1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * linux/fs/jbd2/transaction.c
4 *
5 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6 *
7 * Copyright 1998 Red Hat corp --- All Rights Reserved
8 *
9 * Generic filesystem transaction handling code; part of the ext2fs
10 * journaling system.
11 *
12 * This file manages transactions (compound commits managed by the
13 * journaling code) and handles (individual atomic operations by the
14 * filesystem).
15 */
16
17 #include <linux/time.h>
18 #include <linux/fs.h>
19 #include <linux/jbd2.h>
20 #include <linux/errno.h>
21 #include <linux/slab.h>
22 #include <linux/timer.h>
23 #include <linux/mm.h>
24 #include <linux/highmem.h>
25 #include <linux/hrtimer.h>
26 #include <linux/backing-dev.h>
27 #include <linux/bug.h>
28 #include <linux/module.h>
29 #include <linux/sched/mm.h>
30
31 #include <trace/events/jbd2.h>
32
33 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
34 static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
35
36 static struct kmem_cache *transaction_cache;
jbd2_journal_init_transaction_cache(void)37 int __init jbd2_journal_init_transaction_cache(void)
38 {
39 J_ASSERT(!transaction_cache);
40 transaction_cache = kmem_cache_create("jbd2_transaction_s",
41 sizeof(transaction_t),
42 0,
43 SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
44 NULL);
45 if (transaction_cache)
46 return 0;
47 return -ENOMEM;
48 }
49
jbd2_journal_destroy_transaction_cache(void)50 void jbd2_journal_destroy_transaction_cache(void)
51 {
52 kmem_cache_destroy(transaction_cache);
53 transaction_cache = NULL;
54 }
55
jbd2_journal_free_transaction(transaction_t * transaction)56 void jbd2_journal_free_transaction(transaction_t *transaction)
57 {
58 if (unlikely(ZERO_OR_NULL_PTR(transaction)))
59 return;
60 kmem_cache_free(transaction_cache, transaction);
61 }
62
63 /*
64 * jbd2_get_transaction: obtain a new transaction_t object.
65 *
66 * Simply allocate and initialise a new transaction. Create it in
67 * RUNNING state and add it to the current journal (which should not
68 * have an existing running transaction: we only make a new transaction
69 * once we have started to commit the old one).
70 *
71 * Preconditions:
72 * The journal MUST be locked. We don't perform atomic mallocs on the
73 * new transaction and we can't block without protecting against other
74 * processes trying to touch the journal while it is in transition.
75 *
76 */
77
78 static transaction_t *
jbd2_get_transaction(journal_t * journal,transaction_t * transaction)79 jbd2_get_transaction(journal_t *journal, transaction_t *transaction)
80 {
81 transaction->t_journal = journal;
82 transaction->t_state = T_RUNNING;
83 transaction->t_start_time = ktime_get();
84 transaction->t_tid = journal->j_transaction_sequence++;
85 transaction->t_expires = jiffies + journal->j_commit_interval;
86 spin_lock_init(&transaction->t_handle_lock);
87 atomic_set(&transaction->t_updates, 0);
88 atomic_set(&transaction->t_outstanding_credits,
89 atomic_read(&journal->j_reserved_credits));
90 atomic_set(&transaction->t_handle_count, 0);
91 INIT_LIST_HEAD(&transaction->t_inode_list);
92 INIT_LIST_HEAD(&transaction->t_private_list);
93
94 /* Set up the commit timer for the new transaction. */
95 journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
96 add_timer(&journal->j_commit_timer);
97
98 J_ASSERT(journal->j_running_transaction == NULL);
99 journal->j_running_transaction = transaction;
100 transaction->t_max_wait = 0;
101 transaction->t_start = jiffies;
102 transaction->t_requested = 0;
103
104 return transaction;
105 }
106
107 /*
108 * Handle management.
109 *
110 * A handle_t is an object which represents a single atomic update to a
111 * filesystem, and which tracks all of the modifications which form part
112 * of that one update.
113 */
114
115 /*
116 * Update transaction's maximum wait time, if debugging is enabled.
117 *
118 * In order for t_max_wait to be reliable, it must be protected by a
119 * lock. But doing so will mean that start_this_handle() can not be
120 * run in parallel on SMP systems, which limits our scalability. So
121 * unless debugging is enabled, we no longer update t_max_wait, which
122 * means that maximum wait time reported by the jbd2_run_stats
123 * tracepoint will always be zero.
124 */
update_t_max_wait(transaction_t * transaction,unsigned long ts)125 static inline void update_t_max_wait(transaction_t *transaction,
126 unsigned long ts)
127 {
128 #ifdef CONFIG_JBD2_DEBUG
129 if (jbd2_journal_enable_debug &&
130 time_after(transaction->t_start, ts)) {
131 ts = jbd2_time_diff(ts, transaction->t_start);
132 spin_lock(&transaction->t_handle_lock);
133 if (ts > transaction->t_max_wait)
134 transaction->t_max_wait = ts;
135 spin_unlock(&transaction->t_handle_lock);
136 }
137 #endif
138 }
139
140 /*
141 * Wait until running transaction passes T_LOCKED state. Also starts the commit
142 * if needed. The function expects running transaction to exist and releases
143 * j_state_lock.
144 */
wait_transaction_locked(journal_t * journal)145 static void wait_transaction_locked(journal_t *journal)
146 __releases(journal->j_state_lock)
147 {
148 DEFINE_WAIT(wait);
149 int need_to_start;
150 tid_t tid = journal->j_running_transaction->t_tid;
151
152 prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
153 TASK_UNINTERRUPTIBLE);
154 need_to_start = !tid_geq(journal->j_commit_request, tid);
155 read_unlock(&journal->j_state_lock);
156 if (need_to_start)
157 jbd2_log_start_commit(journal, tid);
158 jbd2_might_wait_for_commit(journal);
159 schedule();
160 finish_wait(&journal->j_wait_transaction_locked, &wait);
161 }
162
sub_reserved_credits(journal_t * journal,int blocks)163 static void sub_reserved_credits(journal_t *journal, int blocks)
164 {
165 atomic_sub(blocks, &journal->j_reserved_credits);
166 wake_up(&journal->j_wait_reserved);
167 }
168
169 /*
170 * Wait until we can add credits for handle to the running transaction. Called
171 * with j_state_lock held for reading. Returns 0 if handle joined the running
172 * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and
173 * caller must retry.
174 */
add_transaction_credits(journal_t * journal,int blocks,int rsv_blocks)175 static int add_transaction_credits(journal_t *journal, int blocks,
176 int rsv_blocks)
177 {
178 transaction_t *t = journal->j_running_transaction;
179 int needed;
180 int total = blocks + rsv_blocks;
181
182 /*
183 * If the current transaction is locked down for commit, wait
184 * for the lock to be released.
185 */
186 if (t->t_state == T_LOCKED) {
187 wait_transaction_locked(journal);
188 return 1;
189 }
190
191 /*
192 * If there is not enough space left in the log to write all
193 * potential buffers requested by this operation, we need to
194 * stall pending a log checkpoint to free some more log space.
195 */
196 needed = atomic_add_return(total, &t->t_outstanding_credits);
197 if (needed > journal->j_max_transaction_buffers) {
198 /*
199 * If the current transaction is already too large,
200 * then start to commit it: we can then go back and
201 * attach this handle to a new transaction.
202 */
203 atomic_sub(total, &t->t_outstanding_credits);
204
205 /*
206 * Is the number of reserved credits in the current transaction too
207 * big to fit this handle? Wait until reserved credits are freed.
208 */
209 if (atomic_read(&journal->j_reserved_credits) + total >
210 journal->j_max_transaction_buffers) {
211 read_unlock(&journal->j_state_lock);
212 jbd2_might_wait_for_commit(journal);
213 wait_event(journal->j_wait_reserved,
214 atomic_read(&journal->j_reserved_credits) + total <=
215 journal->j_max_transaction_buffers);
216 return 1;
217 }
218
219 wait_transaction_locked(journal);
220 return 1;
221 }
222
223 /*
224 * The commit code assumes that it can get enough log space
225 * without forcing a checkpoint. This is *critical* for
226 * correctness: a checkpoint of a buffer which is also
227 * associated with a committing transaction creates a deadlock,
228 * so commit simply cannot force through checkpoints.
229 *
230 * We must therefore ensure the necessary space in the journal
231 * *before* starting to dirty potentially checkpointed buffers
232 * in the new transaction.
233 */
234 if (jbd2_log_space_left(journal) < jbd2_space_needed(journal)) {
235 atomic_sub(total, &t->t_outstanding_credits);
236 read_unlock(&journal->j_state_lock);
237 jbd2_might_wait_for_commit(journal);
238 write_lock(&journal->j_state_lock);
239 if (jbd2_log_space_left(journal) < jbd2_space_needed(journal))
240 __jbd2_log_wait_for_space(journal);
241 write_unlock(&journal->j_state_lock);
242 return 1;
243 }
244
245 /* No reservation? We are done... */
246 if (!rsv_blocks)
247 return 0;
248
249 needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits);
250 /* We allow at most half of a transaction to be reserved */
251 if (needed > journal->j_max_transaction_buffers / 2) {
252 sub_reserved_credits(journal, rsv_blocks);
253 atomic_sub(total, &t->t_outstanding_credits);
254 read_unlock(&journal->j_state_lock);
255 jbd2_might_wait_for_commit(journal);
256 wait_event(journal->j_wait_reserved,
257 atomic_read(&journal->j_reserved_credits) + rsv_blocks
258 <= journal->j_max_transaction_buffers / 2);
259 return 1;
260 }
261 return 0;
262 }
263
264 /*
265 * start_this_handle: Given a handle, deal with any locking or stalling
266 * needed to make sure that there is enough journal space for the handle
267 * to begin. Attach the handle to a transaction and set up the
268 * transaction's buffer credits.
269 */
270
start_this_handle(journal_t * journal,handle_t * handle,gfp_t gfp_mask)271 static int start_this_handle(journal_t *journal, handle_t *handle,
272 gfp_t gfp_mask)
273 {
274 transaction_t *transaction, *new_transaction = NULL;
275 int blocks = handle->h_buffer_credits;
276 int rsv_blocks = 0;
277 unsigned long ts = jiffies;
278
279 if (handle->h_rsv_handle)
280 rsv_blocks = handle->h_rsv_handle->h_buffer_credits;
281
282 /*
283 * Limit the number of reserved credits to 1/2 of maximum transaction
284 * size and limit the number of total credits to not exceed maximum
285 * transaction size per operation.
286 */
287 if ((rsv_blocks > journal->j_max_transaction_buffers / 2) ||
288 (rsv_blocks + blocks > journal->j_max_transaction_buffers)) {
289 printk(KERN_ERR "JBD2: %s wants too many credits "
290 "credits:%d rsv_credits:%d max:%d\n",
291 current->comm, blocks, rsv_blocks,
292 journal->j_max_transaction_buffers);
293 WARN_ON(1);
294 return -ENOSPC;
295 }
296
297 alloc_transaction:
298 if (!journal->j_running_transaction) {
299 /*
300 * If __GFP_FS is not present, then we may be being called from
301 * inside the fs writeback layer, so we MUST NOT fail.
302 */
303 if ((gfp_mask & __GFP_FS) == 0)
304 gfp_mask |= __GFP_NOFAIL;
305 new_transaction = kmem_cache_zalloc(transaction_cache,
306 gfp_mask);
307 if (!new_transaction)
308 return -ENOMEM;
309 }
310
311 jbd_debug(3, "New handle %p going live.\n", handle);
312
313 /*
314 * We need to hold j_state_lock until t_updates has been incremented,
315 * for proper journal barrier handling
316 */
317 repeat:
318 read_lock(&journal->j_state_lock);
319 BUG_ON(journal->j_flags & JBD2_UNMOUNT);
320 if (is_journal_aborted(journal) ||
321 (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
322 read_unlock(&journal->j_state_lock);
323 jbd2_journal_free_transaction(new_transaction);
324 return -EROFS;
325 }
326
327 /*
328 * Wait on the journal's transaction barrier if necessary. Specifically
329 * we allow reserved handles to proceed because otherwise commit could
330 * deadlock on page writeback not being able to complete.
331 */
332 if (!handle->h_reserved && journal->j_barrier_count) {
333 read_unlock(&journal->j_state_lock);
334 wait_event(journal->j_wait_transaction_locked,
335 journal->j_barrier_count == 0);
336 goto repeat;
337 }
338
339 if (!journal->j_running_transaction) {
340 read_unlock(&journal->j_state_lock);
341 if (!new_transaction)
342 goto alloc_transaction;
343 write_lock(&journal->j_state_lock);
344 if (!journal->j_running_transaction &&
345 (handle->h_reserved || !journal->j_barrier_count)) {
346 jbd2_get_transaction(journal, new_transaction);
347 new_transaction = NULL;
348 }
349 write_unlock(&journal->j_state_lock);
350 goto repeat;
351 }
352
353 transaction = journal->j_running_transaction;
354
355 if (!handle->h_reserved) {
356 /* We may have dropped j_state_lock - restart in that case */
357 if (add_transaction_credits(journal, blocks, rsv_blocks))
358 goto repeat;
359 } else {
360 /*
361 * We have handle reserved so we are allowed to join T_LOCKED
362 * transaction and we don't have to check for transaction size
363 * and journal space.
364 */
365 sub_reserved_credits(journal, blocks);
366 handle->h_reserved = 0;
367 }
368
369 /* OK, account for the buffers that this operation expects to
370 * use and add the handle to the running transaction.
371 */
372 update_t_max_wait(transaction, ts);
373 handle->h_transaction = transaction;
374 handle->h_requested_credits = blocks;
375 handle->h_start_jiffies = jiffies;
376 atomic_inc(&transaction->t_updates);
377 atomic_inc(&transaction->t_handle_count);
378 jbd_debug(4, "Handle %p given %d credits (total %d, free %lu)\n",
379 handle, blocks,
380 atomic_read(&transaction->t_outstanding_credits),
381 jbd2_log_space_left(journal));
382 read_unlock(&journal->j_state_lock);
383 current->journal_info = handle;
384
385 rwsem_acquire_read(&journal->j_trans_commit_map, 0, 0, _THIS_IP_);
386 jbd2_journal_free_transaction(new_transaction);
387 /*
388 * Ensure that no allocations done while the transaction is open are
389 * going to recurse back to the fs layer.
390 */
391 handle->saved_alloc_context = memalloc_nofs_save();
392 return 0;
393 }
394
395 /* Allocate a new handle. This should probably be in a slab... */
new_handle(int nblocks)396 static handle_t *new_handle(int nblocks)
397 {
398 handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
399 if (!handle)
400 return NULL;
401 handle->h_buffer_credits = nblocks;
402 handle->h_ref = 1;
403
404 return handle;
405 }
406
jbd2__journal_start(journal_t * journal,int nblocks,int rsv_blocks,gfp_t gfp_mask,unsigned int type,unsigned int line_no)407 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks,
408 gfp_t gfp_mask, unsigned int type,
409 unsigned int line_no)
410 {
411 handle_t *handle = journal_current_handle();
412 int err;
413
414 if (!journal)
415 return ERR_PTR(-EROFS);
416
417 if (handle) {
418 J_ASSERT(handle->h_transaction->t_journal == journal);
419 handle->h_ref++;
420 return handle;
421 }
422
423 handle = new_handle(nblocks);
424 if (!handle)
425 return ERR_PTR(-ENOMEM);
426 if (rsv_blocks) {
427 handle_t *rsv_handle;
428
429 rsv_handle = new_handle(rsv_blocks);
430 if (!rsv_handle) {
431 jbd2_free_handle(handle);
432 return ERR_PTR(-ENOMEM);
433 }
434 rsv_handle->h_reserved = 1;
435 rsv_handle->h_journal = journal;
436 handle->h_rsv_handle = rsv_handle;
437 }
438
439 err = start_this_handle(journal, handle, gfp_mask);
440 if (err < 0) {
441 if (handle->h_rsv_handle)
442 jbd2_free_handle(handle->h_rsv_handle);
443 jbd2_free_handle(handle);
444 return ERR_PTR(err);
445 }
446 handle->h_type = type;
447 handle->h_line_no = line_no;
448 trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
449 handle->h_transaction->t_tid, type,
450 line_no, nblocks);
451
452 return handle;
453 }
454 EXPORT_SYMBOL(jbd2__journal_start);
455
456
457 /**
458 * handle_t *jbd2_journal_start() - Obtain a new handle.
459 * @journal: Journal to start transaction on.
460 * @nblocks: number of block buffer we might modify
461 *
462 * We make sure that the transaction can guarantee at least nblocks of
463 * modified buffers in the log. We block until the log can guarantee
464 * that much space. Additionally, if rsv_blocks > 0, we also create another
465 * handle with rsv_blocks reserved blocks in the journal. This handle is
466 * is stored in h_rsv_handle. It is not attached to any particular transaction
467 * and thus doesn't block transaction commit. If the caller uses this reserved
468 * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop()
469 * on the parent handle will dispose the reserved one. Reserved handle has to
470 * be converted to a normal handle using jbd2_journal_start_reserved() before
471 * it can be used.
472 *
473 * Return a pointer to a newly allocated handle, or an ERR_PTR() value
474 * on failure.
475 */
jbd2_journal_start(journal_t * journal,int nblocks)476 handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
477 {
478 return jbd2__journal_start(journal, nblocks, 0, GFP_NOFS, 0, 0);
479 }
480 EXPORT_SYMBOL(jbd2_journal_start);
481
jbd2_journal_free_reserved(handle_t * handle)482 void jbd2_journal_free_reserved(handle_t *handle)
483 {
484 journal_t *journal = handle->h_journal;
485
486 WARN_ON(!handle->h_reserved);
487 sub_reserved_credits(journal, handle->h_buffer_credits);
488 jbd2_free_handle(handle);
489 }
490 EXPORT_SYMBOL(jbd2_journal_free_reserved);
491
492 /**
493 * int jbd2_journal_start_reserved() - start reserved handle
494 * @handle: handle to start
495 * @type: for handle statistics
496 * @line_no: for handle statistics
497 *
498 * Start handle that has been previously reserved with jbd2_journal_reserve().
499 * This attaches @handle to the running transaction (or creates one if there's
500 * not transaction running). Unlike jbd2_journal_start() this function cannot
501 * block on journal commit, checkpointing, or similar stuff. It can block on
502 * memory allocation or frozen journal though.
503 *
504 * Return 0 on success, non-zero on error - handle is freed in that case.
505 */
jbd2_journal_start_reserved(handle_t * handle,unsigned int type,unsigned int line_no)506 int jbd2_journal_start_reserved(handle_t *handle, unsigned int type,
507 unsigned int line_no)
508 {
509 journal_t *journal = handle->h_journal;
510 int ret = -EIO;
511
512 if (WARN_ON(!handle->h_reserved)) {
513 /* Someone passed in normal handle? Just stop it. */
514 jbd2_journal_stop(handle);
515 return ret;
516 }
517 /*
518 * Usefulness of mixing of reserved and unreserved handles is
519 * questionable. So far nobody seems to need it so just error out.
520 */
521 if (WARN_ON(current->journal_info)) {
522 jbd2_journal_free_reserved(handle);
523 return ret;
524 }
525
526 handle->h_journal = NULL;
527 /*
528 * GFP_NOFS is here because callers are likely from writeback or
529 * similarly constrained call sites
530 */
531 ret = start_this_handle(journal, handle, GFP_NOFS);
532 if (ret < 0) {
533 handle->h_journal = journal;
534 jbd2_journal_free_reserved(handle);
535 return ret;
536 }
537 handle->h_type = type;
538 handle->h_line_no = line_no;
539 return 0;
540 }
541 EXPORT_SYMBOL(jbd2_journal_start_reserved);
542
543 /**
544 * int jbd2_journal_extend() - extend buffer credits.
545 * @handle: handle to 'extend'
546 * @nblocks: nr blocks to try to extend by.
547 *
548 * Some transactions, such as large extends and truncates, can be done
549 * atomically all at once or in several stages. The operation requests
550 * a credit for a number of buffer modifications in advance, but can
551 * extend its credit if it needs more.
552 *
553 * jbd2_journal_extend tries to give the running handle more buffer credits.
554 * It does not guarantee that allocation - this is a best-effort only.
555 * The calling process MUST be able to deal cleanly with a failure to
556 * extend here.
557 *
558 * Return 0 on success, non-zero on failure.
559 *
560 * return code < 0 implies an error
561 * return code > 0 implies normal transaction-full status.
562 */
jbd2_journal_extend(handle_t * handle,int nblocks)563 int jbd2_journal_extend(handle_t *handle, int nblocks)
564 {
565 transaction_t *transaction = handle->h_transaction;
566 journal_t *journal;
567 int result;
568 int wanted;
569
570 if (is_handle_aborted(handle))
571 return -EROFS;
572 journal = transaction->t_journal;
573
574 result = 1;
575
576 read_lock(&journal->j_state_lock);
577
578 /* Don't extend a locked-down transaction! */
579 if (transaction->t_state != T_RUNNING) {
580 jbd_debug(3, "denied handle %p %d blocks: "
581 "transaction not running\n", handle, nblocks);
582 goto error_out;
583 }
584
585 spin_lock(&transaction->t_handle_lock);
586 wanted = atomic_add_return(nblocks,
587 &transaction->t_outstanding_credits);
588
589 if (wanted > journal->j_max_transaction_buffers) {
590 jbd_debug(3, "denied handle %p %d blocks: "
591 "transaction too large\n", handle, nblocks);
592 atomic_sub(nblocks, &transaction->t_outstanding_credits);
593 goto unlock;
594 }
595
596 if (wanted + (wanted >> JBD2_CONTROL_BLOCKS_SHIFT) >
597 jbd2_log_space_left(journal)) {
598 jbd_debug(3, "denied handle %p %d blocks: "
599 "insufficient log space\n", handle, nblocks);
600 atomic_sub(nblocks, &transaction->t_outstanding_credits);
601 goto unlock;
602 }
603
604 trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev,
605 transaction->t_tid,
606 handle->h_type, handle->h_line_no,
607 handle->h_buffer_credits,
608 nblocks);
609
610 handle->h_buffer_credits += nblocks;
611 handle->h_requested_credits += nblocks;
612 result = 0;
613
614 jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
615 unlock:
616 spin_unlock(&transaction->t_handle_lock);
617 error_out:
618 read_unlock(&journal->j_state_lock);
619 return result;
620 }
621
622
623 /**
624 * int jbd2_journal_restart() - restart a handle .
625 * @handle: handle to restart
626 * @nblocks: nr credits requested
627 * @gfp_mask: memory allocation flags (for start_this_handle)
628 *
629 * Restart a handle for a multi-transaction filesystem
630 * operation.
631 *
632 * If the jbd2_journal_extend() call above fails to grant new buffer credits
633 * to a running handle, a call to jbd2_journal_restart will commit the
634 * handle's transaction so far and reattach the handle to a new
635 * transaction capable of guaranteeing the requested number of
636 * credits. We preserve reserved handle if there's any attached to the
637 * passed in handle.
638 */
jbd2__journal_restart(handle_t * handle,int nblocks,gfp_t gfp_mask)639 int jbd2__journal_restart(handle_t *handle, int nblocks, gfp_t gfp_mask)
640 {
641 transaction_t *transaction = handle->h_transaction;
642 journal_t *journal;
643 tid_t tid;
644 int need_to_start, ret;
645
646 /* If we've had an abort of any type, don't even think about
647 * actually doing the restart! */
648 if (is_handle_aborted(handle))
649 return 0;
650 journal = transaction->t_journal;
651
652 /*
653 * First unlink the handle from its current transaction, and start the
654 * commit on that.
655 */
656 J_ASSERT(atomic_read(&transaction->t_updates) > 0);
657 J_ASSERT(journal_current_handle() == handle);
658
659 read_lock(&journal->j_state_lock);
660 spin_lock(&transaction->t_handle_lock);
661 atomic_sub(handle->h_buffer_credits,
662 &transaction->t_outstanding_credits);
663 if (handle->h_rsv_handle) {
664 sub_reserved_credits(journal,
665 handle->h_rsv_handle->h_buffer_credits);
666 }
667 if (atomic_dec_and_test(&transaction->t_updates))
668 wake_up(&journal->j_wait_updates);
669 tid = transaction->t_tid;
670 spin_unlock(&transaction->t_handle_lock);
671 handle->h_transaction = NULL;
672 current->journal_info = NULL;
673
674 jbd_debug(2, "restarting handle %p\n", handle);
675 need_to_start = !tid_geq(journal->j_commit_request, tid);
676 read_unlock(&journal->j_state_lock);
677 if (need_to_start)
678 jbd2_log_start_commit(journal, tid);
679
680 rwsem_release(&journal->j_trans_commit_map, 1, _THIS_IP_);
681 handle->h_buffer_credits = nblocks;
682 /*
683 * Restore the original nofs context because the journal restart
684 * is basically the same thing as journal stop and start.
685 * start_this_handle will start a new nofs context.
686 */
687 memalloc_nofs_restore(handle->saved_alloc_context);
688 ret = start_this_handle(journal, handle, gfp_mask);
689 return ret;
690 }
691 EXPORT_SYMBOL(jbd2__journal_restart);
692
693
jbd2_journal_restart(handle_t * handle,int nblocks)694 int jbd2_journal_restart(handle_t *handle, int nblocks)
695 {
696 return jbd2__journal_restart(handle, nblocks, GFP_NOFS);
697 }
698 EXPORT_SYMBOL(jbd2_journal_restart);
699
700 /**
701 * void jbd2_journal_lock_updates () - establish a transaction barrier.
702 * @journal: Journal to establish a barrier on.
703 *
704 * This locks out any further updates from being started, and blocks
705 * until all existing updates have completed, returning only once the
706 * journal is in a quiescent state with no updates running.
707 *
708 * The journal lock should not be held on entry.
709 */
jbd2_journal_lock_updates(journal_t * journal)710 void jbd2_journal_lock_updates(journal_t *journal)
711 {
712 DEFINE_WAIT(wait);
713
714 jbd2_might_wait_for_commit(journal);
715
716 write_lock(&journal->j_state_lock);
717 ++journal->j_barrier_count;
718
719 /* Wait until there are no reserved handles */
720 if (atomic_read(&journal->j_reserved_credits)) {
721 write_unlock(&journal->j_state_lock);
722 wait_event(journal->j_wait_reserved,
723 atomic_read(&journal->j_reserved_credits) == 0);
724 write_lock(&journal->j_state_lock);
725 }
726
727 /* Wait until there are no running updates */
728 while (1) {
729 transaction_t *transaction = journal->j_running_transaction;
730
731 if (!transaction)
732 break;
733
734 spin_lock(&transaction->t_handle_lock);
735 prepare_to_wait(&journal->j_wait_updates, &wait,
736 TASK_UNINTERRUPTIBLE);
737 if (!atomic_read(&transaction->t_updates)) {
738 spin_unlock(&transaction->t_handle_lock);
739 finish_wait(&journal->j_wait_updates, &wait);
740 break;
741 }
742 spin_unlock(&transaction->t_handle_lock);
743 write_unlock(&journal->j_state_lock);
744 schedule();
745 finish_wait(&journal->j_wait_updates, &wait);
746 write_lock(&journal->j_state_lock);
747 }
748 write_unlock(&journal->j_state_lock);
749
750 /*
751 * We have now established a barrier against other normal updates, but
752 * we also need to barrier against other jbd2_journal_lock_updates() calls
753 * to make sure that we serialise special journal-locked operations
754 * too.
755 */
756 mutex_lock(&journal->j_barrier);
757 }
758
759 /**
760 * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier
761 * @journal: Journal to release the barrier on.
762 *
763 * Release a transaction barrier obtained with jbd2_journal_lock_updates().
764 *
765 * Should be called without the journal lock held.
766 */
jbd2_journal_unlock_updates(journal_t * journal)767 void jbd2_journal_unlock_updates (journal_t *journal)
768 {
769 J_ASSERT(journal->j_barrier_count != 0);
770
771 mutex_unlock(&journal->j_barrier);
772 write_lock(&journal->j_state_lock);
773 --journal->j_barrier_count;
774 write_unlock(&journal->j_state_lock);
775 wake_up(&journal->j_wait_transaction_locked);
776 }
777
warn_dirty_buffer(struct buffer_head * bh)778 static void warn_dirty_buffer(struct buffer_head *bh)
779 {
780 printk(KERN_WARNING
781 "JBD2: Spotted dirty metadata buffer (dev = %pg, blocknr = %llu). "
782 "There's a risk of filesystem corruption in case of system "
783 "crash.\n",
784 bh->b_bdev, (unsigned long long)bh->b_blocknr);
785 }
786
787 /* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */
jbd2_freeze_jh_data(struct journal_head * jh)788 static void jbd2_freeze_jh_data(struct journal_head *jh)
789 {
790 struct page *page;
791 int offset;
792 char *source;
793 struct buffer_head *bh = jh2bh(jh);
794
795 J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n");
796 page = bh->b_page;
797 offset = offset_in_page(bh->b_data);
798 source = kmap_atomic(page);
799 /* Fire data frozen trigger just before we copy the data */
800 jbd2_buffer_frozen_trigger(jh, source + offset, jh->b_triggers);
801 memcpy(jh->b_frozen_data, source + offset, bh->b_size);
802 kunmap_atomic(source);
803
804 /*
805 * Now that the frozen data is saved off, we need to store any matching
806 * triggers.
807 */
808 jh->b_frozen_triggers = jh->b_triggers;
809 }
810
811 /*
812 * If the buffer is already part of the current transaction, then there
813 * is nothing we need to do. If it is already part of a prior
814 * transaction which we are still committing to disk, then we need to
815 * make sure that we do not overwrite the old copy: we do copy-out to
816 * preserve the copy going to disk. We also account the buffer against
817 * the handle's metadata buffer credits (unless the buffer is already
818 * part of the transaction, that is).
819 *
820 */
821 static int
do_get_write_access(handle_t * handle,struct journal_head * jh,int force_copy)822 do_get_write_access(handle_t *handle, struct journal_head *jh,
823 int force_copy)
824 {
825 struct buffer_head *bh;
826 transaction_t *transaction = handle->h_transaction;
827 journal_t *journal;
828 int error;
829 char *frozen_buffer = NULL;
830 unsigned long start_lock, time_lock;
831
832 if (is_handle_aborted(handle))
833 return -EROFS;
834 journal = transaction->t_journal;
835
836 jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
837
838 JBUFFER_TRACE(jh, "entry");
839 repeat:
840 bh = jh2bh(jh);
841
842 /* @@@ Need to check for errors here at some point. */
843
844 start_lock = jiffies;
845 lock_buffer(bh);
846 jbd_lock_bh_state(bh);
847
848 /* If it takes too long to lock the buffer, trace it */
849 time_lock = jbd2_time_diff(start_lock, jiffies);
850 if (time_lock > HZ/10)
851 trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev,
852 jiffies_to_msecs(time_lock));
853
854 /* We now hold the buffer lock so it is safe to query the buffer
855 * state. Is the buffer dirty?
856 *
857 * If so, there are two possibilities. The buffer may be
858 * non-journaled, and undergoing a quite legitimate writeback.
859 * Otherwise, it is journaled, and we don't expect dirty buffers
860 * in that state (the buffers should be marked JBD_Dirty
861 * instead.) So either the IO is being done under our own
862 * control and this is a bug, or it's a third party IO such as
863 * dump(8) (which may leave the buffer scheduled for read ---
864 * ie. locked but not dirty) or tune2fs (which may actually have
865 * the buffer dirtied, ugh.) */
866
867 if (buffer_dirty(bh)) {
868 /*
869 * First question: is this buffer already part of the current
870 * transaction or the existing committing transaction?
871 */
872 if (jh->b_transaction) {
873 J_ASSERT_JH(jh,
874 jh->b_transaction == transaction ||
875 jh->b_transaction ==
876 journal->j_committing_transaction);
877 if (jh->b_next_transaction)
878 J_ASSERT_JH(jh, jh->b_next_transaction ==
879 transaction);
880 warn_dirty_buffer(bh);
881 }
882 /*
883 * In any case we need to clean the dirty flag and we must
884 * do it under the buffer lock to be sure we don't race
885 * with running write-out.
886 */
887 JBUFFER_TRACE(jh, "Journalling dirty buffer");
888 clear_buffer_dirty(bh);
889 set_buffer_jbddirty(bh);
890 }
891
892 unlock_buffer(bh);
893
894 error = -EROFS;
895 if (is_handle_aborted(handle)) {
896 jbd_unlock_bh_state(bh);
897 goto out;
898 }
899 error = 0;
900
901 /*
902 * The buffer is already part of this transaction if b_transaction or
903 * b_next_transaction points to it
904 */
905 if (jh->b_transaction == transaction ||
906 jh->b_next_transaction == transaction)
907 goto done;
908
909 /*
910 * this is the first time this transaction is touching this buffer,
911 * reset the modified flag
912 */
913 jh->b_modified = 0;
914
915 /*
916 * If the buffer is not journaled right now, we need to make sure it
917 * doesn't get written to disk before the caller actually commits the
918 * new data
919 */
920 if (!jh->b_transaction) {
921 JBUFFER_TRACE(jh, "no transaction");
922 J_ASSERT_JH(jh, !jh->b_next_transaction);
923 JBUFFER_TRACE(jh, "file as BJ_Reserved");
924 /*
925 * Make sure all stores to jh (b_modified, b_frozen_data) are
926 * visible before attaching it to the running transaction.
927 * Paired with barrier in jbd2_write_access_granted()
928 */
929 smp_wmb();
930 spin_lock(&journal->j_list_lock);
931 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
932 spin_unlock(&journal->j_list_lock);
933 goto done;
934 }
935 /*
936 * If there is already a copy-out version of this buffer, then we don't
937 * need to make another one
938 */
939 if (jh->b_frozen_data) {
940 JBUFFER_TRACE(jh, "has frozen data");
941 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
942 goto attach_next;
943 }
944
945 JBUFFER_TRACE(jh, "owned by older transaction");
946 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
947 J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction);
948
949 /*
950 * There is one case we have to be very careful about. If the
951 * committing transaction is currently writing this buffer out to disk
952 * and has NOT made a copy-out, then we cannot modify the buffer
953 * contents at all right now. The essence of copy-out is that it is
954 * the extra copy, not the primary copy, which gets journaled. If the
955 * primary copy is already going to disk then we cannot do copy-out
956 * here.
957 */
958 if (buffer_shadow(bh)) {
959 JBUFFER_TRACE(jh, "on shadow: sleep");
960 jbd_unlock_bh_state(bh);
961 wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE);
962 goto repeat;
963 }
964
965 /*
966 * Only do the copy if the currently-owning transaction still needs it.
967 * If buffer isn't on BJ_Metadata list, the committing transaction is
968 * past that stage (here we use the fact that BH_Shadow is set under
969 * bh_state lock together with refiling to BJ_Shadow list and at this
970 * point we know the buffer doesn't have BH_Shadow set).
971 *
972 * Subtle point, though: if this is a get_undo_access, then we will be
973 * relying on the frozen_data to contain the new value of the
974 * committed_data record after the transaction, so we HAVE to force the
975 * frozen_data copy in that case.
976 */
977 if (jh->b_jlist == BJ_Metadata || force_copy) {
978 JBUFFER_TRACE(jh, "generate frozen data");
979 if (!frozen_buffer) {
980 JBUFFER_TRACE(jh, "allocate memory for buffer");
981 jbd_unlock_bh_state(bh);
982 frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size,
983 GFP_NOFS | __GFP_NOFAIL);
984 goto repeat;
985 }
986 jh->b_frozen_data = frozen_buffer;
987 frozen_buffer = NULL;
988 jbd2_freeze_jh_data(jh);
989 }
990 attach_next:
991 /*
992 * Make sure all stores to jh (b_modified, b_frozen_data) are visible
993 * before attaching it to the running transaction. Paired with barrier
994 * in jbd2_write_access_granted()
995 */
996 smp_wmb();
997 jh->b_next_transaction = transaction;
998
999 done:
1000 jbd_unlock_bh_state(bh);
1001
1002 /*
1003 * If we are about to journal a buffer, then any revoke pending on it is
1004 * no longer valid
1005 */
1006 jbd2_journal_cancel_revoke(handle, jh);
1007
1008 out:
1009 if (unlikely(frozen_buffer)) /* It's usually NULL */
1010 jbd2_free(frozen_buffer, bh->b_size);
1011
1012 JBUFFER_TRACE(jh, "exit");
1013 return error;
1014 }
1015
1016 /* Fast check whether buffer is already attached to the required transaction */
jbd2_write_access_granted(handle_t * handle,struct buffer_head * bh,bool undo)1017 static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh,
1018 bool undo)
1019 {
1020 struct journal_head *jh;
1021 bool ret = false;
1022
1023 /* Dirty buffers require special handling... */
1024 if (buffer_dirty(bh))
1025 return false;
1026
1027 /*
1028 * RCU protects us from dereferencing freed pages. So the checks we do
1029 * are guaranteed not to oops. However the jh slab object can get freed
1030 * & reallocated while we work with it. So we have to be careful. When
1031 * we see jh attached to the running transaction, we know it must stay
1032 * so until the transaction is committed. Thus jh won't be freed and
1033 * will be attached to the same bh while we run. However it can
1034 * happen jh gets freed, reallocated, and attached to the transaction
1035 * just after we get pointer to it from bh. So we have to be careful
1036 * and recheck jh still belongs to our bh before we return success.
1037 */
1038 rcu_read_lock();
1039 if (!buffer_jbd(bh))
1040 goto out;
1041 /* This should be bh2jh() but that doesn't work with inline functions */
1042 jh = READ_ONCE(bh->b_private);
1043 if (!jh)
1044 goto out;
1045 /* For undo access buffer must have data copied */
1046 if (undo && !jh->b_committed_data)
1047 goto out;
1048 if (jh->b_transaction != handle->h_transaction &&
1049 jh->b_next_transaction != handle->h_transaction)
1050 goto out;
1051 /*
1052 * There are two reasons for the barrier here:
1053 * 1) Make sure to fetch b_bh after we did previous checks so that we
1054 * detect when jh went through free, realloc, attach to transaction
1055 * while we were checking. Paired with implicit barrier in that path.
1056 * 2) So that access to bh done after jbd2_write_access_granted()
1057 * doesn't get reordered and see inconsistent state of concurrent
1058 * do_get_write_access().
1059 */
1060 smp_mb();
1061 if (unlikely(jh->b_bh != bh))
1062 goto out;
1063 ret = true;
1064 out:
1065 rcu_read_unlock();
1066 return ret;
1067 }
1068
1069 /**
1070 * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
1071 * @handle: transaction to add buffer modifications to
1072 * @bh: bh to be used for metadata writes
1073 *
1074 * Returns: error code or 0 on success.
1075 *
1076 * In full data journalling mode the buffer may be of type BJ_AsyncData,
1077 * because we're ``write()ing`` a buffer which is also part of a shared mapping.
1078 */
1079
jbd2_journal_get_write_access(handle_t * handle,struct buffer_head * bh)1080 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
1081 {
1082 struct journal_head *jh;
1083 int rc;
1084
1085 if (jbd2_write_access_granted(handle, bh, false))
1086 return 0;
1087
1088 jh = jbd2_journal_add_journal_head(bh);
1089 /* We do not want to get caught playing with fields which the
1090 * log thread also manipulates. Make sure that the buffer
1091 * completes any outstanding IO before proceeding. */
1092 rc = do_get_write_access(handle, jh, 0);
1093 jbd2_journal_put_journal_head(jh);
1094 return rc;
1095 }
1096
1097
1098 /*
1099 * When the user wants to journal a newly created buffer_head
1100 * (ie. getblk() returned a new buffer and we are going to populate it
1101 * manually rather than reading off disk), then we need to keep the
1102 * buffer_head locked until it has been completely filled with new
1103 * data. In this case, we should be able to make the assertion that
1104 * the bh is not already part of an existing transaction.
1105 *
1106 * The buffer should already be locked by the caller by this point.
1107 * There is no lock ranking violation: it was a newly created,
1108 * unlocked buffer beforehand. */
1109
1110 /**
1111 * int jbd2_journal_get_create_access () - notify intent to use newly created bh
1112 * @handle: transaction to new buffer to
1113 * @bh: new buffer.
1114 *
1115 * Call this if you create a new bh.
1116 */
jbd2_journal_get_create_access(handle_t * handle,struct buffer_head * bh)1117 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
1118 {
1119 transaction_t *transaction = handle->h_transaction;
1120 journal_t *journal;
1121 struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1122 int err;
1123
1124 jbd_debug(5, "journal_head %p\n", jh);
1125 err = -EROFS;
1126 if (is_handle_aborted(handle))
1127 goto out;
1128 journal = transaction->t_journal;
1129 err = 0;
1130
1131 JBUFFER_TRACE(jh, "entry");
1132 /*
1133 * The buffer may already belong to this transaction due to pre-zeroing
1134 * in the filesystem's new_block code. It may also be on the previous,
1135 * committing transaction's lists, but it HAS to be in Forget state in
1136 * that case: the transaction must have deleted the buffer for it to be
1137 * reused here.
1138 */
1139 jbd_lock_bh_state(bh);
1140 J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
1141 jh->b_transaction == NULL ||
1142 (jh->b_transaction == journal->j_committing_transaction &&
1143 jh->b_jlist == BJ_Forget)));
1144
1145 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1146 J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
1147
1148 if (jh->b_transaction == NULL) {
1149 /*
1150 * Previous jbd2_journal_forget() could have left the buffer
1151 * with jbddirty bit set because it was being committed. When
1152 * the commit finished, we've filed the buffer for
1153 * checkpointing and marked it dirty. Now we are reallocating
1154 * the buffer so the transaction freeing it must have
1155 * committed and so it's safe to clear the dirty bit.
1156 */
1157 clear_buffer_dirty(jh2bh(jh));
1158 /* first access by this transaction */
1159 jh->b_modified = 0;
1160
1161 JBUFFER_TRACE(jh, "file as BJ_Reserved");
1162 spin_lock(&journal->j_list_lock);
1163 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1164 spin_unlock(&journal->j_list_lock);
1165 } else if (jh->b_transaction == journal->j_committing_transaction) {
1166 /* first access by this transaction */
1167 jh->b_modified = 0;
1168
1169 JBUFFER_TRACE(jh, "set next transaction");
1170 spin_lock(&journal->j_list_lock);
1171 jh->b_next_transaction = transaction;
1172 spin_unlock(&journal->j_list_lock);
1173 }
1174 jbd_unlock_bh_state(bh);
1175
1176 /*
1177 * akpm: I added this. ext3_alloc_branch can pick up new indirect
1178 * blocks which contain freed but then revoked metadata. We need
1179 * to cancel the revoke in case we end up freeing it yet again
1180 * and the reallocating as data - this would cause a second revoke,
1181 * which hits an assertion error.
1182 */
1183 JBUFFER_TRACE(jh, "cancelling revoke");
1184 jbd2_journal_cancel_revoke(handle, jh);
1185 out:
1186 jbd2_journal_put_journal_head(jh);
1187 return err;
1188 }
1189
1190 /**
1191 * int jbd2_journal_get_undo_access() - Notify intent to modify metadata with
1192 * non-rewindable consequences
1193 * @handle: transaction
1194 * @bh: buffer to undo
1195 *
1196 * Sometimes there is a need to distinguish between metadata which has
1197 * been committed to disk and that which has not. The ext3fs code uses
1198 * this for freeing and allocating space, we have to make sure that we
1199 * do not reuse freed space until the deallocation has been committed,
1200 * since if we overwrote that space we would make the delete
1201 * un-rewindable in case of a crash.
1202 *
1203 * To deal with that, jbd2_journal_get_undo_access requests write access to a
1204 * buffer for parts of non-rewindable operations such as delete
1205 * operations on the bitmaps. The journaling code must keep a copy of
1206 * the buffer's contents prior to the undo_access call until such time
1207 * as we know that the buffer has definitely been committed to disk.
1208 *
1209 * We never need to know which transaction the committed data is part
1210 * of, buffers touched here are guaranteed to be dirtied later and so
1211 * will be committed to a new transaction in due course, at which point
1212 * we can discard the old committed data pointer.
1213 *
1214 * Returns error number or 0 on success.
1215 */
jbd2_journal_get_undo_access(handle_t * handle,struct buffer_head * bh)1216 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
1217 {
1218 int err;
1219 struct journal_head *jh;
1220 char *committed_data = NULL;
1221
1222 JBUFFER_TRACE(jh, "entry");
1223 if (jbd2_write_access_granted(handle, bh, true))
1224 return 0;
1225
1226 jh = jbd2_journal_add_journal_head(bh);
1227 /*
1228 * Do this first --- it can drop the journal lock, so we want to
1229 * make sure that obtaining the committed_data is done
1230 * atomically wrt. completion of any outstanding commits.
1231 */
1232 err = do_get_write_access(handle, jh, 1);
1233 if (err)
1234 goto out;
1235
1236 repeat:
1237 if (!jh->b_committed_data)
1238 committed_data = jbd2_alloc(jh2bh(jh)->b_size,
1239 GFP_NOFS|__GFP_NOFAIL);
1240
1241 jbd_lock_bh_state(bh);
1242 if (!jh->b_committed_data) {
1243 /* Copy out the current buffer contents into the
1244 * preserved, committed copy. */
1245 JBUFFER_TRACE(jh, "generate b_committed data");
1246 if (!committed_data) {
1247 jbd_unlock_bh_state(bh);
1248 goto repeat;
1249 }
1250
1251 jh->b_committed_data = committed_data;
1252 committed_data = NULL;
1253 memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
1254 }
1255 jbd_unlock_bh_state(bh);
1256 out:
1257 jbd2_journal_put_journal_head(jh);
1258 if (unlikely(committed_data))
1259 jbd2_free(committed_data, bh->b_size);
1260 return err;
1261 }
1262
1263 /**
1264 * void jbd2_journal_set_triggers() - Add triggers for commit writeout
1265 * @bh: buffer to trigger on
1266 * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1267 *
1268 * Set any triggers on this journal_head. This is always safe, because
1269 * triggers for a committing buffer will be saved off, and triggers for
1270 * a running transaction will match the buffer in that transaction.
1271 *
1272 * Call with NULL to clear the triggers.
1273 */
jbd2_journal_set_triggers(struct buffer_head * bh,struct jbd2_buffer_trigger_type * type)1274 void jbd2_journal_set_triggers(struct buffer_head *bh,
1275 struct jbd2_buffer_trigger_type *type)
1276 {
1277 struct journal_head *jh = jbd2_journal_grab_journal_head(bh);
1278
1279 if (WARN_ON(!jh))
1280 return;
1281 jh->b_triggers = type;
1282 jbd2_journal_put_journal_head(jh);
1283 }
1284
jbd2_buffer_frozen_trigger(struct journal_head * jh,void * mapped_data,struct jbd2_buffer_trigger_type * triggers)1285 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1286 struct jbd2_buffer_trigger_type *triggers)
1287 {
1288 struct buffer_head *bh = jh2bh(jh);
1289
1290 if (!triggers || !triggers->t_frozen)
1291 return;
1292
1293 triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1294 }
1295
jbd2_buffer_abort_trigger(struct journal_head * jh,struct jbd2_buffer_trigger_type * triggers)1296 void jbd2_buffer_abort_trigger(struct journal_head *jh,
1297 struct jbd2_buffer_trigger_type *triggers)
1298 {
1299 if (!triggers || !triggers->t_abort)
1300 return;
1301
1302 triggers->t_abort(triggers, jh2bh(jh));
1303 }
1304
1305 /**
1306 * int jbd2_journal_dirty_metadata() - mark a buffer as containing dirty metadata
1307 * @handle: transaction to add buffer to.
1308 * @bh: buffer to mark
1309 *
1310 * mark dirty metadata which needs to be journaled as part of the current
1311 * transaction.
1312 *
1313 * The buffer must have previously had jbd2_journal_get_write_access()
1314 * called so that it has a valid journal_head attached to the buffer
1315 * head.
1316 *
1317 * The buffer is placed on the transaction's metadata list and is marked
1318 * as belonging to the transaction.
1319 *
1320 * Returns error number or 0 on success.
1321 *
1322 * Special care needs to be taken if the buffer already belongs to the
1323 * current committing transaction (in which case we should have frozen
1324 * data present for that commit). In that case, we don't relink the
1325 * buffer: that only gets done when the old transaction finally
1326 * completes its commit.
1327 */
jbd2_journal_dirty_metadata(handle_t * handle,struct buffer_head * bh)1328 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1329 {
1330 transaction_t *transaction = handle->h_transaction;
1331 journal_t *journal;
1332 struct journal_head *jh;
1333 int ret = 0;
1334
1335 if (is_handle_aborted(handle))
1336 return -EROFS;
1337 if (!buffer_jbd(bh)) {
1338 ret = -EUCLEAN;
1339 goto out;
1340 }
1341 /*
1342 * We don't grab jh reference here since the buffer must be part
1343 * of the running transaction.
1344 */
1345 jh = bh2jh(bh);
1346 /*
1347 * This and the following assertions are unreliable since we may see jh
1348 * in inconsistent state unless we grab bh_state lock. But this is
1349 * crucial to catch bugs so let's do a reliable check until the
1350 * lockless handling is fully proven.
1351 */
1352 if (jh->b_transaction != transaction &&
1353 jh->b_next_transaction != transaction) {
1354 jbd_lock_bh_state(bh);
1355 J_ASSERT_JH(jh, jh->b_transaction == transaction ||
1356 jh->b_next_transaction == transaction);
1357 jbd_unlock_bh_state(bh);
1358 }
1359 if (jh->b_modified == 1) {
1360 /* If it's in our transaction it must be in BJ_Metadata list. */
1361 if (jh->b_transaction == transaction &&
1362 jh->b_jlist != BJ_Metadata) {
1363 jbd_lock_bh_state(bh);
1364 if (jh->b_transaction == transaction &&
1365 jh->b_jlist != BJ_Metadata)
1366 pr_err("JBD2: assertion failure: h_type=%u "
1367 "h_line_no=%u block_no=%llu jlist=%u\n",
1368 handle->h_type, handle->h_line_no,
1369 (unsigned long long) bh->b_blocknr,
1370 jh->b_jlist);
1371 J_ASSERT_JH(jh, jh->b_transaction != transaction ||
1372 jh->b_jlist == BJ_Metadata);
1373 jbd_unlock_bh_state(bh);
1374 }
1375 goto out;
1376 }
1377
1378 journal = transaction->t_journal;
1379 jbd_debug(5, "journal_head %p\n", jh);
1380 JBUFFER_TRACE(jh, "entry");
1381
1382 jbd_lock_bh_state(bh);
1383
1384 if (jh->b_modified == 0) {
1385 /*
1386 * This buffer's got modified and becoming part
1387 * of the transaction. This needs to be done
1388 * once a transaction -bzzz
1389 */
1390 if (handle->h_buffer_credits <= 0) {
1391 ret = -ENOSPC;
1392 goto out_unlock_bh;
1393 }
1394 jh->b_modified = 1;
1395 handle->h_buffer_credits--;
1396 }
1397
1398 /*
1399 * fastpath, to avoid expensive locking. If this buffer is already
1400 * on the running transaction's metadata list there is nothing to do.
1401 * Nobody can take it off again because there is a handle open.
1402 * I _think_ we're OK here with SMP barriers - a mistaken decision will
1403 * result in this test being false, so we go in and take the locks.
1404 */
1405 if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1406 JBUFFER_TRACE(jh, "fastpath");
1407 if (unlikely(jh->b_transaction !=
1408 journal->j_running_transaction)) {
1409 printk(KERN_ERR "JBD2: %s: "
1410 "jh->b_transaction (%llu, %p, %u) != "
1411 "journal->j_running_transaction (%p, %u)\n",
1412 journal->j_devname,
1413 (unsigned long long) bh->b_blocknr,
1414 jh->b_transaction,
1415 jh->b_transaction ? jh->b_transaction->t_tid : 0,
1416 journal->j_running_transaction,
1417 journal->j_running_transaction ?
1418 journal->j_running_transaction->t_tid : 0);
1419 ret = -EINVAL;
1420 }
1421 goto out_unlock_bh;
1422 }
1423
1424 set_buffer_jbddirty(bh);
1425
1426 /*
1427 * Metadata already on the current transaction list doesn't
1428 * need to be filed. Metadata on another transaction's list must
1429 * be committing, and will be refiled once the commit completes:
1430 * leave it alone for now.
1431 */
1432 if (jh->b_transaction != transaction) {
1433 JBUFFER_TRACE(jh, "already on other transaction");
1434 if (unlikely(((jh->b_transaction !=
1435 journal->j_committing_transaction)) ||
1436 (jh->b_next_transaction != transaction))) {
1437 printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: "
1438 "bad jh for block %llu: "
1439 "transaction (%p, %u), "
1440 "jh->b_transaction (%p, %u), "
1441 "jh->b_next_transaction (%p, %u), jlist %u\n",
1442 journal->j_devname,
1443 (unsigned long long) bh->b_blocknr,
1444 transaction, transaction->t_tid,
1445 jh->b_transaction,
1446 jh->b_transaction ?
1447 jh->b_transaction->t_tid : 0,
1448 jh->b_next_transaction,
1449 jh->b_next_transaction ?
1450 jh->b_next_transaction->t_tid : 0,
1451 jh->b_jlist);
1452 WARN_ON(1);
1453 ret = -EINVAL;
1454 }
1455 /* And this case is illegal: we can't reuse another
1456 * transaction's data buffer, ever. */
1457 goto out_unlock_bh;
1458 }
1459
1460 /* That test should have eliminated the following case: */
1461 J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1462
1463 JBUFFER_TRACE(jh, "file as BJ_Metadata");
1464 spin_lock(&journal->j_list_lock);
1465 __jbd2_journal_file_buffer(jh, transaction, BJ_Metadata);
1466 spin_unlock(&journal->j_list_lock);
1467 out_unlock_bh:
1468 jbd_unlock_bh_state(bh);
1469 out:
1470 JBUFFER_TRACE(jh, "exit");
1471 return ret;
1472 }
1473
1474 /**
1475 * void jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1476 * @handle: transaction handle
1477 * @bh: bh to 'forget'
1478 *
1479 * We can only do the bforget if there are no commits pending against the
1480 * buffer. If the buffer is dirty in the current running transaction we
1481 * can safely unlink it.
1482 *
1483 * bh may not be a journalled buffer at all - it may be a non-JBD
1484 * buffer which came off the hashtable. Check for this.
1485 *
1486 * Decrements bh->b_count by one.
1487 *
1488 * Allow this call even if the handle has aborted --- it may be part of
1489 * the caller's cleanup after an abort.
1490 */
jbd2_journal_forget(handle_t * handle,struct buffer_head * bh)1491 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh)
1492 {
1493 transaction_t *transaction = handle->h_transaction;
1494 journal_t *journal;
1495 struct journal_head *jh;
1496 int drop_reserve = 0;
1497 int err = 0;
1498 int was_modified = 0;
1499
1500 if (is_handle_aborted(handle))
1501 return -EROFS;
1502 journal = transaction->t_journal;
1503
1504 BUFFER_TRACE(bh, "entry");
1505
1506 jbd_lock_bh_state(bh);
1507
1508 if (!buffer_jbd(bh))
1509 goto not_jbd;
1510 jh = bh2jh(bh);
1511
1512 /* Critical error: attempting to delete a bitmap buffer, maybe?
1513 * Don't do any jbd operations, and return an error. */
1514 if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1515 "inconsistent data on disk")) {
1516 err = -EIO;
1517 goto not_jbd;
1518 }
1519
1520 /* keep track of whether or not this transaction modified us */
1521 was_modified = jh->b_modified;
1522
1523 /*
1524 * The buffer's going from the transaction, we must drop
1525 * all references -bzzz
1526 */
1527 jh->b_modified = 0;
1528
1529 if (jh->b_transaction == transaction) {
1530 J_ASSERT_JH(jh, !jh->b_frozen_data);
1531
1532 /* If we are forgetting a buffer which is already part
1533 * of this transaction, then we can just drop it from
1534 * the transaction immediately. */
1535 clear_buffer_dirty(bh);
1536 clear_buffer_jbddirty(bh);
1537
1538 JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1539
1540 /*
1541 * we only want to drop a reference if this transaction
1542 * modified the buffer
1543 */
1544 if (was_modified)
1545 drop_reserve = 1;
1546
1547 /*
1548 * We are no longer going to journal this buffer.
1549 * However, the commit of this transaction is still
1550 * important to the buffer: the delete that we are now
1551 * processing might obsolete an old log entry, so by
1552 * committing, we can satisfy the buffer's checkpoint.
1553 *
1554 * So, if we have a checkpoint on the buffer, we should
1555 * now refile the buffer on our BJ_Forget list so that
1556 * we know to remove the checkpoint after we commit.
1557 */
1558
1559 spin_lock(&journal->j_list_lock);
1560 if (jh->b_cp_transaction) {
1561 __jbd2_journal_temp_unlink_buffer(jh);
1562 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1563 } else {
1564 __jbd2_journal_unfile_buffer(jh);
1565 if (!buffer_jbd(bh)) {
1566 spin_unlock(&journal->j_list_lock);
1567 jbd_unlock_bh_state(bh);
1568 __bforget(bh);
1569 goto drop;
1570 }
1571 }
1572 spin_unlock(&journal->j_list_lock);
1573 } else if (jh->b_transaction) {
1574 J_ASSERT_JH(jh, (jh->b_transaction ==
1575 journal->j_committing_transaction));
1576 /* However, if the buffer is still owned by a prior
1577 * (committing) transaction, we can't drop it yet... */
1578 JBUFFER_TRACE(jh, "belongs to older transaction");
1579 /* ... but we CAN drop it from the new transaction if we
1580 * have also modified it since the original commit. */
1581
1582 if (jh->b_next_transaction) {
1583 J_ASSERT(jh->b_next_transaction == transaction);
1584 spin_lock(&journal->j_list_lock);
1585 jh->b_next_transaction = NULL;
1586 spin_unlock(&journal->j_list_lock);
1587
1588 /*
1589 * only drop a reference if this transaction modified
1590 * the buffer
1591 */
1592 if (was_modified)
1593 drop_reserve = 1;
1594 }
1595 }
1596
1597 not_jbd:
1598 jbd_unlock_bh_state(bh);
1599 __brelse(bh);
1600 drop:
1601 if (drop_reserve) {
1602 /* no need to reserve log space for this block -bzzz */
1603 handle->h_buffer_credits++;
1604 }
1605 return err;
1606 }
1607
1608 /**
1609 * int jbd2_journal_stop() - complete a transaction
1610 * @handle: transaction to complete.
1611 *
1612 * All done for a particular handle.
1613 *
1614 * There is not much action needed here. We just return any remaining
1615 * buffer credits to the transaction and remove the handle. The only
1616 * complication is that we need to start a commit operation if the
1617 * filesystem is marked for synchronous update.
1618 *
1619 * jbd2_journal_stop itself will not usually return an error, but it may
1620 * do so in unusual circumstances. In particular, expect it to
1621 * return -EIO if a jbd2_journal_abort has been executed since the
1622 * transaction began.
1623 */
jbd2_journal_stop(handle_t * handle)1624 int jbd2_journal_stop(handle_t *handle)
1625 {
1626 transaction_t *transaction = handle->h_transaction;
1627 journal_t *journal;
1628 int err = 0, wait_for_commit = 0;
1629 tid_t tid;
1630 pid_t pid;
1631
1632 if (!transaction) {
1633 /*
1634 * Handle is already detached from the transaction so
1635 * there is nothing to do other than decrease a refcount,
1636 * or free the handle if refcount drops to zero
1637 */
1638 if (--handle->h_ref > 0) {
1639 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1640 handle->h_ref);
1641 return err;
1642 } else {
1643 if (handle->h_rsv_handle)
1644 jbd2_free_handle(handle->h_rsv_handle);
1645 goto free_and_exit;
1646 }
1647 }
1648 journal = transaction->t_journal;
1649
1650 J_ASSERT(journal_current_handle() == handle);
1651
1652 if (is_handle_aborted(handle))
1653 err = -EIO;
1654 else
1655 J_ASSERT(atomic_read(&transaction->t_updates) > 0);
1656
1657 if (--handle->h_ref > 0) {
1658 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1659 handle->h_ref);
1660 return err;
1661 }
1662
1663 jbd_debug(4, "Handle %p going down\n", handle);
1664 trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev,
1665 transaction->t_tid,
1666 handle->h_type, handle->h_line_no,
1667 jiffies - handle->h_start_jiffies,
1668 handle->h_sync, handle->h_requested_credits,
1669 (handle->h_requested_credits -
1670 handle->h_buffer_credits));
1671
1672 /*
1673 * Implement synchronous transaction batching. If the handle
1674 * was synchronous, don't force a commit immediately. Let's
1675 * yield and let another thread piggyback onto this
1676 * transaction. Keep doing that while new threads continue to
1677 * arrive. It doesn't cost much - we're about to run a commit
1678 * and sleep on IO anyway. Speeds up many-threaded, many-dir
1679 * operations by 30x or more...
1680 *
1681 * We try and optimize the sleep time against what the
1682 * underlying disk can do, instead of having a static sleep
1683 * time. This is useful for the case where our storage is so
1684 * fast that it is more optimal to go ahead and force a flush
1685 * and wait for the transaction to be committed than it is to
1686 * wait for an arbitrary amount of time for new writers to
1687 * join the transaction. We achieve this by measuring how
1688 * long it takes to commit a transaction, and compare it with
1689 * how long this transaction has been running, and if run time
1690 * < commit time then we sleep for the delta and commit. This
1691 * greatly helps super fast disks that would see slowdowns as
1692 * more threads started doing fsyncs.
1693 *
1694 * But don't do this if this process was the most recent one
1695 * to perform a synchronous write. We do this to detect the
1696 * case where a single process is doing a stream of sync
1697 * writes. No point in waiting for joiners in that case.
1698 *
1699 * Setting max_batch_time to 0 disables this completely.
1700 */
1701 pid = current->pid;
1702 if (handle->h_sync && journal->j_last_sync_writer != pid &&
1703 journal->j_max_batch_time) {
1704 u64 commit_time, trans_time;
1705
1706 journal->j_last_sync_writer = pid;
1707
1708 read_lock(&journal->j_state_lock);
1709 commit_time = journal->j_average_commit_time;
1710 read_unlock(&journal->j_state_lock);
1711
1712 trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1713 transaction->t_start_time));
1714
1715 commit_time = max_t(u64, commit_time,
1716 1000*journal->j_min_batch_time);
1717 commit_time = min_t(u64, commit_time,
1718 1000*journal->j_max_batch_time);
1719
1720 if (trans_time < commit_time) {
1721 ktime_t expires = ktime_add_ns(ktime_get(),
1722 commit_time);
1723 set_current_state(TASK_UNINTERRUPTIBLE);
1724 schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1725 }
1726 }
1727
1728 if (handle->h_sync)
1729 transaction->t_synchronous_commit = 1;
1730 current->journal_info = NULL;
1731 atomic_sub(handle->h_buffer_credits,
1732 &transaction->t_outstanding_credits);
1733
1734 /*
1735 * If the handle is marked SYNC, we need to set another commit
1736 * going! We also want to force a commit if the current
1737 * transaction is occupying too much of the log, or if the
1738 * transaction is too old now.
1739 */
1740 if (handle->h_sync ||
1741 (atomic_read(&transaction->t_outstanding_credits) >
1742 journal->j_max_transaction_buffers) ||
1743 time_after_eq(jiffies, transaction->t_expires)) {
1744 /* Do this even for aborted journals: an abort still
1745 * completes the commit thread, it just doesn't write
1746 * anything to disk. */
1747
1748 jbd_debug(2, "transaction too old, requesting commit for "
1749 "handle %p\n", handle);
1750 /* This is non-blocking */
1751 jbd2_log_start_commit(journal, transaction->t_tid);
1752
1753 /*
1754 * Special case: JBD2_SYNC synchronous updates require us
1755 * to wait for the commit to complete.
1756 */
1757 if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1758 wait_for_commit = 1;
1759 }
1760
1761 /*
1762 * Once we drop t_updates, if it goes to zero the transaction
1763 * could start committing on us and eventually disappear. So
1764 * once we do this, we must not dereference transaction
1765 * pointer again.
1766 */
1767 tid = transaction->t_tid;
1768 if (atomic_dec_and_test(&transaction->t_updates)) {
1769 wake_up(&journal->j_wait_updates);
1770 if (journal->j_barrier_count)
1771 wake_up(&journal->j_wait_transaction_locked);
1772 }
1773
1774 rwsem_release(&journal->j_trans_commit_map, 1, _THIS_IP_);
1775
1776 if (wait_for_commit)
1777 err = jbd2_log_wait_commit(journal, tid);
1778
1779 if (handle->h_rsv_handle)
1780 jbd2_journal_free_reserved(handle->h_rsv_handle);
1781 free_and_exit:
1782 /*
1783 * Scope of the GFP_NOFS context is over here and so we can restore the
1784 * original alloc context.
1785 */
1786 memalloc_nofs_restore(handle->saved_alloc_context);
1787 jbd2_free_handle(handle);
1788 return err;
1789 }
1790
1791 /*
1792 *
1793 * List management code snippets: various functions for manipulating the
1794 * transaction buffer lists.
1795 *
1796 */
1797
1798 /*
1799 * Append a buffer to a transaction list, given the transaction's list head
1800 * pointer.
1801 *
1802 * j_list_lock is held.
1803 *
1804 * jbd_lock_bh_state(jh2bh(jh)) is held.
1805 */
1806
1807 static inline void
__blist_add_buffer(struct journal_head ** list,struct journal_head * jh)1808 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1809 {
1810 if (!*list) {
1811 jh->b_tnext = jh->b_tprev = jh;
1812 *list = jh;
1813 } else {
1814 /* Insert at the tail of the list to preserve order */
1815 struct journal_head *first = *list, *last = first->b_tprev;
1816 jh->b_tprev = last;
1817 jh->b_tnext = first;
1818 last->b_tnext = first->b_tprev = jh;
1819 }
1820 }
1821
1822 /*
1823 * Remove a buffer from a transaction list, given the transaction's list
1824 * head pointer.
1825 *
1826 * Called with j_list_lock held, and the journal may not be locked.
1827 *
1828 * jbd_lock_bh_state(jh2bh(jh)) is held.
1829 */
1830
1831 static inline void
__blist_del_buffer(struct journal_head ** list,struct journal_head * jh)1832 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1833 {
1834 if (*list == jh) {
1835 *list = jh->b_tnext;
1836 if (*list == jh)
1837 *list = NULL;
1838 }
1839 jh->b_tprev->b_tnext = jh->b_tnext;
1840 jh->b_tnext->b_tprev = jh->b_tprev;
1841 }
1842
1843 /*
1844 * Remove a buffer from the appropriate transaction list.
1845 *
1846 * Note that this function can *change* the value of
1847 * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or
1848 * t_reserved_list. If the caller is holding onto a copy of one of these
1849 * pointers, it could go bad. Generally the caller needs to re-read the
1850 * pointer from the transaction_t.
1851 *
1852 * Called under j_list_lock.
1853 */
__jbd2_journal_temp_unlink_buffer(struct journal_head * jh)1854 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1855 {
1856 struct journal_head **list = NULL;
1857 transaction_t *transaction;
1858 struct buffer_head *bh = jh2bh(jh);
1859
1860 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1861 transaction = jh->b_transaction;
1862 if (transaction)
1863 assert_spin_locked(&transaction->t_journal->j_list_lock);
1864
1865 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1866 if (jh->b_jlist != BJ_None)
1867 J_ASSERT_JH(jh, transaction != NULL);
1868
1869 switch (jh->b_jlist) {
1870 case BJ_None:
1871 return;
1872 case BJ_Metadata:
1873 transaction->t_nr_buffers--;
1874 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1875 list = &transaction->t_buffers;
1876 break;
1877 case BJ_Forget:
1878 list = &transaction->t_forget;
1879 break;
1880 case BJ_Shadow:
1881 list = &transaction->t_shadow_list;
1882 break;
1883 case BJ_Reserved:
1884 list = &transaction->t_reserved_list;
1885 break;
1886 }
1887
1888 __blist_del_buffer(list, jh);
1889 jh->b_jlist = BJ_None;
1890 if (transaction && is_journal_aborted(transaction->t_journal))
1891 clear_buffer_jbddirty(bh);
1892 else if (test_clear_buffer_jbddirty(bh))
1893 mark_buffer_dirty(bh); /* Expose it to the VM */
1894 }
1895
1896 /*
1897 * Remove buffer from all transactions.
1898 *
1899 * Called with bh_state lock and j_list_lock
1900 *
1901 * jh and bh may be already freed when this function returns.
1902 */
__jbd2_journal_unfile_buffer(struct journal_head * jh)1903 static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
1904 {
1905 __jbd2_journal_temp_unlink_buffer(jh);
1906 jh->b_transaction = NULL;
1907 jbd2_journal_put_journal_head(jh);
1908 }
1909
jbd2_journal_unfile_buffer(journal_t * journal,struct journal_head * jh)1910 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
1911 {
1912 struct buffer_head *bh = jh2bh(jh);
1913
1914 /* Get reference so that buffer cannot be freed before we unlock it */
1915 get_bh(bh);
1916 jbd_lock_bh_state(bh);
1917 spin_lock(&journal->j_list_lock);
1918 __jbd2_journal_unfile_buffer(jh);
1919 spin_unlock(&journal->j_list_lock);
1920 jbd_unlock_bh_state(bh);
1921 __brelse(bh);
1922 }
1923
1924 /*
1925 * Called from jbd2_journal_try_to_free_buffers().
1926 *
1927 * Called under jbd_lock_bh_state(bh)
1928 */
1929 static void
__journal_try_to_free_buffer(journal_t * journal,struct buffer_head * bh)1930 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
1931 {
1932 struct journal_head *jh;
1933
1934 jh = bh2jh(bh);
1935
1936 if (buffer_locked(bh) || buffer_dirty(bh))
1937 goto out;
1938
1939 if (jh->b_next_transaction != NULL || jh->b_transaction != NULL)
1940 goto out;
1941
1942 spin_lock(&journal->j_list_lock);
1943 if (jh->b_cp_transaction != NULL) {
1944 /* written-back checkpointed metadata buffer */
1945 JBUFFER_TRACE(jh, "remove from checkpoint list");
1946 __jbd2_journal_remove_checkpoint(jh);
1947 }
1948 spin_unlock(&journal->j_list_lock);
1949 out:
1950 return;
1951 }
1952
1953 /**
1954 * int jbd2_journal_try_to_free_buffers() - try to free page buffers.
1955 * @journal: journal for operation
1956 * @page: to try and free
1957 * @gfp_mask: we use the mask to detect how hard should we try to release
1958 * buffers. If __GFP_DIRECT_RECLAIM and __GFP_FS is set, we wait for commit
1959 * code to release the buffers.
1960 *
1961 *
1962 * For all the buffers on this page,
1963 * if they are fully written out ordered data, move them onto BUF_CLEAN
1964 * so try_to_free_buffers() can reap them.
1965 *
1966 * This function returns non-zero if we wish try_to_free_buffers()
1967 * to be called. We do this if the page is releasable by try_to_free_buffers().
1968 * We also do it if the page has locked or dirty buffers and the caller wants
1969 * us to perform sync or async writeout.
1970 *
1971 * This complicates JBD locking somewhat. We aren't protected by the
1972 * BKL here. We wish to remove the buffer from its committing or
1973 * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
1974 *
1975 * This may *change* the value of transaction_t->t_datalist, so anyone
1976 * who looks at t_datalist needs to lock against this function.
1977 *
1978 * Even worse, someone may be doing a jbd2_journal_dirty_data on this
1979 * buffer. So we need to lock against that. jbd2_journal_dirty_data()
1980 * will come out of the lock with the buffer dirty, which makes it
1981 * ineligible for release here.
1982 *
1983 * Who else is affected by this? hmm... Really the only contender
1984 * is do_get_write_access() - it could be looking at the buffer while
1985 * journal_try_to_free_buffer() is changing its state. But that
1986 * cannot happen because we never reallocate freed data as metadata
1987 * while the data is part of a transaction. Yes?
1988 *
1989 * Return 0 on failure, 1 on success
1990 */
jbd2_journal_try_to_free_buffers(journal_t * journal,struct page * page,gfp_t gfp_mask)1991 int jbd2_journal_try_to_free_buffers(journal_t *journal,
1992 struct page *page, gfp_t gfp_mask)
1993 {
1994 struct buffer_head *head;
1995 struct buffer_head *bh;
1996 int ret = 0;
1997
1998 J_ASSERT(PageLocked(page));
1999
2000 head = page_buffers(page);
2001 bh = head;
2002 do {
2003 struct journal_head *jh;
2004
2005 /*
2006 * We take our own ref against the journal_head here to avoid
2007 * having to add tons of locking around each instance of
2008 * jbd2_journal_put_journal_head().
2009 */
2010 jh = jbd2_journal_grab_journal_head(bh);
2011 if (!jh)
2012 continue;
2013
2014 jbd_lock_bh_state(bh);
2015 __journal_try_to_free_buffer(journal, bh);
2016 jbd2_journal_put_journal_head(jh);
2017 jbd_unlock_bh_state(bh);
2018 if (buffer_jbd(bh))
2019 goto busy;
2020 } while ((bh = bh->b_this_page) != head);
2021
2022 ret = try_to_free_buffers(page);
2023
2024 busy:
2025 return ret;
2026 }
2027
2028 /*
2029 * This buffer is no longer needed. If it is on an older transaction's
2030 * checkpoint list we need to record it on this transaction's forget list
2031 * to pin this buffer (and hence its checkpointing transaction) down until
2032 * this transaction commits. If the buffer isn't on a checkpoint list, we
2033 * release it.
2034 * Returns non-zero if JBD no longer has an interest in the buffer.
2035 *
2036 * Called under j_list_lock.
2037 *
2038 * Called under jbd_lock_bh_state(bh).
2039 */
__dispose_buffer(struct journal_head * jh,transaction_t * transaction)2040 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
2041 {
2042 int may_free = 1;
2043 struct buffer_head *bh = jh2bh(jh);
2044
2045 if (jh->b_cp_transaction) {
2046 JBUFFER_TRACE(jh, "on running+cp transaction");
2047 __jbd2_journal_temp_unlink_buffer(jh);
2048 /*
2049 * We don't want to write the buffer anymore, clear the
2050 * bit so that we don't confuse checks in
2051 * __journal_file_buffer
2052 */
2053 clear_buffer_dirty(bh);
2054 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
2055 may_free = 0;
2056 } else {
2057 JBUFFER_TRACE(jh, "on running transaction");
2058 __jbd2_journal_unfile_buffer(jh);
2059 }
2060 return may_free;
2061 }
2062
2063 /*
2064 * jbd2_journal_invalidatepage
2065 *
2066 * This code is tricky. It has a number of cases to deal with.
2067 *
2068 * There are two invariants which this code relies on:
2069 *
2070 * i_size must be updated on disk before we start calling invalidatepage on the
2071 * data.
2072 *
2073 * This is done in ext3 by defining an ext3_setattr method which
2074 * updates i_size before truncate gets going. By maintaining this
2075 * invariant, we can be sure that it is safe to throw away any buffers
2076 * attached to the current transaction: once the transaction commits,
2077 * we know that the data will not be needed.
2078 *
2079 * Note however that we can *not* throw away data belonging to the
2080 * previous, committing transaction!
2081 *
2082 * Any disk blocks which *are* part of the previous, committing
2083 * transaction (and which therefore cannot be discarded immediately) are
2084 * not going to be reused in the new running transaction
2085 *
2086 * The bitmap committed_data images guarantee this: any block which is
2087 * allocated in one transaction and removed in the next will be marked
2088 * as in-use in the committed_data bitmap, so cannot be reused until
2089 * the next transaction to delete the block commits. This means that
2090 * leaving committing buffers dirty is quite safe: the disk blocks
2091 * cannot be reallocated to a different file and so buffer aliasing is
2092 * not possible.
2093 *
2094 *
2095 * The above applies mainly to ordered data mode. In writeback mode we
2096 * don't make guarantees about the order in which data hits disk --- in
2097 * particular we don't guarantee that new dirty data is flushed before
2098 * transaction commit --- so it is always safe just to discard data
2099 * immediately in that mode. --sct
2100 */
2101
2102 /*
2103 * The journal_unmap_buffer helper function returns zero if the buffer
2104 * concerned remains pinned as an anonymous buffer belonging to an older
2105 * transaction.
2106 *
2107 * We're outside-transaction here. Either or both of j_running_transaction
2108 * and j_committing_transaction may be NULL.
2109 */
journal_unmap_buffer(journal_t * journal,struct buffer_head * bh,int partial_page)2110 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
2111 int partial_page)
2112 {
2113 transaction_t *transaction;
2114 struct journal_head *jh;
2115 int may_free = 1;
2116
2117 BUFFER_TRACE(bh, "entry");
2118
2119 /*
2120 * It is safe to proceed here without the j_list_lock because the
2121 * buffers cannot be stolen by try_to_free_buffers as long as we are
2122 * holding the page lock. --sct
2123 */
2124
2125 if (!buffer_jbd(bh))
2126 goto zap_buffer_unlocked;
2127
2128 /* OK, we have data buffer in journaled mode */
2129 write_lock(&journal->j_state_lock);
2130 jbd_lock_bh_state(bh);
2131 spin_lock(&journal->j_list_lock);
2132
2133 jh = jbd2_journal_grab_journal_head(bh);
2134 if (!jh)
2135 goto zap_buffer_no_jh;
2136
2137 /*
2138 * We cannot remove the buffer from checkpoint lists until the
2139 * transaction adding inode to orphan list (let's call it T)
2140 * is committed. Otherwise if the transaction changing the
2141 * buffer would be cleaned from the journal before T is
2142 * committed, a crash will cause that the correct contents of
2143 * the buffer will be lost. On the other hand we have to
2144 * clear the buffer dirty bit at latest at the moment when the
2145 * transaction marking the buffer as freed in the filesystem
2146 * structures is committed because from that moment on the
2147 * block can be reallocated and used by a different page.
2148 * Since the block hasn't been freed yet but the inode has
2149 * already been added to orphan list, it is safe for us to add
2150 * the buffer to BJ_Forget list of the newest transaction.
2151 *
2152 * Also we have to clear buffer_mapped flag of a truncated buffer
2153 * because the buffer_head may be attached to the page straddling
2154 * i_size (can happen only when blocksize < pagesize) and thus the
2155 * buffer_head can be reused when the file is extended again. So we end
2156 * up keeping around invalidated buffers attached to transactions'
2157 * BJ_Forget list just to stop checkpointing code from cleaning up
2158 * the transaction this buffer was modified in.
2159 */
2160 transaction = jh->b_transaction;
2161 if (transaction == NULL) {
2162 /* First case: not on any transaction. If it
2163 * has no checkpoint link, then we can zap it:
2164 * it's a writeback-mode buffer so we don't care
2165 * if it hits disk safely. */
2166 if (!jh->b_cp_transaction) {
2167 JBUFFER_TRACE(jh, "not on any transaction: zap");
2168 goto zap_buffer;
2169 }
2170
2171 if (!buffer_dirty(bh)) {
2172 /* bdflush has written it. We can drop it now */
2173 __jbd2_journal_remove_checkpoint(jh);
2174 goto zap_buffer;
2175 }
2176
2177 /* OK, it must be in the journal but still not
2178 * written fully to disk: it's metadata or
2179 * journaled data... */
2180
2181 if (journal->j_running_transaction) {
2182 /* ... and once the current transaction has
2183 * committed, the buffer won't be needed any
2184 * longer. */
2185 JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
2186 may_free = __dispose_buffer(jh,
2187 journal->j_running_transaction);
2188 goto zap_buffer;
2189 } else {
2190 /* There is no currently-running transaction. So the
2191 * orphan record which we wrote for this file must have
2192 * passed into commit. We must attach this buffer to
2193 * the committing transaction, if it exists. */
2194 if (journal->j_committing_transaction) {
2195 JBUFFER_TRACE(jh, "give to committing trans");
2196 may_free = __dispose_buffer(jh,
2197 journal->j_committing_transaction);
2198 goto zap_buffer;
2199 } else {
2200 /* The orphan record's transaction has
2201 * committed. We can cleanse this buffer */
2202 clear_buffer_jbddirty(bh);
2203 __jbd2_journal_remove_checkpoint(jh);
2204 goto zap_buffer;
2205 }
2206 }
2207 } else if (transaction == journal->j_committing_transaction) {
2208 JBUFFER_TRACE(jh, "on committing transaction");
2209 /*
2210 * The buffer is committing, we simply cannot touch
2211 * it. If the page is straddling i_size we have to wait
2212 * for commit and try again.
2213 */
2214 if (partial_page) {
2215 jbd2_journal_put_journal_head(jh);
2216 spin_unlock(&journal->j_list_lock);
2217 jbd_unlock_bh_state(bh);
2218 write_unlock(&journal->j_state_lock);
2219 return -EBUSY;
2220 }
2221 /*
2222 * OK, buffer won't be reachable after truncate. We just set
2223 * j_next_transaction to the running transaction (if there is
2224 * one) and mark buffer as freed so that commit code knows it
2225 * should clear dirty bits when it is done with the buffer.
2226 */
2227 set_buffer_freed(bh);
2228 if (journal->j_running_transaction && buffer_jbddirty(bh))
2229 jh->b_next_transaction = journal->j_running_transaction;
2230 jbd2_journal_put_journal_head(jh);
2231 spin_unlock(&journal->j_list_lock);
2232 jbd_unlock_bh_state(bh);
2233 write_unlock(&journal->j_state_lock);
2234 return 0;
2235 } else {
2236 /* Good, the buffer belongs to the running transaction.
2237 * We are writing our own transaction's data, not any
2238 * previous one's, so it is safe to throw it away
2239 * (remember that we expect the filesystem to have set
2240 * i_size already for this truncate so recovery will not
2241 * expose the disk blocks we are discarding here.) */
2242 J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
2243 JBUFFER_TRACE(jh, "on running transaction");
2244 may_free = __dispose_buffer(jh, transaction);
2245 }
2246
2247 zap_buffer:
2248 /*
2249 * This is tricky. Although the buffer is truncated, it may be reused
2250 * if blocksize < pagesize and it is attached to the page straddling
2251 * EOF. Since the buffer might have been added to BJ_Forget list of the
2252 * running transaction, journal_get_write_access() won't clear
2253 * b_modified and credit accounting gets confused. So clear b_modified
2254 * here.
2255 */
2256 jh->b_modified = 0;
2257 jbd2_journal_put_journal_head(jh);
2258 zap_buffer_no_jh:
2259 spin_unlock(&journal->j_list_lock);
2260 jbd_unlock_bh_state(bh);
2261 write_unlock(&journal->j_state_lock);
2262 zap_buffer_unlocked:
2263 clear_buffer_dirty(bh);
2264 J_ASSERT_BH(bh, !buffer_jbddirty(bh));
2265 clear_buffer_mapped(bh);
2266 clear_buffer_req(bh);
2267 clear_buffer_new(bh);
2268 clear_buffer_delay(bh);
2269 clear_buffer_unwritten(bh);
2270 bh->b_bdev = NULL;
2271 return may_free;
2272 }
2273
2274 /**
2275 * void jbd2_journal_invalidatepage()
2276 * @journal: journal to use for flush...
2277 * @page: page to flush
2278 * @offset: start of the range to invalidate
2279 * @length: length of the range to invalidate
2280 *
2281 * Reap page buffers containing data after in the specified range in page.
2282 * Can return -EBUSY if buffers are part of the committing transaction and
2283 * the page is straddling i_size. Caller then has to wait for current commit
2284 * and try again.
2285 */
jbd2_journal_invalidatepage(journal_t * journal,struct page * page,unsigned int offset,unsigned int length)2286 int jbd2_journal_invalidatepage(journal_t *journal,
2287 struct page *page,
2288 unsigned int offset,
2289 unsigned int length)
2290 {
2291 struct buffer_head *head, *bh, *next;
2292 unsigned int stop = offset + length;
2293 unsigned int curr_off = 0;
2294 int partial_page = (offset || length < PAGE_SIZE);
2295 int may_free = 1;
2296 int ret = 0;
2297
2298 if (!PageLocked(page))
2299 BUG();
2300 if (!page_has_buffers(page))
2301 return 0;
2302
2303 BUG_ON(stop > PAGE_SIZE || stop < length);
2304
2305 /* We will potentially be playing with lists other than just the
2306 * data lists (especially for journaled data mode), so be
2307 * cautious in our locking. */
2308
2309 head = bh = page_buffers(page);
2310 do {
2311 unsigned int next_off = curr_off + bh->b_size;
2312 next = bh->b_this_page;
2313
2314 if (next_off > stop)
2315 return 0;
2316
2317 if (offset <= curr_off) {
2318 /* This block is wholly outside the truncation point */
2319 lock_buffer(bh);
2320 ret = journal_unmap_buffer(journal, bh, partial_page);
2321 unlock_buffer(bh);
2322 if (ret < 0)
2323 return ret;
2324 may_free &= ret;
2325 }
2326 curr_off = next_off;
2327 bh = next;
2328
2329 } while (bh != head);
2330
2331 if (!partial_page) {
2332 if (may_free && try_to_free_buffers(page))
2333 J_ASSERT(!page_has_buffers(page));
2334 }
2335 return 0;
2336 }
2337
2338 /*
2339 * File a buffer on the given transaction list.
2340 */
__jbd2_journal_file_buffer(struct journal_head * jh,transaction_t * transaction,int jlist)2341 void __jbd2_journal_file_buffer(struct journal_head *jh,
2342 transaction_t *transaction, int jlist)
2343 {
2344 struct journal_head **list = NULL;
2345 int was_dirty = 0;
2346 struct buffer_head *bh = jh2bh(jh);
2347
2348 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2349 assert_spin_locked(&transaction->t_journal->j_list_lock);
2350
2351 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2352 J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2353 jh->b_transaction == NULL);
2354
2355 if (jh->b_transaction && jh->b_jlist == jlist)
2356 return;
2357
2358 if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2359 jlist == BJ_Shadow || jlist == BJ_Forget) {
2360 /*
2361 * For metadata buffers, we track dirty bit in buffer_jbddirty
2362 * instead of buffer_dirty. We should not see a dirty bit set
2363 * here because we clear it in do_get_write_access but e.g.
2364 * tune2fs can modify the sb and set the dirty bit at any time
2365 * so we try to gracefully handle that.
2366 */
2367 if (buffer_dirty(bh))
2368 warn_dirty_buffer(bh);
2369 if (test_clear_buffer_dirty(bh) ||
2370 test_clear_buffer_jbddirty(bh))
2371 was_dirty = 1;
2372 }
2373
2374 if (jh->b_transaction)
2375 __jbd2_journal_temp_unlink_buffer(jh);
2376 else
2377 jbd2_journal_grab_journal_head(bh);
2378 jh->b_transaction = transaction;
2379
2380 switch (jlist) {
2381 case BJ_None:
2382 J_ASSERT_JH(jh, !jh->b_committed_data);
2383 J_ASSERT_JH(jh, !jh->b_frozen_data);
2384 return;
2385 case BJ_Metadata:
2386 transaction->t_nr_buffers++;
2387 list = &transaction->t_buffers;
2388 break;
2389 case BJ_Forget:
2390 list = &transaction->t_forget;
2391 break;
2392 case BJ_Shadow:
2393 list = &transaction->t_shadow_list;
2394 break;
2395 case BJ_Reserved:
2396 list = &transaction->t_reserved_list;
2397 break;
2398 }
2399
2400 __blist_add_buffer(list, jh);
2401 jh->b_jlist = jlist;
2402
2403 if (was_dirty)
2404 set_buffer_jbddirty(bh);
2405 }
2406
jbd2_journal_file_buffer(struct journal_head * jh,transaction_t * transaction,int jlist)2407 void jbd2_journal_file_buffer(struct journal_head *jh,
2408 transaction_t *transaction, int jlist)
2409 {
2410 jbd_lock_bh_state(jh2bh(jh));
2411 spin_lock(&transaction->t_journal->j_list_lock);
2412 __jbd2_journal_file_buffer(jh, transaction, jlist);
2413 spin_unlock(&transaction->t_journal->j_list_lock);
2414 jbd_unlock_bh_state(jh2bh(jh));
2415 }
2416
2417 /*
2418 * Remove a buffer from its current buffer list in preparation for
2419 * dropping it from its current transaction entirely. If the buffer has
2420 * already started to be used by a subsequent transaction, refile the
2421 * buffer on that transaction's metadata list.
2422 *
2423 * Called under j_list_lock
2424 * Called under jbd_lock_bh_state(jh2bh(jh))
2425 *
2426 * jh and bh may be already free when this function returns
2427 */
__jbd2_journal_refile_buffer(struct journal_head * jh)2428 void __jbd2_journal_refile_buffer(struct journal_head *jh)
2429 {
2430 int was_dirty, jlist;
2431 struct buffer_head *bh = jh2bh(jh);
2432
2433 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2434 if (jh->b_transaction)
2435 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2436
2437 /* If the buffer is now unused, just drop it. */
2438 if (jh->b_next_transaction == NULL) {
2439 __jbd2_journal_unfile_buffer(jh);
2440 return;
2441 }
2442
2443 /*
2444 * It has been modified by a later transaction: add it to the new
2445 * transaction's metadata list.
2446 */
2447
2448 was_dirty = test_clear_buffer_jbddirty(bh);
2449 __jbd2_journal_temp_unlink_buffer(jh);
2450 /*
2451 * We set b_transaction here because b_next_transaction will inherit
2452 * our jh reference and thus __jbd2_journal_file_buffer() must not
2453 * take a new one.
2454 */
2455 jh->b_transaction = jh->b_next_transaction;
2456 jh->b_next_transaction = NULL;
2457 if (buffer_freed(bh))
2458 jlist = BJ_Forget;
2459 else if (jh->b_modified)
2460 jlist = BJ_Metadata;
2461 else
2462 jlist = BJ_Reserved;
2463 __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2464 J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2465
2466 if (was_dirty)
2467 set_buffer_jbddirty(bh);
2468 }
2469
2470 /*
2471 * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2472 * bh reference so that we can safely unlock bh.
2473 *
2474 * The jh and bh may be freed by this call.
2475 */
jbd2_journal_refile_buffer(journal_t * journal,struct journal_head * jh)2476 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2477 {
2478 struct buffer_head *bh = jh2bh(jh);
2479
2480 /* Get reference so that buffer cannot be freed before we unlock it */
2481 get_bh(bh);
2482 jbd_lock_bh_state(bh);
2483 spin_lock(&journal->j_list_lock);
2484 __jbd2_journal_refile_buffer(jh);
2485 jbd_unlock_bh_state(bh);
2486 spin_unlock(&journal->j_list_lock);
2487 __brelse(bh);
2488 }
2489
2490 /*
2491 * File inode in the inode list of the handle's transaction
2492 */
jbd2_journal_file_inode(handle_t * handle,struct jbd2_inode * jinode,unsigned long flags)2493 static int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode,
2494 unsigned long flags)
2495 {
2496 transaction_t *transaction = handle->h_transaction;
2497 journal_t *journal;
2498
2499 if (is_handle_aborted(handle))
2500 return -EROFS;
2501 journal = transaction->t_journal;
2502
2503 jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2504 transaction->t_tid);
2505
2506 /*
2507 * First check whether inode isn't already on the transaction's
2508 * lists without taking the lock. Note that this check is safe
2509 * without the lock as we cannot race with somebody removing inode
2510 * from the transaction. The reason is that we remove inode from the
2511 * transaction only in journal_release_jbd_inode() and when we commit
2512 * the transaction. We are guarded from the first case by holding
2513 * a reference to the inode. We are safe against the second case
2514 * because if jinode->i_transaction == transaction, commit code
2515 * cannot touch the transaction because we hold reference to it,
2516 * and if jinode->i_next_transaction == transaction, commit code
2517 * will only file the inode where we want it.
2518 */
2519 if ((jinode->i_transaction == transaction ||
2520 jinode->i_next_transaction == transaction) &&
2521 (jinode->i_flags & flags) == flags)
2522 return 0;
2523
2524 spin_lock(&journal->j_list_lock);
2525 jinode->i_flags |= flags;
2526 /* Is inode already attached where we need it? */
2527 if (jinode->i_transaction == transaction ||
2528 jinode->i_next_transaction == transaction)
2529 goto done;
2530
2531 /*
2532 * We only ever set this variable to 1 so the test is safe. Since
2533 * t_need_data_flush is likely to be set, we do the test to save some
2534 * cacheline bouncing
2535 */
2536 if (!transaction->t_need_data_flush)
2537 transaction->t_need_data_flush = 1;
2538 /* On some different transaction's list - should be
2539 * the committing one */
2540 if (jinode->i_transaction) {
2541 J_ASSERT(jinode->i_next_transaction == NULL);
2542 J_ASSERT(jinode->i_transaction ==
2543 journal->j_committing_transaction);
2544 jinode->i_next_transaction = transaction;
2545 goto done;
2546 }
2547 /* Not on any transaction list... */
2548 J_ASSERT(!jinode->i_next_transaction);
2549 jinode->i_transaction = transaction;
2550 list_add(&jinode->i_list, &transaction->t_inode_list);
2551 done:
2552 spin_unlock(&journal->j_list_lock);
2553
2554 return 0;
2555 }
2556
jbd2_journal_inode_add_write(handle_t * handle,struct jbd2_inode * jinode)2557 int jbd2_journal_inode_add_write(handle_t *handle, struct jbd2_inode *jinode)
2558 {
2559 return jbd2_journal_file_inode(handle, jinode,
2560 JI_WRITE_DATA | JI_WAIT_DATA);
2561 }
2562
jbd2_journal_inode_add_wait(handle_t * handle,struct jbd2_inode * jinode)2563 int jbd2_journal_inode_add_wait(handle_t *handle, struct jbd2_inode *jinode)
2564 {
2565 return jbd2_journal_file_inode(handle, jinode, JI_WAIT_DATA);
2566 }
2567
2568 /*
2569 * File truncate and transaction commit interact with each other in a
2570 * non-trivial way. If a transaction writing data block A is
2571 * committing, we cannot discard the data by truncate until we have
2572 * written them. Otherwise if we crashed after the transaction with
2573 * write has committed but before the transaction with truncate has
2574 * committed, we could see stale data in block A. This function is a
2575 * helper to solve this problem. It starts writeout of the truncated
2576 * part in case it is in the committing transaction.
2577 *
2578 * Filesystem code must call this function when inode is journaled in
2579 * ordered mode before truncation happens and after the inode has been
2580 * placed on orphan list with the new inode size. The second condition
2581 * avoids the race that someone writes new data and we start
2582 * committing the transaction after this function has been called but
2583 * before a transaction for truncate is started (and furthermore it
2584 * allows us to optimize the case where the addition to orphan list
2585 * happens in the same transaction as write --- we don't have to write
2586 * any data in such case).
2587 */
jbd2_journal_begin_ordered_truncate(journal_t * journal,struct jbd2_inode * jinode,loff_t new_size)2588 int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2589 struct jbd2_inode *jinode,
2590 loff_t new_size)
2591 {
2592 transaction_t *inode_trans, *commit_trans;
2593 int ret = 0;
2594
2595 /* This is a quick check to avoid locking if not necessary */
2596 if (!jinode->i_transaction)
2597 goto out;
2598 /* Locks are here just to force reading of recent values, it is
2599 * enough that the transaction was not committing before we started
2600 * a transaction adding the inode to orphan list */
2601 read_lock(&journal->j_state_lock);
2602 commit_trans = journal->j_committing_transaction;
2603 read_unlock(&journal->j_state_lock);
2604 spin_lock(&journal->j_list_lock);
2605 inode_trans = jinode->i_transaction;
2606 spin_unlock(&journal->j_list_lock);
2607 if (inode_trans == commit_trans) {
2608 ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2609 new_size, LLONG_MAX);
2610 if (ret)
2611 jbd2_journal_abort(journal, ret);
2612 }
2613 out:
2614 return ret;
2615 }
2616