret = 0;
1458 }
1459
1460 up_write(&keyring->sem);
1461 return ret;
1462 }
1463 EXPORT_SYMBOL(keyring_clear);
1464
1465 /*
1466 * Dispose of the links from a revoked keyring.
1467 *
1468 * This is called with the key sem write-locked.
1469 */
keyring_revoke(struct key * keyring)1470 static void keyring_revoke(struct key *keyring)
1471 {
1472 struct assoc_array_edit *edit;
1473
1474 edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops);
1475 if (!IS_ERR(edit)) {
1476 if (edit)
1477 assoc_array_apply_edit(edit);
1478 key_payload_reserve(keyring, 0);
1479 }
1480 }
1481
keyring_gc_select_iterator(void * object,void * iterator_data)1482 static bool keyring_gc_select_iterator(void *object, void *iterator_data)
1483 {
1484 struct key *key = keyring_ptr_to_key(object);
1485 time64_t *limit = iterator_data;
1486
1487 if (key_is_dead(key, *limit))
1488 return false;
1489 key_get(key);
1490 return true;
1491 }
1492
keyring_gc_check_iterator(const void * object,void * iterator_data)1493 static int keyring_gc_check_iterator(const void *object, void *iterator_data)
1494 {
1495 const struct key *key = keyring_ptr_to_key(object);
1496 time64_t *limit = iterator_data;
1497
1498 key_check(key);
1499 return key_is_dead(key, *limit);
1500 }
1501
1502 /*
1503 * Garbage collect pointers from a keyring.
1504 *
1505 * Not called with any locks held. The keyring's key struct will not be
1506 * deallocated under us as only our caller may deallocate it.
1507 */
keyring_gc(struct key * keyring,time64_t limit)1508 void keyring_gc(struct key *keyring, time64_t limit)
1509 {
1510 int result;
1511
1512 kenter("%x{%s}", keyring->serial, keyring->description ?: "");
1513
1514 if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) |
1515 (1 << KEY_FLAG_REVOKED)))
1516 goto dont_gc;
1517
1518 /* scan the keyring looking for dead keys */
1519 rcu_read_lock();
1520 result = assoc_array_iterate(&keyring->keys,
1521 keyring_gc_check_iterator, &limit);
1522 rcu_read_unlock();
1523 if (result == true)
1524 goto do_gc;
1525
1526 dont_gc:
1527 kleave(" [no gc]");
1528 return;
1529
1530 do_gc:
1531 down_write(&keyring->sem);
1532 assoc_array_gc(&keyring->keys, &keyring_assoc_array_ops,
1533 keyring_gc_select_iterator, &limit);
1534 up_write(&keyring->sem);
1535 kleave(" [gc]");
1536 }
1537
1538 /*
1539 * Garbage collect restriction pointers from a keyring.
1540 *
1541 * Keyring restrictions are associated with a key type, and must be cleaned
1542 * up if the key type is unregistered. The restriction is altered to always
1543 * reject additional keys so a keyring cannot be opened up by unregistering
1544 * a key type.
1545 *
1546 * Not called with any keyring locks held. The keyring's key struct will not
1547 * be deallocated under us as only our caller may deallocate it.
1548 *
1549 * The caller is required to hold key_types_sem and dead_type->sem. This is
1550 * fulfilled by key_gc_keytype() holding the locks on behalf of
1551 * key_garbage_collector(), which it invokes on a workqueue.
1552 */
keyring_restriction_gc(struct key * keyring,struct key_type * dead_type)1553 void keyring_restriction_gc(struct key *keyring, struct key_type *dead_type)
1554 {
1555 struct key_restriction *keyres;
1556
1557 kenter("%x{%s}", keyring->serial, keyring->description ?: "");
1558
1559 /*
1560 * keyring->restrict_link is only assigned at key allocation time
1561 * or with the key type locked, so the only values that could be
1562 * concurrently assigned to keyring->restrict_link are for key
1563 * types other than dead_type. Given this, it's ok to check
1564 * the key type before acquiring keyring->sem.
1565 */
1566 if (!dead_type || !keyring->restrict_link ||
1567 keyring->restrict_link->keytype != dead_type) {
1568 kleave(" [no restriction gc]");
1569 return;
1570 }
1571
1572 /* Lock the keyring to ensure that a link is not in progress */
1573 down_write(&keyring->sem);
1574
1575 keyres = keyring->restrict_link;
1576
1577 keyres->check = restrict_link_reject;
1578
1579 key_put(keyres->key);
1580 keyres->key = NULL;
1581 keyres->keytype = NULL;
1582
1583 up_write(&keyring->sem);
1584
1585 kleave(" [restriction gc]");
1586 }
1587