1 /******************************************************************************
2 *
3 * This file is provided under a dual BSD/GPLv2 license. When using or
4 * redistributing this file, you may do so under either license.
5 *
6 * GPL LICENSE SUMMARY
7 *
8 * Copyright(c) 2012 - 2014 Intel Corporation. All rights reserved.
9 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
10 * Copyright(c) 2015 - 2017 Intel Deutschland GmbH
11 * Copyright(c) 2018 - 2020 Intel Corporation
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of version 2 of the GNU General Public License as
15 * published by the Free Software Foundation.
16 *
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
21 *
22 * The full GNU General Public License is included in this distribution
23 * in the file called COPYING.
24 *
25 * Contact Information:
26 * Intel Linux Wireless <linuxwifi@intel.com>
27 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
28 *
29 * BSD LICENSE
30 *
31 * Copyright(c) 2012 - 2014 Intel Corporation. All rights reserved.
32 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
33 * Copyright(c) 2015 - 2017 Intel Deutschland GmbH
34 * Copyright(c) 2018 - 2020 Intel Corporation
35 * All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 *
41 * * Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * * Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in
45 * the documentation and/or other materials provided with the
46 * distribution.
47 * * Neither the name Intel Corporation nor the names of its
48 * contributors may be used to endorse or promote products derived
49 * from this software without specific prior written permission.
50 *
51 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
52 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
53 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
54 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
55 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
56 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
57 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
58 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
59 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
60 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
61 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
62 *****************************************************************************/
63 #include <linux/etherdevice.h>
64 #include <linux/skbuff.h>
65 #include "iwl-trans.h"
66 #include "mvm.h"
67 #include "fw-api.h"
68
iwl_mvm_skb_get_hdr(struct sk_buff * skb)69 static void *iwl_mvm_skb_get_hdr(struct sk_buff *skb)
70 {
71 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
72 u8 *data = skb->data;
73
74 /* Alignment concerns */
75 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he) % 4);
76 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he_mu) % 4);
77 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_lsig) % 4);
78 BUILD_BUG_ON(sizeof(struct ieee80211_vendor_radiotap) % 4);
79
80 if (rx_status->flag & RX_FLAG_RADIOTAP_HE)
81 data += sizeof(struct ieee80211_radiotap_he);
82 if (rx_status->flag & RX_FLAG_RADIOTAP_HE_MU)
83 data += sizeof(struct ieee80211_radiotap_he_mu);
84 if (rx_status->flag & RX_FLAG_RADIOTAP_LSIG)
85 data += sizeof(struct ieee80211_radiotap_lsig);
86 if (rx_status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
87 struct ieee80211_vendor_radiotap *radiotap = (void *)data;
88
89 data += sizeof(*radiotap) + radiotap->len + radiotap->pad;
90 }
91
92 return data;
93 }
94
iwl_mvm_check_pn(struct iwl_mvm * mvm,struct sk_buff * skb,int queue,struct ieee80211_sta * sta)95 static inline int iwl_mvm_check_pn(struct iwl_mvm *mvm, struct sk_buff *skb,
96 int queue, struct ieee80211_sta *sta)
97 {
98 struct iwl_mvm_sta *mvmsta;
99 struct ieee80211_hdr *hdr = iwl_mvm_skb_get_hdr(skb);
100 struct ieee80211_rx_status *stats = IEEE80211_SKB_RXCB(skb);
101 struct iwl_mvm_key_pn *ptk_pn;
102 int res;
103 u8 tid, keyidx;
104 u8 pn[IEEE80211_CCMP_PN_LEN];
105 u8 *extiv;
106
107 /* do PN checking */
108
109 /* multicast and non-data only arrives on default queue */
110 if (!ieee80211_is_data(hdr->frame_control) ||
111 is_multicast_ether_addr(hdr->addr1))
112 return 0;
113
114 /* do not check PN for open AP */
115 if (!(stats->flag & RX_FLAG_DECRYPTED))
116 return 0;
117
118 /*
119 * avoid checking for default queue - we don't want to replicate
120 * all the logic that's necessary for checking the PN on fragmented
121 * frames, leave that to mac80211
122 */
123 if (queue == 0)
124 return 0;
125
126 /* if we are here - this for sure is either CCMP or GCMP */
127 if (IS_ERR_OR_NULL(sta)) {
128 IWL_ERR(mvm,
129 "expected hw-decrypted unicast frame for station\n");
130 return -1;
131 }
132
133 mvmsta = iwl_mvm_sta_from_mac80211(sta);
134
135 extiv = (u8 *)hdr + ieee80211_hdrlen(hdr->frame_control);
136 keyidx = extiv[3] >> 6;
137
138 ptk_pn = rcu_dereference(mvmsta->ptk_pn[keyidx]);
139 if (!ptk_pn)
140 return -1;
141
142 if (ieee80211_is_data_qos(hdr->frame_control))
143 tid = ieee80211_get_tid(hdr);
144 else
145 tid = 0;
146
147 /* we don't use HCCA/802.11 QoS TSPECs, so drop such frames */
148 if (tid >= IWL_MAX_TID_COUNT)
149 return -1;
150
151 /* load pn */
152 pn[0] = extiv[7];
153 pn[1] = extiv[6];
154 pn[2] = extiv[5];
155 pn[3] = extiv[4];
156 pn[4] = extiv[1];
157 pn[5] = extiv[0];
158
159 res = memcmp(pn, ptk_pn->q[queue].pn[tid], IEEE80211_CCMP_PN_LEN);
160 if (res < 0)
161 return -1;
162 if (!res && !(stats->flag & RX_FLAG_ALLOW_SAME_PN))
163 return -1;
164
165 memcpy(ptk_pn->q[queue].pn[tid], pn, IEEE80211_CCMP_PN_LEN);
166 stats->flag |= RX_FLAG_PN_VALIDATED;
167
168 return 0;
169 }
170
171 /* iwl_mvm_create_skb Adds the rxb to a new skb */
iwl_mvm_create_skb(struct iwl_mvm * mvm,struct sk_buff * skb,struct ieee80211_hdr * hdr,u16 len,u8 crypt_len,struct iwl_rx_cmd_buffer * rxb)172 static int iwl_mvm_create_skb(struct iwl_mvm *mvm, struct sk_buff *skb,
173 struct ieee80211_hdr *hdr, u16 len, u8 crypt_len,
174 struct iwl_rx_cmd_buffer *rxb)
175 {
176 struct iwl_rx_packet *pkt = rxb_addr(rxb);
177 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
178 unsigned int headlen, fraglen, pad_len = 0;
179 unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control);
180
181 if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) {
182 len -= 2;
183 pad_len = 2;
184 }
185
186 /* If frame is small enough to fit in skb->head, pull it completely.
187 * If not, only pull ieee80211_hdr (including crypto if present, and
188 * an additional 8 bytes for SNAP/ethertype, see below) so that
189 * splice() or TCP coalesce are more efficient.
190 *
191 * Since, in addition, ieee80211_data_to_8023() always pull in at
192 * least 8 bytes (possibly more for mesh) we can do the same here
193 * to save the cost of doing it later. That still doesn't pull in
194 * the actual IP header since the typical case has a SNAP header.
195 * If the latter changes (there are efforts in the standards group
196 * to do so) we should revisit this and ieee80211_data_to_8023().
197 */
198 headlen = (len <= skb_tailroom(skb)) ? len :
199 hdrlen + crypt_len + 8;
200
201 /* The firmware may align the packet to DWORD.
202 * The padding is inserted after the IV.
203 * After copying the header + IV skip the padding if
204 * present before copying packet data.
205 */
206 hdrlen += crypt_len;
207
208 if (WARN_ONCE(headlen < hdrlen,
209 "invalid packet lengths (hdrlen=%d, len=%d, crypt_len=%d)\n",
210 hdrlen, len, crypt_len)) {
211 /*
212 * We warn and trace because we want to be able to see
213 * it in trace-cmd as well.
214 */
215 IWL_DEBUG_RX(mvm,
216 "invalid packet lengths (hdrlen=%d, len=%d, crypt_len=%d)\n",
217 hdrlen, len, crypt_len);
218 return -EINVAL;
219 }
220
221 skb_put_data(skb, hdr, hdrlen);
222 skb_put_data(skb, (u8 *)hdr + hdrlen + pad_len, headlen - hdrlen);
223
224 /*
225 * If we did CHECKSUM_COMPLETE, the hardware only does it right for
226 * certain cases and starts the checksum after the SNAP. Check if
227 * this is the case - it's easier to just bail out to CHECKSUM_NONE
228 * in the cases the hardware didn't handle, since it's rare to see
229 * such packets, even though the hardware did calculate the checksum
230 * in this case, just starting after the MAC header instead.
231 */
232 if (skb->ip_summed == CHECKSUM_COMPLETE) {
233 struct {
234 u8 hdr[6];
235 __be16 type;
236 } __packed *shdr = (void *)((u8 *)hdr + hdrlen + pad_len);
237
238 if (unlikely(headlen - hdrlen < sizeof(*shdr) ||
239 !ether_addr_equal(shdr->hdr, rfc1042_header) ||
240 (shdr->type != htons(ETH_P_IP) &&
241 shdr->type != htons(ETH_P_ARP) &&
242 shdr->type != htons(ETH_P_IPV6) &&
243 shdr->type != htons(ETH_P_8021Q) &&
244 shdr->type != htons(ETH_P_PAE) &&
245 shdr->type != htons(ETH_P_TDLS))))
246 skb->ip_summed = CHECKSUM_NONE;
247 }
248
249 fraglen = len - headlen;
250
251 if (fraglen) {
252 int offset = (void *)hdr + headlen + pad_len -
253 rxb_addr(rxb) + rxb_offset(rxb);
254
255 skb_add_rx_frag(skb, 0, rxb_steal_page(rxb), offset,
256 fraglen, rxb->truesize);
257 }
258
259 return 0;
260 }
261
iwl_mvm_add_rtap_sniffer_config(struct iwl_mvm * mvm,struct sk_buff * skb)262 static void iwl_mvm_add_rtap_sniffer_config(struct iwl_mvm *mvm,
263 struct sk_buff *skb)
264 {
265 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
266 struct ieee80211_vendor_radiotap *radiotap;
267 const int size = sizeof(*radiotap) + sizeof(__le16);
268
269 if (!mvm->cur_aid)
270 return;
271
272 /* ensure alignment */
273 BUILD_BUG_ON((size + 2) % 4);
274
275 radiotap = skb_put(skb, size + 2);
276 radiotap->align = 1;
277 /* Intel OUI */
278 radiotap->oui[0] = 0xf6;
279 radiotap->oui[1] = 0x54;
280 radiotap->oui[2] = 0x25;
281 /* radiotap sniffer config sub-namespace */
282 radiotap->subns = 1;
283 radiotap->present = 0x1;
284 radiotap->len = size - sizeof(*radiotap);
285 radiotap->pad = 2;
286
287 /* fill the data now */
288 memcpy(radiotap->data, &mvm->cur_aid, sizeof(mvm->cur_aid));
289 /* and clear the padding */
290 memset(radiotap->data + sizeof(__le16), 0, radiotap->pad);
291
292 rx_status->flag |= RX_FLAG_RADIOTAP_VENDOR_DATA;
293 }
294
295 /* iwl_mvm_pass_packet_to_mac80211 - passes the packet for mac80211 */
iwl_mvm_pass_packet_to_mac80211(struct iwl_mvm * mvm,struct napi_struct * napi,struct sk_buff * skb,int queue,struct ieee80211_sta * sta,bool csi)296 static void iwl_mvm_pass_packet_to_mac80211(struct iwl_mvm *mvm,
297 struct napi_struct *napi,
298 struct sk_buff *skb, int queue,
299 struct ieee80211_sta *sta,
300 bool csi)
301 {
302 if (iwl_mvm_check_pn(mvm, skb, queue, sta))
303 kfree_skb(skb);
304 else
305 ieee80211_rx_napi(mvm->hw, sta, skb, napi);
306 }
307
iwl_mvm_get_signal_strength(struct iwl_mvm * mvm,struct ieee80211_rx_status * rx_status,u32 rate_n_flags,int energy_a,int energy_b)308 static void iwl_mvm_get_signal_strength(struct iwl_mvm *mvm,
309 struct ieee80211_rx_status *rx_status,
310 u32 rate_n_flags, int energy_a,
311 int energy_b)
312 {
313 int max_energy;
314 u32 rate_flags = rate_n_flags;
315
316 energy_a = energy_a ? -energy_a : S8_MIN;
317 energy_b = energy_b ? -energy_b : S8_MIN;
318 max_energy = max(energy_a, energy_b);
319
320 IWL_DEBUG_STATS(mvm, "energy In A %d B %d, and max %d\n",
321 energy_a, energy_b, max_energy);
322
323 rx_status->signal = max_energy;
324 rx_status->chains =
325 (rate_flags & RATE_MCS_ANT_AB_MSK) >> RATE_MCS_ANT_POS;
326 rx_status->chain_signal[0] = energy_a;
327 rx_status->chain_signal[1] = energy_b;
328 rx_status->chain_signal[2] = S8_MIN;
329 }
330
iwl_mvm_rx_crypto(struct iwl_mvm * mvm,struct ieee80211_hdr * hdr,struct ieee80211_rx_status * stats,u16 phy_info,struct iwl_rx_mpdu_desc * desc,u32 pkt_flags,int queue,u8 * crypt_len)331 static int iwl_mvm_rx_crypto(struct iwl_mvm *mvm, struct ieee80211_hdr *hdr,
332 struct ieee80211_rx_status *stats, u16 phy_info,
333 struct iwl_rx_mpdu_desc *desc,
334 u32 pkt_flags, int queue, u8 *crypt_len)
335 {
336 u32 status = le32_to_cpu(desc->status);
337
338 /*
339 * Drop UNKNOWN frames in aggregation, unless in monitor mode
340 * (where we don't have the keys).
341 * We limit this to aggregation because in TKIP this is a valid
342 * scenario, since we may not have the (correct) TTAK (phase 1
343 * key) in the firmware.
344 */
345 if (phy_info & IWL_RX_MPDU_PHY_AMPDU &&
346 (status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
347 IWL_RX_MPDU_STATUS_SEC_UNKNOWN && !mvm->monitor_on)
348 return -1;
349
350 if (!ieee80211_has_protected(hdr->frame_control) ||
351 (status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
352 IWL_RX_MPDU_STATUS_SEC_NONE)
353 return 0;
354
355 /* TODO: handle packets encrypted with unknown alg */
356
357 switch (status & IWL_RX_MPDU_STATUS_SEC_MASK) {
358 case IWL_RX_MPDU_STATUS_SEC_CCM:
359 case IWL_RX_MPDU_STATUS_SEC_GCM:
360 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != IEEE80211_GCMP_PN_LEN);
361 /* alg is CCM: check MIC only */
362 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK))
363 return -1;
364
365 stats->flag |= RX_FLAG_DECRYPTED;
366 if (pkt_flags & FH_RSCSR_RADA_EN)
367 stats->flag |= RX_FLAG_MIC_STRIPPED;
368 *crypt_len = IEEE80211_CCMP_HDR_LEN;
369 return 0;
370 case IWL_RX_MPDU_STATUS_SEC_TKIP:
371 /* Don't drop the frame and decrypt it in SW */
372 if (!fw_has_api(&mvm->fw->ucode_capa,
373 IWL_UCODE_TLV_API_DEPRECATE_TTAK) &&
374 !(status & IWL_RX_MPDU_RES_STATUS_TTAK_OK))
375 return 0;
376
377 if (mvm->trans->trans_cfg->gen2 &&
378 !(status & RX_MPDU_RES_STATUS_MIC_OK))
379 stats->flag |= RX_FLAG_MMIC_ERROR;
380
381 *crypt_len = IEEE80211_TKIP_IV_LEN;
382 /* fall through */
383 case IWL_RX_MPDU_STATUS_SEC_WEP:
384 if (!(status & IWL_RX_MPDU_STATUS_ICV_OK))
385 return -1;
386
387 stats->flag |= RX_FLAG_DECRYPTED;
388 if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
389 IWL_RX_MPDU_STATUS_SEC_WEP)
390 *crypt_len = IEEE80211_WEP_IV_LEN;
391
392 if (pkt_flags & FH_RSCSR_RADA_EN) {
393 stats->flag |= RX_FLAG_ICV_STRIPPED;
394 if (mvm->trans->trans_cfg->gen2)
395 stats->flag |= RX_FLAG_MMIC_STRIPPED;
396 }
397
398 return 0;
399 case IWL_RX_MPDU_STATUS_SEC_EXT_ENC:
400 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK))
401 return -1;
402 stats->flag |= RX_FLAG_DECRYPTED;
403 return 0;
404 default:
405 /*
406 * Sometimes we can get frames that were not decrypted
407 * because the firmware didn't have the keys yet. This can
408 * happen after connection where we can get multicast frames
409 * before the GTK is installed.
410 * Silently drop those frames.
411 * Also drop un-decrypted frames in monitor mode.
412 */
413 if (!is_multicast_ether_addr(hdr->addr1) &&
414 !mvm->monitor_on && net_ratelimit())
415 IWL_ERR(mvm, "Unhandled alg: 0x%x\n", status);
416 }
417
418 return 0;
419 }
420
iwl_mvm_rx_csum(struct iwl_mvm * mvm,struct ieee80211_sta * sta,struct sk_buff * skb,struct iwl_rx_packet * pkt)421 static void iwl_mvm_rx_csum(struct iwl_mvm *mvm,
422 struct ieee80211_sta *sta,
423 struct sk_buff *skb,
424 struct iwl_rx_packet *pkt)
425 {
426 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
427
428 if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
429 if (pkt->len_n_flags & cpu_to_le32(FH_RSCSR_RPA_EN)) {
430 u16 hwsum = be16_to_cpu(desc->v3.raw_xsum);
431
432 skb->ip_summed = CHECKSUM_COMPLETE;
433 skb->csum = csum_unfold(~(__force __sum16)hwsum);
434 }
435 } else {
436 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
437 struct iwl_mvm_vif *mvmvif;
438 u16 flags = le16_to_cpu(desc->l3l4_flags);
439 u8 l3_prot = (u8)((flags & IWL_RX_L3L4_L3_PROTO_MASK) >>
440 IWL_RX_L3_PROTO_POS);
441
442 mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif);
443
444 if (mvmvif->features & NETIF_F_RXCSUM &&
445 flags & IWL_RX_L3L4_TCP_UDP_CSUM_OK &&
446 (flags & IWL_RX_L3L4_IP_HDR_CSUM_OK ||
447 l3_prot == IWL_RX_L3_TYPE_IPV6 ||
448 l3_prot == IWL_RX_L3_TYPE_IPV6_FRAG))
449 skb->ip_summed = CHECKSUM_UNNECESSARY;
450 }
451 }
452
453 /*
454 * returns true if a packet is a duplicate and should be dropped.
455 * Updates AMSDU PN tracking info
456 */
iwl_mvm_is_dup(struct ieee80211_sta * sta,int queue,struct ieee80211_rx_status * rx_status,struct ieee80211_hdr * hdr,struct iwl_rx_mpdu_desc * desc)457 static bool iwl_mvm_is_dup(struct ieee80211_sta *sta, int queue,
458 struct ieee80211_rx_status *rx_status,
459 struct ieee80211_hdr *hdr,
460 struct iwl_rx_mpdu_desc *desc)
461 {
462 struct iwl_mvm_sta *mvm_sta;
463 struct iwl_mvm_rxq_dup_data *dup_data;
464 u8 tid, sub_frame_idx;
465
466 if (WARN_ON(IS_ERR_OR_NULL(sta)))
467 return false;
468
469 mvm_sta = iwl_mvm_sta_from_mac80211(sta);
470 dup_data = &mvm_sta->dup_data[queue];
471
472 /*
473 * Drop duplicate 802.11 retransmissions
474 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
475 */
476 if (ieee80211_is_ctl(hdr->frame_control) ||
477 ieee80211_is_qos_nullfunc(hdr->frame_control) ||
478 is_multicast_ether_addr(hdr->addr1)) {
479 rx_status->flag |= RX_FLAG_DUP_VALIDATED;
480 return false;
481 }
482
483 if (ieee80211_is_data_qos(hdr->frame_control))
484 /* frame has qos control */
485 tid = ieee80211_get_tid(hdr);
486 else
487 tid = IWL_MAX_TID_COUNT;
488
489 /* If this wasn't a part of an A-MSDU the sub-frame index will be 0 */
490 sub_frame_idx = desc->amsdu_info &
491 IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK;
492
493 if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
494 dup_data->last_seq[tid] == hdr->seq_ctrl &&
495 dup_data->last_sub_frame[tid] >= sub_frame_idx))
496 return true;
497
498 /* Allow same PN as the first subframe for following sub frames */
499 if (dup_data->last_seq[tid] == hdr->seq_ctrl &&
500 sub_frame_idx > dup_data->last_sub_frame[tid] &&
501 desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU)
502 rx_status->flag |= RX_FLAG_ALLOW_SAME_PN;
503
504 dup_data->last_seq[tid] = hdr->seq_ctrl;
505 dup_data->last_sub_frame[tid] = sub_frame_idx;
506
507 rx_status->flag |= RX_FLAG_DUP_VALIDATED;
508
509 return false;
510 }
511
iwl_mvm_notify_rx_queue(struct iwl_mvm * mvm,u32 rxq_mask,const u8 * data,u32 count,bool async)512 int iwl_mvm_notify_rx_queue(struct iwl_mvm *mvm, u32 rxq_mask,
513 const u8 *data, u32 count, bool async)
514 {
515 u8 buf[sizeof(struct iwl_rxq_sync_cmd) +
516 sizeof(struct iwl_mvm_rss_sync_notif)];
517 struct iwl_rxq_sync_cmd *cmd = (void *)buf;
518 u32 data_size = sizeof(*cmd) + count;
519 int ret;
520
521 /*
522 * size must be a multiple of DWORD
523 * Ensure we don't overflow buf
524 */
525 if (WARN_ON(count & 3 ||
526 count > sizeof(struct iwl_mvm_rss_sync_notif)))
527 return -EINVAL;
528
529 cmd->rxq_mask = cpu_to_le32(rxq_mask);
530 cmd->count = cpu_to_le32(count);
531 cmd->flags = 0;
532 memcpy(cmd->payload, data, count);
533
534 ret = iwl_mvm_send_cmd_pdu(mvm,
535 WIDE_ID(DATA_PATH_GROUP,
536 TRIGGER_RX_QUEUES_NOTIF_CMD),
537 async ? CMD_ASYNC : 0, data_size, cmd);
538
539 return ret;
540 }
541
542 /*
543 * Returns true if sn2 - buffer_size < sn1 < sn2.
544 * To be used only in order to compare reorder buffer head with NSSN.
545 * We fully trust NSSN unless it is behind us due to reorder timeout.
546 * Reorder timeout can only bring us up to buffer_size SNs ahead of NSSN.
547 */
iwl_mvm_is_sn_less(u16 sn1,u16 sn2,u16 buffer_size)548 static bool iwl_mvm_is_sn_less(u16 sn1, u16 sn2, u16 buffer_size)
549 {
550 return ieee80211_sn_less(sn1, sn2) &&
551 !ieee80211_sn_less(sn1, sn2 - buffer_size);
552 }
553
iwl_mvm_sync_nssn(struct iwl_mvm * mvm,u8 baid,u16 nssn)554 static void iwl_mvm_sync_nssn(struct iwl_mvm *mvm, u8 baid, u16 nssn)
555 {
556 if (IWL_MVM_USE_NSSN_SYNC) {
557 struct iwl_mvm_rss_sync_notif notif = {
558 .metadata.type = IWL_MVM_RXQ_NSSN_SYNC,
559 .metadata.sync = 0,
560 .nssn_sync.baid = baid,
561 .nssn_sync.nssn = nssn,
562 };
563
564 iwl_mvm_sync_rx_queues_internal(mvm, (void *)¬if,
565 sizeof(notif));
566 }
567 }
568
569 #define RX_REORDER_BUF_TIMEOUT_MQ (HZ / 10)
570
571 enum iwl_mvm_release_flags {
572 IWL_MVM_RELEASE_SEND_RSS_SYNC = BIT(0),
573 IWL_MVM_RELEASE_FROM_RSS_SYNC = BIT(1),
574 };
575
iwl_mvm_release_frames(struct iwl_mvm * mvm,struct ieee80211_sta * sta,struct napi_struct * napi,struct iwl_mvm_baid_data * baid_data,struct iwl_mvm_reorder_buffer * reorder_buf,u16 nssn,u32 flags)576 static void iwl_mvm_release_frames(struct iwl_mvm *mvm,
577 struct ieee80211_sta *sta,
578 struct napi_struct *napi,
579 struct iwl_mvm_baid_data *baid_data,
580 struct iwl_mvm_reorder_buffer *reorder_buf,
581 u16 nssn, u32 flags)
582 {
583 struct iwl_mvm_reorder_buf_entry *entries =
584 &baid_data->entries[reorder_buf->queue *
585 baid_data->entries_per_queue];
586 u16 ssn = reorder_buf->head_sn;
587
588 lockdep_assert_held(&reorder_buf->lock);
589
590 /*
591 * We keep the NSSN not too far behind, if we are sync'ing it and it
592 * is more than 2048 ahead of us, it must be behind us. Discard it.
593 * This can happen if the queue that hit the 0 / 2048 seqno was lagging
594 * behind and this queue already processed packets. The next if
595 * would have caught cases where this queue would have processed less
596 * than 64 packets, but it may have processed more than 64 packets.
597 */
598 if ((flags & IWL_MVM_RELEASE_FROM_RSS_SYNC) &&
599 ieee80211_sn_less(nssn, ssn))
600 goto set_timer;
601
602 /* ignore nssn smaller than head sn - this can happen due to timeout */
603 if (iwl_mvm_is_sn_less(nssn, ssn, reorder_buf->buf_size))
604 goto set_timer;
605
606 while (iwl_mvm_is_sn_less(ssn, nssn, reorder_buf->buf_size)) {
607 int index = ssn % reorder_buf->buf_size;
608 struct sk_buff_head *skb_list = &entries[index].e.frames;
609 struct sk_buff *skb;
610
611 ssn = ieee80211_sn_inc(ssn);
612 if ((flags & IWL_MVM_RELEASE_SEND_RSS_SYNC) &&
613 (ssn == 2048 || ssn == 0))
614 iwl_mvm_sync_nssn(mvm, baid_data->baid, ssn);
615
616 /*
617 * Empty the list. Will have more than one frame for A-MSDU.
618 * Empty list is valid as well since nssn indicates frames were
619 * received.
620 */
621 while ((skb = __skb_dequeue(skb_list))) {
622 iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb,
623 reorder_buf->queue,
624 sta, false);
625 reorder_buf->num_stored--;
626 }
627 }
628 reorder_buf->head_sn = nssn;
629
630 set_timer:
631 if (reorder_buf->num_stored && !reorder_buf->removed) {
632 u16 index = reorder_buf->head_sn % reorder_buf->buf_size;
633
634 while (skb_queue_empty(&entries[index].e.frames))
635 index = (index + 1) % reorder_buf->buf_size;
636 /* modify timer to match next frame's expiration time */
637 mod_timer(&reorder_buf->reorder_timer,
638 entries[index].e.reorder_time + 1 +
639 RX_REORDER_BUF_TIMEOUT_MQ);
640 } else {
641 del_timer(&reorder_buf->reorder_timer);
642 }
643 }
644
iwl_mvm_reorder_timer_expired(struct timer_list * t)645 void iwl_mvm_reorder_timer_expired(struct timer_list *t)
646 {
647 struct iwl_mvm_reorder_buffer *buf = from_timer(buf, t, reorder_timer);
648 struct iwl_mvm_baid_data *baid_data =
649 iwl_mvm_baid_data_from_reorder_buf(buf);
650 struct iwl_mvm_reorder_buf_entry *entries =
651 &baid_data->entries[buf->queue * baid_data->entries_per_queue];
652 int i;
653 u16 sn = 0, index = 0;
654 bool expired = false;
655 bool cont = false;
656
657 spin_lock(&buf->lock);
658
659 if (!buf->num_stored || buf->removed) {
660 spin_unlock(&buf->lock);
661 return;
662 }
663
664 for (i = 0; i < buf->buf_size ; i++) {
665 index = (buf->head_sn + i) % buf->buf_size;
666
667 if (skb_queue_empty(&entries[index].e.frames)) {
668 /*
669 * If there is a hole and the next frame didn't expire
670 * we want to break and not advance SN
671 */
672 cont = false;
673 continue;
674 }
675 if (!cont &&
676 !time_after(jiffies, entries[index].e.reorder_time +
677 RX_REORDER_BUF_TIMEOUT_MQ))
678 break;
679
680 expired = true;
681 /* continue until next hole after this expired frames */
682 cont = true;
683 sn = ieee80211_sn_add(buf->head_sn, i + 1);
684 }
685
686 if (expired) {
687 struct ieee80211_sta *sta;
688 struct iwl_mvm_sta *mvmsta;
689 u8 sta_id = baid_data->sta_id;
690
691 rcu_read_lock();
692 sta = rcu_dereference(buf->mvm->fw_id_to_mac_id[sta_id]);
693 mvmsta = iwl_mvm_sta_from_mac80211(sta);
694
695 /* SN is set to the last expired frame + 1 */
696 IWL_DEBUG_HT(buf->mvm,
697 "Releasing expired frames for sta %u, sn %d\n",
698 sta_id, sn);
699 iwl_mvm_event_frame_timeout_callback(buf->mvm, mvmsta->vif,
700 sta, baid_data->tid);
701 iwl_mvm_release_frames(buf->mvm, sta, NULL, baid_data,
702 buf, sn, IWL_MVM_RELEASE_SEND_RSS_SYNC);
703 rcu_read_unlock();
704 } else {
705 /*
706 * If no frame expired and there are stored frames, index is now
707 * pointing to the first unexpired frame - modify timer
708 * accordingly to this frame.
709 */
710 mod_timer(&buf->reorder_timer,
711 entries[index].e.reorder_time +
712 1 + RX_REORDER_BUF_TIMEOUT_MQ);
713 }
714 spin_unlock(&buf->lock);
715 }
716
iwl_mvm_del_ba(struct iwl_mvm * mvm,int queue,struct iwl_mvm_delba_data * data)717 static void iwl_mvm_del_ba(struct iwl_mvm *mvm, int queue,
718 struct iwl_mvm_delba_data *data)
719 {
720 struct iwl_mvm_baid_data *ba_data;
721 struct ieee80211_sta *sta;
722 struct iwl_mvm_reorder_buffer *reorder_buf;
723 u8 baid = data->baid;
724
725 if (WARN_ONCE(baid >= IWL_MAX_BAID, "invalid BAID: %x\n", baid))
726 return;
727
728 rcu_read_lock();
729
730 ba_data = rcu_dereference(mvm->baid_map[baid]);
731 if (WARN_ON_ONCE(!ba_data))
732 goto out;
733
734 sta = rcu_dereference(mvm->fw_id_to_mac_id[ba_data->sta_id]);
735 if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta)))
736 goto out;
737
738 reorder_buf = &ba_data->reorder_buf[queue];
739
740 /* release all frames that are in the reorder buffer to the stack */
741 spin_lock_bh(&reorder_buf->lock);
742 iwl_mvm_release_frames(mvm, sta, NULL, ba_data, reorder_buf,
743 ieee80211_sn_add(reorder_buf->head_sn,
744 reorder_buf->buf_size),
745 0);
746 spin_unlock_bh(&reorder_buf->lock);
747 del_timer_sync(&reorder_buf->reorder_timer);
748
749 out:
750 rcu_read_unlock();
751 }
752
iwl_mvm_release_frames_from_notif(struct iwl_mvm * mvm,struct napi_struct * napi,u8 baid,u16 nssn,int queue,u32 flags)753 static void iwl_mvm_release_frames_from_notif(struct iwl_mvm *mvm,
754 struct napi_struct *napi,
755 u8 baid, u16 nssn, int queue,
756 u32 flags)
757 {
758 struct ieee80211_sta *sta;
759 struct iwl_mvm_reorder_buffer *reorder_buf;
760 struct iwl_mvm_baid_data *ba_data;
761
762 IWL_DEBUG_HT(mvm, "Frame release notification for BAID %u, NSSN %d\n",
763 baid, nssn);
764
765 if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID ||
766 baid >= ARRAY_SIZE(mvm->baid_map)))
767 return;
768
769 rcu_read_lock();
770
771 ba_data = rcu_dereference(mvm->baid_map[baid]);
772 if (WARN_ON_ONCE(!ba_data))
773 goto out;
774
775 sta = rcu_dereference(mvm->fw_id_to_mac_id[ba_data->sta_id]);
776 if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta)))
777 goto out;
778
779 reorder_buf = &ba_data->reorder_buf[queue];
780
781 spin_lock_bh(&reorder_buf->lock);
782 iwl_mvm_release_frames(mvm, sta, napi, ba_data,
783 reorder_buf, nssn, flags);
784 spin_unlock_bh(&reorder_buf->lock);
785
786 out:
787 rcu_read_unlock();
788 }
789
iwl_mvm_nssn_sync(struct iwl_mvm * mvm,struct napi_struct * napi,int queue,const struct iwl_mvm_nssn_sync_data * data)790 static void iwl_mvm_nssn_sync(struct iwl_mvm *mvm,
791 struct napi_struct *napi, int queue,
792 const struct iwl_mvm_nssn_sync_data *data)
793 {
794 iwl_mvm_release_frames_from_notif(mvm, napi, data->baid,
795 data->nssn, queue,
796 IWL_MVM_RELEASE_FROM_RSS_SYNC);
797 }
798
iwl_mvm_rx_queue_notif(struct iwl_mvm * mvm,struct napi_struct * napi,struct iwl_rx_cmd_buffer * rxb,int queue)799 void iwl_mvm_rx_queue_notif(struct iwl_mvm *mvm, struct napi_struct *napi,
800 struct iwl_rx_cmd_buffer *rxb, int queue)
801 {
802 struct iwl_rx_packet *pkt = rxb_addr(rxb);
803 struct iwl_rxq_sync_notification *notif;
804 struct iwl_mvm_internal_rxq_notif *internal_notif;
805
806 notif = (void *)pkt->data;
807 internal_notif = (void *)notif->payload;
808
809 if (internal_notif->sync &&
810 mvm->queue_sync_cookie != internal_notif->cookie) {
811 WARN_ONCE(1, "Received expired RX queue sync message\n");
812 return;
813 }
814
815 switch (internal_notif->type) {
816 case IWL_MVM_RXQ_EMPTY:
817 break;
818 case IWL_MVM_RXQ_NOTIF_DEL_BA:
819 iwl_mvm_del_ba(mvm, queue, (void *)internal_notif->data);
820 break;
821 case IWL_MVM_RXQ_NSSN_SYNC:
822 iwl_mvm_nssn_sync(mvm, napi, queue,
823 (void *)internal_notif->data);
824 break;
825 default:
826 WARN_ONCE(1, "Invalid identifier %d", internal_notif->type);
827 }
828
829 if (internal_notif->sync &&
830 !atomic_dec_return(&mvm->queue_sync_counter))
831 wake_up(&mvm->rx_sync_waitq);
832 }
833
iwl_mvm_oldsn_workaround(struct iwl_mvm * mvm,struct ieee80211_sta * sta,int tid,struct iwl_mvm_reorder_buffer * buffer,u32 reorder,u32 gp2,int queue)834 static void iwl_mvm_oldsn_workaround(struct iwl_mvm *mvm,
835 struct ieee80211_sta *sta, int tid,
836 struct iwl_mvm_reorder_buffer *buffer,
837 u32 reorder, u32 gp2, int queue)
838 {
839 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
840
841 if (gp2 != buffer->consec_oldsn_ampdu_gp2) {
842 /* we have a new (A-)MPDU ... */
843
844 /*
845 * reset counter to 0 if we didn't have any oldsn in
846 * the last A-MPDU (as detected by GP2 being identical)
847 */
848 if (!buffer->consec_oldsn_prev_drop)
849 buffer->consec_oldsn_drops = 0;
850
851 /* either way, update our tracking state */
852 buffer->consec_oldsn_ampdu_gp2 = gp2;
853 } else if (buffer->consec_oldsn_prev_drop) {
854 /*
855 * tracking state didn't change, and we had an old SN
856 * indication before - do nothing in this case, we
857 * already noted this one down and are waiting for the
858 * next A-MPDU (by GP2)
859 */
860 return;
861 }
862
863 /* return unless this MPDU has old SN */
864 if (!(reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN))
865 return;
866
867 /* update state */
868 buffer->consec_oldsn_prev_drop = 1;
869 buffer->consec_oldsn_drops++;
870
871 /* if limit is reached, send del BA and reset state */
872 if (buffer->consec_oldsn_drops == IWL_MVM_AMPDU_CONSEC_DROPS_DELBA) {
873 IWL_WARN(mvm,
874 "reached %d old SN frames from %pM on queue %d, stopping BA session on TID %d\n",
875 IWL_MVM_AMPDU_CONSEC_DROPS_DELBA,
876 sta->addr, queue, tid);
877 ieee80211_stop_rx_ba_session(mvmsta->vif, BIT(tid), sta->addr);
878 buffer->consec_oldsn_prev_drop = 0;
879 buffer->consec_oldsn_drops = 0;
880 }
881 }
882
883 /*
884 * Returns true if the MPDU was buffered\dropped, false if it should be passed
885 * to upper layer.
886 */
iwl_mvm_reorder(struct iwl_mvm * mvm,struct napi_struct * napi,int queue,struct ieee80211_sta * sta,struct sk_buff * skb,struct iwl_rx_mpdu_desc * desc)887 static bool iwl_mvm_reorder(struct iwl_mvm *mvm,
888 struct napi_struct *napi,
889 int queue,
890 struct ieee80211_sta *sta,
891 struct sk_buff *skb,
892 struct iwl_rx_mpdu_desc *desc)
893 {
894 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
895 struct ieee80211_hdr *hdr = iwl_mvm_skb_get_hdr(skb);
896 struct iwl_mvm_sta *mvm_sta;
897 struct iwl_mvm_baid_data *baid_data;
898 struct iwl_mvm_reorder_buffer *buffer;
899 struct sk_buff *tail;
900 u32 reorder = le32_to_cpu(desc->reorder_data);
901 bool amsdu = desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU;
902 bool last_subframe =
903 desc->amsdu_info & IWL_RX_MPDU_AMSDU_LAST_SUBFRAME;
904 u8 tid = ieee80211_get_tid(hdr);
905 u8 sub_frame_idx = desc->amsdu_info &
906 IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK;
907 struct iwl_mvm_reorder_buf_entry *entries;
908 int index;
909 u16 nssn, sn;
910 u8 baid;
911
912 baid = (reorder & IWL_RX_MPDU_REORDER_BAID_MASK) >>
913 IWL_RX_MPDU_REORDER_BAID_SHIFT;
914
915 /*
916 * This also covers the case of receiving a Block Ack Request
917 * outside a BA session; we'll pass it to mac80211 and that
918 * then sends a delBA action frame.
919 * This also covers pure monitor mode, in which case we won't
920 * have any BA sessions.
921 */
922 if (baid == IWL_RX_REORDER_DATA_INVALID_BAID)
923 return false;
924
925 /* no sta yet */
926 if (WARN_ONCE(IS_ERR_OR_NULL(sta),
927 "Got valid BAID without a valid station assigned\n"))
928 return false;
929
930 mvm_sta = iwl_mvm_sta_from_mac80211(sta);
931
932 /* not a data packet or a bar */
933 if (!ieee80211_is_back_req(hdr->frame_control) &&
934 (!ieee80211_is_data_qos(hdr->frame_control) ||
935 is_multicast_ether_addr(hdr->addr1)))
936 return false;
937
938 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
939 return false;
940
941 baid_data = rcu_dereference(mvm->baid_map[baid]);
942 if (!baid_data) {
943 IWL_DEBUG_RX(mvm,
944 "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n",
945 baid, reorder);
946 return false;
947 }
948
949 if (WARN(tid != baid_data->tid || mvm_sta->sta_id != baid_data->sta_id,
950 "baid 0x%x is mapped to sta:%d tid:%d, but was received for sta:%d tid:%d\n",
951 baid, baid_data->sta_id, baid_data->tid, mvm_sta->sta_id,
952 tid))
953 return false;
954
955 nssn = reorder & IWL_RX_MPDU_REORDER_NSSN_MASK;
956 sn = (reorder & IWL_RX_MPDU_REORDER_SN_MASK) >>
957 IWL_RX_MPDU_REORDER_SN_SHIFT;
958
959 buffer = &baid_data->reorder_buf[queue];
960 entries = &baid_data->entries[queue * baid_data->entries_per_queue];
961
962 spin_lock_bh(&buffer->lock);
963
964 if (!buffer->valid) {
965 if (reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN) {
966 spin_unlock_bh(&buffer->lock);
967 return false;
968 }
969 buffer->valid = true;
970 }
971
972 if (ieee80211_is_back_req(hdr->frame_control)) {
973 iwl_mvm_release_frames(mvm, sta, napi, baid_data,
974 buffer, nssn, 0);
975 goto drop;
976 }
977
978 /*
979 * If there was a significant jump in the nssn - adjust.
980 * If the SN is smaller than the NSSN it might need to first go into
981 * the reorder buffer, in which case we just release up to it and the
982 * rest of the function will take care of storing it and releasing up to
983 * the nssn.
984 * This should not happen. This queue has been lagging and it should
985 * have been updated by a IWL_MVM_RXQ_NSSN_SYNC notification. Be nice
986 * and update the other queues.
987 */
988 if (!iwl_mvm_is_sn_less(nssn, buffer->head_sn + buffer->buf_size,
989 buffer->buf_size) ||
990 !ieee80211_sn_less(sn, buffer->head_sn + buffer->buf_size)) {
991 u16 min_sn = ieee80211_sn_less(sn, nssn) ? sn : nssn;
992
993 iwl_mvm_release_frames(mvm, sta, napi, baid_data, buffer,
994 min_sn, IWL_MVM_RELEASE_SEND_RSS_SYNC);
995 }
996
997 iwl_mvm_oldsn_workaround(mvm, sta, tid, buffer, reorder,
998 rx_status->device_timestamp, queue);
999
1000 /* drop any oudated packets */
1001 if (ieee80211_sn_less(sn, buffer->head_sn))
1002 goto drop;
1003
1004 /* release immediately if allowed by nssn and no stored frames */
1005 if (!buffer->num_stored && ieee80211_sn_less(sn, nssn)) {
1006 if (iwl_mvm_is_sn_less(buffer->head_sn, nssn,
1007 buffer->buf_size) &&
1008 (!amsdu || last_subframe)) {
1009 /*
1010 * If we crossed the 2048 or 0 SN, notify all the
1011 * queues. This is done in order to avoid having a
1012 * head_sn that lags behind for too long. When that
1013 * happens, we can get to a situation where the head_sn
1014 * is within the interval [nssn - buf_size : nssn]
1015 * which will make us think that the nssn is a packet
1016 * that we already freed because of the reordering
1017 * buffer and we will ignore it. So maintain the
1018 * head_sn somewhat updated across all the queues:
1019 * when it crosses 0 and 2048.
1020 */
1021 if (sn == 2048 || sn == 0)
1022 iwl_mvm_sync_nssn(mvm, baid, sn);
1023 buffer->head_sn = nssn;
1024 }
1025 /* No need to update AMSDU last SN - we are moving the head */
1026 spin_unlock_bh(&buffer->lock);
1027 return false;
1028 }
1029
1030 /*
1031 * release immediately if there are no stored frames, and the sn is
1032 * equal to the head.
1033 * This can happen due to reorder timer, where NSSN is behind head_sn.
1034 * When we released everything, and we got the next frame in the
1035 * sequence, according to the NSSN we can't release immediately,
1036 * while technically there is no hole and we can move forward.
1037 */
1038 if (!buffer->num_stored && sn == buffer->head_sn) {
1039 if (!amsdu || last_subframe) {
1040 if (sn == 2048 || sn == 0)
1041 iwl_mvm_sync_nssn(mvm, baid, sn);
1042 buffer->head_sn = ieee80211_sn_inc(buffer->head_sn);
1043 }
1044 /* No need to update AMSDU last SN - we are moving the head */
1045 spin_unlock_bh(&buffer->lock);
1046 return false;
1047 }
1048
1049 index = sn % buffer->buf_size;
1050
1051 /*
1052 * Check if we already stored this frame
1053 * As AMSDU is either received or not as whole, logic is simple:
1054 * If we have frames in that position in the buffer and the last frame
1055 * originated from AMSDU had a different SN then it is a retransmission.
1056 * If it is the same SN then if the subframe index is incrementing it
1057 * is the same AMSDU - otherwise it is a retransmission.
1058 */
1059 tail = skb_peek_tail(&entries[index].e.frames);
1060 if (tail && !amsdu)
1061 goto drop;
1062 else if (tail && (sn != buffer->last_amsdu ||
1063 buffer->last_sub_index >= sub_frame_idx))
1064 goto drop;
1065
1066 /* put in reorder buffer */
1067 __skb_queue_tail(&entries[index].e.frames, skb);
1068 buffer->num_stored++;
1069 entries[index].e.reorder_time = jiffies;
1070
1071 if (amsdu) {
1072 buffer->last_amsdu = sn;
1073 buffer->last_sub_index = sub_frame_idx;
1074 }
1075
1076 /*
1077 * We cannot trust NSSN for AMSDU sub-frames that are not the last.
1078 * The reason is that NSSN advances on the first sub-frame, and may
1079 * cause the reorder buffer to advance before all the sub-frames arrive.
1080 * Example: reorder buffer contains SN 0 & 2, and we receive AMSDU with
1081 * SN 1. NSSN for first sub frame will be 3 with the result of driver
1082 * releasing SN 0,1, 2. When sub-frame 1 arrives - reorder buffer is
1083 * already ahead and it will be dropped.
1084 * If the last sub-frame is not on this queue - we will get frame
1085 * release notification with up to date NSSN.
1086 */
1087 if (!amsdu || last_subframe)
1088 iwl_mvm_release_frames(mvm, sta, napi, baid_data,
1089 buffer, nssn,
1090 IWL_MVM_RELEASE_SEND_RSS_SYNC);
1091
1092 spin_unlock_bh(&buffer->lock);
1093 return true;
1094
1095 drop:
1096 kfree_skb(skb);
1097 spin_unlock_bh(&buffer->lock);
1098 return true;
1099 }
1100
iwl_mvm_agg_rx_received(struct iwl_mvm * mvm,u32 reorder_data,u8 baid)1101 static void iwl_mvm_agg_rx_received(struct iwl_mvm *mvm,
1102 u32 reorder_data, u8 baid)
1103 {
1104 unsigned long now = jiffies;
1105 unsigned long timeout;
1106 struct iwl_mvm_baid_data *data;
1107
1108 rcu_read_lock();
1109
1110 data = rcu_dereference(mvm->baid_map[baid]);
1111 if (!data) {
1112 IWL_DEBUG_RX(mvm,
1113 "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n",
1114 baid, reorder_data);
1115 goto out;
1116 }
1117
1118 if (!data->timeout)
1119 goto out;
1120
1121 timeout = data->timeout;
1122 /*
1123 * Do not update last rx all the time to avoid cache bouncing
1124 * between the rx queues.
1125 * Update it every timeout. Worst case is the session will
1126 * expire after ~ 2 * timeout, which doesn't matter that much.
1127 */
1128 if (time_before(data->last_rx + TU_TO_JIFFIES(timeout), now))
1129 /* Update is atomic */
1130 data->last_rx = now;
1131
1132 out:
1133 rcu_read_unlock();
1134 }
1135
iwl_mvm_flip_address(u8 * addr)1136 static void iwl_mvm_flip_address(u8 *addr)
1137 {
1138 int i;
1139 u8 mac_addr[ETH_ALEN];
1140
1141 for (i = 0; i < ETH_ALEN; i++)
1142 mac_addr[i] = addr[ETH_ALEN - i - 1];
1143 ether_addr_copy(addr, mac_addr);
1144 }
1145
1146 struct iwl_mvm_rx_phy_data {
1147 enum iwl_rx_phy_info_type info_type;
1148 __le32 d0, d1, d2, d3;
1149 __le16 d4;
1150 };
1151
iwl_mvm_decode_he_mu_ext(struct iwl_mvm * mvm,struct iwl_mvm_rx_phy_data * phy_data,u32 rate_n_flags,struct ieee80211_radiotap_he_mu * he_mu)1152 static void iwl_mvm_decode_he_mu_ext(struct iwl_mvm *mvm,
1153 struct iwl_mvm_rx_phy_data *phy_data,
1154 u32 rate_n_flags,
1155 struct ieee80211_radiotap_he_mu *he_mu)
1156 {
1157 u32 phy_data2 = le32_to_cpu(phy_data->d2);
1158 u32 phy_data3 = le32_to_cpu(phy_data->d3);
1159 u16 phy_data4 = le16_to_cpu(phy_data->d4);
1160
1161 if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CRC_OK, phy_data4)) {
1162 he_mu->flags1 |=
1163 cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_RU_KNOWN |
1164 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU_KNOWN);
1165
1166 he_mu->flags1 |=
1167 le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CTR_RU,
1168 phy_data4),
1169 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU);
1170
1171 he_mu->ru_ch1[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU0,
1172 phy_data2);
1173 he_mu->ru_ch1[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU1,
1174 phy_data3);
1175 he_mu->ru_ch1[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU2,
1176 phy_data2);
1177 he_mu->ru_ch1[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU3,
1178 phy_data3);
1179 }
1180
1181 if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CRC_OK, phy_data4) &&
1182 (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) != RATE_MCS_CHAN_WIDTH_20) {
1183 he_mu->flags1 |=
1184 cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_RU_KNOWN |
1185 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_CTR_26T_RU_KNOWN);
1186
1187 he_mu->flags2 |=
1188 le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CTR_RU,
1189 phy_data4),
1190 IEEE80211_RADIOTAP_HE_MU_FLAGS2_CH2_CTR_26T_RU);
1191
1192 he_mu->ru_ch2[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU0,
1193 phy_data2);
1194 he_mu->ru_ch2[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU1,
1195 phy_data3);
1196 he_mu->ru_ch2[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU2,
1197 phy_data2);
1198 he_mu->ru_ch2[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU3,
1199 phy_data3);
1200 }
1201 }
1202
1203 static void
iwl_mvm_decode_he_phy_ru_alloc(struct iwl_mvm_rx_phy_data * phy_data,u32 rate_n_flags,struct ieee80211_radiotap_he * he,struct ieee80211_radiotap_he_mu * he_mu,struct ieee80211_rx_status * rx_status)1204 iwl_mvm_decode_he_phy_ru_alloc(struct iwl_mvm_rx_phy_data *phy_data,
1205 u32 rate_n_flags,
1206 struct ieee80211_radiotap_he *he,
1207 struct ieee80211_radiotap_he_mu *he_mu,
1208 struct ieee80211_rx_status *rx_status)
1209 {
1210 /*
1211 * Unfortunately, we have to leave the mac80211 data
1212 * incorrect for the case that we receive an HE-MU
1213 * transmission and *don't* have the HE phy data (due
1214 * to the bits being used for TSF). This shouldn't
1215 * happen though as management frames where we need
1216 * the TSF/timers are not be transmitted in HE-MU.
1217 */
1218 u8 ru = le32_get_bits(phy_data->d1, IWL_RX_PHY_DATA1_HE_RU_ALLOC_MASK);
1219 u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK;
1220 u8 offs = 0;
1221
1222 rx_status->bw = RATE_INFO_BW_HE_RU;
1223
1224 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN);
1225
1226 switch (ru) {
1227 case 0 ... 36:
1228 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_26;
1229 offs = ru;
1230 break;
1231 case 37 ... 52:
1232 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_52;
1233 offs = ru - 37;
1234 break;
1235 case 53 ... 60:
1236 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106;
1237 offs = ru - 53;
1238 break;
1239 case 61 ... 64:
1240 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_242;
1241 offs = ru - 61;
1242 break;
1243 case 65 ... 66:
1244 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_484;
1245 offs = ru - 65;
1246 break;
1247 case 67:
1248 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_996;
1249 break;
1250 case 68:
1251 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_2x996;
1252 break;
1253 }
1254 he->data2 |= le16_encode_bits(offs,
1255 IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET);
1256 he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_KNOWN |
1257 IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET_KNOWN);
1258 if (phy_data->d1 & cpu_to_le32(IWL_RX_PHY_DATA1_HE_RU_ALLOC_SEC80))
1259 he->data2 |=
1260 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_SEC);
1261
1262 #define CHECK_BW(bw) \
1263 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_ ## bw ## MHZ != \
1264 RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS); \
1265 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_ ## bw ## MHZ != \
1266 RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS)
1267 CHECK_BW(20);
1268 CHECK_BW(40);
1269 CHECK_BW(80);
1270 CHECK_BW(160);
1271
1272 if (he_mu)
1273 he_mu->flags2 |=
1274 le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK,
1275 rate_n_flags),
1276 IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW);
1277 else if (he_type == RATE_MCS_HE_TYPE_TRIG)
1278 he->data6 |=
1279 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_KNOWN) |
1280 le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK,
1281 rate_n_flags),
1282 IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW);
1283 }
1284
iwl_mvm_decode_he_phy_data(struct iwl_mvm * mvm,struct iwl_mvm_rx_phy_data * phy_data,struct ieee80211_radiotap_he * he,struct ieee80211_radiotap_he_mu * he_mu,struct ieee80211_rx_status * rx_status,u32 rate_n_flags,int queue)1285 static void iwl_mvm_decode_he_phy_data(struct iwl_mvm *mvm,
1286 struct iwl_mvm_rx_phy_data *phy_data,
1287 struct ieee80211_radiotap_he *he,
1288 struct ieee80211_radiotap_he_mu *he_mu,
1289 struct ieee80211_rx_status *rx_status,
1290 u32 rate_n_flags, int queue)
1291 {
1292 switch (phy_data->info_type) {
1293 case IWL_RX_PHY_INFO_TYPE_NONE:
1294 case IWL_RX_PHY_INFO_TYPE_CCK:
1295 case IWL_RX_PHY_INFO_TYPE_OFDM_LGCY:
1296 case IWL_RX_PHY_INFO_TYPE_HT:
1297 case IWL_RX_PHY_INFO_TYPE_VHT_SU:
1298 case IWL_RX_PHY_INFO_TYPE_VHT_MU:
1299 return;
1300 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
1301 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN |
1302 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE2_KNOWN |
1303 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE3_KNOWN |
1304 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE4_KNOWN);
1305 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1306 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE1),
1307 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE1);
1308 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1309 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE2),
1310 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE2);
1311 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1312 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE3),
1313 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE3);
1314 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1315 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE4),
1316 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE4);
1317 /* fall through */
1318 case IWL_RX_PHY_INFO_TYPE_HE_SU:
1319 case IWL_RX_PHY_INFO_TYPE_HE_MU:
1320 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1321 case IWL_RX_PHY_INFO_TYPE_HE_TB:
1322 /* HE common */
1323 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_LDPC_XSYMSEG_KNOWN |
1324 IEEE80211_RADIOTAP_HE_DATA1_DOPPLER_KNOWN |
1325 IEEE80211_RADIOTAP_HE_DATA1_BSS_COLOR_KNOWN);
1326 he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRE_FEC_PAD_KNOWN |
1327 IEEE80211_RADIOTAP_HE_DATA2_PE_DISAMBIG_KNOWN |
1328 IEEE80211_RADIOTAP_HE_DATA2_TXOP_KNOWN |
1329 IEEE80211_RADIOTAP_HE_DATA2_NUM_LTF_SYMS_KNOWN);
1330 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1331 IWL_RX_PHY_DATA0_HE_BSS_COLOR_MASK),
1332 IEEE80211_RADIOTAP_HE_DATA3_BSS_COLOR);
1333 if (phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB &&
1334 phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB_EXT) {
1335 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_UL_DL_KNOWN);
1336 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1337 IWL_RX_PHY_DATA0_HE_UPLINK),
1338 IEEE80211_RADIOTAP_HE_DATA3_UL_DL);
1339 }
1340 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1341 IWL_RX_PHY_DATA0_HE_LDPC_EXT_SYM),
1342 IEEE80211_RADIOTAP_HE_DATA3_LDPC_XSYMSEG);
1343 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1344 IWL_RX_PHY_DATA0_HE_PRE_FEC_PAD_MASK),
1345 IEEE80211_RADIOTAP_HE_DATA5_PRE_FEC_PAD);
1346 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1347 IWL_RX_PHY_DATA0_HE_PE_DISAMBIG),
1348 IEEE80211_RADIOTAP_HE_DATA5_PE_DISAMBIG);
1349 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d1,
1350 IWL_RX_PHY_DATA1_HE_LTF_NUM_MASK),
1351 IEEE80211_RADIOTAP_HE_DATA5_NUM_LTF_SYMS);
1352 he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1353 IWL_RX_PHY_DATA0_HE_TXOP_DUR_MASK),
1354 IEEE80211_RADIOTAP_HE_DATA6_TXOP);
1355 he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1356 IWL_RX_PHY_DATA0_HE_DOPPLER),
1357 IEEE80211_RADIOTAP_HE_DATA6_DOPPLER);
1358 break;
1359 }
1360
1361 switch (phy_data->info_type) {
1362 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1363 case IWL_RX_PHY_INFO_TYPE_HE_MU:
1364 case IWL_RX_PHY_INFO_TYPE_HE_SU:
1365 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN);
1366 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1367 IWL_RX_PHY_DATA0_HE_SPATIAL_REUSE_MASK),
1368 IEEE80211_RADIOTAP_HE_DATA4_SU_MU_SPTL_REUSE);
1369 break;
1370 default:
1371 /* nothing here */
1372 break;
1373 }
1374
1375 switch (phy_data->info_type) {
1376 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1377 he_mu->flags1 |=
1378 le16_encode_bits(le16_get_bits(phy_data->d4,
1379 IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_DCM),
1380 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM);
1381 he_mu->flags1 |=
1382 le16_encode_bits(le16_get_bits(phy_data->d4,
1383 IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_MCS_MASK),
1384 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS);
1385 he_mu->flags2 |=
1386 le16_encode_bits(le16_get_bits(phy_data->d4,
1387 IWL_RX_PHY_DATA4_HE_MU_EXT_PREAMBLE_PUNC_TYPE_MASK),
1388 IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW);
1389 iwl_mvm_decode_he_mu_ext(mvm, phy_data, rate_n_flags, he_mu);
1390 /* fall through */
1391 case IWL_RX_PHY_INFO_TYPE_HE_MU:
1392 he_mu->flags2 |=
1393 le16_encode_bits(le32_get_bits(phy_data->d1,
1394 IWL_RX_PHY_DATA1_HE_MU_SIBG_SYM_OR_USER_NUM_MASK),
1395 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_SYMS_USERS);
1396 he_mu->flags2 |=
1397 le16_encode_bits(le32_get_bits(phy_data->d1,
1398 IWL_RX_PHY_DATA1_HE_MU_SIGB_COMPRESSION),
1399 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_COMP);
1400 /* fall through */
1401 case IWL_RX_PHY_INFO_TYPE_HE_TB:
1402 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
1403 iwl_mvm_decode_he_phy_ru_alloc(phy_data, rate_n_flags,
1404 he, he_mu, rx_status);
1405 break;
1406 case IWL_RX_PHY_INFO_TYPE_HE_SU:
1407 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BEAM_CHANGE_KNOWN);
1408 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1409 IWL_RX_PHY_DATA0_HE_BEAM_CHNG),
1410 IEEE80211_RADIOTAP_HE_DATA3_BEAM_CHANGE);
1411 break;
1412 default:
1413 /* nothing */
1414 break;
1415 }
1416 }
1417
iwl_mvm_rx_he(struct iwl_mvm * mvm,struct sk_buff * skb,struct iwl_mvm_rx_phy_data * phy_data,u32 rate_n_flags,u16 phy_info,int queue)1418 static void iwl_mvm_rx_he(struct iwl_mvm *mvm, struct sk_buff *skb,
1419 struct iwl_mvm_rx_phy_data *phy_data,
1420 u32 rate_n_flags, u16 phy_info, int queue)
1421 {
1422 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
1423 struct ieee80211_radiotap_he *he = NULL;
1424 struct ieee80211_radiotap_he_mu *he_mu = NULL;
1425 u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK;
1426 u8 stbc, ltf;
1427 static const struct ieee80211_radiotap_he known = {
1428 .data1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_DATA_MCS_KNOWN |
1429 IEEE80211_RADIOTAP_HE_DATA1_DATA_DCM_KNOWN |
1430 IEEE80211_RADIOTAP_HE_DATA1_STBC_KNOWN |
1431 IEEE80211_RADIOTAP_HE_DATA1_CODING_KNOWN),
1432 .data2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_GI_KNOWN |
1433 IEEE80211_RADIOTAP_HE_DATA2_TXBF_KNOWN),
1434 };
1435 static const struct ieee80211_radiotap_he_mu mu_known = {
1436 .flags1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS_KNOWN |
1437 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM_KNOWN |
1438 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_SYMS_USERS_KNOWN |
1439 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_COMP_KNOWN),
1440 .flags2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW_KNOWN |
1441 IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_KNOWN),
1442 };
1443
1444 he = skb_put_data(skb, &known, sizeof(known));
1445 rx_status->flag |= RX_FLAG_RADIOTAP_HE;
1446
1447 if (phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU ||
1448 phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU_EXT) {
1449 he_mu = skb_put_data(skb, &mu_known, sizeof(mu_known));
1450 rx_status->flag |= RX_FLAG_RADIOTAP_HE_MU;
1451 }
1452
1453 /* report the AMPDU-EOF bit on single frames */
1454 if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
1455 rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
1456 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
1457 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF))
1458 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
1459 }
1460
1461 if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
1462 iwl_mvm_decode_he_phy_data(mvm, phy_data, he, he_mu, rx_status,
1463 rate_n_flags, queue);
1464
1465 /* update aggregation data for monitor sake on default queue */
1466 if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) &&
1467 (phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
1468 bool toggle_bit = phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE;
1469
1470 /* toggle is switched whenever new aggregation starts */
1471 if (toggle_bit != mvm->ampdu_toggle) {
1472 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
1473 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF))
1474 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
1475 }
1476 }
1477
1478 if (he_type == RATE_MCS_HE_TYPE_EXT_SU &&
1479 rate_n_flags & RATE_MCS_HE_106T_MSK) {
1480 rx_status->bw = RATE_INFO_BW_HE_RU;
1481 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106;
1482 }
1483
1484 /* actually data is filled in mac80211 */
1485 if (he_type == RATE_MCS_HE_TYPE_SU ||
1486 he_type == RATE_MCS_HE_TYPE_EXT_SU)
1487 he->data1 |=
1488 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN);
1489
1490 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >> RATE_MCS_STBC_POS;
1491 rx_status->nss =
1492 ((rate_n_flags & RATE_VHT_MCS_NSS_MSK) >>
1493 RATE_VHT_MCS_NSS_POS) + 1;
1494 rx_status->rate_idx = rate_n_flags & RATE_VHT_MCS_RATE_CODE_MSK;
1495 rx_status->encoding = RX_ENC_HE;
1496 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
1497 if (rate_n_flags & RATE_MCS_BF_MSK)
1498 rx_status->enc_flags |= RX_ENC_FLAG_BF;
1499
1500 rx_status->he_dcm =
1501 !!(rate_n_flags & RATE_HE_DUAL_CARRIER_MODE_MSK);
1502
1503 #define CHECK_TYPE(F) \
1504 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F != \
1505 (RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS))
1506
1507 CHECK_TYPE(SU);
1508 CHECK_TYPE(EXT_SU);
1509 CHECK_TYPE(MU);
1510 CHECK_TYPE(TRIG);
1511
1512 he->data1 |= cpu_to_le16(he_type >> RATE_MCS_HE_TYPE_POS);
1513
1514 if (rate_n_flags & RATE_MCS_BF_MSK)
1515 he->data5 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA5_TXBF);
1516
1517 switch ((rate_n_flags & RATE_MCS_HE_GI_LTF_MSK) >>
1518 RATE_MCS_HE_GI_LTF_POS) {
1519 case 0:
1520 if (he_type == RATE_MCS_HE_TYPE_TRIG)
1521 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
1522 else
1523 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
1524 if (he_type == RATE_MCS_HE_TYPE_MU)
1525 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1526 else
1527 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X;
1528 break;
1529 case 1:
1530 if (he_type == RATE_MCS_HE_TYPE_TRIG)
1531 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
1532 else
1533 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
1534 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
1535 break;
1536 case 2:
1537 if (he_type == RATE_MCS_HE_TYPE_TRIG) {
1538 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2;
1539 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1540 } else {
1541 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
1542 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
1543 }
1544 break;
1545 case 3:
1546 if ((he_type == RATE_MCS_HE_TYPE_SU ||
1547 he_type == RATE_MCS_HE_TYPE_EXT_SU) &&
1548 rate_n_flags & RATE_MCS_SGI_MSK)
1549 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
1550 else
1551 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2;
1552 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1553 break;
1554 }
1555
1556 he->data5 |= le16_encode_bits(ltf,
1557 IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE);
1558 }
1559
iwl_mvm_decode_lsig(struct sk_buff * skb,struct iwl_mvm_rx_phy_data * phy_data)1560 static void iwl_mvm_decode_lsig(struct sk_buff *skb,
1561 struct iwl_mvm_rx_phy_data *phy_data)
1562 {
1563 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
1564 struct ieee80211_radiotap_lsig *lsig;
1565
1566 switch (phy_data->info_type) {
1567 case IWL_RX_PHY_INFO_TYPE_HT:
1568 case IWL_RX_PHY_INFO_TYPE_VHT_SU:
1569 case IWL_RX_PHY_INFO_TYPE_VHT_MU:
1570 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
1571 case IWL_RX_PHY_INFO_TYPE_HE_SU:
1572 case IWL_RX_PHY_INFO_TYPE_HE_MU:
1573 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1574 case IWL_RX_PHY_INFO_TYPE_HE_TB:
1575 lsig = skb_put(skb, sizeof(*lsig));
1576 lsig->data1 = cpu_to_le16(IEEE80211_RADIOTAP_LSIG_DATA1_LENGTH_KNOWN);
1577 lsig->data2 = le16_encode_bits(le32_get_bits(phy_data->d1,
1578 IWL_RX_PHY_DATA1_LSIG_LEN_MASK),
1579 IEEE80211_RADIOTAP_LSIG_DATA2_LENGTH);
1580 rx_status->flag |= RX_FLAG_RADIOTAP_LSIG;
1581 break;
1582 default:
1583 break;
1584 }
1585 }
1586
iwl_mvm_nl80211_band_from_rx_msdu(u8 phy_band)1587 static inline u8 iwl_mvm_nl80211_band_from_rx_msdu(u8 phy_band)
1588 {
1589 switch (phy_band) {
1590 case PHY_BAND_24:
1591 return NL80211_BAND_2GHZ;
1592 case PHY_BAND_5:
1593 return NL80211_BAND_5GHZ;
1594 default:
1595 WARN_ONCE(1, "Unsupported phy band (%u)\n", phy_band);
1596 return NL80211_BAND_5GHZ;
1597 }
1598 }
1599
iwl_mvm_rx_mpdu_mq(struct iwl_mvm * mvm,struct napi_struct * napi,struct iwl_rx_cmd_buffer * rxb,int queue)1600 void iwl_mvm_rx_mpdu_mq(struct iwl_mvm *mvm, struct napi_struct *napi,
1601 struct iwl_rx_cmd_buffer *rxb, int queue)
1602 {
1603 struct ieee80211_rx_status *rx_status;
1604 struct iwl_rx_packet *pkt = rxb_addr(rxb);
1605 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
1606 struct ieee80211_hdr *hdr;
1607 u32 len = le16_to_cpu(desc->mpdu_len);
1608 u32 rate_n_flags, gp2_on_air_rise;
1609 u16 phy_info = le16_to_cpu(desc->phy_info);
1610 struct ieee80211_sta *sta = NULL;
1611 struct sk_buff *skb;
1612 u8 crypt_len = 0, channel, energy_a, energy_b;
1613 size_t desc_size;
1614 struct iwl_mvm_rx_phy_data phy_data = {
1615 .d4 = desc->phy_data4,
1616 .info_type = IWL_RX_PHY_INFO_TYPE_NONE,
1617 };
1618 bool csi = false;
1619
1620 if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status)))
1621 return;
1622
1623 if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
1624 rate_n_flags = le32_to_cpu(desc->v3.rate_n_flags);
1625 channel = desc->v3.channel;
1626 gp2_on_air_rise = le32_to_cpu(desc->v3.gp2_on_air_rise);
1627 energy_a = desc->v3.energy_a;
1628 energy_b = desc->v3.energy_b;
1629 desc_size = sizeof(*desc);
1630
1631 phy_data.d0 = desc->v3.phy_data0;
1632 phy_data.d1 = desc->v3.phy_data1;
1633 phy_data.d2 = desc->v3.phy_data2;
1634 phy_data.d3 = desc->v3.phy_data3;
1635 } else {
1636 rate_n_flags = le32_to_cpu(desc->v1.rate_n_flags);
1637 channel = desc->v1.channel;
1638 gp2_on_air_rise = le32_to_cpu(desc->v1.gp2_on_air_rise);
1639 energy_a = desc->v1.energy_a;
1640 energy_b = desc->v1.energy_b;
1641 desc_size = IWL_RX_DESC_SIZE_V1;
1642
1643 phy_data.d0 = desc->v1.phy_data0;
1644 phy_data.d1 = desc->v1.phy_data1;
1645 phy_data.d2 = desc->v1.phy_data2;
1646 phy_data.d3 = desc->v1.phy_data3;
1647 }
1648
1649 if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
1650 phy_data.info_type =
1651 le32_get_bits(phy_data.d1,
1652 IWL_RX_PHY_DATA1_INFO_TYPE_MASK);
1653
1654 hdr = (void *)(pkt->data + desc_size);
1655 /* Dont use dev_alloc_skb(), we'll have enough headroom once
1656 * ieee80211_hdr pulled.
1657 */
1658 skb = alloc_skb(128, GFP_ATOMIC);
1659 if (!skb) {
1660 IWL_ERR(mvm, "alloc_skb failed\n");
1661 return;
1662 }
1663
1664 if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) {
1665 /*
1666 * If the device inserted padding it means that (it thought)
1667 * the 802.11 header wasn't a multiple of 4 bytes long. In
1668 * this case, reserve two bytes at the start of the SKB to
1669 * align the payload properly in case we end up copying it.
1670 */
1671 skb_reserve(skb, 2);
1672 }
1673
1674 rx_status = IEEE80211_SKB_RXCB(skb);
1675
1676 /* This may be overridden by iwl_mvm_rx_he() to HE_RU */
1677 switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) {
1678 case RATE_MCS_CHAN_WIDTH_20:
1679 break;
1680 case RATE_MCS_CHAN_WIDTH_40:
1681 rx_status->bw = RATE_INFO_BW_40;
1682 break;
1683 case RATE_MCS_CHAN_WIDTH_80:
1684 rx_status->bw = RATE_INFO_BW_80;
1685 break;
1686 case RATE_MCS_CHAN_WIDTH_160:
1687 rx_status->bw = RATE_INFO_BW_160;
1688 break;
1689 }
1690
1691 if (rate_n_flags & RATE_MCS_HE_MSK)
1692 iwl_mvm_rx_he(mvm, skb, &phy_data, rate_n_flags,
1693 phy_info, queue);
1694
1695 iwl_mvm_decode_lsig(skb, &phy_data);
1696
1697 rx_status = IEEE80211_SKB_RXCB(skb);
1698
1699 if (iwl_mvm_rx_crypto(mvm, hdr, rx_status, phy_info, desc,
1700 le32_to_cpu(pkt->len_n_flags), queue,
1701 &crypt_len)) {
1702 kfree_skb(skb);
1703 return;
1704 }
1705
1706 /*
1707 * Keep packets with CRC errors (and with overrun) for monitor mode
1708 * (otherwise the firmware discards them) but mark them as bad.
1709 */
1710 if (!(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_CRC_OK)) ||
1711 !(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_OVERRUN_OK))) {
1712 IWL_DEBUG_RX(mvm, "Bad CRC or FIFO: 0x%08X.\n",
1713 le32_to_cpu(desc->status));
1714 rx_status->flag |= RX_FLAG_FAILED_FCS_CRC;
1715 }
1716 /* set the preamble flag if appropriate */
1717 if (rate_n_flags & RATE_MCS_CCK_MSK &&
1718 phy_info & IWL_RX_MPDU_PHY_SHORT_PREAMBLE)
1719 rx_status->enc_flags |= RX_ENC_FLAG_SHORTPRE;
1720
1721 if (likely(!(phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD))) {
1722 u64 tsf_on_air_rise;
1723
1724 if (mvm->trans->trans_cfg->device_family >=
1725 IWL_DEVICE_FAMILY_AX210)
1726 tsf_on_air_rise = le64_to_cpu(desc->v3.tsf_on_air_rise);
1727 else
1728 tsf_on_air_rise = le64_to_cpu(desc->v1.tsf_on_air_rise);
1729
1730 rx_status->mactime = tsf_on_air_rise;
1731 /* TSF as indicated by the firmware is at INA time */
1732 rx_status->flag |= RX_FLAG_MACTIME_PLCP_START;
1733 }
1734
1735 rx_status->device_timestamp = gp2_on_air_rise;
1736 if (iwl_mvm_is_band_in_rx_supported(mvm)) {
1737 u8 band = BAND_IN_RX_STATUS(desc->mac_phy_idx);
1738
1739 rx_status->band = iwl_mvm_nl80211_band_from_rx_msdu(band);
1740 } else {
1741 rx_status->band = channel > 14 ? NL80211_BAND_5GHZ :
1742 NL80211_BAND_2GHZ;
1743 }
1744 rx_status->freq = ieee80211_channel_to_frequency(channel,
1745 rx_status->band);
1746 iwl_mvm_get_signal_strength(mvm, rx_status, rate_n_flags, energy_a,
1747 energy_b);
1748
1749 /* update aggregation data for monitor sake on default queue */
1750 if (!queue && (phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
1751 bool toggle_bit = phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE;
1752
1753 rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
1754 /*
1755 * Toggle is switched whenever new aggregation starts. Make
1756 * sure ampdu_reference is never 0 so we can later use it to
1757 * see if the frame was really part of an A-MPDU or not.
1758 */
1759 if (toggle_bit != mvm->ampdu_toggle) {
1760 mvm->ampdu_ref++;
1761 if (mvm->ampdu_ref == 0)
1762 mvm->ampdu_ref++;
1763 mvm->ampdu_toggle = toggle_bit;
1764 }
1765 rx_status->ampdu_reference = mvm->ampdu_ref;
1766 }
1767
1768 if (unlikely(mvm->monitor_on))
1769 iwl_mvm_add_rtap_sniffer_config(mvm, skb);
1770
1771 rcu_read_lock();
1772
1773 if (desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_SRC_STA_FOUND)) {
1774 u8 id = le32_get_bits(desc->status, IWL_RX_MPDU_STATUS_STA_ID);
1775
1776 if (!WARN_ON_ONCE(id >= mvm->fw->ucode_capa.num_stations)) {
1777 sta = rcu_dereference(mvm->fw_id_to_mac_id[id]);
1778 if (IS_ERR(sta))
1779 sta = NULL;
1780 }
1781 } else if (!is_multicast_ether_addr(hdr->addr2)) {
1782 /*
1783 * This is fine since we prevent two stations with the same
1784 * address from being added.
1785 */
1786 sta = ieee80211_find_sta_by_ifaddr(mvm->hw, hdr->addr2, NULL);
1787 }
1788
1789 if (sta) {
1790 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
1791 struct ieee80211_vif *tx_blocked_vif =
1792 rcu_dereference(mvm->csa_tx_blocked_vif);
1793 u8 baid = (u8)((le32_to_cpu(desc->reorder_data) &
1794 IWL_RX_MPDU_REORDER_BAID_MASK) >>
1795 IWL_RX_MPDU_REORDER_BAID_SHIFT);
1796 struct iwl_fw_dbg_trigger_tlv *trig;
1797 struct ieee80211_vif *vif = mvmsta->vif;
1798
1799 if (!mvm->tcm.paused && len >= sizeof(*hdr) &&
1800 !is_multicast_ether_addr(hdr->addr1) &&
1801 ieee80211_is_data(hdr->frame_control) &&
1802 time_after(jiffies, mvm->tcm.ts + MVM_TCM_PERIOD))
1803 schedule_delayed_work(&mvm->tcm.work, 0);
1804
1805 /*
1806 * We have tx blocked stations (with CS bit). If we heard
1807 * frames from a blocked station on a new channel we can
1808 * TX to it again.
1809 */
1810 if (unlikely(tx_blocked_vif) && tx_blocked_vif == vif) {
1811 struct iwl_mvm_vif *mvmvif =
1812 iwl_mvm_vif_from_mac80211(tx_blocked_vif);
1813
1814 if (mvmvif->csa_target_freq == rx_status->freq)
1815 iwl_mvm_sta_modify_disable_tx_ap(mvm, sta,
1816 false);
1817 }
1818
1819 rs_update_last_rssi(mvm, mvmsta, rx_status);
1820
1821 trig = iwl_fw_dbg_trigger_on(&mvm->fwrt,
1822 ieee80211_vif_to_wdev(vif),
1823 FW_DBG_TRIGGER_RSSI);
1824
1825 if (trig && ieee80211_is_beacon(hdr->frame_control)) {
1826 struct iwl_fw_dbg_trigger_low_rssi *rssi_trig;
1827 s32 rssi;
1828
1829 rssi_trig = (void *)trig->data;
1830 rssi = le32_to_cpu(rssi_trig->rssi);
1831
1832 if (rx_status->signal < rssi)
1833 iwl_fw_dbg_collect_trig(&mvm->fwrt, trig,
1834 NULL);
1835 }
1836
1837 if (ieee80211_is_data(hdr->frame_control))
1838 iwl_mvm_rx_csum(mvm, sta, skb, pkt);
1839
1840 if (iwl_mvm_is_dup(sta, queue, rx_status, hdr, desc)) {
1841 kfree_skb(skb);
1842 goto out;
1843 }
1844
1845 /*
1846 * Our hardware de-aggregates AMSDUs but copies the mac header
1847 * as it to the de-aggregated MPDUs. We need to turn off the
1848 * AMSDU bit in the QoS control ourselves.
1849 * In addition, HW reverses addr3 and addr4 - reverse it back.
1850 */
1851 if ((desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) &&
1852 !WARN_ON(!ieee80211_is_data_qos(hdr->frame_control))) {
1853 u8 *qc = ieee80211_get_qos_ctl(hdr);
1854
1855 *qc &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT;
1856
1857 if (mvm->trans->trans_cfg->device_family ==
1858 IWL_DEVICE_FAMILY_9000) {
1859 iwl_mvm_flip_address(hdr->addr3);
1860
1861 if (ieee80211_has_a4(hdr->frame_control))
1862 iwl_mvm_flip_address(hdr->addr4);
1863 }
1864 }
1865 if (baid != IWL_RX_REORDER_DATA_INVALID_BAID) {
1866 u32 reorder_data = le32_to_cpu(desc->reorder_data);
1867
1868 iwl_mvm_agg_rx_received(mvm, reorder_data, baid);
1869 }
1870 }
1871
1872 if (!(rate_n_flags & RATE_MCS_CCK_MSK) &&
1873 rate_n_flags & RATE_MCS_SGI_MSK)
1874 rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
1875 if (rate_n_flags & RATE_HT_MCS_GF_MSK)
1876 rx_status->enc_flags |= RX_ENC_FLAG_HT_GF;
1877 if (rate_n_flags & RATE_MCS_LDPC_MSK)
1878 rx_status->enc_flags |= RX_ENC_FLAG_LDPC;
1879 if (rate_n_flags & RATE_MCS_HT_MSK) {
1880 u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >>
1881 RATE_MCS_STBC_POS;
1882 rx_status->encoding = RX_ENC_HT;
1883 rx_status->rate_idx = rate_n_flags & RATE_HT_MCS_INDEX_MSK;
1884 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
1885 } else if (rate_n_flags & RATE_MCS_VHT_MSK) {
1886 u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >>
1887 RATE_MCS_STBC_POS;
1888 rx_status->nss =
1889 ((rate_n_flags & RATE_VHT_MCS_NSS_MSK) >>
1890 RATE_VHT_MCS_NSS_POS) + 1;
1891 rx_status->rate_idx = rate_n_flags & RATE_VHT_MCS_RATE_CODE_MSK;
1892 rx_status->encoding = RX_ENC_VHT;
1893 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
1894 if (rate_n_flags & RATE_MCS_BF_MSK)
1895 rx_status->enc_flags |= RX_ENC_FLAG_BF;
1896 } else if (!(rate_n_flags & RATE_MCS_HE_MSK)) {
1897 int rate = iwl_mvm_legacy_rate_to_mac80211_idx(rate_n_flags,
1898 rx_status->band);
1899
1900 if (WARN(rate < 0 || rate > 0xFF,
1901 "Invalid rate flags 0x%x, band %d,\n",
1902 rate_n_flags, rx_status->band)) {
1903 kfree_skb(skb);
1904 goto out;
1905 }
1906 rx_status->rate_idx = rate;
1907 }
1908
1909 /* management stuff on default queue */
1910 if (!queue) {
1911 if (unlikely((ieee80211_is_beacon(hdr->frame_control) ||
1912 ieee80211_is_probe_resp(hdr->frame_control)) &&
1913 mvm->sched_scan_pass_all ==
1914 SCHED_SCAN_PASS_ALL_ENABLED))
1915 mvm->sched_scan_pass_all = SCHED_SCAN_PASS_ALL_FOUND;
1916
1917 if (unlikely(ieee80211_is_beacon(hdr->frame_control) ||
1918 ieee80211_is_probe_resp(hdr->frame_control)))
1919 rx_status->boottime_ns = ktime_get_boottime_ns();
1920 }
1921
1922 if (iwl_mvm_create_skb(mvm, skb, hdr, len, crypt_len, rxb)) {
1923 kfree_skb(skb);
1924 goto out;
1925 }
1926
1927 if (!iwl_mvm_reorder(mvm, napi, queue, sta, skb, desc))
1928 iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb, queue,
1929 sta, csi);
1930 out:
1931 rcu_read_unlock();
1932 }
1933
iwl_mvm_rx_monitor_no_data(struct iwl_mvm * mvm,struct napi_struct * napi,struct iwl_rx_cmd_buffer * rxb,int queue)1934 void iwl_mvm_rx_monitor_no_data(struct iwl_mvm *mvm, struct napi_struct *napi,
1935 struct iwl_rx_cmd_buffer *rxb, int queue)
1936 {
1937 struct ieee80211_rx_status *rx_status;
1938 struct iwl_rx_packet *pkt = rxb_addr(rxb);
1939 struct iwl_rx_no_data *desc = (void *)pkt->data;
1940 u32 rate_n_flags = le32_to_cpu(desc->rate);
1941 u32 gp2_on_air_rise = le32_to_cpu(desc->on_air_rise_time);
1942 u32 rssi = le32_to_cpu(desc->rssi);
1943 u32 info_type = le32_to_cpu(desc->info) & RX_NO_DATA_INFO_TYPE_MSK;
1944 u16 phy_info = IWL_RX_MPDU_PHY_TSF_OVERLOAD;
1945 struct ieee80211_sta *sta = NULL;
1946 struct sk_buff *skb;
1947 u8 channel, energy_a, energy_b;
1948 struct iwl_mvm_rx_phy_data phy_data = {
1949 .d0 = desc->phy_info[0],
1950 .info_type = IWL_RX_PHY_INFO_TYPE_NONE,
1951 };
1952
1953 if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status)))
1954 return;
1955
1956 energy_a = (rssi & RX_NO_DATA_CHAIN_A_MSK) >> RX_NO_DATA_CHAIN_A_POS;
1957 energy_b = (rssi & RX_NO_DATA_CHAIN_B_MSK) >> RX_NO_DATA_CHAIN_B_POS;
1958 channel = (rssi & RX_NO_DATA_CHANNEL_MSK) >> RX_NO_DATA_CHANNEL_POS;
1959
1960 phy_data.info_type =
1961 le32_get_bits(desc->phy_info[1],
1962 IWL_RX_PHY_DATA1_INFO_TYPE_MASK);
1963
1964 /* Dont use dev_alloc_skb(), we'll have enough headroom once
1965 * ieee80211_hdr pulled.
1966 */
1967 skb = alloc_skb(128, GFP_ATOMIC);
1968 if (!skb) {
1969 IWL_ERR(mvm, "alloc_skb failed\n");
1970 return;
1971 }
1972
1973 rx_status = IEEE80211_SKB_RXCB(skb);
1974
1975 /* 0-length PSDU */
1976 rx_status->flag |= RX_FLAG_NO_PSDU;
1977
1978 switch (info_type) {
1979 case RX_NO_DATA_INFO_TYPE_NDP:
1980 rx_status->zero_length_psdu_type =
1981 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_SOUNDING;
1982 break;
1983 case RX_NO_DATA_INFO_TYPE_MU_UNMATCHED:
1984 case RX_NO_DATA_INFO_TYPE_HE_TB_UNMATCHED:
1985 rx_status->zero_length_psdu_type =
1986 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_NOT_CAPTURED;
1987 break;
1988 default:
1989 rx_status->zero_length_psdu_type =
1990 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_VENDOR;
1991 break;
1992 }
1993
1994 /* This may be overridden by iwl_mvm_rx_he() to HE_RU */
1995 switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) {
1996 case RATE_MCS_CHAN_WIDTH_20:
1997 break;
1998 case RATE_MCS_CHAN_WIDTH_40:
1999 rx_status->bw = RATE_INFO_BW_40;
2000 break;
2001 case RATE_MCS_CHAN_WIDTH_80:
2002 rx_status->bw = RATE_INFO_BW_80;
2003 break;
2004 case RATE_MCS_CHAN_WIDTH_160:
2005 rx_status->bw = RATE_INFO_BW_160;
2006 break;
2007 }
2008
2009 if (rate_n_flags & RATE_MCS_HE_MSK)
2010 iwl_mvm_rx_he(mvm, skb, &phy_data, rate_n_flags,
2011 phy_info, queue);
2012
2013 iwl_mvm_decode_lsig(skb, &phy_data);
2014
2015 rx_status->device_timestamp = gp2_on_air_rise;
2016 rx_status->band = channel > 14 ? NL80211_BAND_5GHZ :
2017 NL80211_BAND_2GHZ;
2018 rx_status->freq = ieee80211_channel_to_frequency(channel,
2019 rx_status->band);
2020 iwl_mvm_get_signal_strength(mvm, rx_status, rate_n_flags, energy_a,
2021 energy_b);
2022
2023 rcu_read_lock();
2024
2025 if (!(rate_n_flags & RATE_MCS_CCK_MSK) &&
2026 rate_n_flags & RATE_MCS_SGI_MSK)
2027 rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
2028 if (rate_n_flags & RATE_HT_MCS_GF_MSK)
2029 rx_status->enc_flags |= RX_ENC_FLAG_HT_GF;
2030 if (rate_n_flags & RATE_MCS_LDPC_MSK)
2031 rx_status->enc_flags |= RX_ENC_FLAG_LDPC;
2032 if (rate_n_flags & RATE_MCS_HT_MSK) {
2033 u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >>
2034 RATE_MCS_STBC_POS;
2035 rx_status->encoding = RX_ENC_HT;
2036 rx_status->rate_idx = rate_n_flags & RATE_HT_MCS_INDEX_MSK;
2037 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
2038 } else if (rate_n_flags & RATE_MCS_VHT_MSK) {
2039 u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >>
2040 RATE_MCS_STBC_POS;
2041 rx_status->rate_idx = rate_n_flags & RATE_VHT_MCS_RATE_CODE_MSK;
2042 rx_status->encoding = RX_ENC_VHT;
2043 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
2044 if (rate_n_flags & RATE_MCS_BF_MSK)
2045 rx_status->enc_flags |= RX_ENC_FLAG_BF;
2046 /*
2047 * take the nss from the rx_vec since the rate_n_flags has
2048 * only 2 bits for the nss which gives a max of 4 ss but
2049 * there may be up to 8 spatial streams
2050 */
2051 rx_status->nss =
2052 le32_get_bits(desc->rx_vec[0],
2053 RX_NO_DATA_RX_VEC0_VHT_NSTS_MSK) + 1;
2054 } else if (rate_n_flags & RATE_MCS_HE_MSK) {
2055 rx_status->nss =
2056 le32_get_bits(desc->rx_vec[0],
2057 RX_NO_DATA_RX_VEC0_HE_NSTS_MSK) + 1;
2058 } else {
2059 int rate = iwl_mvm_legacy_rate_to_mac80211_idx(rate_n_flags,
2060 rx_status->band);
2061
2062 if (WARN(rate < 0 || rate > 0xFF,
2063 "Invalid rate flags 0x%x, band %d,\n",
2064 rate_n_flags, rx_status->band)) {
2065 kfree_skb(skb);
2066 goto out;
2067 }
2068 rx_status->rate_idx = rate;
2069 }
2070
2071 ieee80211_rx_napi(mvm->hw, sta, skb, napi);
2072 out:
2073 rcu_read_unlock();
2074 }
2075
iwl_mvm_rx_frame_release(struct iwl_mvm * mvm,struct napi_struct * napi,struct iwl_rx_cmd_buffer * rxb,int queue)2076 void iwl_mvm_rx_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi,
2077 struct iwl_rx_cmd_buffer *rxb, int queue)
2078 {
2079 struct iwl_rx_packet *pkt = rxb_addr(rxb);
2080 struct iwl_frame_release *release = (void *)pkt->data;
2081
2082 iwl_mvm_release_frames_from_notif(mvm, napi, release->baid,
2083 le16_to_cpu(release->nssn),
2084 queue, 0);
2085 }
2086
iwl_mvm_rx_bar_frame_release(struct iwl_mvm * mvm,struct napi_struct * napi,struct iwl_rx_cmd_buffer * rxb,int queue)2087 void iwl_mvm_rx_bar_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi,
2088 struct iwl_rx_cmd_buffer *rxb, int queue)
2089 {
2090 struct iwl_rx_packet *pkt = rxb_addr(rxb);
2091 struct iwl_bar_frame_release *release = (void *)pkt->data;
2092 unsigned int baid = le32_get_bits(release->ba_info,
2093 IWL_BAR_FRAME_RELEASE_BAID_MASK);
2094 unsigned int nssn = le32_get_bits(release->ba_info,
2095 IWL_BAR_FRAME_RELEASE_NSSN_MASK);
2096 unsigned int sta_id = le32_get_bits(release->sta_tid,
2097 IWL_BAR_FRAME_RELEASE_STA_MASK);
2098 unsigned int tid = le32_get_bits(release->sta_tid,
2099 IWL_BAR_FRAME_RELEASE_TID_MASK);
2100 struct iwl_mvm_baid_data *baid_data;
2101
2102 if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID ||
2103 baid >= ARRAY_SIZE(mvm->baid_map)))
2104 return;
2105
2106 rcu_read_lock();
2107 baid_data = rcu_dereference(mvm->baid_map[baid]);
2108 if (!baid_data) {
2109 IWL_DEBUG_RX(mvm,
2110 "Got valid BAID %d but not allocated, invalid BAR release!\n",
2111 baid);
2112 goto out;
2113 }
2114
2115 if (WARN(tid != baid_data->tid || sta_id != baid_data->sta_id,
2116 "baid 0x%x is mapped to sta:%d tid:%d, but BAR release received for sta:%d tid:%d\n",
2117 baid, baid_data->sta_id, baid_data->tid, sta_id,
2118 tid))
2119 goto out;
2120
2121 iwl_mvm_release_frames_from_notif(mvm, napi, baid, nssn, queue, 0);
2122 out:
2123 rcu_read_unlock();
2124 }
2125