1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
3
4 /******************************************************************************
5 Copyright (c)2006 - 2007 Myricom, Inc. for some LRO specific code
6 ******************************************************************************/
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/types.h>
11 #include <linux/bitops.h>
12 #include <linux/module.h>
13 #include <linux/pci.h>
14 #include <linux/netdevice.h>
15 #include <linux/vmalloc.h>
16 #include <linux/string.h>
17 #include <linux/in.h>
18 #include <linux/ip.h>
19 #include <linux/tcp.h>
20 #include <linux/sctp.h>
21 #include <linux/ipv6.h>
22 #include <linux/slab.h>
23 #include <net/checksum.h>
24 #include <net/ip6_checksum.h>
25 #include <linux/ethtool.h>
26 #include <linux/if.h>
27 #include <linux/if_vlan.h>
28 #include <linux/prefetch.h>
29 #include <net/mpls.h>
30 #include <linux/bpf.h>
31 #include <linux/bpf_trace.h>
32 #include <linux/atomic.h>
33 #include <net/xfrm.h>
34
35 #include "ixgbevf.h"
36
37 const char ixgbevf_driver_name[] = "ixgbevf";
38 static const char ixgbevf_driver_string[] =
39 "Intel(R) 10 Gigabit PCI Express Virtual Function Network Driver";
40
41 #define DRV_VERSION "4.1.0-k"
42 const char ixgbevf_driver_version[] = DRV_VERSION;
43 static char ixgbevf_copyright[] =
44 "Copyright (c) 2009 - 2018 Intel Corporation.";
45
46 static const struct ixgbevf_info *ixgbevf_info_tbl[] = {
47 [board_82599_vf] = &ixgbevf_82599_vf_info,
48 [board_82599_vf_hv] = &ixgbevf_82599_vf_hv_info,
49 [board_X540_vf] = &ixgbevf_X540_vf_info,
50 [board_X540_vf_hv] = &ixgbevf_X540_vf_hv_info,
51 [board_X550_vf] = &ixgbevf_X550_vf_info,
52 [board_X550_vf_hv] = &ixgbevf_X550_vf_hv_info,
53 [board_X550EM_x_vf] = &ixgbevf_X550EM_x_vf_info,
54 [board_X550EM_x_vf_hv] = &ixgbevf_X550EM_x_vf_hv_info,
55 [board_x550em_a_vf] = &ixgbevf_x550em_a_vf_info,
56 };
57
58 /* ixgbevf_pci_tbl - PCI Device ID Table
59 *
60 * Wildcard entries (PCI_ANY_ID) should come last
61 * Last entry must be all 0s
62 *
63 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
64 * Class, Class Mask, private data (not used) }
65 */
66 static const struct pci_device_id ixgbevf_pci_tbl[] = {
67 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF), board_82599_vf },
68 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF_HV), board_82599_vf_hv },
69 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF), board_X540_vf },
70 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF_HV), board_X540_vf_hv },
71 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550_VF), board_X550_vf },
72 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550_VF_HV), board_X550_vf_hv },
73 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_X_VF), board_X550EM_x_vf },
74 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_X_VF_HV), board_X550EM_x_vf_hv},
75 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_A_VF), board_x550em_a_vf },
76 /* required last entry */
77 {0, }
78 };
79 MODULE_DEVICE_TABLE(pci, ixgbevf_pci_tbl);
80
81 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
82 MODULE_DESCRIPTION("Intel(R) 10 Gigabit Virtual Function Network Driver");
83 MODULE_LICENSE("GPL v2");
84 MODULE_VERSION(DRV_VERSION);
85
86 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
87 static int debug = -1;
88 module_param(debug, int, 0);
89 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
90
91 static struct workqueue_struct *ixgbevf_wq;
92
ixgbevf_service_event_schedule(struct ixgbevf_adapter * adapter)93 static void ixgbevf_service_event_schedule(struct ixgbevf_adapter *adapter)
94 {
95 if (!test_bit(__IXGBEVF_DOWN, &adapter->state) &&
96 !test_bit(__IXGBEVF_REMOVING, &adapter->state) &&
97 !test_and_set_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state))
98 queue_work(ixgbevf_wq, &adapter->service_task);
99 }
100
ixgbevf_service_event_complete(struct ixgbevf_adapter * adapter)101 static void ixgbevf_service_event_complete(struct ixgbevf_adapter *adapter)
102 {
103 BUG_ON(!test_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state));
104
105 /* flush memory to make sure state is correct before next watchdog */
106 smp_mb__before_atomic();
107 clear_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state);
108 }
109
110 /* forward decls */
111 static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter);
112 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector);
113 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter);
114 static bool ixgbevf_can_reuse_rx_page(struct ixgbevf_rx_buffer *rx_buffer);
115 static void ixgbevf_reuse_rx_page(struct ixgbevf_ring *rx_ring,
116 struct ixgbevf_rx_buffer *old_buff);
117
ixgbevf_remove_adapter(struct ixgbe_hw * hw)118 static void ixgbevf_remove_adapter(struct ixgbe_hw *hw)
119 {
120 struct ixgbevf_adapter *adapter = hw->back;
121
122 if (!hw->hw_addr)
123 return;
124 hw->hw_addr = NULL;
125 dev_err(&adapter->pdev->dev, "Adapter removed\n");
126 if (test_bit(__IXGBEVF_SERVICE_INITED, &adapter->state))
127 ixgbevf_service_event_schedule(adapter);
128 }
129
ixgbevf_check_remove(struct ixgbe_hw * hw,u32 reg)130 static void ixgbevf_check_remove(struct ixgbe_hw *hw, u32 reg)
131 {
132 u32 value;
133
134 /* The following check not only optimizes a bit by not
135 * performing a read on the status register when the
136 * register just read was a status register read that
137 * returned IXGBE_FAILED_READ_REG. It also blocks any
138 * potential recursion.
139 */
140 if (reg == IXGBE_VFSTATUS) {
141 ixgbevf_remove_adapter(hw);
142 return;
143 }
144 value = ixgbevf_read_reg(hw, IXGBE_VFSTATUS);
145 if (value == IXGBE_FAILED_READ_REG)
146 ixgbevf_remove_adapter(hw);
147 }
148
ixgbevf_read_reg(struct ixgbe_hw * hw,u32 reg)149 u32 ixgbevf_read_reg(struct ixgbe_hw *hw, u32 reg)
150 {
151 u8 __iomem *reg_addr = READ_ONCE(hw->hw_addr);
152 u32 value;
153
154 if (IXGBE_REMOVED(reg_addr))
155 return IXGBE_FAILED_READ_REG;
156 value = readl(reg_addr + reg);
157 if (unlikely(value == IXGBE_FAILED_READ_REG))
158 ixgbevf_check_remove(hw, reg);
159 return value;
160 }
161
162 /**
163 * ixgbevf_set_ivar - set IVAR registers - maps interrupt causes to vectors
164 * @adapter: pointer to adapter struct
165 * @direction: 0 for Rx, 1 for Tx, -1 for other causes
166 * @queue: queue to map the corresponding interrupt to
167 * @msix_vector: the vector to map to the corresponding queue
168 **/
ixgbevf_set_ivar(struct ixgbevf_adapter * adapter,s8 direction,u8 queue,u8 msix_vector)169 static void ixgbevf_set_ivar(struct ixgbevf_adapter *adapter, s8 direction,
170 u8 queue, u8 msix_vector)
171 {
172 u32 ivar, index;
173 struct ixgbe_hw *hw = &adapter->hw;
174
175 if (direction == -1) {
176 /* other causes */
177 msix_vector |= IXGBE_IVAR_ALLOC_VAL;
178 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR_MISC);
179 ivar &= ~0xFF;
180 ivar |= msix_vector;
181 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR_MISC, ivar);
182 } else {
183 /* Tx or Rx causes */
184 msix_vector |= IXGBE_IVAR_ALLOC_VAL;
185 index = ((16 * (queue & 1)) + (8 * direction));
186 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR(queue >> 1));
187 ivar &= ~(0xFF << index);
188 ivar |= (msix_vector << index);
189 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR(queue >> 1), ivar);
190 }
191 }
192
ixgbevf_get_tx_completed(struct ixgbevf_ring * ring)193 static u64 ixgbevf_get_tx_completed(struct ixgbevf_ring *ring)
194 {
195 return ring->stats.packets;
196 }
197
ixgbevf_get_tx_pending(struct ixgbevf_ring * ring)198 static u32 ixgbevf_get_tx_pending(struct ixgbevf_ring *ring)
199 {
200 struct ixgbevf_adapter *adapter = netdev_priv(ring->netdev);
201 struct ixgbe_hw *hw = &adapter->hw;
202
203 u32 head = IXGBE_READ_REG(hw, IXGBE_VFTDH(ring->reg_idx));
204 u32 tail = IXGBE_READ_REG(hw, IXGBE_VFTDT(ring->reg_idx));
205
206 if (head != tail)
207 return (head < tail) ?
208 tail - head : (tail + ring->count - head);
209
210 return 0;
211 }
212
ixgbevf_check_tx_hang(struct ixgbevf_ring * tx_ring)213 static inline bool ixgbevf_check_tx_hang(struct ixgbevf_ring *tx_ring)
214 {
215 u32 tx_done = ixgbevf_get_tx_completed(tx_ring);
216 u32 tx_done_old = tx_ring->tx_stats.tx_done_old;
217 u32 tx_pending = ixgbevf_get_tx_pending(tx_ring);
218
219 clear_check_for_tx_hang(tx_ring);
220
221 /* Check for a hung queue, but be thorough. This verifies
222 * that a transmit has been completed since the previous
223 * check AND there is at least one packet pending. The
224 * ARMED bit is set to indicate a potential hang.
225 */
226 if ((tx_done_old == tx_done) && tx_pending) {
227 /* make sure it is true for two checks in a row */
228 return test_and_set_bit(__IXGBEVF_HANG_CHECK_ARMED,
229 &tx_ring->state);
230 }
231 /* reset the countdown */
232 clear_bit(__IXGBEVF_HANG_CHECK_ARMED, &tx_ring->state);
233
234 /* update completed stats and continue */
235 tx_ring->tx_stats.tx_done_old = tx_done;
236
237 return false;
238 }
239
ixgbevf_tx_timeout_reset(struct ixgbevf_adapter * adapter)240 static void ixgbevf_tx_timeout_reset(struct ixgbevf_adapter *adapter)
241 {
242 /* Do the reset outside of interrupt context */
243 if (!test_bit(__IXGBEVF_DOWN, &adapter->state)) {
244 set_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state);
245 ixgbevf_service_event_schedule(adapter);
246 }
247 }
248
249 /**
250 * ixgbevf_tx_timeout - Respond to a Tx Hang
251 * @netdev: network interface device structure
252 **/
ixgbevf_tx_timeout(struct net_device * netdev)253 static void ixgbevf_tx_timeout(struct net_device *netdev)
254 {
255 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
256
257 ixgbevf_tx_timeout_reset(adapter);
258 }
259
260 /**
261 * ixgbevf_clean_tx_irq - Reclaim resources after transmit completes
262 * @q_vector: board private structure
263 * @tx_ring: tx ring to clean
264 * @napi_budget: Used to determine if we are in netpoll
265 **/
ixgbevf_clean_tx_irq(struct ixgbevf_q_vector * q_vector,struct ixgbevf_ring * tx_ring,int napi_budget)266 static bool ixgbevf_clean_tx_irq(struct ixgbevf_q_vector *q_vector,
267 struct ixgbevf_ring *tx_ring, int napi_budget)
268 {
269 struct ixgbevf_adapter *adapter = q_vector->adapter;
270 struct ixgbevf_tx_buffer *tx_buffer;
271 union ixgbe_adv_tx_desc *tx_desc;
272 unsigned int total_bytes = 0, total_packets = 0, total_ipsec = 0;
273 unsigned int budget = tx_ring->count / 2;
274 unsigned int i = tx_ring->next_to_clean;
275
276 if (test_bit(__IXGBEVF_DOWN, &adapter->state))
277 return true;
278
279 tx_buffer = &tx_ring->tx_buffer_info[i];
280 tx_desc = IXGBEVF_TX_DESC(tx_ring, i);
281 i -= tx_ring->count;
282
283 do {
284 union ixgbe_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
285
286 /* if next_to_watch is not set then there is no work pending */
287 if (!eop_desc)
288 break;
289
290 /* prevent any other reads prior to eop_desc */
291 smp_rmb();
292
293 /* if DD is not set pending work has not been completed */
294 if (!(eop_desc->wb.status & cpu_to_le32(IXGBE_TXD_STAT_DD)))
295 break;
296
297 /* clear next_to_watch to prevent false hangs */
298 tx_buffer->next_to_watch = NULL;
299
300 /* update the statistics for this packet */
301 total_bytes += tx_buffer->bytecount;
302 total_packets += tx_buffer->gso_segs;
303 if (tx_buffer->tx_flags & IXGBE_TX_FLAGS_IPSEC)
304 total_ipsec++;
305
306 /* free the skb */
307 if (ring_is_xdp(tx_ring))
308 page_frag_free(tx_buffer->data);
309 else
310 napi_consume_skb(tx_buffer->skb, napi_budget);
311
312 /* unmap skb header data */
313 dma_unmap_single(tx_ring->dev,
314 dma_unmap_addr(tx_buffer, dma),
315 dma_unmap_len(tx_buffer, len),
316 DMA_TO_DEVICE);
317
318 /* clear tx_buffer data */
319 dma_unmap_len_set(tx_buffer, len, 0);
320
321 /* unmap remaining buffers */
322 while (tx_desc != eop_desc) {
323 tx_buffer++;
324 tx_desc++;
325 i++;
326 if (unlikely(!i)) {
327 i -= tx_ring->count;
328 tx_buffer = tx_ring->tx_buffer_info;
329 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
330 }
331
332 /* unmap any remaining paged data */
333 if (dma_unmap_len(tx_buffer, len)) {
334 dma_unmap_page(tx_ring->dev,
335 dma_unmap_addr(tx_buffer, dma),
336 dma_unmap_len(tx_buffer, len),
337 DMA_TO_DEVICE);
338 dma_unmap_len_set(tx_buffer, len, 0);
339 }
340 }
341
342 /* move us one more past the eop_desc for start of next pkt */
343 tx_buffer++;
344 tx_desc++;
345 i++;
346 if (unlikely(!i)) {
347 i -= tx_ring->count;
348 tx_buffer = tx_ring->tx_buffer_info;
349 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
350 }
351
352 /* issue prefetch for next Tx descriptor */
353 prefetch(tx_desc);
354
355 /* update budget accounting */
356 budget--;
357 } while (likely(budget));
358
359 i += tx_ring->count;
360 tx_ring->next_to_clean = i;
361 u64_stats_update_begin(&tx_ring->syncp);
362 tx_ring->stats.bytes += total_bytes;
363 tx_ring->stats.packets += total_packets;
364 u64_stats_update_end(&tx_ring->syncp);
365 q_vector->tx.total_bytes += total_bytes;
366 q_vector->tx.total_packets += total_packets;
367 adapter->tx_ipsec += total_ipsec;
368
369 if (check_for_tx_hang(tx_ring) && ixgbevf_check_tx_hang(tx_ring)) {
370 struct ixgbe_hw *hw = &adapter->hw;
371 union ixgbe_adv_tx_desc *eop_desc;
372
373 eop_desc = tx_ring->tx_buffer_info[i].next_to_watch;
374
375 pr_err("Detected Tx Unit Hang%s\n"
376 " Tx Queue <%d>\n"
377 " TDH, TDT <%x>, <%x>\n"
378 " next_to_use <%x>\n"
379 " next_to_clean <%x>\n"
380 "tx_buffer_info[next_to_clean]\n"
381 " next_to_watch <%p>\n"
382 " eop_desc->wb.status <%x>\n"
383 " time_stamp <%lx>\n"
384 " jiffies <%lx>\n",
385 ring_is_xdp(tx_ring) ? " XDP" : "",
386 tx_ring->queue_index,
387 IXGBE_READ_REG(hw, IXGBE_VFTDH(tx_ring->reg_idx)),
388 IXGBE_READ_REG(hw, IXGBE_VFTDT(tx_ring->reg_idx)),
389 tx_ring->next_to_use, i,
390 eop_desc, (eop_desc ? eop_desc->wb.status : 0),
391 tx_ring->tx_buffer_info[i].time_stamp, jiffies);
392
393 if (!ring_is_xdp(tx_ring))
394 netif_stop_subqueue(tx_ring->netdev,
395 tx_ring->queue_index);
396
397 /* schedule immediate reset if we believe we hung */
398 ixgbevf_tx_timeout_reset(adapter);
399
400 return true;
401 }
402
403 if (ring_is_xdp(tx_ring))
404 return !!budget;
405
406 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
407 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
408 (ixgbevf_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) {
409 /* Make sure that anybody stopping the queue after this
410 * sees the new next_to_clean.
411 */
412 smp_mb();
413
414 if (__netif_subqueue_stopped(tx_ring->netdev,
415 tx_ring->queue_index) &&
416 !test_bit(__IXGBEVF_DOWN, &adapter->state)) {
417 netif_wake_subqueue(tx_ring->netdev,
418 tx_ring->queue_index);
419 ++tx_ring->tx_stats.restart_queue;
420 }
421 }
422
423 return !!budget;
424 }
425
426 /**
427 * ixgbevf_rx_skb - Helper function to determine proper Rx method
428 * @q_vector: structure containing interrupt and ring information
429 * @skb: packet to send up
430 **/
ixgbevf_rx_skb(struct ixgbevf_q_vector * q_vector,struct sk_buff * skb)431 static void ixgbevf_rx_skb(struct ixgbevf_q_vector *q_vector,
432 struct sk_buff *skb)
433 {
434 napi_gro_receive(&q_vector->napi, skb);
435 }
436
437 #define IXGBE_RSS_L4_TYPES_MASK \
438 ((1ul << IXGBE_RXDADV_RSSTYPE_IPV4_TCP) | \
439 (1ul << IXGBE_RXDADV_RSSTYPE_IPV4_UDP) | \
440 (1ul << IXGBE_RXDADV_RSSTYPE_IPV6_TCP) | \
441 (1ul << IXGBE_RXDADV_RSSTYPE_IPV6_UDP))
442
ixgbevf_rx_hash(struct ixgbevf_ring * ring,union ixgbe_adv_rx_desc * rx_desc,struct sk_buff * skb)443 static inline void ixgbevf_rx_hash(struct ixgbevf_ring *ring,
444 union ixgbe_adv_rx_desc *rx_desc,
445 struct sk_buff *skb)
446 {
447 u16 rss_type;
448
449 if (!(ring->netdev->features & NETIF_F_RXHASH))
450 return;
451
452 rss_type = le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.pkt_info) &
453 IXGBE_RXDADV_RSSTYPE_MASK;
454
455 if (!rss_type)
456 return;
457
458 skb_set_hash(skb, le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
459 (IXGBE_RSS_L4_TYPES_MASK & (1ul << rss_type)) ?
460 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3);
461 }
462
463 /**
464 * ixgbevf_rx_checksum - indicate in skb if hw indicated a good cksum
465 * @ring: structure containig ring specific data
466 * @rx_desc: current Rx descriptor being processed
467 * @skb: skb currently being received and modified
468 **/
ixgbevf_rx_checksum(struct ixgbevf_ring * ring,union ixgbe_adv_rx_desc * rx_desc,struct sk_buff * skb)469 static inline void ixgbevf_rx_checksum(struct ixgbevf_ring *ring,
470 union ixgbe_adv_rx_desc *rx_desc,
471 struct sk_buff *skb)
472 {
473 skb_checksum_none_assert(skb);
474
475 /* Rx csum disabled */
476 if (!(ring->netdev->features & NETIF_F_RXCSUM))
477 return;
478
479 /* if IP and error */
480 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_IPCS) &&
481 ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_IPE)) {
482 ring->rx_stats.csum_err++;
483 return;
484 }
485
486 if (!ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_L4CS))
487 return;
488
489 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_TCPE)) {
490 ring->rx_stats.csum_err++;
491 return;
492 }
493
494 /* It must be a TCP or UDP packet with a valid checksum */
495 skb->ip_summed = CHECKSUM_UNNECESSARY;
496 }
497
498 /**
499 * ixgbevf_process_skb_fields - Populate skb header fields from Rx descriptor
500 * @rx_ring: rx descriptor ring packet is being transacted on
501 * @rx_desc: pointer to the EOP Rx descriptor
502 * @skb: pointer to current skb being populated
503 *
504 * This function checks the ring, descriptor, and packet information in
505 * order to populate the checksum, VLAN, protocol, and other fields within
506 * the skb.
507 **/
ixgbevf_process_skb_fields(struct ixgbevf_ring * rx_ring,union ixgbe_adv_rx_desc * rx_desc,struct sk_buff * skb)508 static void ixgbevf_process_skb_fields(struct ixgbevf_ring *rx_ring,
509 union ixgbe_adv_rx_desc *rx_desc,
510 struct sk_buff *skb)
511 {
512 ixgbevf_rx_hash(rx_ring, rx_desc, skb);
513 ixgbevf_rx_checksum(rx_ring, rx_desc, skb);
514
515 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_VP)) {
516 u16 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
517 unsigned long *active_vlans = netdev_priv(rx_ring->netdev);
518
519 if (test_bit(vid & VLAN_VID_MASK, active_vlans))
520 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
521 }
522
523 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_STAT_SECP))
524 ixgbevf_ipsec_rx(rx_ring, rx_desc, skb);
525
526 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
527 }
528
529 static
ixgbevf_get_rx_buffer(struct ixgbevf_ring * rx_ring,const unsigned int size)530 struct ixgbevf_rx_buffer *ixgbevf_get_rx_buffer(struct ixgbevf_ring *rx_ring,
531 const unsigned int size)
532 {
533 struct ixgbevf_rx_buffer *rx_buffer;
534
535 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
536 prefetchw(rx_buffer->page);
537
538 /* we are reusing so sync this buffer for CPU use */
539 dma_sync_single_range_for_cpu(rx_ring->dev,
540 rx_buffer->dma,
541 rx_buffer->page_offset,
542 size,
543 DMA_FROM_DEVICE);
544
545 rx_buffer->pagecnt_bias--;
546
547 return rx_buffer;
548 }
549
ixgbevf_put_rx_buffer(struct ixgbevf_ring * rx_ring,struct ixgbevf_rx_buffer * rx_buffer,struct sk_buff * skb)550 static void ixgbevf_put_rx_buffer(struct ixgbevf_ring *rx_ring,
551 struct ixgbevf_rx_buffer *rx_buffer,
552 struct sk_buff *skb)
553 {
554 if (ixgbevf_can_reuse_rx_page(rx_buffer)) {
555 /* hand second half of page back to the ring */
556 ixgbevf_reuse_rx_page(rx_ring, rx_buffer);
557 } else {
558 if (IS_ERR(skb))
559 /* We are not reusing the buffer so unmap it and free
560 * any references we are holding to it
561 */
562 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
563 ixgbevf_rx_pg_size(rx_ring),
564 DMA_FROM_DEVICE,
565 IXGBEVF_RX_DMA_ATTR);
566 __page_frag_cache_drain(rx_buffer->page,
567 rx_buffer->pagecnt_bias);
568 }
569
570 /* clear contents of rx_buffer */
571 rx_buffer->page = NULL;
572 }
573
574 /**
575 * ixgbevf_is_non_eop - process handling of non-EOP buffers
576 * @rx_ring: Rx ring being processed
577 * @rx_desc: Rx descriptor for current buffer
578 *
579 * This function updates next to clean. If the buffer is an EOP buffer
580 * this function exits returning false, otherwise it will place the
581 * sk_buff in the next buffer to be chained and return true indicating
582 * that this is in fact a non-EOP buffer.
583 **/
ixgbevf_is_non_eop(struct ixgbevf_ring * rx_ring,union ixgbe_adv_rx_desc * rx_desc)584 static bool ixgbevf_is_non_eop(struct ixgbevf_ring *rx_ring,
585 union ixgbe_adv_rx_desc *rx_desc)
586 {
587 u32 ntc = rx_ring->next_to_clean + 1;
588
589 /* fetch, update, and store next to clean */
590 ntc = (ntc < rx_ring->count) ? ntc : 0;
591 rx_ring->next_to_clean = ntc;
592
593 prefetch(IXGBEVF_RX_DESC(rx_ring, ntc));
594
595 if (likely(ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_EOP)))
596 return false;
597
598 return true;
599 }
600
ixgbevf_rx_offset(struct ixgbevf_ring * rx_ring)601 static inline unsigned int ixgbevf_rx_offset(struct ixgbevf_ring *rx_ring)
602 {
603 return ring_uses_build_skb(rx_ring) ? IXGBEVF_SKB_PAD : 0;
604 }
605
ixgbevf_alloc_mapped_page(struct ixgbevf_ring * rx_ring,struct ixgbevf_rx_buffer * bi)606 static bool ixgbevf_alloc_mapped_page(struct ixgbevf_ring *rx_ring,
607 struct ixgbevf_rx_buffer *bi)
608 {
609 struct page *page = bi->page;
610 dma_addr_t dma;
611
612 /* since we are recycling buffers we should seldom need to alloc */
613 if (likely(page))
614 return true;
615
616 /* alloc new page for storage */
617 page = dev_alloc_pages(ixgbevf_rx_pg_order(rx_ring));
618 if (unlikely(!page)) {
619 rx_ring->rx_stats.alloc_rx_page_failed++;
620 return false;
621 }
622
623 /* map page for use */
624 dma = dma_map_page_attrs(rx_ring->dev, page, 0,
625 ixgbevf_rx_pg_size(rx_ring),
626 DMA_FROM_DEVICE, IXGBEVF_RX_DMA_ATTR);
627
628 /* if mapping failed free memory back to system since
629 * there isn't much point in holding memory we can't use
630 */
631 if (dma_mapping_error(rx_ring->dev, dma)) {
632 __free_pages(page, ixgbevf_rx_pg_order(rx_ring));
633
634 rx_ring->rx_stats.alloc_rx_page_failed++;
635 return false;
636 }
637
638 bi->dma = dma;
639 bi->page = page;
640 bi->page_offset = ixgbevf_rx_offset(rx_ring);
641 bi->pagecnt_bias = 1;
642 rx_ring->rx_stats.alloc_rx_page++;
643
644 return true;
645 }
646
647 /**
648 * ixgbevf_alloc_rx_buffers - Replace used receive buffers; packet split
649 * @rx_ring: rx descriptor ring (for a specific queue) to setup buffers on
650 * @cleaned_count: number of buffers to replace
651 **/
ixgbevf_alloc_rx_buffers(struct ixgbevf_ring * rx_ring,u16 cleaned_count)652 static void ixgbevf_alloc_rx_buffers(struct ixgbevf_ring *rx_ring,
653 u16 cleaned_count)
654 {
655 union ixgbe_adv_rx_desc *rx_desc;
656 struct ixgbevf_rx_buffer *bi;
657 unsigned int i = rx_ring->next_to_use;
658
659 /* nothing to do or no valid netdev defined */
660 if (!cleaned_count || !rx_ring->netdev)
661 return;
662
663 rx_desc = IXGBEVF_RX_DESC(rx_ring, i);
664 bi = &rx_ring->rx_buffer_info[i];
665 i -= rx_ring->count;
666
667 do {
668 if (!ixgbevf_alloc_mapped_page(rx_ring, bi))
669 break;
670
671 /* sync the buffer for use by the device */
672 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
673 bi->page_offset,
674 ixgbevf_rx_bufsz(rx_ring),
675 DMA_FROM_DEVICE);
676
677 /* Refresh the desc even if pkt_addr didn't change
678 * because each write-back erases this info.
679 */
680 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
681
682 rx_desc++;
683 bi++;
684 i++;
685 if (unlikely(!i)) {
686 rx_desc = IXGBEVF_RX_DESC(rx_ring, 0);
687 bi = rx_ring->rx_buffer_info;
688 i -= rx_ring->count;
689 }
690
691 /* clear the length for the next_to_use descriptor */
692 rx_desc->wb.upper.length = 0;
693
694 cleaned_count--;
695 } while (cleaned_count);
696
697 i += rx_ring->count;
698
699 if (rx_ring->next_to_use != i) {
700 /* record the next descriptor to use */
701 rx_ring->next_to_use = i;
702
703 /* update next to alloc since we have filled the ring */
704 rx_ring->next_to_alloc = i;
705
706 /* Force memory writes to complete before letting h/w
707 * know there are new descriptors to fetch. (Only
708 * applicable for weak-ordered memory model archs,
709 * such as IA-64).
710 */
711 wmb();
712 ixgbevf_write_tail(rx_ring, i);
713 }
714 }
715
716 /**
717 * ixgbevf_cleanup_headers - Correct corrupted or empty headers
718 * @rx_ring: rx descriptor ring packet is being transacted on
719 * @rx_desc: pointer to the EOP Rx descriptor
720 * @skb: pointer to current skb being fixed
721 *
722 * Check for corrupted packet headers caused by senders on the local L2
723 * embedded NIC switch not setting up their Tx Descriptors right. These
724 * should be very rare.
725 *
726 * Also address the case where we are pulling data in on pages only
727 * and as such no data is present in the skb header.
728 *
729 * In addition if skb is not at least 60 bytes we need to pad it so that
730 * it is large enough to qualify as a valid Ethernet frame.
731 *
732 * Returns true if an error was encountered and skb was freed.
733 **/
ixgbevf_cleanup_headers(struct ixgbevf_ring * rx_ring,union ixgbe_adv_rx_desc * rx_desc,struct sk_buff * skb)734 static bool ixgbevf_cleanup_headers(struct ixgbevf_ring *rx_ring,
735 union ixgbe_adv_rx_desc *rx_desc,
736 struct sk_buff *skb)
737 {
738 /* XDP packets use error pointer so abort at this point */
739 if (IS_ERR(skb))
740 return true;
741
742 /* verify that the packet does not have any known errors */
743 if (unlikely(ixgbevf_test_staterr(rx_desc,
744 IXGBE_RXDADV_ERR_FRAME_ERR_MASK))) {
745 struct net_device *netdev = rx_ring->netdev;
746
747 if (!(netdev->features & NETIF_F_RXALL)) {
748 dev_kfree_skb_any(skb);
749 return true;
750 }
751 }
752
753 /* if eth_skb_pad returns an error the skb was freed */
754 if (eth_skb_pad(skb))
755 return true;
756
757 return false;
758 }
759
760 /**
761 * ixgbevf_reuse_rx_page - page flip buffer and store it back on the ring
762 * @rx_ring: rx descriptor ring to store buffers on
763 * @old_buff: donor buffer to have page reused
764 *
765 * Synchronizes page for reuse by the adapter
766 **/
ixgbevf_reuse_rx_page(struct ixgbevf_ring * rx_ring,struct ixgbevf_rx_buffer * old_buff)767 static void ixgbevf_reuse_rx_page(struct ixgbevf_ring *rx_ring,
768 struct ixgbevf_rx_buffer *old_buff)
769 {
770 struct ixgbevf_rx_buffer *new_buff;
771 u16 nta = rx_ring->next_to_alloc;
772
773 new_buff = &rx_ring->rx_buffer_info[nta];
774
775 /* update, and store next to alloc */
776 nta++;
777 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
778
779 /* transfer page from old buffer to new buffer */
780 new_buff->page = old_buff->page;
781 new_buff->dma = old_buff->dma;
782 new_buff->page_offset = old_buff->page_offset;
783 new_buff->pagecnt_bias = old_buff->pagecnt_bias;
784 }
785
ixgbevf_page_is_reserved(struct page * page)786 static inline bool ixgbevf_page_is_reserved(struct page *page)
787 {
788 return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
789 }
790
ixgbevf_can_reuse_rx_page(struct ixgbevf_rx_buffer * rx_buffer)791 static bool ixgbevf_can_reuse_rx_page(struct ixgbevf_rx_buffer *rx_buffer)
792 {
793 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
794 struct page *page = rx_buffer->page;
795
796 /* avoid re-using remote pages */
797 if (unlikely(ixgbevf_page_is_reserved(page)))
798 return false;
799
800 #if (PAGE_SIZE < 8192)
801 /* if we are only owner of page we can reuse it */
802 if (unlikely((page_ref_count(page) - pagecnt_bias) > 1))
803 return false;
804 #else
805 #define IXGBEVF_LAST_OFFSET \
806 (SKB_WITH_OVERHEAD(PAGE_SIZE) - IXGBEVF_RXBUFFER_2048)
807
808 if (rx_buffer->page_offset > IXGBEVF_LAST_OFFSET)
809 return false;
810
811 #endif
812
813 /* If we have drained the page fragment pool we need to update
814 * the pagecnt_bias and page count so that we fully restock the
815 * number of references the driver holds.
816 */
817 if (unlikely(!pagecnt_bias)) {
818 page_ref_add(page, USHRT_MAX);
819 rx_buffer->pagecnt_bias = USHRT_MAX;
820 }
821
822 return true;
823 }
824
825 /**
826 * ixgbevf_add_rx_frag - Add contents of Rx buffer to sk_buff
827 * @rx_ring: rx descriptor ring to transact packets on
828 * @rx_buffer: buffer containing page to add
829 * @skb: sk_buff to place the data into
830 * @size: size of buffer to be added
831 *
832 * This function will add the data contained in rx_buffer->page to the skb.
833 **/
ixgbevf_add_rx_frag(struct ixgbevf_ring * rx_ring,struct ixgbevf_rx_buffer * rx_buffer,struct sk_buff * skb,unsigned int size)834 static void ixgbevf_add_rx_frag(struct ixgbevf_ring *rx_ring,
835 struct ixgbevf_rx_buffer *rx_buffer,
836 struct sk_buff *skb,
837 unsigned int size)
838 {
839 #if (PAGE_SIZE < 8192)
840 unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2;
841 #else
842 unsigned int truesize = ring_uses_build_skb(rx_ring) ?
843 SKB_DATA_ALIGN(IXGBEVF_SKB_PAD + size) :
844 SKB_DATA_ALIGN(size);
845 #endif
846 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
847 rx_buffer->page_offset, size, truesize);
848 #if (PAGE_SIZE < 8192)
849 rx_buffer->page_offset ^= truesize;
850 #else
851 rx_buffer->page_offset += truesize;
852 #endif
853 }
854
855 static
ixgbevf_construct_skb(struct ixgbevf_ring * rx_ring,struct ixgbevf_rx_buffer * rx_buffer,struct xdp_buff * xdp,union ixgbe_adv_rx_desc * rx_desc)856 struct sk_buff *ixgbevf_construct_skb(struct ixgbevf_ring *rx_ring,
857 struct ixgbevf_rx_buffer *rx_buffer,
858 struct xdp_buff *xdp,
859 union ixgbe_adv_rx_desc *rx_desc)
860 {
861 unsigned int size = xdp->data_end - xdp->data;
862 #if (PAGE_SIZE < 8192)
863 unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2;
864 #else
865 unsigned int truesize = SKB_DATA_ALIGN(xdp->data_end -
866 xdp->data_hard_start);
867 #endif
868 unsigned int headlen;
869 struct sk_buff *skb;
870
871 /* prefetch first cache line of first page */
872 prefetch(xdp->data);
873 #if L1_CACHE_BYTES < 128
874 prefetch(xdp->data + L1_CACHE_BYTES);
875 #endif
876 /* Note, we get here by enabling legacy-rx via:
877 *
878 * ethtool --set-priv-flags <dev> legacy-rx on
879 *
880 * In this mode, we currently get 0 extra XDP headroom as
881 * opposed to having legacy-rx off, where we process XDP
882 * packets going to stack via ixgbevf_build_skb().
883 *
884 * For ixgbevf_construct_skb() mode it means that the
885 * xdp->data_meta will always point to xdp->data, since
886 * the helper cannot expand the head. Should this ever
887 * changed in future for legacy-rx mode on, then lets also
888 * add xdp->data_meta handling here.
889 */
890
891 /* allocate a skb to store the frags */
892 skb = napi_alloc_skb(&rx_ring->q_vector->napi, IXGBEVF_RX_HDR_SIZE);
893 if (unlikely(!skb))
894 return NULL;
895
896 /* Determine available headroom for copy */
897 headlen = size;
898 if (headlen > IXGBEVF_RX_HDR_SIZE)
899 headlen = eth_get_headlen(skb->dev, xdp->data,
900 IXGBEVF_RX_HDR_SIZE);
901
902 /* align pull length to size of long to optimize memcpy performance */
903 memcpy(__skb_put(skb, headlen), xdp->data,
904 ALIGN(headlen, sizeof(long)));
905
906 /* update all of the pointers */
907 size -= headlen;
908 if (size) {
909 skb_add_rx_frag(skb, 0, rx_buffer->page,
910 (xdp->data + headlen) -
911 page_address(rx_buffer->page),
912 size, truesize);
913 #if (PAGE_SIZE < 8192)
914 rx_buffer->page_offset ^= truesize;
915 #else
916 rx_buffer->page_offset += truesize;
917 #endif
918 } else {
919 rx_buffer->pagecnt_bias++;
920 }
921
922 return skb;
923 }
924
ixgbevf_irq_enable_queues(struct ixgbevf_adapter * adapter,u32 qmask)925 static inline void ixgbevf_irq_enable_queues(struct ixgbevf_adapter *adapter,
926 u32 qmask)
927 {
928 struct ixgbe_hw *hw = &adapter->hw;
929
930 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, qmask);
931 }
932
ixgbevf_build_skb(struct ixgbevf_ring * rx_ring,struct ixgbevf_rx_buffer * rx_buffer,struct xdp_buff * xdp,union ixgbe_adv_rx_desc * rx_desc)933 static struct sk_buff *ixgbevf_build_skb(struct ixgbevf_ring *rx_ring,
934 struct ixgbevf_rx_buffer *rx_buffer,
935 struct xdp_buff *xdp,
936 union ixgbe_adv_rx_desc *rx_desc)
937 {
938 unsigned int metasize = xdp->data - xdp->data_meta;
939 #if (PAGE_SIZE < 8192)
940 unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2;
941 #else
942 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
943 SKB_DATA_ALIGN(xdp->data_end -
944 xdp->data_hard_start);
945 #endif
946 struct sk_buff *skb;
947
948 /* Prefetch first cache line of first page. If xdp->data_meta
949 * is unused, this points to xdp->data, otherwise, we likely
950 * have a consumer accessing first few bytes of meta data,
951 * and then actual data.
952 */
953 prefetch(xdp->data_meta);
954 #if L1_CACHE_BYTES < 128
955 prefetch(xdp->data_meta + L1_CACHE_BYTES);
956 #endif
957
958 /* build an skb around the page buffer */
959 skb = build_skb(xdp->data_hard_start, truesize);
960 if (unlikely(!skb))
961 return NULL;
962
963 /* update pointers within the skb to store the data */
964 skb_reserve(skb, xdp->data - xdp->data_hard_start);
965 __skb_put(skb, xdp->data_end - xdp->data);
966 if (metasize)
967 skb_metadata_set(skb, metasize);
968
969 /* update buffer offset */
970 #if (PAGE_SIZE < 8192)
971 rx_buffer->page_offset ^= truesize;
972 #else
973 rx_buffer->page_offset += truesize;
974 #endif
975
976 return skb;
977 }
978
979 #define IXGBEVF_XDP_PASS 0
980 #define IXGBEVF_XDP_CONSUMED 1
981 #define IXGBEVF_XDP_TX 2
982
ixgbevf_xmit_xdp_ring(struct ixgbevf_ring * ring,struct xdp_buff * xdp)983 static int ixgbevf_xmit_xdp_ring(struct ixgbevf_ring *ring,
984 struct xdp_buff *xdp)
985 {
986 struct ixgbevf_tx_buffer *tx_buffer;
987 union ixgbe_adv_tx_desc *tx_desc;
988 u32 len, cmd_type;
989 dma_addr_t dma;
990 u16 i;
991
992 len = xdp->data_end - xdp->data;
993
994 if (unlikely(!ixgbevf_desc_unused(ring)))
995 return IXGBEVF_XDP_CONSUMED;
996
997 dma = dma_map_single(ring->dev, xdp->data, len, DMA_TO_DEVICE);
998 if (dma_mapping_error(ring->dev, dma))
999 return IXGBEVF_XDP_CONSUMED;
1000
1001 /* record the location of the first descriptor for this packet */
1002 i = ring->next_to_use;
1003 tx_buffer = &ring->tx_buffer_info[i];
1004
1005 dma_unmap_len_set(tx_buffer, len, len);
1006 dma_unmap_addr_set(tx_buffer, dma, dma);
1007 tx_buffer->data = xdp->data;
1008 tx_buffer->bytecount = len;
1009 tx_buffer->gso_segs = 1;
1010 tx_buffer->protocol = 0;
1011
1012 /* Populate minimal context descriptor that will provide for the
1013 * fact that we are expected to process Ethernet frames.
1014 */
1015 if (!test_bit(__IXGBEVF_TX_XDP_RING_PRIMED, &ring->state)) {
1016 struct ixgbe_adv_tx_context_desc *context_desc;
1017
1018 set_bit(__IXGBEVF_TX_XDP_RING_PRIMED, &ring->state);
1019
1020 context_desc = IXGBEVF_TX_CTXTDESC(ring, 0);
1021 context_desc->vlan_macip_lens =
1022 cpu_to_le32(ETH_HLEN << IXGBE_ADVTXD_MACLEN_SHIFT);
1023 context_desc->fceof_saidx = 0;
1024 context_desc->type_tucmd_mlhl =
1025 cpu_to_le32(IXGBE_TXD_CMD_DEXT |
1026 IXGBE_ADVTXD_DTYP_CTXT);
1027 context_desc->mss_l4len_idx = 0;
1028
1029 i = 1;
1030 }
1031
1032 /* put descriptor type bits */
1033 cmd_type = IXGBE_ADVTXD_DTYP_DATA |
1034 IXGBE_ADVTXD_DCMD_DEXT |
1035 IXGBE_ADVTXD_DCMD_IFCS;
1036 cmd_type |= len | IXGBE_TXD_CMD;
1037
1038 tx_desc = IXGBEVF_TX_DESC(ring, i);
1039 tx_desc->read.buffer_addr = cpu_to_le64(dma);
1040
1041 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1042 tx_desc->read.olinfo_status =
1043 cpu_to_le32((len << IXGBE_ADVTXD_PAYLEN_SHIFT) |
1044 IXGBE_ADVTXD_CC);
1045
1046 /* Avoid any potential race with cleanup */
1047 smp_wmb();
1048
1049 /* set next_to_watch value indicating a packet is present */
1050 i++;
1051 if (i == ring->count)
1052 i = 0;
1053
1054 tx_buffer->next_to_watch = tx_desc;
1055 ring->next_to_use = i;
1056
1057 return IXGBEVF_XDP_TX;
1058 }
1059
ixgbevf_run_xdp(struct ixgbevf_adapter * adapter,struct ixgbevf_ring * rx_ring,struct xdp_buff * xdp)1060 static struct sk_buff *ixgbevf_run_xdp(struct ixgbevf_adapter *adapter,
1061 struct ixgbevf_ring *rx_ring,
1062 struct xdp_buff *xdp)
1063 {
1064 int result = IXGBEVF_XDP_PASS;
1065 struct ixgbevf_ring *xdp_ring;
1066 struct bpf_prog *xdp_prog;
1067 u32 act;
1068
1069 rcu_read_lock();
1070 xdp_prog = READ_ONCE(rx_ring->xdp_prog);
1071
1072 if (!xdp_prog)
1073 goto xdp_out;
1074
1075 act = bpf_prog_run_xdp(xdp_prog, xdp);
1076 switch (act) {
1077 case XDP_PASS:
1078 break;
1079 case XDP_TX:
1080 xdp_ring = adapter->xdp_ring[rx_ring->queue_index];
1081 result = ixgbevf_xmit_xdp_ring(xdp_ring, xdp);
1082 break;
1083 default:
1084 bpf_warn_invalid_xdp_action(act);
1085 /* fallthrough */
1086 case XDP_ABORTED:
1087 trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
1088 /* fallthrough -- handle aborts by dropping packet */
1089 case XDP_DROP:
1090 result = IXGBEVF_XDP_CONSUMED;
1091 break;
1092 }
1093 xdp_out:
1094 rcu_read_unlock();
1095 return ERR_PTR(-result);
1096 }
1097
ixgbevf_rx_buffer_flip(struct ixgbevf_ring * rx_ring,struct ixgbevf_rx_buffer * rx_buffer,unsigned int size)1098 static void ixgbevf_rx_buffer_flip(struct ixgbevf_ring *rx_ring,
1099 struct ixgbevf_rx_buffer *rx_buffer,
1100 unsigned int size)
1101 {
1102 #if (PAGE_SIZE < 8192)
1103 unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2;
1104
1105 rx_buffer->page_offset ^= truesize;
1106 #else
1107 unsigned int truesize = ring_uses_build_skb(rx_ring) ?
1108 SKB_DATA_ALIGN(IXGBEVF_SKB_PAD + size) :
1109 SKB_DATA_ALIGN(size);
1110
1111 rx_buffer->page_offset += truesize;
1112 #endif
1113 }
1114
ixgbevf_clean_rx_irq(struct ixgbevf_q_vector * q_vector,struct ixgbevf_ring * rx_ring,int budget)1115 static int ixgbevf_clean_rx_irq(struct ixgbevf_q_vector *q_vector,
1116 struct ixgbevf_ring *rx_ring,
1117 int budget)
1118 {
1119 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1120 struct ixgbevf_adapter *adapter = q_vector->adapter;
1121 u16 cleaned_count = ixgbevf_desc_unused(rx_ring);
1122 struct sk_buff *skb = rx_ring->skb;
1123 bool xdp_xmit = false;
1124 struct xdp_buff xdp;
1125
1126 xdp.rxq = &rx_ring->xdp_rxq;
1127
1128 while (likely(total_rx_packets < budget)) {
1129 struct ixgbevf_rx_buffer *rx_buffer;
1130 union ixgbe_adv_rx_desc *rx_desc;
1131 unsigned int size;
1132
1133 /* return some buffers to hardware, one at a time is too slow */
1134 if (cleaned_count >= IXGBEVF_RX_BUFFER_WRITE) {
1135 ixgbevf_alloc_rx_buffers(rx_ring, cleaned_count);
1136 cleaned_count = 0;
1137 }
1138
1139 rx_desc = IXGBEVF_RX_DESC(rx_ring, rx_ring->next_to_clean);
1140 size = le16_to_cpu(rx_desc->wb.upper.length);
1141 if (!size)
1142 break;
1143
1144 /* This memory barrier is needed to keep us from reading
1145 * any other fields out of the rx_desc until we know the
1146 * RXD_STAT_DD bit is set
1147 */
1148 rmb();
1149
1150 rx_buffer = ixgbevf_get_rx_buffer(rx_ring, size);
1151
1152 /* retrieve a buffer from the ring */
1153 if (!skb) {
1154 xdp.data = page_address(rx_buffer->page) +
1155 rx_buffer->page_offset;
1156 xdp.data_meta = xdp.data;
1157 xdp.data_hard_start = xdp.data -
1158 ixgbevf_rx_offset(rx_ring);
1159 xdp.data_end = xdp.data + size;
1160
1161 skb = ixgbevf_run_xdp(adapter, rx_ring, &xdp);
1162 }
1163
1164 if (IS_ERR(skb)) {
1165 if (PTR_ERR(skb) == -IXGBEVF_XDP_TX) {
1166 xdp_xmit = true;
1167 ixgbevf_rx_buffer_flip(rx_ring, rx_buffer,
1168 size);
1169 } else {
1170 rx_buffer->pagecnt_bias++;
1171 }
1172 total_rx_packets++;
1173 total_rx_bytes += size;
1174 } else if (skb) {
1175 ixgbevf_add_rx_frag(rx_ring, rx_buffer, skb, size);
1176 } else if (ring_uses_build_skb(rx_ring)) {
1177 skb = ixgbevf_build_skb(rx_ring, rx_buffer,
1178 &xdp, rx_desc);
1179 } else {
1180 skb = ixgbevf_construct_skb(rx_ring, rx_buffer,
1181 &xdp, rx_desc);
1182 }
1183
1184 /* exit if we failed to retrieve a buffer */
1185 if (!skb) {
1186 rx_ring->rx_stats.alloc_rx_buff_failed++;
1187 rx_buffer->pagecnt_bias++;
1188 break;
1189 }
1190
1191 ixgbevf_put_rx_buffer(rx_ring, rx_buffer, skb);
1192 cleaned_count++;
1193
1194 /* fetch next buffer in frame if non-eop */
1195 if (ixgbevf_is_non_eop(rx_ring, rx_desc))
1196 continue;
1197
1198 /* verify the packet layout is correct */
1199 if (ixgbevf_cleanup_headers(rx_ring, rx_desc, skb)) {
1200 skb = NULL;
1201 continue;
1202 }
1203
1204 /* probably a little skewed due to removing CRC */
1205 total_rx_bytes += skb->len;
1206
1207 /* Workaround hardware that can't do proper VEPA multicast
1208 * source pruning.
1209 */
1210 if ((skb->pkt_type == PACKET_BROADCAST ||
1211 skb->pkt_type == PACKET_MULTICAST) &&
1212 ether_addr_equal(rx_ring->netdev->dev_addr,
1213 eth_hdr(skb)->h_source)) {
1214 dev_kfree_skb_irq(skb);
1215 continue;
1216 }
1217
1218 /* populate checksum, VLAN, and protocol */
1219 ixgbevf_process_skb_fields(rx_ring, rx_desc, skb);
1220
1221 ixgbevf_rx_skb(q_vector, skb);
1222
1223 /* reset skb pointer */
1224 skb = NULL;
1225
1226 /* update budget accounting */
1227 total_rx_packets++;
1228 }
1229
1230 /* place incomplete frames back on ring for completion */
1231 rx_ring->skb = skb;
1232
1233 if (xdp_xmit) {
1234 struct ixgbevf_ring *xdp_ring =
1235 adapter->xdp_ring[rx_ring->queue_index];
1236
1237 /* Force memory writes to complete before letting h/w
1238 * know there are new descriptors to fetch.
1239 */
1240 wmb();
1241 ixgbevf_write_tail(xdp_ring, xdp_ring->next_to_use);
1242 }
1243
1244 u64_stats_update_begin(&rx_ring->syncp);
1245 rx_ring->stats.packets += total_rx_packets;
1246 rx_ring->stats.bytes += total_rx_bytes;
1247 u64_stats_update_end(&rx_ring->syncp);
1248 q_vector->rx.total_packets += total_rx_packets;
1249 q_vector->rx.total_bytes += total_rx_bytes;
1250
1251 return total_rx_packets;
1252 }
1253
1254 /**
1255 * ixgbevf_poll - NAPI polling calback
1256 * @napi: napi struct with our devices info in it
1257 * @budget: amount of work driver is allowed to do this pass, in packets
1258 *
1259 * This function will clean more than one or more rings associated with a
1260 * q_vector.
1261 **/
ixgbevf_poll(struct napi_struct * napi,int budget)1262 static int ixgbevf_poll(struct napi_struct *napi, int budget)
1263 {
1264 struct ixgbevf_q_vector *q_vector =
1265 container_of(napi, struct ixgbevf_q_vector, napi);
1266 struct ixgbevf_adapter *adapter = q_vector->adapter;
1267 struct ixgbevf_ring *ring;
1268 int per_ring_budget, work_done = 0;
1269 bool clean_complete = true;
1270
1271 ixgbevf_for_each_ring(ring, q_vector->tx) {
1272 if (!ixgbevf_clean_tx_irq(q_vector, ring, budget))
1273 clean_complete = false;
1274 }
1275
1276 if (budget <= 0)
1277 return budget;
1278
1279 /* attempt to distribute budget to each queue fairly, but don't allow
1280 * the budget to go below 1 because we'll exit polling
1281 */
1282 if (q_vector->rx.count > 1)
1283 per_ring_budget = max(budget/q_vector->rx.count, 1);
1284 else
1285 per_ring_budget = budget;
1286
1287 ixgbevf_for_each_ring(ring, q_vector->rx) {
1288 int cleaned = ixgbevf_clean_rx_irq(q_vector, ring,
1289 per_ring_budget);
1290 work_done += cleaned;
1291 if (cleaned >= per_ring_budget)
1292 clean_complete = false;
1293 }
1294
1295 /* If all work not completed, return budget and keep polling */
1296 if (!clean_complete)
1297 return budget;
1298
1299 /* Exit the polling mode, but don't re-enable interrupts if stack might
1300 * poll us due to busy-polling
1301 */
1302 if (likely(napi_complete_done(napi, work_done))) {
1303 if (adapter->rx_itr_setting == 1)
1304 ixgbevf_set_itr(q_vector);
1305 if (!test_bit(__IXGBEVF_DOWN, &adapter->state) &&
1306 !test_bit(__IXGBEVF_REMOVING, &adapter->state))
1307 ixgbevf_irq_enable_queues(adapter,
1308 BIT(q_vector->v_idx));
1309 }
1310
1311 return min(work_done, budget - 1);
1312 }
1313
1314 /**
1315 * ixgbevf_write_eitr - write VTEITR register in hardware specific way
1316 * @q_vector: structure containing interrupt and ring information
1317 **/
ixgbevf_write_eitr(struct ixgbevf_q_vector * q_vector)1318 void ixgbevf_write_eitr(struct ixgbevf_q_vector *q_vector)
1319 {
1320 struct ixgbevf_adapter *adapter = q_vector->adapter;
1321 struct ixgbe_hw *hw = &adapter->hw;
1322 int v_idx = q_vector->v_idx;
1323 u32 itr_reg = q_vector->itr & IXGBE_MAX_EITR;
1324
1325 /* set the WDIS bit to not clear the timer bits and cause an
1326 * immediate assertion of the interrupt
1327 */
1328 itr_reg |= IXGBE_EITR_CNT_WDIS;
1329
1330 IXGBE_WRITE_REG(hw, IXGBE_VTEITR(v_idx), itr_reg);
1331 }
1332
1333 /**
1334 * ixgbevf_configure_msix - Configure MSI-X hardware
1335 * @adapter: board private structure
1336 *
1337 * ixgbevf_configure_msix sets up the hardware to properly generate MSI-X
1338 * interrupts.
1339 **/
ixgbevf_configure_msix(struct ixgbevf_adapter * adapter)1340 static void ixgbevf_configure_msix(struct ixgbevf_adapter *adapter)
1341 {
1342 struct ixgbevf_q_vector *q_vector;
1343 int q_vectors, v_idx;
1344
1345 q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1346 adapter->eims_enable_mask = 0;
1347
1348 /* Populate the IVAR table and set the ITR values to the
1349 * corresponding register.
1350 */
1351 for (v_idx = 0; v_idx < q_vectors; v_idx++) {
1352 struct ixgbevf_ring *ring;
1353
1354 q_vector = adapter->q_vector[v_idx];
1355
1356 ixgbevf_for_each_ring(ring, q_vector->rx)
1357 ixgbevf_set_ivar(adapter, 0, ring->reg_idx, v_idx);
1358
1359 ixgbevf_for_each_ring(ring, q_vector->tx)
1360 ixgbevf_set_ivar(adapter, 1, ring->reg_idx, v_idx);
1361
1362 if (q_vector->tx.ring && !q_vector->rx.ring) {
1363 /* Tx only vector */
1364 if (adapter->tx_itr_setting == 1)
1365 q_vector->itr = IXGBE_12K_ITR;
1366 else
1367 q_vector->itr = adapter->tx_itr_setting;
1368 } else {
1369 /* Rx or Rx/Tx vector */
1370 if (adapter->rx_itr_setting == 1)
1371 q_vector->itr = IXGBE_20K_ITR;
1372 else
1373 q_vector->itr = adapter->rx_itr_setting;
1374 }
1375
1376 /* add q_vector eims value to global eims_enable_mask */
1377 adapter->eims_enable_mask |= BIT(v_idx);
1378
1379 ixgbevf_write_eitr(q_vector);
1380 }
1381
1382 ixgbevf_set_ivar(adapter, -1, 1, v_idx);
1383 /* setup eims_other and add value to global eims_enable_mask */
1384 adapter->eims_other = BIT(v_idx);
1385 adapter->eims_enable_mask |= adapter->eims_other;
1386 }
1387
1388 enum latency_range {
1389 lowest_latency = 0,
1390 low_latency = 1,
1391 bulk_latency = 2,
1392 latency_invalid = 255
1393 };
1394
1395 /**
1396 * ixgbevf_update_itr - update the dynamic ITR value based on statistics
1397 * @q_vector: structure containing interrupt and ring information
1398 * @ring_container: structure containing ring performance data
1399 *
1400 * Stores a new ITR value based on packets and byte
1401 * counts during the last interrupt. The advantage of per interrupt
1402 * computation is faster updates and more accurate ITR for the current
1403 * traffic pattern. Constants in this function were computed
1404 * based on theoretical maximum wire speed and thresholds were set based
1405 * on testing data as well as attempting to minimize response time
1406 * while increasing bulk throughput.
1407 **/
ixgbevf_update_itr(struct ixgbevf_q_vector * q_vector,struct ixgbevf_ring_container * ring_container)1408 static void ixgbevf_update_itr(struct ixgbevf_q_vector *q_vector,
1409 struct ixgbevf_ring_container *ring_container)
1410 {
1411 int bytes = ring_container->total_bytes;
1412 int packets = ring_container->total_packets;
1413 u32 timepassed_us;
1414 u64 bytes_perint;
1415 u8 itr_setting = ring_container->itr;
1416
1417 if (packets == 0)
1418 return;
1419
1420 /* simple throttle rate management
1421 * 0-20MB/s lowest (100000 ints/s)
1422 * 20-100MB/s low (20000 ints/s)
1423 * 100-1249MB/s bulk (12000 ints/s)
1424 */
1425 /* what was last interrupt timeslice? */
1426 timepassed_us = q_vector->itr >> 2;
1427 if (timepassed_us == 0)
1428 return;
1429
1430 bytes_perint = bytes / timepassed_us; /* bytes/usec */
1431
1432 switch (itr_setting) {
1433 case lowest_latency:
1434 if (bytes_perint > 10)
1435 itr_setting = low_latency;
1436 break;
1437 case low_latency:
1438 if (bytes_perint > 20)
1439 itr_setting = bulk_latency;
1440 else if (bytes_perint <= 10)
1441 itr_setting = lowest_latency;
1442 break;
1443 case bulk_latency:
1444 if (bytes_perint <= 20)
1445 itr_setting = low_latency;
1446 break;
1447 }
1448
1449 /* clear work counters since we have the values we need */
1450 ring_container->total_bytes = 0;
1451 ring_container->total_packets = 0;
1452
1453 /* write updated itr to ring container */
1454 ring_container->itr = itr_setting;
1455 }
1456
ixgbevf_set_itr(struct ixgbevf_q_vector * q_vector)1457 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector)
1458 {
1459 u32 new_itr = q_vector->itr;
1460 u8 current_itr;
1461
1462 ixgbevf_update_itr(q_vector, &q_vector->tx);
1463 ixgbevf_update_itr(q_vector, &q_vector->rx);
1464
1465 current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
1466
1467 switch (current_itr) {
1468 /* counts and packets in update_itr are dependent on these numbers */
1469 case lowest_latency:
1470 new_itr = IXGBE_100K_ITR;
1471 break;
1472 case low_latency:
1473 new_itr = IXGBE_20K_ITR;
1474 break;
1475 case bulk_latency:
1476 new_itr = IXGBE_12K_ITR;
1477 break;
1478 default:
1479 break;
1480 }
1481
1482 if (new_itr != q_vector->itr) {
1483 /* do an exponential smoothing */
1484 new_itr = (10 * new_itr * q_vector->itr) /
1485 ((9 * new_itr) + q_vector->itr);
1486
1487 /* save the algorithm value here */
1488 q_vector->itr = new_itr;
1489
1490 ixgbevf_write_eitr(q_vector);
1491 }
1492 }
1493
ixgbevf_msix_other(int irq,void * data)1494 static irqreturn_t ixgbevf_msix_other(int irq, void *data)
1495 {
1496 struct ixgbevf_adapter *adapter = data;
1497 struct ixgbe_hw *hw = &adapter->hw;
1498
1499 hw->mac.get_link_status = 1;
1500
1501 ixgbevf_service_event_schedule(adapter);
1502
1503 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_other);
1504
1505 return IRQ_HANDLED;
1506 }
1507
1508 /**
1509 * ixgbevf_msix_clean_rings - single unshared vector rx clean (all queues)
1510 * @irq: unused
1511 * @data: pointer to our q_vector struct for this interrupt vector
1512 **/
ixgbevf_msix_clean_rings(int irq,void * data)1513 static irqreturn_t ixgbevf_msix_clean_rings(int irq, void *data)
1514 {
1515 struct ixgbevf_q_vector *q_vector = data;
1516
1517 /* EIAM disabled interrupts (on this vector) for us */
1518 if (q_vector->rx.ring || q_vector->tx.ring)
1519 napi_schedule_irqoff(&q_vector->napi);
1520
1521 return IRQ_HANDLED;
1522 }
1523
1524 /**
1525 * ixgbevf_request_msix_irqs - Initialize MSI-X interrupts
1526 * @adapter: board private structure
1527 *
1528 * ixgbevf_request_msix_irqs allocates MSI-X vectors and requests
1529 * interrupts from the kernel.
1530 **/
ixgbevf_request_msix_irqs(struct ixgbevf_adapter * adapter)1531 static int ixgbevf_request_msix_irqs(struct ixgbevf_adapter *adapter)
1532 {
1533 struct net_device *netdev = adapter->netdev;
1534 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1535 unsigned int ri = 0, ti = 0;
1536 int vector, err;
1537
1538 for (vector = 0; vector < q_vectors; vector++) {
1539 struct ixgbevf_q_vector *q_vector = adapter->q_vector[vector];
1540 struct msix_entry *entry = &adapter->msix_entries[vector];
1541
1542 if (q_vector->tx.ring && q_vector->rx.ring) {
1543 snprintf(q_vector->name, sizeof(q_vector->name),
1544 "%s-TxRx-%u", netdev->name, ri++);
1545 ti++;
1546 } else if (q_vector->rx.ring) {
1547 snprintf(q_vector->name, sizeof(q_vector->name),
1548 "%s-rx-%u", netdev->name, ri++);
1549 } else if (q_vector->tx.ring) {
1550 snprintf(q_vector->name, sizeof(q_vector->name),
1551 "%s-tx-%u", netdev->name, ti++);
1552 } else {
1553 /* skip this unused q_vector */
1554 continue;
1555 }
1556 err = request_irq(entry->vector, &ixgbevf_msix_clean_rings, 0,
1557 q_vector->name, q_vector);
1558 if (err) {
1559 hw_dbg(&adapter->hw,
1560 "request_irq failed for MSIX interrupt Error: %d\n",
1561 err);
1562 goto free_queue_irqs;
1563 }
1564 }
1565
1566 err = request_irq(adapter->msix_entries[vector].vector,
1567 &ixgbevf_msix_other, 0, netdev->name, adapter);
1568 if (err) {
1569 hw_dbg(&adapter->hw, "request_irq for msix_other failed: %d\n",
1570 err);
1571 goto free_queue_irqs;
1572 }
1573
1574 return 0;
1575
1576 free_queue_irqs:
1577 while (vector) {
1578 vector--;
1579 free_irq(adapter->msix_entries[vector].vector,
1580 adapter->q_vector[vector]);
1581 }
1582 /* This failure is non-recoverable - it indicates the system is
1583 * out of MSIX vector resources and the VF driver cannot run
1584 * without them. Set the number of msix vectors to zero
1585 * indicating that not enough can be allocated. The error
1586 * will be returned to the user indicating device open failed.
1587 * Any further attempts to force the driver to open will also
1588 * fail. The only way to recover is to unload the driver and
1589 * reload it again. If the system has recovered some MSIX
1590 * vectors then it may succeed.
1591 */
1592 adapter->num_msix_vectors = 0;
1593 return err;
1594 }
1595
1596 /**
1597 * ixgbevf_request_irq - initialize interrupts
1598 * @adapter: board private structure
1599 *
1600 * Attempts to configure interrupts using the best available
1601 * capabilities of the hardware and kernel.
1602 **/
ixgbevf_request_irq(struct ixgbevf_adapter * adapter)1603 static int ixgbevf_request_irq(struct ixgbevf_adapter *adapter)
1604 {
1605 int err = ixgbevf_request_msix_irqs(adapter);
1606
1607 if (err)
1608 hw_dbg(&adapter->hw, "request_irq failed, Error %d\n", err);
1609
1610 return err;
1611 }
1612
ixgbevf_free_irq(struct ixgbevf_adapter * adapter)1613 static void ixgbevf_free_irq(struct ixgbevf_adapter *adapter)
1614 {
1615 int i, q_vectors;
1616
1617 if (!adapter->msix_entries)
1618 return;
1619
1620 q_vectors = adapter->num_msix_vectors;
1621 i = q_vectors - 1;
1622
1623 free_irq(adapter->msix_entries[i].vector, adapter);
1624 i--;
1625
1626 for (; i >= 0; i--) {
1627 /* free only the irqs that were actually requested */
1628 if (!adapter->q_vector[i]->rx.ring &&
1629 !adapter->q_vector[i]->tx.ring)
1630 continue;
1631
1632 free_irq(adapter->msix_entries[i].vector,
1633 adapter->q_vector[i]);
1634 }
1635 }
1636
1637 /**
1638 * ixgbevf_irq_disable - Mask off interrupt generation on the NIC
1639 * @adapter: board private structure
1640 **/
ixgbevf_irq_disable(struct ixgbevf_adapter * adapter)1641 static inline void ixgbevf_irq_disable(struct ixgbevf_adapter *adapter)
1642 {
1643 struct ixgbe_hw *hw = &adapter->hw;
1644 int i;
1645
1646 IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, 0);
1647 IXGBE_WRITE_REG(hw, IXGBE_VTEIMC, ~0);
1648 IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, 0);
1649
1650 IXGBE_WRITE_FLUSH(hw);
1651
1652 for (i = 0; i < adapter->num_msix_vectors; i++)
1653 synchronize_irq(adapter->msix_entries[i].vector);
1654 }
1655
1656 /**
1657 * ixgbevf_irq_enable - Enable default interrupt generation settings
1658 * @adapter: board private structure
1659 **/
ixgbevf_irq_enable(struct ixgbevf_adapter * adapter)1660 static inline void ixgbevf_irq_enable(struct ixgbevf_adapter *adapter)
1661 {
1662 struct ixgbe_hw *hw = &adapter->hw;
1663
1664 IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, adapter->eims_enable_mask);
1665 IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, adapter->eims_enable_mask);
1666 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_enable_mask);
1667 }
1668
1669 /**
1670 * ixgbevf_configure_tx_ring - Configure 82599 VF Tx ring after Reset
1671 * @adapter: board private structure
1672 * @ring: structure containing ring specific data
1673 *
1674 * Configure the Tx descriptor ring after a reset.
1675 **/
ixgbevf_configure_tx_ring(struct ixgbevf_adapter * adapter,struct ixgbevf_ring * ring)1676 static void ixgbevf_configure_tx_ring(struct ixgbevf_adapter *adapter,
1677 struct ixgbevf_ring *ring)
1678 {
1679 struct ixgbe_hw *hw = &adapter->hw;
1680 u64 tdba = ring->dma;
1681 int wait_loop = 10;
1682 u32 txdctl = IXGBE_TXDCTL_ENABLE;
1683 u8 reg_idx = ring->reg_idx;
1684
1685 /* disable queue to avoid issues while updating state */
1686 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), IXGBE_TXDCTL_SWFLSH);
1687 IXGBE_WRITE_FLUSH(hw);
1688
1689 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAL(reg_idx), tdba & DMA_BIT_MASK(32));
1690 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAH(reg_idx), tdba >> 32);
1691 IXGBE_WRITE_REG(hw, IXGBE_VFTDLEN(reg_idx),
1692 ring->count * sizeof(union ixgbe_adv_tx_desc));
1693
1694 /* disable head writeback */
1695 IXGBE_WRITE_REG(hw, IXGBE_VFTDWBAH(reg_idx), 0);
1696 IXGBE_WRITE_REG(hw, IXGBE_VFTDWBAL(reg_idx), 0);
1697
1698 /* enable relaxed ordering */
1699 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_TXCTRL(reg_idx),
1700 (IXGBE_DCA_TXCTRL_DESC_RRO_EN |
1701 IXGBE_DCA_TXCTRL_DATA_RRO_EN));
1702
1703 /* reset head and tail pointers */
1704 IXGBE_WRITE_REG(hw, IXGBE_VFTDH(reg_idx), 0);
1705 IXGBE_WRITE_REG(hw, IXGBE_VFTDT(reg_idx), 0);
1706 ring->tail = adapter->io_addr + IXGBE_VFTDT(reg_idx);
1707
1708 /* reset ntu and ntc to place SW in sync with hardwdare */
1709 ring->next_to_clean = 0;
1710 ring->next_to_use = 0;
1711
1712 /* In order to avoid issues WTHRESH + PTHRESH should always be equal
1713 * to or less than the number of on chip descriptors, which is
1714 * currently 40.
1715 */
1716 txdctl |= (8 << 16); /* WTHRESH = 8 */
1717
1718 /* Setting PTHRESH to 32 both improves performance */
1719 txdctl |= (1u << 8) | /* HTHRESH = 1 */
1720 32; /* PTHRESH = 32 */
1721
1722 /* reinitialize tx_buffer_info */
1723 memset(ring->tx_buffer_info, 0,
1724 sizeof(struct ixgbevf_tx_buffer) * ring->count);
1725
1726 clear_bit(__IXGBEVF_HANG_CHECK_ARMED, &ring->state);
1727 clear_bit(__IXGBEVF_TX_XDP_RING_PRIMED, &ring->state);
1728
1729 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), txdctl);
1730
1731 /* poll to verify queue is enabled */
1732 do {
1733 usleep_range(1000, 2000);
1734 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(reg_idx));
1735 } while (--wait_loop && !(txdctl & IXGBE_TXDCTL_ENABLE));
1736 if (!wait_loop)
1737 hw_dbg(hw, "Could not enable Tx Queue %d\n", reg_idx);
1738 }
1739
1740 /**
1741 * ixgbevf_configure_tx - Configure 82599 VF Transmit Unit after Reset
1742 * @adapter: board private structure
1743 *
1744 * Configure the Tx unit of the MAC after a reset.
1745 **/
ixgbevf_configure_tx(struct ixgbevf_adapter * adapter)1746 static void ixgbevf_configure_tx(struct ixgbevf_adapter *adapter)
1747 {
1748 u32 i;
1749
1750 /* Setup the HW Tx Head and Tail descriptor pointers */
1751 for (i = 0; i < adapter->num_tx_queues; i++)
1752 ixgbevf_configure_tx_ring(adapter, adapter->tx_ring[i]);
1753 for (i = 0; i < adapter->num_xdp_queues; i++)
1754 ixgbevf_configure_tx_ring(adapter, adapter->xdp_ring[i]);
1755 }
1756
1757 #define IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT 2
1758
ixgbevf_configure_srrctl(struct ixgbevf_adapter * adapter,struct ixgbevf_ring * ring,int index)1759 static void ixgbevf_configure_srrctl(struct ixgbevf_adapter *adapter,
1760 struct ixgbevf_ring *ring, int index)
1761 {
1762 struct ixgbe_hw *hw = &adapter->hw;
1763 u32 srrctl;
1764
1765 srrctl = IXGBE_SRRCTL_DROP_EN;
1766
1767 srrctl |= IXGBEVF_RX_HDR_SIZE << IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT;
1768 if (ring_uses_large_buffer(ring))
1769 srrctl |= IXGBEVF_RXBUFFER_3072 >> IXGBE_SRRCTL_BSIZEPKT_SHIFT;
1770 else
1771 srrctl |= IXGBEVF_RXBUFFER_2048 >> IXGBE_SRRCTL_BSIZEPKT_SHIFT;
1772 srrctl |= IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF;
1773
1774 IXGBE_WRITE_REG(hw, IXGBE_VFSRRCTL(index), srrctl);
1775 }
1776
ixgbevf_setup_psrtype(struct ixgbevf_adapter * adapter)1777 static void ixgbevf_setup_psrtype(struct ixgbevf_adapter *adapter)
1778 {
1779 struct ixgbe_hw *hw = &adapter->hw;
1780
1781 /* PSRTYPE must be initialized in 82599 */
1782 u32 psrtype = IXGBE_PSRTYPE_TCPHDR | IXGBE_PSRTYPE_UDPHDR |
1783 IXGBE_PSRTYPE_IPV4HDR | IXGBE_PSRTYPE_IPV6HDR |
1784 IXGBE_PSRTYPE_L2HDR;
1785
1786 if (adapter->num_rx_queues > 1)
1787 psrtype |= BIT(29);
1788
1789 IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, psrtype);
1790 }
1791
1792 #define IXGBEVF_MAX_RX_DESC_POLL 10
ixgbevf_disable_rx_queue(struct ixgbevf_adapter * adapter,struct ixgbevf_ring * ring)1793 static void ixgbevf_disable_rx_queue(struct ixgbevf_adapter *adapter,
1794 struct ixgbevf_ring *ring)
1795 {
1796 struct ixgbe_hw *hw = &adapter->hw;
1797 int wait_loop = IXGBEVF_MAX_RX_DESC_POLL;
1798 u32 rxdctl;
1799 u8 reg_idx = ring->reg_idx;
1800
1801 if (IXGBE_REMOVED(hw->hw_addr))
1802 return;
1803 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
1804 rxdctl &= ~IXGBE_RXDCTL_ENABLE;
1805
1806 /* write value back with RXDCTL.ENABLE bit cleared */
1807 IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl);
1808
1809 /* the hardware may take up to 100us to really disable the Rx queue */
1810 do {
1811 udelay(10);
1812 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
1813 } while (--wait_loop && (rxdctl & IXGBE_RXDCTL_ENABLE));
1814
1815 if (!wait_loop)
1816 pr_err("RXDCTL.ENABLE queue %d not cleared while polling\n",
1817 reg_idx);
1818 }
1819
ixgbevf_rx_desc_queue_enable(struct ixgbevf_adapter * adapter,struct ixgbevf_ring * ring)1820 static void ixgbevf_rx_desc_queue_enable(struct ixgbevf_adapter *adapter,
1821 struct ixgbevf_ring *ring)
1822 {
1823 struct ixgbe_hw *hw = &adapter->hw;
1824 int wait_loop = IXGBEVF_MAX_RX_DESC_POLL;
1825 u32 rxdctl;
1826 u8 reg_idx = ring->reg_idx;
1827
1828 if (IXGBE_REMOVED(hw->hw_addr))
1829 return;
1830 do {
1831 usleep_range(1000, 2000);
1832 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
1833 } while (--wait_loop && !(rxdctl & IXGBE_RXDCTL_ENABLE));
1834
1835 if (!wait_loop)
1836 pr_err("RXDCTL.ENABLE queue %d not set while polling\n",
1837 reg_idx);
1838 }
1839
1840 /**
1841 * ixgbevf_init_rss_key - Initialize adapter RSS key
1842 * @adapter: device handle
1843 *
1844 * Allocates and initializes the RSS key if it is not allocated.
1845 **/
ixgbevf_init_rss_key(struct ixgbevf_adapter * adapter)1846 static inline int ixgbevf_init_rss_key(struct ixgbevf_adapter *adapter)
1847 {
1848 u32 *rss_key;
1849
1850 if (!adapter->rss_key) {
1851 rss_key = kzalloc(IXGBEVF_RSS_HASH_KEY_SIZE, GFP_KERNEL);
1852 if (unlikely(!rss_key))
1853 return -ENOMEM;
1854
1855 netdev_rss_key_fill(rss_key, IXGBEVF_RSS_HASH_KEY_SIZE);
1856 adapter->rss_key = rss_key;
1857 }
1858
1859 return 0;
1860 }
1861
ixgbevf_setup_vfmrqc(struct ixgbevf_adapter * adapter)1862 static void ixgbevf_setup_vfmrqc(struct ixgbevf_adapter *adapter)
1863 {
1864 struct ixgbe_hw *hw = &adapter->hw;
1865 u32 vfmrqc = 0, vfreta = 0;
1866 u16 rss_i = adapter->num_rx_queues;
1867 u8 i, j;
1868
1869 /* Fill out hash function seeds */
1870 for (i = 0; i < IXGBEVF_VFRSSRK_REGS; i++)
1871 IXGBE_WRITE_REG(hw, IXGBE_VFRSSRK(i), *(adapter->rss_key + i));
1872
1873 for (i = 0, j = 0; i < IXGBEVF_X550_VFRETA_SIZE; i++, j++) {
1874 if (j == rss_i)
1875 j = 0;
1876
1877 adapter->rss_indir_tbl[i] = j;
1878
1879 vfreta |= j << (i & 0x3) * 8;
1880 if ((i & 3) == 3) {
1881 IXGBE_WRITE_REG(hw, IXGBE_VFRETA(i >> 2), vfreta);
1882 vfreta = 0;
1883 }
1884 }
1885
1886 /* Perform hash on these packet types */
1887 vfmrqc |= IXGBE_VFMRQC_RSS_FIELD_IPV4 |
1888 IXGBE_VFMRQC_RSS_FIELD_IPV4_TCP |
1889 IXGBE_VFMRQC_RSS_FIELD_IPV6 |
1890 IXGBE_VFMRQC_RSS_FIELD_IPV6_TCP;
1891
1892 vfmrqc |= IXGBE_VFMRQC_RSSEN;
1893
1894 IXGBE_WRITE_REG(hw, IXGBE_VFMRQC, vfmrqc);
1895 }
1896
ixgbevf_configure_rx_ring(struct ixgbevf_adapter * adapter,struct ixgbevf_ring * ring)1897 static void ixgbevf_configure_rx_ring(struct ixgbevf_adapter *adapter,
1898 struct ixgbevf_ring *ring)
1899 {
1900 struct ixgbe_hw *hw = &adapter->hw;
1901 union ixgbe_adv_rx_desc *rx_desc;
1902 u64 rdba = ring->dma;
1903 u32 rxdctl;
1904 u8 reg_idx = ring->reg_idx;
1905
1906 /* disable queue to avoid issues while updating state */
1907 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
1908 ixgbevf_disable_rx_queue(adapter, ring);
1909
1910 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAL(reg_idx), rdba & DMA_BIT_MASK(32));
1911 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAH(reg_idx), rdba >> 32);
1912 IXGBE_WRITE_REG(hw, IXGBE_VFRDLEN(reg_idx),
1913 ring->count * sizeof(union ixgbe_adv_rx_desc));
1914
1915 #ifndef CONFIG_SPARC
1916 /* enable relaxed ordering */
1917 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_RXCTRL(reg_idx),
1918 IXGBE_DCA_RXCTRL_DESC_RRO_EN);
1919 #else
1920 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_RXCTRL(reg_idx),
1921 IXGBE_DCA_RXCTRL_DESC_RRO_EN |
1922 IXGBE_DCA_RXCTRL_DATA_WRO_EN);
1923 #endif
1924
1925 /* reset head and tail pointers */
1926 IXGBE_WRITE_REG(hw, IXGBE_VFRDH(reg_idx), 0);
1927 IXGBE_WRITE_REG(hw, IXGBE_VFRDT(reg_idx), 0);
1928 ring->tail = adapter->io_addr + IXGBE_VFRDT(reg_idx);
1929
1930 /* initialize rx_buffer_info */
1931 memset(ring->rx_buffer_info, 0,
1932 sizeof(struct ixgbevf_rx_buffer) * ring->count);
1933
1934 /* initialize Rx descriptor 0 */
1935 rx_desc = IXGBEVF_RX_DESC(ring, 0);
1936 rx_desc->wb.upper.length = 0;
1937
1938 /* reset ntu and ntc to place SW in sync with hardwdare */
1939 ring->next_to_clean = 0;
1940 ring->next_to_use = 0;
1941 ring->next_to_alloc = 0;
1942
1943 ixgbevf_configure_srrctl(adapter, ring, reg_idx);
1944
1945 /* RXDCTL.RLPML does not work on 82599 */
1946 if (adapter->hw.mac.type != ixgbe_mac_82599_vf) {
1947 rxdctl &= ~(IXGBE_RXDCTL_RLPMLMASK |
1948 IXGBE_RXDCTL_RLPML_EN);
1949
1950 #if (PAGE_SIZE < 8192)
1951 /* Limit the maximum frame size so we don't overrun the skb */
1952 if (ring_uses_build_skb(ring) &&
1953 !ring_uses_large_buffer(ring))
1954 rxdctl |= IXGBEVF_MAX_FRAME_BUILD_SKB |
1955 IXGBE_RXDCTL_RLPML_EN;
1956 #endif
1957 }
1958
1959 rxdctl |= IXGBE_RXDCTL_ENABLE | IXGBE_RXDCTL_VME;
1960 IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl);
1961
1962 ixgbevf_rx_desc_queue_enable(adapter, ring);
1963 ixgbevf_alloc_rx_buffers(ring, ixgbevf_desc_unused(ring));
1964 }
1965
ixgbevf_set_rx_buffer_len(struct ixgbevf_adapter * adapter,struct ixgbevf_ring * rx_ring)1966 static void ixgbevf_set_rx_buffer_len(struct ixgbevf_adapter *adapter,
1967 struct ixgbevf_ring *rx_ring)
1968 {
1969 struct net_device *netdev = adapter->netdev;
1970 unsigned int max_frame = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1971
1972 /* set build_skb and buffer size flags */
1973 clear_ring_build_skb_enabled(rx_ring);
1974 clear_ring_uses_large_buffer(rx_ring);
1975
1976 if (adapter->flags & IXGBEVF_FLAGS_LEGACY_RX)
1977 return;
1978
1979 set_ring_build_skb_enabled(rx_ring);
1980
1981 if (PAGE_SIZE < 8192) {
1982 if (max_frame <= IXGBEVF_MAX_FRAME_BUILD_SKB)
1983 return;
1984
1985 set_ring_uses_large_buffer(rx_ring);
1986 }
1987 }
1988
1989 /**
1990 * ixgbevf_configure_rx - Configure 82599 VF Receive Unit after Reset
1991 * @adapter: board private structure
1992 *
1993 * Configure the Rx unit of the MAC after a reset.
1994 **/
ixgbevf_configure_rx(struct ixgbevf_adapter * adapter)1995 static void ixgbevf_configure_rx(struct ixgbevf_adapter *adapter)
1996 {
1997 struct ixgbe_hw *hw = &adapter->hw;
1998 struct net_device *netdev = adapter->netdev;
1999 int i, ret;
2000
2001 ixgbevf_setup_psrtype(adapter);
2002 if (hw->mac.type >= ixgbe_mac_X550_vf)
2003 ixgbevf_setup_vfmrqc(adapter);
2004
2005 spin_lock_bh(&adapter->mbx_lock);
2006 /* notify the PF of our intent to use this size of frame */
2007 ret = hw->mac.ops.set_rlpml(hw, netdev->mtu + ETH_HLEN + ETH_FCS_LEN);
2008 spin_unlock_bh(&adapter->mbx_lock);
2009 if (ret)
2010 dev_err(&adapter->pdev->dev,
2011 "Failed to set MTU at %d\n", netdev->mtu);
2012
2013 /* Setup the HW Rx Head and Tail Descriptor Pointers and
2014 * the Base and Length of the Rx Descriptor Ring
2015 */
2016 for (i = 0; i < adapter->num_rx_queues; i++) {
2017 struct ixgbevf_ring *rx_ring = adapter->rx_ring[i];
2018
2019 ixgbevf_set_rx_buffer_len(adapter, rx_ring);
2020 ixgbevf_configure_rx_ring(adapter, rx_ring);
2021 }
2022 }
2023
ixgbevf_vlan_rx_add_vid(struct net_device * netdev,__be16 proto,u16 vid)2024 static int ixgbevf_vlan_rx_add_vid(struct net_device *netdev,
2025 __be16 proto, u16 vid)
2026 {
2027 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2028 struct ixgbe_hw *hw = &adapter->hw;
2029 int err;
2030
2031 spin_lock_bh(&adapter->mbx_lock);
2032
2033 /* add VID to filter table */
2034 err = hw->mac.ops.set_vfta(hw, vid, 0, true);
2035
2036 spin_unlock_bh(&adapter->mbx_lock);
2037
2038 /* translate error return types so error makes sense */
2039 if (err == IXGBE_ERR_MBX)
2040 return -EIO;
2041
2042 if (err == IXGBE_ERR_INVALID_ARGUMENT)
2043 return -EACCES;
2044
2045 set_bit(vid, adapter->active_vlans);
2046
2047 return err;
2048 }
2049
ixgbevf_vlan_rx_kill_vid(struct net_device * netdev,__be16 proto,u16 vid)2050 static int ixgbevf_vlan_rx_kill_vid(struct net_device *netdev,
2051 __be16 proto, u16 vid)
2052 {
2053 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2054 struct ixgbe_hw *hw = &adapter->hw;
2055 int err;
2056
2057 spin_lock_bh(&adapter->mbx_lock);
2058
2059 /* remove VID from filter table */
2060 err = hw->mac.ops.set_vfta(hw, vid, 0, false);
2061
2062 spin_unlock_bh(&adapter->mbx_lock);
2063
2064 clear_bit(vid, adapter->active_vlans);
2065
2066 return err;
2067 }
2068
ixgbevf_restore_vlan(struct ixgbevf_adapter * adapter)2069 static void ixgbevf_restore_vlan(struct ixgbevf_adapter *adapter)
2070 {
2071 u16 vid;
2072
2073 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2074 ixgbevf_vlan_rx_add_vid(adapter->netdev,
2075 htons(ETH_P_8021Q), vid);
2076 }
2077
ixgbevf_write_uc_addr_list(struct net_device * netdev)2078 static int ixgbevf_write_uc_addr_list(struct net_device *netdev)
2079 {
2080 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2081 struct ixgbe_hw *hw = &adapter->hw;
2082 int count = 0;
2083
2084 if ((netdev_uc_count(netdev)) > 10) {
2085 pr_err("Too many unicast filters - No Space\n");
2086 return -ENOSPC;
2087 }
2088
2089 if (!netdev_uc_empty(netdev)) {
2090 struct netdev_hw_addr *ha;
2091
2092 netdev_for_each_uc_addr(ha, netdev) {
2093 hw->mac.ops.set_uc_addr(hw, ++count, ha->addr);
2094 udelay(200);
2095 }
2096 } else {
2097 /* If the list is empty then send message to PF driver to
2098 * clear all MAC VLANs on this VF.
2099 */
2100 hw->mac.ops.set_uc_addr(hw, 0, NULL);
2101 }
2102
2103 return count;
2104 }
2105
2106 /**
2107 * ixgbevf_set_rx_mode - Multicast and unicast set
2108 * @netdev: network interface device structure
2109 *
2110 * The set_rx_method entry point is called whenever the multicast address
2111 * list, unicast address list or the network interface flags are updated.
2112 * This routine is responsible for configuring the hardware for proper
2113 * multicast mode and configuring requested unicast filters.
2114 **/
ixgbevf_set_rx_mode(struct net_device * netdev)2115 static void ixgbevf_set_rx_mode(struct net_device *netdev)
2116 {
2117 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2118 struct ixgbe_hw *hw = &adapter->hw;
2119 unsigned int flags = netdev->flags;
2120 int xcast_mode;
2121
2122 /* request the most inclusive mode we need */
2123 if (flags & IFF_PROMISC)
2124 xcast_mode = IXGBEVF_XCAST_MODE_PROMISC;
2125 else if (flags & IFF_ALLMULTI)
2126 xcast_mode = IXGBEVF_XCAST_MODE_ALLMULTI;
2127 else if (flags & (IFF_BROADCAST | IFF_MULTICAST))
2128 xcast_mode = IXGBEVF_XCAST_MODE_MULTI;
2129 else
2130 xcast_mode = IXGBEVF_XCAST_MODE_NONE;
2131
2132 spin_lock_bh(&adapter->mbx_lock);
2133
2134 hw->mac.ops.update_xcast_mode(hw, xcast_mode);
2135
2136 /* reprogram multicast list */
2137 hw->mac.ops.update_mc_addr_list(hw, netdev);
2138
2139 ixgbevf_write_uc_addr_list(netdev);
2140
2141 spin_unlock_bh(&adapter->mbx_lock);
2142 }
2143
ixgbevf_napi_enable_all(struct ixgbevf_adapter * adapter)2144 static void ixgbevf_napi_enable_all(struct ixgbevf_adapter *adapter)
2145 {
2146 int q_idx;
2147 struct ixgbevf_q_vector *q_vector;
2148 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2149
2150 for (q_idx = 0; q_idx < q_vectors; q_idx++) {
2151 q_vector = adapter->q_vector[q_idx];
2152 napi_enable(&q_vector->napi);
2153 }
2154 }
2155
ixgbevf_napi_disable_all(struct ixgbevf_adapter * adapter)2156 static void ixgbevf_napi_disable_all(struct ixgbevf_adapter *adapter)
2157 {
2158 int q_idx;
2159 struct ixgbevf_q_vector *q_vector;
2160 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2161
2162 for (q_idx = 0; q_idx < q_vectors; q_idx++) {
2163 q_vector = adapter->q_vector[q_idx];
2164 napi_disable(&q_vector->napi);
2165 }
2166 }
2167
ixgbevf_configure_dcb(struct ixgbevf_adapter * adapter)2168 static int ixgbevf_configure_dcb(struct ixgbevf_adapter *adapter)
2169 {
2170 struct ixgbe_hw *hw = &adapter->hw;
2171 unsigned int def_q = 0;
2172 unsigned int num_tcs = 0;
2173 unsigned int num_rx_queues = adapter->num_rx_queues;
2174 unsigned int num_tx_queues = adapter->num_tx_queues;
2175 int err;
2176
2177 spin_lock_bh(&adapter->mbx_lock);
2178
2179 /* fetch queue configuration from the PF */
2180 err = ixgbevf_get_queues(hw, &num_tcs, &def_q);
2181
2182 spin_unlock_bh(&adapter->mbx_lock);
2183
2184 if (err)
2185 return err;
2186
2187 if (num_tcs > 1) {
2188 /* we need only one Tx queue */
2189 num_tx_queues = 1;
2190
2191 /* update default Tx ring register index */
2192 adapter->tx_ring[0]->reg_idx = def_q;
2193
2194 /* we need as many queues as traffic classes */
2195 num_rx_queues = num_tcs;
2196 }
2197
2198 /* if we have a bad config abort request queue reset */
2199 if ((adapter->num_rx_queues != num_rx_queues) ||
2200 (adapter->num_tx_queues != num_tx_queues)) {
2201 /* force mailbox timeout to prevent further messages */
2202 hw->mbx.timeout = 0;
2203
2204 /* wait for watchdog to come around and bail us out */
2205 set_bit(__IXGBEVF_QUEUE_RESET_REQUESTED, &adapter->state);
2206 }
2207
2208 return 0;
2209 }
2210
ixgbevf_configure(struct ixgbevf_adapter * adapter)2211 static void ixgbevf_configure(struct ixgbevf_adapter *adapter)
2212 {
2213 ixgbevf_configure_dcb(adapter);
2214
2215 ixgbevf_set_rx_mode(adapter->netdev);
2216
2217 ixgbevf_restore_vlan(adapter);
2218 ixgbevf_ipsec_restore(adapter);
2219
2220 ixgbevf_configure_tx(adapter);
2221 ixgbevf_configure_rx(adapter);
2222 }
2223
ixgbevf_save_reset_stats(struct ixgbevf_adapter * adapter)2224 static void ixgbevf_save_reset_stats(struct ixgbevf_adapter *adapter)
2225 {
2226 /* Only save pre-reset stats if there are some */
2227 if (adapter->stats.vfgprc || adapter->stats.vfgptc) {
2228 adapter->stats.saved_reset_vfgprc += adapter->stats.vfgprc -
2229 adapter->stats.base_vfgprc;
2230 adapter->stats.saved_reset_vfgptc += adapter->stats.vfgptc -
2231 adapter->stats.base_vfgptc;
2232 adapter->stats.saved_reset_vfgorc += adapter->stats.vfgorc -
2233 adapter->stats.base_vfgorc;
2234 adapter->stats.saved_reset_vfgotc += adapter->stats.vfgotc -
2235 adapter->stats.base_vfgotc;
2236 adapter->stats.saved_reset_vfmprc += adapter->stats.vfmprc -
2237 adapter->stats.base_vfmprc;
2238 }
2239 }
2240
ixgbevf_init_last_counter_stats(struct ixgbevf_adapter * adapter)2241 static void ixgbevf_init_last_counter_stats(struct ixgbevf_adapter *adapter)
2242 {
2243 struct ixgbe_hw *hw = &adapter->hw;
2244
2245 adapter->stats.last_vfgprc = IXGBE_READ_REG(hw, IXGBE_VFGPRC);
2246 adapter->stats.last_vfgorc = IXGBE_READ_REG(hw, IXGBE_VFGORC_LSB);
2247 adapter->stats.last_vfgorc |=
2248 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGORC_MSB))) << 32);
2249 adapter->stats.last_vfgptc = IXGBE_READ_REG(hw, IXGBE_VFGPTC);
2250 adapter->stats.last_vfgotc = IXGBE_READ_REG(hw, IXGBE_VFGOTC_LSB);
2251 adapter->stats.last_vfgotc |=
2252 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGOTC_MSB))) << 32);
2253 adapter->stats.last_vfmprc = IXGBE_READ_REG(hw, IXGBE_VFMPRC);
2254
2255 adapter->stats.base_vfgprc = adapter->stats.last_vfgprc;
2256 adapter->stats.base_vfgorc = adapter->stats.last_vfgorc;
2257 adapter->stats.base_vfgptc = adapter->stats.last_vfgptc;
2258 adapter->stats.base_vfgotc = adapter->stats.last_vfgotc;
2259 adapter->stats.base_vfmprc = adapter->stats.last_vfmprc;
2260 }
2261
ixgbevf_negotiate_api(struct ixgbevf_adapter * adapter)2262 static void ixgbevf_negotiate_api(struct ixgbevf_adapter *adapter)
2263 {
2264 struct ixgbe_hw *hw = &adapter->hw;
2265 static const int api[] = {
2266 ixgbe_mbox_api_14,
2267 ixgbe_mbox_api_13,
2268 ixgbe_mbox_api_12,
2269 ixgbe_mbox_api_11,
2270 ixgbe_mbox_api_10,
2271 ixgbe_mbox_api_unknown
2272 };
2273 int err, idx = 0;
2274
2275 spin_lock_bh(&adapter->mbx_lock);
2276
2277 while (api[idx] != ixgbe_mbox_api_unknown) {
2278 err = hw->mac.ops.negotiate_api_version(hw, api[idx]);
2279 if (!err)
2280 break;
2281 idx++;
2282 }
2283
2284 spin_unlock_bh(&adapter->mbx_lock);
2285 }
2286
ixgbevf_up_complete(struct ixgbevf_adapter * adapter)2287 static void ixgbevf_up_complete(struct ixgbevf_adapter *adapter)
2288 {
2289 struct net_device *netdev = adapter->netdev;
2290 struct ixgbe_hw *hw = &adapter->hw;
2291
2292 ixgbevf_configure_msix(adapter);
2293
2294 spin_lock_bh(&adapter->mbx_lock);
2295
2296 if (is_valid_ether_addr(hw->mac.addr))
2297 hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0);
2298 else
2299 hw->mac.ops.set_rar(hw, 0, hw->mac.perm_addr, 0);
2300
2301 spin_unlock_bh(&adapter->mbx_lock);
2302
2303 smp_mb__before_atomic();
2304 clear_bit(__IXGBEVF_DOWN, &adapter->state);
2305 ixgbevf_napi_enable_all(adapter);
2306
2307 /* clear any pending interrupts, may auto mask */
2308 IXGBE_READ_REG(hw, IXGBE_VTEICR);
2309 ixgbevf_irq_enable(adapter);
2310
2311 /* enable transmits */
2312 netif_tx_start_all_queues(netdev);
2313
2314 ixgbevf_save_reset_stats(adapter);
2315 ixgbevf_init_last_counter_stats(adapter);
2316
2317 hw->mac.get_link_status = 1;
2318 mod_timer(&adapter->service_timer, jiffies);
2319 }
2320
ixgbevf_up(struct ixgbevf_adapter * adapter)2321 void ixgbevf_up(struct ixgbevf_adapter *adapter)
2322 {
2323 ixgbevf_configure(adapter);
2324
2325 ixgbevf_up_complete(adapter);
2326 }
2327
2328 /**
2329 * ixgbevf_clean_rx_ring - Free Rx Buffers per Queue
2330 * @rx_ring: ring to free buffers from
2331 **/
ixgbevf_clean_rx_ring(struct ixgbevf_ring * rx_ring)2332 static void ixgbevf_clean_rx_ring(struct ixgbevf_ring *rx_ring)
2333 {
2334 u16 i = rx_ring->next_to_clean;
2335
2336 /* Free Rx ring sk_buff */
2337 if (rx_ring->skb) {
2338 dev_kfree_skb(rx_ring->skb);
2339 rx_ring->skb = NULL;
2340 }
2341
2342 /* Free all the Rx ring pages */
2343 while (i != rx_ring->next_to_alloc) {
2344 struct ixgbevf_rx_buffer *rx_buffer;
2345
2346 rx_buffer = &rx_ring->rx_buffer_info[i];
2347
2348 /* Invalidate cache lines that may have been written to by
2349 * device so that we avoid corrupting memory.
2350 */
2351 dma_sync_single_range_for_cpu(rx_ring->dev,
2352 rx_buffer->dma,
2353 rx_buffer->page_offset,
2354 ixgbevf_rx_bufsz(rx_ring),
2355 DMA_FROM_DEVICE);
2356
2357 /* free resources associated with mapping */
2358 dma_unmap_page_attrs(rx_ring->dev,
2359 rx_buffer->dma,
2360 ixgbevf_rx_pg_size(rx_ring),
2361 DMA_FROM_DEVICE,
2362 IXGBEVF_RX_DMA_ATTR);
2363
2364 __page_frag_cache_drain(rx_buffer->page,
2365 rx_buffer->pagecnt_bias);
2366
2367 i++;
2368 if (i == rx_ring->count)
2369 i = 0;
2370 }
2371
2372 rx_ring->next_to_alloc = 0;
2373 rx_ring->next_to_clean = 0;
2374 rx_ring->next_to_use = 0;
2375 }
2376
2377 /**
2378 * ixgbevf_clean_tx_ring - Free Tx Buffers
2379 * @tx_ring: ring to be cleaned
2380 **/
ixgbevf_clean_tx_ring(struct ixgbevf_ring * tx_ring)2381 static void ixgbevf_clean_tx_ring(struct ixgbevf_ring *tx_ring)
2382 {
2383 u16 i = tx_ring->next_to_clean;
2384 struct ixgbevf_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
2385
2386 while (i != tx_ring->next_to_use) {
2387 union ixgbe_adv_tx_desc *eop_desc, *tx_desc;
2388
2389 /* Free all the Tx ring sk_buffs */
2390 if (ring_is_xdp(tx_ring))
2391 page_frag_free(tx_buffer->data);
2392 else
2393 dev_kfree_skb_any(tx_buffer->skb);
2394
2395 /* unmap skb header data */
2396 dma_unmap_single(tx_ring->dev,
2397 dma_unmap_addr(tx_buffer, dma),
2398 dma_unmap_len(tx_buffer, len),
2399 DMA_TO_DEVICE);
2400
2401 /* check for eop_desc to determine the end of the packet */
2402 eop_desc = tx_buffer->next_to_watch;
2403 tx_desc = IXGBEVF_TX_DESC(tx_ring, i);
2404
2405 /* unmap remaining buffers */
2406 while (tx_desc != eop_desc) {
2407 tx_buffer++;
2408 tx_desc++;
2409 i++;
2410 if (unlikely(i == tx_ring->count)) {
2411 i = 0;
2412 tx_buffer = tx_ring->tx_buffer_info;
2413 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
2414 }
2415
2416 /* unmap any remaining paged data */
2417 if (dma_unmap_len(tx_buffer, len))
2418 dma_unmap_page(tx_ring->dev,
2419 dma_unmap_addr(tx_buffer, dma),
2420 dma_unmap_len(tx_buffer, len),
2421 DMA_TO_DEVICE);
2422 }
2423
2424 /* move us one more past the eop_desc for start of next pkt */
2425 tx_buffer++;
2426 i++;
2427 if (unlikely(i == tx_ring->count)) {
2428 i = 0;
2429 tx_buffer = tx_ring->tx_buffer_info;
2430 }
2431 }
2432
2433 /* reset next_to_use and next_to_clean */
2434 tx_ring->next_to_use = 0;
2435 tx_ring->next_to_clean = 0;
2436
2437 }
2438
2439 /**
2440 * ixgbevf_clean_all_rx_rings - Free Rx Buffers for all queues
2441 * @adapter: board private structure
2442 **/
ixgbevf_clean_all_rx_rings(struct ixgbevf_adapter * adapter)2443 static void ixgbevf_clean_all_rx_rings(struct ixgbevf_adapter *adapter)
2444 {
2445 int i;
2446
2447 for (i = 0; i < adapter->num_rx_queues; i++)
2448 ixgbevf_clean_rx_ring(adapter->rx_ring[i]);
2449 }
2450
2451 /**
2452 * ixgbevf_clean_all_tx_rings - Free Tx Buffers for all queues
2453 * @adapter: board private structure
2454 **/
ixgbevf_clean_all_tx_rings(struct ixgbevf_adapter * adapter)2455 static void ixgbevf_clean_all_tx_rings(struct ixgbevf_adapter *adapter)
2456 {
2457 int i;
2458
2459 for (i = 0; i < adapter->num_tx_queues; i++)
2460 ixgbevf_clean_tx_ring(adapter->tx_ring[i]);
2461 for (i = 0; i < adapter->num_xdp_queues; i++)
2462 ixgbevf_clean_tx_ring(adapter->xdp_ring[i]);
2463 }
2464
ixgbevf_down(struct ixgbevf_adapter * adapter)2465 void ixgbevf_down(struct ixgbevf_adapter *adapter)
2466 {
2467 struct net_device *netdev = adapter->netdev;
2468 struct ixgbe_hw *hw = &adapter->hw;
2469 int i;
2470
2471 /* signal that we are down to the interrupt handler */
2472 if (test_and_set_bit(__IXGBEVF_DOWN, &adapter->state))
2473 return; /* do nothing if already down */
2474
2475 /* disable all enabled Rx queues */
2476 for (i = 0; i < adapter->num_rx_queues; i++)
2477 ixgbevf_disable_rx_queue(adapter, adapter->rx_ring[i]);
2478
2479 usleep_range(10000, 20000);
2480
2481 netif_tx_stop_all_queues(netdev);
2482
2483 /* call carrier off first to avoid false dev_watchdog timeouts */
2484 netif_carrier_off(netdev);
2485 netif_tx_disable(netdev);
2486
2487 ixgbevf_irq_disable(adapter);
2488
2489 ixgbevf_napi_disable_all(adapter);
2490
2491 del_timer_sync(&adapter->service_timer);
2492
2493 /* disable transmits in the hardware now that interrupts are off */
2494 for (i = 0; i < adapter->num_tx_queues; i++) {
2495 u8 reg_idx = adapter->tx_ring[i]->reg_idx;
2496
2497 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx),
2498 IXGBE_TXDCTL_SWFLSH);
2499 }
2500
2501 for (i = 0; i < adapter->num_xdp_queues; i++) {
2502 u8 reg_idx = adapter->xdp_ring[i]->reg_idx;
2503
2504 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx),
2505 IXGBE_TXDCTL_SWFLSH);
2506 }
2507
2508 if (!pci_channel_offline(adapter->pdev))
2509 ixgbevf_reset(adapter);
2510
2511 ixgbevf_clean_all_tx_rings(adapter);
2512 ixgbevf_clean_all_rx_rings(adapter);
2513 }
2514
ixgbevf_reinit_locked(struct ixgbevf_adapter * adapter)2515 void ixgbevf_reinit_locked(struct ixgbevf_adapter *adapter)
2516 {
2517 WARN_ON(in_interrupt());
2518
2519 while (test_and_set_bit(__IXGBEVF_RESETTING, &adapter->state))
2520 msleep(1);
2521
2522 ixgbevf_down(adapter);
2523 pci_set_master(adapter->pdev);
2524 ixgbevf_up(adapter);
2525
2526 clear_bit(__IXGBEVF_RESETTING, &adapter->state);
2527 }
2528
ixgbevf_reset(struct ixgbevf_adapter * adapter)2529 void ixgbevf_reset(struct ixgbevf_adapter *adapter)
2530 {
2531 struct ixgbe_hw *hw = &adapter->hw;
2532 struct net_device *netdev = adapter->netdev;
2533
2534 if (hw->mac.ops.reset_hw(hw)) {
2535 hw_dbg(hw, "PF still resetting\n");
2536 } else {
2537 hw->mac.ops.init_hw(hw);
2538 ixgbevf_negotiate_api(adapter);
2539 }
2540
2541 if (is_valid_ether_addr(adapter->hw.mac.addr)) {
2542 ether_addr_copy(netdev->dev_addr, adapter->hw.mac.addr);
2543 ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr);
2544 }
2545
2546 adapter->last_reset = jiffies;
2547 }
2548
ixgbevf_acquire_msix_vectors(struct ixgbevf_adapter * adapter,int vectors)2549 static int ixgbevf_acquire_msix_vectors(struct ixgbevf_adapter *adapter,
2550 int vectors)
2551 {
2552 int vector_threshold;
2553
2554 /* We'll want at least 2 (vector_threshold):
2555 * 1) TxQ[0] + RxQ[0] handler
2556 * 2) Other (Link Status Change, etc.)
2557 */
2558 vector_threshold = MIN_MSIX_COUNT;
2559
2560 /* The more we get, the more we will assign to Tx/Rx Cleanup
2561 * for the separate queues...where Rx Cleanup >= Tx Cleanup.
2562 * Right now, we simply care about how many we'll get; we'll
2563 * set them up later while requesting irq's.
2564 */
2565 vectors = pci_enable_msix_range(adapter->pdev, adapter->msix_entries,
2566 vector_threshold, vectors);
2567
2568 if (vectors < 0) {
2569 dev_err(&adapter->pdev->dev,
2570 "Unable to allocate MSI-X interrupts\n");
2571 kfree(adapter->msix_entries);
2572 adapter->msix_entries = NULL;
2573 return vectors;
2574 }
2575
2576 /* Adjust for only the vectors we'll use, which is minimum
2577 * of max_msix_q_vectors + NON_Q_VECTORS, or the number of
2578 * vectors we were allocated.
2579 */
2580 adapter->num_msix_vectors = vectors;
2581
2582 return 0;
2583 }
2584
2585 /**
2586 * ixgbevf_set_num_queues - Allocate queues for device, feature dependent
2587 * @adapter: board private structure to initialize
2588 *
2589 * This is the top level queue allocation routine. The order here is very
2590 * important, starting with the "most" number of features turned on at once,
2591 * and ending with the smallest set of features. This way large combinations
2592 * can be allocated if they're turned on, and smaller combinations are the
2593 * fallthrough conditions.
2594 *
2595 **/
ixgbevf_set_num_queues(struct ixgbevf_adapter * adapter)2596 static void ixgbevf_set_num_queues(struct ixgbevf_adapter *adapter)
2597 {
2598 struct ixgbe_hw *hw = &adapter->hw;
2599 unsigned int def_q = 0;
2600 unsigned int num_tcs = 0;
2601 int err;
2602
2603 /* Start with base case */
2604 adapter->num_rx_queues = 1;
2605 adapter->num_tx_queues = 1;
2606 adapter->num_xdp_queues = 0;
2607
2608 spin_lock_bh(&adapter->mbx_lock);
2609
2610 /* fetch queue configuration from the PF */
2611 err = ixgbevf_get_queues(hw, &num_tcs, &def_q);
2612
2613 spin_unlock_bh(&adapter->mbx_lock);
2614
2615 if (err)
2616 return;
2617
2618 /* we need as many queues as traffic classes */
2619 if (num_tcs > 1) {
2620 adapter->num_rx_queues = num_tcs;
2621 } else {
2622 u16 rss = min_t(u16, num_online_cpus(), IXGBEVF_MAX_RSS_QUEUES);
2623
2624 switch (hw->api_version) {
2625 case ixgbe_mbox_api_11:
2626 case ixgbe_mbox_api_12:
2627 case ixgbe_mbox_api_13:
2628 case ixgbe_mbox_api_14:
2629 if (adapter->xdp_prog &&
2630 hw->mac.max_tx_queues == rss)
2631 rss = rss > 3 ? 2 : 1;
2632
2633 adapter->num_rx_queues = rss;
2634 adapter->num_tx_queues = rss;
2635 adapter->num_xdp_queues = adapter->xdp_prog ? rss : 0;
2636 default:
2637 break;
2638 }
2639 }
2640 }
2641
2642 /**
2643 * ixgbevf_set_interrupt_capability - set MSI-X or FAIL if not supported
2644 * @adapter: board private structure to initialize
2645 *
2646 * Attempt to configure the interrupts using the best available
2647 * capabilities of the hardware and the kernel.
2648 **/
ixgbevf_set_interrupt_capability(struct ixgbevf_adapter * adapter)2649 static int ixgbevf_set_interrupt_capability(struct ixgbevf_adapter *adapter)
2650 {
2651 int vector, v_budget;
2652
2653 /* It's easy to be greedy for MSI-X vectors, but it really
2654 * doesn't do us much good if we have a lot more vectors
2655 * than CPU's. So let's be conservative and only ask for
2656 * (roughly) the same number of vectors as there are CPU's.
2657 * The default is to use pairs of vectors.
2658 */
2659 v_budget = max(adapter->num_rx_queues, adapter->num_tx_queues);
2660 v_budget = min_t(int, v_budget, num_online_cpus());
2661 v_budget += NON_Q_VECTORS;
2662
2663 adapter->msix_entries = kcalloc(v_budget,
2664 sizeof(struct msix_entry), GFP_KERNEL);
2665 if (!adapter->msix_entries)
2666 return -ENOMEM;
2667
2668 for (vector = 0; vector < v_budget; vector++)
2669 adapter->msix_entries[vector].entry = vector;
2670
2671 /* A failure in MSI-X entry allocation isn't fatal, but the VF driver
2672 * does not support any other modes, so we will simply fail here. Note
2673 * that we clean up the msix_entries pointer else-where.
2674 */
2675 return ixgbevf_acquire_msix_vectors(adapter, v_budget);
2676 }
2677
ixgbevf_add_ring(struct ixgbevf_ring * ring,struct ixgbevf_ring_container * head)2678 static void ixgbevf_add_ring(struct ixgbevf_ring *ring,
2679 struct ixgbevf_ring_container *head)
2680 {
2681 ring->next = head->ring;
2682 head->ring = ring;
2683 head->count++;
2684 }
2685
2686 /**
2687 * ixgbevf_alloc_q_vector - Allocate memory for a single interrupt vector
2688 * @adapter: board private structure to initialize
2689 * @v_idx: index of vector in adapter struct
2690 * @txr_count: number of Tx rings for q vector
2691 * @txr_idx: index of first Tx ring to assign
2692 * @xdp_count: total number of XDP rings to allocate
2693 * @xdp_idx: index of first XDP ring to allocate
2694 * @rxr_count: number of Rx rings for q vector
2695 * @rxr_idx: index of first Rx ring to assign
2696 *
2697 * We allocate one q_vector. If allocation fails we return -ENOMEM.
2698 **/
ixgbevf_alloc_q_vector(struct ixgbevf_adapter * adapter,int v_idx,int txr_count,int txr_idx,int xdp_count,int xdp_idx,int rxr_count,int rxr_idx)2699 static int ixgbevf_alloc_q_vector(struct ixgbevf_adapter *adapter, int v_idx,
2700 int txr_count, int txr_idx,
2701 int xdp_count, int xdp_idx,
2702 int rxr_count, int rxr_idx)
2703 {
2704 struct ixgbevf_q_vector *q_vector;
2705 int reg_idx = txr_idx + xdp_idx;
2706 struct ixgbevf_ring *ring;
2707 int ring_count, size;
2708
2709 ring_count = txr_count + xdp_count + rxr_count;
2710 size = sizeof(*q_vector) + (sizeof(*ring) * ring_count);
2711
2712 /* allocate q_vector and rings */
2713 q_vector = kzalloc(size, GFP_KERNEL);
2714 if (!q_vector)
2715 return -ENOMEM;
2716
2717 /* initialize NAPI */
2718 netif_napi_add(adapter->netdev, &q_vector->napi, ixgbevf_poll, 64);
2719
2720 /* tie q_vector and adapter together */
2721 adapter->q_vector[v_idx] = q_vector;
2722 q_vector->adapter = adapter;
2723 q_vector->v_idx = v_idx;
2724
2725 /* initialize pointer to rings */
2726 ring = q_vector->ring;
2727
2728 while (txr_count) {
2729 /* assign generic ring traits */
2730 ring->dev = &adapter->pdev->dev;
2731 ring->netdev = adapter->netdev;
2732
2733 /* configure backlink on ring */
2734 ring->q_vector = q_vector;
2735
2736 /* update q_vector Tx values */
2737 ixgbevf_add_ring(ring, &q_vector->tx);
2738
2739 /* apply Tx specific ring traits */
2740 ring->count = adapter->tx_ring_count;
2741 ring->queue_index = txr_idx;
2742 ring->reg_idx = reg_idx;
2743
2744 /* assign ring to adapter */
2745 adapter->tx_ring[txr_idx] = ring;
2746
2747 /* update count and index */
2748 txr_count--;
2749 txr_idx++;
2750 reg_idx++;
2751
2752 /* push pointer to next ring */
2753 ring++;
2754 }
2755
2756 while (xdp_count) {
2757 /* assign generic ring traits */
2758 ring->dev = &adapter->pdev->dev;
2759 ring->netdev = adapter->netdev;
2760
2761 /* configure backlink on ring */
2762 ring->q_vector = q_vector;
2763
2764 /* update q_vector Tx values */
2765 ixgbevf_add_ring(ring, &q_vector->tx);
2766
2767 /* apply Tx specific ring traits */
2768 ring->count = adapter->tx_ring_count;
2769 ring->queue_index = xdp_idx;
2770 ring->reg_idx = reg_idx;
2771 set_ring_xdp(ring);
2772
2773 /* assign ring to adapter */
2774 adapter->xdp_ring[xdp_idx] = ring;
2775
2776 /* update count and index */
2777 xdp_count--;
2778 xdp_idx++;
2779 reg_idx++;
2780
2781 /* push pointer to next ring */
2782 ring++;
2783 }
2784
2785 while (rxr_count) {
2786 /* assign generic ring traits */
2787 ring->dev = &adapter->pdev->dev;
2788 ring->netdev = adapter->netdev;
2789
2790 /* configure backlink on ring */
2791 ring->q_vector = q_vector;
2792
2793 /* update q_vector Rx values */
2794 ixgbevf_add_ring(ring, &q_vector->rx);
2795
2796 /* apply Rx specific ring traits */
2797 ring->count = adapter->rx_ring_count;
2798 ring->queue_index = rxr_idx;
2799 ring->reg_idx = rxr_idx;
2800
2801 /* assign ring to adapter */
2802 adapter->rx_ring[rxr_idx] = ring;
2803
2804 /* update count and index */
2805 rxr_count--;
2806 rxr_idx++;
2807
2808 /* push pointer to next ring */
2809 ring++;
2810 }
2811
2812 return 0;
2813 }
2814
2815 /**
2816 * ixgbevf_free_q_vector - Free memory allocated for specific interrupt vector
2817 * @adapter: board private structure to initialize
2818 * @v_idx: index of vector in adapter struct
2819 *
2820 * This function frees the memory allocated to the q_vector. In addition if
2821 * NAPI is enabled it will delete any references to the NAPI struct prior
2822 * to freeing the q_vector.
2823 **/
ixgbevf_free_q_vector(struct ixgbevf_adapter * adapter,int v_idx)2824 static void ixgbevf_free_q_vector(struct ixgbevf_adapter *adapter, int v_idx)
2825 {
2826 struct ixgbevf_q_vector *q_vector = adapter->q_vector[v_idx];
2827 struct ixgbevf_ring *ring;
2828
2829 ixgbevf_for_each_ring(ring, q_vector->tx) {
2830 if (ring_is_xdp(ring))
2831 adapter->xdp_ring[ring->queue_index] = NULL;
2832 else
2833 adapter->tx_ring[ring->queue_index] = NULL;
2834 }
2835
2836 ixgbevf_for_each_ring(ring, q_vector->rx)
2837 adapter->rx_ring[ring->queue_index] = NULL;
2838
2839 adapter->q_vector[v_idx] = NULL;
2840 netif_napi_del(&q_vector->napi);
2841
2842 /* ixgbevf_get_stats() might access the rings on this vector,
2843 * we must wait a grace period before freeing it.
2844 */
2845 kfree_rcu(q_vector, rcu);
2846 }
2847
2848 /**
2849 * ixgbevf_alloc_q_vectors - Allocate memory for interrupt vectors
2850 * @adapter: board private structure to initialize
2851 *
2852 * We allocate one q_vector per queue interrupt. If allocation fails we
2853 * return -ENOMEM.
2854 **/
ixgbevf_alloc_q_vectors(struct ixgbevf_adapter * adapter)2855 static int ixgbevf_alloc_q_vectors(struct ixgbevf_adapter *adapter)
2856 {
2857 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2858 int rxr_remaining = adapter->num_rx_queues;
2859 int txr_remaining = adapter->num_tx_queues;
2860 int xdp_remaining = adapter->num_xdp_queues;
2861 int rxr_idx = 0, txr_idx = 0, xdp_idx = 0, v_idx = 0;
2862 int err;
2863
2864 if (q_vectors >= (rxr_remaining + txr_remaining + xdp_remaining)) {
2865 for (; rxr_remaining; v_idx++, q_vectors--) {
2866 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors);
2867
2868 err = ixgbevf_alloc_q_vector(adapter, v_idx,
2869 0, 0, 0, 0, rqpv, rxr_idx);
2870 if (err)
2871 goto err_out;
2872
2873 /* update counts and index */
2874 rxr_remaining -= rqpv;
2875 rxr_idx += rqpv;
2876 }
2877 }
2878
2879 for (; q_vectors; v_idx++, q_vectors--) {
2880 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors);
2881 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors);
2882 int xqpv = DIV_ROUND_UP(xdp_remaining, q_vectors);
2883
2884 err = ixgbevf_alloc_q_vector(adapter, v_idx,
2885 tqpv, txr_idx,
2886 xqpv, xdp_idx,
2887 rqpv, rxr_idx);
2888
2889 if (err)
2890 goto err_out;
2891
2892 /* update counts and index */
2893 rxr_remaining -= rqpv;
2894 rxr_idx += rqpv;
2895 txr_remaining -= tqpv;
2896 txr_idx += tqpv;
2897 xdp_remaining -= xqpv;
2898 xdp_idx += xqpv;
2899 }
2900
2901 return 0;
2902
2903 err_out:
2904 while (v_idx) {
2905 v_idx--;
2906 ixgbevf_free_q_vector(adapter, v_idx);
2907 }
2908
2909 return -ENOMEM;
2910 }
2911
2912 /**
2913 * ixgbevf_free_q_vectors - Free memory allocated for interrupt vectors
2914 * @adapter: board private structure to initialize
2915 *
2916 * This function frees the memory allocated to the q_vectors. In addition if
2917 * NAPI is enabled it will delete any references to the NAPI struct prior
2918 * to freeing the q_vector.
2919 **/
ixgbevf_free_q_vectors(struct ixgbevf_adapter * adapter)2920 static void ixgbevf_free_q_vectors(struct ixgbevf_adapter *adapter)
2921 {
2922 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2923
2924 while (q_vectors) {
2925 q_vectors--;
2926 ixgbevf_free_q_vector(adapter, q_vectors);
2927 }
2928 }
2929
2930 /**
2931 * ixgbevf_reset_interrupt_capability - Reset MSIX setup
2932 * @adapter: board private structure
2933 *
2934 **/
ixgbevf_reset_interrupt_capability(struct ixgbevf_adapter * adapter)2935 static void ixgbevf_reset_interrupt_capability(struct ixgbevf_adapter *adapter)
2936 {
2937 if (!adapter->msix_entries)
2938 return;
2939
2940 pci_disable_msix(adapter->pdev);
2941 kfree(adapter->msix_entries);
2942 adapter->msix_entries = NULL;
2943 }
2944
2945 /**
2946 * ixgbevf_init_interrupt_scheme - Determine if MSIX is supported and init
2947 * @adapter: board private structure to initialize
2948 *
2949 **/
ixgbevf_init_interrupt_scheme(struct ixgbevf_adapter * adapter)2950 static int ixgbevf_init_interrupt_scheme(struct ixgbevf_adapter *adapter)
2951 {
2952 int err;
2953
2954 /* Number of supported queues */
2955 ixgbevf_set_num_queues(adapter);
2956
2957 err = ixgbevf_set_interrupt_capability(adapter);
2958 if (err) {
2959 hw_dbg(&adapter->hw,
2960 "Unable to setup interrupt capabilities\n");
2961 goto err_set_interrupt;
2962 }
2963
2964 err = ixgbevf_alloc_q_vectors(adapter);
2965 if (err) {
2966 hw_dbg(&adapter->hw, "Unable to allocate memory for queue vectors\n");
2967 goto err_alloc_q_vectors;
2968 }
2969
2970 hw_dbg(&adapter->hw, "Multiqueue %s: Rx Queue count = %u, Tx Queue count = %u XDP Queue count %u\n",
2971 (adapter->num_rx_queues > 1) ? "Enabled" : "Disabled",
2972 adapter->num_rx_queues, adapter->num_tx_queues,
2973 adapter->num_xdp_queues);
2974
2975 set_bit(__IXGBEVF_DOWN, &adapter->state);
2976
2977 return 0;
2978 err_alloc_q_vectors:
2979 ixgbevf_reset_interrupt_capability(adapter);
2980 err_set_interrupt:
2981 return err;
2982 }
2983
2984 /**
2985 * ixgbevf_clear_interrupt_scheme - Clear the current interrupt scheme settings
2986 * @adapter: board private structure to clear interrupt scheme on
2987 *
2988 * We go through and clear interrupt specific resources and reset the structure
2989 * to pre-load conditions
2990 **/
ixgbevf_clear_interrupt_scheme(struct ixgbevf_adapter * adapter)2991 static void ixgbevf_clear_interrupt_scheme(struct ixgbevf_adapter *adapter)
2992 {
2993 adapter->num_tx_queues = 0;
2994 adapter->num_xdp_queues = 0;
2995 adapter->num_rx_queues = 0;
2996
2997 ixgbevf_free_q_vectors(adapter);
2998 ixgbevf_reset_interrupt_capability(adapter);
2999 }
3000
3001 /**
3002 * ixgbevf_sw_init - Initialize general software structures
3003 * @adapter: board private structure to initialize
3004 *
3005 * ixgbevf_sw_init initializes the Adapter private data structure.
3006 * Fields are initialized based on PCI device information and
3007 * OS network device settings (MTU size).
3008 **/
ixgbevf_sw_init(struct ixgbevf_adapter * adapter)3009 static int ixgbevf_sw_init(struct ixgbevf_adapter *adapter)
3010 {
3011 struct ixgbe_hw *hw = &adapter->hw;
3012 struct pci_dev *pdev = adapter->pdev;
3013 struct net_device *netdev = adapter->netdev;
3014 int err;
3015
3016 /* PCI config space info */
3017 hw->vendor_id = pdev->vendor;
3018 hw->device_id = pdev->device;
3019 hw->revision_id = pdev->revision;
3020 hw->subsystem_vendor_id = pdev->subsystem_vendor;
3021 hw->subsystem_device_id = pdev->subsystem_device;
3022
3023 hw->mbx.ops.init_params(hw);
3024
3025 if (hw->mac.type >= ixgbe_mac_X550_vf) {
3026 err = ixgbevf_init_rss_key(adapter);
3027 if (err)
3028 goto out;
3029 }
3030
3031 /* assume legacy case in which PF would only give VF 2 queues */
3032 hw->mac.max_tx_queues = 2;
3033 hw->mac.max_rx_queues = 2;
3034
3035 /* lock to protect mailbox accesses */
3036 spin_lock_init(&adapter->mbx_lock);
3037
3038 err = hw->mac.ops.reset_hw(hw);
3039 if (err) {
3040 dev_info(&pdev->dev,
3041 "PF still in reset state. Is the PF interface up?\n");
3042 } else {
3043 err = hw->mac.ops.init_hw(hw);
3044 if (err) {
3045 pr_err("init_shared_code failed: %d\n", err);
3046 goto out;
3047 }
3048 ixgbevf_negotiate_api(adapter);
3049 err = hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
3050 if (err)
3051 dev_info(&pdev->dev, "Error reading MAC address\n");
3052 else if (is_zero_ether_addr(adapter->hw.mac.addr))
3053 dev_info(&pdev->dev,
3054 "MAC address not assigned by administrator.\n");
3055 ether_addr_copy(netdev->dev_addr, hw->mac.addr);
3056 }
3057
3058 if (!is_valid_ether_addr(netdev->dev_addr)) {
3059 dev_info(&pdev->dev, "Assigning random MAC address\n");
3060 eth_hw_addr_random(netdev);
3061 ether_addr_copy(hw->mac.addr, netdev->dev_addr);
3062 ether_addr_copy(hw->mac.perm_addr, netdev->dev_addr);
3063 }
3064
3065 /* Enable dynamic interrupt throttling rates */
3066 adapter->rx_itr_setting = 1;
3067 adapter->tx_itr_setting = 1;
3068
3069 /* set default ring sizes */
3070 adapter->tx_ring_count = IXGBEVF_DEFAULT_TXD;
3071 adapter->rx_ring_count = IXGBEVF_DEFAULT_RXD;
3072
3073 set_bit(__IXGBEVF_DOWN, &adapter->state);
3074 return 0;
3075
3076 out:
3077 return err;
3078 }
3079
3080 #define UPDATE_VF_COUNTER_32bit(reg, last_counter, counter) \
3081 { \
3082 u32 current_counter = IXGBE_READ_REG(hw, reg); \
3083 if (current_counter < last_counter) \
3084 counter += 0x100000000LL; \
3085 last_counter = current_counter; \
3086 counter &= 0xFFFFFFFF00000000LL; \
3087 counter |= current_counter; \
3088 }
3089
3090 #define UPDATE_VF_COUNTER_36bit(reg_lsb, reg_msb, last_counter, counter) \
3091 { \
3092 u64 current_counter_lsb = IXGBE_READ_REG(hw, reg_lsb); \
3093 u64 current_counter_msb = IXGBE_READ_REG(hw, reg_msb); \
3094 u64 current_counter = (current_counter_msb << 32) | \
3095 current_counter_lsb; \
3096 if (current_counter < last_counter) \
3097 counter += 0x1000000000LL; \
3098 last_counter = current_counter; \
3099 counter &= 0xFFFFFFF000000000LL; \
3100 counter |= current_counter; \
3101 }
3102 /**
3103 * ixgbevf_update_stats - Update the board statistics counters.
3104 * @adapter: board private structure
3105 **/
ixgbevf_update_stats(struct ixgbevf_adapter * adapter)3106 void ixgbevf_update_stats(struct ixgbevf_adapter *adapter)
3107 {
3108 struct ixgbe_hw *hw = &adapter->hw;
3109 u64 alloc_rx_page_failed = 0, alloc_rx_buff_failed = 0;
3110 u64 alloc_rx_page = 0, hw_csum_rx_error = 0;
3111 int i;
3112
3113 if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
3114 test_bit(__IXGBEVF_RESETTING, &adapter->state))
3115 return;
3116
3117 UPDATE_VF_COUNTER_32bit(IXGBE_VFGPRC, adapter->stats.last_vfgprc,
3118 adapter->stats.vfgprc);
3119 UPDATE_VF_COUNTER_32bit(IXGBE_VFGPTC, adapter->stats.last_vfgptc,
3120 adapter->stats.vfgptc);
3121 UPDATE_VF_COUNTER_36bit(IXGBE_VFGORC_LSB, IXGBE_VFGORC_MSB,
3122 adapter->stats.last_vfgorc,
3123 adapter->stats.vfgorc);
3124 UPDATE_VF_COUNTER_36bit(IXGBE_VFGOTC_LSB, IXGBE_VFGOTC_MSB,
3125 adapter->stats.last_vfgotc,
3126 adapter->stats.vfgotc);
3127 UPDATE_VF_COUNTER_32bit(IXGBE_VFMPRC, adapter->stats.last_vfmprc,
3128 adapter->stats.vfmprc);
3129
3130 for (i = 0; i < adapter->num_rx_queues; i++) {
3131 struct ixgbevf_ring *rx_ring = adapter->rx_ring[i];
3132
3133 hw_csum_rx_error += rx_ring->rx_stats.csum_err;
3134 alloc_rx_page_failed += rx_ring->rx_stats.alloc_rx_page_failed;
3135 alloc_rx_buff_failed += rx_ring->rx_stats.alloc_rx_buff_failed;
3136 alloc_rx_page += rx_ring->rx_stats.alloc_rx_page;
3137 }
3138
3139 adapter->hw_csum_rx_error = hw_csum_rx_error;
3140 adapter->alloc_rx_page_failed = alloc_rx_page_failed;
3141 adapter->alloc_rx_buff_failed = alloc_rx_buff_failed;
3142 adapter->alloc_rx_page = alloc_rx_page;
3143 }
3144
3145 /**
3146 * ixgbevf_service_timer - Timer Call-back
3147 * @t: pointer to timer_list struct
3148 **/
ixgbevf_service_timer(struct timer_list * t)3149 static void ixgbevf_service_timer(struct timer_list *t)
3150 {
3151 struct ixgbevf_adapter *adapter = from_timer(adapter, t,
3152 service_timer);
3153
3154 /* Reset the timer */
3155 mod_timer(&adapter->service_timer, (HZ * 2) + jiffies);
3156
3157 ixgbevf_service_event_schedule(adapter);
3158 }
3159
ixgbevf_reset_subtask(struct ixgbevf_adapter * adapter)3160 static void ixgbevf_reset_subtask(struct ixgbevf_adapter *adapter)
3161 {
3162 if (!test_and_clear_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state))
3163 return;
3164
3165 rtnl_lock();
3166 /* If we're already down or resetting, just bail */
3167 if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
3168 test_bit(__IXGBEVF_REMOVING, &adapter->state) ||
3169 test_bit(__IXGBEVF_RESETTING, &adapter->state)) {
3170 rtnl_unlock();
3171 return;
3172 }
3173
3174 adapter->tx_timeout_count++;
3175
3176 ixgbevf_reinit_locked(adapter);
3177 rtnl_unlock();
3178 }
3179
3180 /**
3181 * ixgbevf_check_hang_subtask - check for hung queues and dropped interrupts
3182 * @adapter: pointer to the device adapter structure
3183 *
3184 * This function serves two purposes. First it strobes the interrupt lines
3185 * in order to make certain interrupts are occurring. Secondly it sets the
3186 * bits needed to check for TX hangs. As a result we should immediately
3187 * determine if a hang has occurred.
3188 **/
ixgbevf_check_hang_subtask(struct ixgbevf_adapter * adapter)3189 static void ixgbevf_check_hang_subtask(struct ixgbevf_adapter *adapter)
3190 {
3191 struct ixgbe_hw *hw = &adapter->hw;
3192 u32 eics = 0;
3193 int i;
3194
3195 /* If we're down or resetting, just bail */
3196 if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
3197 test_bit(__IXGBEVF_RESETTING, &adapter->state))
3198 return;
3199
3200 /* Force detection of hung controller */
3201 if (netif_carrier_ok(adapter->netdev)) {
3202 for (i = 0; i < adapter->num_tx_queues; i++)
3203 set_check_for_tx_hang(adapter->tx_ring[i]);
3204 for (i = 0; i < adapter->num_xdp_queues; i++)
3205 set_check_for_tx_hang(adapter->xdp_ring[i]);
3206 }
3207
3208 /* get one bit for every active Tx/Rx interrupt vector */
3209 for (i = 0; i < adapter->num_msix_vectors - NON_Q_VECTORS; i++) {
3210 struct ixgbevf_q_vector *qv = adapter->q_vector[i];
3211
3212 if (qv->rx.ring || qv->tx.ring)
3213 eics |= BIT(i);
3214 }
3215
3216 /* Cause software interrupt to ensure rings are cleaned */
3217 IXGBE_WRITE_REG(hw, IXGBE_VTEICS, eics);
3218 }
3219
3220 /**
3221 * ixgbevf_watchdog_update_link - update the link status
3222 * @adapter: pointer to the device adapter structure
3223 **/
ixgbevf_watchdog_update_link(struct ixgbevf_adapter * adapter)3224 static void ixgbevf_watchdog_update_link(struct ixgbevf_adapter *adapter)
3225 {
3226 struct ixgbe_hw *hw = &adapter->hw;
3227 u32 link_speed = adapter->link_speed;
3228 bool link_up = adapter->link_up;
3229 s32 err;
3230
3231 spin_lock_bh(&adapter->mbx_lock);
3232
3233 err = hw->mac.ops.check_link(hw, &link_speed, &link_up, false);
3234
3235 spin_unlock_bh(&adapter->mbx_lock);
3236
3237 /* if check for link returns error we will need to reset */
3238 if (err && time_after(jiffies, adapter->last_reset + (10 * HZ))) {
3239 set_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state);
3240 link_up = false;
3241 }
3242
3243 adapter->link_up = link_up;
3244 adapter->link_speed = link_speed;
3245 }
3246
3247 /**
3248 * ixgbevf_watchdog_link_is_up - update netif_carrier status and
3249 * print link up message
3250 * @adapter: pointer to the device adapter structure
3251 **/
ixgbevf_watchdog_link_is_up(struct ixgbevf_adapter * adapter)3252 static void ixgbevf_watchdog_link_is_up(struct ixgbevf_adapter *adapter)
3253 {
3254 struct net_device *netdev = adapter->netdev;
3255
3256 /* only continue if link was previously down */
3257 if (netif_carrier_ok(netdev))
3258 return;
3259
3260 dev_info(&adapter->pdev->dev, "NIC Link is Up %s\n",
3261 (adapter->link_speed == IXGBE_LINK_SPEED_10GB_FULL) ?
3262 "10 Gbps" :
3263 (adapter->link_speed == IXGBE_LINK_SPEED_1GB_FULL) ?
3264 "1 Gbps" :
3265 (adapter->link_speed == IXGBE_LINK_SPEED_100_FULL) ?
3266 "100 Mbps" :
3267 "unknown speed");
3268
3269 netif_carrier_on(netdev);
3270 }
3271
3272 /**
3273 * ixgbevf_watchdog_link_is_down - update netif_carrier status and
3274 * print link down message
3275 * @adapter: pointer to the adapter structure
3276 **/
ixgbevf_watchdog_link_is_down(struct ixgbevf_adapter * adapter)3277 static void ixgbevf_watchdog_link_is_down(struct ixgbevf_adapter *adapter)
3278 {
3279 struct net_device *netdev = adapter->netdev;
3280
3281 adapter->link_speed = 0;
3282
3283 /* only continue if link was up previously */
3284 if (!netif_carrier_ok(netdev))
3285 return;
3286
3287 dev_info(&adapter->pdev->dev, "NIC Link is Down\n");
3288
3289 netif_carrier_off(netdev);
3290 }
3291
3292 /**
3293 * ixgbevf_watchdog_subtask - worker thread to bring link up
3294 * @adapter: board private structure
3295 **/
ixgbevf_watchdog_subtask(struct ixgbevf_adapter * adapter)3296 static void ixgbevf_watchdog_subtask(struct ixgbevf_adapter *adapter)
3297 {
3298 /* if interface is down do nothing */
3299 if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
3300 test_bit(__IXGBEVF_RESETTING, &adapter->state))
3301 return;
3302
3303 ixgbevf_watchdog_update_link(adapter);
3304
3305 if (adapter->link_up)
3306 ixgbevf_watchdog_link_is_up(adapter);
3307 else
3308 ixgbevf_watchdog_link_is_down(adapter);
3309
3310 ixgbevf_update_stats(adapter);
3311 }
3312
3313 /**
3314 * ixgbevf_service_task - manages and runs subtasks
3315 * @work: pointer to work_struct containing our data
3316 **/
ixgbevf_service_task(struct work_struct * work)3317 static void ixgbevf_service_task(struct work_struct *work)
3318 {
3319 struct ixgbevf_adapter *adapter = container_of(work,
3320 struct ixgbevf_adapter,
3321 service_task);
3322 struct ixgbe_hw *hw = &adapter->hw;
3323
3324 if (IXGBE_REMOVED(hw->hw_addr)) {
3325 if (!test_bit(__IXGBEVF_DOWN, &adapter->state)) {
3326 rtnl_lock();
3327 ixgbevf_down(adapter);
3328 rtnl_unlock();
3329 }
3330 return;
3331 }
3332
3333 ixgbevf_queue_reset_subtask(adapter);
3334 ixgbevf_reset_subtask(adapter);
3335 ixgbevf_watchdog_subtask(adapter);
3336 ixgbevf_check_hang_subtask(adapter);
3337
3338 ixgbevf_service_event_complete(adapter);
3339 }
3340
3341 /**
3342 * ixgbevf_free_tx_resources - Free Tx Resources per Queue
3343 * @tx_ring: Tx descriptor ring for a specific queue
3344 *
3345 * Free all transmit software resources
3346 **/
ixgbevf_free_tx_resources(struct ixgbevf_ring * tx_ring)3347 void ixgbevf_free_tx_resources(struct ixgbevf_ring *tx_ring)
3348 {
3349 ixgbevf_clean_tx_ring(tx_ring);
3350
3351 vfree(tx_ring->tx_buffer_info);
3352 tx_ring->tx_buffer_info = NULL;
3353
3354 /* if not set, then don't free */
3355 if (!tx_ring->desc)
3356 return;
3357
3358 dma_free_coherent(tx_ring->dev, tx_ring->size, tx_ring->desc,
3359 tx_ring->dma);
3360
3361 tx_ring->desc = NULL;
3362 }
3363
3364 /**
3365 * ixgbevf_free_all_tx_resources - Free Tx Resources for All Queues
3366 * @adapter: board private structure
3367 *
3368 * Free all transmit software resources
3369 **/
ixgbevf_free_all_tx_resources(struct ixgbevf_adapter * adapter)3370 static void ixgbevf_free_all_tx_resources(struct ixgbevf_adapter *adapter)
3371 {
3372 int i;
3373
3374 for (i = 0; i < adapter->num_tx_queues; i++)
3375 if (adapter->tx_ring[i]->desc)
3376 ixgbevf_free_tx_resources(adapter->tx_ring[i]);
3377 for (i = 0; i < adapter->num_xdp_queues; i++)
3378 if (adapter->xdp_ring[i]->desc)
3379 ixgbevf_free_tx_resources(adapter->xdp_ring[i]);
3380 }
3381
3382 /**
3383 * ixgbevf_setup_tx_resources - allocate Tx resources (Descriptors)
3384 * @tx_ring: Tx descriptor ring (for a specific queue) to setup
3385 *
3386 * Return 0 on success, negative on failure
3387 **/
ixgbevf_setup_tx_resources(struct ixgbevf_ring * tx_ring)3388 int ixgbevf_setup_tx_resources(struct ixgbevf_ring *tx_ring)
3389 {
3390 struct ixgbevf_adapter *adapter = netdev_priv(tx_ring->netdev);
3391 int size;
3392
3393 size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count;
3394 tx_ring->tx_buffer_info = vmalloc(size);
3395 if (!tx_ring->tx_buffer_info)
3396 goto err;
3397
3398 u64_stats_init(&tx_ring->syncp);
3399
3400 /* round up to nearest 4K */
3401 tx_ring->size = tx_ring->count * sizeof(union ixgbe_adv_tx_desc);
3402 tx_ring->size = ALIGN(tx_ring->size, 4096);
3403
3404 tx_ring->desc = dma_alloc_coherent(tx_ring->dev, tx_ring->size,
3405 &tx_ring->dma, GFP_KERNEL);
3406 if (!tx_ring->desc)
3407 goto err;
3408
3409 return 0;
3410
3411 err:
3412 vfree(tx_ring->tx_buffer_info);
3413 tx_ring->tx_buffer_info = NULL;
3414 hw_dbg(&adapter->hw, "Unable to allocate memory for the transmit descriptor ring\n");
3415 return -ENOMEM;
3416 }
3417
3418 /**
3419 * ixgbevf_setup_all_tx_resources - allocate all queues Tx resources
3420 * @adapter: board private structure
3421 *
3422 * If this function returns with an error, then it's possible one or
3423 * more of the rings is populated (while the rest are not). It is the
3424 * callers duty to clean those orphaned rings.
3425 *
3426 * Return 0 on success, negative on failure
3427 **/
ixgbevf_setup_all_tx_resources(struct ixgbevf_adapter * adapter)3428 static int ixgbevf_setup_all_tx_resources(struct ixgbevf_adapter *adapter)
3429 {
3430 int i, j = 0, err = 0;
3431
3432 for (i = 0; i < adapter->num_tx_queues; i++) {
3433 err = ixgbevf_setup_tx_resources(adapter->tx_ring[i]);
3434 if (!err)
3435 continue;
3436 hw_dbg(&adapter->hw, "Allocation for Tx Queue %u failed\n", i);
3437 goto err_setup_tx;
3438 }
3439
3440 for (j = 0; j < adapter->num_xdp_queues; j++) {
3441 err = ixgbevf_setup_tx_resources(adapter->xdp_ring[j]);
3442 if (!err)
3443 continue;
3444 hw_dbg(&adapter->hw, "Allocation for XDP Queue %u failed\n", j);
3445 goto err_setup_tx;
3446 }
3447
3448 return 0;
3449 err_setup_tx:
3450 /* rewind the index freeing the rings as we go */
3451 while (j--)
3452 ixgbevf_free_tx_resources(adapter->xdp_ring[j]);
3453 while (i--)
3454 ixgbevf_free_tx_resources(adapter->tx_ring[i]);
3455
3456 return err;
3457 }
3458
3459 /**
3460 * ixgbevf_setup_rx_resources - allocate Rx resources (Descriptors)
3461 * @adapter: board private structure
3462 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
3463 *
3464 * Returns 0 on success, negative on failure
3465 **/
ixgbevf_setup_rx_resources(struct ixgbevf_adapter * adapter,struct ixgbevf_ring * rx_ring)3466 int ixgbevf_setup_rx_resources(struct ixgbevf_adapter *adapter,
3467 struct ixgbevf_ring *rx_ring)
3468 {
3469 int size;
3470
3471 size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count;
3472 rx_ring->rx_buffer_info = vmalloc(size);
3473 if (!rx_ring->rx_buffer_info)
3474 goto err;
3475
3476 u64_stats_init(&rx_ring->syncp);
3477
3478 /* Round up to nearest 4K */
3479 rx_ring->size = rx_ring->count * sizeof(union ixgbe_adv_rx_desc);
3480 rx_ring->size = ALIGN(rx_ring->size, 4096);
3481
3482 rx_ring->desc = dma_alloc_coherent(rx_ring->dev, rx_ring->size,
3483 &rx_ring->dma, GFP_KERNEL);
3484
3485 if (!rx_ring->desc)
3486 goto err;
3487
3488 /* XDP RX-queue info */
3489 if (xdp_rxq_info_reg(&rx_ring->xdp_rxq, adapter->netdev,
3490 rx_ring->queue_index) < 0)
3491 goto err;
3492
3493 rx_ring->xdp_prog = adapter->xdp_prog;
3494
3495 return 0;
3496 err:
3497 vfree(rx_ring->rx_buffer_info);
3498 rx_ring->rx_buffer_info = NULL;
3499 dev_err(rx_ring->dev, "Unable to allocate memory for the Rx descriptor ring\n");
3500 return -ENOMEM;
3501 }
3502
3503 /**
3504 * ixgbevf_setup_all_rx_resources - allocate all queues Rx resources
3505 * @adapter: board private structure
3506 *
3507 * If this function returns with an error, then it's possible one or
3508 * more of the rings is populated (while the rest are not). It is the
3509 * callers duty to clean those orphaned rings.
3510 *
3511 * Return 0 on success, negative on failure
3512 **/
ixgbevf_setup_all_rx_resources(struct ixgbevf_adapter * adapter)3513 static int ixgbevf_setup_all_rx_resources(struct ixgbevf_adapter *adapter)
3514 {
3515 int i, err = 0;
3516
3517 for (i = 0; i < adapter->num_rx_queues; i++) {
3518 err = ixgbevf_setup_rx_resources(adapter, adapter->rx_ring[i]);
3519 if (!err)
3520 continue;
3521 hw_dbg(&adapter->hw, "Allocation for Rx Queue %u failed\n", i);
3522 goto err_setup_rx;
3523 }
3524
3525 return 0;
3526 err_setup_rx:
3527 /* rewind the index freeing the rings as we go */
3528 while (i--)
3529 ixgbevf_free_rx_resources(adapter->rx_ring[i]);
3530 return err;
3531 }
3532
3533 /**
3534 * ixgbevf_free_rx_resources - Free Rx Resources
3535 * @rx_ring: ring to clean the resources from
3536 *
3537 * Free all receive software resources
3538 **/
ixgbevf_free_rx_resources(struct ixgbevf_ring * rx_ring)3539 void ixgbevf_free_rx_resources(struct ixgbevf_ring *rx_ring)
3540 {
3541 ixgbevf_clean_rx_ring(rx_ring);
3542
3543 rx_ring->xdp_prog = NULL;
3544 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
3545 vfree(rx_ring->rx_buffer_info);
3546 rx_ring->rx_buffer_info = NULL;
3547
3548 dma_free_coherent(rx_ring->dev, rx_ring->size, rx_ring->desc,
3549 rx_ring->dma);
3550
3551 rx_ring->desc = NULL;
3552 }
3553
3554 /**
3555 * ixgbevf_free_all_rx_resources - Free Rx Resources for All Queues
3556 * @adapter: board private structure
3557 *
3558 * Free all receive software resources
3559 **/
ixgbevf_free_all_rx_resources(struct ixgbevf_adapter * adapter)3560 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter)
3561 {
3562 int i;
3563
3564 for (i = 0; i < adapter->num_rx_queues; i++)
3565 if (adapter->rx_ring[i]->desc)
3566 ixgbevf_free_rx_resources(adapter->rx_ring[i]);
3567 }
3568
3569 /**
3570 * ixgbevf_open - Called when a network interface is made active
3571 * @netdev: network interface device structure
3572 *
3573 * Returns 0 on success, negative value on failure
3574 *
3575 * The open entry point is called when a network interface is made
3576 * active by the system (IFF_UP). At this point all resources needed
3577 * for transmit and receive operations are allocated, the interrupt
3578 * handler is registered with the OS, the watchdog timer is started,
3579 * and the stack is notified that the interface is ready.
3580 **/
ixgbevf_open(struct net_device * netdev)3581 int ixgbevf_open(struct net_device *netdev)
3582 {
3583 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3584 struct ixgbe_hw *hw = &adapter->hw;
3585 int err;
3586
3587 /* A previous failure to open the device because of a lack of
3588 * available MSIX vector resources may have reset the number
3589 * of msix vectors variable to zero. The only way to recover
3590 * is to unload/reload the driver and hope that the system has
3591 * been able to recover some MSIX vector resources.
3592 */
3593 if (!adapter->num_msix_vectors)
3594 return -ENOMEM;
3595
3596 if (hw->adapter_stopped) {
3597 ixgbevf_reset(adapter);
3598 /* if adapter is still stopped then PF isn't up and
3599 * the VF can't start.
3600 */
3601 if (hw->adapter_stopped) {
3602 err = IXGBE_ERR_MBX;
3603 pr_err("Unable to start - perhaps the PF Driver isn't up yet\n");
3604 goto err_setup_reset;
3605 }
3606 }
3607
3608 /* disallow open during test */
3609 if (test_bit(__IXGBEVF_TESTING, &adapter->state))
3610 return -EBUSY;
3611
3612 netif_carrier_off(netdev);
3613
3614 /* allocate transmit descriptors */
3615 err = ixgbevf_setup_all_tx_resources(adapter);
3616 if (err)
3617 goto err_setup_tx;
3618
3619 /* allocate receive descriptors */
3620 err = ixgbevf_setup_all_rx_resources(adapter);
3621 if (err)
3622 goto err_setup_rx;
3623
3624 ixgbevf_configure(adapter);
3625
3626 err = ixgbevf_request_irq(adapter);
3627 if (err)
3628 goto err_req_irq;
3629
3630 /* Notify the stack of the actual queue counts. */
3631 err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues);
3632 if (err)
3633 goto err_set_queues;
3634
3635 err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues);
3636 if (err)
3637 goto err_set_queues;
3638
3639 ixgbevf_up_complete(adapter);
3640
3641 return 0;
3642
3643 err_set_queues:
3644 ixgbevf_free_irq(adapter);
3645 err_req_irq:
3646 ixgbevf_free_all_rx_resources(adapter);
3647 err_setup_rx:
3648 ixgbevf_free_all_tx_resources(adapter);
3649 err_setup_tx:
3650 ixgbevf_reset(adapter);
3651 err_setup_reset:
3652
3653 return err;
3654 }
3655
3656 /**
3657 * ixgbevf_close_suspend - actions necessary to both suspend and close flows
3658 * @adapter: the private adapter struct
3659 *
3660 * This function should contain the necessary work common to both suspending
3661 * and closing of the device.
3662 */
ixgbevf_close_suspend(struct ixgbevf_adapter * adapter)3663 static void ixgbevf_close_suspend(struct ixgbevf_adapter *adapter)
3664 {
3665 ixgbevf_down(adapter);
3666 ixgbevf_free_irq(adapter);
3667 ixgbevf_free_all_tx_resources(adapter);
3668 ixgbevf_free_all_rx_resources(adapter);
3669 }
3670
3671 /**
3672 * ixgbevf_close - Disables a network interface
3673 * @netdev: network interface device structure
3674 *
3675 * Returns 0, this is not allowed to fail
3676 *
3677 * The close entry point is called when an interface is de-activated
3678 * by the OS. The hardware is still under the drivers control, but
3679 * needs to be disabled. A global MAC reset is issued to stop the
3680 * hardware, and all transmit and receive resources are freed.
3681 **/
ixgbevf_close(struct net_device * netdev)3682 int ixgbevf_close(struct net_device *netdev)
3683 {
3684 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3685
3686 if (netif_device_present(netdev))
3687 ixgbevf_close_suspend(adapter);
3688
3689 return 0;
3690 }
3691
ixgbevf_queue_reset_subtask(struct ixgbevf_adapter * adapter)3692 static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter)
3693 {
3694 struct net_device *dev = adapter->netdev;
3695
3696 if (!test_and_clear_bit(__IXGBEVF_QUEUE_RESET_REQUESTED,
3697 &adapter->state))
3698 return;
3699
3700 /* if interface is down do nothing */
3701 if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
3702 test_bit(__IXGBEVF_RESETTING, &adapter->state))
3703 return;
3704
3705 /* Hardware has to reinitialize queues and interrupts to
3706 * match packet buffer alignment. Unfortunately, the
3707 * hardware is not flexible enough to do this dynamically.
3708 */
3709 rtnl_lock();
3710
3711 if (netif_running(dev))
3712 ixgbevf_close(dev);
3713
3714 ixgbevf_clear_interrupt_scheme(adapter);
3715 ixgbevf_init_interrupt_scheme(adapter);
3716
3717 if (netif_running(dev))
3718 ixgbevf_open(dev);
3719
3720 rtnl_unlock();
3721 }
3722
ixgbevf_tx_ctxtdesc(struct ixgbevf_ring * tx_ring,u32 vlan_macip_lens,u32 fceof_saidx,u32 type_tucmd,u32 mss_l4len_idx)3723 static void ixgbevf_tx_ctxtdesc(struct ixgbevf_ring *tx_ring,
3724 u32 vlan_macip_lens, u32 fceof_saidx,
3725 u32 type_tucmd, u32 mss_l4len_idx)
3726 {
3727 struct ixgbe_adv_tx_context_desc *context_desc;
3728 u16 i = tx_ring->next_to_use;
3729
3730 context_desc = IXGBEVF_TX_CTXTDESC(tx_ring, i);
3731
3732 i++;
3733 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
3734
3735 /* set bits to identify this as an advanced context descriptor */
3736 type_tucmd |= IXGBE_TXD_CMD_DEXT | IXGBE_ADVTXD_DTYP_CTXT;
3737
3738 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
3739 context_desc->fceof_saidx = cpu_to_le32(fceof_saidx);
3740 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
3741 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
3742 }
3743
ixgbevf_tso(struct ixgbevf_ring * tx_ring,struct ixgbevf_tx_buffer * first,u8 * hdr_len,struct ixgbevf_ipsec_tx_data * itd)3744 static int ixgbevf_tso(struct ixgbevf_ring *tx_ring,
3745 struct ixgbevf_tx_buffer *first,
3746 u8 *hdr_len,
3747 struct ixgbevf_ipsec_tx_data *itd)
3748 {
3749 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
3750 struct sk_buff *skb = first->skb;
3751 union {
3752 struct iphdr *v4;
3753 struct ipv6hdr *v6;
3754 unsigned char *hdr;
3755 } ip;
3756 union {
3757 struct tcphdr *tcp;
3758 unsigned char *hdr;
3759 } l4;
3760 u32 paylen, l4_offset;
3761 u32 fceof_saidx = 0;
3762 int err;
3763
3764 if (skb->ip_summed != CHECKSUM_PARTIAL)
3765 return 0;
3766
3767 if (!skb_is_gso(skb))
3768 return 0;
3769
3770 err = skb_cow_head(skb, 0);
3771 if (err < 0)
3772 return err;
3773
3774 if (eth_p_mpls(first->protocol))
3775 ip.hdr = skb_inner_network_header(skb);
3776 else
3777 ip.hdr = skb_network_header(skb);
3778 l4.hdr = skb_checksum_start(skb);
3779
3780 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
3781 type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_TCP;
3782
3783 /* initialize outer IP header fields */
3784 if (ip.v4->version == 4) {
3785 unsigned char *csum_start = skb_checksum_start(skb);
3786 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
3787 int len = csum_start - trans_start;
3788
3789 /* IP header will have to cancel out any data that
3790 * is not a part of the outer IP header, so set to
3791 * a reverse csum if needed, else init check to 0.
3792 */
3793 ip.v4->check = (skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) ?
3794 csum_fold(csum_partial(trans_start,
3795 len, 0)) : 0;
3796 type_tucmd |= IXGBE_ADVTXD_TUCMD_IPV4;
3797
3798 ip.v4->tot_len = 0;
3799 first->tx_flags |= IXGBE_TX_FLAGS_TSO |
3800 IXGBE_TX_FLAGS_CSUM |
3801 IXGBE_TX_FLAGS_IPV4;
3802 } else {
3803 ip.v6->payload_len = 0;
3804 first->tx_flags |= IXGBE_TX_FLAGS_TSO |
3805 IXGBE_TX_FLAGS_CSUM;
3806 }
3807
3808 /* determine offset of inner transport header */
3809 l4_offset = l4.hdr - skb->data;
3810
3811 /* compute length of segmentation header */
3812 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
3813
3814 /* remove payload length from inner checksum */
3815 paylen = skb->len - l4_offset;
3816 csum_replace_by_diff(&l4.tcp->check, htonl(paylen));
3817
3818 /* update gso size and bytecount with header size */
3819 first->gso_segs = skb_shinfo(skb)->gso_segs;
3820 first->bytecount += (first->gso_segs - 1) * *hdr_len;
3821
3822 /* mss_l4len_id: use 1 as index for TSO */
3823 mss_l4len_idx = (*hdr_len - l4_offset) << IXGBE_ADVTXD_L4LEN_SHIFT;
3824 mss_l4len_idx |= skb_shinfo(skb)->gso_size << IXGBE_ADVTXD_MSS_SHIFT;
3825 mss_l4len_idx |= (1u << IXGBE_ADVTXD_IDX_SHIFT);
3826
3827 fceof_saidx |= itd->pfsa;
3828 type_tucmd |= itd->flags | itd->trailer_len;
3829
3830 /* vlan_macip_lens: HEADLEN, MACLEN, VLAN tag */
3831 vlan_macip_lens = l4.hdr - ip.hdr;
3832 vlan_macip_lens |= (ip.hdr - skb->data) << IXGBE_ADVTXD_MACLEN_SHIFT;
3833 vlan_macip_lens |= first->tx_flags & IXGBE_TX_FLAGS_VLAN_MASK;
3834
3835 ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens, fceof_saidx, type_tucmd,
3836 mss_l4len_idx);
3837
3838 return 1;
3839 }
3840
ixgbevf_ipv6_csum_is_sctp(struct sk_buff * skb)3841 static inline bool ixgbevf_ipv6_csum_is_sctp(struct sk_buff *skb)
3842 {
3843 unsigned int offset = 0;
3844
3845 ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
3846
3847 return offset == skb_checksum_start_offset(skb);
3848 }
3849
ixgbevf_tx_csum(struct ixgbevf_ring * tx_ring,struct ixgbevf_tx_buffer * first,struct ixgbevf_ipsec_tx_data * itd)3850 static void ixgbevf_tx_csum(struct ixgbevf_ring *tx_ring,
3851 struct ixgbevf_tx_buffer *first,
3852 struct ixgbevf_ipsec_tx_data *itd)
3853 {
3854 struct sk_buff *skb = first->skb;
3855 u32 vlan_macip_lens = 0;
3856 u32 fceof_saidx = 0;
3857 u32 type_tucmd = 0;
3858
3859 if (skb->ip_summed != CHECKSUM_PARTIAL)
3860 goto no_csum;
3861
3862 switch (skb->csum_offset) {
3863 case offsetof(struct tcphdr, check):
3864 type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_TCP;
3865 /* fall through */
3866 case offsetof(struct udphdr, check):
3867 break;
3868 case offsetof(struct sctphdr, checksum):
3869 /* validate that this is actually an SCTP request */
3870 if (((first->protocol == htons(ETH_P_IP)) &&
3871 (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
3872 ((first->protocol == htons(ETH_P_IPV6)) &&
3873 ixgbevf_ipv6_csum_is_sctp(skb))) {
3874 type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_SCTP;
3875 break;
3876 }
3877 /* fall through */
3878 default:
3879 skb_checksum_help(skb);
3880 goto no_csum;
3881 }
3882
3883 if (first->protocol == htons(ETH_P_IP))
3884 type_tucmd |= IXGBE_ADVTXD_TUCMD_IPV4;
3885
3886 /* update TX checksum flag */
3887 first->tx_flags |= IXGBE_TX_FLAGS_CSUM;
3888 vlan_macip_lens = skb_checksum_start_offset(skb) -
3889 skb_network_offset(skb);
3890 no_csum:
3891 /* vlan_macip_lens: MACLEN, VLAN tag */
3892 vlan_macip_lens |= skb_network_offset(skb) << IXGBE_ADVTXD_MACLEN_SHIFT;
3893 vlan_macip_lens |= first->tx_flags & IXGBE_TX_FLAGS_VLAN_MASK;
3894
3895 fceof_saidx |= itd->pfsa;
3896 type_tucmd |= itd->flags | itd->trailer_len;
3897
3898 ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens,
3899 fceof_saidx, type_tucmd, 0);
3900 }
3901
ixgbevf_tx_cmd_type(u32 tx_flags)3902 static __le32 ixgbevf_tx_cmd_type(u32 tx_flags)
3903 {
3904 /* set type for advanced descriptor with frame checksum insertion */
3905 __le32 cmd_type = cpu_to_le32(IXGBE_ADVTXD_DTYP_DATA |
3906 IXGBE_ADVTXD_DCMD_IFCS |
3907 IXGBE_ADVTXD_DCMD_DEXT);
3908
3909 /* set HW VLAN bit if VLAN is present */
3910 if (tx_flags & IXGBE_TX_FLAGS_VLAN)
3911 cmd_type |= cpu_to_le32(IXGBE_ADVTXD_DCMD_VLE);
3912
3913 /* set segmentation enable bits for TSO/FSO */
3914 if (tx_flags & IXGBE_TX_FLAGS_TSO)
3915 cmd_type |= cpu_to_le32(IXGBE_ADVTXD_DCMD_TSE);
3916
3917 return cmd_type;
3918 }
3919
ixgbevf_tx_olinfo_status(union ixgbe_adv_tx_desc * tx_desc,u32 tx_flags,unsigned int paylen)3920 static void ixgbevf_tx_olinfo_status(union ixgbe_adv_tx_desc *tx_desc,
3921 u32 tx_flags, unsigned int paylen)
3922 {
3923 __le32 olinfo_status = cpu_to_le32(paylen << IXGBE_ADVTXD_PAYLEN_SHIFT);
3924
3925 /* enable L4 checksum for TSO and TX checksum offload */
3926 if (tx_flags & IXGBE_TX_FLAGS_CSUM)
3927 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_TXSM);
3928
3929 /* enble IPv4 checksum for TSO */
3930 if (tx_flags & IXGBE_TX_FLAGS_IPV4)
3931 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_IXSM);
3932
3933 /* enable IPsec */
3934 if (tx_flags & IXGBE_TX_FLAGS_IPSEC)
3935 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_IPSEC);
3936
3937 /* use index 1 context for TSO/FSO/FCOE/IPSEC */
3938 if (tx_flags & (IXGBE_TX_FLAGS_TSO | IXGBE_TX_FLAGS_IPSEC))
3939 olinfo_status |= cpu_to_le32(1u << IXGBE_ADVTXD_IDX_SHIFT);
3940
3941 /* Check Context must be set if Tx switch is enabled, which it
3942 * always is for case where virtual functions are running
3943 */
3944 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_CC);
3945
3946 tx_desc->read.olinfo_status = olinfo_status;
3947 }
3948
ixgbevf_tx_map(struct ixgbevf_ring * tx_ring,struct ixgbevf_tx_buffer * first,const u8 hdr_len)3949 static void ixgbevf_tx_map(struct ixgbevf_ring *tx_ring,
3950 struct ixgbevf_tx_buffer *first,
3951 const u8 hdr_len)
3952 {
3953 struct sk_buff *skb = first->skb;
3954 struct ixgbevf_tx_buffer *tx_buffer;
3955 union ixgbe_adv_tx_desc *tx_desc;
3956 skb_frag_t *frag;
3957 dma_addr_t dma;
3958 unsigned int data_len, size;
3959 u32 tx_flags = first->tx_flags;
3960 __le32 cmd_type = ixgbevf_tx_cmd_type(tx_flags);
3961 u16 i = tx_ring->next_to_use;
3962
3963 tx_desc = IXGBEVF_TX_DESC(tx_ring, i);
3964
3965 ixgbevf_tx_olinfo_status(tx_desc, tx_flags, skb->len - hdr_len);
3966
3967 size = skb_headlen(skb);
3968 data_len = skb->data_len;
3969
3970 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
3971
3972 tx_buffer = first;
3973
3974 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
3975 if (dma_mapping_error(tx_ring->dev, dma))
3976 goto dma_error;
3977
3978 /* record length, and DMA address */
3979 dma_unmap_len_set(tx_buffer, len, size);
3980 dma_unmap_addr_set(tx_buffer, dma, dma);
3981
3982 tx_desc->read.buffer_addr = cpu_to_le64(dma);
3983
3984 while (unlikely(size > IXGBE_MAX_DATA_PER_TXD)) {
3985 tx_desc->read.cmd_type_len =
3986 cmd_type | cpu_to_le32(IXGBE_MAX_DATA_PER_TXD);
3987
3988 i++;
3989 tx_desc++;
3990 if (i == tx_ring->count) {
3991 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
3992 i = 0;
3993 }
3994 tx_desc->read.olinfo_status = 0;
3995
3996 dma += IXGBE_MAX_DATA_PER_TXD;
3997 size -= IXGBE_MAX_DATA_PER_TXD;
3998
3999 tx_desc->read.buffer_addr = cpu_to_le64(dma);
4000 }
4001
4002 if (likely(!data_len))
4003 break;
4004
4005 tx_desc->read.cmd_type_len = cmd_type | cpu_to_le32(size);
4006
4007 i++;
4008 tx_desc++;
4009 if (i == tx_ring->count) {
4010 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
4011 i = 0;
4012 }
4013 tx_desc->read.olinfo_status = 0;
4014
4015 size = skb_frag_size(frag);
4016 data_len -= size;
4017
4018 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
4019 DMA_TO_DEVICE);
4020
4021 tx_buffer = &tx_ring->tx_buffer_info[i];
4022 }
4023
4024 /* write last descriptor with RS and EOP bits */
4025 cmd_type |= cpu_to_le32(size) | cpu_to_le32(IXGBE_TXD_CMD);
4026 tx_desc->read.cmd_type_len = cmd_type;
4027
4028 /* set the timestamp */
4029 first->time_stamp = jiffies;
4030
4031 skb_tx_timestamp(skb);
4032
4033 /* Force memory writes to complete before letting h/w know there
4034 * are new descriptors to fetch. (Only applicable for weak-ordered
4035 * memory model archs, such as IA-64).
4036 *
4037 * We also need this memory barrier (wmb) to make certain all of the
4038 * status bits have been updated before next_to_watch is written.
4039 */
4040 wmb();
4041
4042 /* set next_to_watch value indicating a packet is present */
4043 first->next_to_watch = tx_desc;
4044
4045 i++;
4046 if (i == tx_ring->count)
4047 i = 0;
4048
4049 tx_ring->next_to_use = i;
4050
4051 /* notify HW of packet */
4052 ixgbevf_write_tail(tx_ring, i);
4053
4054 return;
4055 dma_error:
4056 dev_err(tx_ring->dev, "TX DMA map failed\n");
4057 tx_buffer = &tx_ring->tx_buffer_info[i];
4058
4059 /* clear dma mappings for failed tx_buffer_info map */
4060 while (tx_buffer != first) {
4061 if (dma_unmap_len(tx_buffer, len))
4062 dma_unmap_page(tx_ring->dev,
4063 dma_unmap_addr(tx_buffer, dma),
4064 dma_unmap_len(tx_buffer, len),
4065 DMA_TO_DEVICE);
4066 dma_unmap_len_set(tx_buffer, len, 0);
4067
4068 if (i-- == 0)
4069 i += tx_ring->count;
4070 tx_buffer = &tx_ring->tx_buffer_info[i];
4071 }
4072
4073 if (dma_unmap_len(tx_buffer, len))
4074 dma_unmap_single(tx_ring->dev,
4075 dma_unmap_addr(tx_buffer, dma),
4076 dma_unmap_len(tx_buffer, len),
4077 DMA_TO_DEVICE);
4078 dma_unmap_len_set(tx_buffer, len, 0);
4079
4080 dev_kfree_skb_any(tx_buffer->skb);
4081 tx_buffer->skb = NULL;
4082
4083 tx_ring->next_to_use = i;
4084 }
4085
__ixgbevf_maybe_stop_tx(struct ixgbevf_ring * tx_ring,int size)4086 static int __ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size)
4087 {
4088 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
4089 /* Herbert's original patch had:
4090 * smp_mb__after_netif_stop_queue();
4091 * but since that doesn't exist yet, just open code it.
4092 */
4093 smp_mb();
4094
4095 /* We need to check again in a case another CPU has just
4096 * made room available.
4097 */
4098 if (likely(ixgbevf_desc_unused(tx_ring) < size))
4099 return -EBUSY;
4100
4101 /* A reprieve! - use start_queue because it doesn't call schedule */
4102 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
4103 ++tx_ring->tx_stats.restart_queue;
4104
4105 return 0;
4106 }
4107
ixgbevf_maybe_stop_tx(struct ixgbevf_ring * tx_ring,int size)4108 static int ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size)
4109 {
4110 if (likely(ixgbevf_desc_unused(tx_ring) >= size))
4111 return 0;
4112 return __ixgbevf_maybe_stop_tx(tx_ring, size);
4113 }
4114
ixgbevf_xmit_frame_ring(struct sk_buff * skb,struct ixgbevf_ring * tx_ring)4115 static int ixgbevf_xmit_frame_ring(struct sk_buff *skb,
4116 struct ixgbevf_ring *tx_ring)
4117 {
4118 struct ixgbevf_tx_buffer *first;
4119 int tso;
4120 u32 tx_flags = 0;
4121 u16 count = TXD_USE_COUNT(skb_headlen(skb));
4122 struct ixgbevf_ipsec_tx_data ipsec_tx = { 0 };
4123 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD
4124 unsigned short f;
4125 #endif
4126 u8 hdr_len = 0;
4127 u8 *dst_mac = skb_header_pointer(skb, 0, 0, NULL);
4128
4129 if (!dst_mac || is_link_local_ether_addr(dst_mac)) {
4130 dev_kfree_skb_any(skb);
4131 return NETDEV_TX_OK;
4132 }
4133
4134 /* need: 1 descriptor per page * PAGE_SIZE/IXGBE_MAX_DATA_PER_TXD,
4135 * + 1 desc for skb_headlen/IXGBE_MAX_DATA_PER_TXD,
4136 * + 2 desc gap to keep tail from touching head,
4137 * + 1 desc for context descriptor,
4138 * otherwise try next time
4139 */
4140 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD
4141 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
4142 skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
4143
4144 count += TXD_USE_COUNT(skb_frag_size(frag));
4145 }
4146 #else
4147 count += skb_shinfo(skb)->nr_frags;
4148 #endif
4149 if (ixgbevf_maybe_stop_tx(tx_ring, count + 3)) {
4150 tx_ring->tx_stats.tx_busy++;
4151 return NETDEV_TX_BUSY;
4152 }
4153
4154 /* record the location of the first descriptor for this packet */
4155 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
4156 first->skb = skb;
4157 first->bytecount = skb->len;
4158 first->gso_segs = 1;
4159
4160 if (skb_vlan_tag_present(skb)) {
4161 tx_flags |= skb_vlan_tag_get(skb);
4162 tx_flags <<= IXGBE_TX_FLAGS_VLAN_SHIFT;
4163 tx_flags |= IXGBE_TX_FLAGS_VLAN;
4164 }
4165
4166 /* record initial flags and protocol */
4167 first->tx_flags = tx_flags;
4168 first->protocol = vlan_get_protocol(skb);
4169
4170 #ifdef CONFIG_IXGBEVF_IPSEC
4171 if (xfrm_offload(skb) && !ixgbevf_ipsec_tx(tx_ring, first, &ipsec_tx))
4172 goto out_drop;
4173 #endif
4174 tso = ixgbevf_tso(tx_ring, first, &hdr_len, &ipsec_tx);
4175 if (tso < 0)
4176 goto out_drop;
4177 else if (!tso)
4178 ixgbevf_tx_csum(tx_ring, first, &ipsec_tx);
4179
4180 ixgbevf_tx_map(tx_ring, first, hdr_len);
4181
4182 ixgbevf_maybe_stop_tx(tx_ring, DESC_NEEDED);
4183
4184 return NETDEV_TX_OK;
4185
4186 out_drop:
4187 dev_kfree_skb_any(first->skb);
4188 first->skb = NULL;
4189
4190 return NETDEV_TX_OK;
4191 }
4192
ixgbevf_xmit_frame(struct sk_buff * skb,struct net_device * netdev)4193 static netdev_tx_t ixgbevf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
4194 {
4195 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4196 struct ixgbevf_ring *tx_ring;
4197
4198 if (skb->len <= 0) {
4199 dev_kfree_skb_any(skb);
4200 return NETDEV_TX_OK;
4201 }
4202
4203 /* The minimum packet size for olinfo paylen is 17 so pad the skb
4204 * in order to meet this minimum size requirement.
4205 */
4206 if (skb->len < 17) {
4207 if (skb_padto(skb, 17))
4208 return NETDEV_TX_OK;
4209 skb->len = 17;
4210 }
4211
4212 tx_ring = adapter->tx_ring[skb->queue_mapping];
4213 return ixgbevf_xmit_frame_ring(skb, tx_ring);
4214 }
4215
4216 /**
4217 * ixgbevf_set_mac - Change the Ethernet Address of the NIC
4218 * @netdev: network interface device structure
4219 * @p: pointer to an address structure
4220 *
4221 * Returns 0 on success, negative on failure
4222 **/
ixgbevf_set_mac(struct net_device * netdev,void * p)4223 static int ixgbevf_set_mac(struct net_device *netdev, void *p)
4224 {
4225 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4226 struct ixgbe_hw *hw = &adapter->hw;
4227 struct sockaddr *addr = p;
4228 int err;
4229
4230 if (!is_valid_ether_addr(addr->sa_data))
4231 return -EADDRNOTAVAIL;
4232
4233 spin_lock_bh(&adapter->mbx_lock);
4234
4235 err = hw->mac.ops.set_rar(hw, 0, addr->sa_data, 0);
4236
4237 spin_unlock_bh(&adapter->mbx_lock);
4238
4239 if (err)
4240 return -EPERM;
4241
4242 ether_addr_copy(hw->mac.addr, addr->sa_data);
4243 ether_addr_copy(hw->mac.perm_addr, addr->sa_data);
4244 ether_addr_copy(netdev->dev_addr, addr->sa_data);
4245
4246 return 0;
4247 }
4248
4249 /**
4250 * ixgbevf_change_mtu - Change the Maximum Transfer Unit
4251 * @netdev: network interface device structure
4252 * @new_mtu: new value for maximum frame size
4253 *
4254 * Returns 0 on success, negative on failure
4255 **/
ixgbevf_change_mtu(struct net_device * netdev,int new_mtu)4256 static int ixgbevf_change_mtu(struct net_device *netdev, int new_mtu)
4257 {
4258 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4259 struct ixgbe_hw *hw = &adapter->hw;
4260 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
4261 int ret;
4262
4263 /* prevent MTU being changed to a size unsupported by XDP */
4264 if (adapter->xdp_prog) {
4265 dev_warn(&adapter->pdev->dev, "MTU cannot be changed while XDP program is loaded\n");
4266 return -EPERM;
4267 }
4268
4269 spin_lock_bh(&adapter->mbx_lock);
4270 /* notify the PF of our intent to use this size of frame */
4271 ret = hw->mac.ops.set_rlpml(hw, max_frame);
4272 spin_unlock_bh(&adapter->mbx_lock);
4273 if (ret)
4274 return -EINVAL;
4275
4276 hw_dbg(hw, "changing MTU from %d to %d\n",
4277 netdev->mtu, new_mtu);
4278
4279 /* must set new MTU before calling down or up */
4280 netdev->mtu = new_mtu;
4281
4282 if (netif_running(netdev))
4283 ixgbevf_reinit_locked(adapter);
4284
4285 return 0;
4286 }
4287
ixgbevf_suspend(struct pci_dev * pdev,pm_message_t state)4288 static int ixgbevf_suspend(struct pci_dev *pdev, pm_message_t state)
4289 {
4290 struct net_device *netdev = pci_get_drvdata(pdev);
4291 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4292 #ifdef CONFIG_PM
4293 int retval = 0;
4294 #endif
4295
4296 rtnl_lock();
4297 netif_device_detach(netdev);
4298
4299 if (netif_running(netdev))
4300 ixgbevf_close_suspend(adapter);
4301
4302 ixgbevf_clear_interrupt_scheme(adapter);
4303 rtnl_unlock();
4304
4305 #ifdef CONFIG_PM
4306 retval = pci_save_state(pdev);
4307 if (retval)
4308 return retval;
4309
4310 #endif
4311 if (!test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state))
4312 pci_disable_device(pdev);
4313
4314 return 0;
4315 }
4316
4317 #ifdef CONFIG_PM
ixgbevf_resume(struct pci_dev * pdev)4318 static int ixgbevf_resume(struct pci_dev *pdev)
4319 {
4320 struct net_device *netdev = pci_get_drvdata(pdev);
4321 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4322 u32 err;
4323
4324 pci_restore_state(pdev);
4325 /* pci_restore_state clears dev->state_saved so call
4326 * pci_save_state to restore it.
4327 */
4328 pci_save_state(pdev);
4329
4330 err = pci_enable_device_mem(pdev);
4331 if (err) {
4332 dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n");
4333 return err;
4334 }
4335
4336 adapter->hw.hw_addr = adapter->io_addr;
4337 smp_mb__before_atomic();
4338 clear_bit(__IXGBEVF_DISABLED, &adapter->state);
4339 pci_set_master(pdev);
4340
4341 ixgbevf_reset(adapter);
4342
4343 rtnl_lock();
4344 err = ixgbevf_init_interrupt_scheme(adapter);
4345 if (!err && netif_running(netdev))
4346 err = ixgbevf_open(netdev);
4347 rtnl_unlock();
4348 if (err)
4349 return err;
4350
4351 netif_device_attach(netdev);
4352
4353 return err;
4354 }
4355
4356 #endif /* CONFIG_PM */
ixgbevf_shutdown(struct pci_dev * pdev)4357 static void ixgbevf_shutdown(struct pci_dev *pdev)
4358 {
4359 ixgbevf_suspend(pdev, PMSG_SUSPEND);
4360 }
4361
ixgbevf_get_tx_ring_stats(struct rtnl_link_stats64 * stats,const struct ixgbevf_ring * ring)4362 static void ixgbevf_get_tx_ring_stats(struct rtnl_link_stats64 *stats,
4363 const struct ixgbevf_ring *ring)
4364 {
4365 u64 bytes, packets;
4366 unsigned int start;
4367
4368 if (ring) {
4369 do {
4370 start = u64_stats_fetch_begin_irq(&ring->syncp);
4371 bytes = ring->stats.bytes;
4372 packets = ring->stats.packets;
4373 } while (u64_stats_fetch_retry_irq(&ring->syncp, start));
4374 stats->tx_bytes += bytes;
4375 stats->tx_packets += packets;
4376 }
4377 }
4378
ixgbevf_get_stats(struct net_device * netdev,struct rtnl_link_stats64 * stats)4379 static void ixgbevf_get_stats(struct net_device *netdev,
4380 struct rtnl_link_stats64 *stats)
4381 {
4382 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4383 unsigned int start;
4384 u64 bytes, packets;
4385 const struct ixgbevf_ring *ring;
4386 int i;
4387
4388 ixgbevf_update_stats(adapter);
4389
4390 stats->multicast = adapter->stats.vfmprc - adapter->stats.base_vfmprc;
4391
4392 rcu_read_lock();
4393 for (i = 0; i < adapter->num_rx_queues; i++) {
4394 ring = adapter->rx_ring[i];
4395 do {
4396 start = u64_stats_fetch_begin_irq(&ring->syncp);
4397 bytes = ring->stats.bytes;
4398 packets = ring->stats.packets;
4399 } while (u64_stats_fetch_retry_irq(&ring->syncp, start));
4400 stats->rx_bytes += bytes;
4401 stats->rx_packets += packets;
4402 }
4403
4404 for (i = 0; i < adapter->num_tx_queues; i++) {
4405 ring = adapter->tx_ring[i];
4406 ixgbevf_get_tx_ring_stats(stats, ring);
4407 }
4408
4409 for (i = 0; i < adapter->num_xdp_queues; i++) {
4410 ring = adapter->xdp_ring[i];
4411 ixgbevf_get_tx_ring_stats(stats, ring);
4412 }
4413 rcu_read_unlock();
4414 }
4415
4416 #define IXGBEVF_MAX_MAC_HDR_LEN 127
4417 #define IXGBEVF_MAX_NETWORK_HDR_LEN 511
4418
4419 static netdev_features_t
ixgbevf_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)4420 ixgbevf_features_check(struct sk_buff *skb, struct net_device *dev,
4421 netdev_features_t features)
4422 {
4423 unsigned int network_hdr_len, mac_hdr_len;
4424
4425 /* Make certain the headers can be described by a context descriptor */
4426 mac_hdr_len = skb_network_header(skb) - skb->data;
4427 if (unlikely(mac_hdr_len > IXGBEVF_MAX_MAC_HDR_LEN))
4428 return features & ~(NETIF_F_HW_CSUM |
4429 NETIF_F_SCTP_CRC |
4430 NETIF_F_HW_VLAN_CTAG_TX |
4431 NETIF_F_TSO |
4432 NETIF_F_TSO6);
4433
4434 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
4435 if (unlikely(network_hdr_len > IXGBEVF_MAX_NETWORK_HDR_LEN))
4436 return features & ~(NETIF_F_HW_CSUM |
4437 NETIF_F_SCTP_CRC |
4438 NETIF_F_TSO |
4439 NETIF_F_TSO6);
4440
4441 /* We can only support IPV4 TSO in tunnels if we can mangle the
4442 * inner IP ID field, so strip TSO if MANGLEID is not supported.
4443 */
4444 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
4445 features &= ~NETIF_F_TSO;
4446
4447 return features;
4448 }
4449
ixgbevf_xdp_setup(struct net_device * dev,struct bpf_prog * prog)4450 static int ixgbevf_xdp_setup(struct net_device *dev, struct bpf_prog *prog)
4451 {
4452 int i, frame_size = dev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
4453 struct ixgbevf_adapter *adapter = netdev_priv(dev);
4454 struct bpf_prog *old_prog;
4455
4456 /* verify ixgbevf ring attributes are sufficient for XDP */
4457 for (i = 0; i < adapter->num_rx_queues; i++) {
4458 struct ixgbevf_ring *ring = adapter->rx_ring[i];
4459
4460 if (frame_size > ixgbevf_rx_bufsz(ring))
4461 return -EINVAL;
4462 }
4463
4464 old_prog = xchg(&adapter->xdp_prog, prog);
4465
4466 /* If transitioning XDP modes reconfigure rings */
4467 if (!!prog != !!old_prog) {
4468 /* Hardware has to reinitialize queues and interrupts to
4469 * match packet buffer alignment. Unfortunately, the
4470 * hardware is not flexible enough to do this dynamically.
4471 */
4472 if (netif_running(dev))
4473 ixgbevf_close(dev);
4474
4475 ixgbevf_clear_interrupt_scheme(adapter);
4476 ixgbevf_init_interrupt_scheme(adapter);
4477
4478 if (netif_running(dev))
4479 ixgbevf_open(dev);
4480 } else {
4481 for (i = 0; i < adapter->num_rx_queues; i++)
4482 xchg(&adapter->rx_ring[i]->xdp_prog, adapter->xdp_prog);
4483 }
4484
4485 if (old_prog)
4486 bpf_prog_put(old_prog);
4487
4488 return 0;
4489 }
4490
ixgbevf_xdp(struct net_device * dev,struct netdev_bpf * xdp)4491 static int ixgbevf_xdp(struct net_device *dev, struct netdev_bpf *xdp)
4492 {
4493 struct ixgbevf_adapter *adapter = netdev_priv(dev);
4494
4495 switch (xdp->command) {
4496 case XDP_SETUP_PROG:
4497 return ixgbevf_xdp_setup(dev, xdp->prog);
4498 case XDP_QUERY_PROG:
4499 xdp->prog_id = adapter->xdp_prog ?
4500 adapter->xdp_prog->aux->id : 0;
4501 return 0;
4502 default:
4503 return -EINVAL;
4504 }
4505 }
4506
4507 static const struct net_device_ops ixgbevf_netdev_ops = {
4508 .ndo_open = ixgbevf_open,
4509 .ndo_stop = ixgbevf_close,
4510 .ndo_start_xmit = ixgbevf_xmit_frame,
4511 .ndo_set_rx_mode = ixgbevf_set_rx_mode,
4512 .ndo_get_stats64 = ixgbevf_get_stats,
4513 .ndo_validate_addr = eth_validate_addr,
4514 .ndo_set_mac_address = ixgbevf_set_mac,
4515 .ndo_change_mtu = ixgbevf_change_mtu,
4516 .ndo_tx_timeout = ixgbevf_tx_timeout,
4517 .ndo_vlan_rx_add_vid = ixgbevf_vlan_rx_add_vid,
4518 .ndo_vlan_rx_kill_vid = ixgbevf_vlan_rx_kill_vid,
4519 .ndo_features_check = ixgbevf_features_check,
4520 .ndo_bpf = ixgbevf_xdp,
4521 };
4522
ixgbevf_assign_netdev_ops(struct net_device * dev)4523 static void ixgbevf_assign_netdev_ops(struct net_device *dev)
4524 {
4525 dev->netdev_ops = &ixgbevf_netdev_ops;
4526 ixgbevf_set_ethtool_ops(dev);
4527 dev->watchdog_timeo = 5 * HZ;
4528 }
4529
4530 /**
4531 * ixgbevf_probe - Device Initialization Routine
4532 * @pdev: PCI device information struct
4533 * @ent: entry in ixgbevf_pci_tbl
4534 *
4535 * Returns 0 on success, negative on failure
4536 *
4537 * ixgbevf_probe initializes an adapter identified by a pci_dev structure.
4538 * The OS initialization, configuring of the adapter private structure,
4539 * and a hardware reset occur.
4540 **/
ixgbevf_probe(struct pci_dev * pdev,const struct pci_device_id * ent)4541 static int ixgbevf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
4542 {
4543 struct net_device *netdev;
4544 struct ixgbevf_adapter *adapter = NULL;
4545 struct ixgbe_hw *hw = NULL;
4546 const struct ixgbevf_info *ii = ixgbevf_info_tbl[ent->driver_data];
4547 int err, pci_using_dac;
4548 bool disable_dev = false;
4549
4550 err = pci_enable_device(pdev);
4551 if (err)
4552 return err;
4553
4554 if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
4555 pci_using_dac = 1;
4556 } else {
4557 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
4558 if (err) {
4559 dev_err(&pdev->dev, "No usable DMA configuration, aborting\n");
4560 goto err_dma;
4561 }
4562 pci_using_dac = 0;
4563 }
4564
4565 err = pci_request_regions(pdev, ixgbevf_driver_name);
4566 if (err) {
4567 dev_err(&pdev->dev, "pci_request_regions failed 0x%x\n", err);
4568 goto err_pci_reg;
4569 }
4570
4571 pci_set_master(pdev);
4572
4573 netdev = alloc_etherdev_mq(sizeof(struct ixgbevf_adapter),
4574 MAX_TX_QUEUES);
4575 if (!netdev) {
4576 err = -ENOMEM;
4577 goto err_alloc_etherdev;
4578 }
4579
4580 SET_NETDEV_DEV(netdev, &pdev->dev);
4581
4582 adapter = netdev_priv(netdev);
4583
4584 adapter->netdev = netdev;
4585 adapter->pdev = pdev;
4586 hw = &adapter->hw;
4587 hw->back = adapter;
4588 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
4589
4590 /* call save state here in standalone driver because it relies on
4591 * adapter struct to exist, and needs to call netdev_priv
4592 */
4593 pci_save_state(pdev);
4594
4595 hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
4596 pci_resource_len(pdev, 0));
4597 adapter->io_addr = hw->hw_addr;
4598 if (!hw->hw_addr) {
4599 err = -EIO;
4600 goto err_ioremap;
4601 }
4602
4603 ixgbevf_assign_netdev_ops(netdev);
4604
4605 /* Setup HW API */
4606 memcpy(&hw->mac.ops, ii->mac_ops, sizeof(hw->mac.ops));
4607 hw->mac.type = ii->mac;
4608
4609 memcpy(&hw->mbx.ops, &ixgbevf_mbx_ops,
4610 sizeof(struct ixgbe_mbx_operations));
4611
4612 /* setup the private structure */
4613 err = ixgbevf_sw_init(adapter);
4614 if (err)
4615 goto err_sw_init;
4616
4617 /* The HW MAC address was set and/or determined in sw_init */
4618 if (!is_valid_ether_addr(netdev->dev_addr)) {
4619 pr_err("invalid MAC address\n");
4620 err = -EIO;
4621 goto err_sw_init;
4622 }
4623
4624 netdev->hw_features = NETIF_F_SG |
4625 NETIF_F_TSO |
4626 NETIF_F_TSO6 |
4627 NETIF_F_RXCSUM |
4628 NETIF_F_HW_CSUM |
4629 NETIF_F_SCTP_CRC;
4630
4631 #define IXGBEVF_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
4632 NETIF_F_GSO_GRE_CSUM | \
4633 NETIF_F_GSO_IPXIP4 | \
4634 NETIF_F_GSO_IPXIP6 | \
4635 NETIF_F_GSO_UDP_TUNNEL | \
4636 NETIF_F_GSO_UDP_TUNNEL_CSUM)
4637
4638 netdev->gso_partial_features = IXGBEVF_GSO_PARTIAL_FEATURES;
4639 netdev->hw_features |= NETIF_F_GSO_PARTIAL |
4640 IXGBEVF_GSO_PARTIAL_FEATURES;
4641
4642 netdev->features = netdev->hw_features;
4643
4644 if (pci_using_dac)
4645 netdev->features |= NETIF_F_HIGHDMA;
4646
4647 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
4648 netdev->mpls_features |= NETIF_F_SG |
4649 NETIF_F_TSO |
4650 NETIF_F_TSO6 |
4651 NETIF_F_HW_CSUM;
4652 netdev->mpls_features |= IXGBEVF_GSO_PARTIAL_FEATURES;
4653 netdev->hw_enc_features |= netdev->vlan_features;
4654
4655 /* set this bit last since it cannot be part of vlan_features */
4656 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
4657 NETIF_F_HW_VLAN_CTAG_RX |
4658 NETIF_F_HW_VLAN_CTAG_TX;
4659
4660 netdev->priv_flags |= IFF_UNICAST_FLT;
4661
4662 /* MTU range: 68 - 1504 or 9710 */
4663 netdev->min_mtu = ETH_MIN_MTU;
4664 switch (adapter->hw.api_version) {
4665 case ixgbe_mbox_api_11:
4666 case ixgbe_mbox_api_12:
4667 case ixgbe_mbox_api_13:
4668 case ixgbe_mbox_api_14:
4669 netdev->max_mtu = IXGBE_MAX_JUMBO_FRAME_SIZE -
4670 (ETH_HLEN + ETH_FCS_LEN);
4671 break;
4672 default:
4673 if (adapter->hw.mac.type != ixgbe_mac_82599_vf)
4674 netdev->max_mtu = IXGBE_MAX_JUMBO_FRAME_SIZE -
4675 (ETH_HLEN + ETH_FCS_LEN);
4676 else
4677 netdev->max_mtu = ETH_DATA_LEN + ETH_FCS_LEN;
4678 break;
4679 }
4680
4681 if (IXGBE_REMOVED(hw->hw_addr)) {
4682 err = -EIO;
4683 goto err_sw_init;
4684 }
4685
4686 timer_setup(&adapter->service_timer, ixgbevf_service_timer, 0);
4687
4688 INIT_WORK(&adapter->service_task, ixgbevf_service_task);
4689 set_bit(__IXGBEVF_SERVICE_INITED, &adapter->state);
4690 clear_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state);
4691
4692 err = ixgbevf_init_interrupt_scheme(adapter);
4693 if (err)
4694 goto err_sw_init;
4695
4696 strcpy(netdev->name, "eth%d");
4697
4698 err = register_netdev(netdev);
4699 if (err)
4700 goto err_register;
4701
4702 pci_set_drvdata(pdev, netdev);
4703 netif_carrier_off(netdev);
4704 ixgbevf_init_ipsec_offload(adapter);
4705
4706 ixgbevf_init_last_counter_stats(adapter);
4707
4708 /* print the VF info */
4709 dev_info(&pdev->dev, "%pM\n", netdev->dev_addr);
4710 dev_info(&pdev->dev, "MAC: %d\n", hw->mac.type);
4711
4712 switch (hw->mac.type) {
4713 case ixgbe_mac_X550_vf:
4714 dev_info(&pdev->dev, "Intel(R) X550 Virtual Function\n");
4715 break;
4716 case ixgbe_mac_X540_vf:
4717 dev_info(&pdev->dev, "Intel(R) X540 Virtual Function\n");
4718 break;
4719 case ixgbe_mac_82599_vf:
4720 default:
4721 dev_info(&pdev->dev, "Intel(R) 82599 Virtual Function\n");
4722 break;
4723 }
4724
4725 return 0;
4726
4727 err_register:
4728 ixgbevf_clear_interrupt_scheme(adapter);
4729 err_sw_init:
4730 ixgbevf_reset_interrupt_capability(adapter);
4731 iounmap(adapter->io_addr);
4732 kfree(adapter->rss_key);
4733 err_ioremap:
4734 disable_dev = !test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state);
4735 free_netdev(netdev);
4736 err_alloc_etherdev:
4737 pci_release_regions(pdev);
4738 err_pci_reg:
4739 err_dma:
4740 if (!adapter || disable_dev)
4741 pci_disable_device(pdev);
4742 return err;
4743 }
4744
4745 /**
4746 * ixgbevf_remove - Device Removal Routine
4747 * @pdev: PCI device information struct
4748 *
4749 * ixgbevf_remove is called by the PCI subsystem to alert the driver
4750 * that it should release a PCI device. The could be caused by a
4751 * Hot-Plug event, or because the driver is going to be removed from
4752 * memory.
4753 **/
ixgbevf_remove(struct pci_dev * pdev)4754 static void ixgbevf_remove(struct pci_dev *pdev)
4755 {
4756 struct net_device *netdev = pci_get_drvdata(pdev);
4757 struct ixgbevf_adapter *adapter;
4758 bool disable_dev;
4759
4760 if (!netdev)
4761 return;
4762
4763 adapter = netdev_priv(netdev);
4764
4765 set_bit(__IXGBEVF_REMOVING, &adapter->state);
4766 cancel_work_sync(&adapter->service_task);
4767
4768 if (netdev->reg_state == NETREG_REGISTERED)
4769 unregister_netdev(netdev);
4770
4771 ixgbevf_stop_ipsec_offload(adapter);
4772 ixgbevf_clear_interrupt_scheme(adapter);
4773 ixgbevf_reset_interrupt_capability(adapter);
4774
4775 iounmap(adapter->io_addr);
4776 pci_release_regions(pdev);
4777
4778 hw_dbg(&adapter->hw, "Remove complete\n");
4779
4780 kfree(adapter->rss_key);
4781 disable_dev = !test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state);
4782 free_netdev(netdev);
4783
4784 if (disable_dev)
4785 pci_disable_device(pdev);
4786 }
4787
4788 /**
4789 * ixgbevf_io_error_detected - called when PCI error is detected
4790 * @pdev: Pointer to PCI device
4791 * @state: The current pci connection state
4792 *
4793 * This function is called after a PCI bus error affecting
4794 * this device has been detected.
4795 **/
ixgbevf_io_error_detected(struct pci_dev * pdev,pci_channel_state_t state)4796 static pci_ers_result_t ixgbevf_io_error_detected(struct pci_dev *pdev,
4797 pci_channel_state_t state)
4798 {
4799 struct net_device *netdev = pci_get_drvdata(pdev);
4800 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4801
4802 if (!test_bit(__IXGBEVF_SERVICE_INITED, &adapter->state))
4803 return PCI_ERS_RESULT_DISCONNECT;
4804
4805 rtnl_lock();
4806 netif_device_detach(netdev);
4807
4808 if (netif_running(netdev))
4809 ixgbevf_close_suspend(adapter);
4810
4811 if (state == pci_channel_io_perm_failure) {
4812 rtnl_unlock();
4813 return PCI_ERS_RESULT_DISCONNECT;
4814 }
4815
4816 if (!test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state))
4817 pci_disable_device(pdev);
4818 rtnl_unlock();
4819
4820 /* Request a slot slot reset. */
4821 return PCI_ERS_RESULT_NEED_RESET;
4822 }
4823
4824 /**
4825 * ixgbevf_io_slot_reset - called after the pci bus has been reset.
4826 * @pdev: Pointer to PCI device
4827 *
4828 * Restart the card from scratch, as if from a cold-boot. Implementation
4829 * resembles the first-half of the ixgbevf_resume routine.
4830 **/
ixgbevf_io_slot_reset(struct pci_dev * pdev)4831 static pci_ers_result_t ixgbevf_io_slot_reset(struct pci_dev *pdev)
4832 {
4833 struct net_device *netdev = pci_get_drvdata(pdev);
4834 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4835
4836 if (pci_enable_device_mem(pdev)) {
4837 dev_err(&pdev->dev,
4838 "Cannot re-enable PCI device after reset.\n");
4839 return PCI_ERS_RESULT_DISCONNECT;
4840 }
4841
4842 adapter->hw.hw_addr = adapter->io_addr;
4843 smp_mb__before_atomic();
4844 clear_bit(__IXGBEVF_DISABLED, &adapter->state);
4845 pci_set_master(pdev);
4846
4847 ixgbevf_reset(adapter);
4848
4849 return PCI_ERS_RESULT_RECOVERED;
4850 }
4851
4852 /**
4853 * ixgbevf_io_resume - called when traffic can start flowing again.
4854 * @pdev: Pointer to PCI device
4855 *
4856 * This callback is called when the error recovery driver tells us that
4857 * its OK to resume normal operation. Implementation resembles the
4858 * second-half of the ixgbevf_resume routine.
4859 **/
ixgbevf_io_resume(struct pci_dev * pdev)4860 static void ixgbevf_io_resume(struct pci_dev *pdev)
4861 {
4862 struct net_device *netdev = pci_get_drvdata(pdev);
4863
4864 rtnl_lock();
4865 if (netif_running(netdev))
4866 ixgbevf_open(netdev);
4867
4868 netif_device_attach(netdev);
4869 rtnl_unlock();
4870 }
4871
4872 /* PCI Error Recovery (ERS) */
4873 static const struct pci_error_handlers ixgbevf_err_handler = {
4874 .error_detected = ixgbevf_io_error_detected,
4875 .slot_reset = ixgbevf_io_slot_reset,
4876 .resume = ixgbevf_io_resume,
4877 };
4878
4879 static struct pci_driver ixgbevf_driver = {
4880 .name = ixgbevf_driver_name,
4881 .id_table = ixgbevf_pci_tbl,
4882 .probe = ixgbevf_probe,
4883 .remove = ixgbevf_remove,
4884 #ifdef CONFIG_PM
4885 /* Power Management Hooks */
4886 .suspend = ixgbevf_suspend,
4887 .resume = ixgbevf_resume,
4888 #endif
4889 .shutdown = ixgbevf_shutdown,
4890 .err_handler = &ixgbevf_err_handler
4891 };
4892
4893 /**
4894 * ixgbevf_init_module - Driver Registration Routine
4895 *
4896 * ixgbevf_init_module is the first routine called when the driver is
4897 * loaded. All it does is register with the PCI subsystem.
4898 **/
ixgbevf_init_module(void)4899 static int __init ixgbevf_init_module(void)
4900 {
4901 pr_info("%s - version %s\n", ixgbevf_driver_string,
4902 ixgbevf_driver_version);
4903
4904 pr_info("%s\n", ixgbevf_copyright);
4905 ixgbevf_wq = create_singlethread_workqueue(ixgbevf_driver_name);
4906 if (!ixgbevf_wq) {
4907 pr_err("%s: Failed to create workqueue\n", ixgbevf_driver_name);
4908 return -ENOMEM;
4909 }
4910
4911 return pci_register_driver(&ixgbevf_driver);
4912 }
4913
4914 module_init(ixgbevf_init_module);
4915
4916 /**
4917 * ixgbevf_exit_module - Driver Exit Cleanup Routine
4918 *
4919 * ixgbevf_exit_module is called just before the driver is removed
4920 * from memory.
4921 **/
ixgbevf_exit_module(void)4922 static void __exit ixgbevf_exit_module(void)
4923 {
4924 pci_unregister_driver(&ixgbevf_driver);
4925 if (ixgbevf_wq) {
4926 destroy_workqueue(ixgbevf_wq);
4927 ixgbevf_wq = NULL;
4928 }
4929 }
4930
4931 #ifdef DEBUG
4932 /**
4933 * ixgbevf_get_hw_dev_name - return device name string
4934 * used by hardware layer to print debugging information
4935 * @hw: pointer to private hardware struct
4936 **/
ixgbevf_get_hw_dev_name(struct ixgbe_hw * hw)4937 char *ixgbevf_get_hw_dev_name(struct ixgbe_hw *hw)
4938 {
4939 struct ixgbevf_adapter *adapter = hw->back;
4940
4941 return adapter->netdev->name;
4942 }
4943
4944 #endif
4945 module_exit(ixgbevf_exit_module);
4946
4947 /* ixgbevf_main.c */
4948