1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * linux/fs/jbd2/journal.c
4 *
5 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6 *
7 * Copyright 1998 Red Hat corp --- All Rights Reserved
8 *
9 * Generic filesystem journal-writing code; part of the ext2fs
10 * journaling system.
11 *
12 * This file manages journals: areas of disk reserved for logging
13 * transactional updates. This includes the kernel journaling thread
14 * which is responsible for scheduling updates to the log.
15 *
16 * We do not actually manage the physical storage of the journal in this
17 * file: that is left to a per-journal policy function, which allows us
18 * to store the journal within a filesystem-specified area for ext2
19 * journaling (ext2 can use a reserved inode for storing the log).
20 */
21
22 #include <linux/module.h>
23 #include <linux/time.h>
24 #include <linux/fs.h>
25 #include <linux/jbd2.h>
26 #include <linux/errno.h>
27 #include <linux/slab.h>
28 #include <linux/init.h>
29 #include <linux/mm.h>
30 #include <linux/freezer.h>
31 #include <linux/pagemap.h>
32 #include <linux/kthread.h>
33 #include <linux/poison.h>
34 #include <linux/proc_fs.h>
35 #include <linux/seq_file.h>
36 #include <linux/math64.h>
37 #include <linux/hash.h>
38 #include <linux/log2.h>
39 #include <linux/vmalloc.h>
40 #include <linux/backing-dev.h>
41 #include <linux/bitops.h>
42 #include <linux/ratelimit.h>
43 #include <linux/sched/mm.h>
44
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/jbd2.h>
47
48 #include <linux/uaccess.h>
49 #include <asm/page.h>
50
51 #ifdef CONFIG_JBD2_DEBUG
52 static ushort jbd2_journal_enable_debug __read_mostly;
53
54 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
55 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
56 #endif
57
58 EXPORT_SYMBOL(jbd2_journal_extend);
59 EXPORT_SYMBOL(jbd2_journal_stop);
60 EXPORT_SYMBOL(jbd2_journal_lock_updates);
61 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
62 EXPORT_SYMBOL(jbd2_journal_get_write_access);
63 EXPORT_SYMBOL(jbd2_journal_get_create_access);
64 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
65 EXPORT_SYMBOL(jbd2_journal_set_triggers);
66 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
67 EXPORT_SYMBOL(jbd2_journal_forget);
68 EXPORT_SYMBOL(jbd2_journal_flush);
69 EXPORT_SYMBOL(jbd2_journal_revoke);
70
71 EXPORT_SYMBOL(jbd2_journal_init_dev);
72 EXPORT_SYMBOL(jbd2_journal_init_inode);
73 EXPORT_SYMBOL(jbd2_journal_check_used_features);
74 EXPORT_SYMBOL(jbd2_journal_check_available_features);
75 EXPORT_SYMBOL(jbd2_journal_set_features);
76 EXPORT_SYMBOL(jbd2_journal_load);
77 EXPORT_SYMBOL(jbd2_journal_destroy);
78 EXPORT_SYMBOL(jbd2_journal_abort);
79 EXPORT_SYMBOL(jbd2_journal_errno);
80 EXPORT_SYMBOL(jbd2_journal_ack_err);
81 EXPORT_SYMBOL(jbd2_journal_clear_err);
82 EXPORT_SYMBOL(jbd2_log_wait_commit);
83 EXPORT_SYMBOL(jbd2_journal_start_commit);
84 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
85 EXPORT_SYMBOL(jbd2_journal_wipe);
86 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
87 EXPORT_SYMBOL(jbd2_journal_invalidate_folio);
88 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
89 EXPORT_SYMBOL(jbd2_journal_force_commit);
90 EXPORT_SYMBOL(jbd2_journal_inode_ranged_write);
91 EXPORT_SYMBOL(jbd2_journal_inode_ranged_wait);
92 EXPORT_SYMBOL(jbd2_journal_finish_inode_data_buffers);
93 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
94 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
95 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
96 EXPORT_SYMBOL(jbd2_inode_cache);
97
98 static int jbd2_journal_create_slab(size_t slab_size);
99
100 #ifdef CONFIG_JBD2_DEBUG
__jbd2_debug(int level,const char * file,const char * func,unsigned int line,const char * fmt,...)101 void __jbd2_debug(int level, const char *file, const char *func,
102 unsigned int line, const char *fmt, ...)
103 {
104 struct va_format vaf;
105 va_list args;
106
107 if (level > jbd2_journal_enable_debug)
108 return;
109 va_start(args, fmt);
110 vaf.fmt = fmt;
111 vaf.va = &args;
112 printk(KERN_DEBUG "%s: (%s, %u): %pV", file, func, line, &vaf);
113 va_end(args);
114 }
115 #endif
116
117 /* Checksumming functions */
jbd2_superblock_csum(journal_t * j,journal_superblock_t * sb)118 static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
119 {
120 __u32 csum;
121 __be32 old_csum;
122
123 old_csum = sb->s_checksum;
124 sb->s_checksum = 0;
125 csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
126 sb->s_checksum = old_csum;
127
128 return cpu_to_be32(csum);
129 }
130
131 /*
132 * Helper function used to manage commit timeouts
133 */
134
commit_timeout(struct timer_list * t)135 static void commit_timeout(struct timer_list *t)
136 {
137 journal_t *journal = from_timer(journal, t, j_commit_timer);
138
139 wake_up_process(journal->j_task);
140 }
141
142 /*
143 * kjournald2: The main thread function used to manage a logging device
144 * journal.
145 *
146 * This kernel thread is responsible for two things:
147 *
148 * 1) COMMIT: Every so often we need to commit the current state of the
149 * filesystem to disk. The journal thread is responsible for writing
150 * all of the metadata buffers to disk. If a fast commit is ongoing
151 * journal thread waits until it's done and then continues from
152 * there on.
153 *
154 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
155 * of the data in that part of the log has been rewritten elsewhere on
156 * the disk. Flushing these old buffers to reclaim space in the log is
157 * known as checkpointing, and this thread is responsible for that job.
158 */
159
kjournald2(void * arg)160 static int kjournald2(void *arg)
161 {
162 journal_t *journal = arg;
163 transaction_t *transaction;
164
165 /*
166 * Set up an interval timer which can be used to trigger a commit wakeup
167 * after the commit interval expires
168 */
169 timer_setup(&journal->j_commit_timer, commit_timeout, 0);
170
171 set_freezable();
172
173 /* Record that the journal thread is running */
174 journal->j_task = current;
175 wake_up(&journal->j_wait_done_commit);
176
177 /*
178 * Make sure that no allocations from this kernel thread will ever
179 * recurse to the fs layer because we are responsible for the
180 * transaction commit and any fs involvement might get stuck waiting for
181 * the trasn. commit.
182 */
183 memalloc_nofs_save();
184
185 /*
186 * And now, wait forever for commit wakeup events.
187 */
188 write_lock(&journal->j_state_lock);
189
190 loop:
191 if (journal->j_flags & JBD2_UNMOUNT)
192 goto end_loop;
193
194 jbd2_debug(1, "commit_sequence=%u, commit_request=%u\n",
195 journal->j_commit_sequence, journal->j_commit_request);
196
197 if (journal->j_commit_sequence != journal->j_commit_request) {
198 jbd2_debug(1, "OK, requests differ\n");
199 write_unlock(&journal->j_state_lock);
200 del_timer_sync(&journal->j_commit_timer);
201 jbd2_journal_commit_transaction(journal);
202 write_lock(&journal->j_state_lock);
203 goto loop;
204 }
205
206 wake_up(&journal->j_wait_done_commit);
207 if (freezing(current)) {
208 /*
209 * The simpler the better. Flushing journal isn't a
210 * good idea, because that depends on threads that may
211 * be already stopped.
212 */
213 jbd2_debug(1, "Now suspending kjournald2\n");
214 write_unlock(&journal->j_state_lock);
215 try_to_freeze();
216 write_lock(&journal->j_state_lock);
217 } else {
218 /*
219 * We assume on resume that commits are already there,
220 * so we don't sleep
221 */
222 DEFINE_WAIT(wait);
223 int should_sleep = 1;
224
225 prepare_to_wait(&journal->j_wait_commit, &wait,
226 TASK_INTERRUPTIBLE);
227 if (journal->j_commit_sequence != journal->j_commit_request)
228 should_sleep = 0;
229 transaction = journal->j_running_transaction;
230 if (transaction && time_after_eq(jiffies,
231 transaction->t_expires))
232 should_sleep = 0;
233 if (journal->j_flags & JBD2_UNMOUNT)
234 should_sleep = 0;
235 if (should_sleep) {
236 write_unlock(&journal->j_state_lock);
237 schedule();
238 write_lock(&journal->j_state_lock);
239 }
240 finish_wait(&journal->j_wait_commit, &wait);
241 }
242
243 jbd2_debug(1, "kjournald2 wakes\n");
244
245 /*
246 * Were we woken up by a commit wakeup event?
247 */
248 transaction = journal->j_running_transaction;
249 if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
250 journal->j_commit_request = transaction->t_tid;
251 jbd2_debug(1, "woke because of timeout\n");
252 }
253 goto loop;
254
255 end_loop:
256 del_timer_sync(&journal->j_commit_timer);
257 journal->j_task = NULL;
258 wake_up(&journal->j_wait_done_commit);
259 jbd2_debug(1, "Journal thread exiting.\n");
260 write_unlock(&journal->j_state_lock);
261 return 0;
262 }
263
jbd2_journal_start_thread(journal_t * journal)264 static int jbd2_journal_start_thread(journal_t *journal)
265 {
266 struct task_struct *t;
267
268 t = kthread_run(kjournald2, journal, "jbd2/%s",
269 journal->j_devname);
270 if (IS_ERR(t))
271 return PTR_ERR(t);
272
273 wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
274 return 0;
275 }
276
journal_kill_thread(journal_t * journal)277 static void journal_kill_thread(journal_t *journal)
278 {
279 write_lock(&journal->j_state_lock);
280 journal->j_flags |= JBD2_UNMOUNT;
281
282 while (journal->j_task) {
283 write_unlock(&journal->j_state_lock);
284 wake_up(&journal->j_wait_commit);
285 wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
286 write_lock(&journal->j_state_lock);
287 }
288 write_unlock(&journal->j_state_lock);
289 }
290
291 /*
292 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
293 *
294 * Writes a metadata buffer to a given disk block. The actual IO is not
295 * performed but a new buffer_head is constructed which labels the data
296 * to be written with the correct destination disk block.
297 *
298 * Any magic-number escaping which needs to be done will cause a
299 * copy-out here. If the buffer happens to start with the
300 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
301 * magic number is only written to the log for descripter blocks. In
302 * this case, we copy the data and replace the first word with 0, and we
303 * return a result code which indicates that this buffer needs to be
304 * marked as an escaped buffer in the corresponding log descriptor
305 * block. The missing word can then be restored when the block is read
306 * during recovery.
307 *
308 * If the source buffer has already been modified by a new transaction
309 * since we took the last commit snapshot, we use the frozen copy of
310 * that data for IO. If we end up using the existing buffer_head's data
311 * for the write, then we have to make sure nobody modifies it while the
312 * IO is in progress. do_get_write_access() handles this.
313 *
314 * The function returns a pointer to the buffer_head to be used for IO.
315 *
316 *
317 * Return value:
318 * <0: Error
319 * >=0: Finished OK
320 *
321 * On success:
322 * Bit 0 set == escape performed on the data
323 * Bit 1 set == buffer copy-out performed (kfree the data after IO)
324 */
325
jbd2_journal_write_metadata_buffer(transaction_t * transaction,struct journal_head * jh_in,struct buffer_head ** bh_out,sector_t blocknr)326 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
327 struct journal_head *jh_in,
328 struct buffer_head **bh_out,
329 sector_t blocknr)
330 {
331 int need_copy_out = 0;
332 int done_copy_out = 0;
333 int do_escape = 0;
334 char *mapped_data;
335 struct buffer_head *new_bh;
336 struct folio *new_folio;
337 unsigned int new_offset;
338 struct buffer_head *bh_in = jh2bh(jh_in);
339 journal_t *journal = transaction->t_journal;
340
341 /*
342 * The buffer really shouldn't be locked: only the current committing
343 * transaction is allowed to write it, so nobody else is allowed
344 * to do any IO.
345 *
346 * akpm: except if we're journalling data, and write() output is
347 * also part of a shared mapping, and another thread has
348 * decided to launch a writepage() against this buffer.
349 */
350 J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
351
352 new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
353
354 /* keep subsequent assertions sane */
355 atomic_set(&new_bh->b_count, 1);
356
357 spin_lock(&jh_in->b_state_lock);
358 repeat:
359 /*
360 * If a new transaction has already done a buffer copy-out, then
361 * we use that version of the data for the commit.
362 */
363 if (jh_in->b_frozen_data) {
364 done_copy_out = 1;
365 new_folio = virt_to_folio(jh_in->b_frozen_data);
366 new_offset = offset_in_folio(new_folio, jh_in->b_frozen_data);
367 } else {
368 new_folio = jh2bh(jh_in)->b_folio;
369 new_offset = offset_in_folio(new_folio, jh2bh(jh_in)->b_data);
370 }
371
372 mapped_data = kmap_local_folio(new_folio, new_offset);
373 /*
374 * Fire data frozen trigger if data already wasn't frozen. Do this
375 * before checking for escaping, as the trigger may modify the magic
376 * offset. If a copy-out happens afterwards, it will have the correct
377 * data in the buffer.
378 */
379 if (!done_copy_out)
380 jbd2_buffer_frozen_trigger(jh_in, mapped_data,
381 jh_in->b_triggers);
382
383 /*
384 * Check for escaping
385 */
386 if (*((__be32 *)mapped_data) == cpu_to_be32(JBD2_MAGIC_NUMBER)) {
387 need_copy_out = 1;
388 do_escape = 1;
389 }
390 kunmap_local(mapped_data);
391
392 /*
393 * Do we need to do a data copy?
394 */
395 if (need_copy_out && !done_copy_out) {
396 char *tmp;
397
398 spin_unlock(&jh_in->b_state_lock);
399 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
400 if (!tmp) {
401 brelse(new_bh);
402 return -ENOMEM;
403 }
404 spin_lock(&jh_in->b_state_lock);
405 if (jh_in->b_frozen_data) {
406 jbd2_free(tmp, bh_in->b_size);
407 goto repeat;
408 }
409
410 jh_in->b_frozen_data = tmp;
411 memcpy_from_folio(tmp, new_folio, new_offset, bh_in->b_size);
412
413 new_folio = virt_to_folio(tmp);
414 new_offset = offset_in_folio(new_folio, tmp);
415 done_copy_out = 1;
416
417 /*
418 * This isn't strictly necessary, as we're using frozen
419 * data for the escaping, but it keeps consistency with
420 * b_frozen_data usage.
421 */
422 jh_in->b_frozen_triggers = jh_in->b_triggers;
423 }
424
425 /*
426 * Did we need to do an escaping? Now we've done all the
427 * copying, we can finally do so.
428 */
429 if (do_escape) {
430 mapped_data = kmap_local_folio(new_folio, new_offset);
431 *((unsigned int *)mapped_data) = 0;
432 kunmap_local(mapped_data);
433 }
434
435 folio_set_bh(new_bh, new_folio, new_offset);
436 new_bh->b_size = bh_in->b_size;
437 new_bh->b_bdev = journal->j_dev;
438 new_bh->b_blocknr = blocknr;
439 new_bh->b_private = bh_in;
440 set_buffer_mapped(new_bh);
441 set_buffer_dirty(new_bh);
442
443 *bh_out = new_bh;
444
445 /*
446 * The to-be-written buffer needs to get moved to the io queue,
447 * and the original buffer whose contents we are shadowing or
448 * copying is moved to the transaction's shadow queue.
449 */
450 JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
451 spin_lock(&journal->j_list_lock);
452 __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
453 spin_unlock(&journal->j_list_lock);
454 set_buffer_shadow(bh_in);
455 spin_unlock(&jh_in->b_state_lock);
456
457 return do_escape | (done_copy_out << 1);
458 }
459
460 /*
461 * Allocation code for the journal file. Manage the space left in the
462 * journal, so that we can begin checkpointing when appropriate.
463 */
464
465 /*
466 * Called with j_state_lock locked for writing.
467 * Returns true if a transaction commit was started.
468 */
__jbd2_log_start_commit(journal_t * journal,tid_t target)469 static int __jbd2_log_start_commit(journal_t *journal, tid_t target)
470 {
471 /* Return if the txn has already requested to be committed */
472 if (journal->j_commit_request == target)
473 return 0;
474
475 /*
476 * The only transaction we can possibly wait upon is the
477 * currently running transaction (if it exists). Otherwise,
478 * the target tid must be an old one.
479 */
480 if (journal->j_running_transaction &&
481 journal->j_running_transaction->t_tid == target) {
482 /*
483 * We want a new commit: OK, mark the request and wakeup the
484 * commit thread. We do _not_ do the commit ourselves.
485 */
486
487 journal->j_commit_request = target;
488 jbd2_debug(1, "JBD2: requesting commit %u/%u\n",
489 journal->j_commit_request,
490 journal->j_commit_sequence);
491 journal->j_running_transaction->t_requested = jiffies;
492 wake_up(&journal->j_wait_commit);
493 return 1;
494 } else if (!tid_geq(journal->j_commit_request, target))
495 /* This should never happen, but if it does, preserve
496 the evidence before kjournald goes into a loop and
497 increments j_commit_sequence beyond all recognition. */
498 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
499 journal->j_commit_request,
500 journal->j_commit_sequence,
501 target, journal->j_running_transaction ?
502 journal->j_running_transaction->t_tid : 0);
503 return 0;
504 }
505
jbd2_log_start_commit(journal_t * journal,tid_t tid)506 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
507 {
508 int ret;
509
510 write_lock(&journal->j_state_lock);
511 ret = __jbd2_log_start_commit(journal, tid);
512 write_unlock(&journal->j_state_lock);
513 return ret;
514 }
515
516 /*
517 * Force and wait any uncommitted transactions. We can only force the running
518 * transaction if we don't have an active handle, otherwise, we will deadlock.
519 * Returns: <0 in case of error,
520 * 0 if nothing to commit,
521 * 1 if transaction was successfully committed.
522 */
__jbd2_journal_force_commit(journal_t * journal)523 static int __jbd2_journal_force_commit(journal_t *journal)
524 {
525 transaction_t *transaction = NULL;
526 tid_t tid;
527 int need_to_start = 0, ret = 0;
528
529 read_lock(&journal->j_state_lock);
530 if (journal->j_running_transaction && !current->journal_info) {
531 transaction = journal->j_running_transaction;
532 if (!tid_geq(journal->j_commit_request, transaction->t_tid))
533 need_to_start = 1;
534 } else if (journal->j_committing_transaction)
535 transaction = journal->j_committing_transaction;
536
537 if (!transaction) {
538 /* Nothing to commit */
539 read_unlock(&journal->j_state_lock);
540 return 0;
541 }
542 tid = transaction->t_tid;
543 read_unlock(&journal->j_state_lock);
544 if (need_to_start)
545 jbd2_log_start_commit(journal, tid);
546 ret = jbd2_log_wait_commit(journal, tid);
547 if (!ret)
548 ret = 1;
549
550 return ret;
551 }
552
553 /**
554 * jbd2_journal_force_commit_nested - Force and wait upon a commit if the
555 * calling process is not within transaction.
556 *
557 * @journal: journal to force
558 * Returns true if progress was made.
559 *
560 * This is used for forcing out undo-protected data which contains
561 * bitmaps, when the fs is running out of space.
562 */
jbd2_journal_force_commit_nested(journal_t * journal)563 int jbd2_journal_force_commit_nested(journal_t *journal)
564 {
565 int ret;
566
567 ret = __jbd2_journal_force_commit(journal);
568 return ret > 0;
569 }
570
571 /**
572 * jbd2_journal_force_commit() - force any uncommitted transactions
573 * @journal: journal to force
574 *
575 * Caller want unconditional commit. We can only force the running transaction
576 * if we don't have an active handle, otherwise, we will deadlock.
577 */
jbd2_journal_force_commit(journal_t * journal)578 int jbd2_journal_force_commit(journal_t *journal)
579 {
580 int ret;
581
582 J_ASSERT(!current->journal_info);
583 ret = __jbd2_journal_force_commit(journal);
584 if (ret > 0)
585 ret = 0;
586 return ret;
587 }
588
589 /*
590 * Start a commit of the current running transaction (if any). Returns true
591 * if a transaction is going to be committed (or is currently already
592 * committing), and fills its tid in at *ptid
593 */
jbd2_journal_start_commit(journal_t * journal,tid_t * ptid)594 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
595 {
596 int ret = 0;
597
598 write_lock(&journal->j_state_lock);
599 if (journal->j_running_transaction) {
600 tid_t tid = journal->j_running_transaction->t_tid;
601
602 __jbd2_log_start_commit(journal, tid);
603 /* There's a running transaction and we've just made sure
604 * it's commit has been scheduled. */
605 if (ptid)
606 *ptid = tid;
607 ret = 1;
608 } else if (journal->j_committing_transaction) {
609 /*
610 * If commit has been started, then we have to wait for
611 * completion of that transaction.
612 */
613 if (ptid)
614 *ptid = journal->j_committing_transaction->t_tid;
615 ret = 1;
616 }
617 write_unlock(&journal->j_state_lock);
618 return ret;
619 }
620
621 /*
622 * Return 1 if a given transaction has not yet sent barrier request
623 * connected with a transaction commit. If 0 is returned, transaction
624 * may or may not have sent the barrier. Used to avoid sending barrier
625 * twice in common cases.
626 */
jbd2_trans_will_send_data_barrier(journal_t * journal,tid_t tid)627 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
628 {
629 int ret = 0;
630 transaction_t *commit_trans;
631
632 if (!(journal->j_flags & JBD2_BARRIER))
633 return 0;
634 read_lock(&journal->j_state_lock);
635 /* Transaction already committed? */
636 if (tid_geq(journal->j_commit_sequence, tid))
637 goto out;
638 commit_trans = journal->j_committing_transaction;
639 if (!commit_trans || commit_trans->t_tid != tid) {
640 ret = 1;
641 goto out;
642 }
643 /*
644 * Transaction is being committed and we already proceeded to
645 * submitting a flush to fs partition?
646 */
647 if (journal->j_fs_dev != journal->j_dev) {
648 if (!commit_trans->t_need_data_flush ||
649 commit_trans->t_state >= T_COMMIT_DFLUSH)
650 goto out;
651 } else {
652 if (commit_trans->t_state >= T_COMMIT_JFLUSH)
653 goto out;
654 }
655 ret = 1;
656 out:
657 read_unlock(&journal->j_state_lock);
658 return ret;
659 }
660 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
661
662 /*
663 * Wait for a specified commit to complete.
664 * The caller may not hold the journal lock.
665 */
jbd2_log_wait_commit(journal_t * journal,tid_t tid)666 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
667 {
668 int err = 0;
669
670 read_lock(&journal->j_state_lock);
671 #ifdef CONFIG_PROVE_LOCKING
672 /*
673 * Some callers make sure transaction is already committing and in that
674 * case we cannot block on open handles anymore. So don't warn in that
675 * case.
676 */
677 if (tid_gt(tid, journal->j_commit_sequence) &&
678 (!journal->j_committing_transaction ||
679 journal->j_committing_transaction->t_tid != tid)) {
680 read_unlock(&journal->j_state_lock);
681 jbd2_might_wait_for_commit(journal);
682 read_lock(&journal->j_state_lock);
683 }
684 #endif
685 #ifdef CONFIG_JBD2_DEBUG
686 if (!tid_geq(journal->j_commit_request, tid)) {
687 printk(KERN_ERR
688 "%s: error: j_commit_request=%u, tid=%u\n",
689 __func__, journal->j_commit_request, tid);
690 }
691 #endif
692 while (tid_gt(tid, journal->j_commit_sequence)) {
693 jbd2_debug(1, "JBD2: want %u, j_commit_sequence=%u\n",
694 tid, journal->j_commit_sequence);
695 read_unlock(&journal->j_state_lock);
696 wake_up(&journal->j_wait_commit);
697 wait_event(journal->j_wait_done_commit,
698 !tid_gt(tid, journal->j_commit_sequence));
699 read_lock(&journal->j_state_lock);
700 }
701 read_unlock(&journal->j_state_lock);
702
703 if (unlikely(is_journal_aborted(journal)))
704 err = -EIO;
705 return err;
706 }
707
708 /*
709 * Start a fast commit. If there's an ongoing fast or full commit wait for
710 * it to complete. Returns 0 if a new fast commit was started. Returns -EALREADY
711 * if a fast commit is not needed, either because there's an already a commit
712 * going on or this tid has already been committed. Returns -EINVAL if no jbd2
713 * commit has yet been performed.
714 */
jbd2_fc_begin_commit(journal_t * journal,tid_t tid)715 int jbd2_fc_begin_commit(journal_t *journal, tid_t tid)
716 {
717 if (unlikely(is_journal_aborted(journal)))
718 return -EIO;
719 /*
720 * Fast commits only allowed if at least one full commit has
721 * been processed.
722 */
723 if (!journal->j_stats.ts_tid)
724 return -EINVAL;
725
726 write_lock(&journal->j_state_lock);
727 if (tid <= journal->j_commit_sequence) {
728 write_unlock(&journal->j_state_lock);
729 return -EALREADY;
730 }
731
732 if (journal->j_flags & JBD2_FULL_COMMIT_ONGOING ||
733 (journal->j_flags & JBD2_FAST_COMMIT_ONGOING)) {
734 DEFINE_WAIT(wait);
735
736 prepare_to_wait(&journal->j_fc_wait, &wait,
737 TASK_UNINTERRUPTIBLE);
738 write_unlock(&journal->j_state_lock);
739 schedule();
740 finish_wait(&journal->j_fc_wait, &wait);
741 return -EALREADY;
742 }
743 journal->j_flags |= JBD2_FAST_COMMIT_ONGOING;
744 write_unlock(&journal->j_state_lock);
745 jbd2_journal_lock_updates(journal);
746
747 return 0;
748 }
749 EXPORT_SYMBOL(jbd2_fc_begin_commit);
750
751 /*
752 * Stop a fast commit. If fallback is set, this function starts commit of
753 * TID tid before any other fast commit can start.
754 */
__jbd2_fc_end_commit(journal_t * journal,tid_t tid,bool fallback)755 static int __jbd2_fc_end_commit(journal_t *journal, tid_t tid, bool fallback)
756 {
757 jbd2_journal_unlock_updates(journal);
758 if (journal->j_fc_cleanup_callback)
759 journal->j_fc_cleanup_callback(journal, 0, tid);
760 write_lock(&journal->j_state_lock);
761 journal->j_flags &= ~JBD2_FAST_COMMIT_ONGOING;
762 if (fallback)
763 journal->j_flags |= JBD2_FULL_COMMIT_ONGOING;
764 write_unlock(&journal->j_state_lock);
765 wake_up(&journal->j_fc_wait);
766 if (fallback)
767 return jbd2_complete_transaction(journal, tid);
768 return 0;
769 }
770
jbd2_fc_end_commit(journal_t * journal)771 int jbd2_fc_end_commit(journal_t *journal)
772 {
773 return __jbd2_fc_end_commit(journal, 0, false);
774 }
775 EXPORT_SYMBOL(jbd2_fc_end_commit);
776
jbd2_fc_end_commit_fallback(journal_t * journal)777 int jbd2_fc_end_commit_fallback(journal_t *journal)
778 {
779 tid_t tid;
780
781 read_lock(&journal->j_state_lock);
782 tid = journal->j_running_transaction ?
783 journal->j_running_transaction->t_tid : 0;
784 read_unlock(&journal->j_state_lock);
785 return __jbd2_fc_end_commit(journal, tid, true);
786 }
787 EXPORT_SYMBOL(jbd2_fc_end_commit_fallback);
788
789 /* Return 1 when transaction with given tid has already committed. */
jbd2_transaction_committed(journal_t * journal,tid_t tid)790 int jbd2_transaction_committed(journal_t *journal, tid_t tid)
791 {
792 int ret = 1;
793
794 read_lock(&journal->j_state_lock);
795 if (journal->j_running_transaction &&
796 journal->j_running_transaction->t_tid == tid)
797 ret = 0;
798 if (journal->j_committing_transaction &&
799 journal->j_committing_transaction->t_tid == tid)
800 ret = 0;
801 read_unlock(&journal->j_state_lock);
802 return ret;
803 }
804 EXPORT_SYMBOL(jbd2_transaction_committed);
805
806 /*
807 * When this function returns the transaction corresponding to tid
808 * will be completed. If the transaction has currently running, start
809 * committing that transaction before waiting for it to complete. If
810 * the transaction id is stale, it is by definition already completed,
811 * so just return SUCCESS.
812 */
jbd2_complete_transaction(journal_t * journal,tid_t tid)813 int jbd2_complete_transaction(journal_t *journal, tid_t tid)
814 {
815 int need_to_wait = 1;
816
817 read_lock(&journal->j_state_lock);
818 if (journal->j_running_transaction &&
819 journal->j_running_transaction->t_tid == tid) {
820 if (journal->j_commit_request != tid) {
821 /* transaction not yet started, so request it */
822 read_unlock(&journal->j_state_lock);
823 jbd2_log_start_commit(journal, tid);
824 goto wait_commit;
825 }
826 } else if (!(journal->j_committing_transaction &&
827 journal->j_committing_transaction->t_tid == tid))
828 need_to_wait = 0;
829 read_unlock(&journal->j_state_lock);
830 if (!need_to_wait)
831 return 0;
832 wait_commit:
833 return jbd2_log_wait_commit(journal, tid);
834 }
835 EXPORT_SYMBOL(jbd2_complete_transaction);
836
837 /*
838 * Log buffer allocation routines:
839 */
840
jbd2_journal_next_log_block(journal_t * journal,unsigned long long * retp)841 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
842 {
843 unsigned long blocknr;
844
845 write_lock(&journal->j_state_lock);
846 J_ASSERT(journal->j_free > 1);
847
848 blocknr = journal->j_head;
849 journal->j_head++;
850 journal->j_free--;
851 if (journal->j_head == journal->j_last)
852 journal->j_head = journal->j_first;
853 write_unlock(&journal->j_state_lock);
854 return jbd2_journal_bmap(journal, blocknr, retp);
855 }
856
857 /* Map one fast commit buffer for use by the file system */
jbd2_fc_get_buf(journal_t * journal,struct buffer_head ** bh_out)858 int jbd2_fc_get_buf(journal_t *journal, struct buffer_head **bh_out)
859 {
860 unsigned long long pblock;
861 unsigned long blocknr;
862 int ret = 0;
863 struct buffer_head *bh;
864 int fc_off;
865
866 *bh_out = NULL;
867
868 if (journal->j_fc_off + journal->j_fc_first < journal->j_fc_last) {
869 fc_off = journal->j_fc_off;
870 blocknr = journal->j_fc_first + fc_off;
871 journal->j_fc_off++;
872 } else {
873 ret = -EINVAL;
874 }
875
876 if (ret)
877 return ret;
878
879 ret = jbd2_journal_bmap(journal, blocknr, &pblock);
880 if (ret)
881 return ret;
882
883 bh = __getblk(journal->j_dev, pblock, journal->j_blocksize);
884 if (!bh)
885 return -ENOMEM;
886
887
888 journal->j_fc_wbuf[fc_off] = bh;
889
890 *bh_out = bh;
891
892 return 0;
893 }
894 EXPORT_SYMBOL(jbd2_fc_get_buf);
895
896 /*
897 * Wait on fast commit buffers that were allocated by jbd2_fc_get_buf
898 * for completion.
899 */
jbd2_fc_wait_bufs(journal_t * journal,int num_blks)900 int jbd2_fc_wait_bufs(journal_t *journal, int num_blks)
901 {
902 struct buffer_head *bh;
903 int i, j_fc_off;
904
905 j_fc_off = journal->j_fc_off;
906
907 /*
908 * Wait in reverse order to minimize chances of us being woken up before
909 * all IOs have completed
910 */
911 for (i = j_fc_off - 1; i >= j_fc_off - num_blks; i--) {
912 bh = journal->j_fc_wbuf[i];
913 wait_on_buffer(bh);
914 /*
915 * Update j_fc_off so jbd2_fc_release_bufs can release remain
916 * buffer head.
917 */
918 if (unlikely(!buffer_uptodate(bh))) {
919 journal->j_fc_off = i + 1;
920 return -EIO;
921 }
922 put_bh(bh);
923 journal->j_fc_wbuf[i] = NULL;
924 }
925
926 return 0;
927 }
928 EXPORT_SYMBOL(jbd2_fc_wait_bufs);
929
jbd2_fc_release_bufs(journal_t * journal)930 int jbd2_fc_release_bufs(journal_t *journal)
931 {
932 struct buffer_head *bh;
933 int i, j_fc_off;
934
935 j_fc_off = journal->j_fc_off;
936
937 for (i = j_fc_off - 1; i >= 0; i--) {
938 bh = journal->j_fc_wbuf[i];
939 if (!bh)
940 break;
941 put_bh(bh);
942 journal->j_fc_wbuf[i] = NULL;
943 }
944
945 return 0;
946 }
947 EXPORT_SYMBOL(jbd2_fc_release_bufs);
948
949 /*
950 * Conversion of logical to physical block numbers for the journal
951 *
952 * On external journals the journal blocks are identity-mapped, so
953 * this is a no-op. If needed, we can use j_blk_offset - everything is
954 * ready.
955 */
jbd2_journal_bmap(journal_t * journal,unsigned long blocknr,unsigned long long * retp)956 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
957 unsigned long long *retp)
958 {
959 int err = 0;
960 unsigned long long ret;
961 sector_t block = blocknr;
962
963 if (journal->j_bmap) {
964 err = journal->j_bmap(journal, &block);
965 if (err == 0)
966 *retp = block;
967 } else if (journal->j_inode) {
968 ret = bmap(journal->j_inode, &block);
969
970 if (ret || !block) {
971 printk(KERN_ALERT "%s: journal block not found "
972 "at offset %lu on %s\n",
973 __func__, blocknr, journal->j_devname);
974 err = -EIO;
975 jbd2_journal_abort(journal, err);
976 } else {
977 *retp = block;
978 }
979
980 } else {
981 *retp = blocknr; /* +journal->j_blk_offset */
982 }
983 return err;
984 }
985
986 /*
987 * We play buffer_head aliasing tricks to write data/metadata blocks to
988 * the journal without copying their contents, but for journal
989 * descriptor blocks we do need to generate bona fide buffers.
990 *
991 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
992 * the buffer's contents they really should run flush_dcache_page(bh->b_page).
993 * But we don't bother doing that, so there will be coherency problems with
994 * mmaps of blockdevs which hold live JBD-controlled filesystems.
995 */
996 struct buffer_head *
jbd2_journal_get_descriptor_buffer(transaction_t * transaction,int type)997 jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type)
998 {
999 journal_t *journal = transaction->t_journal;
1000 struct buffer_head *bh;
1001 unsigned long long blocknr;
1002 journal_header_t *header;
1003 int err;
1004
1005 err = jbd2_journal_next_log_block(journal, &blocknr);
1006
1007 if (err)
1008 return NULL;
1009
1010 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
1011 if (!bh)
1012 return NULL;
1013 atomic_dec(&transaction->t_outstanding_credits);
1014 lock_buffer(bh);
1015 memset(bh->b_data, 0, journal->j_blocksize);
1016 header = (journal_header_t *)bh->b_data;
1017 header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER);
1018 header->h_blocktype = cpu_to_be32(type);
1019 header->h_sequence = cpu_to_be32(transaction->t_tid);
1020 set_buffer_uptodate(bh);
1021 unlock_buffer(bh);
1022 BUFFER_TRACE(bh, "return this buffer");
1023 return bh;
1024 }
1025
jbd2_descriptor_block_csum_set(journal_t * j,struct buffer_head * bh)1026 void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh)
1027 {
1028 struct jbd2_journal_block_tail *tail;
1029 __u32 csum;
1030
1031 if (!jbd2_journal_has_csum_v2or3(j))
1032 return;
1033
1034 tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize -
1035 sizeof(struct jbd2_journal_block_tail));
1036 tail->t_checksum = 0;
1037 csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize);
1038 tail->t_checksum = cpu_to_be32(csum);
1039 }
1040
1041 /*
1042 * Return tid of the oldest transaction in the journal and block in the journal
1043 * where the transaction starts.
1044 *
1045 * If the journal is now empty, return which will be the next transaction ID
1046 * we will write and where will that transaction start.
1047 *
1048 * The return value is 0 if journal tail cannot be pushed any further, 1 if
1049 * it can.
1050 */
jbd2_journal_get_log_tail(journal_t * journal,tid_t * tid,unsigned long * block)1051 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
1052 unsigned long *block)
1053 {
1054 transaction_t *transaction;
1055 int ret;
1056
1057 read_lock(&journal->j_state_lock);
1058 spin_lock(&journal->j_list_lock);
1059 transaction = journal->j_checkpoint_transactions;
1060 if (transaction) {
1061 *tid = transaction->t_tid;
1062 *block = transaction->t_log_start;
1063 } else if ((transaction = journal->j_committing_transaction) != NULL) {
1064 *tid = transaction->t_tid;
1065 *block = transaction->t_log_start;
1066 } else if ((transaction = journal->j_running_transaction) != NULL) {
1067 *tid = transaction->t_tid;
1068 *block = journal->j_head;
1069 } else {
1070 *tid = journal->j_transaction_sequence;
1071 *block = journal->j_head;
1072 }
1073 ret = tid_gt(*tid, journal->j_tail_sequence);
1074 spin_unlock(&journal->j_list_lock);
1075 read_unlock(&journal->j_state_lock);
1076
1077 return ret;
1078 }
1079
1080 /*
1081 * Update information in journal structure and in on disk journal superblock
1082 * about log tail. This function does not check whether information passed in
1083 * really pushes log tail further. It's responsibility of the caller to make
1084 * sure provided log tail information is valid (e.g. by holding
1085 * j_checkpoint_mutex all the time between computing log tail and calling this
1086 * function as is the case with jbd2_cleanup_journal_tail()).
1087 *
1088 * Requires j_checkpoint_mutex
1089 */
__jbd2_update_log_tail(journal_t * journal,tid_t tid,unsigned long block)1090 int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
1091 {
1092 unsigned long freed;
1093 int ret;
1094
1095 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1096
1097 /*
1098 * We cannot afford for write to remain in drive's caches since as
1099 * soon as we update j_tail, next transaction can start reusing journal
1100 * space and if we lose sb update during power failure we'd replay
1101 * old transaction with possibly newly overwritten data.
1102 */
1103 ret = jbd2_journal_update_sb_log_tail(journal, tid, block,
1104 REQ_SYNC | REQ_FUA);
1105 if (ret)
1106 goto out;
1107
1108 write_lock(&journal->j_state_lock);
1109 freed = block - journal->j_tail;
1110 if (block < journal->j_tail)
1111 freed += journal->j_last - journal->j_first;
1112
1113 trace_jbd2_update_log_tail(journal, tid, block, freed);
1114 jbd2_debug(1,
1115 "Cleaning journal tail from %u to %u (offset %lu), "
1116 "freeing %lu\n",
1117 journal->j_tail_sequence, tid, block, freed);
1118
1119 journal->j_free += freed;
1120 journal->j_tail_sequence = tid;
1121 journal->j_tail = block;
1122 write_unlock(&journal->j_state_lock);
1123
1124 out:
1125 return ret;
1126 }
1127
1128 /*
1129 * This is a variation of __jbd2_update_log_tail which checks for validity of
1130 * provided log tail and locks j_checkpoint_mutex. So it is safe against races
1131 * with other threads updating log tail.
1132 */
jbd2_update_log_tail(journal_t * journal,tid_t tid,unsigned long block)1133 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
1134 {
1135 mutex_lock_io(&journal->j_checkpoint_mutex);
1136 if (tid_gt(tid, journal->j_tail_sequence))
1137 __jbd2_update_log_tail(journal, tid, block);
1138 mutex_unlock(&journal->j_checkpoint_mutex);
1139 }
1140
1141 struct jbd2_stats_proc_session {
1142 journal_t *journal;
1143 struct transaction_stats_s *stats;
1144 int start;
1145 int max;
1146 };
1147
jbd2_seq_info_start(struct seq_file * seq,loff_t * pos)1148 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
1149 {
1150 return *pos ? NULL : SEQ_START_TOKEN;
1151 }
1152
jbd2_seq_info_next(struct seq_file * seq,void * v,loff_t * pos)1153 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
1154 {
1155 (*pos)++;
1156 return NULL;
1157 }
1158
jbd2_seq_info_show(struct seq_file * seq,void * v)1159 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
1160 {
1161 struct jbd2_stats_proc_session *s = seq->private;
1162
1163 if (v != SEQ_START_TOKEN)
1164 return 0;
1165 seq_printf(seq, "%lu transactions (%lu requested), "
1166 "each up to %u blocks\n",
1167 s->stats->ts_tid, s->stats->ts_requested,
1168 s->journal->j_max_transaction_buffers);
1169 if (s->stats->ts_tid == 0)
1170 return 0;
1171 seq_printf(seq, "average: \n %ums waiting for transaction\n",
1172 jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
1173 seq_printf(seq, " %ums request delay\n",
1174 (s->stats->ts_requested == 0) ? 0 :
1175 jiffies_to_msecs(s->stats->run.rs_request_delay /
1176 s->stats->ts_requested));
1177 seq_printf(seq, " %ums running transaction\n",
1178 jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
1179 seq_printf(seq, " %ums transaction was being locked\n",
1180 jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
1181 seq_printf(seq, " %ums flushing data (in ordered mode)\n",
1182 jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
1183 seq_printf(seq, " %ums logging transaction\n",
1184 jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
1185 seq_printf(seq, " %lluus average transaction commit time\n",
1186 div_u64(s->journal->j_average_commit_time, 1000));
1187 seq_printf(seq, " %lu handles per transaction\n",
1188 s->stats->run.rs_handle_count / s->stats->ts_tid);
1189 seq_printf(seq, " %lu blocks per transaction\n",
1190 s->stats->run.rs_blocks / s->stats->ts_tid);
1191 seq_printf(seq, " %lu logged blocks per transaction\n",
1192 s->stats->run.rs_blocks_logged / s->stats->ts_tid);
1193 return 0;
1194 }
1195
jbd2_seq_info_stop(struct seq_file * seq,void * v)1196 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
1197 {
1198 }
1199
1200 static const struct seq_operations jbd2_seq_info_ops = {
1201 .start = jbd2_seq_info_start,
1202 .next = jbd2_seq_info_next,
1203 .stop = jbd2_seq_info_stop,
1204 .show = jbd2_seq_info_show,
1205 };
1206
jbd2_seq_info_open(struct inode * inode,struct file * file)1207 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
1208 {
1209 journal_t *journal = pde_data(inode);
1210 struct jbd2_stats_proc_session *s;
1211 int rc, size;
1212
1213 s = kmalloc(sizeof(*s), GFP_KERNEL);
1214 if (s == NULL)
1215 return -ENOMEM;
1216 size = sizeof(struct transaction_stats_s);
1217 s->stats = kmalloc(size, GFP_KERNEL);
1218 if (s->stats == NULL) {
1219 kfree(s);
1220 return -ENOMEM;
1221 }
1222 spin_lock(&journal->j_history_lock);
1223 memcpy(s->stats, &journal->j_stats, size);
1224 s->journal = journal;
1225 spin_unlock(&journal->j_history_lock);
1226
1227 rc = seq_open(file, &jbd2_seq_info_ops);
1228 if (rc == 0) {
1229 struct seq_file *m = file->private_data;
1230 m->private = s;
1231 } else {
1232 kfree(s->stats);
1233 kfree(s);
1234 }
1235 return rc;
1236
1237 }
1238
jbd2_seq_info_release(struct inode * inode,struct file * file)1239 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
1240 {
1241 struct seq_file *seq = file->private_data;
1242 struct jbd2_stats_proc_session *s = seq->private;
1243 kfree(s->stats);
1244 kfree(s);
1245 return seq_release(inode, file);
1246 }
1247
1248 static const struct proc_ops jbd2_info_proc_ops = {
1249 .proc_open = jbd2_seq_info_open,
1250 .proc_read = seq_read,
1251 .proc_lseek = seq_lseek,
1252 .proc_release = jbd2_seq_info_release,
1253 };
1254
1255 static struct proc_dir_entry *proc_jbd2_stats;
1256
jbd2_stats_proc_init(journal_t * journal)1257 static void jbd2_stats_proc_init(journal_t *journal)
1258 {
1259 journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1260 if (journal->j_proc_entry) {
1261 proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1262 &jbd2_info_proc_ops, journal);
1263 }
1264 }
1265
jbd2_stats_proc_exit(journal_t * journal)1266 static void jbd2_stats_proc_exit(journal_t *journal)
1267 {
1268 remove_proc_entry("info", journal->j_proc_entry);
1269 remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1270 }
1271
1272 /* Minimum size of descriptor tag */
jbd2_min_tag_size(void)1273 static int jbd2_min_tag_size(void)
1274 {
1275 /*
1276 * Tag with 32-bit block numbers does not use last four bytes of the
1277 * structure
1278 */
1279 return sizeof(journal_block_tag_t) - 4;
1280 }
1281
1282 /**
1283 * jbd2_journal_shrink_scan()
1284 * @shrink: shrinker to work on
1285 * @sc: reclaim request to process
1286 *
1287 * Scan the checkpointed buffer on the checkpoint list and release the
1288 * journal_head.
1289 */
jbd2_journal_shrink_scan(struct shrinker * shrink,struct shrink_control * sc)1290 static unsigned long jbd2_journal_shrink_scan(struct shrinker *shrink,
1291 struct shrink_control *sc)
1292 {
1293 journal_t *journal = container_of(shrink, journal_t, j_shrinker);
1294 unsigned long nr_to_scan = sc->nr_to_scan;
1295 unsigned long nr_shrunk;
1296 unsigned long count;
1297
1298 count = percpu_counter_read_positive(&journal->j_checkpoint_jh_count);
1299 trace_jbd2_shrink_scan_enter(journal, sc->nr_to_scan, count);
1300
1301 nr_shrunk = jbd2_journal_shrink_checkpoint_list(journal, &nr_to_scan);
1302
1303 count = percpu_counter_read_positive(&journal->j_checkpoint_jh_count);
1304 trace_jbd2_shrink_scan_exit(journal, nr_to_scan, nr_shrunk, count);
1305
1306 return nr_shrunk;
1307 }
1308
1309 /**
1310 * jbd2_journal_shrink_count()
1311 * @shrink: shrinker to work on
1312 * @sc: reclaim request to process
1313 *
1314 * Count the number of checkpoint buffers on the checkpoint list.
1315 */
jbd2_journal_shrink_count(struct shrinker * shrink,struct shrink_control * sc)1316 static unsigned long jbd2_journal_shrink_count(struct shrinker *shrink,
1317 struct shrink_control *sc)
1318 {
1319 journal_t *journal = container_of(shrink, journal_t, j_shrinker);
1320 unsigned long count;
1321
1322 count = percpu_counter_read_positive(&journal->j_checkpoint_jh_count);
1323 trace_jbd2_shrink_count(journal, sc->nr_to_scan, count);
1324
1325 return count;
1326 }
1327
1328 /*
1329 * If the journal init or create aborts, we need to mark the journal
1330 * superblock as being NULL to prevent the journal destroy from writing
1331 * back a bogus superblock.
1332 */
journal_fail_superblock(journal_t * journal)1333 static void journal_fail_superblock(journal_t *journal)
1334 {
1335 struct buffer_head *bh = journal->j_sb_buffer;
1336 brelse(bh);
1337 journal->j_sb_buffer = NULL;
1338 }
1339
1340 /*
1341 * Check the superblock for a given journal, performing initial
1342 * validation of the format.
1343 */
journal_check_superblock(journal_t * journal)1344 static int journal_check_superblock(journal_t *journal)
1345 {
1346 journal_superblock_t *sb = journal->j_superblock;
1347 int num_fc_blks;
1348 int err = -EINVAL;
1349
1350 if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1351 sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1352 printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1353 return err;
1354 }
1355
1356 if (be32_to_cpu(sb->s_header.h_blocktype) != JBD2_SUPERBLOCK_V1 &&
1357 be32_to_cpu(sb->s_header.h_blocktype) != JBD2_SUPERBLOCK_V2) {
1358 printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1359 return err;
1360 }
1361
1362 if (be32_to_cpu(sb->s_maxlen) > journal->j_total_len) {
1363 printk(KERN_WARNING "JBD2: journal file too short\n");
1364 return err;
1365 }
1366
1367 if (be32_to_cpu(sb->s_first) == 0 ||
1368 be32_to_cpu(sb->s_first) >= journal->j_total_len) {
1369 printk(KERN_WARNING
1370 "JBD2: Invalid start block of journal: %u\n",
1371 be32_to_cpu(sb->s_first));
1372 return err;
1373 }
1374
1375 /*
1376 * If this is a V2 superblock, then we have to check the
1377 * features flags on it.
1378 */
1379 if (!jbd2_format_support_feature(journal))
1380 return 0;
1381
1382 if ((sb->s_feature_ro_compat &
1383 ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1384 (sb->s_feature_incompat &
1385 ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1386 printk(KERN_WARNING "JBD2: Unrecognised features on journal\n");
1387 return err;
1388 }
1389
1390 num_fc_blks = jbd2_has_feature_fast_commit(journal) ?
1391 jbd2_journal_get_num_fc_blks(sb) : 0;
1392 if (be32_to_cpu(sb->s_maxlen) < JBD2_MIN_JOURNAL_BLOCKS ||
1393 be32_to_cpu(sb->s_maxlen) - JBD2_MIN_JOURNAL_BLOCKS < num_fc_blks) {
1394 printk(KERN_ERR "JBD2: journal file too short %u,%d\n",
1395 be32_to_cpu(sb->s_maxlen), num_fc_blks);
1396 return err;
1397 }
1398
1399 if (jbd2_has_feature_csum2(journal) &&
1400 jbd2_has_feature_csum3(journal)) {
1401 /* Can't have checksum v2 and v3 at the same time! */
1402 printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 "
1403 "at the same time!\n");
1404 return err;
1405 }
1406
1407 if (jbd2_journal_has_csum_v2or3_feature(journal) &&
1408 jbd2_has_feature_checksum(journal)) {
1409 /* Can't have checksum v1 and v2 on at the same time! */
1410 printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 "
1411 "at the same time!\n");
1412 return err;
1413 }
1414
1415 /* Load the checksum driver */
1416 if (jbd2_journal_has_csum_v2or3_feature(journal)) {
1417 if (sb->s_checksum_type != JBD2_CRC32C_CHKSUM) {
1418 printk(KERN_ERR "JBD2: Unknown checksum type\n");
1419 return err;
1420 }
1421
1422 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1423 if (IS_ERR(journal->j_chksum_driver)) {
1424 printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1425 err = PTR_ERR(journal->j_chksum_driver);
1426 journal->j_chksum_driver = NULL;
1427 return err;
1428 }
1429 /* Check superblock checksum */
1430 if (sb->s_checksum != jbd2_superblock_csum(journal, sb)) {
1431 printk(KERN_ERR "JBD2: journal checksum error\n");
1432 err = -EFSBADCRC;
1433 return err;
1434 }
1435 }
1436
1437 return 0;
1438 }
1439
journal_revoke_records_per_block(journal_t * journal)1440 static int journal_revoke_records_per_block(journal_t *journal)
1441 {
1442 int record_size;
1443 int space = journal->j_blocksize - sizeof(jbd2_journal_revoke_header_t);
1444
1445 if (jbd2_has_feature_64bit(journal))
1446 record_size = 8;
1447 else
1448 record_size = 4;
1449
1450 if (jbd2_journal_has_csum_v2or3(journal))
1451 space -= sizeof(struct jbd2_journal_block_tail);
1452 return space / record_size;
1453 }
1454
1455 /*
1456 * Load the on-disk journal superblock and read the key fields into the
1457 * journal_t.
1458 */
journal_load_superblock(journal_t * journal)1459 static int journal_load_superblock(journal_t *journal)
1460 {
1461 int err;
1462 struct buffer_head *bh;
1463 journal_superblock_t *sb;
1464
1465 bh = getblk_unmovable(journal->j_dev, journal->j_blk_offset,
1466 journal->j_blocksize);
1467 if (bh)
1468 err = bh_read(bh, 0);
1469 if (!bh || err < 0) {
1470 pr_err("%s: Cannot read journal superblock\n", __func__);
1471 brelse(bh);
1472 return -EIO;
1473 }
1474
1475 journal->j_sb_buffer = bh;
1476 sb = (journal_superblock_t *)bh->b_data;
1477 journal->j_superblock = sb;
1478 err = journal_check_superblock(journal);
1479 if (err) {
1480 journal_fail_superblock(journal);
1481 return err;
1482 }
1483
1484 journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1485 journal->j_tail = be32_to_cpu(sb->s_start);
1486 journal->j_first = be32_to_cpu(sb->s_first);
1487 journal->j_errno = be32_to_cpu(sb->s_errno);
1488 journal->j_last = be32_to_cpu(sb->s_maxlen);
1489
1490 if (be32_to_cpu(sb->s_maxlen) < journal->j_total_len)
1491 journal->j_total_len = be32_to_cpu(sb->s_maxlen);
1492 /* Precompute checksum seed for all metadata */
1493 if (jbd2_journal_has_csum_v2or3(journal))
1494 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1495 sizeof(sb->s_uuid));
1496 journal->j_revoke_records_per_block =
1497 journal_revoke_records_per_block(journal);
1498
1499 if (jbd2_has_feature_fast_commit(journal)) {
1500 journal->j_fc_last = be32_to_cpu(sb->s_maxlen);
1501 journal->j_last = journal->j_fc_last -
1502 jbd2_journal_get_num_fc_blks(sb);
1503 journal->j_fc_first = journal->j_last + 1;
1504 journal->j_fc_off = 0;
1505 }
1506
1507 return 0;
1508 }
1509
1510
1511 /*
1512 * Management for journal control blocks: functions to create and
1513 * destroy journal_t structures, and to initialise and read existing
1514 * journal blocks from disk. */
1515
1516 /* First: create and setup a journal_t object in memory. We initialise
1517 * very few fields yet: that has to wait until we have created the
1518 * journal structures from from scratch, or loaded them from disk. */
1519
journal_init_common(struct block_device * bdev,struct block_device * fs_dev,unsigned long long start,int len,int blocksize)1520 static journal_t *journal_init_common(struct block_device *bdev,
1521 struct block_device *fs_dev,
1522 unsigned long long start, int len, int blocksize)
1523 {
1524 static struct lock_class_key jbd2_trans_commit_key;
1525 journal_t *journal;
1526 int err;
1527 int n;
1528
1529 journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1530 if (!journal)
1531 return ERR_PTR(-ENOMEM);
1532
1533 journal->j_blocksize = blocksize;
1534 journal->j_dev = bdev;
1535 journal->j_fs_dev = fs_dev;
1536 journal->j_blk_offset = start;
1537 journal->j_total_len = len;
1538
1539 err = journal_load_superblock(journal);
1540 if (err)
1541 goto err_cleanup;
1542
1543 init_waitqueue_head(&journal->j_wait_transaction_locked);
1544 init_waitqueue_head(&journal->j_wait_done_commit);
1545 init_waitqueue_head(&journal->j_wait_commit);
1546 init_waitqueue_head(&journal->j_wait_updates);
1547 init_waitqueue_head(&journal->j_wait_reserved);
1548 init_waitqueue_head(&journal->j_fc_wait);
1549 mutex_init(&journal->j_abort_mutex);
1550 mutex_init(&journal->j_barrier);
1551 mutex_init(&journal->j_checkpoint_mutex);
1552 spin_lock_init(&journal->j_revoke_lock);
1553 spin_lock_init(&journal->j_list_lock);
1554 spin_lock_init(&journal->j_history_lock);
1555 rwlock_init(&journal->j_state_lock);
1556
1557 journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1558 journal->j_min_batch_time = 0;
1559 journal->j_max_batch_time = 15000; /* 15ms */
1560 atomic_set(&journal->j_reserved_credits, 0);
1561 lockdep_init_map(&journal->j_trans_commit_map, "jbd2_handle",
1562 &jbd2_trans_commit_key, 0);
1563
1564 /* The journal is marked for error until we succeed with recovery! */
1565 journal->j_flags = JBD2_ABORT;
1566
1567 /* Set up a default-sized revoke table for the new mount. */
1568 err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1569 if (err)
1570 goto err_cleanup;
1571
1572 /*
1573 * journal descriptor can store up to n blocks, we need enough
1574 * buffers to write out full descriptor block.
1575 */
1576 err = -ENOMEM;
1577 n = journal->j_blocksize / jbd2_min_tag_size();
1578 journal->j_wbufsize = n;
1579 journal->j_fc_wbuf = NULL;
1580 journal->j_wbuf = kmalloc_array(n, sizeof(struct buffer_head *),
1581 GFP_KERNEL);
1582 if (!journal->j_wbuf)
1583 goto err_cleanup;
1584
1585 err = percpu_counter_init(&journal->j_checkpoint_jh_count, 0,
1586 GFP_KERNEL);
1587 if (err)
1588 goto err_cleanup;
1589
1590 journal->j_shrink_transaction = NULL;
1591 journal->j_shrinker.scan_objects = jbd2_journal_shrink_scan;
1592 journal->j_shrinker.count_objects = jbd2_journal_shrink_count;
1593 journal->j_shrinker.seeks = DEFAULT_SEEKS;
1594 journal->j_shrinker.batch = journal->j_max_transaction_buffers;
1595 err = register_shrinker(&journal->j_shrinker, "jbd2-journal:(%u:%u)",
1596 MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev));
1597 if (err)
1598 goto err_cleanup;
1599
1600 return journal;
1601
1602 err_cleanup:
1603 percpu_counter_destroy(&journal->j_checkpoint_jh_count);
1604 if (journal->j_chksum_driver)
1605 crypto_free_shash(journal->j_chksum_driver);
1606 kfree(journal->j_wbuf);
1607 jbd2_journal_destroy_revoke(journal);
1608 journal_fail_superblock(journal);
1609 kfree(journal);
1610 return ERR_PTR(err);
1611 }
1612
1613 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1614 *
1615 * Create a journal structure assigned some fixed set of disk blocks to
1616 * the journal. We don't actually touch those disk blocks yet, but we
1617 * need to set up all of the mapping information to tell the journaling
1618 * system where the journal blocks are.
1619 *
1620 */
1621
1622 /**
1623 * journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1624 * @bdev: Block device on which to create the journal
1625 * @fs_dev: Device which hold journalled filesystem for this journal.
1626 * @start: Block nr Start of journal.
1627 * @len: Length of the journal in blocks.
1628 * @blocksize: blocksize of journalling device
1629 *
1630 * Returns: a newly created journal_t *
1631 *
1632 * jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1633 * range of blocks on an arbitrary block device.
1634 *
1635 */
jbd2_journal_init_dev(struct block_device * bdev,struct block_device * fs_dev,unsigned long long start,int len,int blocksize)1636 journal_t *jbd2_journal_init_dev(struct block_device *bdev,
1637 struct block_device *fs_dev,
1638 unsigned long long start, int len, int blocksize)
1639 {
1640 journal_t *journal;
1641
1642 journal = journal_init_common(bdev, fs_dev, start, len, blocksize);
1643 if (IS_ERR(journal))
1644 return ERR_CAST(journal);
1645
1646 snprintf(journal->j_devname, sizeof(journal->j_devname),
1647 "%pg", journal->j_dev);
1648 strreplace(journal->j_devname, '/', '!');
1649 jbd2_stats_proc_init(journal);
1650
1651 return journal;
1652 }
1653
1654 /**
1655 * journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1656 * @inode: An inode to create the journal in
1657 *
1658 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1659 * the journal. The inode must exist already, must support bmap() and
1660 * must have all data blocks preallocated.
1661 */
jbd2_journal_init_inode(struct inode * inode)1662 journal_t *jbd2_journal_init_inode(struct inode *inode)
1663 {
1664 journal_t *journal;
1665 sector_t blocknr;
1666 int err = 0;
1667
1668 blocknr = 0;
1669 err = bmap(inode, &blocknr);
1670 if (err || !blocknr) {
1671 pr_err("%s: Cannot locate journal superblock\n", __func__);
1672 return err ? ERR_PTR(err) : ERR_PTR(-EINVAL);
1673 }
1674
1675 jbd2_debug(1, "JBD2: inode %s/%ld, size %lld, bits %d, blksize %ld\n",
1676 inode->i_sb->s_id, inode->i_ino, (long long) inode->i_size,
1677 inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1678
1679 journal = journal_init_common(inode->i_sb->s_bdev, inode->i_sb->s_bdev,
1680 blocknr, inode->i_size >> inode->i_sb->s_blocksize_bits,
1681 inode->i_sb->s_blocksize);
1682 if (IS_ERR(journal))
1683 return ERR_CAST(journal);
1684
1685 journal->j_inode = inode;
1686 snprintf(journal->j_devname, sizeof(journal->j_devname),
1687 "%pg-%lu", journal->j_dev, journal->j_inode->i_ino);
1688 strreplace(journal->j_devname, '/', '!');
1689 jbd2_stats_proc_init(journal);
1690
1691 return journal;
1692 }
1693
1694 /*
1695 * Given a journal_t structure, initialise the various fields for
1696 * startup of a new journaling session. We use this both when creating
1697 * a journal, and after recovering an old journal to reset it for
1698 * subsequent use.
1699 */
1700
journal_reset(journal_t * journal)1701 static int journal_reset(journal_t *journal)
1702 {
1703 journal_superblock_t *sb = journal->j_superblock;
1704 unsigned long long first, last;
1705
1706 first = be32_to_cpu(sb->s_first);
1707 last = be32_to_cpu(sb->s_maxlen);
1708 if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1709 printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1710 first, last);
1711 journal_fail_superblock(journal);
1712 return -EINVAL;
1713 }
1714
1715 journal->j_first = first;
1716 journal->j_last = last;
1717
1718 if (journal->j_head != 0 && journal->j_flags & JBD2_CYCLE_RECORD) {
1719 /*
1720 * Disable the cycled recording mode if the journal head block
1721 * number is not correct.
1722 */
1723 if (journal->j_head < first || journal->j_head >= last) {
1724 printk(KERN_WARNING "JBD2: Incorrect Journal head block %lu, "
1725 "disable journal_cycle_record\n",
1726 journal->j_head);
1727 journal->j_head = journal->j_first;
1728 }
1729 } else {
1730 journal->j_head = journal->j_first;
1731 }
1732 journal->j_tail = journal->j_head;
1733 journal->j_free = journal->j_last - journal->j_first;
1734
1735 journal->j_tail_sequence = journal->j_transaction_sequence;
1736 journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1737 journal->j_commit_request = journal->j_commit_sequence;
1738
1739 journal->j_max_transaction_buffers = jbd2_journal_get_max_txn_bufs(journal);
1740
1741 /*
1742 * Now that journal recovery is done, turn fast commits off here. This
1743 * way, if fast commit was enabled before the crash but if now FS has
1744 * disabled it, we don't enable fast commits.
1745 */
1746 jbd2_clear_feature_fast_commit(journal);
1747
1748 /*
1749 * As a special case, if the on-disk copy is already marked as needing
1750 * no recovery (s_start == 0), then we can safely defer the superblock
1751 * update until the next commit by setting JBD2_FLUSHED. This avoids
1752 * attempting a write to a potential-readonly device.
1753 */
1754 if (sb->s_start == 0) {
1755 jbd2_debug(1, "JBD2: Skipping superblock update on recovered sb "
1756 "(start %ld, seq %u, errno %d)\n",
1757 journal->j_tail, journal->j_tail_sequence,
1758 journal->j_errno);
1759 journal->j_flags |= JBD2_FLUSHED;
1760 } else {
1761 /* Lock here to make assertions happy... */
1762 mutex_lock_io(&journal->j_checkpoint_mutex);
1763 /*
1764 * Update log tail information. We use REQ_FUA since new
1765 * transaction will start reusing journal space and so we
1766 * must make sure information about current log tail is on
1767 * disk before that.
1768 */
1769 jbd2_journal_update_sb_log_tail(journal,
1770 journal->j_tail_sequence,
1771 journal->j_tail,
1772 REQ_SYNC | REQ_FUA);
1773 mutex_unlock(&journal->j_checkpoint_mutex);
1774 }
1775 return jbd2_journal_start_thread(journal);
1776 }
1777
1778 /*
1779 * This function expects that the caller will have locked the journal
1780 * buffer head, and will return with it unlocked
1781 */
jbd2_write_superblock(journal_t * journal,blk_opf_t write_flags)1782 static int jbd2_write_superblock(journal_t *journal, blk_opf_t write_flags)
1783 {
1784 struct buffer_head *bh = journal->j_sb_buffer;
1785 journal_superblock_t *sb = journal->j_superblock;
1786 int ret = 0;
1787
1788 /* Buffer got discarded which means block device got invalidated */
1789 if (!buffer_mapped(bh)) {
1790 unlock_buffer(bh);
1791 return -EIO;
1792 }
1793
1794 trace_jbd2_write_superblock(journal, write_flags);
1795 if (!(journal->j_flags & JBD2_BARRIER))
1796 write_flags &= ~(REQ_FUA | REQ_PREFLUSH);
1797 if (buffer_write_io_error(bh)) {
1798 /*
1799 * Oh, dear. A previous attempt to write the journal
1800 * superblock failed. This could happen because the
1801 * USB device was yanked out. Or it could happen to
1802 * be a transient write error and maybe the block will
1803 * be remapped. Nothing we can do but to retry the
1804 * write and hope for the best.
1805 */
1806 printk(KERN_ERR "JBD2: previous I/O error detected "
1807 "for journal superblock update for %s.\n",
1808 journal->j_devname);
1809 clear_buffer_write_io_error(bh);
1810 set_buffer_uptodate(bh);
1811 }
1812 if (jbd2_journal_has_csum_v2or3(journal))
1813 sb->s_checksum = jbd2_superblock_csum(journal, sb);
1814 get_bh(bh);
1815 bh->b_end_io = end_buffer_write_sync;
1816 submit_bh(REQ_OP_WRITE | write_flags, bh);
1817 wait_on_buffer(bh);
1818 if (buffer_write_io_error(bh)) {
1819 clear_buffer_write_io_error(bh);
1820 set_buffer_uptodate(bh);
1821 ret = -EIO;
1822 }
1823 if (ret) {
1824 printk(KERN_ERR "JBD2: I/O error when updating journal superblock for %s.\n",
1825 journal->j_devname);
1826 if (!is_journal_aborted(journal))
1827 jbd2_journal_abort(journal, ret);
1828 }
1829
1830 return ret;
1831 }
1832
1833 /**
1834 * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1835 * @journal: The journal to update.
1836 * @tail_tid: TID of the new transaction at the tail of the log
1837 * @tail_block: The first block of the transaction at the tail of the log
1838 * @write_flags: Flags for the journal sb write operation
1839 *
1840 * Update a journal's superblock information about log tail and write it to
1841 * disk, waiting for the IO to complete.
1842 */
jbd2_journal_update_sb_log_tail(journal_t * journal,tid_t tail_tid,unsigned long tail_block,blk_opf_t write_flags)1843 int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1844 unsigned long tail_block,
1845 blk_opf_t write_flags)
1846 {
1847 journal_superblock_t *sb = journal->j_superblock;
1848 int ret;
1849
1850 if (is_journal_aborted(journal))
1851 return -EIO;
1852 if (test_bit(JBD2_CHECKPOINT_IO_ERROR, &journal->j_atomic_flags)) {
1853 jbd2_journal_abort(journal, -EIO);
1854 return -EIO;
1855 }
1856
1857 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1858 jbd2_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1859 tail_block, tail_tid);
1860
1861 lock_buffer(journal->j_sb_buffer);
1862 sb->s_sequence = cpu_to_be32(tail_tid);
1863 sb->s_start = cpu_to_be32(tail_block);
1864
1865 ret = jbd2_write_superblock(journal, write_flags);
1866 if (ret)
1867 goto out;
1868
1869 /* Log is no longer empty */
1870 write_lock(&journal->j_state_lock);
1871 WARN_ON(!sb->s_sequence);
1872 journal->j_flags &= ~JBD2_FLUSHED;
1873 write_unlock(&journal->j_state_lock);
1874
1875 out:
1876 return ret;
1877 }
1878
1879 /**
1880 * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1881 * @journal: The journal to update.
1882 * @write_flags: Flags for the journal sb write operation
1883 *
1884 * Update a journal's dynamic superblock fields to show that journal is empty.
1885 * Write updated superblock to disk waiting for IO to complete.
1886 */
jbd2_mark_journal_empty(journal_t * journal,blk_opf_t write_flags)1887 static void jbd2_mark_journal_empty(journal_t *journal, blk_opf_t write_flags)
1888 {
1889 journal_superblock_t *sb = journal->j_superblock;
1890 bool had_fast_commit = false;
1891
1892 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1893 lock_buffer(journal->j_sb_buffer);
1894 if (sb->s_start == 0) { /* Is it already empty? */
1895 unlock_buffer(journal->j_sb_buffer);
1896 return;
1897 }
1898
1899 jbd2_debug(1, "JBD2: Marking journal as empty (seq %u)\n",
1900 journal->j_tail_sequence);
1901
1902 sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1903 sb->s_start = cpu_to_be32(0);
1904 sb->s_head = cpu_to_be32(journal->j_head);
1905 if (jbd2_has_feature_fast_commit(journal)) {
1906 /*
1907 * When journal is clean, no need to commit fast commit flag and
1908 * make file system incompatible with older kernels.
1909 */
1910 jbd2_clear_feature_fast_commit(journal);
1911 had_fast_commit = true;
1912 }
1913
1914 jbd2_write_superblock(journal, write_flags);
1915
1916 if (had_fast_commit)
1917 jbd2_set_feature_fast_commit(journal);
1918
1919 /* Log is no longer empty */
1920 write_lock(&journal->j_state_lock);
1921 journal->j_flags |= JBD2_FLUSHED;
1922 write_unlock(&journal->j_state_lock);
1923 }
1924
1925 /**
1926 * __jbd2_journal_erase() - Discard or zeroout journal blocks (excluding superblock)
1927 * @journal: The journal to erase.
1928 * @flags: A discard/zeroout request is sent for each physically contigous
1929 * region of the journal. Either JBD2_JOURNAL_FLUSH_DISCARD or
1930 * JBD2_JOURNAL_FLUSH_ZEROOUT must be set to determine which operation
1931 * to perform.
1932 *
1933 * Note: JBD2_JOURNAL_FLUSH_ZEROOUT attempts to use hardware offload. Zeroes
1934 * will be explicitly written if no hardware offload is available, see
1935 * blkdev_issue_zeroout for more details.
1936 */
__jbd2_journal_erase(journal_t * journal,unsigned int flags)1937 static int __jbd2_journal_erase(journal_t *journal, unsigned int flags)
1938 {
1939 int err = 0;
1940 unsigned long block, log_offset; /* logical */
1941 unsigned long long phys_block, block_start, block_stop; /* physical */
1942 loff_t byte_start, byte_stop, byte_count;
1943
1944 /* flags must be set to either discard or zeroout */
1945 if ((flags & ~JBD2_JOURNAL_FLUSH_VALID) || !flags ||
1946 ((flags & JBD2_JOURNAL_FLUSH_DISCARD) &&
1947 (flags & JBD2_JOURNAL_FLUSH_ZEROOUT)))
1948 return -EINVAL;
1949
1950 if ((flags & JBD2_JOURNAL_FLUSH_DISCARD) &&
1951 !bdev_max_discard_sectors(journal->j_dev))
1952 return -EOPNOTSUPP;
1953
1954 /*
1955 * lookup block mapping and issue discard/zeroout for each
1956 * contiguous region
1957 */
1958 log_offset = be32_to_cpu(journal->j_superblock->s_first);
1959 block_start = ~0ULL;
1960 for (block = log_offset; block < journal->j_total_len; block++) {
1961 err = jbd2_journal_bmap(journal, block, &phys_block);
1962 if (err) {
1963 pr_err("JBD2: bad block at offset %lu", block);
1964 return err;
1965 }
1966
1967 if (block_start == ~0ULL) {
1968 block_start = phys_block;
1969 block_stop = block_start - 1;
1970 }
1971
1972 /*
1973 * last block not contiguous with current block,
1974 * process last contiguous region and return to this block on
1975 * next loop
1976 */
1977 if (phys_block != block_stop + 1) {
1978 block--;
1979 } else {
1980 block_stop++;
1981 /*
1982 * if this isn't the last block of journal,
1983 * no need to process now because next block may also
1984 * be part of this contiguous region
1985 */
1986 if (block != journal->j_total_len - 1)
1987 continue;
1988 }
1989
1990 /*
1991 * end of contiguous region or this is last block of journal,
1992 * take care of the region
1993 */
1994 byte_start = block_start * journal->j_blocksize;
1995 byte_stop = block_stop * journal->j_blocksize;
1996 byte_count = (block_stop - block_start + 1) *
1997 journal->j_blocksize;
1998
1999 truncate_inode_pages_range(journal->j_dev->bd_inode->i_mapping,
2000 byte_start, byte_stop);
2001
2002 if (flags & JBD2_JOURNAL_FLUSH_DISCARD) {
2003 err = blkdev_issue_discard(journal->j_dev,
2004 byte_start >> SECTOR_SHIFT,
2005 byte_count >> SECTOR_SHIFT,
2006 GFP_NOFS);
2007 } else if (flags & JBD2_JOURNAL_FLUSH_ZEROOUT) {
2008 err = blkdev_issue_zeroout(journal->j_dev,
2009 byte_start >> SECTOR_SHIFT,
2010 byte_count >> SECTOR_SHIFT,
2011 GFP_NOFS, 0);
2012 }
2013
2014 if (unlikely(err != 0)) {
2015 pr_err("JBD2: (error %d) unable to wipe journal at physical blocks %llu - %llu",
2016 err, block_start, block_stop);
2017 return err;
2018 }
2019
2020 /* reset start and stop after processing a region */
2021 block_start = ~0ULL;
2022 }
2023
2024 return blkdev_issue_flush(journal->j_dev);
2025 }
2026
2027 /**
2028 * jbd2_journal_update_sb_errno() - Update error in the journal.
2029 * @journal: The journal to update.
2030 *
2031 * Update a journal's errno. Write updated superblock to disk waiting for IO
2032 * to complete.
2033 */
jbd2_journal_update_sb_errno(journal_t * journal)2034 void jbd2_journal_update_sb_errno(journal_t *journal)
2035 {
2036 journal_superblock_t *sb = journal->j_superblock;
2037 int errcode;
2038
2039 lock_buffer(journal->j_sb_buffer);
2040 errcode = journal->j_errno;
2041 if (errcode == -ESHUTDOWN)
2042 errcode = 0;
2043 jbd2_debug(1, "JBD2: updating superblock error (errno %d)\n", errcode);
2044 sb->s_errno = cpu_to_be32(errcode);
2045
2046 jbd2_write_superblock(journal, REQ_SYNC | REQ_FUA);
2047 }
2048 EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
2049
2050 /**
2051 * jbd2_journal_load() - Read journal from disk.
2052 * @journal: Journal to act on.
2053 *
2054 * Given a journal_t structure which tells us which disk blocks contain
2055 * a journal, read the journal from disk to initialise the in-memory
2056 * structures.
2057 */
jbd2_journal_load(journal_t * journal)2058 int jbd2_journal_load(journal_t *journal)
2059 {
2060 int err;
2061 journal_superblock_t *sb = journal->j_superblock;
2062
2063 /*
2064 * Create a slab for this blocksize
2065 */
2066 err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
2067 if (err)
2068 return err;
2069
2070 /* Let the recovery code check whether it needs to recover any
2071 * data from the journal. */
2072 err = jbd2_journal_recover(journal);
2073 if (err) {
2074 pr_warn("JBD2: journal recovery failed\n");
2075 return err;
2076 }
2077
2078 if (journal->j_failed_commit) {
2079 printk(KERN_ERR "JBD2: journal transaction %u on %s "
2080 "is corrupt.\n", journal->j_failed_commit,
2081 journal->j_devname);
2082 return -EFSCORRUPTED;
2083 }
2084 /*
2085 * clear JBD2_ABORT flag initialized in journal_init_common
2086 * here to update log tail information with the newest seq.
2087 */
2088 journal->j_flags &= ~JBD2_ABORT;
2089
2090 /* OK, we've finished with the dynamic journal bits:
2091 * reinitialise the dynamic contents of the superblock in memory
2092 * and reset them on disk. */
2093 err = journal_reset(journal);
2094 if (err) {
2095 pr_warn("JBD2: journal reset failed\n");
2096 return err;
2097 }
2098
2099 journal->j_flags |= JBD2_LOADED;
2100 return 0;
2101 }
2102
2103 /**
2104 * jbd2_journal_destroy() - Release a journal_t structure.
2105 * @journal: Journal to act on.
2106 *
2107 * Release a journal_t structure once it is no longer in use by the
2108 * journaled object.
2109 * Return <0 if we couldn't clean up the journal.
2110 */
jbd2_journal_destroy(journal_t * journal)2111 int jbd2_journal_destroy(journal_t *journal)
2112 {
2113 int err = 0;
2114
2115 /* Wait for the commit thread to wake up and die. */
2116 journal_kill_thread(journal);
2117
2118 /* Force a final log commit */
2119 if (journal->j_running_transaction)
2120 jbd2_journal_commit_transaction(journal);
2121
2122 /* Force any old transactions to disk */
2123
2124 /* Totally anal locking here... */
2125 spin_lock(&journal->j_list_lock);
2126 while (journal->j_checkpoint_transactions != NULL) {
2127 spin_unlock(&journal->j_list_lock);
2128 mutex_lock_io(&journal->j_checkpoint_mutex);
2129 err = jbd2_log_do_checkpoint(journal);
2130 mutex_unlock(&journal->j_checkpoint_mutex);
2131 /*
2132 * If checkpointing failed, just free the buffers to avoid
2133 * looping forever
2134 */
2135 if (err) {
2136 jbd2_journal_destroy_checkpoint(journal);
2137 spin_lock(&journal->j_list_lock);
2138 break;
2139 }
2140 spin_lock(&journal->j_list_lock);
2141 }
2142
2143 J_ASSERT(journal->j_running_transaction == NULL);
2144 J_ASSERT(journal->j_committing_transaction == NULL);
2145 J_ASSERT(journal->j_checkpoint_transactions == NULL);
2146 spin_unlock(&journal->j_list_lock);
2147
2148 /*
2149 * OK, all checkpoint transactions have been checked, now check the
2150 * write out io error flag and abort the journal if some buffer failed
2151 * to write back to the original location, otherwise the filesystem
2152 * may become inconsistent.
2153 */
2154 if (!is_journal_aborted(journal) &&
2155 test_bit(JBD2_CHECKPOINT_IO_ERROR, &journal->j_atomic_flags))
2156 jbd2_journal_abort(journal, -EIO);
2157
2158 if (journal->j_sb_buffer) {
2159 if (!is_journal_aborted(journal)) {
2160 mutex_lock_io(&journal->j_checkpoint_mutex);
2161
2162 write_lock(&journal->j_state_lock);
2163 journal->j_tail_sequence =
2164 ++journal->j_transaction_sequence;
2165 write_unlock(&journal->j_state_lock);
2166
2167 jbd2_mark_journal_empty(journal,
2168 REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
2169 mutex_unlock(&journal->j_checkpoint_mutex);
2170 } else
2171 err = -EIO;
2172 brelse(journal->j_sb_buffer);
2173 }
2174
2175 if (journal->j_shrinker.flags & SHRINKER_REGISTERED) {
2176 percpu_counter_destroy(&journal->j_checkpoint_jh_count);
2177 unregister_shrinker(&journal->j_shrinker);
2178 }
2179 if (journal->j_proc_entry)
2180 jbd2_stats_proc_exit(journal);
2181 iput(journal->j_inode);
2182 if (journal->j_revoke)
2183 jbd2_journal_destroy_revoke(journal);
2184 if (journal->j_chksum_driver)
2185 crypto_free_shash(journal->j_chksum_driver);
2186 kfree(journal->j_fc_wbuf);
2187 kfree(journal->j_wbuf);
2188 kfree(journal);
2189
2190 return err;
2191 }
2192
2193
2194 /**
2195 * jbd2_journal_check_used_features() - Check if features specified are used.
2196 * @journal: Journal to check.
2197 * @compat: bitmask of compatible features
2198 * @ro: bitmask of features that force read-only mount
2199 * @incompat: bitmask of incompatible features
2200 *
2201 * Check whether the journal uses all of a given set of
2202 * features. Return true (non-zero) if it does.
2203 **/
2204
jbd2_journal_check_used_features(journal_t * journal,unsigned long compat,unsigned long ro,unsigned long incompat)2205 int jbd2_journal_check_used_features(journal_t *journal, unsigned long compat,
2206 unsigned long ro, unsigned long incompat)
2207 {
2208 journal_superblock_t *sb;
2209
2210 if (!compat && !ro && !incompat)
2211 return 1;
2212 if (!jbd2_format_support_feature(journal))
2213 return 0;
2214
2215 sb = journal->j_superblock;
2216
2217 if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
2218 ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
2219 ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
2220 return 1;
2221
2222 return 0;
2223 }
2224
2225 /**
2226 * jbd2_journal_check_available_features() - Check feature set in journalling layer
2227 * @journal: Journal to check.
2228 * @compat: bitmask of compatible features
2229 * @ro: bitmask of features that force read-only mount
2230 * @incompat: bitmask of incompatible features
2231 *
2232 * Check whether the journaling code supports the use of
2233 * all of a given set of features on this journal. Return true
2234 * (non-zero) if it can. */
2235
jbd2_journal_check_available_features(journal_t * journal,unsigned long compat,unsigned long ro,unsigned long incompat)2236 int jbd2_journal_check_available_features(journal_t *journal, unsigned long compat,
2237 unsigned long ro, unsigned long incompat)
2238 {
2239 if (!compat && !ro && !incompat)
2240 return 1;
2241
2242 if (!jbd2_format_support_feature(journal))
2243 return 0;
2244
2245 if ((compat & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
2246 (ro & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
2247 (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
2248 return 1;
2249
2250 return 0;
2251 }
2252
2253 static int
jbd2_journal_initialize_fast_commit(journal_t * journal)2254 jbd2_journal_initialize_fast_commit(journal_t *journal)
2255 {
2256 journal_superblock_t *sb = journal->j_superblock;
2257 unsigned long long num_fc_blks;
2258
2259 num_fc_blks = jbd2_journal_get_num_fc_blks(sb);
2260 if (journal->j_last - num_fc_blks < JBD2_MIN_JOURNAL_BLOCKS)
2261 return -ENOSPC;
2262
2263 /* Are we called twice? */
2264 WARN_ON(journal->j_fc_wbuf != NULL);
2265 journal->j_fc_wbuf = kmalloc_array(num_fc_blks,
2266 sizeof(struct buffer_head *), GFP_KERNEL);
2267 if (!journal->j_fc_wbuf)
2268 return -ENOMEM;
2269
2270 journal->j_fc_wbufsize = num_fc_blks;
2271 journal->j_fc_last = journal->j_last;
2272 journal->j_last = journal->j_fc_last - num_fc_blks;
2273 journal->j_fc_first = journal->j_last + 1;
2274 journal->j_fc_off = 0;
2275 journal->j_free = journal->j_last - journal->j_first;
2276 journal->j_max_transaction_buffers =
2277 jbd2_journal_get_max_txn_bufs(journal);
2278
2279 return 0;
2280 }
2281
2282 /**
2283 * jbd2_journal_set_features() - Mark a given journal feature in the superblock
2284 * @journal: Journal to act on.
2285 * @compat: bitmask of compatible features
2286 * @ro: bitmask of features that force read-only mount
2287 * @incompat: bitmask of incompatible features
2288 *
2289 * Mark a given journal feature as present on the
2290 * superblock. Returns true if the requested features could be set.
2291 *
2292 */
2293
jbd2_journal_set_features(journal_t * journal,unsigned long compat,unsigned long ro,unsigned long incompat)2294 int jbd2_journal_set_features(journal_t *journal, unsigned long compat,
2295 unsigned long ro, unsigned long incompat)
2296 {
2297 #define INCOMPAT_FEATURE_ON(f) \
2298 ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
2299 #define COMPAT_FEATURE_ON(f) \
2300 ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
2301 journal_superblock_t *sb;
2302
2303 if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
2304 return 1;
2305
2306 if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
2307 return 0;
2308
2309 /* If enabling v2 checksums, turn on v3 instead */
2310 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) {
2311 incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2;
2312 incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3;
2313 }
2314
2315 /* Asking for checksumming v3 and v1? Only give them v3. */
2316 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 &&
2317 compat & JBD2_FEATURE_COMPAT_CHECKSUM)
2318 compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
2319
2320 jbd2_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
2321 compat, ro, incompat);
2322
2323 sb = journal->j_superblock;
2324
2325 if (incompat & JBD2_FEATURE_INCOMPAT_FAST_COMMIT) {
2326 if (jbd2_journal_initialize_fast_commit(journal)) {
2327 pr_err("JBD2: Cannot enable fast commits.\n");
2328 return 0;
2329 }
2330 }
2331
2332 /* Load the checksum driver if necessary */
2333 if ((journal->j_chksum_driver == NULL) &&
2334 INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
2335 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
2336 if (IS_ERR(journal->j_chksum_driver)) {
2337 printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
2338 journal->j_chksum_driver = NULL;
2339 return 0;
2340 }
2341 /* Precompute checksum seed for all metadata */
2342 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
2343 sizeof(sb->s_uuid));
2344 }
2345
2346 lock_buffer(journal->j_sb_buffer);
2347
2348 /* If enabling v3 checksums, update superblock */
2349 if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
2350 sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
2351 sb->s_feature_compat &=
2352 ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
2353 }
2354
2355 /* If enabling v1 checksums, downgrade superblock */
2356 if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
2357 sb->s_feature_incompat &=
2358 ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 |
2359 JBD2_FEATURE_INCOMPAT_CSUM_V3);
2360
2361 sb->s_feature_compat |= cpu_to_be32(compat);
2362 sb->s_feature_ro_compat |= cpu_to_be32(ro);
2363 sb->s_feature_incompat |= cpu_to_be32(incompat);
2364 unlock_buffer(journal->j_sb_buffer);
2365 journal->j_revoke_records_per_block =
2366 journal_revoke_records_per_block(journal);
2367
2368 return 1;
2369 #undef COMPAT_FEATURE_ON
2370 #undef INCOMPAT_FEATURE_ON
2371 }
2372
2373 /*
2374 * jbd2_journal_clear_features() - Clear a given journal feature in the
2375 * superblock
2376 * @journal: Journal to act on.
2377 * @compat: bitmask of compatible features
2378 * @ro: bitmask of features that force read-only mount
2379 * @incompat: bitmask of incompatible features
2380 *
2381 * Clear a given journal feature as present on the
2382 * superblock.
2383 */
jbd2_journal_clear_features(journal_t * journal,unsigned long compat,unsigned long ro,unsigned long incompat)2384 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
2385 unsigned long ro, unsigned long incompat)
2386 {
2387 journal_superblock_t *sb;
2388
2389 jbd2_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
2390 compat, ro, incompat);
2391
2392 sb = journal->j_superblock;
2393
2394 sb->s_feature_compat &= ~cpu_to_be32(compat);
2395 sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
2396 sb->s_feature_incompat &= ~cpu_to_be32(incompat);
2397 journal->j_revoke_records_per_block =
2398 journal_revoke_records_per_block(journal);
2399 }
2400 EXPORT_SYMBOL(jbd2_journal_clear_features);
2401
2402 /**
2403 * jbd2_journal_flush() - Flush journal
2404 * @journal: Journal to act on.
2405 * @flags: optional operation on the journal blocks after the flush (see below)
2406 *
2407 * Flush all data for a given journal to disk and empty the journal.
2408 * Filesystems can use this when remounting readonly to ensure that
2409 * recovery does not need to happen on remount. Optionally, a discard or zeroout
2410 * can be issued on the journal blocks after flushing.
2411 *
2412 * flags:
2413 * JBD2_JOURNAL_FLUSH_DISCARD: issues discards for the journal blocks
2414 * JBD2_JOURNAL_FLUSH_ZEROOUT: issues zeroouts for the journal blocks
2415 */
jbd2_journal_flush(journal_t * journal,unsigned int flags)2416 int jbd2_journal_flush(journal_t *journal, unsigned int flags)
2417 {
2418 int err = 0;
2419 transaction_t *transaction = NULL;
2420
2421 write_lock(&journal->j_state_lock);
2422
2423 /* Force everything buffered to the log... */
2424 if (journal->j_running_transaction) {
2425 transaction = journal->j_running_transaction;
2426 __jbd2_log_start_commit(journal, transaction->t_tid);
2427 } else if (journal->j_committing_transaction)
2428 transaction = journal->j_committing_transaction;
2429
2430 /* Wait for the log commit to complete... */
2431 if (transaction) {
2432 tid_t tid = transaction->t_tid;
2433
2434 write_unlock(&journal->j_state_lock);
2435 jbd2_log_wait_commit(journal, tid);
2436 } else {
2437 write_unlock(&journal->j_state_lock);
2438 }
2439
2440 /* ...and flush everything in the log out to disk. */
2441 spin_lock(&journal->j_list_lock);
2442 while (!err && journal->j_checkpoint_transactions != NULL) {
2443 spin_unlock(&journal->j_list_lock);
2444 mutex_lock_io(&journal->j_checkpoint_mutex);
2445 err = jbd2_log_do_checkpoint(journal);
2446 mutex_unlock(&journal->j_checkpoint_mutex);
2447 spin_lock(&journal->j_list_lock);
2448 }
2449 spin_unlock(&journal->j_list_lock);
2450
2451 if (is_journal_aborted(journal))
2452 return -EIO;
2453
2454 mutex_lock_io(&journal->j_checkpoint_mutex);
2455 if (!err) {
2456 err = jbd2_cleanup_journal_tail(journal);
2457 if (err < 0) {
2458 mutex_unlock(&journal->j_checkpoint_mutex);
2459 goto out;
2460 }
2461 err = 0;
2462 }
2463
2464 /* Finally, mark the journal as really needing no recovery.
2465 * This sets s_start==0 in the underlying superblock, which is
2466 * the magic code for a fully-recovered superblock. Any future
2467 * commits of data to the journal will restore the current
2468 * s_start value. */
2469 jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2470
2471 if (flags)
2472 err = __jbd2_journal_erase(journal, flags);
2473
2474 mutex_unlock(&journal->j_checkpoint_mutex);
2475 write_lock(&journal->j_state_lock);
2476 J_ASSERT(!journal->j_running_transaction);
2477 J_ASSERT(!journal->j_committing_transaction);
2478 J_ASSERT(!journal->j_checkpoint_transactions);
2479 J_ASSERT(journal->j_head == journal->j_tail);
2480 J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
2481 write_unlock(&journal->j_state_lock);
2482 out:
2483 return err;
2484 }
2485
2486 /**
2487 * jbd2_journal_wipe() - Wipe journal contents
2488 * @journal: Journal to act on.
2489 * @write: flag (see below)
2490 *
2491 * Wipe out all of the contents of a journal, safely. This will produce
2492 * a warning if the journal contains any valid recovery information.
2493 * Must be called between journal_init_*() and jbd2_journal_load().
2494 *
2495 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
2496 * we merely suppress recovery.
2497 */
2498
jbd2_journal_wipe(journal_t * journal,int write)2499 int jbd2_journal_wipe(journal_t *journal, int write)
2500 {
2501 int err;
2502
2503 J_ASSERT (!(journal->j_flags & JBD2_LOADED));
2504
2505 if (!journal->j_tail)
2506 return 0;
2507
2508 printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
2509 write ? "Clearing" : "Ignoring");
2510
2511 err = jbd2_journal_skip_recovery(journal);
2512 if (write) {
2513 /* Lock to make assertions happy... */
2514 mutex_lock_io(&journal->j_checkpoint_mutex);
2515 jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2516 mutex_unlock(&journal->j_checkpoint_mutex);
2517 }
2518
2519 return err;
2520 }
2521
2522 /**
2523 * jbd2_journal_abort () - Shutdown the journal immediately.
2524 * @journal: the journal to shutdown.
2525 * @errno: an error number to record in the journal indicating
2526 * the reason for the shutdown.
2527 *
2528 * Perform a complete, immediate shutdown of the ENTIRE
2529 * journal (not of a single transaction). This operation cannot be
2530 * undone without closing and reopening the journal.
2531 *
2532 * The jbd2_journal_abort function is intended to support higher level error
2533 * recovery mechanisms such as the ext2/ext3 remount-readonly error
2534 * mode.
2535 *
2536 * Journal abort has very specific semantics. Any existing dirty,
2537 * unjournaled buffers in the main filesystem will still be written to
2538 * disk by bdflush, but the journaling mechanism will be suspended
2539 * immediately and no further transaction commits will be honoured.
2540 *
2541 * Any dirty, journaled buffers will be written back to disk without
2542 * hitting the journal. Atomicity cannot be guaranteed on an aborted
2543 * filesystem, but we _do_ attempt to leave as much data as possible
2544 * behind for fsck to use for cleanup.
2545 *
2546 * Any attempt to get a new transaction handle on a journal which is in
2547 * ABORT state will just result in an -EROFS error return. A
2548 * jbd2_journal_stop on an existing handle will return -EIO if we have
2549 * entered abort state during the update.
2550 *
2551 * Recursive transactions are not disturbed by journal abort until the
2552 * final jbd2_journal_stop, which will receive the -EIO error.
2553 *
2554 * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2555 * which will be recorded (if possible) in the journal superblock. This
2556 * allows a client to record failure conditions in the middle of a
2557 * transaction without having to complete the transaction to record the
2558 * failure to disk. ext3_error, for example, now uses this
2559 * functionality.
2560 *
2561 */
2562
jbd2_journal_abort(journal_t * journal,int errno)2563 void jbd2_journal_abort(journal_t *journal, int errno)
2564 {
2565 transaction_t *transaction;
2566
2567 /*
2568 * Lock the aborting procedure until everything is done, this avoid
2569 * races between filesystem's error handling flow (e.g. ext4_abort()),
2570 * ensure panic after the error info is written into journal's
2571 * superblock.
2572 */
2573 mutex_lock(&journal->j_abort_mutex);
2574 /*
2575 * ESHUTDOWN always takes precedence because a file system check
2576 * caused by any other journal abort error is not required after
2577 * a shutdown triggered.
2578 */
2579 write_lock(&journal->j_state_lock);
2580 if (journal->j_flags & JBD2_ABORT) {
2581 int old_errno = journal->j_errno;
2582
2583 write_unlock(&journal->j_state_lock);
2584 if (old_errno != -ESHUTDOWN && errno == -ESHUTDOWN) {
2585 journal->j_errno = errno;
2586 jbd2_journal_update_sb_errno(journal);
2587 }
2588 mutex_unlock(&journal->j_abort_mutex);
2589 return;
2590 }
2591
2592 /*
2593 * Mark the abort as occurred and start current running transaction
2594 * to release all journaled buffer.
2595 */
2596 pr_err("Aborting journal on device %s.\n", journal->j_devname);
2597
2598 journal->j_flags |= JBD2_ABORT;
2599 journal->j_errno = errno;
2600 transaction = journal->j_running_transaction;
2601 if (transaction)
2602 __jbd2_log_start_commit(journal, transaction->t_tid);
2603 write_unlock(&journal->j_state_lock);
2604
2605 /*
2606 * Record errno to the journal super block, so that fsck and jbd2
2607 * layer could realise that a filesystem check is needed.
2608 */
2609 jbd2_journal_update_sb_errno(journal);
2610 mutex_unlock(&journal->j_abort_mutex);
2611 }
2612
2613 /**
2614 * jbd2_journal_errno() - returns the journal's error state.
2615 * @journal: journal to examine.
2616 *
2617 * This is the errno number set with jbd2_journal_abort(), the last
2618 * time the journal was mounted - if the journal was stopped
2619 * without calling abort this will be 0.
2620 *
2621 * If the journal has been aborted on this mount time -EROFS will
2622 * be returned.
2623 */
jbd2_journal_errno(journal_t * journal)2624 int jbd2_journal_errno(journal_t *journal)
2625 {
2626 int err;
2627
2628 read_lock(&journal->j_state_lock);
2629 if (journal->j_flags & JBD2_ABORT)
2630 err = -EROFS;
2631 else
2632 err = journal->j_errno;
2633 read_unlock(&journal->j_state_lock);
2634 return err;
2635 }
2636
2637 /**
2638 * jbd2_journal_clear_err() - clears the journal's error state
2639 * @journal: journal to act on.
2640 *
2641 * An error must be cleared or acked to take a FS out of readonly
2642 * mode.
2643 */
jbd2_journal_clear_err(journal_t * journal)2644 int jbd2_journal_clear_err(journal_t *journal)
2645 {
2646 int err = 0;
2647
2648 write_lock(&journal->j_state_lock);
2649 if (journal->j_flags & JBD2_ABORT)
2650 err = -EROFS;
2651 else
2652 journal->j_errno = 0;
2653 write_unlock(&journal->j_state_lock);
2654 return err;
2655 }
2656
2657 /**
2658 * jbd2_journal_ack_err() - Ack journal err.
2659 * @journal: journal to act on.
2660 *
2661 * An error must be cleared or acked to take a FS out of readonly
2662 * mode.
2663 */
jbd2_journal_ack_err(journal_t * journal)2664 void jbd2_journal_ack_err(journal_t *journal)
2665 {
2666 write_lock(&journal->j_state_lock);
2667 if (journal->j_errno)
2668 journal->j_flags |= JBD2_ACK_ERR;
2669 write_unlock(&journal->j_state_lock);
2670 }
2671
jbd2_journal_blocks_per_page(struct inode * inode)2672 int jbd2_journal_blocks_per_page(struct inode *inode)
2673 {
2674 return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
2675 }
2676
2677 /*
2678 * helper functions to deal with 32 or 64bit block numbers.
2679 */
journal_tag_bytes(journal_t * journal)2680 size_t journal_tag_bytes(journal_t *journal)
2681 {
2682 size_t sz;
2683
2684 if (jbd2_has_feature_csum3(journal))
2685 return sizeof(journal_block_tag3_t);
2686
2687 sz = sizeof(journal_block_tag_t);
2688
2689 if (jbd2_has_feature_csum2(journal))
2690 sz += sizeof(__u16);
2691
2692 if (jbd2_has_feature_64bit(journal))
2693 return sz;
2694 else
2695 return sz - sizeof(__u32);
2696 }
2697
2698 /*
2699 * JBD memory management
2700 *
2701 * These functions are used to allocate block-sized chunks of memory
2702 * used for making copies of buffer_head data. Very often it will be
2703 * page-sized chunks of data, but sometimes it will be in
2704 * sub-page-size chunks. (For example, 16k pages on Power systems
2705 * with a 4k block file system.) For blocks smaller than a page, we
2706 * use a SLAB allocator. There are slab caches for each block size,
2707 * which are allocated at mount time, if necessary, and we only free
2708 * (all of) the slab caches when/if the jbd2 module is unloaded. For
2709 * this reason we don't need to a mutex to protect access to
2710 * jbd2_slab[] allocating or releasing memory; only in
2711 * jbd2_journal_create_slab().
2712 */
2713 #define JBD2_MAX_SLABS 8
2714 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2715
2716 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2717 "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2718 "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2719 };
2720
2721
jbd2_journal_destroy_slabs(void)2722 static void jbd2_journal_destroy_slabs(void)
2723 {
2724 int i;
2725
2726 for (i = 0; i < JBD2_MAX_SLABS; i++) {
2727 kmem_cache_destroy(jbd2_slab[i]);
2728 jbd2_slab[i] = NULL;
2729 }
2730 }
2731
jbd2_journal_create_slab(size_t size)2732 static int jbd2_journal_create_slab(size_t size)
2733 {
2734 static DEFINE_MUTEX(jbd2_slab_create_mutex);
2735 int i = order_base_2(size) - 10;
2736 size_t slab_size;
2737
2738 if (size == PAGE_SIZE)
2739 return 0;
2740
2741 if (i >= JBD2_MAX_SLABS)
2742 return -EINVAL;
2743
2744 if (unlikely(i < 0))
2745 i = 0;
2746 mutex_lock(&jbd2_slab_create_mutex);
2747 if (jbd2_slab[i]) {
2748 mutex_unlock(&jbd2_slab_create_mutex);
2749 return 0; /* Already created */
2750 }
2751
2752 slab_size = 1 << (i+10);
2753 jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2754 slab_size, 0, NULL);
2755 mutex_unlock(&jbd2_slab_create_mutex);
2756 if (!jbd2_slab[i]) {
2757 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2758 return -ENOMEM;
2759 }
2760 return 0;
2761 }
2762
get_slab(size_t size)2763 static struct kmem_cache *get_slab(size_t size)
2764 {
2765 int i = order_base_2(size) - 10;
2766
2767 BUG_ON(i >= JBD2_MAX_SLABS);
2768 if (unlikely(i < 0))
2769 i = 0;
2770 BUG_ON(jbd2_slab[i] == NULL);
2771 return jbd2_slab[i];
2772 }
2773
jbd2_alloc(size_t size,gfp_t flags)2774 void *jbd2_alloc(size_t size, gfp_t flags)
2775 {
2776 void *ptr;
2777
2778 BUG_ON(size & (size-1)); /* Must be a power of 2 */
2779
2780 if (size < PAGE_SIZE)
2781 ptr = kmem_cache_alloc(get_slab(size), flags);
2782 else
2783 ptr = (void *)__get_free_pages(flags, get_order(size));
2784
2785 /* Check alignment; SLUB has gotten this wrong in the past,
2786 * and this can lead to user data corruption! */
2787 BUG_ON(((unsigned long) ptr) & (size-1));
2788
2789 return ptr;
2790 }
2791
jbd2_free(void * ptr,size_t size)2792 void jbd2_free(void *ptr, size_t size)
2793 {
2794 if (size < PAGE_SIZE)
2795 kmem_cache_free(get_slab(size), ptr);
2796 else
2797 free_pages((unsigned long)ptr, get_order(size));
2798 };
2799
2800 /*
2801 * Journal_head storage management
2802 */
2803 static struct kmem_cache *jbd2_journal_head_cache;
2804 #ifdef CONFIG_JBD2_DEBUG
2805 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2806 #endif
2807
jbd2_journal_init_journal_head_cache(void)2808 static int __init jbd2_journal_init_journal_head_cache(void)
2809 {
2810 J_ASSERT(!jbd2_journal_head_cache);
2811 jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2812 sizeof(struct journal_head),
2813 0, /* offset */
2814 SLAB_TEMPORARY | SLAB_TYPESAFE_BY_RCU,
2815 NULL); /* ctor */
2816 if (!jbd2_journal_head_cache) {
2817 printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2818 return -ENOMEM;
2819 }
2820 return 0;
2821 }
2822
jbd2_journal_destroy_journal_head_cache(void)2823 static void jbd2_journal_destroy_journal_head_cache(void)
2824 {
2825 kmem_cache_destroy(jbd2_journal_head_cache);
2826 jbd2_journal_head_cache = NULL;
2827 }
2828
2829 /*
2830 * journal_head splicing and dicing
2831 */
journal_alloc_journal_head(void)2832 static struct journal_head *journal_alloc_journal_head(void)
2833 {
2834 struct journal_head *ret;
2835
2836 #ifdef CONFIG_JBD2_DEBUG
2837 atomic_inc(&nr_journal_heads);
2838 #endif
2839 ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2840 if (!ret) {
2841 jbd2_debug(1, "out of memory for journal_head\n");
2842 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2843 ret = kmem_cache_zalloc(jbd2_journal_head_cache,
2844 GFP_NOFS | __GFP_NOFAIL);
2845 }
2846 if (ret)
2847 spin_lock_init(&ret->b_state_lock);
2848 return ret;
2849 }
2850
journal_free_journal_head(struct journal_head * jh)2851 static void journal_free_journal_head(struct journal_head *jh)
2852 {
2853 #ifdef CONFIG_JBD2_DEBUG
2854 atomic_dec(&nr_journal_heads);
2855 memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2856 #endif
2857 kmem_cache_free(jbd2_journal_head_cache, jh);
2858 }
2859
2860 /*
2861 * A journal_head is attached to a buffer_head whenever JBD has an
2862 * interest in the buffer.
2863 *
2864 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2865 * is set. This bit is tested in core kernel code where we need to take
2866 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable
2867 * there.
2868 *
2869 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2870 *
2871 * When a buffer has its BH_JBD bit set it is immune from being released by
2872 * core kernel code, mainly via ->b_count.
2873 *
2874 * A journal_head is detached from its buffer_head when the journal_head's
2875 * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2876 * transaction (b_cp_transaction) hold their references to b_jcount.
2877 *
2878 * Various places in the kernel want to attach a journal_head to a buffer_head
2879 * _before_ attaching the journal_head to a transaction. To protect the
2880 * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2881 * journal_head's b_jcount refcount by one. The caller must call
2882 * jbd2_journal_put_journal_head() to undo this.
2883 *
2884 * So the typical usage would be:
2885 *
2886 * (Attach a journal_head if needed. Increments b_jcount)
2887 * struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2888 * ...
2889 * (Get another reference for transaction)
2890 * jbd2_journal_grab_journal_head(bh);
2891 * jh->b_transaction = xxx;
2892 * (Put original reference)
2893 * jbd2_journal_put_journal_head(jh);
2894 */
2895
2896 /*
2897 * Give a buffer_head a journal_head.
2898 *
2899 * May sleep.
2900 */
jbd2_journal_add_journal_head(struct buffer_head * bh)2901 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2902 {
2903 struct journal_head *jh;
2904 struct journal_head *new_jh = NULL;
2905
2906 repeat:
2907 if (!buffer_jbd(bh))
2908 new_jh = journal_alloc_journal_head();
2909
2910 jbd_lock_bh_journal_head(bh);
2911 if (buffer_jbd(bh)) {
2912 jh = bh2jh(bh);
2913 } else {
2914 J_ASSERT_BH(bh,
2915 (atomic_read(&bh->b_count) > 0) ||
2916 (bh->b_folio && bh->b_folio->mapping));
2917
2918 if (!new_jh) {
2919 jbd_unlock_bh_journal_head(bh);
2920 goto repeat;
2921 }
2922
2923 jh = new_jh;
2924 new_jh = NULL; /* We consumed it */
2925 set_buffer_jbd(bh);
2926 bh->b_private = jh;
2927 jh->b_bh = bh;
2928 get_bh(bh);
2929 BUFFER_TRACE(bh, "added journal_head");
2930 }
2931 jh->b_jcount++;
2932 jbd_unlock_bh_journal_head(bh);
2933 if (new_jh)
2934 journal_free_journal_head(new_jh);
2935 return bh->b_private;
2936 }
2937
2938 /*
2939 * Grab a ref against this buffer_head's journal_head. If it ended up not
2940 * having a journal_head, return NULL
2941 */
jbd2_journal_grab_journal_head(struct buffer_head * bh)2942 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2943 {
2944 struct journal_head *jh = NULL;
2945
2946 jbd_lock_bh_journal_head(bh);
2947 if (buffer_jbd(bh)) {
2948 jh = bh2jh(bh);
2949 jh->b_jcount++;
2950 }
2951 jbd_unlock_bh_journal_head(bh);
2952 return jh;
2953 }
2954 EXPORT_SYMBOL(jbd2_journal_grab_journal_head);
2955
__journal_remove_journal_head(struct buffer_head * bh)2956 static void __journal_remove_journal_head(struct buffer_head *bh)
2957 {
2958 struct journal_head *jh = bh2jh(bh);
2959
2960 J_ASSERT_JH(jh, jh->b_transaction == NULL);
2961 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2962 J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2963 J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2964 J_ASSERT_BH(bh, buffer_jbd(bh));
2965 J_ASSERT_BH(bh, jh2bh(jh) == bh);
2966 BUFFER_TRACE(bh, "remove journal_head");
2967
2968 /* Unlink before dropping the lock */
2969 bh->b_private = NULL;
2970 jh->b_bh = NULL; /* debug, really */
2971 clear_buffer_jbd(bh);
2972 }
2973
journal_release_journal_head(struct journal_head * jh,size_t b_size)2974 static void journal_release_journal_head(struct journal_head *jh, size_t b_size)
2975 {
2976 if (jh->b_frozen_data) {
2977 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2978 jbd2_free(jh->b_frozen_data, b_size);
2979 }
2980 if (jh->b_committed_data) {
2981 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2982 jbd2_free(jh->b_committed_data, b_size);
2983 }
2984 journal_free_journal_head(jh);
2985 }
2986
2987 /*
2988 * Drop a reference on the passed journal_head. If it fell to zero then
2989 * release the journal_head from the buffer_head.
2990 */
jbd2_journal_put_journal_head(struct journal_head * jh)2991 void jbd2_journal_put_journal_head(struct journal_head *jh)
2992 {
2993 struct buffer_head *bh = jh2bh(jh);
2994
2995 jbd_lock_bh_journal_head(bh);
2996 J_ASSERT_JH(jh, jh->b_jcount > 0);
2997 --jh->b_jcount;
2998 if (!jh->b_jcount) {
2999 __journal_remove_journal_head(bh);
3000 jbd_unlock_bh_journal_head(bh);
3001 journal_release_journal_head(jh, bh->b_size);
3002 __brelse(bh);
3003 } else {
3004 jbd_unlock_bh_journal_head(bh);
3005 }
3006 }
3007 EXPORT_SYMBOL(jbd2_journal_put_journal_head);
3008
3009 /*
3010 * Initialize jbd inode head
3011 */
jbd2_journal_init_jbd_inode(struct jbd2_inode * jinode,struct inode * inode)3012 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
3013 {
3014 jinode->i_transaction = NULL;
3015 jinode->i_next_transaction = NULL;
3016 jinode->i_vfs_inode = inode;
3017 jinode->i_flags = 0;
3018 jinode->i_dirty_start = 0;
3019 jinode->i_dirty_end = 0;
3020 INIT_LIST_HEAD(&jinode->i_list);
3021 }
3022
3023 /*
3024 * Function to be called before we start removing inode from memory (i.e.,
3025 * clear_inode() is a fine place to be called from). It removes inode from
3026 * transaction's lists.
3027 */
jbd2_journal_release_jbd_inode(journal_t * journal,struct jbd2_inode * jinode)3028 void jbd2_journal_release_jbd_inode(journal_t *journal,
3029 struct jbd2_inode *jinode)
3030 {
3031 if (!journal)
3032 return;
3033 restart:
3034 spin_lock(&journal->j_list_lock);
3035 /* Is commit writing out inode - we have to wait */
3036 if (jinode->i_flags & JI_COMMIT_RUNNING) {
3037 wait_queue_head_t *wq;
3038 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
3039 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
3040 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
3041 spin_unlock(&journal->j_list_lock);
3042 schedule();
3043 finish_wait(wq, &wait.wq_entry);
3044 goto restart;
3045 }
3046
3047 if (jinode->i_transaction) {
3048 list_del(&jinode->i_list);
3049 jinode->i_transaction = NULL;
3050 }
3051 spin_unlock(&journal->j_list_lock);
3052 }
3053
3054
3055 #ifdef CONFIG_PROC_FS
3056
3057 #define JBD2_STATS_PROC_NAME "fs/jbd2"
3058
jbd2_create_jbd_stats_proc_entry(void)3059 static void __init jbd2_create_jbd_stats_proc_entry(void)
3060 {
3061 proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
3062 }
3063
jbd2_remove_jbd_stats_proc_entry(void)3064 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
3065 {
3066 if (proc_jbd2_stats)
3067 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
3068 }
3069
3070 #else
3071
3072 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
3073 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
3074
3075 #endif
3076
3077 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
3078
jbd2_journal_init_inode_cache(void)3079 static int __init jbd2_journal_init_inode_cache(void)
3080 {
3081 J_ASSERT(!jbd2_inode_cache);
3082 jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
3083 if (!jbd2_inode_cache) {
3084 pr_emerg("JBD2: failed to create inode cache\n");
3085 return -ENOMEM;
3086 }
3087 return 0;
3088 }
3089
jbd2_journal_init_handle_cache(void)3090 static int __init jbd2_journal_init_handle_cache(void)
3091 {
3092 J_ASSERT(!jbd2_handle_cache);
3093 jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
3094 if (!jbd2_handle_cache) {
3095 printk(KERN_EMERG "JBD2: failed to create handle cache\n");
3096 return -ENOMEM;
3097 }
3098 return 0;
3099 }
3100
jbd2_journal_destroy_inode_cache(void)3101 static void jbd2_journal_destroy_inode_cache(void)
3102 {
3103 kmem_cache_destroy(jbd2_inode_cache);
3104 jbd2_inode_cache = NULL;
3105 }
3106
jbd2_journal_destroy_handle_cache(void)3107 static void jbd2_journal_destroy_handle_cache(void)
3108 {
3109 kmem_cache_destroy(jbd2_handle_cache);
3110 jbd2_handle_cache = NULL;
3111 }
3112
3113 /*
3114 * Module startup and shutdown
3115 */
3116
journal_init_caches(void)3117 static int __init journal_init_caches(void)
3118 {
3119 int ret;
3120
3121 ret = jbd2_journal_init_revoke_record_cache();
3122 if (ret == 0)
3123 ret = jbd2_journal_init_revoke_table_cache();
3124 if (ret == 0)
3125 ret = jbd2_journal_init_journal_head_cache();
3126 if (ret == 0)
3127 ret = jbd2_journal_init_handle_cache();
3128 if (ret == 0)
3129 ret = jbd2_journal_init_inode_cache();
3130 if (ret == 0)
3131 ret = jbd2_journal_init_transaction_cache();
3132 return ret;
3133 }
3134
jbd2_journal_destroy_caches(void)3135 static void jbd2_journal_destroy_caches(void)
3136 {
3137 jbd2_journal_destroy_revoke_record_cache();
3138 jbd2_journal_destroy_revoke_table_cache();
3139 jbd2_journal_destroy_journal_head_cache();
3140 jbd2_journal_destroy_handle_cache();
3141 jbd2_journal_destroy_inode_cache();
3142 jbd2_journal_destroy_transaction_cache();
3143 jbd2_journal_destroy_slabs();
3144 }
3145
journal_init(void)3146 static int __init journal_init(void)
3147 {
3148 int ret;
3149
3150 BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
3151
3152 ret = journal_init_caches();
3153 if (ret == 0) {
3154 jbd2_create_jbd_stats_proc_entry();
3155 } else {
3156 jbd2_journal_destroy_caches();
3157 }
3158 return ret;
3159 }
3160
journal_exit(void)3161 static void __exit journal_exit(void)
3162 {
3163 #ifdef CONFIG_JBD2_DEBUG
3164 int n = atomic_read(&nr_journal_heads);
3165 if (n)
3166 printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n);
3167 #endif
3168 jbd2_remove_jbd_stats_proc_entry();
3169 jbd2_journal_destroy_caches();
3170 }
3171
3172 MODULE_LICENSE("GPL");
3173 module_init(journal_init);
3174 module_exit(journal_exit);
3175
3176