1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /*
3 * Copyright (C) 2003-2014, 2018-2021 Intel Corporation
4 * Copyright (C) 2013-2015 Intel Mobile Communications GmbH
5 * Copyright (C) 2016-2017 Intel Deutschland GmbH
6 */
7 #include <linux/sched.h>
8 #include <linux/wait.h>
9 #include <linux/gfp.h>
10
11 #include "iwl-prph.h"
12 #include "iwl-io.h"
13 #include "internal.h"
14 #include "iwl-op-mode.h"
15 #include "iwl-context-info-gen3.h"
16
17 /******************************************************************************
18 *
19 * RX path functions
20 *
21 ******************************************************************************/
22
23 /*
24 * Rx theory of operation
25 *
26 * Driver allocates a circular buffer of Receive Buffer Descriptors (RBDs),
27 * each of which point to Receive Buffers to be filled by the NIC. These get
28 * used not only for Rx frames, but for any command response or notification
29 * from the NIC. The driver and NIC manage the Rx buffers by means
30 * of indexes into the circular buffer.
31 *
32 * Rx Queue Indexes
33 * The host/firmware share two index registers for managing the Rx buffers.
34 *
35 * The READ index maps to the first position that the firmware may be writing
36 * to -- the driver can read up to (but not including) this position and get
37 * good data.
38 * The READ index is managed by the firmware once the card is enabled.
39 *
40 * The WRITE index maps to the last position the driver has read from -- the
41 * position preceding WRITE is the last slot the firmware can place a packet.
42 *
43 * The queue is empty (no good data) if WRITE = READ - 1, and is full if
44 * WRITE = READ.
45 *
46 * During initialization, the host sets up the READ queue position to the first
47 * INDEX position, and WRITE to the last (READ - 1 wrapped)
48 *
49 * When the firmware places a packet in a buffer, it will advance the READ index
50 * and fire the RX interrupt. The driver can then query the READ index and
51 * process as many packets as possible, moving the WRITE index forward as it
52 * resets the Rx queue buffers with new memory.
53 *
54 * The management in the driver is as follows:
55 * + A list of pre-allocated RBDs is stored in iwl->rxq->rx_free.
56 * When the interrupt handler is called, the request is processed.
57 * The page is either stolen - transferred to the upper layer
58 * or reused - added immediately to the iwl->rxq->rx_free list.
59 * + When the page is stolen - the driver updates the matching queue's used
60 * count, detaches the RBD and transfers it to the queue used list.
61 * When there are two used RBDs - they are transferred to the allocator empty
62 * list. Work is then scheduled for the allocator to start allocating
63 * eight buffers.
64 * When there are another 6 used RBDs - they are transferred to the allocator
65 * empty list and the driver tries to claim the pre-allocated buffers and
66 * add them to iwl->rxq->rx_free. If it fails - it continues to claim them
67 * until ready.
68 * When there are 8+ buffers in the free list - either from allocation or from
69 * 8 reused unstolen pages - restock is called to update the FW and indexes.
70 * + In order to make sure the allocator always has RBDs to use for allocation
71 * the allocator has initial pool in the size of num_queues*(8-2) - the
72 * maximum missing RBDs per allocation request (request posted with 2
73 * empty RBDs, there is no guarantee when the other 6 RBDs are supplied).
74 * The queues supplies the recycle of the rest of the RBDs.
75 * + A received packet is processed and handed to the kernel network stack,
76 * detached from the iwl->rxq. The driver 'processed' index is updated.
77 * + If there are no allocated buffers in iwl->rxq->rx_free,
78 * the READ INDEX is not incremented and iwl->status(RX_STALLED) is set.
79 * If there were enough free buffers and RX_STALLED is set it is cleared.
80 *
81 *
82 * Driver sequence:
83 *
84 * iwl_rxq_alloc() Allocates rx_free
85 * iwl_pcie_rx_replenish() Replenishes rx_free list from rx_used, and calls
86 * iwl_pcie_rxq_restock.
87 * Used only during initialization.
88 * iwl_pcie_rxq_restock() Moves available buffers from rx_free into Rx
89 * queue, updates firmware pointers, and updates
90 * the WRITE index.
91 * iwl_pcie_rx_allocator() Background work for allocating pages.
92 *
93 * -- enable interrupts --
94 * ISR - iwl_rx() Detach iwl_rx_mem_buffers from pool up to the
95 * READ INDEX, detaching the SKB from the pool.
96 * Moves the packet buffer from queue to rx_used.
97 * Posts and claims requests to the allocator.
98 * Calls iwl_pcie_rxq_restock to refill any empty
99 * slots.
100 *
101 * RBD life-cycle:
102 *
103 * Init:
104 * rxq.pool -> rxq.rx_used -> rxq.rx_free -> rxq.queue
105 *
106 * Regular Receive interrupt:
107 * Page Stolen:
108 * rxq.queue -> rxq.rx_used -> allocator.rbd_empty ->
109 * allocator.rbd_allocated -> rxq.rx_free -> rxq.queue
110 * Page not Stolen:
111 * rxq.queue -> rxq.rx_free -> rxq.queue
112 * ...
113 *
114 */
115
116 /*
117 * iwl_rxq_space - Return number of free slots available in queue.
118 */
iwl_rxq_space(const struct iwl_rxq * rxq)119 static int iwl_rxq_space(const struct iwl_rxq *rxq)
120 {
121 /* Make sure rx queue size is a power of 2 */
122 WARN_ON(rxq->queue_size & (rxq->queue_size - 1));
123
124 /*
125 * There can be up to (RX_QUEUE_SIZE - 1) free slots, to avoid ambiguity
126 * between empty and completely full queues.
127 * The following is equivalent to modulo by RX_QUEUE_SIZE and is well
128 * defined for negative dividends.
129 */
130 return (rxq->read - rxq->write - 1) & (rxq->queue_size - 1);
131 }
132
133 /*
134 * iwl_dma_addr2rbd_ptr - convert a DMA address to a uCode read buffer ptr
135 */
iwl_pcie_dma_addr2rbd_ptr(dma_addr_t dma_addr)136 static inline __le32 iwl_pcie_dma_addr2rbd_ptr(dma_addr_t dma_addr)
137 {
138 return cpu_to_le32((u32)(dma_addr >> 8));
139 }
140
141 /*
142 * iwl_pcie_rx_stop - stops the Rx DMA
143 */
iwl_pcie_rx_stop(struct iwl_trans * trans)144 int iwl_pcie_rx_stop(struct iwl_trans *trans)
145 {
146 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
147 /* TODO: remove this once fw does it */
148 iwl_write_umac_prph(trans, RFH_RXF_DMA_CFG_GEN3, 0);
149 return iwl_poll_umac_prph_bit(trans, RFH_GEN_STATUS_GEN3,
150 RXF_DMA_IDLE, RXF_DMA_IDLE, 1000);
151 } else if (trans->trans_cfg->mq_rx_supported) {
152 iwl_write_prph(trans, RFH_RXF_DMA_CFG, 0);
153 return iwl_poll_prph_bit(trans, RFH_GEN_STATUS,
154 RXF_DMA_IDLE, RXF_DMA_IDLE, 1000);
155 } else {
156 iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
157 return iwl_poll_direct_bit(trans, FH_MEM_RSSR_RX_STATUS_REG,
158 FH_RSSR_CHNL0_RX_STATUS_CHNL_IDLE,
159 1000);
160 }
161 }
162
163 /*
164 * iwl_pcie_rxq_inc_wr_ptr - Update the write pointer for the RX queue
165 */
iwl_pcie_rxq_inc_wr_ptr(struct iwl_trans * trans,struct iwl_rxq * rxq)166 static void iwl_pcie_rxq_inc_wr_ptr(struct iwl_trans *trans,
167 struct iwl_rxq *rxq)
168 {
169 u32 reg;
170
171 lockdep_assert_held(&rxq->lock);
172
173 /*
174 * explicitly wake up the NIC if:
175 * 1. shadow registers aren't enabled
176 * 2. there is a chance that the NIC is asleep
177 */
178 if (!trans->trans_cfg->base_params->shadow_reg_enable &&
179 test_bit(STATUS_TPOWER_PMI, &trans->status)) {
180 reg = iwl_read32(trans, CSR_UCODE_DRV_GP1);
181
182 if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) {
183 IWL_DEBUG_INFO(trans, "Rx queue requesting wakeup, GP1 = 0x%x\n",
184 reg);
185 iwl_set_bit(trans, CSR_GP_CNTRL,
186 CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
187 rxq->need_update = true;
188 return;
189 }
190 }
191
192 rxq->write_actual = round_down(rxq->write, 8);
193 if (trans->trans_cfg->mq_rx_supported)
194 iwl_write32(trans, RFH_Q_FRBDCB_WIDX_TRG(rxq->id),
195 rxq->write_actual);
196 else
197 iwl_write32(trans, FH_RSCSR_CHNL0_WPTR, rxq->write_actual);
198 }
199
iwl_pcie_rxq_check_wrptr(struct iwl_trans * trans)200 static void iwl_pcie_rxq_check_wrptr(struct iwl_trans *trans)
201 {
202 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
203 int i;
204
205 for (i = 0; i < trans->num_rx_queues; i++) {
206 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
207
208 if (!rxq->need_update)
209 continue;
210 spin_lock_bh(&rxq->lock);
211 iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
212 rxq->need_update = false;
213 spin_unlock_bh(&rxq->lock);
214 }
215 }
216
iwl_pcie_restock_bd(struct iwl_trans * trans,struct iwl_rxq * rxq,struct iwl_rx_mem_buffer * rxb)217 static void iwl_pcie_restock_bd(struct iwl_trans *trans,
218 struct iwl_rxq *rxq,
219 struct iwl_rx_mem_buffer *rxb)
220 {
221 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
222 struct iwl_rx_transfer_desc *bd = rxq->bd;
223
224 BUILD_BUG_ON(sizeof(*bd) != 2 * sizeof(u64));
225
226 bd[rxq->write].addr = cpu_to_le64(rxb->page_dma);
227 bd[rxq->write].rbid = cpu_to_le16(rxb->vid);
228 } else {
229 __le64 *bd = rxq->bd;
230
231 bd[rxq->write] = cpu_to_le64(rxb->page_dma | rxb->vid);
232 }
233
234 IWL_DEBUG_RX(trans, "Assigned virtual RB ID %u to queue %d index %d\n",
235 (u32)rxb->vid, rxq->id, rxq->write);
236 }
237
238 /*
239 * iwl_pcie_rxmq_restock - restock implementation for multi-queue rx
240 */
iwl_pcie_rxmq_restock(struct iwl_trans * trans,struct iwl_rxq * rxq)241 static void iwl_pcie_rxmq_restock(struct iwl_trans *trans,
242 struct iwl_rxq *rxq)
243 {
244 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
245 struct iwl_rx_mem_buffer *rxb;
246
247 /*
248 * If the device isn't enabled - no need to try to add buffers...
249 * This can happen when we stop the device and still have an interrupt
250 * pending. We stop the APM before we sync the interrupts because we
251 * have to (see comment there). On the other hand, since the APM is
252 * stopped, we cannot access the HW (in particular not prph).
253 * So don't try to restock if the APM has been already stopped.
254 */
255 if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
256 return;
257
258 spin_lock_bh(&rxq->lock);
259 while (rxq->free_count) {
260 /* Get next free Rx buffer, remove from free list */
261 rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
262 list);
263 list_del(&rxb->list);
264 rxb->invalid = false;
265 /* some low bits are expected to be unset (depending on hw) */
266 WARN_ON(rxb->page_dma & trans_pcie->supported_dma_mask);
267 /* Point to Rx buffer via next RBD in circular buffer */
268 iwl_pcie_restock_bd(trans, rxq, rxb);
269 rxq->write = (rxq->write + 1) & (rxq->queue_size - 1);
270 rxq->free_count--;
271 }
272 spin_unlock_bh(&rxq->lock);
273
274 /*
275 * If we've added more space for the firmware to place data, tell it.
276 * Increment device's write pointer in multiples of 8.
277 */
278 if (rxq->write_actual != (rxq->write & ~0x7)) {
279 spin_lock_bh(&rxq->lock);
280 iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
281 spin_unlock_bh(&rxq->lock);
282 }
283 }
284
285 /*
286 * iwl_pcie_rxsq_restock - restock implementation for single queue rx
287 */
iwl_pcie_rxsq_restock(struct iwl_trans * trans,struct iwl_rxq * rxq)288 static void iwl_pcie_rxsq_restock(struct iwl_trans *trans,
289 struct iwl_rxq *rxq)
290 {
291 struct iwl_rx_mem_buffer *rxb;
292
293 /*
294 * If the device isn't enabled - not need to try to add buffers...
295 * This can happen when we stop the device and still have an interrupt
296 * pending. We stop the APM before we sync the interrupts because we
297 * have to (see comment there). On the other hand, since the APM is
298 * stopped, we cannot access the HW (in particular not prph).
299 * So don't try to restock if the APM has been already stopped.
300 */
301 if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
302 return;
303
304 spin_lock_bh(&rxq->lock);
305 while ((iwl_rxq_space(rxq) > 0) && (rxq->free_count)) {
306 __le32 *bd = (__le32 *)rxq->bd;
307 /* The overwritten rxb must be a used one */
308 rxb = rxq->queue[rxq->write];
309 BUG_ON(rxb && rxb->page);
310
311 /* Get next free Rx buffer, remove from free list */
312 rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
313 list);
314 list_del(&rxb->list);
315 rxb->invalid = false;
316
317 /* Point to Rx buffer via next RBD in circular buffer */
318 bd[rxq->write] = iwl_pcie_dma_addr2rbd_ptr(rxb->page_dma);
319 rxq->queue[rxq->write] = rxb;
320 rxq->write = (rxq->write + 1) & RX_QUEUE_MASK;
321 rxq->free_count--;
322 }
323 spin_unlock_bh(&rxq->lock);
324
325 /* If we've added more space for the firmware to place data, tell it.
326 * Increment device's write pointer in multiples of 8. */
327 if (rxq->write_actual != (rxq->write & ~0x7)) {
328 spin_lock_bh(&rxq->lock);
329 iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
330 spin_unlock_bh(&rxq->lock);
331 }
332 }
333
334 /*
335 * iwl_pcie_rxq_restock - refill RX queue from pre-allocated pool
336 *
337 * If there are slots in the RX queue that need to be restocked,
338 * and we have free pre-allocated buffers, fill the ranks as much
339 * as we can, pulling from rx_free.
340 *
341 * This moves the 'write' index forward to catch up with 'processed', and
342 * also updates the memory address in the firmware to reference the new
343 * target buffer.
344 */
345 static
iwl_pcie_rxq_restock(struct iwl_trans * trans,struct iwl_rxq * rxq)346 void iwl_pcie_rxq_restock(struct iwl_trans *trans, struct iwl_rxq *rxq)
347 {
348 if (trans->trans_cfg->mq_rx_supported)
349 iwl_pcie_rxmq_restock(trans, rxq);
350 else
351 iwl_pcie_rxsq_restock(trans, rxq);
352 }
353
354 /*
355 * iwl_pcie_rx_alloc_page - allocates and returns a page.
356 *
357 */
iwl_pcie_rx_alloc_page(struct iwl_trans * trans,u32 * offset,gfp_t priority)358 static struct page *iwl_pcie_rx_alloc_page(struct iwl_trans *trans,
359 u32 *offset, gfp_t priority)
360 {
361 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
362 unsigned int rbsize = iwl_trans_get_rb_size(trans_pcie->rx_buf_size);
363 unsigned int allocsize = PAGE_SIZE << trans_pcie->rx_page_order;
364 struct page *page;
365 gfp_t gfp_mask = priority;
366
367 if (trans_pcie->rx_page_order > 0)
368 gfp_mask |= __GFP_COMP;
369
370 if (trans_pcie->alloc_page) {
371 spin_lock_bh(&trans_pcie->alloc_page_lock);
372 /* recheck */
373 if (trans_pcie->alloc_page) {
374 *offset = trans_pcie->alloc_page_used;
375 page = trans_pcie->alloc_page;
376 trans_pcie->alloc_page_used += rbsize;
377 if (trans_pcie->alloc_page_used >= allocsize)
378 trans_pcie->alloc_page = NULL;
379 else
380 get_page(page);
381 spin_unlock_bh(&trans_pcie->alloc_page_lock);
382 return page;
383 }
384 spin_unlock_bh(&trans_pcie->alloc_page_lock);
385 }
386
387 /* Alloc a new receive buffer */
388 page = alloc_pages(gfp_mask, trans_pcie->rx_page_order);
389 if (!page) {
390 if (net_ratelimit())
391 IWL_DEBUG_INFO(trans, "alloc_pages failed, order: %d\n",
392 trans_pcie->rx_page_order);
393 /*
394 * Issue an error if we don't have enough pre-allocated
395 * buffers.
396 */
397 if (!(gfp_mask & __GFP_NOWARN) && net_ratelimit())
398 IWL_CRIT(trans,
399 "Failed to alloc_pages\n");
400 return NULL;
401 }
402
403 if (2 * rbsize <= allocsize) {
404 spin_lock_bh(&trans_pcie->alloc_page_lock);
405 if (!trans_pcie->alloc_page) {
406 get_page(page);
407 trans_pcie->alloc_page = page;
408 trans_pcie->alloc_page_used = rbsize;
409 }
410 spin_unlock_bh(&trans_pcie->alloc_page_lock);
411 }
412
413 *offset = 0;
414 return page;
415 }
416
417 /*
418 * iwl_pcie_rxq_alloc_rbs - allocate a page for each used RBD
419 *
420 * A used RBD is an Rx buffer that has been given to the stack. To use it again
421 * a page must be allocated and the RBD must point to the page. This function
422 * doesn't change the HW pointer but handles the list of pages that is used by
423 * iwl_pcie_rxq_restock. The latter function will update the HW to use the newly
424 * allocated buffers.
425 */
iwl_pcie_rxq_alloc_rbs(struct iwl_trans * trans,gfp_t priority,struct iwl_rxq * rxq)426 void iwl_pcie_rxq_alloc_rbs(struct iwl_trans *trans, gfp_t priority,
427 struct iwl_rxq *rxq)
428 {
429 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
430 struct iwl_rx_mem_buffer *rxb;
431 struct page *page;
432
433 while (1) {
434 unsigned int offset;
435
436 spin_lock_bh(&rxq->lock);
437 if (list_empty(&rxq->rx_used)) {
438 spin_unlock_bh(&rxq->lock);
439 return;
440 }
441 spin_unlock_bh(&rxq->lock);
442
443 page = iwl_pcie_rx_alloc_page(trans, &offset, priority);
444 if (!page)
445 return;
446
447 spin_lock_bh(&rxq->lock);
448
449 if (list_empty(&rxq->rx_used)) {
450 spin_unlock_bh(&rxq->lock);
451 __free_pages(page, trans_pcie->rx_page_order);
452 return;
453 }
454 rxb = list_first_entry(&rxq->rx_used, struct iwl_rx_mem_buffer,
455 list);
456 list_del(&rxb->list);
457 spin_unlock_bh(&rxq->lock);
458
459 BUG_ON(rxb->page);
460 rxb->page = page;
461 rxb->offset = offset;
462 /* Get physical address of the RB */
463 rxb->page_dma =
464 dma_map_page(trans->dev, page, rxb->offset,
465 trans_pcie->rx_buf_bytes,
466 DMA_FROM_DEVICE);
467 if (dma_mapping_error(trans->dev, rxb->page_dma)) {
468 rxb->page = NULL;
469 spin_lock_bh(&rxq->lock);
470 list_add(&rxb->list, &rxq->rx_used);
471 spin_unlock_bh(&rxq->lock);
472 __free_pages(page, trans_pcie->rx_page_order);
473 return;
474 }
475
476 spin_lock_bh(&rxq->lock);
477
478 list_add_tail(&rxb->list, &rxq->rx_free);
479 rxq->free_count++;
480
481 spin_unlock_bh(&rxq->lock);
482 }
483 }
484
iwl_pcie_free_rbs_pool(struct iwl_trans * trans)485 void iwl_pcie_free_rbs_pool(struct iwl_trans *trans)
486 {
487 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
488 int i;
489
490 if (!trans_pcie->rx_pool)
491 return;
492
493 for (i = 0; i < RX_POOL_SIZE(trans_pcie->num_rx_bufs); i++) {
494 if (!trans_pcie->rx_pool[i].page)
495 continue;
496 dma_unmap_page(trans->dev, trans_pcie->rx_pool[i].page_dma,
497 trans_pcie->rx_buf_bytes, DMA_FROM_DEVICE);
498 __free_pages(trans_pcie->rx_pool[i].page,
499 trans_pcie->rx_page_order);
500 trans_pcie->rx_pool[i].page = NULL;
501 }
502 }
503
504 /*
505 * iwl_pcie_rx_allocator - Allocates pages in the background for RX queues
506 *
507 * Allocates for each received request 8 pages
508 * Called as a scheduled work item.
509 */
iwl_pcie_rx_allocator(struct iwl_trans * trans)510 static void iwl_pcie_rx_allocator(struct iwl_trans *trans)
511 {
512 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
513 struct iwl_rb_allocator *rba = &trans_pcie->rba;
514 struct list_head local_empty;
515 int pending = atomic_read(&rba->req_pending);
516
517 IWL_DEBUG_TPT(trans, "Pending allocation requests = %d\n", pending);
518
519 /* If we were scheduled - there is at least one request */
520 spin_lock_bh(&rba->lock);
521 /* swap out the rba->rbd_empty to a local list */
522 list_replace_init(&rba->rbd_empty, &local_empty);
523 spin_unlock_bh(&rba->lock);
524
525 while (pending) {
526 int i;
527 LIST_HEAD(local_allocated);
528 gfp_t gfp_mask = GFP_KERNEL;
529
530 /* Do not post a warning if there are only a few requests */
531 if (pending < RX_PENDING_WATERMARK)
532 gfp_mask |= __GFP_NOWARN;
533
534 for (i = 0; i < RX_CLAIM_REQ_ALLOC;) {
535 struct iwl_rx_mem_buffer *rxb;
536 struct page *page;
537
538 /* List should never be empty - each reused RBD is
539 * returned to the list, and initial pool covers any
540 * possible gap between the time the page is allocated
541 * to the time the RBD is added.
542 */
543 BUG_ON(list_empty(&local_empty));
544 /* Get the first rxb from the rbd list */
545 rxb = list_first_entry(&local_empty,
546 struct iwl_rx_mem_buffer, list);
547 BUG_ON(rxb->page);
548
549 /* Alloc a new receive buffer */
550 page = iwl_pcie_rx_alloc_page(trans, &rxb->offset,
551 gfp_mask);
552 if (!page)
553 continue;
554 rxb->page = page;
555
556 /* Get physical address of the RB */
557 rxb->page_dma = dma_map_page(trans->dev, page,
558 rxb->offset,
559 trans_pcie->rx_buf_bytes,
560 DMA_FROM_DEVICE);
561 if (dma_mapping_error(trans->dev, rxb->page_dma)) {
562 rxb->page = NULL;
563 __free_pages(page, trans_pcie->rx_page_order);
564 continue;
565 }
566
567 /* move the allocated entry to the out list */
568 list_move(&rxb->list, &local_allocated);
569 i++;
570 }
571
572 atomic_dec(&rba->req_pending);
573 pending--;
574
575 if (!pending) {
576 pending = atomic_read(&rba->req_pending);
577 if (pending)
578 IWL_DEBUG_TPT(trans,
579 "Got more pending allocation requests = %d\n",
580 pending);
581 }
582
583 spin_lock_bh(&rba->lock);
584 /* add the allocated rbds to the allocator allocated list */
585 list_splice_tail(&local_allocated, &rba->rbd_allocated);
586 /* get more empty RBDs for current pending requests */
587 list_splice_tail_init(&rba->rbd_empty, &local_empty);
588 spin_unlock_bh(&rba->lock);
589
590 atomic_inc(&rba->req_ready);
591
592 }
593
594 spin_lock_bh(&rba->lock);
595 /* return unused rbds to the allocator empty list */
596 list_splice_tail(&local_empty, &rba->rbd_empty);
597 spin_unlock_bh(&rba->lock);
598
599 IWL_DEBUG_TPT(trans, "%s, exit.\n", __func__);
600 }
601
602 /*
603 * iwl_pcie_rx_allocator_get - returns the pre-allocated pages
604 .*
605 .* Called by queue when the queue posted allocation request and
606 * has freed 8 RBDs in order to restock itself.
607 * This function directly moves the allocated RBs to the queue's ownership
608 * and updates the relevant counters.
609 */
iwl_pcie_rx_allocator_get(struct iwl_trans * trans,struct iwl_rxq * rxq)610 static void iwl_pcie_rx_allocator_get(struct iwl_trans *trans,
611 struct iwl_rxq *rxq)
612 {
613 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
614 struct iwl_rb_allocator *rba = &trans_pcie->rba;
615 int i;
616
617 lockdep_assert_held(&rxq->lock);
618
619 /*
620 * atomic_dec_if_positive returns req_ready - 1 for any scenario.
621 * If req_ready is 0 atomic_dec_if_positive will return -1 and this
622 * function will return early, as there are no ready requests.
623 * atomic_dec_if_positive will perofrm the *actual* decrement only if
624 * req_ready > 0, i.e. - there are ready requests and the function
625 * hands one request to the caller.
626 */
627 if (atomic_dec_if_positive(&rba->req_ready) < 0)
628 return;
629
630 spin_lock(&rba->lock);
631 for (i = 0; i < RX_CLAIM_REQ_ALLOC; i++) {
632 /* Get next free Rx buffer, remove it from free list */
633 struct iwl_rx_mem_buffer *rxb =
634 list_first_entry(&rba->rbd_allocated,
635 struct iwl_rx_mem_buffer, list);
636
637 list_move(&rxb->list, &rxq->rx_free);
638 }
639 spin_unlock(&rba->lock);
640
641 rxq->used_count -= RX_CLAIM_REQ_ALLOC;
642 rxq->free_count += RX_CLAIM_REQ_ALLOC;
643 }
644
iwl_pcie_rx_allocator_work(struct work_struct * data)645 void iwl_pcie_rx_allocator_work(struct work_struct *data)
646 {
647 struct iwl_rb_allocator *rba_p =
648 container_of(data, struct iwl_rb_allocator, rx_alloc);
649 struct iwl_trans_pcie *trans_pcie =
650 container_of(rba_p, struct iwl_trans_pcie, rba);
651
652 iwl_pcie_rx_allocator(trans_pcie->trans);
653 }
654
iwl_pcie_free_bd_size(struct iwl_trans * trans,bool use_rx_td)655 static int iwl_pcie_free_bd_size(struct iwl_trans *trans, bool use_rx_td)
656 {
657 struct iwl_rx_transfer_desc *rx_td;
658
659 if (use_rx_td)
660 return sizeof(*rx_td);
661 else
662 return trans->trans_cfg->mq_rx_supported ? sizeof(__le64) :
663 sizeof(__le32);
664 }
665
iwl_pcie_free_rxq_dma(struct iwl_trans * trans,struct iwl_rxq * rxq)666 static void iwl_pcie_free_rxq_dma(struct iwl_trans *trans,
667 struct iwl_rxq *rxq)
668 {
669 bool use_rx_td = (trans->trans_cfg->device_family >=
670 IWL_DEVICE_FAMILY_AX210);
671 int free_size = iwl_pcie_free_bd_size(trans, use_rx_td);
672
673 if (rxq->bd)
674 dma_free_coherent(trans->dev,
675 free_size * rxq->queue_size,
676 rxq->bd, rxq->bd_dma);
677 rxq->bd_dma = 0;
678 rxq->bd = NULL;
679
680 rxq->rb_stts_dma = 0;
681 rxq->rb_stts = NULL;
682
683 if (rxq->used_bd)
684 dma_free_coherent(trans->dev,
685 (use_rx_td ? sizeof(*rxq->cd) :
686 sizeof(__le32)) * rxq->queue_size,
687 rxq->used_bd, rxq->used_bd_dma);
688 rxq->used_bd_dma = 0;
689 rxq->used_bd = NULL;
690 }
691
iwl_pcie_alloc_rxq_dma(struct iwl_trans * trans,struct iwl_rxq * rxq)692 static int iwl_pcie_alloc_rxq_dma(struct iwl_trans *trans,
693 struct iwl_rxq *rxq)
694 {
695 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
696 struct device *dev = trans->dev;
697 int i;
698 int free_size;
699 bool use_rx_td = (trans->trans_cfg->device_family >=
700 IWL_DEVICE_FAMILY_AX210);
701 size_t rb_stts_size = use_rx_td ? sizeof(__le16) :
702 sizeof(struct iwl_rb_status);
703
704 spin_lock_init(&rxq->lock);
705 if (trans->trans_cfg->mq_rx_supported)
706 rxq->queue_size = trans->cfg->num_rbds;
707 else
708 rxq->queue_size = RX_QUEUE_SIZE;
709
710 free_size = iwl_pcie_free_bd_size(trans, use_rx_td);
711
712 /*
713 * Allocate the circular buffer of Read Buffer Descriptors
714 * (RBDs)
715 */
716 rxq->bd = dma_alloc_coherent(dev, free_size * rxq->queue_size,
717 &rxq->bd_dma, GFP_KERNEL);
718 if (!rxq->bd)
719 goto err;
720
721 if (trans->trans_cfg->mq_rx_supported) {
722 rxq->used_bd = dma_alloc_coherent(dev,
723 (use_rx_td ? sizeof(*rxq->cd) : sizeof(__le32)) * rxq->queue_size,
724 &rxq->used_bd_dma,
725 GFP_KERNEL);
726 if (!rxq->used_bd)
727 goto err;
728 }
729
730 rxq->rb_stts = trans_pcie->base_rb_stts + rxq->id * rb_stts_size;
731 rxq->rb_stts_dma =
732 trans_pcie->base_rb_stts_dma + rxq->id * rb_stts_size;
733
734 return 0;
735
736 err:
737 for (i = 0; i < trans->num_rx_queues; i++) {
738 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
739
740 iwl_pcie_free_rxq_dma(trans, rxq);
741 }
742
743 return -ENOMEM;
744 }
745
iwl_pcie_rx_alloc(struct iwl_trans * trans)746 static int iwl_pcie_rx_alloc(struct iwl_trans *trans)
747 {
748 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
749 struct iwl_rb_allocator *rba = &trans_pcie->rba;
750 int i, ret;
751 size_t rb_stts_size = trans->trans_cfg->device_family >=
752 IWL_DEVICE_FAMILY_AX210 ?
753 sizeof(__le16) : sizeof(struct iwl_rb_status);
754
755 if (WARN_ON(trans_pcie->rxq))
756 return -EINVAL;
757
758 trans_pcie->rxq = kcalloc(trans->num_rx_queues, sizeof(struct iwl_rxq),
759 GFP_KERNEL);
760 trans_pcie->rx_pool = kcalloc(RX_POOL_SIZE(trans_pcie->num_rx_bufs),
761 sizeof(trans_pcie->rx_pool[0]),
762 GFP_KERNEL);
763 trans_pcie->global_table =
764 kcalloc(RX_POOL_SIZE(trans_pcie->num_rx_bufs),
765 sizeof(trans_pcie->global_table[0]),
766 GFP_KERNEL);
767 if (!trans_pcie->rxq || !trans_pcie->rx_pool ||
768 !trans_pcie->global_table) {
769 ret = -ENOMEM;
770 goto err;
771 }
772
773 spin_lock_init(&rba->lock);
774
775 /*
776 * Allocate the driver's pointer to receive buffer status.
777 * Allocate for all queues continuously (HW requirement).
778 */
779 trans_pcie->base_rb_stts =
780 dma_alloc_coherent(trans->dev,
781 rb_stts_size * trans->num_rx_queues,
782 &trans_pcie->base_rb_stts_dma,
783 GFP_KERNEL);
784 if (!trans_pcie->base_rb_stts) {
785 ret = -ENOMEM;
786 goto err;
787 }
788
789 for (i = 0; i < trans->num_rx_queues; i++) {
790 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
791
792 rxq->id = i;
793 ret = iwl_pcie_alloc_rxq_dma(trans, rxq);
794 if (ret)
795 goto err;
796 }
797 return 0;
798
799 err:
800 if (trans_pcie->base_rb_stts) {
801 dma_free_coherent(trans->dev,
802 rb_stts_size * trans->num_rx_queues,
803 trans_pcie->base_rb_stts,
804 trans_pcie->base_rb_stts_dma);
805 trans_pcie->base_rb_stts = NULL;
806 trans_pcie->base_rb_stts_dma = 0;
807 }
808 kfree(trans_pcie->rx_pool);
809 trans_pcie->rx_pool = NULL;
810 kfree(trans_pcie->global_table);
811 trans_pcie->global_table = NULL;
812 kfree(trans_pcie->rxq);
813 trans_pcie->rxq = NULL;
814
815 return ret;
816 }
817
iwl_pcie_rx_hw_init(struct iwl_trans * trans,struct iwl_rxq * rxq)818 static void iwl_pcie_rx_hw_init(struct iwl_trans *trans, struct iwl_rxq *rxq)
819 {
820 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
821 u32 rb_size;
822 const u32 rfdnlog = RX_QUEUE_SIZE_LOG; /* 256 RBDs */
823
824 switch (trans_pcie->rx_buf_size) {
825 case IWL_AMSDU_4K:
826 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
827 break;
828 case IWL_AMSDU_8K:
829 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_8K;
830 break;
831 case IWL_AMSDU_12K:
832 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_12K;
833 break;
834 default:
835 WARN_ON(1);
836 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
837 }
838
839 if (!iwl_trans_grab_nic_access(trans))
840 return;
841
842 /* Stop Rx DMA */
843 iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
844 /* reset and flush pointers */
845 iwl_write32(trans, FH_MEM_RCSR_CHNL0_RBDCB_WPTR, 0);
846 iwl_write32(trans, FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ, 0);
847 iwl_write32(trans, FH_RSCSR_CHNL0_RDPTR, 0);
848
849 /* Reset driver's Rx queue write index */
850 iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0);
851
852 /* Tell device where to find RBD circular buffer in DRAM */
853 iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_BASE_REG,
854 (u32)(rxq->bd_dma >> 8));
855
856 /* Tell device where in DRAM to update its Rx status */
857 iwl_write32(trans, FH_RSCSR_CHNL0_STTS_WPTR_REG,
858 rxq->rb_stts_dma >> 4);
859
860 /* Enable Rx DMA
861 * FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY is set because of HW bug in
862 * the credit mechanism in 5000 HW RX FIFO
863 * Direct rx interrupts to hosts
864 * Rx buffer size 4 or 8k or 12k
865 * RB timeout 0x10
866 * 256 RBDs
867 */
868 iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG,
869 FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL |
870 FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY |
871 FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL |
872 rb_size |
873 (RX_RB_TIMEOUT << FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS) |
874 (rfdnlog << FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS));
875
876 iwl_trans_release_nic_access(trans);
877
878 /* Set interrupt coalescing timer to default (2048 usecs) */
879 iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
880
881 /* W/A for interrupt coalescing bug in 7260 and 3160 */
882 if (trans->cfg->host_interrupt_operation_mode)
883 iwl_set_bit(trans, CSR_INT_COALESCING, IWL_HOST_INT_OPER_MODE);
884 }
885
iwl_pcie_rx_mq_hw_init(struct iwl_trans * trans)886 static void iwl_pcie_rx_mq_hw_init(struct iwl_trans *trans)
887 {
888 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
889 u32 rb_size, enabled = 0;
890 int i;
891
892 switch (trans_pcie->rx_buf_size) {
893 case IWL_AMSDU_2K:
894 rb_size = RFH_RXF_DMA_RB_SIZE_2K;
895 break;
896 case IWL_AMSDU_4K:
897 rb_size = RFH_RXF_DMA_RB_SIZE_4K;
898 break;
899 case IWL_AMSDU_8K:
900 rb_size = RFH_RXF_DMA_RB_SIZE_8K;
901 break;
902 case IWL_AMSDU_12K:
903 rb_size = RFH_RXF_DMA_RB_SIZE_12K;
904 break;
905 default:
906 WARN_ON(1);
907 rb_size = RFH_RXF_DMA_RB_SIZE_4K;
908 }
909
910 if (!iwl_trans_grab_nic_access(trans))
911 return;
912
913 /* Stop Rx DMA */
914 iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG, 0);
915 /* disable free amd used rx queue operation */
916 iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, 0);
917
918 for (i = 0; i < trans->num_rx_queues; i++) {
919 /* Tell device where to find RBD free table in DRAM */
920 iwl_write_prph64_no_grab(trans,
921 RFH_Q_FRBDCB_BA_LSB(i),
922 trans_pcie->rxq[i].bd_dma);
923 /* Tell device where to find RBD used table in DRAM */
924 iwl_write_prph64_no_grab(trans,
925 RFH_Q_URBDCB_BA_LSB(i),
926 trans_pcie->rxq[i].used_bd_dma);
927 /* Tell device where in DRAM to update its Rx status */
928 iwl_write_prph64_no_grab(trans,
929 RFH_Q_URBD_STTS_WPTR_LSB(i),
930 trans_pcie->rxq[i].rb_stts_dma);
931 /* Reset device indice tables */
932 iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_WIDX(i), 0);
933 iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_RIDX(i), 0);
934 iwl_write_prph_no_grab(trans, RFH_Q_URBDCB_WIDX(i), 0);
935
936 enabled |= BIT(i) | BIT(i + 16);
937 }
938
939 /*
940 * Enable Rx DMA
941 * Rx buffer size 4 or 8k or 12k
942 * Min RB size 4 or 8
943 * Drop frames that exceed RB size
944 * 512 RBDs
945 */
946 iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG,
947 RFH_DMA_EN_ENABLE_VAL | rb_size |
948 RFH_RXF_DMA_MIN_RB_4_8 |
949 RFH_RXF_DMA_DROP_TOO_LARGE_MASK |
950 RFH_RXF_DMA_RBDCB_SIZE_512);
951
952 /*
953 * Activate DMA snooping.
954 * Set RX DMA chunk size to 64B for IOSF and 128B for PCIe
955 * Default queue is 0
956 */
957 iwl_write_prph_no_grab(trans, RFH_GEN_CFG,
958 RFH_GEN_CFG_RFH_DMA_SNOOP |
959 RFH_GEN_CFG_VAL(DEFAULT_RXQ_NUM, 0) |
960 RFH_GEN_CFG_SERVICE_DMA_SNOOP |
961 RFH_GEN_CFG_VAL(RB_CHUNK_SIZE,
962 trans->trans_cfg->integrated ?
963 RFH_GEN_CFG_RB_CHUNK_SIZE_64 :
964 RFH_GEN_CFG_RB_CHUNK_SIZE_128));
965 /* Enable the relevant rx queues */
966 iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, enabled);
967
968 iwl_trans_release_nic_access(trans);
969
970 /* Set interrupt coalescing timer to default (2048 usecs) */
971 iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
972 }
973
iwl_pcie_rx_init_rxb_lists(struct iwl_rxq * rxq)974 void iwl_pcie_rx_init_rxb_lists(struct iwl_rxq *rxq)
975 {
976 lockdep_assert_held(&rxq->lock);
977
978 INIT_LIST_HEAD(&rxq->rx_free);
979 INIT_LIST_HEAD(&rxq->rx_used);
980 rxq->free_count = 0;
981 rxq->used_count = 0;
982 }
983
984 static int iwl_pcie_rx_handle(struct iwl_trans *trans, int queue, int budget);
985
iwl_pcie_napi_poll(struct napi_struct * napi,int budget)986 static int iwl_pcie_napi_poll(struct napi_struct *napi, int budget)
987 {
988 struct iwl_rxq *rxq = container_of(napi, struct iwl_rxq, napi);
989 struct iwl_trans_pcie *trans_pcie;
990 struct iwl_trans *trans;
991 int ret;
992
993 trans_pcie = container_of(napi->dev, struct iwl_trans_pcie, napi_dev);
994 trans = trans_pcie->trans;
995
996 ret = iwl_pcie_rx_handle(trans, rxq->id, budget);
997
998 IWL_DEBUG_ISR(trans, "[%d] handled %d, budget %d\n",
999 rxq->id, ret, budget);
1000
1001 if (ret < budget) {
1002 spin_lock(&trans_pcie->irq_lock);
1003 if (test_bit(STATUS_INT_ENABLED, &trans->status))
1004 _iwl_enable_interrupts(trans);
1005 spin_unlock(&trans_pcie->irq_lock);
1006
1007 napi_complete_done(&rxq->napi, ret);
1008 }
1009
1010 return ret;
1011 }
1012
iwl_pcie_napi_poll_msix(struct napi_struct * napi,int budget)1013 static int iwl_pcie_napi_poll_msix(struct napi_struct *napi, int budget)
1014 {
1015 struct iwl_rxq *rxq = container_of(napi, struct iwl_rxq, napi);
1016 struct iwl_trans_pcie *trans_pcie;
1017 struct iwl_trans *trans;
1018 int ret;
1019
1020 trans_pcie = container_of(napi->dev, struct iwl_trans_pcie, napi_dev);
1021 trans = trans_pcie->trans;
1022
1023 ret = iwl_pcie_rx_handle(trans, rxq->id, budget);
1024 IWL_DEBUG_ISR(trans, "[%d] handled %d, budget %d\n", rxq->id, ret,
1025 budget);
1026
1027 if (ret < budget) {
1028 int irq_line = rxq->id;
1029
1030 /* FIRST_RSS is shared with line 0 */
1031 if (trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS &&
1032 rxq->id == 1)
1033 irq_line = 0;
1034
1035 spin_lock(&trans_pcie->irq_lock);
1036 iwl_pcie_clear_irq(trans, irq_line);
1037 spin_unlock(&trans_pcie->irq_lock);
1038
1039 napi_complete_done(&rxq->napi, ret);
1040 }
1041
1042 return ret;
1043 }
1044
_iwl_pcie_rx_init(struct iwl_trans * trans)1045 static int _iwl_pcie_rx_init(struct iwl_trans *trans)
1046 {
1047 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1048 struct iwl_rxq *def_rxq;
1049 struct iwl_rb_allocator *rba = &trans_pcie->rba;
1050 int i, err, queue_size, allocator_pool_size, num_alloc;
1051
1052 if (!trans_pcie->rxq) {
1053 err = iwl_pcie_rx_alloc(trans);
1054 if (err)
1055 return err;
1056 }
1057 def_rxq = trans_pcie->rxq;
1058
1059 cancel_work_sync(&rba->rx_alloc);
1060
1061 spin_lock_bh(&rba->lock);
1062 atomic_set(&rba->req_pending, 0);
1063 atomic_set(&rba->req_ready, 0);
1064 INIT_LIST_HEAD(&rba->rbd_allocated);
1065 INIT_LIST_HEAD(&rba->rbd_empty);
1066 spin_unlock_bh(&rba->lock);
1067
1068 /* free all first - we overwrite everything here */
1069 iwl_pcie_free_rbs_pool(trans);
1070
1071 for (i = 0; i < RX_QUEUE_SIZE; i++)
1072 def_rxq->queue[i] = NULL;
1073
1074 for (i = 0; i < trans->num_rx_queues; i++) {
1075 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
1076
1077 spin_lock_bh(&rxq->lock);
1078 /*
1079 * Set read write pointer to reflect that we have processed
1080 * and used all buffers, but have not restocked the Rx queue
1081 * with fresh buffers
1082 */
1083 rxq->read = 0;
1084 rxq->write = 0;
1085 rxq->write_actual = 0;
1086 memset(rxq->rb_stts, 0,
1087 (trans->trans_cfg->device_family >=
1088 IWL_DEVICE_FAMILY_AX210) ?
1089 sizeof(__le16) : sizeof(struct iwl_rb_status));
1090
1091 iwl_pcie_rx_init_rxb_lists(rxq);
1092
1093 spin_unlock_bh(&rxq->lock);
1094
1095 if (!rxq->napi.poll) {
1096 int (*poll)(struct napi_struct *, int) = iwl_pcie_napi_poll;
1097
1098 if (trans_pcie->msix_enabled)
1099 poll = iwl_pcie_napi_poll_msix;
1100
1101 netif_napi_add(&trans_pcie->napi_dev, &rxq->napi,
1102 poll, NAPI_POLL_WEIGHT);
1103 napi_enable(&rxq->napi);
1104 }
1105
1106 }
1107
1108 /* move the pool to the default queue and allocator ownerships */
1109 queue_size = trans->trans_cfg->mq_rx_supported ?
1110 trans_pcie->num_rx_bufs - 1 : RX_QUEUE_SIZE;
1111 allocator_pool_size = trans->num_rx_queues *
1112 (RX_CLAIM_REQ_ALLOC - RX_POST_REQ_ALLOC);
1113 num_alloc = queue_size + allocator_pool_size;
1114
1115 for (i = 0; i < num_alloc; i++) {
1116 struct iwl_rx_mem_buffer *rxb = &trans_pcie->rx_pool[i];
1117
1118 if (i < allocator_pool_size)
1119 list_add(&rxb->list, &rba->rbd_empty);
1120 else
1121 list_add(&rxb->list, &def_rxq->rx_used);
1122 trans_pcie->global_table[i] = rxb;
1123 rxb->vid = (u16)(i + 1);
1124 rxb->invalid = true;
1125 }
1126
1127 iwl_pcie_rxq_alloc_rbs(trans, GFP_KERNEL, def_rxq);
1128
1129 return 0;
1130 }
1131
iwl_pcie_rx_init(struct iwl_trans * trans)1132 int iwl_pcie_rx_init(struct iwl_trans *trans)
1133 {
1134 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1135 int ret = _iwl_pcie_rx_init(trans);
1136
1137 if (ret)
1138 return ret;
1139
1140 if (trans->trans_cfg->mq_rx_supported)
1141 iwl_pcie_rx_mq_hw_init(trans);
1142 else
1143 iwl_pcie_rx_hw_init(trans, trans_pcie->rxq);
1144
1145 iwl_pcie_rxq_restock(trans, trans_pcie->rxq);
1146
1147 spin_lock_bh(&trans_pcie->rxq->lock);
1148 iwl_pcie_rxq_inc_wr_ptr(trans, trans_pcie->rxq);
1149 spin_unlock_bh(&trans_pcie->rxq->lock);
1150
1151 return 0;
1152 }
1153
iwl_pcie_gen2_rx_init(struct iwl_trans * trans)1154 int iwl_pcie_gen2_rx_init(struct iwl_trans *trans)
1155 {
1156 /* Set interrupt coalescing timer to default (2048 usecs) */
1157 iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
1158
1159 /*
1160 * We don't configure the RFH.
1161 * Restock will be done at alive, after firmware configured the RFH.
1162 */
1163 return _iwl_pcie_rx_init(trans);
1164 }
1165
iwl_pcie_rx_free(struct iwl_trans * trans)1166 void iwl_pcie_rx_free(struct iwl_trans *trans)
1167 {
1168 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1169 struct iwl_rb_allocator *rba = &trans_pcie->rba;
1170 int i;
1171 size_t rb_stts_size = trans->trans_cfg->device_family >=
1172 IWL_DEVICE_FAMILY_AX210 ?
1173 sizeof(__le16) : sizeof(struct iwl_rb_status);
1174
1175 /*
1176 * if rxq is NULL, it means that nothing has been allocated,
1177 * exit now
1178 */
1179 if (!trans_pcie->rxq) {
1180 IWL_DEBUG_INFO(trans, "Free NULL rx context\n");
1181 return;
1182 }
1183
1184 cancel_work_sync(&rba->rx_alloc);
1185
1186 iwl_pcie_free_rbs_pool(trans);
1187
1188 if (trans_pcie->base_rb_stts) {
1189 dma_free_coherent(trans->dev,
1190 rb_stts_size * trans->num_rx_queues,
1191 trans_pcie->base_rb_stts,
1192 trans_pcie->base_rb_stts_dma);
1193 trans_pcie->base_rb_stts = NULL;
1194 trans_pcie->base_rb_stts_dma = 0;
1195 }
1196
1197 for (i = 0; i < trans->num_rx_queues; i++) {
1198 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
1199
1200 iwl_pcie_free_rxq_dma(trans, rxq);
1201
1202 if (rxq->napi.poll) {
1203 napi_disable(&rxq->napi);
1204 netif_napi_del(&rxq->napi);
1205 }
1206 }
1207 kfree(trans_pcie->rx_pool);
1208 kfree(trans_pcie->global_table);
1209 kfree(trans_pcie->rxq);
1210
1211 if (trans_pcie->alloc_page)
1212 __free_pages(trans_pcie->alloc_page, trans_pcie->rx_page_order);
1213 }
1214
iwl_pcie_rx_move_to_allocator(struct iwl_rxq * rxq,struct iwl_rb_allocator * rba)1215 static void iwl_pcie_rx_move_to_allocator(struct iwl_rxq *rxq,
1216 struct iwl_rb_allocator *rba)
1217 {
1218 spin_lock(&rba->lock);
1219 list_splice_tail_init(&rxq->rx_used, &rba->rbd_empty);
1220 spin_unlock(&rba->lock);
1221 }
1222
1223 /*
1224 * iwl_pcie_rx_reuse_rbd - Recycle used RBDs
1225 *
1226 * Called when a RBD can be reused. The RBD is transferred to the allocator.
1227 * When there are 2 empty RBDs - a request for allocation is posted
1228 */
iwl_pcie_rx_reuse_rbd(struct iwl_trans * trans,struct iwl_rx_mem_buffer * rxb,struct iwl_rxq * rxq,bool emergency)1229 static void iwl_pcie_rx_reuse_rbd(struct iwl_trans *trans,
1230 struct iwl_rx_mem_buffer *rxb,
1231 struct iwl_rxq *rxq, bool emergency)
1232 {
1233 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1234 struct iwl_rb_allocator *rba = &trans_pcie->rba;
1235
1236 /* Move the RBD to the used list, will be moved to allocator in batches
1237 * before claiming or posting a request*/
1238 list_add_tail(&rxb->list, &rxq->rx_used);
1239
1240 if (unlikely(emergency))
1241 return;
1242
1243 /* Count the allocator owned RBDs */
1244 rxq->used_count++;
1245
1246 /* If we have RX_POST_REQ_ALLOC new released rx buffers -
1247 * issue a request for allocator. Modulo RX_CLAIM_REQ_ALLOC is
1248 * used for the case we failed to claim RX_CLAIM_REQ_ALLOC,
1249 * after but we still need to post another request.
1250 */
1251 if ((rxq->used_count % RX_CLAIM_REQ_ALLOC) == RX_POST_REQ_ALLOC) {
1252 /* Move the 2 RBDs to the allocator ownership.
1253 Allocator has another 6 from pool for the request completion*/
1254 iwl_pcie_rx_move_to_allocator(rxq, rba);
1255
1256 atomic_inc(&rba->req_pending);
1257 queue_work(rba->alloc_wq, &rba->rx_alloc);
1258 }
1259 }
1260
iwl_pcie_rx_handle_rb(struct iwl_trans * trans,struct iwl_rxq * rxq,struct iwl_rx_mem_buffer * rxb,bool emergency,int i)1261 static void iwl_pcie_rx_handle_rb(struct iwl_trans *trans,
1262 struct iwl_rxq *rxq,
1263 struct iwl_rx_mem_buffer *rxb,
1264 bool emergency,
1265 int i)
1266 {
1267 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1268 struct iwl_txq *txq = trans->txqs.txq[trans->txqs.cmd.q_id];
1269 bool page_stolen = false;
1270 int max_len = trans_pcie->rx_buf_bytes;
1271 u32 offset = 0;
1272
1273 if (WARN_ON(!rxb))
1274 return;
1275
1276 dma_unmap_page(trans->dev, rxb->page_dma, max_len, DMA_FROM_DEVICE);
1277
1278 while (offset + sizeof(u32) + sizeof(struct iwl_cmd_header) < max_len) {
1279 struct iwl_rx_packet *pkt;
1280 bool reclaim;
1281 int len;
1282 struct iwl_rx_cmd_buffer rxcb = {
1283 ._offset = rxb->offset + offset,
1284 ._rx_page_order = trans_pcie->rx_page_order,
1285 ._page = rxb->page,
1286 ._page_stolen = false,
1287 .truesize = max_len,
1288 };
1289
1290 pkt = rxb_addr(&rxcb);
1291
1292 if (pkt->len_n_flags == cpu_to_le32(FH_RSCSR_FRAME_INVALID)) {
1293 IWL_DEBUG_RX(trans,
1294 "Q %d: RB end marker at offset %d\n",
1295 rxq->id, offset);
1296 break;
1297 }
1298
1299 WARN((le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >>
1300 FH_RSCSR_RXQ_POS != rxq->id,
1301 "frame on invalid queue - is on %d and indicates %d\n",
1302 rxq->id,
1303 (le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >>
1304 FH_RSCSR_RXQ_POS);
1305
1306 IWL_DEBUG_RX(trans,
1307 "Q %d: cmd at offset %d: %s (%.2x.%2x, seq 0x%x)\n",
1308 rxq->id, offset,
1309 iwl_get_cmd_string(trans,
1310 iwl_cmd_id(pkt->hdr.cmd,
1311 pkt->hdr.group_id,
1312 0)),
1313 pkt->hdr.group_id, pkt->hdr.cmd,
1314 le16_to_cpu(pkt->hdr.sequence));
1315
1316 len = iwl_rx_packet_len(pkt);
1317 len += sizeof(u32); /* account for status word */
1318
1319 offset += ALIGN(len, FH_RSCSR_FRAME_ALIGN);
1320
1321 /* check that what the device tells us made sense */
1322 if (offset > max_len)
1323 break;
1324
1325 trace_iwlwifi_dev_rx(trans->dev, trans, pkt, len);
1326 trace_iwlwifi_dev_rx_data(trans->dev, trans, pkt, len);
1327
1328 /* Reclaim a command buffer only if this packet is a response
1329 * to a (driver-originated) command.
1330 * If the packet (e.g. Rx frame) originated from uCode,
1331 * there is no command buffer to reclaim.
1332 * Ucode should set SEQ_RX_FRAME bit if ucode-originated,
1333 * but apparently a few don't get set; catch them here. */
1334 reclaim = !(pkt->hdr.sequence & SEQ_RX_FRAME);
1335 if (reclaim && !pkt->hdr.group_id) {
1336 int i;
1337
1338 for (i = 0; i < trans_pcie->n_no_reclaim_cmds; i++) {
1339 if (trans_pcie->no_reclaim_cmds[i] ==
1340 pkt->hdr.cmd) {
1341 reclaim = false;
1342 break;
1343 }
1344 }
1345 }
1346
1347 if (rxq->id == trans_pcie->def_rx_queue)
1348 iwl_op_mode_rx(trans->op_mode, &rxq->napi,
1349 &rxcb);
1350 else
1351 iwl_op_mode_rx_rss(trans->op_mode, &rxq->napi,
1352 &rxcb, rxq->id);
1353
1354 /*
1355 * After here, we should always check rxcb._page_stolen,
1356 * if it is true then one of the handlers took the page.
1357 */
1358
1359 if (reclaim) {
1360 u16 sequence = le16_to_cpu(pkt->hdr.sequence);
1361 int index = SEQ_TO_INDEX(sequence);
1362 int cmd_index = iwl_txq_get_cmd_index(txq, index);
1363
1364 kfree_sensitive(txq->entries[cmd_index].free_buf);
1365 txq->entries[cmd_index].free_buf = NULL;
1366
1367 /* Invoke any callbacks, transfer the buffer to caller,
1368 * and fire off the (possibly) blocking
1369 * iwl_trans_send_cmd()
1370 * as we reclaim the driver command queue */
1371 if (!rxcb._page_stolen)
1372 iwl_pcie_hcmd_complete(trans, &rxcb);
1373 else
1374 IWL_WARN(trans, "Claim null rxb?\n");
1375 }
1376
1377 page_stolen |= rxcb._page_stolen;
1378 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210)
1379 break;
1380 }
1381
1382 /* page was stolen from us -- free our reference */
1383 if (page_stolen) {
1384 __free_pages(rxb->page, trans_pcie->rx_page_order);
1385 rxb->page = NULL;
1386 }
1387
1388 /* Reuse the page if possible. For notification packets and
1389 * SKBs that fail to Rx correctly, add them back into the
1390 * rx_free list for reuse later. */
1391 if (rxb->page != NULL) {
1392 rxb->page_dma =
1393 dma_map_page(trans->dev, rxb->page, rxb->offset,
1394 trans_pcie->rx_buf_bytes,
1395 DMA_FROM_DEVICE);
1396 if (dma_mapping_error(trans->dev, rxb->page_dma)) {
1397 /*
1398 * free the page(s) as well to not break
1399 * the invariant that the items on the used
1400 * list have no page(s)
1401 */
1402 __free_pages(rxb->page, trans_pcie->rx_page_order);
1403 rxb->page = NULL;
1404 iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency);
1405 } else {
1406 list_add_tail(&rxb->list, &rxq->rx_free);
1407 rxq->free_count++;
1408 }
1409 } else
1410 iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency);
1411 }
1412
iwl_pcie_get_rxb(struct iwl_trans * trans,struct iwl_rxq * rxq,int i,bool * join)1413 static struct iwl_rx_mem_buffer *iwl_pcie_get_rxb(struct iwl_trans *trans,
1414 struct iwl_rxq *rxq, int i,
1415 bool *join)
1416 {
1417 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1418 struct iwl_rx_mem_buffer *rxb;
1419 u16 vid;
1420
1421 BUILD_BUG_ON(sizeof(struct iwl_rx_completion_desc) != 32);
1422
1423 if (!trans->trans_cfg->mq_rx_supported) {
1424 rxb = rxq->queue[i];
1425 rxq->queue[i] = NULL;
1426 return rxb;
1427 }
1428
1429 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
1430 vid = le16_to_cpu(rxq->cd[i].rbid);
1431 *join = rxq->cd[i].flags & IWL_RX_CD_FLAGS_FRAGMENTED;
1432 } else {
1433 vid = le32_to_cpu(rxq->bd_32[i]) & 0x0FFF; /* 12-bit VID */
1434 }
1435
1436 if (!vid || vid > RX_POOL_SIZE(trans_pcie->num_rx_bufs))
1437 goto out_err;
1438
1439 rxb = trans_pcie->global_table[vid - 1];
1440 if (rxb->invalid)
1441 goto out_err;
1442
1443 IWL_DEBUG_RX(trans, "Got virtual RB ID %u\n", (u32)rxb->vid);
1444
1445 rxb->invalid = true;
1446
1447 return rxb;
1448
1449 out_err:
1450 WARN(1, "Invalid rxb from HW %u\n", (u32)vid);
1451 iwl_force_nmi(trans);
1452 return NULL;
1453 }
1454
1455 /*
1456 * iwl_pcie_rx_handle - Main entry function for receiving responses from fw
1457 */
iwl_pcie_rx_handle(struct iwl_trans * trans,int queue,int budget)1458 static int iwl_pcie_rx_handle(struct iwl_trans *trans, int queue, int budget)
1459 {
1460 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1461 struct iwl_rxq *rxq;
1462 u32 r, i, count = 0, handled = 0;
1463 bool emergency = false;
1464
1465 if (WARN_ON_ONCE(!trans_pcie->rxq || !trans_pcie->rxq[queue].bd))
1466 return budget;
1467
1468 rxq = &trans_pcie->rxq[queue];
1469
1470 restart:
1471 spin_lock(&rxq->lock);
1472 /* uCode's read index (stored in shared DRAM) indicates the last Rx
1473 * buffer that the driver may process (last buffer filled by ucode). */
1474 r = le16_to_cpu(iwl_get_closed_rb_stts(trans, rxq)) & 0x0FFF;
1475 i = rxq->read;
1476
1477 /* W/A 9000 device step A0 wrap-around bug */
1478 r &= (rxq->queue_size - 1);
1479
1480 /* Rx interrupt, but nothing sent from uCode */
1481 if (i == r)
1482 IWL_DEBUG_RX(trans, "Q %d: HW = SW = %d\n", rxq->id, r);
1483
1484 while (i != r && ++handled < budget) {
1485 struct iwl_rb_allocator *rba = &trans_pcie->rba;
1486 struct iwl_rx_mem_buffer *rxb;
1487 /* number of RBDs still waiting for page allocation */
1488 u32 rb_pending_alloc =
1489 atomic_read(&trans_pcie->rba.req_pending) *
1490 RX_CLAIM_REQ_ALLOC;
1491 bool join = false;
1492
1493 if (unlikely(rb_pending_alloc >= rxq->queue_size / 2 &&
1494 !emergency)) {
1495 iwl_pcie_rx_move_to_allocator(rxq, rba);
1496 emergency = true;
1497 IWL_DEBUG_TPT(trans,
1498 "RX path is in emergency. Pending allocations %d\n",
1499 rb_pending_alloc);
1500 }
1501
1502 IWL_DEBUG_RX(trans, "Q %d: HW = %d, SW = %d\n", rxq->id, r, i);
1503
1504 rxb = iwl_pcie_get_rxb(trans, rxq, i, &join);
1505 if (!rxb)
1506 goto out;
1507
1508 if (unlikely(join || rxq->next_rb_is_fragment)) {
1509 rxq->next_rb_is_fragment = join;
1510 /*
1511 * We can only get a multi-RB in the following cases:
1512 * - firmware issue, sending a too big notification
1513 * - sniffer mode with a large A-MSDU
1514 * - large MTU frames (>2k)
1515 * since the multi-RB functionality is limited to newer
1516 * hardware that cannot put multiple entries into a
1517 * single RB.
1518 *
1519 * Right now, the higher layers aren't set up to deal
1520 * with that, so discard all of these.
1521 */
1522 list_add_tail(&rxb->list, &rxq->rx_free);
1523 rxq->free_count++;
1524 } else {
1525 iwl_pcie_rx_handle_rb(trans, rxq, rxb, emergency, i);
1526 }
1527
1528 i = (i + 1) & (rxq->queue_size - 1);
1529
1530 /*
1531 * If we have RX_CLAIM_REQ_ALLOC released rx buffers -
1532 * try to claim the pre-allocated buffers from the allocator.
1533 * If not ready - will try to reclaim next time.
1534 * There is no need to reschedule work - allocator exits only
1535 * on success
1536 */
1537 if (rxq->used_count >= RX_CLAIM_REQ_ALLOC)
1538 iwl_pcie_rx_allocator_get(trans, rxq);
1539
1540 if (rxq->used_count % RX_CLAIM_REQ_ALLOC == 0 && !emergency) {
1541 /* Add the remaining empty RBDs for allocator use */
1542 iwl_pcie_rx_move_to_allocator(rxq, rba);
1543 } else if (emergency) {
1544 count++;
1545 if (count == 8) {
1546 count = 0;
1547 if (rb_pending_alloc < rxq->queue_size / 3) {
1548 IWL_DEBUG_TPT(trans,
1549 "RX path exited emergency. Pending allocations %d\n",
1550 rb_pending_alloc);
1551 emergency = false;
1552 }
1553
1554 rxq->read = i;
1555 spin_unlock(&rxq->lock);
1556 iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq);
1557 iwl_pcie_rxq_restock(trans, rxq);
1558 goto restart;
1559 }
1560 }
1561 }
1562 out:
1563 /* Backtrack one entry */
1564 rxq->read = i;
1565 spin_unlock(&rxq->lock);
1566
1567 /*
1568 * handle a case where in emergency there are some unallocated RBDs.
1569 * those RBDs are in the used list, but are not tracked by the queue's
1570 * used_count which counts allocator owned RBDs.
1571 * unallocated emergency RBDs must be allocated on exit, otherwise
1572 * when called again the function may not be in emergency mode and
1573 * they will be handed to the allocator with no tracking in the RBD
1574 * allocator counters, which will lead to them never being claimed back
1575 * by the queue.
1576 * by allocating them here, they are now in the queue free list, and
1577 * will be restocked by the next call of iwl_pcie_rxq_restock.
1578 */
1579 if (unlikely(emergency && count))
1580 iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq);
1581
1582 iwl_pcie_rxq_restock(trans, rxq);
1583
1584 return handled;
1585 }
1586
iwl_pcie_get_trans_pcie(struct msix_entry * entry)1587 static struct iwl_trans_pcie *iwl_pcie_get_trans_pcie(struct msix_entry *entry)
1588 {
1589 u8 queue = entry->entry;
1590 struct msix_entry *entries = entry - queue;
1591
1592 return container_of(entries, struct iwl_trans_pcie, msix_entries[0]);
1593 }
1594
1595 /*
1596 * iwl_pcie_rx_msix_handle - Main entry function for receiving responses from fw
1597 * This interrupt handler should be used with RSS queue only.
1598 */
iwl_pcie_irq_rx_msix_handler(int irq,void * dev_id)1599 irqreturn_t iwl_pcie_irq_rx_msix_handler(int irq, void *dev_id)
1600 {
1601 struct msix_entry *entry = dev_id;
1602 struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry);
1603 struct iwl_trans *trans = trans_pcie->trans;
1604 struct iwl_rxq *rxq = &trans_pcie->rxq[entry->entry];
1605
1606 trace_iwlwifi_dev_irq_msix(trans->dev, entry, false, 0, 0);
1607
1608 if (WARN_ON(entry->entry >= trans->num_rx_queues))
1609 return IRQ_NONE;
1610
1611 if (WARN_ONCE(!rxq,
1612 "[%d] Got MSI-X interrupt before we have Rx queues",
1613 entry->entry))
1614 return IRQ_NONE;
1615
1616 lock_map_acquire(&trans->sync_cmd_lockdep_map);
1617 IWL_DEBUG_ISR(trans, "[%d] Got interrupt\n", entry->entry);
1618
1619 local_bh_disable();
1620 if (napi_schedule_prep(&rxq->napi))
1621 __napi_schedule(&rxq->napi);
1622 else
1623 iwl_pcie_clear_irq(trans, entry->entry);
1624 local_bh_enable();
1625
1626 lock_map_release(&trans->sync_cmd_lockdep_map);
1627
1628 return IRQ_HANDLED;
1629 }
1630
1631 /*
1632 * iwl_pcie_irq_handle_error - called for HW or SW error interrupt from card
1633 */
iwl_pcie_irq_handle_error(struct iwl_trans * trans)1634 static void iwl_pcie_irq_handle_error(struct iwl_trans *trans)
1635 {
1636 int i;
1637
1638 /* W/A for WiFi/WiMAX coex and WiMAX own the RF */
1639 if (trans->cfg->internal_wimax_coex &&
1640 !trans->cfg->apmg_not_supported &&
1641 (!(iwl_read_prph(trans, APMG_CLK_CTRL_REG) &
1642 APMS_CLK_VAL_MRB_FUNC_MODE) ||
1643 (iwl_read_prph(trans, APMG_PS_CTRL_REG) &
1644 APMG_PS_CTRL_VAL_RESET_REQ))) {
1645 clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
1646 iwl_op_mode_wimax_active(trans->op_mode);
1647 wake_up(&trans->wait_command_queue);
1648 return;
1649 }
1650
1651 for (i = 0; i < trans->trans_cfg->base_params->num_of_queues; i++) {
1652 if (!trans->txqs.txq[i])
1653 continue;
1654 del_timer(&trans->txqs.txq[i]->stuck_timer);
1655 }
1656
1657 /* The STATUS_FW_ERROR bit is set in this function. This must happen
1658 * before we wake up the command caller, to ensure a proper cleanup. */
1659 iwl_trans_fw_error(trans, false);
1660
1661 clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
1662 wake_up(&trans->wait_command_queue);
1663 }
1664
iwl_pcie_int_cause_non_ict(struct iwl_trans * trans)1665 static u32 iwl_pcie_int_cause_non_ict(struct iwl_trans *trans)
1666 {
1667 u32 inta;
1668
1669 lockdep_assert_held(&IWL_TRANS_GET_PCIE_TRANS(trans)->irq_lock);
1670
1671 trace_iwlwifi_dev_irq(trans->dev);
1672
1673 /* Discover which interrupts are active/pending */
1674 inta = iwl_read32(trans, CSR_INT);
1675
1676 /* the thread will service interrupts and re-enable them */
1677 return inta;
1678 }
1679
1680 /* a device (PCI-E) page is 4096 bytes long */
1681 #define ICT_SHIFT 12
1682 #define ICT_SIZE (1 << ICT_SHIFT)
1683 #define ICT_COUNT (ICT_SIZE / sizeof(u32))
1684
1685 /* interrupt handler using ict table, with this interrupt driver will
1686 * stop using INTA register to get device's interrupt, reading this register
1687 * is expensive, device will write interrupts in ICT dram table, increment
1688 * index then will fire interrupt to driver, driver will OR all ICT table
1689 * entries from current index up to table entry with 0 value. the result is
1690 * the interrupt we need to service, driver will set the entries back to 0 and
1691 * set index.
1692 */
iwl_pcie_int_cause_ict(struct iwl_trans * trans)1693 static u32 iwl_pcie_int_cause_ict(struct iwl_trans *trans)
1694 {
1695 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1696 u32 inta;
1697 u32 val = 0;
1698 u32 read;
1699
1700 trace_iwlwifi_dev_irq(trans->dev);
1701
1702 /* Ignore interrupt if there's nothing in NIC to service.
1703 * This may be due to IRQ shared with another device,
1704 * or due to sporadic interrupts thrown from our NIC. */
1705 read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
1706 trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index, read);
1707 if (!read)
1708 return 0;
1709
1710 /*
1711 * Collect all entries up to the first 0, starting from ict_index;
1712 * note we already read at ict_index.
1713 */
1714 do {
1715 val |= read;
1716 IWL_DEBUG_ISR(trans, "ICT index %d value 0x%08X\n",
1717 trans_pcie->ict_index, read);
1718 trans_pcie->ict_tbl[trans_pcie->ict_index] = 0;
1719 trans_pcie->ict_index =
1720 ((trans_pcie->ict_index + 1) & (ICT_COUNT - 1));
1721
1722 read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
1723 trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index,
1724 read);
1725 } while (read);
1726
1727 /* We should not get this value, just ignore it. */
1728 if (val == 0xffffffff)
1729 val = 0;
1730
1731 /*
1732 * this is a w/a for a h/w bug. the h/w bug may cause the Rx bit
1733 * (bit 15 before shifting it to 31) to clear when using interrupt
1734 * coalescing. fortunately, bits 18 and 19 stay set when this happens
1735 * so we use them to decide on the real state of the Rx bit.
1736 * In order words, bit 15 is set if bit 18 or bit 19 are set.
1737 */
1738 if (val & 0xC0000)
1739 val |= 0x8000;
1740
1741 inta = (0xff & val) | ((0xff00 & val) << 16);
1742 return inta;
1743 }
1744
iwl_pcie_handle_rfkill_irq(struct iwl_trans * trans)1745 void iwl_pcie_handle_rfkill_irq(struct iwl_trans *trans)
1746 {
1747 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1748 struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
1749 bool hw_rfkill, prev, report;
1750
1751 mutex_lock(&trans_pcie->mutex);
1752 prev = test_bit(STATUS_RFKILL_OPMODE, &trans->status);
1753 hw_rfkill = iwl_is_rfkill_set(trans);
1754 if (hw_rfkill) {
1755 set_bit(STATUS_RFKILL_OPMODE, &trans->status);
1756 set_bit(STATUS_RFKILL_HW, &trans->status);
1757 }
1758 if (trans_pcie->opmode_down)
1759 report = hw_rfkill;
1760 else
1761 report = test_bit(STATUS_RFKILL_OPMODE, &trans->status);
1762
1763 IWL_WARN(trans, "RF_KILL bit toggled to %s.\n",
1764 hw_rfkill ? "disable radio" : "enable radio");
1765
1766 isr_stats->rfkill++;
1767
1768 if (prev != report)
1769 iwl_trans_pcie_rf_kill(trans, report);
1770 mutex_unlock(&trans_pcie->mutex);
1771
1772 if (hw_rfkill) {
1773 if (test_and_clear_bit(STATUS_SYNC_HCMD_ACTIVE,
1774 &trans->status))
1775 IWL_DEBUG_RF_KILL(trans,
1776 "Rfkill while SYNC HCMD in flight\n");
1777 wake_up(&trans->wait_command_queue);
1778 } else {
1779 clear_bit(STATUS_RFKILL_HW, &trans->status);
1780 if (trans_pcie->opmode_down)
1781 clear_bit(STATUS_RFKILL_OPMODE, &trans->status);
1782 }
1783 }
1784
iwl_pcie_irq_handler(int irq,void * dev_id)1785 irqreturn_t iwl_pcie_irq_handler(int irq, void *dev_id)
1786 {
1787 struct iwl_trans *trans = dev_id;
1788 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1789 struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
1790 u32 inta = 0;
1791 u32 handled = 0;
1792 bool polling = false;
1793
1794 lock_map_acquire(&trans->sync_cmd_lockdep_map);
1795
1796 spin_lock_bh(&trans_pcie->irq_lock);
1797
1798 /* dram interrupt table not set yet,
1799 * use legacy interrupt.
1800 */
1801 if (likely(trans_pcie->use_ict))
1802 inta = iwl_pcie_int_cause_ict(trans);
1803 else
1804 inta = iwl_pcie_int_cause_non_ict(trans);
1805
1806 if (iwl_have_debug_level(IWL_DL_ISR)) {
1807 IWL_DEBUG_ISR(trans,
1808 "ISR inta 0x%08x, enabled 0x%08x(sw), enabled(hw) 0x%08x, fh 0x%08x\n",
1809 inta, trans_pcie->inta_mask,
1810 iwl_read32(trans, CSR_INT_MASK),
1811 iwl_read32(trans, CSR_FH_INT_STATUS));
1812 if (inta & (~trans_pcie->inta_mask))
1813 IWL_DEBUG_ISR(trans,
1814 "We got a masked interrupt (0x%08x)\n",
1815 inta & (~trans_pcie->inta_mask));
1816 }
1817
1818 inta &= trans_pcie->inta_mask;
1819
1820 /*
1821 * Ignore interrupt if there's nothing in NIC to service.
1822 * This may be due to IRQ shared with another device,
1823 * or due to sporadic interrupts thrown from our NIC.
1824 */
1825 if (unlikely(!inta)) {
1826 IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
1827 /*
1828 * Re-enable interrupts here since we don't
1829 * have anything to service
1830 */
1831 if (test_bit(STATUS_INT_ENABLED, &trans->status))
1832 _iwl_enable_interrupts(trans);
1833 spin_unlock_bh(&trans_pcie->irq_lock);
1834 lock_map_release(&trans->sync_cmd_lockdep_map);
1835 return IRQ_NONE;
1836 }
1837
1838 if (unlikely(inta == 0xFFFFFFFF || (inta & 0xFFFFFFF0) == 0xa5a5a5a0)) {
1839 /*
1840 * Hardware disappeared. It might have
1841 * already raised an interrupt.
1842 */
1843 IWL_WARN(trans, "HARDWARE GONE?? INTA == 0x%08x\n", inta);
1844 spin_unlock_bh(&trans_pcie->irq_lock);
1845 goto out;
1846 }
1847
1848 /* Ack/clear/reset pending uCode interrupts.
1849 * Note: Some bits in CSR_INT are "OR" of bits in CSR_FH_INT_STATUS,
1850 */
1851 /* There is a hardware bug in the interrupt mask function that some
1852 * interrupts (i.e. CSR_INT_BIT_SCD) can still be generated even if
1853 * they are disabled in the CSR_INT_MASK register. Furthermore the
1854 * ICT interrupt handling mechanism has another bug that might cause
1855 * these unmasked interrupts fail to be detected. We workaround the
1856 * hardware bugs here by ACKing all the possible interrupts so that
1857 * interrupt coalescing can still be achieved.
1858 */
1859 iwl_write32(trans, CSR_INT, inta | ~trans_pcie->inta_mask);
1860
1861 if (iwl_have_debug_level(IWL_DL_ISR))
1862 IWL_DEBUG_ISR(trans, "inta 0x%08x, enabled 0x%08x\n",
1863 inta, iwl_read32(trans, CSR_INT_MASK));
1864
1865 spin_unlock_bh(&trans_pcie->irq_lock);
1866
1867 /* Now service all interrupt bits discovered above. */
1868 if (inta & CSR_INT_BIT_HW_ERR) {
1869 IWL_ERR(trans, "Hardware error detected. Restarting.\n");
1870
1871 /* Tell the device to stop sending interrupts */
1872 iwl_disable_interrupts(trans);
1873
1874 isr_stats->hw++;
1875 iwl_pcie_irq_handle_error(trans);
1876
1877 handled |= CSR_INT_BIT_HW_ERR;
1878
1879 goto out;
1880 }
1881
1882 /* NIC fires this, but we don't use it, redundant with WAKEUP */
1883 if (inta & CSR_INT_BIT_SCD) {
1884 IWL_DEBUG_ISR(trans,
1885 "Scheduler finished to transmit the frame/frames.\n");
1886 isr_stats->sch++;
1887 }
1888
1889 /* Alive notification via Rx interrupt will do the real work */
1890 if (inta & CSR_INT_BIT_ALIVE) {
1891 IWL_DEBUG_ISR(trans, "Alive interrupt\n");
1892 isr_stats->alive++;
1893 if (trans->trans_cfg->gen2) {
1894 /*
1895 * We can restock, since firmware configured
1896 * the RFH
1897 */
1898 iwl_pcie_rxmq_restock(trans, trans_pcie->rxq);
1899 }
1900
1901 handled |= CSR_INT_BIT_ALIVE;
1902 }
1903
1904 /* Safely ignore these bits for debug checks below */
1905 inta &= ~(CSR_INT_BIT_SCD | CSR_INT_BIT_ALIVE);
1906
1907 /* HW RF KILL switch toggled */
1908 if (inta & CSR_INT_BIT_RF_KILL) {
1909 iwl_pcie_handle_rfkill_irq(trans);
1910 handled |= CSR_INT_BIT_RF_KILL;
1911 }
1912
1913 /* Chip got too hot and stopped itself */
1914 if (inta & CSR_INT_BIT_CT_KILL) {
1915 IWL_ERR(trans, "Microcode CT kill error detected.\n");
1916 isr_stats->ctkill++;
1917 handled |= CSR_INT_BIT_CT_KILL;
1918 }
1919
1920 /* Error detected by uCode */
1921 if (inta & CSR_INT_BIT_SW_ERR) {
1922 IWL_ERR(trans, "Microcode SW error detected. "
1923 " Restarting 0x%X.\n", inta);
1924 isr_stats->sw++;
1925 iwl_pcie_irq_handle_error(trans);
1926 handled |= CSR_INT_BIT_SW_ERR;
1927 }
1928
1929 /* uCode wakes up after power-down sleep */
1930 if (inta & CSR_INT_BIT_WAKEUP) {
1931 IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
1932 iwl_pcie_rxq_check_wrptr(trans);
1933 iwl_pcie_txq_check_wrptrs(trans);
1934
1935 isr_stats->wakeup++;
1936
1937 handled |= CSR_INT_BIT_WAKEUP;
1938 }
1939
1940 /* All uCode command responses, including Tx command responses,
1941 * Rx "responses" (frame-received notification), and other
1942 * notifications from uCode come through here*/
1943 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX |
1944 CSR_INT_BIT_RX_PERIODIC)) {
1945 IWL_DEBUG_ISR(trans, "Rx interrupt\n");
1946 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX)) {
1947 handled |= (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX);
1948 iwl_write32(trans, CSR_FH_INT_STATUS,
1949 CSR_FH_INT_RX_MASK);
1950 }
1951 if (inta & CSR_INT_BIT_RX_PERIODIC) {
1952 handled |= CSR_INT_BIT_RX_PERIODIC;
1953 iwl_write32(trans,
1954 CSR_INT, CSR_INT_BIT_RX_PERIODIC);
1955 }
1956 /* Sending RX interrupt require many steps to be done in the
1957 * the device:
1958 * 1- write interrupt to current index in ICT table.
1959 * 2- dma RX frame.
1960 * 3- update RX shared data to indicate last write index.
1961 * 4- send interrupt.
1962 * This could lead to RX race, driver could receive RX interrupt
1963 * but the shared data changes does not reflect this;
1964 * periodic interrupt will detect any dangling Rx activity.
1965 */
1966
1967 /* Disable periodic interrupt; we use it as just a one-shot. */
1968 iwl_write8(trans, CSR_INT_PERIODIC_REG,
1969 CSR_INT_PERIODIC_DIS);
1970
1971 /*
1972 * Enable periodic interrupt in 8 msec only if we received
1973 * real RX interrupt (instead of just periodic int), to catch
1974 * any dangling Rx interrupt. If it was just the periodic
1975 * interrupt, there was no dangling Rx activity, and no need
1976 * to extend the periodic interrupt; one-shot is enough.
1977 */
1978 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX))
1979 iwl_write8(trans, CSR_INT_PERIODIC_REG,
1980 CSR_INT_PERIODIC_ENA);
1981
1982 isr_stats->rx++;
1983
1984 local_bh_disable();
1985 if (napi_schedule_prep(&trans_pcie->rxq[0].napi)) {
1986 polling = true;
1987 __napi_schedule(&trans_pcie->rxq[0].napi);
1988 }
1989 local_bh_enable();
1990 }
1991
1992 /* This "Tx" DMA channel is used only for loading uCode */
1993 if (inta & CSR_INT_BIT_FH_TX) {
1994 iwl_write32(trans, CSR_FH_INT_STATUS, CSR_FH_INT_TX_MASK);
1995 IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
1996 isr_stats->tx++;
1997 handled |= CSR_INT_BIT_FH_TX;
1998 /* Wake up uCode load routine, now that load is complete */
1999 trans_pcie->ucode_write_complete = true;
2000 wake_up(&trans_pcie->ucode_write_waitq);
2001 }
2002
2003 if (inta & ~handled) {
2004 IWL_ERR(trans, "Unhandled INTA bits 0x%08x\n", inta & ~handled);
2005 isr_stats->unhandled++;
2006 }
2007
2008 if (inta & ~(trans_pcie->inta_mask)) {
2009 IWL_WARN(trans, "Disabled INTA bits 0x%08x were pending\n",
2010 inta & ~trans_pcie->inta_mask);
2011 }
2012
2013 if (!polling) {
2014 spin_lock_bh(&trans_pcie->irq_lock);
2015 /* only Re-enable all interrupt if disabled by irq */
2016 if (test_bit(STATUS_INT_ENABLED, &trans->status))
2017 _iwl_enable_interrupts(trans);
2018 /* we are loading the firmware, enable FH_TX interrupt only */
2019 else if (handled & CSR_INT_BIT_FH_TX)
2020 iwl_enable_fw_load_int(trans);
2021 /* Re-enable RF_KILL if it occurred */
2022 else if (handled & CSR_INT_BIT_RF_KILL)
2023 iwl_enable_rfkill_int(trans);
2024 /* Re-enable the ALIVE / Rx interrupt if it occurred */
2025 else if (handled & (CSR_INT_BIT_ALIVE | CSR_INT_BIT_FH_RX))
2026 iwl_enable_fw_load_int_ctx_info(trans);
2027 spin_unlock_bh(&trans_pcie->irq_lock);
2028 }
2029
2030 out:
2031 lock_map_release(&trans->sync_cmd_lockdep_map);
2032 return IRQ_HANDLED;
2033 }
2034
2035 /******************************************************************************
2036 *
2037 * ICT functions
2038 *
2039 ******************************************************************************/
2040
2041 /* Free dram table */
iwl_pcie_free_ict(struct iwl_trans * trans)2042 void iwl_pcie_free_ict(struct iwl_trans *trans)
2043 {
2044 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2045
2046 if (trans_pcie->ict_tbl) {
2047 dma_free_coherent(trans->dev, ICT_SIZE,
2048 trans_pcie->ict_tbl,
2049 trans_pcie->ict_tbl_dma);
2050 trans_pcie->ict_tbl = NULL;
2051 trans_pcie->ict_tbl_dma = 0;
2052 }
2053 }
2054
2055 /*
2056 * allocate dram shared table, it is an aligned memory
2057 * block of ICT_SIZE.
2058 * also reset all data related to ICT table interrupt.
2059 */
iwl_pcie_alloc_ict(struct iwl_trans * trans)2060 int iwl_pcie_alloc_ict(struct iwl_trans *trans)
2061 {
2062 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2063
2064 trans_pcie->ict_tbl =
2065 dma_alloc_coherent(trans->dev, ICT_SIZE,
2066 &trans_pcie->ict_tbl_dma, GFP_KERNEL);
2067 if (!trans_pcie->ict_tbl)
2068 return -ENOMEM;
2069
2070 /* just an API sanity check ... it is guaranteed to be aligned */
2071 if (WARN_ON(trans_pcie->ict_tbl_dma & (ICT_SIZE - 1))) {
2072 iwl_pcie_free_ict(trans);
2073 return -EINVAL;
2074 }
2075
2076 return 0;
2077 }
2078
2079 /* Device is going up inform it about using ICT interrupt table,
2080 * also we need to tell the driver to start using ICT interrupt.
2081 */
iwl_pcie_reset_ict(struct iwl_trans * trans)2082 void iwl_pcie_reset_ict(struct iwl_trans *trans)
2083 {
2084 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2085 u32 val;
2086
2087 if (!trans_pcie->ict_tbl)
2088 return;
2089
2090 spin_lock_bh(&trans_pcie->irq_lock);
2091 _iwl_disable_interrupts(trans);
2092
2093 memset(trans_pcie->ict_tbl, 0, ICT_SIZE);
2094
2095 val = trans_pcie->ict_tbl_dma >> ICT_SHIFT;
2096
2097 val |= CSR_DRAM_INT_TBL_ENABLE |
2098 CSR_DRAM_INIT_TBL_WRAP_CHECK |
2099 CSR_DRAM_INIT_TBL_WRITE_POINTER;
2100
2101 IWL_DEBUG_ISR(trans, "CSR_DRAM_INT_TBL_REG =0x%x\n", val);
2102
2103 iwl_write32(trans, CSR_DRAM_INT_TBL_REG, val);
2104 trans_pcie->use_ict = true;
2105 trans_pcie->ict_index = 0;
2106 iwl_write32(trans, CSR_INT, trans_pcie->inta_mask);
2107 _iwl_enable_interrupts(trans);
2108 spin_unlock_bh(&trans_pcie->irq_lock);
2109 }
2110
2111 /* Device is going down disable ict interrupt usage */
iwl_pcie_disable_ict(struct iwl_trans * trans)2112 void iwl_pcie_disable_ict(struct iwl_trans *trans)
2113 {
2114 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2115
2116 spin_lock_bh(&trans_pcie->irq_lock);
2117 trans_pcie->use_ict = false;
2118 spin_unlock_bh(&trans_pcie->irq_lock);
2119 }
2120
iwl_pcie_isr(int irq,void * data)2121 irqreturn_t iwl_pcie_isr(int irq, void *data)
2122 {
2123 struct iwl_trans *trans = data;
2124
2125 if (!trans)
2126 return IRQ_NONE;
2127
2128 /* Disable (but don't clear!) interrupts here to avoid
2129 * back-to-back ISRs and sporadic interrupts from our NIC.
2130 * If we have something to service, the tasklet will re-enable ints.
2131 * If we *don't* have something, we'll re-enable before leaving here.
2132 */
2133 iwl_write32(trans, CSR_INT_MASK, 0x00000000);
2134
2135 return IRQ_WAKE_THREAD;
2136 }
2137
iwl_pcie_msix_isr(int irq,void * data)2138 irqreturn_t iwl_pcie_msix_isr(int irq, void *data)
2139 {
2140 return IRQ_WAKE_THREAD;
2141 }
2142
iwl_pcie_irq_msix_handler(int irq,void * dev_id)2143 irqreturn_t iwl_pcie_irq_msix_handler(int irq, void *dev_id)
2144 {
2145 struct msix_entry *entry = dev_id;
2146 struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry);
2147 struct iwl_trans *trans = trans_pcie->trans;
2148 struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
2149 u32 inta_fh_msk = ~MSIX_FH_INT_CAUSES_DATA_QUEUE;
2150 u32 inta_fh, inta_hw;
2151 bool polling = false;
2152
2153 if (trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_NON_RX)
2154 inta_fh_msk |= MSIX_FH_INT_CAUSES_Q0;
2155
2156 if (trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS)
2157 inta_fh_msk |= MSIX_FH_INT_CAUSES_Q1;
2158
2159 lock_map_acquire(&trans->sync_cmd_lockdep_map);
2160
2161 spin_lock_bh(&trans_pcie->irq_lock);
2162 inta_fh = iwl_read32(trans, CSR_MSIX_FH_INT_CAUSES_AD);
2163 inta_hw = iwl_read32(trans, CSR_MSIX_HW_INT_CAUSES_AD);
2164 /*
2165 * Clear causes registers to avoid being handling the same cause.
2166 */
2167 iwl_write32(trans, CSR_MSIX_FH_INT_CAUSES_AD, inta_fh & inta_fh_msk);
2168 iwl_write32(trans, CSR_MSIX_HW_INT_CAUSES_AD, inta_hw);
2169 spin_unlock_bh(&trans_pcie->irq_lock);
2170
2171 trace_iwlwifi_dev_irq_msix(trans->dev, entry, true, inta_fh, inta_hw);
2172
2173 if (unlikely(!(inta_fh | inta_hw))) {
2174 IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
2175 lock_map_release(&trans->sync_cmd_lockdep_map);
2176 return IRQ_NONE;
2177 }
2178
2179 if (iwl_have_debug_level(IWL_DL_ISR)) {
2180 IWL_DEBUG_ISR(trans,
2181 "ISR[%d] inta_fh 0x%08x, enabled (sw) 0x%08x (hw) 0x%08x\n",
2182 entry->entry, inta_fh, trans_pcie->fh_mask,
2183 iwl_read32(trans, CSR_MSIX_FH_INT_MASK_AD));
2184 if (inta_fh & ~trans_pcie->fh_mask)
2185 IWL_DEBUG_ISR(trans,
2186 "We got a masked interrupt (0x%08x)\n",
2187 inta_fh & ~trans_pcie->fh_mask);
2188 }
2189
2190 inta_fh &= trans_pcie->fh_mask;
2191
2192 if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_NON_RX) &&
2193 inta_fh & MSIX_FH_INT_CAUSES_Q0) {
2194 local_bh_disable();
2195 if (napi_schedule_prep(&trans_pcie->rxq[0].napi)) {
2196 polling = true;
2197 __napi_schedule(&trans_pcie->rxq[0].napi);
2198 }
2199 local_bh_enable();
2200 }
2201
2202 if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS) &&
2203 inta_fh & MSIX_FH_INT_CAUSES_Q1) {
2204 local_bh_disable();
2205 if (napi_schedule_prep(&trans_pcie->rxq[1].napi)) {
2206 polling = true;
2207 __napi_schedule(&trans_pcie->rxq[1].napi);
2208 }
2209 local_bh_enable();
2210 }
2211
2212 /* This "Tx" DMA channel is used only for loading uCode */
2213 if (inta_fh & MSIX_FH_INT_CAUSES_D2S_CH0_NUM) {
2214 IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
2215 isr_stats->tx++;
2216 /*
2217 * Wake up uCode load routine,
2218 * now that load is complete
2219 */
2220 trans_pcie->ucode_write_complete = true;
2221 wake_up(&trans_pcie->ucode_write_waitq);
2222 }
2223
2224 /* Error detected by uCode */
2225 if ((inta_fh & MSIX_FH_INT_CAUSES_FH_ERR) ||
2226 (inta_hw & MSIX_HW_INT_CAUSES_REG_SW_ERR)) {
2227 IWL_ERR(trans,
2228 "Microcode SW error detected. Restarting 0x%X.\n",
2229 inta_fh);
2230 isr_stats->sw++;
2231 /* during FW reset flow report errors from there */
2232 if (trans_pcie->fw_reset_state == FW_RESET_REQUESTED) {
2233 trans_pcie->fw_reset_state = FW_RESET_ERROR;
2234 wake_up(&trans_pcie->fw_reset_waitq);
2235 } else {
2236 iwl_pcie_irq_handle_error(trans);
2237 }
2238 }
2239
2240 /* After checking FH register check HW register */
2241 if (iwl_have_debug_level(IWL_DL_ISR)) {
2242 IWL_DEBUG_ISR(trans,
2243 "ISR[%d] inta_hw 0x%08x, enabled (sw) 0x%08x (hw) 0x%08x\n",
2244 entry->entry, inta_hw, trans_pcie->hw_mask,
2245 iwl_read32(trans, CSR_MSIX_HW_INT_MASK_AD));
2246 if (inta_hw & ~trans_pcie->hw_mask)
2247 IWL_DEBUG_ISR(trans,
2248 "We got a masked interrupt 0x%08x\n",
2249 inta_hw & ~trans_pcie->hw_mask);
2250 }
2251
2252 inta_hw &= trans_pcie->hw_mask;
2253
2254 /* Alive notification via Rx interrupt will do the real work */
2255 if (inta_hw & MSIX_HW_INT_CAUSES_REG_ALIVE) {
2256 IWL_DEBUG_ISR(trans, "Alive interrupt\n");
2257 isr_stats->alive++;
2258 if (trans->trans_cfg->gen2) {
2259 /* We can restock, since firmware configured the RFH */
2260 iwl_pcie_rxmq_restock(trans, trans_pcie->rxq);
2261 }
2262 }
2263
2264 if (inta_hw & MSIX_HW_INT_CAUSES_REG_WAKEUP) {
2265 u32 sleep_notif =
2266 le32_to_cpu(trans_pcie->prph_info->sleep_notif);
2267 if (sleep_notif == IWL_D3_SLEEP_STATUS_SUSPEND ||
2268 sleep_notif == IWL_D3_SLEEP_STATUS_RESUME) {
2269 IWL_DEBUG_ISR(trans,
2270 "Sx interrupt: sleep notification = 0x%x\n",
2271 sleep_notif);
2272 trans_pcie->sx_complete = true;
2273 wake_up(&trans_pcie->sx_waitq);
2274 } else {
2275 /* uCode wakes up after power-down sleep */
2276 IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
2277 iwl_pcie_rxq_check_wrptr(trans);
2278 iwl_pcie_txq_check_wrptrs(trans);
2279
2280 isr_stats->wakeup++;
2281 }
2282 }
2283
2284 /* Chip got too hot and stopped itself */
2285 if (inta_hw & MSIX_HW_INT_CAUSES_REG_CT_KILL) {
2286 IWL_ERR(trans, "Microcode CT kill error detected.\n");
2287 isr_stats->ctkill++;
2288 }
2289
2290 /* HW RF KILL switch toggled */
2291 if (inta_hw & MSIX_HW_INT_CAUSES_REG_RF_KILL)
2292 iwl_pcie_handle_rfkill_irq(trans);
2293
2294 if (inta_hw & MSIX_HW_INT_CAUSES_REG_HW_ERR) {
2295 IWL_ERR(trans,
2296 "Hardware error detected. Restarting.\n");
2297
2298 isr_stats->hw++;
2299 trans->dbg.hw_error = true;
2300 iwl_pcie_irq_handle_error(trans);
2301 }
2302
2303 if (inta_hw & MSIX_HW_INT_CAUSES_REG_RESET_DONE) {
2304 IWL_DEBUG_ISR(trans, "Reset flow completed\n");
2305 trans_pcie->fw_reset_state = FW_RESET_OK;
2306 wake_up(&trans_pcie->fw_reset_waitq);
2307 }
2308
2309 if (!polling)
2310 iwl_pcie_clear_irq(trans, entry->entry);
2311
2312 lock_map_release(&trans->sync_cmd_lockdep_map);
2313
2314 return IRQ_HANDLED;
2315 }
2316