1 /******************************************************************************
2  *
3  * This file is provided under a dual BSD/GPLv2 license.  When using or
4  * redistributing this file, you may do so under either license.
5  *
6  * GPL LICENSE SUMMARY
7  *
8  * Copyright(c) 2007 - 2014 Intel Corporation. All rights reserved.
9  * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
10  * Copyright(c) 2016 - 2017 Intel Deutschland GmbH
11  * Copyright(c) 2018 - 2019 Intel Corporation
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of version 2 of the GNU General Public License as
15  * published by the Free Software Foundation.
16  *
17  * This program is distributed in the hope that it will be useful, but
18  * WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
20  * General Public License for more details.
21  *
22  * The full GNU General Public License is included in this distribution
23  * in the file called COPYING.
24  *
25  * Contact Information:
26  *  Intel Linux Wireless <linuxwifi@intel.com>
27  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
28  *
29  * BSD LICENSE
30  *
31  * Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved.
32  * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
33  * Copyright(c) 2016 - 2017 Intel Deutschland GmbH
34  * Copyright(c) 2018 - 2019 Intel Corporation
35  * All rights reserved.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  *
41  *  * Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  *  * Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in
45  *    the documentation and/or other materials provided with the
46  *    distribution.
47  *  * Neither the name Intel Corporation nor the names of its
48  *    contributors may be used to endorse or promote products derived
49  *    from this software without specific prior written permission.
50  *
51  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
52  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
53  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
54  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
55  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
56  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
57  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
58  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
59  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
60  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
61  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
62  *
63  *****************************************************************************/
64 #ifndef __iwl_trans_h__
65 #define __iwl_trans_h__
66 
67 #include <linux/ieee80211.h>
68 #include <linux/mm.h> /* for page_address */
69 #include <linux/lockdep.h>
70 #include <linux/kernel.h>
71 
72 #include "iwl-debug.h"
73 #include "iwl-config.h"
74 #include "fw/img.h"
75 #include "iwl-op-mode.h"
76 #include <linux/firmware.h>
77 #include "fw/api/cmdhdr.h"
78 #include "fw/api/txq.h"
79 #include "fw/api/dbg-tlv.h"
80 #include "iwl-dbg-tlv.h"
81 
82 /**
83  * DOC: Transport layer - what is it ?
84  *
85  * The transport layer is the layer that deals with the HW directly. It provides
86  * an abstraction of the underlying HW to the upper layer. The transport layer
87  * doesn't provide any policy, algorithm or anything of this kind, but only
88  * mechanisms to make the HW do something. It is not completely stateless but
89  * close to it.
90  * We will have an implementation for each different supported bus.
91  */
92 
93 /**
94  * DOC: Life cycle of the transport layer
95  *
96  * The transport layer has a very precise life cycle.
97  *
98  *	1) A helper function is called during the module initialization and
99  *	   registers the bus driver's ops with the transport's alloc function.
100  *	2) Bus's probe calls to the transport layer's allocation functions.
101  *	   Of course this function is bus specific.
102  *	3) This allocation functions will spawn the upper layer which will
103  *	   register mac80211.
104  *
105  *	4) At some point (i.e. mac80211's start call), the op_mode will call
106  *	   the following sequence:
107  *	   start_hw
108  *	   start_fw
109  *
110  *	5) Then when finished (or reset):
111  *	   stop_device
112  *
113  *	6) Eventually, the free function will be called.
114  */
115 
116 #define IWL_TRANS_FW_DBG_DOMAIN(trans)	IWL_FW_INI_DOMAIN_ALWAYS_ON
117 
118 #define FH_RSCSR_FRAME_SIZE_MSK		0x00003FFF	/* bits 0-13 */
119 #define FH_RSCSR_FRAME_INVALID		0x55550000
120 #define FH_RSCSR_FRAME_ALIGN		0x40
121 #define FH_RSCSR_RPA_EN			BIT(25)
122 #define FH_RSCSR_RADA_EN		BIT(26)
123 #define FH_RSCSR_RXQ_POS		16
124 #define FH_RSCSR_RXQ_MASK		0x3F0000
125 
126 struct iwl_rx_packet {
127 	/*
128 	 * The first 4 bytes of the RX frame header contain both the RX frame
129 	 * size and some flags.
130 	 * Bit fields:
131 	 * 31:    flag flush RB request
132 	 * 30:    flag ignore TC (terminal counter) request
133 	 * 29:    flag fast IRQ request
134 	 * 28-27: Reserved
135 	 * 26:    RADA enabled
136 	 * 25:    Offload enabled
137 	 * 24:    RPF enabled
138 	 * 23:    RSS enabled
139 	 * 22:    Checksum enabled
140 	 * 21-16: RX queue
141 	 * 15-14: Reserved
142 	 * 13-00: RX frame size
143 	 */
144 	__le32 len_n_flags;
145 	struct iwl_cmd_header hdr;
146 	u8 data[];
147 } __packed;
148 
iwl_rx_packet_len(const struct iwl_rx_packet * pkt)149 static inline u32 iwl_rx_packet_len(const struct iwl_rx_packet *pkt)
150 {
151 	return le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_FRAME_SIZE_MSK;
152 }
153 
iwl_rx_packet_payload_len(const struct iwl_rx_packet * pkt)154 static inline u32 iwl_rx_packet_payload_len(const struct iwl_rx_packet *pkt)
155 {
156 	return iwl_rx_packet_len(pkt) - sizeof(pkt->hdr);
157 }
158 
159 /**
160  * enum CMD_MODE - how to send the host commands ?
161  *
162  * @CMD_ASYNC: Return right away and don't wait for the response
163  * @CMD_WANT_SKB: Not valid with CMD_ASYNC. The caller needs the buffer of
164  *	the response. The caller needs to call iwl_free_resp when done.
165  * @CMD_WANT_ASYNC_CALLBACK: the op_mode's async callback function must be
166  *	called after this command completes. Valid only with CMD_ASYNC.
167  */
168 enum CMD_MODE {
169 	CMD_ASYNC		= BIT(0),
170 	CMD_WANT_SKB		= BIT(1),
171 	CMD_SEND_IN_RFKILL	= BIT(2),
172 	CMD_WANT_ASYNC_CALLBACK	= BIT(3),
173 };
174 
175 #define DEF_CMD_PAYLOAD_SIZE 320
176 
177 /**
178  * struct iwl_device_cmd
179  *
180  * For allocation of the command and tx queues, this establishes the overall
181  * size of the largest command we send to uCode, except for commands that
182  * aren't fully copied and use other TFD space.
183  */
184 struct iwl_device_cmd {
185 	union {
186 		struct {
187 			struct iwl_cmd_header hdr;	/* uCode API */
188 			u8 payload[DEF_CMD_PAYLOAD_SIZE];
189 		};
190 		struct {
191 			struct iwl_cmd_header_wide hdr_wide;
192 			u8 payload_wide[DEF_CMD_PAYLOAD_SIZE -
193 					sizeof(struct iwl_cmd_header_wide) +
194 					sizeof(struct iwl_cmd_header)];
195 		};
196 	};
197 } __packed;
198 
199 /**
200  * struct iwl_device_tx_cmd - buffer for TX command
201  * @hdr: the header
202  * @payload: the payload placeholder
203  *
204  * The actual structure is sized dynamically according to need.
205  */
206 struct iwl_device_tx_cmd {
207 	struct iwl_cmd_header hdr;
208 	u8 payload[];
209 } __packed;
210 
211 #define TFD_MAX_PAYLOAD_SIZE (sizeof(struct iwl_device_cmd))
212 
213 /*
214  * number of transfer buffers (fragments) per transmit frame descriptor;
215  * this is just the driver's idea, the hardware supports 20
216  */
217 #define IWL_MAX_CMD_TBS_PER_TFD	2
218 
219 /* We need 2 entries for the TX command and header, and another one might
220  * be needed for potential data in the SKB's head. The remaining ones can
221  * be used for frags.
222  */
223 #define IWL_TRANS_MAX_FRAGS(trans) ((trans)->txqs.tfd.max_tbs - 3)
224 
225 /**
226  * enum iwl_hcmd_dataflag - flag for each one of the chunks of the command
227  *
228  * @IWL_HCMD_DFL_NOCOPY: By default, the command is copied to the host command's
229  *	ring. The transport layer doesn't map the command's buffer to DMA, but
230  *	rather copies it to a previously allocated DMA buffer. This flag tells
231  *	the transport layer not to copy the command, but to map the existing
232  *	buffer (that is passed in) instead. This saves the memcpy and allows
233  *	commands that are bigger than the fixed buffer to be submitted.
234  *	Note that a TFD entry after a NOCOPY one cannot be a normal copied one.
235  * @IWL_HCMD_DFL_DUP: Only valid without NOCOPY, duplicate the memory for this
236  *	chunk internally and free it again after the command completes. This
237  *	can (currently) be used only once per command.
238  *	Note that a TFD entry after a DUP one cannot be a normal copied one.
239  */
240 enum iwl_hcmd_dataflag {
241 	IWL_HCMD_DFL_NOCOPY	= BIT(0),
242 	IWL_HCMD_DFL_DUP	= BIT(1),
243 };
244 
245 enum iwl_error_event_table_status {
246 	IWL_ERROR_EVENT_TABLE_LMAC1 = BIT(0),
247 	IWL_ERROR_EVENT_TABLE_LMAC2 = BIT(1),
248 	IWL_ERROR_EVENT_TABLE_UMAC = BIT(2),
249 };
250 
251 /**
252  * struct iwl_host_cmd - Host command to the uCode
253  *
254  * @data: array of chunks that composes the data of the host command
255  * @resp_pkt: response packet, if %CMD_WANT_SKB was set
256  * @_rx_page_order: (internally used to free response packet)
257  * @_rx_page_addr: (internally used to free response packet)
258  * @flags: can be CMD_*
259  * @len: array of the lengths of the chunks in data
260  * @dataflags: IWL_HCMD_DFL_*
261  * @id: command id of the host command, for wide commands encoding the
262  *	version and group as well
263  */
264 struct iwl_host_cmd {
265 	const void *data[IWL_MAX_CMD_TBS_PER_TFD];
266 	struct iwl_rx_packet *resp_pkt;
267 	unsigned long _rx_page_addr;
268 	u32 _rx_page_order;
269 
270 	u32 flags;
271 	u32 id;
272 	u16 len[IWL_MAX_CMD_TBS_PER_TFD];
273 	u8 dataflags[IWL_MAX_CMD_TBS_PER_TFD];
274 };
275 
iwl_free_resp(struct iwl_host_cmd * cmd)276 static inline void iwl_free_resp(struct iwl_host_cmd *cmd)
277 {
278 	free_pages(cmd->_rx_page_addr, cmd->_rx_page_order);
279 }
280 
281 struct iwl_rx_cmd_buffer {
282 	struct page *_page;
283 	int _offset;
284 	bool _page_stolen;
285 	u32 _rx_page_order;
286 	unsigned int truesize;
287 };
288 
rxb_addr(struct iwl_rx_cmd_buffer * r)289 static inline void *rxb_addr(struct iwl_rx_cmd_buffer *r)
290 {
291 	return (void *)((unsigned long)page_address(r->_page) + r->_offset);
292 }
293 
rxb_offset(struct iwl_rx_cmd_buffer * r)294 static inline int rxb_offset(struct iwl_rx_cmd_buffer *r)
295 {
296 	return r->_offset;
297 }
298 
rxb_steal_page(struct iwl_rx_cmd_buffer * r)299 static inline struct page *rxb_steal_page(struct iwl_rx_cmd_buffer *r)
300 {
301 	r->_page_stolen = true;
302 	get_page(r->_page);
303 	return r->_page;
304 }
305 
iwl_free_rxb(struct iwl_rx_cmd_buffer * r)306 static inline void iwl_free_rxb(struct iwl_rx_cmd_buffer *r)
307 {
308 	__free_pages(r->_page, r->_rx_page_order);
309 }
310 
311 #define MAX_NO_RECLAIM_CMDS	6
312 
313 #define IWL_MASK(lo, hi) ((1 << (hi)) | ((1 << (hi)) - (1 << (lo))))
314 
315 /*
316  * Maximum number of HW queues the transport layer
317  * currently supports
318  */
319 #define IWL_MAX_HW_QUEUES		32
320 #define IWL_MAX_TVQM_QUEUES		512
321 
322 #define IWL_MAX_TID_COUNT	8
323 #define IWL_MGMT_TID		15
324 #define IWL_FRAME_LIMIT	64
325 #define IWL_MAX_RX_HW_QUEUES	16
326 #define IWL_9000_MAX_RX_HW_QUEUES	6
327 
328 /**
329  * enum iwl_wowlan_status - WoWLAN image/device status
330  * @IWL_D3_STATUS_ALIVE: firmware is still running after resume
331  * @IWL_D3_STATUS_RESET: device was reset while suspended
332  */
333 enum iwl_d3_status {
334 	IWL_D3_STATUS_ALIVE,
335 	IWL_D3_STATUS_RESET,
336 };
337 
338 /**
339  * enum iwl_trans_status: transport status flags
340  * @STATUS_SYNC_HCMD_ACTIVE: a SYNC command is being processed
341  * @STATUS_DEVICE_ENABLED: APM is enabled
342  * @STATUS_TPOWER_PMI: the device might be asleep (need to wake it up)
343  * @STATUS_INT_ENABLED: interrupts are enabled
344  * @STATUS_RFKILL_HW: the actual HW state of the RF-kill switch
345  * @STATUS_RFKILL_OPMODE: RF-kill state reported to opmode
346  * @STATUS_FW_ERROR: the fw is in error state
347  * @STATUS_TRANS_GOING_IDLE: shutting down the trans, only special commands
348  *	are sent
349  * @STATUS_TRANS_IDLE: the trans is idle - general commands are not to be sent
350  * @STATUS_TRANS_DEAD: trans is dead - avoid any read/write operation
351  */
352 enum iwl_trans_status {
353 	STATUS_SYNC_HCMD_ACTIVE,
354 	STATUS_DEVICE_ENABLED,
355 	STATUS_TPOWER_PMI,
356 	STATUS_INT_ENABLED,
357 	STATUS_RFKILL_HW,
358 	STATUS_RFKILL_OPMODE,
359 	STATUS_FW_ERROR,
360 	STATUS_TRANS_GOING_IDLE,
361 	STATUS_TRANS_IDLE,
362 	STATUS_TRANS_DEAD,
363 };
364 
365 static inline int
iwl_trans_get_rb_size_order(enum iwl_amsdu_size rb_size)366 iwl_trans_get_rb_size_order(enum iwl_amsdu_size rb_size)
367 {
368 	switch (rb_size) {
369 	case IWL_AMSDU_2K:
370 		return get_order(2 * 1024);
371 	case IWL_AMSDU_4K:
372 		return get_order(4 * 1024);
373 	case IWL_AMSDU_8K:
374 		return get_order(8 * 1024);
375 	case IWL_AMSDU_12K:
376 		return get_order(12 * 1024);
377 	default:
378 		WARN_ON(1);
379 		return -1;
380 	}
381 }
382 
383 static inline int
iwl_trans_get_rb_size(enum iwl_amsdu_size rb_size)384 iwl_trans_get_rb_size(enum iwl_amsdu_size rb_size)
385 {
386 	switch (rb_size) {
387 	case IWL_AMSDU_2K:
388 		return 2 * 1024;
389 	case IWL_AMSDU_4K:
390 		return 4 * 1024;
391 	case IWL_AMSDU_8K:
392 		return 8 * 1024;
393 	case IWL_AMSDU_12K:
394 		return 12 * 1024;
395 	default:
396 		WARN_ON(1);
397 		return 0;
398 	}
399 }
400 
401 struct iwl_hcmd_names {
402 	u8 cmd_id;
403 	const char *const cmd_name;
404 };
405 
406 #define HCMD_NAME(x)	\
407 	{ .cmd_id = x, .cmd_name = #x }
408 
409 struct iwl_hcmd_arr {
410 	const struct iwl_hcmd_names *arr;
411 	int size;
412 };
413 
414 #define HCMD_ARR(x)	\
415 	{ .arr = x, .size = ARRAY_SIZE(x) }
416 
417 /**
418  * struct iwl_trans_config - transport configuration
419  *
420  * @op_mode: pointer to the upper layer.
421  * @cmd_queue: the index of the command queue.
422  *	Must be set before start_fw.
423  * @cmd_fifo: the fifo for host commands
424  * @cmd_q_wdg_timeout: the timeout of the watchdog timer for the command queue.
425  * @no_reclaim_cmds: Some devices erroneously don't set the
426  *	SEQ_RX_FRAME bit on some notifications, this is the
427  *	list of such notifications to filter. Max length is
428  *	%MAX_NO_RECLAIM_CMDS.
429  * @n_no_reclaim_cmds: # of commands in list
430  * @rx_buf_size: RX buffer size needed for A-MSDUs
431  *	if unset 4k will be the RX buffer size
432  * @bc_table_dword: set to true if the BC table expects the byte count to be
433  *	in DWORD (as opposed to bytes)
434  * @scd_set_active: should the transport configure the SCD for HCMD queue
435  * @sw_csum_tx: transport should compute the TCP checksum
436  * @command_groups: array of command groups, each member is an array of the
437  *	commands in the group; for debugging only
438  * @command_groups_size: number of command groups, to avoid illegal access
439  * @cb_data_offs: offset inside skb->cb to store transport data at, must have
440  *	space for at least two pointers
441  */
442 struct iwl_trans_config {
443 	struct iwl_op_mode *op_mode;
444 
445 	u8 cmd_queue;
446 	u8 cmd_fifo;
447 	unsigned int cmd_q_wdg_timeout;
448 	const u8 *no_reclaim_cmds;
449 	unsigned int n_no_reclaim_cmds;
450 
451 	enum iwl_amsdu_size rx_buf_size;
452 	bool bc_table_dword;
453 	bool scd_set_active;
454 	bool sw_csum_tx;
455 	const struct iwl_hcmd_arr *command_groups;
456 	int command_groups_size;
457 
458 	u8 cb_data_offs;
459 };
460 
461 struct iwl_trans_dump_data {
462 	u32 len;
463 	u8 data[];
464 };
465 
466 struct iwl_trans;
467 
468 struct iwl_trans_txq_scd_cfg {
469 	u8 fifo;
470 	u8 sta_id;
471 	u8 tid;
472 	bool aggregate;
473 	int frame_limit;
474 };
475 
476 /**
477  * struct iwl_trans_rxq_dma_data - RX queue DMA data
478  * @fr_bd_cb: DMA address of free BD cyclic buffer
479  * @fr_bd_wid: Initial write index of the free BD cyclic buffer
480  * @urbd_stts_wrptr: DMA address of urbd_stts_wrptr
481  * @ur_bd_cb: DMA address of used BD cyclic buffer
482  */
483 struct iwl_trans_rxq_dma_data {
484 	u64 fr_bd_cb;
485 	u32 fr_bd_wid;
486 	u64 urbd_stts_wrptr;
487 	u64 ur_bd_cb;
488 };
489 
490 /**
491  * struct iwl_trans_ops - transport specific operations
492  *
493  * All the handlers MUST be implemented
494  *
495  * @start_hw: starts the HW. From that point on, the HW can send interrupts.
496  *	May sleep.
497  * @op_mode_leave: Turn off the HW RF kill indication if on
498  *	May sleep
499  * @start_fw: allocates and inits all the resources for the transport
500  *	layer. Also kick a fw image.
501  *	May sleep
502  * @fw_alive: called when the fw sends alive notification. If the fw provides
503  *	the SCD base address in SRAM, then provide it here, or 0 otherwise.
504  *	May sleep
505  * @stop_device: stops the whole device (embedded CPU put to reset) and stops
506  *	the HW. From that point on, the HW will be stopped but will still issue
507  *	an interrupt if the HW RF kill switch is triggered.
508  *	This callback must do the right thing and not crash even if %start_hw()
509  *	was called but not &start_fw(). May sleep.
510  * @d3_suspend: put the device into the correct mode for WoWLAN during
511  *	suspend. This is optional, if not implemented WoWLAN will not be
512  *	supported. This callback may sleep.
513  * @d3_resume: resume the device after WoWLAN, enabling the opmode to
514  *	talk to the WoWLAN image to get its status. This is optional, if not
515  *	implemented WoWLAN will not be supported. This callback may sleep.
516  * @send_cmd:send a host command. Must return -ERFKILL if RFkill is asserted.
517  *	If RFkill is asserted in the middle of a SYNC host command, it must
518  *	return -ERFKILL straight away.
519  *	May sleep only if CMD_ASYNC is not set
520  * @tx: send an skb. The transport relies on the op_mode to zero the
521  *	the ieee80211_tx_info->driver_data. If the MPDU is an A-MSDU, all
522  *	the CSUM will be taken care of (TCP CSUM and IP header in case of
523  *	IPv4). If the MPDU is a single MSDU, the op_mode must compute the IP
524  *	header if it is IPv4.
525  *	Must be atomic
526  * @reclaim: free packet until ssn. Returns a list of freed packets.
527  *	Must be atomic
528  * @txq_enable: setup a queue. To setup an AC queue, use the
529  *	iwl_trans_ac_txq_enable wrapper. fw_alive must have been called before
530  *	this one. The op_mode must not configure the HCMD queue. The scheduler
531  *	configuration may be %NULL, in which case the hardware will not be
532  *	configured. If true is returned, the operation mode needs to increment
533  *	the sequence number of the packets routed to this queue because of a
534  *	hardware scheduler bug. May sleep.
535  * @txq_disable: de-configure a Tx queue to send AMPDUs
536  *	Must be atomic
537  * @txq_set_shared_mode: change Tx queue shared/unshared marking
538  * @wait_tx_queues_empty: wait until tx queues are empty. May sleep.
539  * @wait_txq_empty: wait until specific tx queue is empty. May sleep.
540  * @freeze_txq_timer: prevents the timer of the queue from firing until the
541  *	queue is set to awake. Must be atomic.
542  * @block_txq_ptrs: stop updating the write pointers of the Tx queues. Note
543  *	that the transport needs to refcount the calls since this function
544  *	will be called several times with block = true, and then the queues
545  *	need to be unblocked only after the same number of calls with
546  *	block = false.
547  * @write8: write a u8 to a register at offset ofs from the BAR
548  * @write32: write a u32 to a register at offset ofs from the BAR
549  * @read32: read a u32 register at offset ofs from the BAR
550  * @read_prph: read a DWORD from a periphery register
551  * @write_prph: write a DWORD to a periphery register
552  * @read_mem: read device's SRAM in DWORD
553  * @write_mem: write device's SRAM in DWORD. If %buf is %NULL, then the memory
554  *	will be zeroed.
555  * @read_config32: read a u32 value from the device's config space at
556  *	the given offset.
557  * @configure: configure parameters required by the transport layer from
558  *	the op_mode. May be called several times before start_fw, can't be
559  *	called after that.
560  * @set_pmi: set the power pmi state
561  * @grab_nic_access: wake the NIC to be able to access non-HBUS regs.
562  *	Sleeping is not allowed between grab_nic_access and
563  *	release_nic_access.
564  * @release_nic_access: let the NIC go to sleep. The "flags" parameter
565  *	must be the same one that was sent before to the grab_nic_access.
566  * @set_bits_mask - set SRAM register according to value and mask.
567  * @dump_data: return a vmalloc'ed buffer with debug data, maybe containing last
568  *	TX'ed commands and similar. The buffer will be vfree'd by the caller.
569  *	Note that the transport must fill in the proper file headers.
570  * @debugfs_cleanup: used in the driver unload flow to make a proper cleanup
571  *	of the trans debugfs
572  * @set_pnvm: set the pnvm data in the prph scratch buffer, inside the
573  *	context info.
574  */
575 struct iwl_trans_ops {
576 
577 	int (*start_hw)(struct iwl_trans *iwl_trans);
578 	void (*op_mode_leave)(struct iwl_trans *iwl_trans);
579 	int (*start_fw)(struct iwl_trans *trans, const struct fw_img *fw,
580 			bool run_in_rfkill);
581 	void (*fw_alive)(struct iwl_trans *trans, u32 scd_addr);
582 	void (*stop_device)(struct iwl_trans *trans);
583 
584 	int (*d3_suspend)(struct iwl_trans *trans, bool test, bool reset);
585 	int (*d3_resume)(struct iwl_trans *trans, enum iwl_d3_status *status,
586 			 bool test, bool reset);
587 
588 	int (*send_cmd)(struct iwl_trans *trans, struct iwl_host_cmd *cmd);
589 
590 	int (*tx)(struct iwl_trans *trans, struct sk_buff *skb,
591 		  struct iwl_device_tx_cmd *dev_cmd, int queue);
592 	void (*reclaim)(struct iwl_trans *trans, int queue, int ssn,
593 			struct sk_buff_head *skbs);
594 
595 	void (*set_q_ptrs)(struct iwl_trans *trans, int queue, int ptr);
596 
597 	bool (*txq_enable)(struct iwl_trans *trans, int queue, u16 ssn,
598 			   const struct iwl_trans_txq_scd_cfg *cfg,
599 			   unsigned int queue_wdg_timeout);
600 	void (*txq_disable)(struct iwl_trans *trans, int queue,
601 			    bool configure_scd);
602 	/* 22000 functions */
603 	int (*txq_alloc)(struct iwl_trans *trans,
604 			 __le16 flags, u8 sta_id, u8 tid,
605 			 int cmd_id, int size,
606 			 unsigned int queue_wdg_timeout);
607 	void (*txq_free)(struct iwl_trans *trans, int queue);
608 	int (*rxq_dma_data)(struct iwl_trans *trans, int queue,
609 			    struct iwl_trans_rxq_dma_data *data);
610 
611 	void (*txq_set_shared_mode)(struct iwl_trans *trans, u32 txq_id,
612 				    bool shared);
613 
614 	int (*wait_tx_queues_empty)(struct iwl_trans *trans, u32 txq_bm);
615 	int (*wait_txq_empty)(struct iwl_trans *trans, int queue);
616 	void (*freeze_txq_timer)(struct iwl_trans *trans, unsigned long txqs,
617 				 bool freeze);
618 	void (*block_txq_ptrs)(struct iwl_trans *trans, bool block);
619 
620 	void (*write8)(struct iwl_trans *trans, u32 ofs, u8 val);
621 	void (*write32)(struct iwl_trans *trans, u32 ofs, u32 val);
622 	u32 (*read32)(struct iwl_trans *trans, u32 ofs);
623 	u32 (*read_prph)(struct iwl_trans *trans, u32 ofs);
624 	void (*write_prph)(struct iwl_trans *trans, u32 ofs, u32 val);
625 	int (*read_mem)(struct iwl_trans *trans, u32 addr,
626 			void *buf, int dwords);
627 	int (*write_mem)(struct iwl_trans *trans, u32 addr,
628 			 const void *buf, int dwords);
629 	int (*read_config32)(struct iwl_trans *trans, u32 ofs, u32 *val);
630 	void (*configure)(struct iwl_trans *trans,
631 			  const struct iwl_trans_config *trans_cfg);
632 	void (*set_pmi)(struct iwl_trans *trans, bool state);
633 	void (*sw_reset)(struct iwl_trans *trans);
634 	bool (*grab_nic_access)(struct iwl_trans *trans, unsigned long *flags);
635 	void (*release_nic_access)(struct iwl_trans *trans,
636 				   unsigned long *flags);
637 	void (*set_bits_mask)(struct iwl_trans *trans, u32 reg, u32 mask,
638 			      u32 value);
639 	int  (*suspend)(struct iwl_trans *trans);
640 	void (*resume)(struct iwl_trans *trans);
641 
642 	struct iwl_trans_dump_data *(*dump_data)(struct iwl_trans *trans,
643 						 u32 dump_mask);
644 	void (*debugfs_cleanup)(struct iwl_trans *trans);
645 	void (*sync_nmi)(struct iwl_trans *trans);
646 	int (*set_pnvm)(struct iwl_trans *trans, const void *data, u32 len);
647 };
648 
649 /**
650  * enum iwl_trans_state - state of the transport layer
651  *
652  * @IWL_TRANS_NO_FW: no fw has sent an alive response
653  * @IWL_TRANS_FW_ALIVE: a fw has sent an alive response
654  */
655 enum iwl_trans_state {
656 	IWL_TRANS_NO_FW = 0,
657 	IWL_TRANS_FW_ALIVE	= 1,
658 };
659 
660 /**
661  * DOC: Platform power management
662  *
663  * In system-wide power management the entire platform goes into a low
664  * power state (e.g. idle or suspend to RAM) at the same time and the
665  * device is configured as a wakeup source for the entire platform.
666  * This is usually triggered by userspace activity (e.g. the user
667  * presses the suspend button or a power management daemon decides to
668  * put the platform in low power mode).  The device's behavior in this
669  * mode is dictated by the wake-on-WLAN configuration.
670  *
671  * The terms used for the device's behavior are as follows:
672  *
673  *	- D0: the device is fully powered and the host is awake;
674  *	- D3: the device is in low power mode and only reacts to
675  *		specific events (e.g. magic-packet received or scan
676  *		results found);
677  *
678  * These terms reflect the power modes in the firmware and are not to
679  * be confused with the physical device power state.
680  */
681 
682 /**
683  * enum iwl_plat_pm_mode - platform power management mode
684  *
685  * This enumeration describes the device's platform power management
686  * behavior when in system-wide suspend (i.e WoWLAN).
687  *
688  * @IWL_PLAT_PM_MODE_DISABLED: power management is disabled for this
689  *	device.  In system-wide suspend mode, it means that the all
690  *	connections will be closed automatically by mac80211 before
691  *	the platform is suspended.
692  * @IWL_PLAT_PM_MODE_D3: the device goes into D3 mode (i.e. WoWLAN).
693  */
694 enum iwl_plat_pm_mode {
695 	IWL_PLAT_PM_MODE_DISABLED,
696 	IWL_PLAT_PM_MODE_D3,
697 };
698 
699 /**
700  * enum iwl_ini_cfg_state
701  * @IWL_INI_CFG_STATE_NOT_LOADED: no debug cfg was given
702  * @IWL_INI_CFG_STATE_LOADED: debug cfg was found and loaded
703  * @IWL_INI_CFG_STATE_CORRUPTED: debug cfg was found and some of the TLVs
704  *	are corrupted. The rest of the debug TLVs will still be used
705  */
706 enum iwl_ini_cfg_state {
707 	IWL_INI_CFG_STATE_NOT_LOADED,
708 	IWL_INI_CFG_STATE_LOADED,
709 	IWL_INI_CFG_STATE_CORRUPTED,
710 };
711 
712 /* Max time to wait for nmi interrupt */
713 #define IWL_TRANS_NMI_TIMEOUT (HZ / 4)
714 
715 /**
716  * struct iwl_dram_data
717  * @physical: page phy pointer
718  * @block: pointer to the allocated block/page
719  * @size: size of the block/page
720  */
721 struct iwl_dram_data {
722 	dma_addr_t physical;
723 	void *block;
724 	int size;
725 };
726 
727 /**
728  * struct iwl_fw_mon - fw monitor per allocation id
729  * @num_frags: number of fragments
730  * @frags: an array of DRAM buffer fragments
731  */
732 struct iwl_fw_mon {
733 	u32 num_frags;
734 	struct iwl_dram_data *frags;
735 };
736 
737 /**
738  * struct iwl_self_init_dram - dram data used by self init process
739  * @fw: lmac and umac dram data
740  * @fw_cnt: total number of items in array
741  * @paging: paging dram data
742  * @paging_cnt: total number of items in array
743  */
744 struct iwl_self_init_dram {
745 	struct iwl_dram_data *fw;
746 	int fw_cnt;
747 	struct iwl_dram_data *paging;
748 	int paging_cnt;
749 };
750 
751 /**
752  * struct iwl_trans_debug - transport debug related data
753  *
754  * @n_dest_reg: num of reg_ops in %dbg_dest_tlv
755  * @rec_on: true iff there is a fw debug recording currently active
756  * @dest_tlv: points to the destination TLV for debug
757  * @conf_tlv: array of pointers to configuration TLVs for debug
758  * @trigger_tlv: array of pointers to triggers TLVs for debug
759  * @lmac_error_event_table: addrs of lmacs error tables
760  * @umac_error_event_table: addr of umac error table
761  * @error_event_table_tlv_status: bitmap that indicates what error table
762  *	pointers was recevied via TLV. uses enum &iwl_error_event_table_status
763  * @internal_ini_cfg: internal debug cfg state. Uses &enum iwl_ini_cfg_state
764  * @external_ini_cfg: external debug cfg state. Uses &enum iwl_ini_cfg_state
765  * @fw_mon_cfg: debug buffer allocation configuration
766  * @fw_mon_ini: DRAM buffer fragments per allocation id
767  * @fw_mon: DRAM buffer for firmware monitor
768  * @hw_error: equals true if hw error interrupt was received from the FW
769  * @ini_dest: debug monitor destination uses &enum iwl_fw_ini_buffer_location
770  * @active_regions: active regions
771  * @debug_info_tlv_list: list of debug info TLVs
772  * @time_point: array of debug time points
773  * @periodic_trig_list: periodic triggers list
774  * @domains_bitmap: bitmap of active domains other than
775  *	&IWL_FW_INI_DOMAIN_ALWAYS_ON
776  */
777 struct iwl_trans_debug {
778 	u8 n_dest_reg;
779 	bool rec_on;
780 
781 	const struct iwl_fw_dbg_dest_tlv_v1 *dest_tlv;
782 	const struct iwl_fw_dbg_conf_tlv *conf_tlv[FW_DBG_CONF_MAX];
783 	struct iwl_fw_dbg_trigger_tlv * const *trigger_tlv;
784 
785 	u32 lmac_error_event_table[2];
786 	u32 umac_error_event_table;
787 	unsigned int error_event_table_tlv_status;
788 
789 	enum iwl_ini_cfg_state internal_ini_cfg;
790 	enum iwl_ini_cfg_state external_ini_cfg;
791 
792 	struct iwl_fw_ini_allocation_tlv fw_mon_cfg[IWL_FW_INI_ALLOCATION_NUM];
793 	struct iwl_fw_mon fw_mon_ini[IWL_FW_INI_ALLOCATION_NUM];
794 
795 	struct iwl_dram_data fw_mon;
796 
797 	bool hw_error;
798 	enum iwl_fw_ini_buffer_location ini_dest;
799 
800 	struct iwl_ucode_tlv *active_regions[IWL_FW_INI_MAX_REGION_ID];
801 	struct list_head debug_info_tlv_list;
802 	struct iwl_dbg_tlv_time_point_data
803 		time_point[IWL_FW_INI_TIME_POINT_NUM];
804 	struct list_head periodic_trig_list;
805 
806 	u32 domains_bitmap;
807 };
808 
809 struct iwl_dma_ptr {
810 	dma_addr_t dma;
811 	void *addr;
812 	size_t size;
813 };
814 
815 struct iwl_cmd_meta {
816 	/* only for SYNC commands, iff the reply skb is wanted */
817 	struct iwl_host_cmd *source;
818 	u32 flags;
819 	u32 tbs;
820 };
821 
822 /*
823  * The FH will write back to the first TB only, so we need to copy some data
824  * into the buffer regardless of whether it should be mapped or not.
825  * This indicates how big the first TB must be to include the scratch buffer
826  * and the assigned PN.
827  * Since PN location is 8 bytes at offset 12, it's 20 now.
828  * If we make it bigger then allocations will be bigger and copy slower, so
829  * that's probably not useful.
830  */
831 #define IWL_FIRST_TB_SIZE	20
832 #define IWL_FIRST_TB_SIZE_ALIGN ALIGN(IWL_FIRST_TB_SIZE, 64)
833 
834 struct iwl_pcie_txq_entry {
835 	void *cmd;
836 	struct sk_buff *skb;
837 	/* buffer to free after command completes */
838 	const void *free_buf;
839 	struct iwl_cmd_meta meta;
840 };
841 
842 struct iwl_pcie_first_tb_buf {
843 	u8 buf[IWL_FIRST_TB_SIZE_ALIGN];
844 };
845 
846 /**
847  * struct iwl_txq - Tx Queue for DMA
848  * @q: generic Rx/Tx queue descriptor
849  * @tfds: transmit frame descriptors (DMA memory)
850  * @first_tb_bufs: start of command headers, including scratch buffers, for
851  *	the writeback -- this is DMA memory and an array holding one buffer
852  *	for each command on the queue
853  * @first_tb_dma: DMA address for the first_tb_bufs start
854  * @entries: transmit entries (driver state)
855  * @lock: queue lock
856  * @stuck_timer: timer that fires if queue gets stuck
857  * @trans: pointer back to transport (for timer)
858  * @need_update: indicates need to update read/write index
859  * @ampdu: true if this queue is an ampdu queue for an specific RA/TID
860  * @wd_timeout: queue watchdog timeout (jiffies) - per queue
861  * @frozen: tx stuck queue timer is frozen
862  * @frozen_expiry_remainder: remember how long until the timer fires
863  * @bc_tbl: byte count table of the queue (relevant only for gen2 transport)
864  * @write_ptr: 1-st empty entry (index) host_w
865  * @read_ptr: last used entry (index) host_r
866  * @dma_addr:  physical addr for BD's
867  * @n_window: safe queue window
868  * @id: queue id
869  * @low_mark: low watermark, resume queue if free space more than this
870  * @high_mark: high watermark, stop queue if free space less than this
871  *
872  * A Tx queue consists of circular buffer of BDs (a.k.a. TFDs, transmit frame
873  * descriptors) and required locking structures.
874  *
875  * Note the difference between TFD_QUEUE_SIZE_MAX and n_window: the hardware
876  * always assumes 256 descriptors, so TFD_QUEUE_SIZE_MAX is always 256 (unless
877  * there might be HW changes in the future). For the normal TX
878  * queues, n_window, which is the size of the software queue data
879  * is also 256; however, for the command queue, n_window is only
880  * 32 since we don't need so many commands pending. Since the HW
881  * still uses 256 BDs for DMA though, TFD_QUEUE_SIZE_MAX stays 256.
882  * This means that we end up with the following:
883  *  HW entries: | 0 | ... | N * 32 | ... | N * 32 + 31 | ... | 255 |
884  *  SW entries:           | 0      | ... | 31          |
885  * where N is a number between 0 and 7. This means that the SW
886  * data is a window overlayed over the HW queue.
887  */
888 struct iwl_txq {
889 	void *tfds;
890 	struct iwl_pcie_first_tb_buf *first_tb_bufs;
891 	dma_addr_t first_tb_dma;
892 	struct iwl_pcie_txq_entry *entries;
893 	/* lock for syncing changes on the queue */
894 	spinlock_t lock;
895 	unsigned long frozen_expiry_remainder;
896 	struct timer_list stuck_timer;
897 	struct iwl_trans *trans;
898 	bool need_update;
899 	bool frozen;
900 	bool ampdu;
901 	int block;
902 	unsigned long wd_timeout;
903 	struct sk_buff_head overflow_q;
904 	struct iwl_dma_ptr bc_tbl;
905 
906 	int write_ptr;
907 	int read_ptr;
908 	dma_addr_t dma_addr;
909 	int n_window;
910 	u32 id;
911 	int low_mark;
912 	int high_mark;
913 
914 	bool overflow_tx;
915 };
916 
917 /**
918  * struct iwl_trans_txqs - transport tx queues data
919  *
920  * @bc_table_dword: true if the BC table expects DWORD (as opposed to bytes)
921  * @page_offs: offset from skb->cb to mac header page pointer
922  * @dev_cmd_offs: offset from skb->cb to iwl_device_tx_cmd pointer
923  * @queue_used - bit mask of used queues
924  * @queue_stopped - bit mask of stopped queues
925  * @scd_bc_tbls: gen1 pointer to the byte count table of the scheduler
926  */
927 struct iwl_trans_txqs {
928 	unsigned long queue_used[BITS_TO_LONGS(IWL_MAX_TVQM_QUEUES)];
929 	unsigned long queue_stopped[BITS_TO_LONGS(IWL_MAX_TVQM_QUEUES)];
930 	struct iwl_txq *txq[IWL_MAX_TVQM_QUEUES];
931 	struct dma_pool *bc_pool;
932 	size_t bc_tbl_size;
933 	bool bc_table_dword;
934 	u8 page_offs;
935 	u8 dev_cmd_offs;
936 	struct __percpu iwl_tso_hdr_page * tso_hdr_page;
937 
938 	struct {
939 		u8 fifo;
940 		u8 q_id;
941 		unsigned int wdg_timeout;
942 	} cmd;
943 
944 	struct {
945 		u8 max_tbs;
946 		u16 size;
947 		u8 addr_size;
948 	} tfd;
949 
950 	struct iwl_dma_ptr scd_bc_tbls;
951 };
952 
953 /**
954  * struct iwl_trans - transport common data
955  *
956  * @ops - pointer to iwl_trans_ops
957  * @op_mode - pointer to the op_mode
958  * @trans_cfg: the trans-specific configuration part
959  * @cfg - pointer to the configuration
960  * @drv - pointer to iwl_drv
961  * @status: a bit-mask of transport status flags
962  * @dev - pointer to struct device * that represents the device
963  * @max_skb_frags: maximum number of fragments an SKB can have when transmitted.
964  *	0 indicates that frag SKBs (NETIF_F_SG) aren't supported.
965  * @hw_rf_id a u32 with the device RF ID
966  * @hw_id: a u32 with the ID of the device / sub-device.
967  *	Set during transport allocation.
968  * @hw_id_str: a string with info about HW ID. Set during transport allocation.
969  * @pm_support: set to true in start_hw if link pm is supported
970  * @ltr_enabled: set to true if the LTR is enabled
971  * @wide_cmd_header: true when ucode supports wide command header format
972  * @num_rx_queues: number of RX queues allocated by the transport;
973  *	the transport must set this before calling iwl_drv_start()
974  * @iml_len: the length of the image loader
975  * @iml: a pointer to the image loader itself
976  * @dev_cmd_pool: pool for Tx cmd allocation - for internal use only.
977  *	The user should use iwl_trans_{alloc,free}_tx_cmd.
978  * @rx_mpdu_cmd: MPDU RX command ID, must be assigned by opmode before
979  *	starting the firmware, used for tracing
980  * @rx_mpdu_cmd_hdr_size: used for tracing, amount of data before the
981  *	start of the 802.11 header in the @rx_mpdu_cmd
982  * @dflt_pwr_limit: default power limit fetched from the platform (ACPI)
983  * @system_pm_mode: the system-wide power management mode in use.
984  *	This mode is set dynamically, depending on the WoWLAN values
985  *	configured from the userspace at runtime.
986  * @iwl_trans_txqs: transport tx queues data.
987  */
988 struct iwl_trans {
989 	const struct iwl_trans_ops *ops;
990 	struct iwl_op_mode *op_mode;
991 	const struct iwl_cfg_trans_params *trans_cfg;
992 	const struct iwl_cfg *cfg;
993 	struct iwl_drv *drv;
994 	enum iwl_trans_state state;
995 	unsigned long status;
996 
997 	struct device *dev;
998 	u32 max_skb_frags;
999 	u32 hw_rev;
1000 	u32 hw_rf_id;
1001 	u32 hw_id;
1002 	char hw_id_str[52];
1003 	u32 sku_id[3];
1004 
1005 	u8 rx_mpdu_cmd, rx_mpdu_cmd_hdr_size;
1006 
1007 	bool pm_support;
1008 	bool ltr_enabled;
1009 	u8 pnvm_loaded:1;
1010 
1011 	const struct iwl_hcmd_arr *command_groups;
1012 	int command_groups_size;
1013 	bool wide_cmd_header;
1014 
1015 	u8 num_rx_queues;
1016 
1017 	size_t iml_len;
1018 	u8 *iml;
1019 
1020 	/* The following fields are internal only */
1021 	struct kmem_cache *dev_cmd_pool;
1022 	char dev_cmd_pool_name[50];
1023 
1024 	struct dentry *dbgfs_dir;
1025 
1026 #ifdef CONFIG_LOCKDEP
1027 	struct lockdep_map sync_cmd_lockdep_map;
1028 #endif
1029 
1030 	struct iwl_trans_debug dbg;
1031 	struct iwl_self_init_dram init_dram;
1032 
1033 	enum iwl_plat_pm_mode system_pm_mode;
1034 
1035 	const char *name;
1036 	struct iwl_trans_txqs txqs;
1037 
1038 	/* pointer to trans specific struct */
1039 	/*Ensure that this pointer will always be aligned to sizeof pointer */
1040 	char trans_specific[] __aligned(sizeof(void *));
1041 };
1042 
1043 const char *iwl_get_cmd_string(struct iwl_trans *trans, u32 id);
1044 int iwl_cmd_groups_verify_sorted(const struct iwl_trans_config *trans);
1045 
iwl_trans_configure(struct iwl_trans * trans,const struct iwl_trans_config * trans_cfg)1046 static inline void iwl_trans_configure(struct iwl_trans *trans,
1047 				       const struct iwl_trans_config *trans_cfg)
1048 {
1049 	trans->op_mode = trans_cfg->op_mode;
1050 
1051 	trans->ops->configure(trans, trans_cfg);
1052 	WARN_ON(iwl_cmd_groups_verify_sorted(trans_cfg));
1053 }
1054 
iwl_trans_start_hw(struct iwl_trans * trans)1055 static inline int iwl_trans_start_hw(struct iwl_trans *trans)
1056 {
1057 	might_sleep();
1058 
1059 	return trans->ops->start_hw(trans);
1060 }
1061 
iwl_trans_op_mode_leave(struct iwl_trans * trans)1062 static inline void iwl_trans_op_mode_leave(struct iwl_trans *trans)
1063 {
1064 	might_sleep();
1065 
1066 	if (trans->ops->op_mode_leave)
1067 		trans->ops->op_mode_leave(trans);
1068 
1069 	trans->op_mode = NULL;
1070 
1071 	trans->state = IWL_TRANS_NO_FW;
1072 }
1073 
iwl_trans_fw_alive(struct iwl_trans * trans,u32 scd_addr)1074 static inline void iwl_trans_fw_alive(struct iwl_trans *trans, u32 scd_addr)
1075 {
1076 	might_sleep();
1077 
1078 	trans->state = IWL_TRANS_FW_ALIVE;
1079 
1080 	trans->ops->fw_alive(trans, scd_addr);
1081 }
1082 
iwl_trans_start_fw(struct iwl_trans * trans,const struct fw_img * fw,bool run_in_rfkill)1083 static inline int iwl_trans_start_fw(struct iwl_trans *trans,
1084 				     const struct fw_img *fw,
1085 				     bool run_in_rfkill)
1086 {
1087 	might_sleep();
1088 
1089 	WARN_ON_ONCE(!trans->rx_mpdu_cmd);
1090 
1091 	clear_bit(STATUS_FW_ERROR, &trans->status);
1092 	return trans->ops->start_fw(trans, fw, run_in_rfkill);
1093 }
1094 
iwl_trans_stop_device(struct iwl_trans * trans)1095 static inline void iwl_trans_stop_device(struct iwl_trans *trans)
1096 {
1097 	might_sleep();
1098 
1099 	trans->ops->stop_device(trans);
1100 
1101 	trans->state = IWL_TRANS_NO_FW;
1102 }
1103 
iwl_trans_d3_suspend(struct iwl_trans * trans,bool test,bool reset)1104 static inline int iwl_trans_d3_suspend(struct iwl_trans *trans, bool test,
1105 				       bool reset)
1106 {
1107 	might_sleep();
1108 	if (!trans->ops->d3_suspend)
1109 		return 0;
1110 
1111 	return trans->ops->d3_suspend(trans, test, reset);
1112 }
1113 
iwl_trans_d3_resume(struct iwl_trans * trans,enum iwl_d3_status * status,bool test,bool reset)1114 static inline int iwl_trans_d3_resume(struct iwl_trans *trans,
1115 				      enum iwl_d3_status *status,
1116 				      bool test, bool reset)
1117 {
1118 	might_sleep();
1119 	if (!trans->ops->d3_resume)
1120 		return 0;
1121 
1122 	return trans->ops->d3_resume(trans, status, test, reset);
1123 }
1124 
iwl_trans_suspend(struct iwl_trans * trans)1125 static inline int iwl_trans_suspend(struct iwl_trans *trans)
1126 {
1127 	if (!trans->ops->suspend)
1128 		return 0;
1129 
1130 	return trans->ops->suspend(trans);
1131 }
1132 
iwl_trans_resume(struct iwl_trans * trans)1133 static inline void iwl_trans_resume(struct iwl_trans *trans)
1134 {
1135 	if (trans->ops->resume)
1136 		trans->ops->resume(trans);
1137 }
1138 
1139 static inline struct iwl_trans_dump_data *
iwl_trans_dump_data(struct iwl_trans * trans,u32 dump_mask)1140 iwl_trans_dump_data(struct iwl_trans *trans, u32 dump_mask)
1141 {
1142 	if (!trans->ops->dump_data)
1143 		return NULL;
1144 	return trans->ops->dump_data(trans, dump_mask);
1145 }
1146 
1147 static inline struct iwl_device_tx_cmd *
iwl_trans_alloc_tx_cmd(struct iwl_trans * trans)1148 iwl_trans_alloc_tx_cmd(struct iwl_trans *trans)
1149 {
1150 	return kmem_cache_zalloc(trans->dev_cmd_pool, GFP_ATOMIC);
1151 }
1152 
1153 int iwl_trans_send_cmd(struct iwl_trans *trans, struct iwl_host_cmd *cmd);
1154 
iwl_trans_free_tx_cmd(struct iwl_trans * trans,struct iwl_device_tx_cmd * dev_cmd)1155 static inline void iwl_trans_free_tx_cmd(struct iwl_trans *trans,
1156 					 struct iwl_device_tx_cmd *dev_cmd)
1157 {
1158 	kmem_cache_free(trans->dev_cmd_pool, dev_cmd);
1159 }
1160 
iwl_trans_tx(struct iwl_trans * trans,struct sk_buff * skb,struct iwl_device_tx_cmd * dev_cmd,int queue)1161 static inline int iwl_trans_tx(struct iwl_trans *trans, struct sk_buff *skb,
1162 			       struct iwl_device_tx_cmd *dev_cmd, int queue)
1163 {
1164 	if (unlikely(test_bit(STATUS_FW_ERROR, &trans->status)))
1165 		return -EIO;
1166 
1167 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1168 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1169 		return -EIO;
1170 	}
1171 
1172 	return trans->ops->tx(trans, skb, dev_cmd, queue);
1173 }
1174 
iwl_trans_reclaim(struct iwl_trans * trans,int queue,int ssn,struct sk_buff_head * skbs)1175 static inline void iwl_trans_reclaim(struct iwl_trans *trans, int queue,
1176 				     int ssn, struct sk_buff_head *skbs)
1177 {
1178 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1179 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1180 		return;
1181 	}
1182 
1183 	trans->ops->reclaim(trans, queue, ssn, skbs);
1184 }
1185 
iwl_trans_set_q_ptrs(struct iwl_trans * trans,int queue,int ptr)1186 static inline void iwl_trans_set_q_ptrs(struct iwl_trans *trans, int queue,
1187 					int ptr)
1188 {
1189 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1190 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1191 		return;
1192 	}
1193 
1194 	trans->ops->set_q_ptrs(trans, queue, ptr);
1195 }
1196 
iwl_trans_txq_disable(struct iwl_trans * trans,int queue,bool configure_scd)1197 static inline void iwl_trans_txq_disable(struct iwl_trans *trans, int queue,
1198 					 bool configure_scd)
1199 {
1200 	trans->ops->txq_disable(trans, queue, configure_scd);
1201 }
1202 
1203 static inline bool
iwl_trans_txq_enable_cfg(struct iwl_trans * trans,int queue,u16 ssn,const struct iwl_trans_txq_scd_cfg * cfg,unsigned int queue_wdg_timeout)1204 iwl_trans_txq_enable_cfg(struct iwl_trans *trans, int queue, u16 ssn,
1205 			 const struct iwl_trans_txq_scd_cfg *cfg,
1206 			 unsigned int queue_wdg_timeout)
1207 {
1208 	might_sleep();
1209 
1210 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1211 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1212 		return false;
1213 	}
1214 
1215 	return trans->ops->txq_enable(trans, queue, ssn,
1216 				      cfg, queue_wdg_timeout);
1217 }
1218 
1219 static inline int
iwl_trans_get_rxq_dma_data(struct iwl_trans * trans,int queue,struct iwl_trans_rxq_dma_data * data)1220 iwl_trans_get_rxq_dma_data(struct iwl_trans *trans, int queue,
1221 			   struct iwl_trans_rxq_dma_data *data)
1222 {
1223 	if (WARN_ON_ONCE(!trans->ops->rxq_dma_data))
1224 		return -ENOTSUPP;
1225 
1226 	return trans->ops->rxq_dma_data(trans, queue, data);
1227 }
1228 
1229 static inline void
iwl_trans_txq_free(struct iwl_trans * trans,int queue)1230 iwl_trans_txq_free(struct iwl_trans *trans, int queue)
1231 {
1232 	if (WARN_ON_ONCE(!trans->ops->txq_free))
1233 		return;
1234 
1235 	trans->ops->txq_free(trans, queue);
1236 }
1237 
1238 static inline int
iwl_trans_txq_alloc(struct iwl_trans * trans,__le16 flags,u8 sta_id,u8 tid,int cmd_id,int size,unsigned int wdg_timeout)1239 iwl_trans_txq_alloc(struct iwl_trans *trans,
1240 		    __le16 flags, u8 sta_id, u8 tid,
1241 		    int cmd_id, int size,
1242 		    unsigned int wdg_timeout)
1243 {
1244 	might_sleep();
1245 
1246 	if (WARN_ON_ONCE(!trans->ops->txq_alloc))
1247 		return -ENOTSUPP;
1248 
1249 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1250 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1251 		return -EIO;
1252 	}
1253 
1254 	return trans->ops->txq_alloc(trans, flags, sta_id, tid,
1255 				     cmd_id, size, wdg_timeout);
1256 }
1257 
iwl_trans_txq_set_shared_mode(struct iwl_trans * trans,int queue,bool shared_mode)1258 static inline void iwl_trans_txq_set_shared_mode(struct iwl_trans *trans,
1259 						 int queue, bool shared_mode)
1260 {
1261 	if (trans->ops->txq_set_shared_mode)
1262 		trans->ops->txq_set_shared_mode(trans, queue, shared_mode);
1263 }
1264 
iwl_trans_txq_enable(struct iwl_trans * trans,int queue,int fifo,int sta_id,int tid,int frame_limit,u16 ssn,unsigned int queue_wdg_timeout)1265 static inline void iwl_trans_txq_enable(struct iwl_trans *trans, int queue,
1266 					int fifo, int sta_id, int tid,
1267 					int frame_limit, u16 ssn,
1268 					unsigned int queue_wdg_timeout)
1269 {
1270 	struct iwl_trans_txq_scd_cfg cfg = {
1271 		.fifo = fifo,
1272 		.sta_id = sta_id,
1273 		.tid = tid,
1274 		.frame_limit = frame_limit,
1275 		.aggregate = sta_id >= 0,
1276 	};
1277 
1278 	iwl_trans_txq_enable_cfg(trans, queue, ssn, &cfg, queue_wdg_timeout);
1279 }
1280 
1281 static inline
iwl_trans_ac_txq_enable(struct iwl_trans * trans,int queue,int fifo,unsigned int queue_wdg_timeout)1282 void iwl_trans_ac_txq_enable(struct iwl_trans *trans, int queue, int fifo,
1283 			     unsigned int queue_wdg_timeout)
1284 {
1285 	struct iwl_trans_txq_scd_cfg cfg = {
1286 		.fifo = fifo,
1287 		.sta_id = -1,
1288 		.tid = IWL_MAX_TID_COUNT,
1289 		.frame_limit = IWL_FRAME_LIMIT,
1290 		.aggregate = false,
1291 	};
1292 
1293 	iwl_trans_txq_enable_cfg(trans, queue, 0, &cfg, queue_wdg_timeout);
1294 }
1295 
iwl_trans_freeze_txq_timer(struct iwl_trans * trans,unsigned long txqs,bool freeze)1296 static inline void iwl_trans_freeze_txq_timer(struct iwl_trans *trans,
1297 					      unsigned long txqs,
1298 					      bool freeze)
1299 {
1300 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1301 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1302 		return;
1303 	}
1304 
1305 	if (trans->ops->freeze_txq_timer)
1306 		trans->ops->freeze_txq_timer(trans, txqs, freeze);
1307 }
1308 
iwl_trans_block_txq_ptrs(struct iwl_trans * trans,bool block)1309 static inline void iwl_trans_block_txq_ptrs(struct iwl_trans *trans,
1310 					    bool block)
1311 {
1312 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1313 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1314 		return;
1315 	}
1316 
1317 	if (trans->ops->block_txq_ptrs)
1318 		trans->ops->block_txq_ptrs(trans, block);
1319 }
1320 
iwl_trans_wait_tx_queues_empty(struct iwl_trans * trans,u32 txqs)1321 static inline int iwl_trans_wait_tx_queues_empty(struct iwl_trans *trans,
1322 						 u32 txqs)
1323 {
1324 	if (WARN_ON_ONCE(!trans->ops->wait_tx_queues_empty))
1325 		return -ENOTSUPP;
1326 
1327 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1328 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1329 		return -EIO;
1330 	}
1331 
1332 	return trans->ops->wait_tx_queues_empty(trans, txqs);
1333 }
1334 
iwl_trans_wait_txq_empty(struct iwl_trans * trans,int queue)1335 static inline int iwl_trans_wait_txq_empty(struct iwl_trans *trans, int queue)
1336 {
1337 	if (WARN_ON_ONCE(!trans->ops->wait_txq_empty))
1338 		return -ENOTSUPP;
1339 
1340 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1341 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1342 		return -EIO;
1343 	}
1344 
1345 	return trans->ops->wait_txq_empty(trans, queue);
1346 }
1347 
iwl_trans_write8(struct iwl_trans * trans,u32 ofs,u8 val)1348 static inline void iwl_trans_write8(struct iwl_trans *trans, u32 ofs, u8 val)
1349 {
1350 	trans->ops->write8(trans, ofs, val);
1351 }
1352 
iwl_trans_write32(struct iwl_trans * trans,u32 ofs,u32 val)1353 static inline void iwl_trans_write32(struct iwl_trans *trans, u32 ofs, u32 val)
1354 {
1355 	trans->ops->write32(trans, ofs, val);
1356 }
1357 
iwl_trans_read32(struct iwl_trans * trans,u32 ofs)1358 static inline u32 iwl_trans_read32(struct iwl_trans *trans, u32 ofs)
1359 {
1360 	return trans->ops->read32(trans, ofs);
1361 }
1362 
iwl_trans_read_prph(struct iwl_trans * trans,u32 ofs)1363 static inline u32 iwl_trans_read_prph(struct iwl_trans *trans, u32 ofs)
1364 {
1365 	return trans->ops->read_prph(trans, ofs);
1366 }
1367 
iwl_trans_write_prph(struct iwl_trans * trans,u32 ofs,u32 val)1368 static inline void iwl_trans_write_prph(struct iwl_trans *trans, u32 ofs,
1369 					u32 val)
1370 {
1371 	return trans->ops->write_prph(trans, ofs, val);
1372 }
1373 
iwl_trans_read_mem(struct iwl_trans * trans,u32 addr,void * buf,int dwords)1374 static inline int iwl_trans_read_mem(struct iwl_trans *trans, u32 addr,
1375 				     void *buf, int dwords)
1376 {
1377 	return trans->ops->read_mem(trans, addr, buf, dwords);
1378 }
1379 
1380 #define iwl_trans_read_mem_bytes(trans, addr, buf, bufsize)		      \
1381 	do {								      \
1382 		if (__builtin_constant_p(bufsize))			      \
1383 			BUILD_BUG_ON((bufsize) % sizeof(u32));		      \
1384 		iwl_trans_read_mem(trans, addr, buf, (bufsize) / sizeof(u32));\
1385 	} while (0)
1386 
iwl_trans_read_mem32(struct iwl_trans * trans,u32 addr)1387 static inline u32 iwl_trans_read_mem32(struct iwl_trans *trans, u32 addr)
1388 {
1389 	u32 value;
1390 
1391 	if (WARN_ON(iwl_trans_read_mem(trans, addr, &value, 1)))
1392 		return 0xa5a5a5a5;
1393 
1394 	return value;
1395 }
1396 
iwl_trans_write_mem(struct iwl_trans * trans,u32 addr,const void * buf,int dwords)1397 static inline int iwl_trans_write_mem(struct iwl_trans *trans, u32 addr,
1398 				      const void *buf, int dwords)
1399 {
1400 	return trans->ops->write_mem(trans, addr, buf, dwords);
1401 }
1402 
iwl_trans_write_mem32(struct iwl_trans * trans,u32 addr,u32 val)1403 static inline u32 iwl_trans_write_mem32(struct iwl_trans *trans, u32 addr,
1404 					u32 val)
1405 {
1406 	return iwl_trans_write_mem(trans, addr, &val, 1);
1407 }
1408 
iwl_trans_set_pmi(struct iwl_trans * trans,bool state)1409 static inline void iwl_trans_set_pmi(struct iwl_trans *trans, bool state)
1410 {
1411 	if (trans->ops->set_pmi)
1412 		trans->ops->set_pmi(trans, state);
1413 }
1414 
iwl_trans_sw_reset(struct iwl_trans * trans)1415 static inline void iwl_trans_sw_reset(struct iwl_trans *trans)
1416 {
1417 	if (trans->ops->sw_reset)
1418 		trans->ops->sw_reset(trans);
1419 }
1420 
1421 static inline void
iwl_trans_set_bits_mask(struct iwl_trans * trans,u32 reg,u32 mask,u32 value)1422 iwl_trans_set_bits_mask(struct iwl_trans *trans, u32 reg, u32 mask, u32 value)
1423 {
1424 	trans->ops->set_bits_mask(trans, reg, mask, value);
1425 }
1426 
1427 #define iwl_trans_grab_nic_access(trans, flags)	\
1428 	__cond_lock(nic_access,				\
1429 		    likely((trans)->ops->grab_nic_access(trans, flags)))
1430 
__releases(nic_access)1431 static inline void __releases(nic_access)
1432 iwl_trans_release_nic_access(struct iwl_trans *trans, unsigned long *flags)
1433 {
1434 	trans->ops->release_nic_access(trans, flags);
1435 	__release(nic_access);
1436 }
1437 
iwl_trans_fw_error(struct iwl_trans * trans)1438 static inline void iwl_trans_fw_error(struct iwl_trans *trans)
1439 {
1440 	if (WARN_ON_ONCE(!trans->op_mode))
1441 		return;
1442 
1443 	/* prevent double restarts due to the same erroneous FW */
1444 	if (!test_and_set_bit(STATUS_FW_ERROR, &trans->status))
1445 		iwl_op_mode_nic_error(trans->op_mode);
1446 }
1447 
iwl_trans_fw_running(struct iwl_trans * trans)1448 static inline bool iwl_trans_fw_running(struct iwl_trans *trans)
1449 {
1450 	return trans->state == IWL_TRANS_FW_ALIVE;
1451 }
1452 
iwl_trans_sync_nmi(struct iwl_trans * trans)1453 static inline void iwl_trans_sync_nmi(struct iwl_trans *trans)
1454 {
1455 	if (trans->ops->sync_nmi)
1456 		trans->ops->sync_nmi(trans);
1457 }
1458 
iwl_trans_set_pnvm(struct iwl_trans * trans,const void * data,u32 len)1459 static inline int iwl_trans_set_pnvm(struct iwl_trans *trans,
1460 				     const void *data, u32 len)
1461 {
1462 	if (trans->ops->set_pnvm) {
1463 		int ret = trans->ops->set_pnvm(trans, data, len);
1464 
1465 		if (ret)
1466 			return ret;
1467 	}
1468 
1469 	trans->pnvm_loaded = true;
1470 
1471 	return 0;
1472 }
1473 
iwl_trans_dbg_ini_valid(struct iwl_trans * trans)1474 static inline bool iwl_trans_dbg_ini_valid(struct iwl_trans *trans)
1475 {
1476 	return trans->dbg.internal_ini_cfg != IWL_INI_CFG_STATE_NOT_LOADED ||
1477 		trans->dbg.external_ini_cfg != IWL_INI_CFG_STATE_NOT_LOADED;
1478 }
1479 
1480 /*****************************************************
1481  * transport helper functions
1482  *****************************************************/
1483 struct iwl_trans *iwl_trans_alloc(unsigned int priv_size,
1484 			  struct device *dev,
1485 			  const struct iwl_trans_ops *ops,
1486 			  const struct iwl_cfg_trans_params *cfg_trans);
1487 void iwl_trans_free(struct iwl_trans *trans);
1488 
1489 /*****************************************************
1490 * driver (transport) register/unregister functions
1491 ******************************************************/
1492 int __must_check iwl_pci_register_driver(void);
1493 void iwl_pci_unregister_driver(void);
1494 
1495 #endif /* __iwl_trans_h__ */
1496