1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  arch/sparc64/mm/init.c
4  *
5  *  Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
6  *  Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
7  */
8 
9 #include <linux/extable.h>
10 #include <linux/kernel.h>
11 #include <linux/sched.h>
12 #include <linux/string.h>
13 #include <linux/init.h>
14 #include <linux/memblock.h>
15 #include <linux/mm.h>
16 #include <linux/hugetlb.h>
17 #include <linux/initrd.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/poison.h>
21 #include <linux/fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/kprobes.h>
24 #include <linux/cache.h>
25 #include <linux/sort.h>
26 #include <linux/ioport.h>
27 #include <linux/percpu.h>
28 #include <linux/mmzone.h>
29 #include <linux/gfp.h>
30 
31 #include <asm/head.h>
32 #include <asm/page.h>
33 #include <asm/pgalloc.h>
34 #include <asm/pgtable.h>
35 #include <asm/oplib.h>
36 #include <asm/iommu.h>
37 #include <asm/io.h>
38 #include <linux/uaccess.h>
39 #include <asm/mmu_context.h>
40 #include <asm/tlbflush.h>
41 #include <asm/dma.h>
42 #include <asm/starfire.h>
43 #include <asm/tlb.h>
44 #include <asm/spitfire.h>
45 #include <asm/sections.h>
46 #include <asm/tsb.h>
47 #include <asm/hypervisor.h>
48 #include <asm/prom.h>
49 #include <asm/mdesc.h>
50 #include <asm/cpudata.h>
51 #include <asm/setup.h>
52 #include <asm/irq.h>
53 
54 #include "init_64.h"
55 
56 unsigned long kern_linear_pte_xor[4] __read_mostly;
57 static unsigned long page_cache4v_flag;
58 
59 /* A bitmap, two bits for every 256MB of physical memory.  These two
60  * bits determine what page size we use for kernel linear
61  * translations.  They form an index into kern_linear_pte_xor[].  The
62  * value in the indexed slot is XOR'd with the TLB miss virtual
63  * address to form the resulting TTE.  The mapping is:
64  *
65  *	0	==>	4MB
66  *	1	==>	256MB
67  *	2	==>	2GB
68  *	3	==>	16GB
69  *
70  * All sun4v chips support 256MB pages.  Only SPARC-T4 and later
71  * support 2GB pages, and hopefully future cpus will support the 16GB
72  * pages as well.  For slots 2 and 3, we encode a 256MB TTE xor there
73  * if these larger page sizes are not supported by the cpu.
74  *
75  * It would be nice to determine this from the machine description
76  * 'cpu' properties, but we need to have this table setup before the
77  * MDESC is initialized.
78  */
79 
80 #ifndef CONFIG_DEBUG_PAGEALLOC
81 /* A special kernel TSB for 4MB, 256MB, 2GB and 16GB linear mappings.
82  * Space is allocated for this right after the trap table in
83  * arch/sparc64/kernel/head.S
84  */
85 extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
86 #endif
87 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
88 
89 static unsigned long cpu_pgsz_mask;
90 
91 #define MAX_BANKS	1024
92 
93 static struct linux_prom64_registers pavail[MAX_BANKS];
94 static int pavail_ents;
95 
96 u64 numa_latency[MAX_NUMNODES][MAX_NUMNODES];
97 
cmp_p64(const void * a,const void * b)98 static int cmp_p64(const void *a, const void *b)
99 {
100 	const struct linux_prom64_registers *x = a, *y = b;
101 
102 	if (x->phys_addr > y->phys_addr)
103 		return 1;
104 	if (x->phys_addr < y->phys_addr)
105 		return -1;
106 	return 0;
107 }
108 
read_obp_memory(const char * property,struct linux_prom64_registers * regs,int * num_ents)109 static void __init read_obp_memory(const char *property,
110 				   struct linux_prom64_registers *regs,
111 				   int *num_ents)
112 {
113 	phandle node = prom_finddevice("/memory");
114 	int prop_size = prom_getproplen(node, property);
115 	int ents, ret, i;
116 
117 	ents = prop_size / sizeof(struct linux_prom64_registers);
118 	if (ents > MAX_BANKS) {
119 		prom_printf("The machine has more %s property entries than "
120 			    "this kernel can support (%d).\n",
121 			    property, MAX_BANKS);
122 		prom_halt();
123 	}
124 
125 	ret = prom_getproperty(node, property, (char *) regs, prop_size);
126 	if (ret == -1) {
127 		prom_printf("Couldn't get %s property from /memory.\n",
128 				property);
129 		prom_halt();
130 	}
131 
132 	/* Sanitize what we got from the firmware, by page aligning
133 	 * everything.
134 	 */
135 	for (i = 0; i < ents; i++) {
136 		unsigned long base, size;
137 
138 		base = regs[i].phys_addr;
139 		size = regs[i].reg_size;
140 
141 		size &= PAGE_MASK;
142 		if (base & ~PAGE_MASK) {
143 			unsigned long new_base = PAGE_ALIGN(base);
144 
145 			size -= new_base - base;
146 			if ((long) size < 0L)
147 				size = 0UL;
148 			base = new_base;
149 		}
150 		if (size == 0UL) {
151 			/* If it is empty, simply get rid of it.
152 			 * This simplifies the logic of the other
153 			 * functions that process these arrays.
154 			 */
155 			memmove(&regs[i], &regs[i + 1],
156 				(ents - i - 1) * sizeof(regs[0]));
157 			i--;
158 			ents--;
159 			continue;
160 		}
161 		regs[i].phys_addr = base;
162 		regs[i].reg_size = size;
163 	}
164 
165 	*num_ents = ents;
166 
167 	sort(regs, ents, sizeof(struct linux_prom64_registers),
168 	     cmp_p64, NULL);
169 }
170 
171 /* Kernel physical address base and size in bytes.  */
172 unsigned long kern_base __read_mostly;
173 unsigned long kern_size __read_mostly;
174 
175 /* Initial ramdisk setup */
176 extern unsigned long sparc_ramdisk_image64;
177 extern unsigned int sparc_ramdisk_image;
178 extern unsigned int sparc_ramdisk_size;
179 
180 struct page *mem_map_zero __read_mostly;
181 EXPORT_SYMBOL(mem_map_zero);
182 
183 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
184 
185 unsigned long sparc64_kern_pri_context __read_mostly;
186 unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
187 unsigned long sparc64_kern_sec_context __read_mostly;
188 
189 int num_kernel_image_mappings;
190 
191 #ifdef CONFIG_DEBUG_DCFLUSH
192 atomic_t dcpage_flushes = ATOMIC_INIT(0);
193 #ifdef CONFIG_SMP
194 atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
195 #endif
196 #endif
197 
flush_dcache_page_impl(struct page * page)198 inline void flush_dcache_page_impl(struct page *page)
199 {
200 	BUG_ON(tlb_type == hypervisor);
201 #ifdef CONFIG_DEBUG_DCFLUSH
202 	atomic_inc(&dcpage_flushes);
203 #endif
204 
205 #ifdef DCACHE_ALIASING_POSSIBLE
206 	__flush_dcache_page(page_address(page),
207 			    ((tlb_type == spitfire) &&
208 			     page_mapping_file(page) != NULL));
209 #else
210 	if (page_mapping_file(page) != NULL &&
211 	    tlb_type == spitfire)
212 		__flush_icache_page(__pa(page_address(page)));
213 #endif
214 }
215 
216 #define PG_dcache_dirty		PG_arch_1
217 #define PG_dcache_cpu_shift	32UL
218 #define PG_dcache_cpu_mask	\
219 	((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
220 
221 #define dcache_dirty_cpu(page) \
222 	(((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
223 
set_dcache_dirty(struct page * page,int this_cpu)224 static inline void set_dcache_dirty(struct page *page, int this_cpu)
225 {
226 	unsigned long mask = this_cpu;
227 	unsigned long non_cpu_bits;
228 
229 	non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
230 	mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
231 
232 	__asm__ __volatile__("1:\n\t"
233 			     "ldx	[%2], %%g7\n\t"
234 			     "and	%%g7, %1, %%g1\n\t"
235 			     "or	%%g1, %0, %%g1\n\t"
236 			     "casx	[%2], %%g7, %%g1\n\t"
237 			     "cmp	%%g7, %%g1\n\t"
238 			     "bne,pn	%%xcc, 1b\n\t"
239 			     " nop"
240 			     : /* no outputs */
241 			     : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
242 			     : "g1", "g7");
243 }
244 
clear_dcache_dirty_cpu(struct page * page,unsigned long cpu)245 static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
246 {
247 	unsigned long mask = (1UL << PG_dcache_dirty);
248 
249 	__asm__ __volatile__("! test_and_clear_dcache_dirty\n"
250 			     "1:\n\t"
251 			     "ldx	[%2], %%g7\n\t"
252 			     "srlx	%%g7, %4, %%g1\n\t"
253 			     "and	%%g1, %3, %%g1\n\t"
254 			     "cmp	%%g1, %0\n\t"
255 			     "bne,pn	%%icc, 2f\n\t"
256 			     " andn	%%g7, %1, %%g1\n\t"
257 			     "casx	[%2], %%g7, %%g1\n\t"
258 			     "cmp	%%g7, %%g1\n\t"
259 			     "bne,pn	%%xcc, 1b\n\t"
260 			     " nop\n"
261 			     "2:"
262 			     : /* no outputs */
263 			     : "r" (cpu), "r" (mask), "r" (&page->flags),
264 			       "i" (PG_dcache_cpu_mask),
265 			       "i" (PG_dcache_cpu_shift)
266 			     : "g1", "g7");
267 }
268 
tsb_insert(struct tsb * ent,unsigned long tag,unsigned long pte)269 static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
270 {
271 	unsigned long tsb_addr = (unsigned long) ent;
272 
273 	if (tlb_type == cheetah_plus || tlb_type == hypervisor)
274 		tsb_addr = __pa(tsb_addr);
275 
276 	__tsb_insert(tsb_addr, tag, pte);
277 }
278 
279 unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
280 
flush_dcache(unsigned long pfn)281 static void flush_dcache(unsigned long pfn)
282 {
283 	struct page *page;
284 
285 	page = pfn_to_page(pfn);
286 	if (page) {
287 		unsigned long pg_flags;
288 
289 		pg_flags = page->flags;
290 		if (pg_flags & (1UL << PG_dcache_dirty)) {
291 			int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
292 				   PG_dcache_cpu_mask);
293 			int this_cpu = get_cpu();
294 
295 			/* This is just to optimize away some function calls
296 			 * in the SMP case.
297 			 */
298 			if (cpu == this_cpu)
299 				flush_dcache_page_impl(page);
300 			else
301 				smp_flush_dcache_page_impl(page, cpu);
302 
303 			clear_dcache_dirty_cpu(page, cpu);
304 
305 			put_cpu();
306 		}
307 	}
308 }
309 
310 /* mm->context.lock must be held */
__update_mmu_tsb_insert(struct mm_struct * mm,unsigned long tsb_index,unsigned long tsb_hash_shift,unsigned long address,unsigned long tte)311 static void __update_mmu_tsb_insert(struct mm_struct *mm, unsigned long tsb_index,
312 				    unsigned long tsb_hash_shift, unsigned long address,
313 				    unsigned long tte)
314 {
315 	struct tsb *tsb = mm->context.tsb_block[tsb_index].tsb;
316 	unsigned long tag;
317 
318 	if (unlikely(!tsb))
319 		return;
320 
321 	tsb += ((address >> tsb_hash_shift) &
322 		(mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
323 	tag = (address >> 22UL);
324 	tsb_insert(tsb, tag, tte);
325 }
326 
327 #ifdef CONFIG_HUGETLB_PAGE
add_huge_page_size(unsigned long size)328 static void __init add_huge_page_size(unsigned long size)
329 {
330 	unsigned int order;
331 
332 	if (size_to_hstate(size))
333 		return;
334 
335 	order = ilog2(size) - PAGE_SHIFT;
336 	hugetlb_add_hstate(order);
337 }
338 
hugetlbpage_init(void)339 static int __init hugetlbpage_init(void)
340 {
341 	add_huge_page_size(1UL << HPAGE_64K_SHIFT);
342 	add_huge_page_size(1UL << HPAGE_SHIFT);
343 	add_huge_page_size(1UL << HPAGE_256MB_SHIFT);
344 	add_huge_page_size(1UL << HPAGE_2GB_SHIFT);
345 
346 	return 0;
347 }
348 
349 arch_initcall(hugetlbpage_init);
350 
pud_huge_patch(void)351 static void __init pud_huge_patch(void)
352 {
353 	struct pud_huge_patch_entry *p;
354 	unsigned long addr;
355 
356 	p = &__pud_huge_patch;
357 	addr = p->addr;
358 	*(unsigned int *)addr = p->insn;
359 
360 	__asm__ __volatile__("flush %0" : : "r" (addr));
361 }
362 
setup_hugepagesz(char * string)363 static int __init setup_hugepagesz(char *string)
364 {
365 	unsigned long long hugepage_size;
366 	unsigned int hugepage_shift;
367 	unsigned short hv_pgsz_idx;
368 	unsigned int hv_pgsz_mask;
369 	int rc = 0;
370 
371 	hugepage_size = memparse(string, &string);
372 	hugepage_shift = ilog2(hugepage_size);
373 
374 	switch (hugepage_shift) {
375 	case HPAGE_16GB_SHIFT:
376 		hv_pgsz_mask = HV_PGSZ_MASK_16GB;
377 		hv_pgsz_idx = HV_PGSZ_IDX_16GB;
378 		pud_huge_patch();
379 		break;
380 	case HPAGE_2GB_SHIFT:
381 		hv_pgsz_mask = HV_PGSZ_MASK_2GB;
382 		hv_pgsz_idx = HV_PGSZ_IDX_2GB;
383 		break;
384 	case HPAGE_256MB_SHIFT:
385 		hv_pgsz_mask = HV_PGSZ_MASK_256MB;
386 		hv_pgsz_idx = HV_PGSZ_IDX_256MB;
387 		break;
388 	case HPAGE_SHIFT:
389 		hv_pgsz_mask = HV_PGSZ_MASK_4MB;
390 		hv_pgsz_idx = HV_PGSZ_IDX_4MB;
391 		break;
392 	case HPAGE_64K_SHIFT:
393 		hv_pgsz_mask = HV_PGSZ_MASK_64K;
394 		hv_pgsz_idx = HV_PGSZ_IDX_64K;
395 		break;
396 	default:
397 		hv_pgsz_mask = 0;
398 	}
399 
400 	if ((hv_pgsz_mask & cpu_pgsz_mask) == 0U) {
401 		hugetlb_bad_size();
402 		pr_err("hugepagesz=%llu not supported by MMU.\n",
403 			hugepage_size);
404 		goto out;
405 	}
406 
407 	add_huge_page_size(hugepage_size);
408 	rc = 1;
409 
410 out:
411 	return rc;
412 }
413 __setup("hugepagesz=", setup_hugepagesz);
414 #endif	/* CONFIG_HUGETLB_PAGE */
415 
update_mmu_cache(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)416 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
417 {
418 	struct mm_struct *mm;
419 	unsigned long flags;
420 	bool is_huge_tsb;
421 	pte_t pte = *ptep;
422 
423 	if (tlb_type != hypervisor) {
424 		unsigned long pfn = pte_pfn(pte);
425 
426 		if (pfn_valid(pfn))
427 			flush_dcache(pfn);
428 	}
429 
430 	mm = vma->vm_mm;
431 
432 	/* Don't insert a non-valid PTE into the TSB, we'll deadlock.  */
433 	if (!pte_accessible(mm, pte))
434 		return;
435 
436 	spin_lock_irqsave(&mm->context.lock, flags);
437 
438 	is_huge_tsb = false;
439 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
440 	if (mm->context.hugetlb_pte_count || mm->context.thp_pte_count) {
441 		unsigned long hugepage_size = PAGE_SIZE;
442 
443 		if (is_vm_hugetlb_page(vma))
444 			hugepage_size = huge_page_size(hstate_vma(vma));
445 
446 		if (hugepage_size >= PUD_SIZE) {
447 			unsigned long mask = 0x1ffc00000UL;
448 
449 			/* Transfer bits [32:22] from address to resolve
450 			 * at 4M granularity.
451 			 */
452 			pte_val(pte) &= ~mask;
453 			pte_val(pte) |= (address & mask);
454 		} else if (hugepage_size >= PMD_SIZE) {
455 			/* We are fabricating 8MB pages using 4MB
456 			 * real hw pages.
457 			 */
458 			pte_val(pte) |= (address & (1UL << REAL_HPAGE_SHIFT));
459 		}
460 
461 		if (hugepage_size >= PMD_SIZE) {
462 			__update_mmu_tsb_insert(mm, MM_TSB_HUGE,
463 				REAL_HPAGE_SHIFT, address, pte_val(pte));
464 			is_huge_tsb = true;
465 		}
466 	}
467 #endif
468 	if (!is_huge_tsb)
469 		__update_mmu_tsb_insert(mm, MM_TSB_BASE, PAGE_SHIFT,
470 					address, pte_val(pte));
471 
472 	spin_unlock_irqrestore(&mm->context.lock, flags);
473 }
474 
flush_dcache_page(struct page * page)475 void flush_dcache_page(struct page *page)
476 {
477 	struct address_space *mapping;
478 	int this_cpu;
479 
480 	if (tlb_type == hypervisor)
481 		return;
482 
483 	/* Do not bother with the expensive D-cache flush if it
484 	 * is merely the zero page.  The 'bigcore' testcase in GDB
485 	 * causes this case to run millions of times.
486 	 */
487 	if (page == ZERO_PAGE(0))
488 		return;
489 
490 	this_cpu = get_cpu();
491 
492 	mapping = page_mapping_file(page);
493 	if (mapping && !mapping_mapped(mapping)) {
494 		int dirty = test_bit(PG_dcache_dirty, &page->flags);
495 		if (dirty) {
496 			int dirty_cpu = dcache_dirty_cpu(page);
497 
498 			if (dirty_cpu == this_cpu)
499 				goto out;
500 			smp_flush_dcache_page_impl(page, dirty_cpu);
501 		}
502 		set_dcache_dirty(page, this_cpu);
503 	} else {
504 		/* We could delay the flush for the !page_mapping
505 		 * case too.  But that case is for exec env/arg
506 		 * pages and those are %99 certainly going to get
507 		 * faulted into the tlb (and thus flushed) anyways.
508 		 */
509 		flush_dcache_page_impl(page);
510 	}
511 
512 out:
513 	put_cpu();
514 }
515 EXPORT_SYMBOL(flush_dcache_page);
516 
flush_icache_range(unsigned long start,unsigned long end)517 void __kprobes flush_icache_range(unsigned long start, unsigned long end)
518 {
519 	/* Cheetah and Hypervisor platform cpus have coherent I-cache. */
520 	if (tlb_type == spitfire) {
521 		unsigned long kaddr;
522 
523 		/* This code only runs on Spitfire cpus so this is
524 		 * why we can assume _PAGE_PADDR_4U.
525 		 */
526 		for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
527 			unsigned long paddr, mask = _PAGE_PADDR_4U;
528 
529 			if (kaddr >= PAGE_OFFSET)
530 				paddr = kaddr & mask;
531 			else {
532 				pgd_t *pgdp = pgd_offset_k(kaddr);
533 				pud_t *pudp = pud_offset(pgdp, kaddr);
534 				pmd_t *pmdp = pmd_offset(pudp, kaddr);
535 				pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
536 
537 				paddr = pte_val(*ptep) & mask;
538 			}
539 			__flush_icache_page(paddr);
540 		}
541 	}
542 }
543 EXPORT_SYMBOL(flush_icache_range);
544 
mmu_info(struct seq_file * m)545 void mmu_info(struct seq_file *m)
546 {
547 	static const char *pgsz_strings[] = {
548 		"8K", "64K", "512K", "4MB", "32MB",
549 		"256MB", "2GB", "16GB",
550 	};
551 	int i, printed;
552 
553 	if (tlb_type == cheetah)
554 		seq_printf(m, "MMU Type\t: Cheetah\n");
555 	else if (tlb_type == cheetah_plus)
556 		seq_printf(m, "MMU Type\t: Cheetah+\n");
557 	else if (tlb_type == spitfire)
558 		seq_printf(m, "MMU Type\t: Spitfire\n");
559 	else if (tlb_type == hypervisor)
560 		seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
561 	else
562 		seq_printf(m, "MMU Type\t: ???\n");
563 
564 	seq_printf(m, "MMU PGSZs\t: ");
565 	printed = 0;
566 	for (i = 0; i < ARRAY_SIZE(pgsz_strings); i++) {
567 		if (cpu_pgsz_mask & (1UL << i)) {
568 			seq_printf(m, "%s%s",
569 				   printed ? "," : "", pgsz_strings[i]);
570 			printed++;
571 		}
572 	}
573 	seq_putc(m, '\n');
574 
575 #ifdef CONFIG_DEBUG_DCFLUSH
576 	seq_printf(m, "DCPageFlushes\t: %d\n",
577 		   atomic_read(&dcpage_flushes));
578 #ifdef CONFIG_SMP
579 	seq_printf(m, "DCPageFlushesXC\t: %d\n",
580 		   atomic_read(&dcpage_flushes_xcall));
581 #endif /* CONFIG_SMP */
582 #endif /* CONFIG_DEBUG_DCFLUSH */
583 }
584 
585 struct linux_prom_translation prom_trans[512] __read_mostly;
586 unsigned int prom_trans_ents __read_mostly;
587 
588 unsigned long kern_locked_tte_data;
589 
590 /* The obp translations are saved based on 8k pagesize, since obp can
591  * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
592  * HI_OBP_ADDRESS range are handled in ktlb.S.
593  */
in_obp_range(unsigned long vaddr)594 static inline int in_obp_range(unsigned long vaddr)
595 {
596 	return (vaddr >= LOW_OBP_ADDRESS &&
597 		vaddr < HI_OBP_ADDRESS);
598 }
599 
cmp_ptrans(const void * a,const void * b)600 static int cmp_ptrans(const void *a, const void *b)
601 {
602 	const struct linux_prom_translation *x = a, *y = b;
603 
604 	if (x->virt > y->virt)
605 		return 1;
606 	if (x->virt < y->virt)
607 		return -1;
608 	return 0;
609 }
610 
611 /* Read OBP translations property into 'prom_trans[]'.  */
read_obp_translations(void)612 static void __init read_obp_translations(void)
613 {
614 	int n, node, ents, first, last, i;
615 
616 	node = prom_finddevice("/virtual-memory");
617 	n = prom_getproplen(node, "translations");
618 	if (unlikely(n == 0 || n == -1)) {
619 		prom_printf("prom_mappings: Couldn't get size.\n");
620 		prom_halt();
621 	}
622 	if (unlikely(n > sizeof(prom_trans))) {
623 		prom_printf("prom_mappings: Size %d is too big.\n", n);
624 		prom_halt();
625 	}
626 
627 	if ((n = prom_getproperty(node, "translations",
628 				  (char *)&prom_trans[0],
629 				  sizeof(prom_trans))) == -1) {
630 		prom_printf("prom_mappings: Couldn't get property.\n");
631 		prom_halt();
632 	}
633 
634 	n = n / sizeof(struct linux_prom_translation);
635 
636 	ents = n;
637 
638 	sort(prom_trans, ents, sizeof(struct linux_prom_translation),
639 	     cmp_ptrans, NULL);
640 
641 	/* Now kick out all the non-OBP entries.  */
642 	for (i = 0; i < ents; i++) {
643 		if (in_obp_range(prom_trans[i].virt))
644 			break;
645 	}
646 	first = i;
647 	for (; i < ents; i++) {
648 		if (!in_obp_range(prom_trans[i].virt))
649 			break;
650 	}
651 	last = i;
652 
653 	for (i = 0; i < (last - first); i++) {
654 		struct linux_prom_translation *src = &prom_trans[i + first];
655 		struct linux_prom_translation *dest = &prom_trans[i];
656 
657 		*dest = *src;
658 	}
659 	for (; i < ents; i++) {
660 		struct linux_prom_translation *dest = &prom_trans[i];
661 		dest->virt = dest->size = dest->data = 0x0UL;
662 	}
663 
664 	prom_trans_ents = last - first;
665 
666 	if (tlb_type == spitfire) {
667 		/* Clear diag TTE bits. */
668 		for (i = 0; i < prom_trans_ents; i++)
669 			prom_trans[i].data &= ~0x0003fe0000000000UL;
670 	}
671 
672 	/* Force execute bit on.  */
673 	for (i = 0; i < prom_trans_ents; i++)
674 		prom_trans[i].data |= (tlb_type == hypervisor ?
675 				       _PAGE_EXEC_4V : _PAGE_EXEC_4U);
676 }
677 
hypervisor_tlb_lock(unsigned long vaddr,unsigned long pte,unsigned long mmu)678 static void __init hypervisor_tlb_lock(unsigned long vaddr,
679 				       unsigned long pte,
680 				       unsigned long mmu)
681 {
682 	unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
683 
684 	if (ret != 0) {
685 		prom_printf("hypervisor_tlb_lock[%lx:%x:%lx:%lx]: "
686 			    "errors with %lx\n", vaddr, 0, pte, mmu, ret);
687 		prom_halt();
688 	}
689 }
690 
691 static unsigned long kern_large_tte(unsigned long paddr);
692 
remap_kernel(void)693 static void __init remap_kernel(void)
694 {
695 	unsigned long phys_page, tte_vaddr, tte_data;
696 	int i, tlb_ent = sparc64_highest_locked_tlbent();
697 
698 	tte_vaddr = (unsigned long) KERNBASE;
699 	phys_page = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
700 	tte_data = kern_large_tte(phys_page);
701 
702 	kern_locked_tte_data = tte_data;
703 
704 	/* Now lock us into the TLBs via Hypervisor or OBP. */
705 	if (tlb_type == hypervisor) {
706 		for (i = 0; i < num_kernel_image_mappings; i++) {
707 			hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
708 			hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
709 			tte_vaddr += 0x400000;
710 			tte_data += 0x400000;
711 		}
712 	} else {
713 		for (i = 0; i < num_kernel_image_mappings; i++) {
714 			prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
715 			prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
716 			tte_vaddr += 0x400000;
717 			tte_data += 0x400000;
718 		}
719 		sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
720 	}
721 	if (tlb_type == cheetah_plus) {
722 		sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
723 					    CTX_CHEETAH_PLUS_NUC);
724 		sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
725 		sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
726 	}
727 }
728 
729 
inherit_prom_mappings(void)730 static void __init inherit_prom_mappings(void)
731 {
732 	/* Now fixup OBP's idea about where we really are mapped. */
733 	printk("Remapping the kernel... ");
734 	remap_kernel();
735 	printk("done.\n");
736 }
737 
prom_world(int enter)738 void prom_world(int enter)
739 {
740 	if (!enter)
741 		set_fs(get_fs());
742 
743 	__asm__ __volatile__("flushw");
744 }
745 
__flush_dcache_range(unsigned long start,unsigned long end)746 void __flush_dcache_range(unsigned long start, unsigned long end)
747 {
748 	unsigned long va;
749 
750 	if (tlb_type == spitfire) {
751 		int n = 0;
752 
753 		for (va = start; va < end; va += 32) {
754 			spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
755 			if (++n >= 512)
756 				break;
757 		}
758 	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
759 		start = __pa(start);
760 		end = __pa(end);
761 		for (va = start; va < end; va += 32)
762 			__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
763 					     "membar #Sync"
764 					     : /* no outputs */
765 					     : "r" (va),
766 					       "i" (ASI_DCACHE_INVALIDATE));
767 	}
768 }
769 EXPORT_SYMBOL(__flush_dcache_range);
770 
771 /* get_new_mmu_context() uses "cache + 1".  */
772 DEFINE_SPINLOCK(ctx_alloc_lock);
773 unsigned long tlb_context_cache = CTX_FIRST_VERSION;
774 #define MAX_CTX_NR	(1UL << CTX_NR_BITS)
775 #define CTX_BMAP_SLOTS	BITS_TO_LONGS(MAX_CTX_NR)
776 DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
777 DEFINE_PER_CPU(struct mm_struct *, per_cpu_secondary_mm) = {0};
778 
mmu_context_wrap(void)779 static void mmu_context_wrap(void)
780 {
781 	unsigned long old_ver = tlb_context_cache & CTX_VERSION_MASK;
782 	unsigned long new_ver, new_ctx, old_ctx;
783 	struct mm_struct *mm;
784 	int cpu;
785 
786 	bitmap_zero(mmu_context_bmap, 1 << CTX_NR_BITS);
787 
788 	/* Reserve kernel context */
789 	set_bit(0, mmu_context_bmap);
790 
791 	new_ver = (tlb_context_cache & CTX_VERSION_MASK) + CTX_FIRST_VERSION;
792 	if (unlikely(new_ver == 0))
793 		new_ver = CTX_FIRST_VERSION;
794 	tlb_context_cache = new_ver;
795 
796 	/*
797 	 * Make sure that any new mm that are added into per_cpu_secondary_mm,
798 	 * are going to go through get_new_mmu_context() path.
799 	 */
800 	mb();
801 
802 	/*
803 	 * Updated versions to current on those CPUs that had valid secondary
804 	 * contexts
805 	 */
806 	for_each_online_cpu(cpu) {
807 		/*
808 		 * If a new mm is stored after we took this mm from the array,
809 		 * it will go into get_new_mmu_context() path, because we
810 		 * already bumped the version in tlb_context_cache.
811 		 */
812 		mm = per_cpu(per_cpu_secondary_mm, cpu);
813 
814 		if (unlikely(!mm || mm == &init_mm))
815 			continue;
816 
817 		old_ctx = mm->context.sparc64_ctx_val;
818 		if (likely((old_ctx & CTX_VERSION_MASK) == old_ver)) {
819 			new_ctx = (old_ctx & ~CTX_VERSION_MASK) | new_ver;
820 			set_bit(new_ctx & CTX_NR_MASK, mmu_context_bmap);
821 			mm->context.sparc64_ctx_val = new_ctx;
822 		}
823 	}
824 }
825 
826 /* Caller does TLB context flushing on local CPU if necessary.
827  * The caller also ensures that CTX_VALID(mm->context) is false.
828  *
829  * We must be careful about boundary cases so that we never
830  * let the user have CTX 0 (nucleus) or we ever use a CTX
831  * version of zero (and thus NO_CONTEXT would not be caught
832  * by version mis-match tests in mmu_context.h).
833  *
834  * Always invoked with interrupts disabled.
835  */
get_new_mmu_context(struct mm_struct * mm)836 void get_new_mmu_context(struct mm_struct *mm)
837 {
838 	unsigned long ctx, new_ctx;
839 	unsigned long orig_pgsz_bits;
840 
841 	spin_lock(&ctx_alloc_lock);
842 retry:
843 	/* wrap might have happened, test again if our context became valid */
844 	if (unlikely(CTX_VALID(mm->context)))
845 		goto out;
846 	orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
847 	ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
848 	new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
849 	if (new_ctx >= (1 << CTX_NR_BITS)) {
850 		new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
851 		if (new_ctx >= ctx) {
852 			mmu_context_wrap();
853 			goto retry;
854 		}
855 	}
856 	if (mm->context.sparc64_ctx_val)
857 		cpumask_clear(mm_cpumask(mm));
858 	mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
859 	new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
860 	tlb_context_cache = new_ctx;
861 	mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
862 out:
863 	spin_unlock(&ctx_alloc_lock);
864 }
865 
866 static int numa_enabled = 1;
867 static int numa_debug;
868 
early_numa(char * p)869 static int __init early_numa(char *p)
870 {
871 	if (!p)
872 		return 0;
873 
874 	if (strstr(p, "off"))
875 		numa_enabled = 0;
876 
877 	if (strstr(p, "debug"))
878 		numa_debug = 1;
879 
880 	return 0;
881 }
882 early_param("numa", early_numa);
883 
884 #define numadbg(f, a...) \
885 do {	if (numa_debug) \
886 		printk(KERN_INFO f, ## a); \
887 } while (0)
888 
find_ramdisk(unsigned long phys_base)889 static void __init find_ramdisk(unsigned long phys_base)
890 {
891 #ifdef CONFIG_BLK_DEV_INITRD
892 	if (sparc_ramdisk_image || sparc_ramdisk_image64) {
893 		unsigned long ramdisk_image;
894 
895 		/* Older versions of the bootloader only supported a
896 		 * 32-bit physical address for the ramdisk image
897 		 * location, stored at sparc_ramdisk_image.  Newer
898 		 * SILO versions set sparc_ramdisk_image to zero and
899 		 * provide a full 64-bit physical address at
900 		 * sparc_ramdisk_image64.
901 		 */
902 		ramdisk_image = sparc_ramdisk_image;
903 		if (!ramdisk_image)
904 			ramdisk_image = sparc_ramdisk_image64;
905 
906 		/* Another bootloader quirk.  The bootloader normalizes
907 		 * the physical address to KERNBASE, so we have to
908 		 * factor that back out and add in the lowest valid
909 		 * physical page address to get the true physical address.
910 		 */
911 		ramdisk_image -= KERNBASE;
912 		ramdisk_image += phys_base;
913 
914 		numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
915 			ramdisk_image, sparc_ramdisk_size);
916 
917 		initrd_start = ramdisk_image;
918 		initrd_end = ramdisk_image + sparc_ramdisk_size;
919 
920 		memblock_reserve(initrd_start, sparc_ramdisk_size);
921 
922 		initrd_start += PAGE_OFFSET;
923 		initrd_end += PAGE_OFFSET;
924 	}
925 #endif
926 }
927 
928 struct node_mem_mask {
929 	unsigned long mask;
930 	unsigned long match;
931 };
932 static struct node_mem_mask node_masks[MAX_NUMNODES];
933 static int num_node_masks;
934 
935 #ifdef CONFIG_NEED_MULTIPLE_NODES
936 
937 struct mdesc_mlgroup {
938 	u64	node;
939 	u64	latency;
940 	u64	match;
941 	u64	mask;
942 };
943 
944 static struct mdesc_mlgroup *mlgroups;
945 static int num_mlgroups;
946 
947 int numa_cpu_lookup_table[NR_CPUS];
948 cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
949 
950 struct mdesc_mblock {
951 	u64	base;
952 	u64	size;
953 	u64	offset; /* RA-to-PA */
954 };
955 static struct mdesc_mblock *mblocks;
956 static int num_mblocks;
957 
addr_to_mblock(unsigned long addr)958 static struct mdesc_mblock * __init addr_to_mblock(unsigned long addr)
959 {
960 	struct mdesc_mblock *m = NULL;
961 	int i;
962 
963 	for (i = 0; i < num_mblocks; i++) {
964 		m = &mblocks[i];
965 
966 		if (addr >= m->base &&
967 		    addr < (m->base + m->size)) {
968 			break;
969 		}
970 	}
971 
972 	return m;
973 }
974 
memblock_nid_range_sun4u(u64 start,u64 end,int * nid)975 static u64 __init memblock_nid_range_sun4u(u64 start, u64 end, int *nid)
976 {
977 	int prev_nid, new_nid;
978 
979 	prev_nid = NUMA_NO_NODE;
980 	for ( ; start < end; start += PAGE_SIZE) {
981 		for (new_nid = 0; new_nid < num_node_masks; new_nid++) {
982 			struct node_mem_mask *p = &node_masks[new_nid];
983 
984 			if ((start & p->mask) == p->match) {
985 				if (prev_nid == NUMA_NO_NODE)
986 					prev_nid = new_nid;
987 				break;
988 			}
989 		}
990 
991 		if (new_nid == num_node_masks) {
992 			prev_nid = 0;
993 			WARN_ONCE(1, "addr[%Lx] doesn't match a NUMA node rule. Some memory will be owned by node 0.",
994 				  start);
995 			break;
996 		}
997 
998 		if (prev_nid != new_nid)
999 			break;
1000 	}
1001 	*nid = prev_nid;
1002 
1003 	return start > end ? end : start;
1004 }
1005 
memblock_nid_range(u64 start,u64 end,int * nid)1006 static u64 __init memblock_nid_range(u64 start, u64 end, int *nid)
1007 {
1008 	u64 ret_end, pa_start, m_mask, m_match, m_end;
1009 	struct mdesc_mblock *mblock;
1010 	int _nid, i;
1011 
1012 	if (tlb_type != hypervisor)
1013 		return memblock_nid_range_sun4u(start, end, nid);
1014 
1015 	mblock = addr_to_mblock(start);
1016 	if (!mblock) {
1017 		WARN_ONCE(1, "memblock_nid_range: Can't find mblock addr[%Lx]",
1018 			  start);
1019 
1020 		_nid = 0;
1021 		ret_end = end;
1022 		goto done;
1023 	}
1024 
1025 	pa_start = start + mblock->offset;
1026 	m_match = 0;
1027 	m_mask = 0;
1028 
1029 	for (_nid = 0; _nid < num_node_masks; _nid++) {
1030 		struct node_mem_mask *const m = &node_masks[_nid];
1031 
1032 		if ((pa_start & m->mask) == m->match) {
1033 			m_match = m->match;
1034 			m_mask = m->mask;
1035 			break;
1036 		}
1037 	}
1038 
1039 	if (num_node_masks == _nid) {
1040 		/* We could not find NUMA group, so default to 0, but lets
1041 		 * search for latency group, so we could calculate the correct
1042 		 * end address that we return
1043 		 */
1044 		_nid = 0;
1045 
1046 		for (i = 0; i < num_mlgroups; i++) {
1047 			struct mdesc_mlgroup *const m = &mlgroups[i];
1048 
1049 			if ((pa_start & m->mask) == m->match) {
1050 				m_match = m->match;
1051 				m_mask = m->mask;
1052 				break;
1053 			}
1054 		}
1055 
1056 		if (i == num_mlgroups) {
1057 			WARN_ONCE(1, "memblock_nid_range: Can't find latency group addr[%Lx]",
1058 				  start);
1059 
1060 			ret_end = end;
1061 			goto done;
1062 		}
1063 	}
1064 
1065 	/*
1066 	 * Each latency group has match and mask, and each memory block has an
1067 	 * offset.  An address belongs to a latency group if its address matches
1068 	 * the following formula: ((addr + offset) & mask) == match
1069 	 * It is, however, slow to check every single page if it matches a
1070 	 * particular latency group. As optimization we calculate end value by
1071 	 * using bit arithmetics.
1072 	 */
1073 	m_end = m_match + (1ul << __ffs(m_mask)) - mblock->offset;
1074 	m_end += pa_start & ~((1ul << fls64(m_mask)) - 1);
1075 	ret_end = m_end > end ? end : m_end;
1076 
1077 done:
1078 	*nid = _nid;
1079 	return ret_end;
1080 }
1081 #endif
1082 
1083 /* This must be invoked after performing all of the necessary
1084  * memblock_set_node() calls for 'nid'.  We need to be able to get
1085  * correct data from get_pfn_range_for_nid().
1086  */
allocate_node_data(int nid)1087 static void __init allocate_node_data(int nid)
1088 {
1089 	struct pglist_data *p;
1090 	unsigned long start_pfn, end_pfn;
1091 #ifdef CONFIG_NEED_MULTIPLE_NODES
1092 
1093 	NODE_DATA(nid) = memblock_alloc_node(sizeof(struct pglist_data),
1094 					     SMP_CACHE_BYTES, nid);
1095 	if (!NODE_DATA(nid)) {
1096 		prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
1097 		prom_halt();
1098 	}
1099 
1100 	NODE_DATA(nid)->node_id = nid;
1101 #endif
1102 
1103 	p = NODE_DATA(nid);
1104 
1105 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
1106 	p->node_start_pfn = start_pfn;
1107 	p->node_spanned_pages = end_pfn - start_pfn;
1108 }
1109 
init_node_masks_nonnuma(void)1110 static void init_node_masks_nonnuma(void)
1111 {
1112 #ifdef CONFIG_NEED_MULTIPLE_NODES
1113 	int i;
1114 #endif
1115 
1116 	numadbg("Initializing tables for non-numa.\n");
1117 
1118 	node_masks[0].mask = 0;
1119 	node_masks[0].match = 0;
1120 	num_node_masks = 1;
1121 
1122 #ifdef CONFIG_NEED_MULTIPLE_NODES
1123 	for (i = 0; i < NR_CPUS; i++)
1124 		numa_cpu_lookup_table[i] = 0;
1125 
1126 	cpumask_setall(&numa_cpumask_lookup_table[0]);
1127 #endif
1128 }
1129 
1130 #ifdef CONFIG_NEED_MULTIPLE_NODES
1131 struct pglist_data *node_data[MAX_NUMNODES];
1132 
1133 EXPORT_SYMBOL(numa_cpu_lookup_table);
1134 EXPORT_SYMBOL(numa_cpumask_lookup_table);
1135 EXPORT_SYMBOL(node_data);
1136 
scan_pio_for_cfg_handle(struct mdesc_handle * md,u64 pio,u32 cfg_handle)1137 static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
1138 				   u32 cfg_handle)
1139 {
1140 	u64 arc;
1141 
1142 	mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
1143 		u64 target = mdesc_arc_target(md, arc);
1144 		const u64 *val;
1145 
1146 		val = mdesc_get_property(md, target,
1147 					 "cfg-handle", NULL);
1148 		if (val && *val == cfg_handle)
1149 			return 0;
1150 	}
1151 	return -ENODEV;
1152 }
1153 
scan_arcs_for_cfg_handle(struct mdesc_handle * md,u64 grp,u32 cfg_handle)1154 static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
1155 				    u32 cfg_handle)
1156 {
1157 	u64 arc, candidate, best_latency = ~(u64)0;
1158 
1159 	candidate = MDESC_NODE_NULL;
1160 	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1161 		u64 target = mdesc_arc_target(md, arc);
1162 		const char *name = mdesc_node_name(md, target);
1163 		const u64 *val;
1164 
1165 		if (strcmp(name, "pio-latency-group"))
1166 			continue;
1167 
1168 		val = mdesc_get_property(md, target, "latency", NULL);
1169 		if (!val)
1170 			continue;
1171 
1172 		if (*val < best_latency) {
1173 			candidate = target;
1174 			best_latency = *val;
1175 		}
1176 	}
1177 
1178 	if (candidate == MDESC_NODE_NULL)
1179 		return -ENODEV;
1180 
1181 	return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
1182 }
1183 
of_node_to_nid(struct device_node * dp)1184 int of_node_to_nid(struct device_node *dp)
1185 {
1186 	const struct linux_prom64_registers *regs;
1187 	struct mdesc_handle *md;
1188 	u32 cfg_handle;
1189 	int count, nid;
1190 	u64 grp;
1191 
1192 	/* This is the right thing to do on currently supported
1193 	 * SUN4U NUMA platforms as well, as the PCI controller does
1194 	 * not sit behind any particular memory controller.
1195 	 */
1196 	if (!mlgroups)
1197 		return -1;
1198 
1199 	regs = of_get_property(dp, "reg", NULL);
1200 	if (!regs)
1201 		return -1;
1202 
1203 	cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
1204 
1205 	md = mdesc_grab();
1206 
1207 	count = 0;
1208 	nid = NUMA_NO_NODE;
1209 	mdesc_for_each_node_by_name(md, grp, "group") {
1210 		if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
1211 			nid = count;
1212 			break;
1213 		}
1214 		count++;
1215 	}
1216 
1217 	mdesc_release(md);
1218 
1219 	return nid;
1220 }
1221 
add_node_ranges(void)1222 static void __init add_node_ranges(void)
1223 {
1224 	struct memblock_region *reg;
1225 	unsigned long prev_max;
1226 
1227 memblock_resized:
1228 	prev_max = memblock.memory.max;
1229 
1230 	for_each_memblock(memory, reg) {
1231 		unsigned long size = reg->size;
1232 		unsigned long start, end;
1233 
1234 		start = reg->base;
1235 		end = start + size;
1236 		while (start < end) {
1237 			unsigned long this_end;
1238 			int nid;
1239 
1240 			this_end = memblock_nid_range(start, end, &nid);
1241 
1242 			numadbg("Setting memblock NUMA node nid[%d] "
1243 				"start[%lx] end[%lx]\n",
1244 				nid, start, this_end);
1245 
1246 			memblock_set_node(start, this_end - start,
1247 					  &memblock.memory, nid);
1248 			if (memblock.memory.max != prev_max)
1249 				goto memblock_resized;
1250 			start = this_end;
1251 		}
1252 	}
1253 }
1254 
grab_mlgroups(struct mdesc_handle * md)1255 static int __init grab_mlgroups(struct mdesc_handle *md)
1256 {
1257 	unsigned long paddr;
1258 	int count = 0;
1259 	u64 node;
1260 
1261 	mdesc_for_each_node_by_name(md, node, "memory-latency-group")
1262 		count++;
1263 	if (!count)
1264 		return -ENOENT;
1265 
1266 	paddr = memblock_phys_alloc(count * sizeof(struct mdesc_mlgroup),
1267 				    SMP_CACHE_BYTES);
1268 	if (!paddr)
1269 		return -ENOMEM;
1270 
1271 	mlgroups = __va(paddr);
1272 	num_mlgroups = count;
1273 
1274 	count = 0;
1275 	mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
1276 		struct mdesc_mlgroup *m = &mlgroups[count++];
1277 		const u64 *val;
1278 
1279 		m->node = node;
1280 
1281 		val = mdesc_get_property(md, node, "latency", NULL);
1282 		m->latency = *val;
1283 		val = mdesc_get_property(md, node, "address-match", NULL);
1284 		m->match = *val;
1285 		val = mdesc_get_property(md, node, "address-mask", NULL);
1286 		m->mask = *val;
1287 
1288 		numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
1289 			"match[%llx] mask[%llx]\n",
1290 			count - 1, m->node, m->latency, m->match, m->mask);
1291 	}
1292 
1293 	return 0;
1294 }
1295 
grab_mblocks(struct mdesc_handle * md)1296 static int __init grab_mblocks(struct mdesc_handle *md)
1297 {
1298 	unsigned long paddr;
1299 	int count = 0;
1300 	u64 node;
1301 
1302 	mdesc_for_each_node_by_name(md, node, "mblock")
1303 		count++;
1304 	if (!count)
1305 		return -ENOENT;
1306 
1307 	paddr = memblock_phys_alloc(count * sizeof(struct mdesc_mblock),
1308 				    SMP_CACHE_BYTES);
1309 	if (!paddr)
1310 		return -ENOMEM;
1311 
1312 	mblocks = __va(paddr);
1313 	num_mblocks = count;
1314 
1315 	count = 0;
1316 	mdesc_for_each_node_by_name(md, node, "mblock") {
1317 		struct mdesc_mblock *m = &mblocks[count++];
1318 		const u64 *val;
1319 
1320 		val = mdesc_get_property(md, node, "base", NULL);
1321 		m->base = *val;
1322 		val = mdesc_get_property(md, node, "size", NULL);
1323 		m->size = *val;
1324 		val = mdesc_get_property(md, node,
1325 					 "address-congruence-offset", NULL);
1326 
1327 		/* The address-congruence-offset property is optional.
1328 		 * Explicity zero it be identifty this.
1329 		 */
1330 		if (val)
1331 			m->offset = *val;
1332 		else
1333 			m->offset = 0UL;
1334 
1335 		numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
1336 			count - 1, m->base, m->size, m->offset);
1337 	}
1338 
1339 	return 0;
1340 }
1341 
numa_parse_mdesc_group_cpus(struct mdesc_handle * md,u64 grp,cpumask_t * mask)1342 static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
1343 					       u64 grp, cpumask_t *mask)
1344 {
1345 	u64 arc;
1346 
1347 	cpumask_clear(mask);
1348 
1349 	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
1350 		u64 target = mdesc_arc_target(md, arc);
1351 		const char *name = mdesc_node_name(md, target);
1352 		const u64 *id;
1353 
1354 		if (strcmp(name, "cpu"))
1355 			continue;
1356 		id = mdesc_get_property(md, target, "id", NULL);
1357 		if (*id < nr_cpu_ids)
1358 			cpumask_set_cpu(*id, mask);
1359 	}
1360 }
1361 
find_mlgroup(u64 node)1362 static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
1363 {
1364 	int i;
1365 
1366 	for (i = 0; i < num_mlgroups; i++) {
1367 		struct mdesc_mlgroup *m = &mlgroups[i];
1368 		if (m->node == node)
1369 			return m;
1370 	}
1371 	return NULL;
1372 }
1373 
__node_distance(int from,int to)1374 int __node_distance(int from, int to)
1375 {
1376 	if ((from >= MAX_NUMNODES) || (to >= MAX_NUMNODES)) {
1377 		pr_warn("Returning default NUMA distance value for %d->%d\n",
1378 			from, to);
1379 		return (from == to) ? LOCAL_DISTANCE : REMOTE_DISTANCE;
1380 	}
1381 	return numa_latency[from][to];
1382 }
1383 EXPORT_SYMBOL(__node_distance);
1384 
find_best_numa_node_for_mlgroup(struct mdesc_mlgroup * grp)1385 static int __init find_best_numa_node_for_mlgroup(struct mdesc_mlgroup *grp)
1386 {
1387 	int i;
1388 
1389 	for (i = 0; i < MAX_NUMNODES; i++) {
1390 		struct node_mem_mask *n = &node_masks[i];
1391 
1392 		if ((grp->mask == n->mask) && (grp->match == n->match))
1393 			break;
1394 	}
1395 	return i;
1396 }
1397 
find_numa_latencies_for_group(struct mdesc_handle * md,u64 grp,int index)1398 static void __init find_numa_latencies_for_group(struct mdesc_handle *md,
1399 						 u64 grp, int index)
1400 {
1401 	u64 arc;
1402 
1403 	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1404 		int tnode;
1405 		u64 target = mdesc_arc_target(md, arc);
1406 		struct mdesc_mlgroup *m = find_mlgroup(target);
1407 
1408 		if (!m)
1409 			continue;
1410 		tnode = find_best_numa_node_for_mlgroup(m);
1411 		if (tnode == MAX_NUMNODES)
1412 			continue;
1413 		numa_latency[index][tnode] = m->latency;
1414 	}
1415 }
1416 
numa_attach_mlgroup(struct mdesc_handle * md,u64 grp,int index)1417 static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
1418 				      int index)
1419 {
1420 	struct mdesc_mlgroup *candidate = NULL;
1421 	u64 arc, best_latency = ~(u64)0;
1422 	struct node_mem_mask *n;
1423 
1424 	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1425 		u64 target = mdesc_arc_target(md, arc);
1426 		struct mdesc_mlgroup *m = find_mlgroup(target);
1427 		if (!m)
1428 			continue;
1429 		if (m->latency < best_latency) {
1430 			candidate = m;
1431 			best_latency = m->latency;
1432 		}
1433 	}
1434 	if (!candidate)
1435 		return -ENOENT;
1436 
1437 	if (num_node_masks != index) {
1438 		printk(KERN_ERR "Inconsistent NUMA state, "
1439 		       "index[%d] != num_node_masks[%d]\n",
1440 		       index, num_node_masks);
1441 		return -EINVAL;
1442 	}
1443 
1444 	n = &node_masks[num_node_masks++];
1445 
1446 	n->mask = candidate->mask;
1447 	n->match = candidate->match;
1448 
1449 	numadbg("NUMA NODE[%d]: mask[%lx] match[%lx] (latency[%llx])\n",
1450 		index, n->mask, n->match, candidate->latency);
1451 
1452 	return 0;
1453 }
1454 
numa_parse_mdesc_group(struct mdesc_handle * md,u64 grp,int index)1455 static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
1456 					 int index)
1457 {
1458 	cpumask_t mask;
1459 	int cpu;
1460 
1461 	numa_parse_mdesc_group_cpus(md, grp, &mask);
1462 
1463 	for_each_cpu(cpu, &mask)
1464 		numa_cpu_lookup_table[cpu] = index;
1465 	cpumask_copy(&numa_cpumask_lookup_table[index], &mask);
1466 
1467 	if (numa_debug) {
1468 		printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
1469 		for_each_cpu(cpu, &mask)
1470 			printk("%d ", cpu);
1471 		printk("]\n");
1472 	}
1473 
1474 	return numa_attach_mlgroup(md, grp, index);
1475 }
1476 
numa_parse_mdesc(void)1477 static int __init numa_parse_mdesc(void)
1478 {
1479 	struct mdesc_handle *md = mdesc_grab();
1480 	int i, j, err, count;
1481 	u64 node;
1482 
1483 	node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1484 	if (node == MDESC_NODE_NULL) {
1485 		mdesc_release(md);
1486 		return -ENOENT;
1487 	}
1488 
1489 	err = grab_mblocks(md);
1490 	if (err < 0)
1491 		goto out;
1492 
1493 	err = grab_mlgroups(md);
1494 	if (err < 0)
1495 		goto out;
1496 
1497 	count = 0;
1498 	mdesc_for_each_node_by_name(md, node, "group") {
1499 		err = numa_parse_mdesc_group(md, node, count);
1500 		if (err < 0)
1501 			break;
1502 		count++;
1503 	}
1504 
1505 	count = 0;
1506 	mdesc_for_each_node_by_name(md, node, "group") {
1507 		find_numa_latencies_for_group(md, node, count);
1508 		count++;
1509 	}
1510 
1511 	/* Normalize numa latency matrix according to ACPI SLIT spec. */
1512 	for (i = 0; i < MAX_NUMNODES; i++) {
1513 		u64 self_latency = numa_latency[i][i];
1514 
1515 		for (j = 0; j < MAX_NUMNODES; j++) {
1516 			numa_latency[i][j] =
1517 				(numa_latency[i][j] * LOCAL_DISTANCE) /
1518 				self_latency;
1519 		}
1520 	}
1521 
1522 	add_node_ranges();
1523 
1524 	for (i = 0; i < num_node_masks; i++) {
1525 		allocate_node_data(i);
1526 		node_set_online(i);
1527 	}
1528 
1529 	err = 0;
1530 out:
1531 	mdesc_release(md);
1532 	return err;
1533 }
1534 
numa_parse_jbus(void)1535 static int __init numa_parse_jbus(void)
1536 {
1537 	unsigned long cpu, index;
1538 
1539 	/* NUMA node id is encoded in bits 36 and higher, and there is
1540 	 * a 1-to-1 mapping from CPU ID to NUMA node ID.
1541 	 */
1542 	index = 0;
1543 	for_each_present_cpu(cpu) {
1544 		numa_cpu_lookup_table[cpu] = index;
1545 		cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu));
1546 		node_masks[index].mask = ~((1UL << 36UL) - 1UL);
1547 		node_masks[index].match = cpu << 36UL;
1548 
1549 		index++;
1550 	}
1551 	num_node_masks = index;
1552 
1553 	add_node_ranges();
1554 
1555 	for (index = 0; index < num_node_masks; index++) {
1556 		allocate_node_data(index);
1557 		node_set_online(index);
1558 	}
1559 
1560 	return 0;
1561 }
1562 
numa_parse_sun4u(void)1563 static int __init numa_parse_sun4u(void)
1564 {
1565 	if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1566 		unsigned long ver;
1567 
1568 		__asm__ ("rdpr %%ver, %0" : "=r" (ver));
1569 		if ((ver >> 32UL) == __JALAPENO_ID ||
1570 		    (ver >> 32UL) == __SERRANO_ID)
1571 			return numa_parse_jbus();
1572 	}
1573 	return -1;
1574 }
1575 
bootmem_init_numa(void)1576 static int __init bootmem_init_numa(void)
1577 {
1578 	int i, j;
1579 	int err = -1;
1580 
1581 	numadbg("bootmem_init_numa()\n");
1582 
1583 	/* Some sane defaults for numa latency values */
1584 	for (i = 0; i < MAX_NUMNODES; i++) {
1585 		for (j = 0; j < MAX_NUMNODES; j++)
1586 			numa_latency[i][j] = (i == j) ?
1587 				LOCAL_DISTANCE : REMOTE_DISTANCE;
1588 	}
1589 
1590 	if (numa_enabled) {
1591 		if (tlb_type == hypervisor)
1592 			err = numa_parse_mdesc();
1593 		else
1594 			err = numa_parse_sun4u();
1595 	}
1596 	return err;
1597 }
1598 
1599 #else
1600 
bootmem_init_numa(void)1601 static int bootmem_init_numa(void)
1602 {
1603 	return -1;
1604 }
1605 
1606 #endif
1607 
bootmem_init_nonnuma(void)1608 static void __init bootmem_init_nonnuma(void)
1609 {
1610 	unsigned long top_of_ram = memblock_end_of_DRAM();
1611 	unsigned long total_ram = memblock_phys_mem_size();
1612 
1613 	numadbg("bootmem_init_nonnuma()\n");
1614 
1615 	printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1616 	       top_of_ram, total_ram);
1617 	printk(KERN_INFO "Memory hole size: %ldMB\n",
1618 	       (top_of_ram - total_ram) >> 20);
1619 
1620 	init_node_masks_nonnuma();
1621 	memblock_set_node(0, PHYS_ADDR_MAX, &memblock.memory, 0);
1622 	allocate_node_data(0);
1623 	node_set_online(0);
1624 }
1625 
bootmem_init(unsigned long phys_base)1626 static unsigned long __init bootmem_init(unsigned long phys_base)
1627 {
1628 	unsigned long end_pfn;
1629 
1630 	end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1631 	max_pfn = max_low_pfn = end_pfn;
1632 	min_low_pfn = (phys_base >> PAGE_SHIFT);
1633 
1634 	if (bootmem_init_numa() < 0)
1635 		bootmem_init_nonnuma();
1636 
1637 	/* Dump memblock with node info. */
1638 	memblock_dump_all();
1639 
1640 	/* XXX cpu notifier XXX */
1641 
1642 	sparse_memory_present_with_active_regions(MAX_NUMNODES);
1643 	sparse_init();
1644 
1645 	return end_pfn;
1646 }
1647 
1648 static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1649 static int pall_ents __initdata;
1650 
1651 static unsigned long max_phys_bits = 40;
1652 
kern_addr_valid(unsigned long addr)1653 bool kern_addr_valid(unsigned long addr)
1654 {
1655 	pgd_t *pgd;
1656 	pud_t *pud;
1657 	pmd_t *pmd;
1658 	pte_t *pte;
1659 
1660 	if ((long)addr < 0L) {
1661 		unsigned long pa = __pa(addr);
1662 
1663 		if ((pa >> max_phys_bits) != 0UL)
1664 			return false;
1665 
1666 		return pfn_valid(pa >> PAGE_SHIFT);
1667 	}
1668 
1669 	if (addr >= (unsigned long) KERNBASE &&
1670 	    addr < (unsigned long)&_end)
1671 		return true;
1672 
1673 	pgd = pgd_offset_k(addr);
1674 	if (pgd_none(*pgd))
1675 		return 0;
1676 
1677 	pud = pud_offset(pgd, addr);
1678 	if (pud_none(*pud))
1679 		return 0;
1680 
1681 	if (pud_large(*pud))
1682 		return pfn_valid(pud_pfn(*pud));
1683 
1684 	pmd = pmd_offset(pud, addr);
1685 	if (pmd_none(*pmd))
1686 		return 0;
1687 
1688 	if (pmd_large(*pmd))
1689 		return pfn_valid(pmd_pfn(*pmd));
1690 
1691 	pte = pte_offset_kernel(pmd, addr);
1692 	if (pte_none(*pte))
1693 		return 0;
1694 
1695 	return pfn_valid(pte_pfn(*pte));
1696 }
1697 EXPORT_SYMBOL(kern_addr_valid);
1698 
kernel_map_hugepud(unsigned long vstart,unsigned long vend,pud_t * pud)1699 static unsigned long __ref kernel_map_hugepud(unsigned long vstart,
1700 					      unsigned long vend,
1701 					      pud_t *pud)
1702 {
1703 	const unsigned long mask16gb = (1UL << 34) - 1UL;
1704 	u64 pte_val = vstart;
1705 
1706 	/* Each PUD is 8GB */
1707 	if ((vstart & mask16gb) ||
1708 	    (vend - vstart <= mask16gb)) {
1709 		pte_val ^= kern_linear_pte_xor[2];
1710 		pud_val(*pud) = pte_val | _PAGE_PUD_HUGE;
1711 
1712 		return vstart + PUD_SIZE;
1713 	}
1714 
1715 	pte_val ^= kern_linear_pte_xor[3];
1716 	pte_val |= _PAGE_PUD_HUGE;
1717 
1718 	vend = vstart + mask16gb + 1UL;
1719 	while (vstart < vend) {
1720 		pud_val(*pud) = pte_val;
1721 
1722 		pte_val += PUD_SIZE;
1723 		vstart += PUD_SIZE;
1724 		pud++;
1725 	}
1726 	return vstart;
1727 }
1728 
kernel_can_map_hugepud(unsigned long vstart,unsigned long vend,bool guard)1729 static bool kernel_can_map_hugepud(unsigned long vstart, unsigned long vend,
1730 				   bool guard)
1731 {
1732 	if (guard && !(vstart & ~PUD_MASK) && (vend - vstart) >= PUD_SIZE)
1733 		return true;
1734 
1735 	return false;
1736 }
1737 
kernel_map_hugepmd(unsigned long vstart,unsigned long vend,pmd_t * pmd)1738 static unsigned long __ref kernel_map_hugepmd(unsigned long vstart,
1739 					      unsigned long vend,
1740 					      pmd_t *pmd)
1741 {
1742 	const unsigned long mask256mb = (1UL << 28) - 1UL;
1743 	const unsigned long mask2gb = (1UL << 31) - 1UL;
1744 	u64 pte_val = vstart;
1745 
1746 	/* Each PMD is 8MB */
1747 	if ((vstart & mask256mb) ||
1748 	    (vend - vstart <= mask256mb)) {
1749 		pte_val ^= kern_linear_pte_xor[0];
1750 		pmd_val(*pmd) = pte_val | _PAGE_PMD_HUGE;
1751 
1752 		return vstart + PMD_SIZE;
1753 	}
1754 
1755 	if ((vstart & mask2gb) ||
1756 	    (vend - vstart <= mask2gb)) {
1757 		pte_val ^= kern_linear_pte_xor[1];
1758 		pte_val |= _PAGE_PMD_HUGE;
1759 		vend = vstart + mask256mb + 1UL;
1760 	} else {
1761 		pte_val ^= kern_linear_pte_xor[2];
1762 		pte_val |= _PAGE_PMD_HUGE;
1763 		vend = vstart + mask2gb + 1UL;
1764 	}
1765 
1766 	while (vstart < vend) {
1767 		pmd_val(*pmd) = pte_val;
1768 
1769 		pte_val += PMD_SIZE;
1770 		vstart += PMD_SIZE;
1771 		pmd++;
1772 	}
1773 
1774 	return vstart;
1775 }
1776 
kernel_can_map_hugepmd(unsigned long vstart,unsigned long vend,bool guard)1777 static bool kernel_can_map_hugepmd(unsigned long vstart, unsigned long vend,
1778 				   bool guard)
1779 {
1780 	if (guard && !(vstart & ~PMD_MASK) && (vend - vstart) >= PMD_SIZE)
1781 		return true;
1782 
1783 	return false;
1784 }
1785 
kernel_map_range(unsigned long pstart,unsigned long pend,pgprot_t prot,bool use_huge)1786 static unsigned long __ref kernel_map_range(unsigned long pstart,
1787 					    unsigned long pend, pgprot_t prot,
1788 					    bool use_huge)
1789 {
1790 	unsigned long vstart = PAGE_OFFSET + pstart;
1791 	unsigned long vend = PAGE_OFFSET + pend;
1792 	unsigned long alloc_bytes = 0UL;
1793 
1794 	if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1795 		prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1796 			    vstart, vend);
1797 		prom_halt();
1798 	}
1799 
1800 	while (vstart < vend) {
1801 		unsigned long this_end, paddr = __pa(vstart);
1802 		pgd_t *pgd = pgd_offset_k(vstart);
1803 		pud_t *pud;
1804 		pmd_t *pmd;
1805 		pte_t *pte;
1806 
1807 		if (pgd_none(*pgd)) {
1808 			pud_t *new;
1809 
1810 			new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE,
1811 						  PAGE_SIZE);
1812 			if (!new)
1813 				goto err_alloc;
1814 			alloc_bytes += PAGE_SIZE;
1815 			pgd_populate(&init_mm, pgd, new);
1816 		}
1817 		pud = pud_offset(pgd, vstart);
1818 		if (pud_none(*pud)) {
1819 			pmd_t *new;
1820 
1821 			if (kernel_can_map_hugepud(vstart, vend, use_huge)) {
1822 				vstart = kernel_map_hugepud(vstart, vend, pud);
1823 				continue;
1824 			}
1825 			new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE,
1826 						  PAGE_SIZE);
1827 			if (!new)
1828 				goto err_alloc;
1829 			alloc_bytes += PAGE_SIZE;
1830 			pud_populate(&init_mm, pud, new);
1831 		}
1832 
1833 		pmd = pmd_offset(pud, vstart);
1834 		if (pmd_none(*pmd)) {
1835 			pte_t *new;
1836 
1837 			if (kernel_can_map_hugepmd(vstart, vend, use_huge)) {
1838 				vstart = kernel_map_hugepmd(vstart, vend, pmd);
1839 				continue;
1840 			}
1841 			new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE,
1842 						  PAGE_SIZE);
1843 			if (!new)
1844 				goto err_alloc;
1845 			alloc_bytes += PAGE_SIZE;
1846 			pmd_populate_kernel(&init_mm, pmd, new);
1847 		}
1848 
1849 		pte = pte_offset_kernel(pmd, vstart);
1850 		this_end = (vstart + PMD_SIZE) & PMD_MASK;
1851 		if (this_end > vend)
1852 			this_end = vend;
1853 
1854 		while (vstart < this_end) {
1855 			pte_val(*pte) = (paddr | pgprot_val(prot));
1856 
1857 			vstart += PAGE_SIZE;
1858 			paddr += PAGE_SIZE;
1859 			pte++;
1860 		}
1861 	}
1862 
1863 	return alloc_bytes;
1864 
1865 err_alloc:
1866 	panic("%s: Failed to allocate %lu bytes align=%lx from=%lx\n",
1867 	      __func__, PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1868 	return -ENOMEM;
1869 }
1870 
flush_all_kernel_tsbs(void)1871 static void __init flush_all_kernel_tsbs(void)
1872 {
1873 	int i;
1874 
1875 	for (i = 0; i < KERNEL_TSB_NENTRIES; i++) {
1876 		struct tsb *ent = &swapper_tsb[i];
1877 
1878 		ent->tag = (1UL << TSB_TAG_INVALID_BIT);
1879 	}
1880 #ifndef CONFIG_DEBUG_PAGEALLOC
1881 	for (i = 0; i < KERNEL_TSB4M_NENTRIES; i++) {
1882 		struct tsb *ent = &swapper_4m_tsb[i];
1883 
1884 		ent->tag = (1UL << TSB_TAG_INVALID_BIT);
1885 	}
1886 #endif
1887 }
1888 
1889 extern unsigned int kvmap_linear_patch[1];
1890 
kernel_physical_mapping_init(void)1891 static void __init kernel_physical_mapping_init(void)
1892 {
1893 	unsigned long i, mem_alloced = 0UL;
1894 	bool use_huge = true;
1895 
1896 #ifdef CONFIG_DEBUG_PAGEALLOC
1897 	use_huge = false;
1898 #endif
1899 	for (i = 0; i < pall_ents; i++) {
1900 		unsigned long phys_start, phys_end;
1901 
1902 		phys_start = pall[i].phys_addr;
1903 		phys_end = phys_start + pall[i].reg_size;
1904 
1905 		mem_alloced += kernel_map_range(phys_start, phys_end,
1906 						PAGE_KERNEL, use_huge);
1907 	}
1908 
1909 	printk("Allocated %ld bytes for kernel page tables.\n",
1910 	       mem_alloced);
1911 
1912 	kvmap_linear_patch[0] = 0x01000000; /* nop */
1913 	flushi(&kvmap_linear_patch[0]);
1914 
1915 	flush_all_kernel_tsbs();
1916 
1917 	__flush_tlb_all();
1918 }
1919 
1920 #ifdef CONFIG_DEBUG_PAGEALLOC
__kernel_map_pages(struct page * page,int numpages,int enable)1921 void __kernel_map_pages(struct page *page, int numpages, int enable)
1922 {
1923 	unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1924 	unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1925 
1926 	kernel_map_range(phys_start, phys_end,
1927 			 (enable ? PAGE_KERNEL : __pgprot(0)), false);
1928 
1929 	flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1930 			       PAGE_OFFSET + phys_end);
1931 
1932 	/* we should perform an IPI and flush all tlbs,
1933 	 * but that can deadlock->flush only current cpu.
1934 	 */
1935 	__flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1936 				 PAGE_OFFSET + phys_end);
1937 }
1938 #endif
1939 
find_ecache_flush_span(unsigned long size)1940 unsigned long __init find_ecache_flush_span(unsigned long size)
1941 {
1942 	int i;
1943 
1944 	for (i = 0; i < pavail_ents; i++) {
1945 		if (pavail[i].reg_size >= size)
1946 			return pavail[i].phys_addr;
1947 	}
1948 
1949 	return ~0UL;
1950 }
1951 
1952 unsigned long PAGE_OFFSET;
1953 EXPORT_SYMBOL(PAGE_OFFSET);
1954 
1955 unsigned long VMALLOC_END   = 0x0000010000000000UL;
1956 EXPORT_SYMBOL(VMALLOC_END);
1957 
1958 unsigned long sparc64_va_hole_top =    0xfffff80000000000UL;
1959 unsigned long sparc64_va_hole_bottom = 0x0000080000000000UL;
1960 
setup_page_offset(void)1961 static void __init setup_page_offset(void)
1962 {
1963 	if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1964 		/* Cheetah/Panther support a full 64-bit virtual
1965 		 * address, so we can use all that our page tables
1966 		 * support.
1967 		 */
1968 		sparc64_va_hole_top =    0xfff0000000000000UL;
1969 		sparc64_va_hole_bottom = 0x0010000000000000UL;
1970 
1971 		max_phys_bits = 42;
1972 	} else if (tlb_type == hypervisor) {
1973 		switch (sun4v_chip_type) {
1974 		case SUN4V_CHIP_NIAGARA1:
1975 		case SUN4V_CHIP_NIAGARA2:
1976 			/* T1 and T2 support 48-bit virtual addresses.  */
1977 			sparc64_va_hole_top =    0xffff800000000000UL;
1978 			sparc64_va_hole_bottom = 0x0000800000000000UL;
1979 
1980 			max_phys_bits = 39;
1981 			break;
1982 		case SUN4V_CHIP_NIAGARA3:
1983 			/* T3 supports 48-bit virtual addresses.  */
1984 			sparc64_va_hole_top =    0xffff800000000000UL;
1985 			sparc64_va_hole_bottom = 0x0000800000000000UL;
1986 
1987 			max_phys_bits = 43;
1988 			break;
1989 		case SUN4V_CHIP_NIAGARA4:
1990 		case SUN4V_CHIP_NIAGARA5:
1991 		case SUN4V_CHIP_SPARC64X:
1992 		case SUN4V_CHIP_SPARC_M6:
1993 			/* T4 and later support 52-bit virtual addresses.  */
1994 			sparc64_va_hole_top =    0xfff8000000000000UL;
1995 			sparc64_va_hole_bottom = 0x0008000000000000UL;
1996 			max_phys_bits = 47;
1997 			break;
1998 		case SUN4V_CHIP_SPARC_M7:
1999 		case SUN4V_CHIP_SPARC_SN:
2000 			/* M7 and later support 52-bit virtual addresses.  */
2001 			sparc64_va_hole_top =    0xfff8000000000000UL;
2002 			sparc64_va_hole_bottom = 0x0008000000000000UL;
2003 			max_phys_bits = 49;
2004 			break;
2005 		case SUN4V_CHIP_SPARC_M8:
2006 		default:
2007 			/* M8 and later support 54-bit virtual addresses.
2008 			 * However, restricting M8 and above VA bits to 53
2009 			 * as 4-level page table cannot support more than
2010 			 * 53 VA bits.
2011 			 */
2012 			sparc64_va_hole_top =    0xfff0000000000000UL;
2013 			sparc64_va_hole_bottom = 0x0010000000000000UL;
2014 			max_phys_bits = 51;
2015 			break;
2016 		}
2017 	}
2018 
2019 	if (max_phys_bits > MAX_PHYS_ADDRESS_BITS) {
2020 		prom_printf("MAX_PHYS_ADDRESS_BITS is too small, need %lu\n",
2021 			    max_phys_bits);
2022 		prom_halt();
2023 	}
2024 
2025 	PAGE_OFFSET = sparc64_va_hole_top;
2026 	VMALLOC_END = ((sparc64_va_hole_bottom >> 1) +
2027 		       (sparc64_va_hole_bottom >> 2));
2028 
2029 	pr_info("MM: PAGE_OFFSET is 0x%016lx (max_phys_bits == %lu)\n",
2030 		PAGE_OFFSET, max_phys_bits);
2031 	pr_info("MM: VMALLOC [0x%016lx --> 0x%016lx]\n",
2032 		VMALLOC_START, VMALLOC_END);
2033 	pr_info("MM: VMEMMAP [0x%016lx --> 0x%016lx]\n",
2034 		VMEMMAP_BASE, VMEMMAP_BASE << 1);
2035 }
2036 
tsb_phys_patch(void)2037 static void __init tsb_phys_patch(void)
2038 {
2039 	struct tsb_ldquad_phys_patch_entry *pquad;
2040 	struct tsb_phys_patch_entry *p;
2041 
2042 	pquad = &__tsb_ldquad_phys_patch;
2043 	while (pquad < &__tsb_ldquad_phys_patch_end) {
2044 		unsigned long addr = pquad->addr;
2045 
2046 		if (tlb_type == hypervisor)
2047 			*(unsigned int *) addr = pquad->sun4v_insn;
2048 		else
2049 			*(unsigned int *) addr = pquad->sun4u_insn;
2050 		wmb();
2051 		__asm__ __volatile__("flush	%0"
2052 				     : /* no outputs */
2053 				     : "r" (addr));
2054 
2055 		pquad++;
2056 	}
2057 
2058 	p = &__tsb_phys_patch;
2059 	while (p < &__tsb_phys_patch_end) {
2060 		unsigned long addr = p->addr;
2061 
2062 		*(unsigned int *) addr = p->insn;
2063 		wmb();
2064 		__asm__ __volatile__("flush	%0"
2065 				     : /* no outputs */
2066 				     : "r" (addr));
2067 
2068 		p++;
2069 	}
2070 }
2071 
2072 /* Don't mark as init, we give this to the Hypervisor.  */
2073 #ifndef CONFIG_DEBUG_PAGEALLOC
2074 #define NUM_KTSB_DESCR	2
2075 #else
2076 #define NUM_KTSB_DESCR	1
2077 #endif
2078 static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
2079 
2080 /* The swapper TSBs are loaded with a base sequence of:
2081  *
2082  *	sethi	%uhi(SYMBOL), REG1
2083  *	sethi	%hi(SYMBOL), REG2
2084  *	or	REG1, %ulo(SYMBOL), REG1
2085  *	or	REG2, %lo(SYMBOL), REG2
2086  *	sllx	REG1, 32, REG1
2087  *	or	REG1, REG2, REG1
2088  *
2089  * When we use physical addressing for the TSB accesses, we patch the
2090  * first four instructions in the above sequence.
2091  */
2092 
patch_one_ktsb_phys(unsigned int * start,unsigned int * end,unsigned long pa)2093 static void patch_one_ktsb_phys(unsigned int *start, unsigned int *end, unsigned long pa)
2094 {
2095 	unsigned long high_bits, low_bits;
2096 
2097 	high_bits = (pa >> 32) & 0xffffffff;
2098 	low_bits = (pa >> 0) & 0xffffffff;
2099 
2100 	while (start < end) {
2101 		unsigned int *ia = (unsigned int *)(unsigned long)*start;
2102 
2103 		ia[0] = (ia[0] & ~0x3fffff) | (high_bits >> 10);
2104 		__asm__ __volatile__("flush	%0" : : "r" (ia));
2105 
2106 		ia[1] = (ia[1] & ~0x3fffff) | (low_bits >> 10);
2107 		__asm__ __volatile__("flush	%0" : : "r" (ia + 1));
2108 
2109 		ia[2] = (ia[2] & ~0x1fff) | (high_bits & 0x3ff);
2110 		__asm__ __volatile__("flush	%0" : : "r" (ia + 2));
2111 
2112 		ia[3] = (ia[3] & ~0x1fff) | (low_bits & 0x3ff);
2113 		__asm__ __volatile__("flush	%0" : : "r" (ia + 3));
2114 
2115 		start++;
2116 	}
2117 }
2118 
ktsb_phys_patch(void)2119 static void ktsb_phys_patch(void)
2120 {
2121 	extern unsigned int __swapper_tsb_phys_patch;
2122 	extern unsigned int __swapper_tsb_phys_patch_end;
2123 	unsigned long ktsb_pa;
2124 
2125 	ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
2126 	patch_one_ktsb_phys(&__swapper_tsb_phys_patch,
2127 			    &__swapper_tsb_phys_patch_end, ktsb_pa);
2128 #ifndef CONFIG_DEBUG_PAGEALLOC
2129 	{
2130 	extern unsigned int __swapper_4m_tsb_phys_patch;
2131 	extern unsigned int __swapper_4m_tsb_phys_patch_end;
2132 	ktsb_pa = (kern_base +
2133 		   ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
2134 	patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch,
2135 			    &__swapper_4m_tsb_phys_patch_end, ktsb_pa);
2136 	}
2137 #endif
2138 }
2139 
sun4v_ktsb_init(void)2140 static void __init sun4v_ktsb_init(void)
2141 {
2142 	unsigned long ktsb_pa;
2143 
2144 	/* First KTSB for PAGE_SIZE mappings.  */
2145 	ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
2146 
2147 	switch (PAGE_SIZE) {
2148 	case 8 * 1024:
2149 	default:
2150 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
2151 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
2152 		break;
2153 
2154 	case 64 * 1024:
2155 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
2156 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
2157 		break;
2158 
2159 	case 512 * 1024:
2160 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
2161 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
2162 		break;
2163 
2164 	case 4 * 1024 * 1024:
2165 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
2166 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
2167 		break;
2168 	}
2169 
2170 	ktsb_descr[0].assoc = 1;
2171 	ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
2172 	ktsb_descr[0].ctx_idx = 0;
2173 	ktsb_descr[0].tsb_base = ktsb_pa;
2174 	ktsb_descr[0].resv = 0;
2175 
2176 #ifndef CONFIG_DEBUG_PAGEALLOC
2177 	/* Second KTSB for 4MB/256MB/2GB/16GB mappings.  */
2178 	ktsb_pa = (kern_base +
2179 		   ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
2180 
2181 	ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
2182 	ktsb_descr[1].pgsz_mask = ((HV_PGSZ_MASK_4MB |
2183 				    HV_PGSZ_MASK_256MB |
2184 				    HV_PGSZ_MASK_2GB |
2185 				    HV_PGSZ_MASK_16GB) &
2186 				   cpu_pgsz_mask);
2187 	ktsb_descr[1].assoc = 1;
2188 	ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
2189 	ktsb_descr[1].ctx_idx = 0;
2190 	ktsb_descr[1].tsb_base = ktsb_pa;
2191 	ktsb_descr[1].resv = 0;
2192 #endif
2193 }
2194 
sun4v_ktsb_register(void)2195 void sun4v_ktsb_register(void)
2196 {
2197 	unsigned long pa, ret;
2198 
2199 	pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
2200 
2201 	ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
2202 	if (ret != 0) {
2203 		prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
2204 			    "errors with %lx\n", pa, ret);
2205 		prom_halt();
2206 	}
2207 }
2208 
sun4u_linear_pte_xor_finalize(void)2209 static void __init sun4u_linear_pte_xor_finalize(void)
2210 {
2211 #ifndef CONFIG_DEBUG_PAGEALLOC
2212 	/* This is where we would add Panther support for
2213 	 * 32MB and 256MB pages.
2214 	 */
2215 #endif
2216 }
2217 
sun4v_linear_pte_xor_finalize(void)2218 static void __init sun4v_linear_pte_xor_finalize(void)
2219 {
2220 	unsigned long pagecv_flag;
2221 
2222 	/* Bit 9 of TTE is no longer CV bit on M7 processor and it instead
2223 	 * enables MCD error. Do not set bit 9 on M7 processor.
2224 	 */
2225 	switch (sun4v_chip_type) {
2226 	case SUN4V_CHIP_SPARC_M7:
2227 	case SUN4V_CHIP_SPARC_M8:
2228 	case SUN4V_CHIP_SPARC_SN:
2229 		pagecv_flag = 0x00;
2230 		break;
2231 	default:
2232 		pagecv_flag = _PAGE_CV_4V;
2233 		break;
2234 	}
2235 #ifndef CONFIG_DEBUG_PAGEALLOC
2236 	if (cpu_pgsz_mask & HV_PGSZ_MASK_256MB) {
2237 		kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
2238 			PAGE_OFFSET;
2239 		kern_linear_pte_xor[1] |= (_PAGE_CP_4V | pagecv_flag |
2240 					   _PAGE_P_4V | _PAGE_W_4V);
2241 	} else {
2242 		kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
2243 	}
2244 
2245 	if (cpu_pgsz_mask & HV_PGSZ_MASK_2GB) {
2246 		kern_linear_pte_xor[2] = (_PAGE_VALID | _PAGE_SZ2GB_4V) ^
2247 			PAGE_OFFSET;
2248 		kern_linear_pte_xor[2] |= (_PAGE_CP_4V | pagecv_flag |
2249 					   _PAGE_P_4V | _PAGE_W_4V);
2250 	} else {
2251 		kern_linear_pte_xor[2] = kern_linear_pte_xor[1];
2252 	}
2253 
2254 	if (cpu_pgsz_mask & HV_PGSZ_MASK_16GB) {
2255 		kern_linear_pte_xor[3] = (_PAGE_VALID | _PAGE_SZ16GB_4V) ^
2256 			PAGE_OFFSET;
2257 		kern_linear_pte_xor[3] |= (_PAGE_CP_4V | pagecv_flag |
2258 					   _PAGE_P_4V | _PAGE_W_4V);
2259 	} else {
2260 		kern_linear_pte_xor[3] = kern_linear_pte_xor[2];
2261 	}
2262 #endif
2263 }
2264 
2265 /* paging_init() sets up the page tables */
2266 
2267 static unsigned long last_valid_pfn;
2268 
2269 static void sun4u_pgprot_init(void);
2270 static void sun4v_pgprot_init(void);
2271 
2272 #define _PAGE_CACHE_4U	(_PAGE_CP_4U | _PAGE_CV_4U)
2273 #define _PAGE_CACHE_4V	(_PAGE_CP_4V | _PAGE_CV_4V)
2274 #define __DIRTY_BITS_4U	 (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
2275 #define __DIRTY_BITS_4V	 (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
2276 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2277 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2278 
2279 /* We need to exclude reserved regions. This exclusion will include
2280  * vmlinux and initrd. To be more precise the initrd size could be used to
2281  * compute a new lower limit because it is freed later during initialization.
2282  */
reduce_memory(phys_addr_t limit_ram)2283 static void __init reduce_memory(phys_addr_t limit_ram)
2284 {
2285 	limit_ram += memblock_reserved_size();
2286 	memblock_enforce_memory_limit(limit_ram);
2287 }
2288 
paging_init(void)2289 void __init paging_init(void)
2290 {
2291 	unsigned long end_pfn, shift, phys_base;
2292 	unsigned long real_end, i;
2293 
2294 	setup_page_offset();
2295 
2296 	/* These build time checkes make sure that the dcache_dirty_cpu()
2297 	 * page->flags usage will work.
2298 	 *
2299 	 * When a page gets marked as dcache-dirty, we store the
2300 	 * cpu number starting at bit 32 in the page->flags.  Also,
2301 	 * functions like clear_dcache_dirty_cpu use the cpu mask
2302 	 * in 13-bit signed-immediate instruction fields.
2303 	 */
2304 
2305 	/*
2306 	 * Page flags must not reach into upper 32 bits that are used
2307 	 * for the cpu number
2308 	 */
2309 	BUILD_BUG_ON(NR_PAGEFLAGS > 32);
2310 
2311 	/*
2312 	 * The bit fields placed in the high range must not reach below
2313 	 * the 32 bit boundary. Otherwise we cannot place the cpu field
2314 	 * at the 32 bit boundary.
2315 	 */
2316 	BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
2317 		ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
2318 
2319 	BUILD_BUG_ON(NR_CPUS > 4096);
2320 
2321 	kern_base = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
2322 	kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
2323 
2324 	/* Invalidate both kernel TSBs.  */
2325 	memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
2326 #ifndef CONFIG_DEBUG_PAGEALLOC
2327 	memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2328 #endif
2329 
2330 	/* TTE.cv bit on sparc v9 occupies the same position as TTE.mcde
2331 	 * bit on M7 processor. This is a conflicting usage of the same
2332 	 * bit. Enabling TTE.cv on M7 would turn on Memory Corruption
2333 	 * Detection error on all pages and this will lead to problems
2334 	 * later. Kernel does not run with MCD enabled and hence rest
2335 	 * of the required steps to fully configure memory corruption
2336 	 * detection are not taken. We need to ensure TTE.mcde is not
2337 	 * set on M7 processor. Compute the value of cacheability
2338 	 * flag for use later taking this into consideration.
2339 	 */
2340 	switch (sun4v_chip_type) {
2341 	case SUN4V_CHIP_SPARC_M7:
2342 	case SUN4V_CHIP_SPARC_M8:
2343 	case SUN4V_CHIP_SPARC_SN:
2344 		page_cache4v_flag = _PAGE_CP_4V;
2345 		break;
2346 	default:
2347 		page_cache4v_flag = _PAGE_CACHE_4V;
2348 		break;
2349 	}
2350 
2351 	if (tlb_type == hypervisor)
2352 		sun4v_pgprot_init();
2353 	else
2354 		sun4u_pgprot_init();
2355 
2356 	if (tlb_type == cheetah_plus ||
2357 	    tlb_type == hypervisor) {
2358 		tsb_phys_patch();
2359 		ktsb_phys_patch();
2360 	}
2361 
2362 	if (tlb_type == hypervisor)
2363 		sun4v_patch_tlb_handlers();
2364 
2365 	/* Find available physical memory...
2366 	 *
2367 	 * Read it twice in order to work around a bug in openfirmware.
2368 	 * The call to grab this table itself can cause openfirmware to
2369 	 * allocate memory, which in turn can take away some space from
2370 	 * the list of available memory.  Reading it twice makes sure
2371 	 * we really do get the final value.
2372 	 */
2373 	read_obp_translations();
2374 	read_obp_memory("reg", &pall[0], &pall_ents);
2375 	read_obp_memory("available", &pavail[0], &pavail_ents);
2376 	read_obp_memory("available", &pavail[0], &pavail_ents);
2377 
2378 	phys_base = 0xffffffffffffffffUL;
2379 	for (i = 0; i < pavail_ents; i++) {
2380 		phys_base = min(phys_base, pavail[i].phys_addr);
2381 		memblock_add(pavail[i].phys_addr, pavail[i].reg_size);
2382 	}
2383 
2384 	memblock_reserve(kern_base, kern_size);
2385 
2386 	find_ramdisk(phys_base);
2387 
2388 	if (cmdline_memory_size)
2389 		reduce_memory(cmdline_memory_size);
2390 
2391 	memblock_allow_resize();
2392 	memblock_dump_all();
2393 
2394 	set_bit(0, mmu_context_bmap);
2395 
2396 	shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
2397 
2398 	real_end = (unsigned long)_end;
2399 	num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << ILOG2_4MB);
2400 	printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
2401 	       num_kernel_image_mappings);
2402 
2403 	/* Set kernel pgd to upper alias so physical page computations
2404 	 * work.
2405 	 */
2406 	init_mm.pgd += ((shift) / (sizeof(pgd_t)));
2407 
2408 	memset(swapper_pg_dir, 0, sizeof(swapper_pg_dir));
2409 
2410 	inherit_prom_mappings();
2411 
2412 	/* Ok, we can use our TLB miss and window trap handlers safely.  */
2413 	setup_tba();
2414 
2415 	__flush_tlb_all();
2416 
2417 	prom_build_devicetree();
2418 	of_populate_present_mask();
2419 #ifndef CONFIG_SMP
2420 	of_fill_in_cpu_data();
2421 #endif
2422 
2423 	if (tlb_type == hypervisor) {
2424 		sun4v_mdesc_init();
2425 		mdesc_populate_present_mask(cpu_all_mask);
2426 #ifndef CONFIG_SMP
2427 		mdesc_fill_in_cpu_data(cpu_all_mask);
2428 #endif
2429 		mdesc_get_page_sizes(cpu_all_mask, &cpu_pgsz_mask);
2430 
2431 		sun4v_linear_pte_xor_finalize();
2432 
2433 		sun4v_ktsb_init();
2434 		sun4v_ktsb_register();
2435 	} else {
2436 		unsigned long impl, ver;
2437 
2438 		cpu_pgsz_mask = (HV_PGSZ_MASK_8K | HV_PGSZ_MASK_64K |
2439 				 HV_PGSZ_MASK_512K | HV_PGSZ_MASK_4MB);
2440 
2441 		__asm__ __volatile__("rdpr %%ver, %0" : "=r" (ver));
2442 		impl = ((ver >> 32) & 0xffff);
2443 		if (impl == PANTHER_IMPL)
2444 			cpu_pgsz_mask |= (HV_PGSZ_MASK_32MB |
2445 					  HV_PGSZ_MASK_256MB);
2446 
2447 		sun4u_linear_pte_xor_finalize();
2448 	}
2449 
2450 	/* Flush the TLBs and the 4M TSB so that the updated linear
2451 	 * pte XOR settings are realized for all mappings.
2452 	 */
2453 	__flush_tlb_all();
2454 #ifndef CONFIG_DEBUG_PAGEALLOC
2455 	memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2456 #endif
2457 	__flush_tlb_all();
2458 
2459 	/* Setup bootmem... */
2460 	last_valid_pfn = end_pfn = bootmem_init(phys_base);
2461 
2462 	kernel_physical_mapping_init();
2463 
2464 	{
2465 		unsigned long max_zone_pfns[MAX_NR_ZONES];
2466 
2467 		memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
2468 
2469 		max_zone_pfns[ZONE_NORMAL] = end_pfn;
2470 
2471 		free_area_init_nodes(max_zone_pfns);
2472 	}
2473 
2474 	printk("Booting Linux...\n");
2475 }
2476 
page_in_phys_avail(unsigned long paddr)2477 int page_in_phys_avail(unsigned long paddr)
2478 {
2479 	int i;
2480 
2481 	paddr &= PAGE_MASK;
2482 
2483 	for (i = 0; i < pavail_ents; i++) {
2484 		unsigned long start, end;
2485 
2486 		start = pavail[i].phys_addr;
2487 		end = start + pavail[i].reg_size;
2488 
2489 		if (paddr >= start && paddr < end)
2490 			return 1;
2491 	}
2492 	if (paddr >= kern_base && paddr < (kern_base + kern_size))
2493 		return 1;
2494 #ifdef CONFIG_BLK_DEV_INITRD
2495 	if (paddr >= __pa(initrd_start) &&
2496 	    paddr < __pa(PAGE_ALIGN(initrd_end)))
2497 		return 1;
2498 #endif
2499 
2500 	return 0;
2501 }
2502 
register_page_bootmem_info(void)2503 static void __init register_page_bootmem_info(void)
2504 {
2505 #ifdef CONFIG_NEED_MULTIPLE_NODES
2506 	int i;
2507 
2508 	for_each_online_node(i)
2509 		if (NODE_DATA(i)->node_spanned_pages)
2510 			register_page_bootmem_info_node(NODE_DATA(i));
2511 #endif
2512 }
mem_init(void)2513 void __init mem_init(void)
2514 {
2515 	high_memory = __va(last_valid_pfn << PAGE_SHIFT);
2516 
2517 	memblock_free_all();
2518 
2519 	/*
2520 	 * Must be done after boot memory is put on freelist, because here we
2521 	 * might set fields in deferred struct pages that have not yet been
2522 	 * initialized, and memblock_free_all() initializes all the reserved
2523 	 * deferred pages for us.
2524 	 */
2525 	register_page_bootmem_info();
2526 
2527 	/*
2528 	 * Set up the zero page, mark it reserved, so that page count
2529 	 * is not manipulated when freeing the page from user ptes.
2530 	 */
2531 	mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
2532 	if (mem_map_zero == NULL) {
2533 		prom_printf("paging_init: Cannot alloc zero page.\n");
2534 		prom_halt();
2535 	}
2536 	mark_page_reserved(mem_map_zero);
2537 
2538 	mem_init_print_info(NULL);
2539 
2540 	if (tlb_type == cheetah || tlb_type == cheetah_plus)
2541 		cheetah_ecache_flush_init();
2542 }
2543 
free_initmem(void)2544 void free_initmem(void)
2545 {
2546 	unsigned long addr, initend;
2547 	int do_free = 1;
2548 
2549 	/* If the physical memory maps were trimmed by kernel command
2550 	 * line options, don't even try freeing this initmem stuff up.
2551 	 * The kernel image could have been in the trimmed out region
2552 	 * and if so the freeing below will free invalid page structs.
2553 	 */
2554 	if (cmdline_memory_size)
2555 		do_free = 0;
2556 
2557 	/*
2558 	 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
2559 	 */
2560 	addr = PAGE_ALIGN((unsigned long)(__init_begin));
2561 	initend = (unsigned long)(__init_end) & PAGE_MASK;
2562 	for (; addr < initend; addr += PAGE_SIZE) {
2563 		unsigned long page;
2564 
2565 		page = (addr +
2566 			((unsigned long) __va(kern_base)) -
2567 			((unsigned long) KERNBASE));
2568 		memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
2569 
2570 		if (do_free)
2571 			free_reserved_page(virt_to_page(page));
2572 	}
2573 }
2574 
2575 pgprot_t PAGE_KERNEL __read_mostly;
2576 EXPORT_SYMBOL(PAGE_KERNEL);
2577 
2578 pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
2579 pgprot_t PAGE_COPY __read_mostly;
2580 
2581 pgprot_t PAGE_SHARED __read_mostly;
2582 EXPORT_SYMBOL(PAGE_SHARED);
2583 
2584 unsigned long pg_iobits __read_mostly;
2585 
2586 unsigned long _PAGE_IE __read_mostly;
2587 EXPORT_SYMBOL(_PAGE_IE);
2588 
2589 unsigned long _PAGE_E __read_mostly;
2590 EXPORT_SYMBOL(_PAGE_E);
2591 
2592 unsigned long _PAGE_CACHE __read_mostly;
2593 EXPORT_SYMBOL(_PAGE_CACHE);
2594 
2595 #ifdef CONFIG_SPARSEMEM_VMEMMAP
vmemmap_populate(unsigned long vstart,unsigned long vend,int node,struct vmem_altmap * altmap)2596 int __meminit vmemmap_populate(unsigned long vstart, unsigned long vend,
2597 			       int node, struct vmem_altmap *altmap)
2598 {
2599 	unsigned long pte_base;
2600 
2601 	pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2602 		    _PAGE_CP_4U | _PAGE_CV_4U |
2603 		    _PAGE_P_4U | _PAGE_W_4U);
2604 	if (tlb_type == hypervisor)
2605 		pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2606 			    page_cache4v_flag | _PAGE_P_4V | _PAGE_W_4V);
2607 
2608 	pte_base |= _PAGE_PMD_HUGE;
2609 
2610 	vstart = vstart & PMD_MASK;
2611 	vend = ALIGN(vend, PMD_SIZE);
2612 	for (; vstart < vend; vstart += PMD_SIZE) {
2613 		pgd_t *pgd = vmemmap_pgd_populate(vstart, node);
2614 		unsigned long pte;
2615 		pud_t *pud;
2616 		pmd_t *pmd;
2617 
2618 		if (!pgd)
2619 			return -ENOMEM;
2620 
2621 		pud = vmemmap_pud_populate(pgd, vstart, node);
2622 		if (!pud)
2623 			return -ENOMEM;
2624 
2625 		pmd = pmd_offset(pud, vstart);
2626 		pte = pmd_val(*pmd);
2627 		if (!(pte & _PAGE_VALID)) {
2628 			void *block = vmemmap_alloc_block(PMD_SIZE, node);
2629 
2630 			if (!block)
2631 				return -ENOMEM;
2632 
2633 			pmd_val(*pmd) = pte_base | __pa(block);
2634 		}
2635 	}
2636 
2637 	return 0;
2638 }
2639 
vmemmap_free(unsigned long start,unsigned long end,struct vmem_altmap * altmap)2640 void vmemmap_free(unsigned long start, unsigned long end,
2641 		struct vmem_altmap *altmap)
2642 {
2643 }
2644 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
2645 
prot_init_common(unsigned long page_none,unsigned long page_shared,unsigned long page_copy,unsigned long page_readonly,unsigned long page_exec_bit)2646 static void prot_init_common(unsigned long page_none,
2647 			     unsigned long page_shared,
2648 			     unsigned long page_copy,
2649 			     unsigned long page_readonly,
2650 			     unsigned long page_exec_bit)
2651 {
2652 	PAGE_COPY = __pgprot(page_copy);
2653 	PAGE_SHARED = __pgprot(page_shared);
2654 
2655 	protection_map[0x0] = __pgprot(page_none);
2656 	protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
2657 	protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
2658 	protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
2659 	protection_map[0x4] = __pgprot(page_readonly);
2660 	protection_map[0x5] = __pgprot(page_readonly);
2661 	protection_map[0x6] = __pgprot(page_copy);
2662 	protection_map[0x7] = __pgprot(page_copy);
2663 	protection_map[0x8] = __pgprot(page_none);
2664 	protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
2665 	protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
2666 	protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
2667 	protection_map[0xc] = __pgprot(page_readonly);
2668 	protection_map[0xd] = __pgprot(page_readonly);
2669 	protection_map[0xe] = __pgprot(page_shared);
2670 	protection_map[0xf] = __pgprot(page_shared);
2671 }
2672 
sun4u_pgprot_init(void)2673 static void __init sun4u_pgprot_init(void)
2674 {
2675 	unsigned long page_none, page_shared, page_copy, page_readonly;
2676 	unsigned long page_exec_bit;
2677 	int i;
2678 
2679 	PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2680 				_PAGE_CACHE_4U | _PAGE_P_4U |
2681 				__ACCESS_BITS_4U | __DIRTY_BITS_4U |
2682 				_PAGE_EXEC_4U);
2683 	PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2684 				       _PAGE_CACHE_4U | _PAGE_P_4U |
2685 				       __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2686 				       _PAGE_EXEC_4U | _PAGE_L_4U);
2687 
2688 	_PAGE_IE = _PAGE_IE_4U;
2689 	_PAGE_E = _PAGE_E_4U;
2690 	_PAGE_CACHE = _PAGE_CACHE_4U;
2691 
2692 	pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
2693 		     __ACCESS_BITS_4U | _PAGE_E_4U);
2694 
2695 #ifdef CONFIG_DEBUG_PAGEALLOC
2696 	kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
2697 #else
2698 	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
2699 		PAGE_OFFSET;
2700 #endif
2701 	kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
2702 				   _PAGE_P_4U | _PAGE_W_4U);
2703 
2704 	for (i = 1; i < 4; i++)
2705 		kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2706 
2707 	_PAGE_ALL_SZ_BITS =  (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
2708 			      _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
2709 			      _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
2710 
2711 
2712 	page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
2713 	page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2714 		       __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
2715 	page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2716 		       __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2717 	page_readonly   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2718 			   __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2719 
2720 	page_exec_bit = _PAGE_EXEC_4U;
2721 
2722 	prot_init_common(page_none, page_shared, page_copy, page_readonly,
2723 			 page_exec_bit);
2724 }
2725 
sun4v_pgprot_init(void)2726 static void __init sun4v_pgprot_init(void)
2727 {
2728 	unsigned long page_none, page_shared, page_copy, page_readonly;
2729 	unsigned long page_exec_bit;
2730 	int i;
2731 
2732 	PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
2733 				page_cache4v_flag | _PAGE_P_4V |
2734 				__ACCESS_BITS_4V | __DIRTY_BITS_4V |
2735 				_PAGE_EXEC_4V);
2736 	PAGE_KERNEL_LOCKED = PAGE_KERNEL;
2737 
2738 	_PAGE_IE = _PAGE_IE_4V;
2739 	_PAGE_E = _PAGE_E_4V;
2740 	_PAGE_CACHE = page_cache4v_flag;
2741 
2742 #ifdef CONFIG_DEBUG_PAGEALLOC
2743 	kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
2744 #else
2745 	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
2746 		PAGE_OFFSET;
2747 #endif
2748 	kern_linear_pte_xor[0] |= (page_cache4v_flag | _PAGE_P_4V |
2749 				   _PAGE_W_4V);
2750 
2751 	for (i = 1; i < 4; i++)
2752 		kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2753 
2754 	pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
2755 		     __ACCESS_BITS_4V | _PAGE_E_4V);
2756 
2757 	_PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
2758 			     _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
2759 			     _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
2760 			     _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
2761 
2762 	page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | page_cache4v_flag;
2763 	page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2764 		       __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
2765 	page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2766 		       __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2767 	page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2768 			 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2769 
2770 	page_exec_bit = _PAGE_EXEC_4V;
2771 
2772 	prot_init_common(page_none, page_shared, page_copy, page_readonly,
2773 			 page_exec_bit);
2774 }
2775 
pte_sz_bits(unsigned long sz)2776 unsigned long pte_sz_bits(unsigned long sz)
2777 {
2778 	if (tlb_type == hypervisor) {
2779 		switch (sz) {
2780 		case 8 * 1024:
2781 		default:
2782 			return _PAGE_SZ8K_4V;
2783 		case 64 * 1024:
2784 			return _PAGE_SZ64K_4V;
2785 		case 512 * 1024:
2786 			return _PAGE_SZ512K_4V;
2787 		case 4 * 1024 * 1024:
2788 			return _PAGE_SZ4MB_4V;
2789 		}
2790 	} else {
2791 		switch (sz) {
2792 		case 8 * 1024:
2793 		default:
2794 			return _PAGE_SZ8K_4U;
2795 		case 64 * 1024:
2796 			return _PAGE_SZ64K_4U;
2797 		case 512 * 1024:
2798 			return _PAGE_SZ512K_4U;
2799 		case 4 * 1024 * 1024:
2800 			return _PAGE_SZ4MB_4U;
2801 		}
2802 	}
2803 }
2804 
mk_pte_io(unsigned long page,pgprot_t prot,int space,unsigned long page_size)2805 pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
2806 {
2807 	pte_t pte;
2808 
2809 	pte_val(pte)  = page | pgprot_val(pgprot_noncached(prot));
2810 	pte_val(pte) |= (((unsigned long)space) << 32);
2811 	pte_val(pte) |= pte_sz_bits(page_size);
2812 
2813 	return pte;
2814 }
2815 
kern_large_tte(unsigned long paddr)2816 static unsigned long kern_large_tte(unsigned long paddr)
2817 {
2818 	unsigned long val;
2819 
2820 	val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2821 	       _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
2822 	       _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
2823 	if (tlb_type == hypervisor)
2824 		val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2825 		       page_cache4v_flag | _PAGE_P_4V |
2826 		       _PAGE_EXEC_4V | _PAGE_W_4V);
2827 
2828 	return val | paddr;
2829 }
2830 
2831 /* If not locked, zap it. */
__flush_tlb_all(void)2832 void __flush_tlb_all(void)
2833 {
2834 	unsigned long pstate;
2835 	int i;
2836 
2837 	__asm__ __volatile__("flushw\n\t"
2838 			     "rdpr	%%pstate, %0\n\t"
2839 			     "wrpr	%0, %1, %%pstate"
2840 			     : "=r" (pstate)
2841 			     : "i" (PSTATE_IE));
2842 	if (tlb_type == hypervisor) {
2843 		sun4v_mmu_demap_all();
2844 	} else if (tlb_type == spitfire) {
2845 		for (i = 0; i < 64; i++) {
2846 			/* Spitfire Errata #32 workaround */
2847 			/* NOTE: Always runs on spitfire, so no
2848 			 *       cheetah+ page size encodings.
2849 			 */
2850 			__asm__ __volatile__("stxa	%0, [%1] %2\n\t"
2851 					     "flush	%%g6"
2852 					     : /* No outputs */
2853 					     : "r" (0),
2854 					     "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2855 
2856 			if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
2857 				__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2858 						     "membar #Sync"
2859 						     : /* no outputs */
2860 						     : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
2861 				spitfire_put_dtlb_data(i, 0x0UL);
2862 			}
2863 
2864 			/* Spitfire Errata #32 workaround */
2865 			/* NOTE: Always runs on spitfire, so no
2866 			 *       cheetah+ page size encodings.
2867 			 */
2868 			__asm__ __volatile__("stxa	%0, [%1] %2\n\t"
2869 					     "flush	%%g6"
2870 					     : /* No outputs */
2871 					     : "r" (0),
2872 					     "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2873 
2874 			if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
2875 				__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2876 						     "membar #Sync"
2877 						     : /* no outputs */
2878 						     : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
2879 				spitfire_put_itlb_data(i, 0x0UL);
2880 			}
2881 		}
2882 	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
2883 		cheetah_flush_dtlb_all();
2884 		cheetah_flush_itlb_all();
2885 	}
2886 	__asm__ __volatile__("wrpr	%0, 0, %%pstate"
2887 			     : : "r" (pstate));
2888 }
2889 
pte_alloc_one_kernel(struct mm_struct * mm)2890 pte_t *pte_alloc_one_kernel(struct mm_struct *mm)
2891 {
2892 	struct page *page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2893 	pte_t *pte = NULL;
2894 
2895 	if (page)
2896 		pte = (pte_t *) page_address(page);
2897 
2898 	return pte;
2899 }
2900 
pte_alloc_one(struct mm_struct * mm)2901 pgtable_t pte_alloc_one(struct mm_struct *mm)
2902 {
2903 	struct page *page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2904 	if (!page)
2905 		return NULL;
2906 	if (!pgtable_pte_page_ctor(page)) {
2907 		free_unref_page(page);
2908 		return NULL;
2909 	}
2910 	return (pte_t *) page_address(page);
2911 }
2912 
pte_free_kernel(struct mm_struct * mm,pte_t * pte)2913 void pte_free_kernel(struct mm_struct *mm, pte_t *pte)
2914 {
2915 	free_page((unsigned long)pte);
2916 }
2917 
__pte_free(pgtable_t pte)2918 static void __pte_free(pgtable_t pte)
2919 {
2920 	struct page *page = virt_to_page(pte);
2921 
2922 	pgtable_pte_page_dtor(page);
2923 	__free_page(page);
2924 }
2925 
pte_free(struct mm_struct * mm,pgtable_t pte)2926 void pte_free(struct mm_struct *mm, pgtable_t pte)
2927 {
2928 	__pte_free(pte);
2929 }
2930 
pgtable_free(void * table,bool is_page)2931 void pgtable_free(void *table, bool is_page)
2932 {
2933 	if (is_page)
2934 		__pte_free(table);
2935 	else
2936 		kmem_cache_free(pgtable_cache, table);
2937 }
2938 
2939 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
update_mmu_cache_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd)2940 void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
2941 			  pmd_t *pmd)
2942 {
2943 	unsigned long pte, flags;
2944 	struct mm_struct *mm;
2945 	pmd_t entry = *pmd;
2946 
2947 	if (!pmd_large(entry) || !pmd_young(entry))
2948 		return;
2949 
2950 	pte = pmd_val(entry);
2951 
2952 	/* Don't insert a non-valid PMD into the TSB, we'll deadlock.  */
2953 	if (!(pte & _PAGE_VALID))
2954 		return;
2955 
2956 	/* We are fabricating 8MB pages using 4MB real hw pages.  */
2957 	pte |= (addr & (1UL << REAL_HPAGE_SHIFT));
2958 
2959 	mm = vma->vm_mm;
2960 
2961 	spin_lock_irqsave(&mm->context.lock, flags);
2962 
2963 	if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL)
2964 		__update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT,
2965 					addr, pte);
2966 
2967 	spin_unlock_irqrestore(&mm->context.lock, flags);
2968 }
2969 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2970 
2971 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
context_reload(void * __data)2972 static void context_reload(void *__data)
2973 {
2974 	struct mm_struct *mm = __data;
2975 
2976 	if (mm == current->mm)
2977 		load_secondary_context(mm);
2978 }
2979 
hugetlb_setup(struct pt_regs * regs)2980 void hugetlb_setup(struct pt_regs *regs)
2981 {
2982 	struct mm_struct *mm = current->mm;
2983 	struct tsb_config *tp;
2984 
2985 	if (faulthandler_disabled() || !mm) {
2986 		const struct exception_table_entry *entry;
2987 
2988 		entry = search_exception_tables(regs->tpc);
2989 		if (entry) {
2990 			regs->tpc = entry->fixup;
2991 			regs->tnpc = regs->tpc + 4;
2992 			return;
2993 		}
2994 		pr_alert("Unexpected HugeTLB setup in atomic context.\n");
2995 		die_if_kernel("HugeTSB in atomic", regs);
2996 	}
2997 
2998 	tp = &mm->context.tsb_block[MM_TSB_HUGE];
2999 	if (likely(tp->tsb == NULL))
3000 		tsb_grow(mm, MM_TSB_HUGE, 0);
3001 
3002 	tsb_context_switch(mm);
3003 	smp_tsb_sync(mm);
3004 
3005 	/* On UltraSPARC-III+ and later, configure the second half of
3006 	 * the Data-TLB for huge pages.
3007 	 */
3008 	if (tlb_type == cheetah_plus) {
3009 		bool need_context_reload = false;
3010 		unsigned long ctx;
3011 
3012 		spin_lock_irq(&ctx_alloc_lock);
3013 		ctx = mm->context.sparc64_ctx_val;
3014 		ctx &= ~CTX_PGSZ_MASK;
3015 		ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT;
3016 		ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT;
3017 
3018 		if (ctx != mm->context.sparc64_ctx_val) {
3019 			/* When changing the page size fields, we
3020 			 * must perform a context flush so that no
3021 			 * stale entries match.  This flush must
3022 			 * occur with the original context register
3023 			 * settings.
3024 			 */
3025 			do_flush_tlb_mm(mm);
3026 
3027 			/* Reload the context register of all processors
3028 			 * also executing in this address space.
3029 			 */
3030 			mm->context.sparc64_ctx_val = ctx;
3031 			need_context_reload = true;
3032 		}
3033 		spin_unlock_irq(&ctx_alloc_lock);
3034 
3035 		if (need_context_reload)
3036 			on_each_cpu(context_reload, mm, 0);
3037 	}
3038 }
3039 #endif
3040 
3041 static struct resource code_resource = {
3042 	.name	= "Kernel code",
3043 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
3044 };
3045 
3046 static struct resource data_resource = {
3047 	.name	= "Kernel data",
3048 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
3049 };
3050 
3051 static struct resource bss_resource = {
3052 	.name	= "Kernel bss",
3053 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
3054 };
3055 
compute_kern_paddr(void * addr)3056 static inline resource_size_t compute_kern_paddr(void *addr)
3057 {
3058 	return (resource_size_t) (addr - KERNBASE + kern_base);
3059 }
3060 
kernel_lds_init(void)3061 static void __init kernel_lds_init(void)
3062 {
3063 	code_resource.start = compute_kern_paddr(_text);
3064 	code_resource.end   = compute_kern_paddr(_etext - 1);
3065 	data_resource.start = compute_kern_paddr(_etext);
3066 	data_resource.end   = compute_kern_paddr(_edata - 1);
3067 	bss_resource.start  = compute_kern_paddr(__bss_start);
3068 	bss_resource.end    = compute_kern_paddr(_end - 1);
3069 }
3070 
report_memory(void)3071 static int __init report_memory(void)
3072 {
3073 	int i;
3074 	struct resource *res;
3075 
3076 	kernel_lds_init();
3077 
3078 	for (i = 0; i < pavail_ents; i++) {
3079 		res = kzalloc(sizeof(struct resource), GFP_KERNEL);
3080 
3081 		if (!res) {
3082 			pr_warn("Failed to allocate source.\n");
3083 			break;
3084 		}
3085 
3086 		res->name = "System RAM";
3087 		res->start = pavail[i].phys_addr;
3088 		res->end = pavail[i].phys_addr + pavail[i].reg_size - 1;
3089 		res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
3090 
3091 		if (insert_resource(&iomem_resource, res) < 0) {
3092 			pr_warn("Resource insertion failed.\n");
3093 			break;
3094 		}
3095 
3096 		insert_resource(res, &code_resource);
3097 		insert_resource(res, &data_resource);
3098 		insert_resource(res, &bss_resource);
3099 	}
3100 
3101 	return 0;
3102 }
3103 arch_initcall(report_memory);
3104 
3105 #ifdef CONFIG_SMP
3106 #define do_flush_tlb_kernel_range	smp_flush_tlb_kernel_range
3107 #else
3108 #define do_flush_tlb_kernel_range	__flush_tlb_kernel_range
3109 #endif
3110 
flush_tlb_kernel_range(unsigned long start,unsigned long end)3111 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
3112 {
3113 	if (start < HI_OBP_ADDRESS && end > LOW_OBP_ADDRESS) {
3114 		if (start < LOW_OBP_ADDRESS) {
3115 			flush_tsb_kernel_range(start, LOW_OBP_ADDRESS);
3116 			do_flush_tlb_kernel_range(start, LOW_OBP_ADDRESS);
3117 		}
3118 		if (end > HI_OBP_ADDRESS) {
3119 			flush_tsb_kernel_range(HI_OBP_ADDRESS, end);
3120 			do_flush_tlb_kernel_range(HI_OBP_ADDRESS, end);
3121 		}
3122 	} else {
3123 		flush_tsb_kernel_range(start, end);
3124 		do_flush_tlb_kernel_range(start, end);
3125 	}
3126 }
3127 
copy_user_highpage(struct page * to,struct page * from,unsigned long vaddr,struct vm_area_struct * vma)3128 void copy_user_highpage(struct page *to, struct page *from,
3129 	unsigned long vaddr, struct vm_area_struct *vma)
3130 {
3131 	char *vfrom, *vto;
3132 
3133 	vfrom = kmap_atomic(from);
3134 	vto = kmap_atomic(to);
3135 	copy_user_page(vto, vfrom, vaddr, to);
3136 	kunmap_atomic(vto);
3137 	kunmap_atomic(vfrom);
3138 
3139 	/* If this page has ADI enabled, copy over any ADI tags
3140 	 * as well
3141 	 */
3142 	if (vma->vm_flags & VM_SPARC_ADI) {
3143 		unsigned long pfrom, pto, i, adi_tag;
3144 
3145 		pfrom = page_to_phys(from);
3146 		pto = page_to_phys(to);
3147 
3148 		for (i = pfrom; i < (pfrom + PAGE_SIZE); i += adi_blksize()) {
3149 			asm volatile("ldxa [%1] %2, %0\n\t"
3150 					: "=r" (adi_tag)
3151 					:  "r" (i), "i" (ASI_MCD_REAL));
3152 			asm volatile("stxa %0, [%1] %2\n\t"
3153 					:
3154 					: "r" (adi_tag), "r" (pto),
3155 					  "i" (ASI_MCD_REAL));
3156 			pto += adi_blksize();
3157 		}
3158 		asm volatile("membar #Sync\n\t");
3159 	}
3160 }
3161 EXPORT_SYMBOL(copy_user_highpage);
3162 
copy_highpage(struct page * to,struct page * from)3163 void copy_highpage(struct page *to, struct page *from)
3164 {
3165 	char *vfrom, *vto;
3166 
3167 	vfrom = kmap_atomic(from);
3168 	vto = kmap_atomic(to);
3169 	copy_page(vto, vfrom);
3170 	kunmap_atomic(vto);
3171 	kunmap_atomic(vfrom);
3172 
3173 	/* If this platform is ADI enabled, copy any ADI tags
3174 	 * as well
3175 	 */
3176 	if (adi_capable()) {
3177 		unsigned long pfrom, pto, i, adi_tag;
3178 
3179 		pfrom = page_to_phys(from);
3180 		pto = page_to_phys(to);
3181 
3182 		for (i = pfrom; i < (pfrom + PAGE_SIZE); i += adi_blksize()) {
3183 			asm volatile("ldxa [%1] %2, %0\n\t"
3184 					: "=r" (adi_tag)
3185 					:  "r" (i), "i" (ASI_MCD_REAL));
3186 			asm volatile("stxa %0, [%1] %2\n\t"
3187 					:
3188 					: "r" (adi_tag), "r" (pto),
3189 					  "i" (ASI_MCD_REAL));
3190 			pto += adi_blksize();
3191 		}
3192 		asm volatile("membar #Sync\n\t");
3193 	}
3194 }
3195 EXPORT_SYMBOL(copy_highpage);
3196