1 /******************************************************************************
2 *
3 * This file is provided under a dual BSD/GPLv2 license. When using or
4 * redistributing this file, you may do so under either license.
5 *
6 * GPL LICENSE SUMMARY
7 *
8 * Copyright(c) 2012 - 2014 Intel Corporation. All rights reserved.
9 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
10 * Copyright(c) 2015 - 2017 Intel Deutschland GmbH
11 * Copyright(c) 2018 - 2019 Intel Corporation
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of version 2 of the GNU General Public License as
15 * published by the Free Software Foundation.
16 *
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
21 *
22 * The full GNU General Public License is included in this distribution
23 * in the file called COPYING.
24 *
25 * Contact Information:
26 * Intel Linux Wireless <ilw@linux.intel.com>
27 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
28 *
29 * BSD LICENSE
30 *
31 * Copyright(c) 2012 - 2014 Intel Corporation. All rights reserved.
32 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
33 * Copyright(c) 2015 - 2017 Intel Deutschland GmbH
34 * Copyright(c) 2018 - 2019 Intel Corporation
35 * All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 *
41 * * Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * * Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in
45 * the documentation and/or other materials provided with the
46 * distribution.
47 * * Neither the name Intel Corporation nor the names of its
48 * contributors may be used to endorse or promote products derived
49 * from this software without specific prior written permission.
50 *
51 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
52 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
53 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
54 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
55 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
56 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
57 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
58 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
59 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
60 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
61 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
62 *****************************************************************************/
63 #include <linux/etherdevice.h>
64 #include <linux/skbuff.h>
65 #include "iwl-trans.h"
66 #include "mvm.h"
67 #include "fw-api.h"
68
iwl_mvm_skb_get_hdr(struct sk_buff * skb)69 static void *iwl_mvm_skb_get_hdr(struct sk_buff *skb)
70 {
71 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
72 u8 *data = skb->data;
73
74 /* Alignment concerns */
75 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he) % 4);
76 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he_mu) % 4);
77 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_lsig) % 4);
78 BUILD_BUG_ON(sizeof(struct ieee80211_vendor_radiotap) % 4);
79
80 if (rx_status->flag & RX_FLAG_RADIOTAP_HE)
81 data += sizeof(struct ieee80211_radiotap_he);
82 if (rx_status->flag & RX_FLAG_RADIOTAP_HE_MU)
83 data += sizeof(struct ieee80211_radiotap_he_mu);
84 if (rx_status->flag & RX_FLAG_RADIOTAP_LSIG)
85 data += sizeof(struct ieee80211_radiotap_lsig);
86 if (rx_status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
87 struct ieee80211_vendor_radiotap *radiotap = (void *)data;
88
89 data += sizeof(*radiotap) + radiotap->len + radiotap->pad;
90 }
91
92 return data;
93 }
94
iwl_mvm_check_pn(struct iwl_mvm * mvm,struct sk_buff * skb,int queue,struct ieee80211_sta * sta)95 static inline int iwl_mvm_check_pn(struct iwl_mvm *mvm, struct sk_buff *skb,
96 int queue, struct ieee80211_sta *sta)
97 {
98 struct iwl_mvm_sta *mvmsta;
99 struct ieee80211_hdr *hdr = iwl_mvm_skb_get_hdr(skb);
100 struct ieee80211_rx_status *stats = IEEE80211_SKB_RXCB(skb);
101 struct iwl_mvm_key_pn *ptk_pn;
102 int res;
103 u8 tid, keyidx;
104 u8 pn[IEEE80211_CCMP_PN_LEN];
105 u8 *extiv;
106
107 /* do PN checking */
108
109 /* multicast and non-data only arrives on default queue */
110 if (!ieee80211_is_data(hdr->frame_control) ||
111 is_multicast_ether_addr(hdr->addr1))
112 return 0;
113
114 /* do not check PN for open AP */
115 if (!(stats->flag & RX_FLAG_DECRYPTED))
116 return 0;
117
118 /*
119 * avoid checking for default queue - we don't want to replicate
120 * all the logic that's necessary for checking the PN on fragmented
121 * frames, leave that to mac80211
122 */
123 if (queue == 0)
124 return 0;
125
126 /* if we are here - this for sure is either CCMP or GCMP */
127 if (IS_ERR_OR_NULL(sta)) {
128 IWL_ERR(mvm,
129 "expected hw-decrypted unicast frame for station\n");
130 return -1;
131 }
132
133 mvmsta = iwl_mvm_sta_from_mac80211(sta);
134
135 extiv = (u8 *)hdr + ieee80211_hdrlen(hdr->frame_control);
136 keyidx = extiv[3] >> 6;
137
138 ptk_pn = rcu_dereference(mvmsta->ptk_pn[keyidx]);
139 if (!ptk_pn)
140 return -1;
141
142 if (ieee80211_is_data_qos(hdr->frame_control))
143 tid = ieee80211_get_tid(hdr);
144 else
145 tid = 0;
146
147 /* we don't use HCCA/802.11 QoS TSPECs, so drop such frames */
148 if (tid >= IWL_MAX_TID_COUNT)
149 return -1;
150
151 /* load pn */
152 pn[0] = extiv[7];
153 pn[1] = extiv[6];
154 pn[2] = extiv[5];
155 pn[3] = extiv[4];
156 pn[4] = extiv[1];
157 pn[5] = extiv[0];
158
159 res = memcmp(pn, ptk_pn->q[queue].pn[tid], IEEE80211_CCMP_PN_LEN);
160 if (res < 0)
161 return -1;
162 if (!res && !(stats->flag & RX_FLAG_ALLOW_SAME_PN))
163 return -1;
164
165 memcpy(ptk_pn->q[queue].pn[tid], pn, IEEE80211_CCMP_PN_LEN);
166 stats->flag |= RX_FLAG_PN_VALIDATED;
167
168 return 0;
169 }
170
171 /* iwl_mvm_create_skb Adds the rxb to a new skb */
iwl_mvm_create_skb(struct iwl_mvm * mvm,struct sk_buff * skb,struct ieee80211_hdr * hdr,u16 len,u8 crypt_len,struct iwl_rx_cmd_buffer * rxb)172 static int iwl_mvm_create_skb(struct iwl_mvm *mvm, struct sk_buff *skb,
173 struct ieee80211_hdr *hdr, u16 len, u8 crypt_len,
174 struct iwl_rx_cmd_buffer *rxb)
175 {
176 struct iwl_rx_packet *pkt = rxb_addr(rxb);
177 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
178 unsigned int headlen, fraglen, pad_len = 0;
179 unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control);
180
181 if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) {
182 len -= 2;
183 pad_len = 2;
184 }
185
186 /* If frame is small enough to fit in skb->head, pull it completely.
187 * If not, only pull ieee80211_hdr (including crypto if present, and
188 * an additional 8 bytes for SNAP/ethertype, see below) so that
189 * splice() or TCP coalesce are more efficient.
190 *
191 * Since, in addition, ieee80211_data_to_8023() always pull in at
192 * least 8 bytes (possibly more for mesh) we can do the same here
193 * to save the cost of doing it later. That still doesn't pull in
194 * the actual IP header since the typical case has a SNAP header.
195 * If the latter changes (there are efforts in the standards group
196 * to do so) we should revisit this and ieee80211_data_to_8023().
197 */
198 headlen = (len <= skb_tailroom(skb)) ? len :
199 hdrlen + crypt_len + 8;
200
201 /* The firmware may align the packet to DWORD.
202 * The padding is inserted after the IV.
203 * After copying the header + IV skip the padding if
204 * present before copying packet data.
205 */
206 hdrlen += crypt_len;
207
208 if (WARN_ONCE(headlen < hdrlen,
209 "invalid packet lengths (hdrlen=%d, len=%d, crypt_len=%d)\n",
210 hdrlen, len, crypt_len)) {
211 /*
212 * We warn and trace because we want to be able to see
213 * it in trace-cmd as well.
214 */
215 IWL_DEBUG_RX(mvm,
216 "invalid packet lengths (hdrlen=%d, len=%d, crypt_len=%d)\n",
217 hdrlen, len, crypt_len);
218 return -EINVAL;
219 }
220
221 skb_put_data(skb, hdr, hdrlen);
222 skb_put_data(skb, (u8 *)hdr + hdrlen + pad_len, headlen - hdrlen);
223
224 fraglen = len - headlen;
225
226 if (fraglen) {
227 int offset = (void *)hdr + headlen + pad_len -
228 rxb_addr(rxb) + rxb_offset(rxb);
229
230 skb_add_rx_frag(skb, 0, rxb_steal_page(rxb), offset,
231 fraglen, rxb->truesize);
232 }
233
234 return 0;
235 }
236
iwl_mvm_add_rtap_sniffer_config(struct iwl_mvm * mvm,struct sk_buff * skb)237 static void iwl_mvm_add_rtap_sniffer_config(struct iwl_mvm *mvm,
238 struct sk_buff *skb)
239 {
240 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
241 struct ieee80211_vendor_radiotap *radiotap;
242 const int size = sizeof(*radiotap) + sizeof(__le16);
243
244 if (!mvm->cur_aid)
245 return;
246
247 /* ensure alignment */
248 BUILD_BUG_ON((size + 2) % 4);
249
250 radiotap = skb_put(skb, size + 2);
251 radiotap->align = 1;
252 /* Intel OUI */
253 radiotap->oui[0] = 0xf6;
254 radiotap->oui[1] = 0x54;
255 radiotap->oui[2] = 0x25;
256 /* radiotap sniffer config sub-namespace */
257 radiotap->subns = 1;
258 radiotap->present = 0x1;
259 radiotap->len = size - sizeof(*radiotap);
260 radiotap->pad = 2;
261
262 /* fill the data now */
263 memcpy(radiotap->data, &mvm->cur_aid, sizeof(mvm->cur_aid));
264 /* and clear the padding */
265 memset(radiotap->data + sizeof(__le16), 0, radiotap->pad);
266
267 rx_status->flag |= RX_FLAG_RADIOTAP_VENDOR_DATA;
268 }
269
270 /* iwl_mvm_pass_packet_to_mac80211 - passes the packet for mac80211 */
iwl_mvm_pass_packet_to_mac80211(struct iwl_mvm * mvm,struct napi_struct * napi,struct sk_buff * skb,int queue,struct ieee80211_sta * sta,bool csi)271 static void iwl_mvm_pass_packet_to_mac80211(struct iwl_mvm *mvm,
272 struct napi_struct *napi,
273 struct sk_buff *skb, int queue,
274 struct ieee80211_sta *sta,
275 bool csi)
276 {
277 if (iwl_mvm_check_pn(mvm, skb, queue, sta))
278 kfree_skb(skb);
279 else
280 ieee80211_rx_napi(mvm->hw, sta, skb, napi);
281 }
282
iwl_mvm_get_signal_strength(struct iwl_mvm * mvm,struct ieee80211_rx_status * rx_status,u32 rate_n_flags,int energy_a,int energy_b)283 static void iwl_mvm_get_signal_strength(struct iwl_mvm *mvm,
284 struct ieee80211_rx_status *rx_status,
285 u32 rate_n_flags, int energy_a,
286 int energy_b)
287 {
288 int max_energy;
289 u32 rate_flags = rate_n_flags;
290
291 energy_a = energy_a ? -energy_a : S8_MIN;
292 energy_b = energy_b ? -energy_b : S8_MIN;
293 max_energy = max(energy_a, energy_b);
294
295 IWL_DEBUG_STATS(mvm, "energy In A %d B %d, and max %d\n",
296 energy_a, energy_b, max_energy);
297
298 rx_status->signal = max_energy;
299 rx_status->chains =
300 (rate_flags & RATE_MCS_ANT_AB_MSK) >> RATE_MCS_ANT_POS;
301 rx_status->chain_signal[0] = energy_a;
302 rx_status->chain_signal[1] = energy_b;
303 rx_status->chain_signal[2] = S8_MIN;
304 }
305
iwl_mvm_rx_crypto(struct iwl_mvm * mvm,struct ieee80211_hdr * hdr,struct ieee80211_rx_status * stats,u16 phy_info,struct iwl_rx_mpdu_desc * desc,u32 pkt_flags,int queue,u8 * crypt_len)306 static int iwl_mvm_rx_crypto(struct iwl_mvm *mvm, struct ieee80211_hdr *hdr,
307 struct ieee80211_rx_status *stats, u16 phy_info,
308 struct iwl_rx_mpdu_desc *desc,
309 u32 pkt_flags, int queue, u8 *crypt_len)
310 {
311 u16 status = le16_to_cpu(desc->status);
312
313 /*
314 * Drop UNKNOWN frames in aggregation, unless in monitor mode
315 * (where we don't have the keys).
316 * We limit this to aggregation because in TKIP this is a valid
317 * scenario, since we may not have the (correct) TTAK (phase 1
318 * key) in the firmware.
319 */
320 if (phy_info & IWL_RX_MPDU_PHY_AMPDU &&
321 (status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
322 IWL_RX_MPDU_STATUS_SEC_UNKNOWN && !mvm->monitor_on)
323 return -1;
324
325 if (!ieee80211_has_protected(hdr->frame_control) ||
326 (status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
327 IWL_RX_MPDU_STATUS_SEC_NONE)
328 return 0;
329
330 /* TODO: handle packets encrypted with unknown alg */
331
332 switch (status & IWL_RX_MPDU_STATUS_SEC_MASK) {
333 case IWL_RX_MPDU_STATUS_SEC_CCM:
334 case IWL_RX_MPDU_STATUS_SEC_GCM:
335 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != IEEE80211_GCMP_PN_LEN);
336 /* alg is CCM: check MIC only */
337 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK))
338 return -1;
339
340 stats->flag |= RX_FLAG_DECRYPTED;
341 if (pkt_flags & FH_RSCSR_RADA_EN)
342 stats->flag |= RX_FLAG_MIC_STRIPPED;
343 *crypt_len = IEEE80211_CCMP_HDR_LEN;
344 return 0;
345 case IWL_RX_MPDU_STATUS_SEC_TKIP:
346 /* Don't drop the frame and decrypt it in SW */
347 if (!fw_has_api(&mvm->fw->ucode_capa,
348 IWL_UCODE_TLV_API_DEPRECATE_TTAK) &&
349 !(status & IWL_RX_MPDU_RES_STATUS_TTAK_OK))
350 return 0;
351
352 if (mvm->trans->trans_cfg->gen2 &&
353 !(status & RX_MPDU_RES_STATUS_MIC_OK))
354 stats->flag |= RX_FLAG_MMIC_ERROR;
355
356 *crypt_len = IEEE80211_TKIP_IV_LEN;
357 /* fall through */
358 case IWL_RX_MPDU_STATUS_SEC_WEP:
359 if (!(status & IWL_RX_MPDU_STATUS_ICV_OK))
360 return -1;
361
362 stats->flag |= RX_FLAG_DECRYPTED;
363 if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
364 IWL_RX_MPDU_STATUS_SEC_WEP)
365 *crypt_len = IEEE80211_WEP_IV_LEN;
366
367 if (pkt_flags & FH_RSCSR_RADA_EN) {
368 stats->flag |= RX_FLAG_ICV_STRIPPED;
369 if (mvm->trans->trans_cfg->gen2)
370 stats->flag |= RX_FLAG_MMIC_STRIPPED;
371 }
372
373 return 0;
374 case IWL_RX_MPDU_STATUS_SEC_EXT_ENC:
375 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK))
376 return -1;
377 stats->flag |= RX_FLAG_DECRYPTED;
378 return 0;
379 default:
380 /*
381 * Sometimes we can get frames that were not decrypted
382 * because the firmware didn't have the keys yet. This can
383 * happen after connection where we can get multicast frames
384 * before the GTK is installed.
385 * Silently drop those frames.
386 * Also drop un-decrypted frames in monitor mode.
387 */
388 if (!is_multicast_ether_addr(hdr->addr1) &&
389 !mvm->monitor_on && net_ratelimit())
390 IWL_ERR(mvm, "Unhandled alg: 0x%x\n", status);
391 }
392
393 return 0;
394 }
395
iwl_mvm_rx_csum(struct ieee80211_sta * sta,struct sk_buff * skb,struct iwl_rx_mpdu_desc * desc)396 static void iwl_mvm_rx_csum(struct ieee80211_sta *sta,
397 struct sk_buff *skb,
398 struct iwl_rx_mpdu_desc *desc)
399 {
400 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
401 struct iwl_mvm_vif *mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif);
402 u16 flags = le16_to_cpu(desc->l3l4_flags);
403 u8 l3_prot = (u8)((flags & IWL_RX_L3L4_L3_PROTO_MASK) >>
404 IWL_RX_L3_PROTO_POS);
405
406 if (mvmvif->features & NETIF_F_RXCSUM &&
407 flags & IWL_RX_L3L4_TCP_UDP_CSUM_OK &&
408 (flags & IWL_RX_L3L4_IP_HDR_CSUM_OK ||
409 l3_prot == IWL_RX_L3_TYPE_IPV6 ||
410 l3_prot == IWL_RX_L3_TYPE_IPV6_FRAG))
411 skb->ip_summed = CHECKSUM_UNNECESSARY;
412 }
413
414 /*
415 * returns true if a packet is a duplicate and should be dropped.
416 * Updates AMSDU PN tracking info
417 */
iwl_mvm_is_dup(struct ieee80211_sta * sta,int queue,struct ieee80211_rx_status * rx_status,struct ieee80211_hdr * hdr,struct iwl_rx_mpdu_desc * desc)418 static bool iwl_mvm_is_dup(struct ieee80211_sta *sta, int queue,
419 struct ieee80211_rx_status *rx_status,
420 struct ieee80211_hdr *hdr,
421 struct iwl_rx_mpdu_desc *desc)
422 {
423 struct iwl_mvm_sta *mvm_sta;
424 struct iwl_mvm_rxq_dup_data *dup_data;
425 u8 tid, sub_frame_idx;
426
427 if (WARN_ON(IS_ERR_OR_NULL(sta)))
428 return false;
429
430 mvm_sta = iwl_mvm_sta_from_mac80211(sta);
431 dup_data = &mvm_sta->dup_data[queue];
432
433 /*
434 * Drop duplicate 802.11 retransmissions
435 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
436 */
437 if (ieee80211_is_ctl(hdr->frame_control) ||
438 ieee80211_is_qos_nullfunc(hdr->frame_control) ||
439 is_multicast_ether_addr(hdr->addr1)) {
440 rx_status->flag |= RX_FLAG_DUP_VALIDATED;
441 return false;
442 }
443
444 if (ieee80211_is_data_qos(hdr->frame_control))
445 /* frame has qos control */
446 tid = ieee80211_get_tid(hdr);
447 else
448 tid = IWL_MAX_TID_COUNT;
449
450 /* If this wasn't a part of an A-MSDU the sub-frame index will be 0 */
451 sub_frame_idx = desc->amsdu_info &
452 IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK;
453
454 if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
455 dup_data->last_seq[tid] == hdr->seq_ctrl &&
456 dup_data->last_sub_frame[tid] >= sub_frame_idx))
457 return true;
458
459 /* Allow same PN as the first subframe for following sub frames */
460 if (dup_data->last_seq[tid] == hdr->seq_ctrl &&
461 sub_frame_idx > dup_data->last_sub_frame[tid] &&
462 desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU)
463 rx_status->flag |= RX_FLAG_ALLOW_SAME_PN;
464
465 dup_data->last_seq[tid] = hdr->seq_ctrl;
466 dup_data->last_sub_frame[tid] = sub_frame_idx;
467
468 rx_status->flag |= RX_FLAG_DUP_VALIDATED;
469
470 return false;
471 }
472
iwl_mvm_notify_rx_queue(struct iwl_mvm * mvm,u32 rxq_mask,const u8 * data,u32 count,bool async)473 int iwl_mvm_notify_rx_queue(struct iwl_mvm *mvm, u32 rxq_mask,
474 const u8 *data, u32 count, bool async)
475 {
476 u8 buf[sizeof(struct iwl_rxq_sync_cmd) +
477 sizeof(struct iwl_mvm_rss_sync_notif)];
478 struct iwl_rxq_sync_cmd *cmd = (void *)buf;
479 u32 data_size = sizeof(*cmd) + count;
480 int ret;
481
482 /*
483 * size must be a multiple of DWORD
484 * Ensure we don't overflow buf
485 */
486 if (WARN_ON(count & 3 ||
487 count > sizeof(struct iwl_mvm_rss_sync_notif)))
488 return -EINVAL;
489
490 cmd->rxq_mask = cpu_to_le32(rxq_mask);
491 cmd->count = cpu_to_le32(count);
492 cmd->flags = 0;
493 memcpy(cmd->payload, data, count);
494
495 ret = iwl_mvm_send_cmd_pdu(mvm,
496 WIDE_ID(DATA_PATH_GROUP,
497 TRIGGER_RX_QUEUES_NOTIF_CMD),
498 async ? CMD_ASYNC : 0, data_size, cmd);
499
500 return ret;
501 }
502
503 /*
504 * Returns true if sn2 - buffer_size < sn1 < sn2.
505 * To be used only in order to compare reorder buffer head with NSSN.
506 * We fully trust NSSN unless it is behind us due to reorder timeout.
507 * Reorder timeout can only bring us up to buffer_size SNs ahead of NSSN.
508 */
iwl_mvm_is_sn_less(u16 sn1,u16 sn2,u16 buffer_size)509 static bool iwl_mvm_is_sn_less(u16 sn1, u16 sn2, u16 buffer_size)
510 {
511 return ieee80211_sn_less(sn1, sn2) &&
512 !ieee80211_sn_less(sn1, sn2 - buffer_size);
513 }
514
iwl_mvm_sync_nssn(struct iwl_mvm * mvm,u8 baid,u16 nssn)515 static void iwl_mvm_sync_nssn(struct iwl_mvm *mvm, u8 baid, u16 nssn)
516 {
517 struct iwl_mvm_rss_sync_notif notif = {
518 .metadata.type = IWL_MVM_RXQ_NSSN_SYNC,
519 .metadata.sync = 0,
520 .nssn_sync.baid = baid,
521 .nssn_sync.nssn = nssn,
522 };
523
524 iwl_mvm_sync_rx_queues_internal(mvm, (void *)¬if, sizeof(notif));
525 }
526
527 #define RX_REORDER_BUF_TIMEOUT_MQ (HZ / 10)
528
529 enum iwl_mvm_release_flags {
530 IWL_MVM_RELEASE_SEND_RSS_SYNC = BIT(0),
531 IWL_MVM_RELEASE_FROM_RSS_SYNC = BIT(1),
532 };
533
iwl_mvm_release_frames(struct iwl_mvm * mvm,struct ieee80211_sta * sta,struct napi_struct * napi,struct iwl_mvm_baid_data * baid_data,struct iwl_mvm_reorder_buffer * reorder_buf,u16 nssn,u32 flags)534 static void iwl_mvm_release_frames(struct iwl_mvm *mvm,
535 struct ieee80211_sta *sta,
536 struct napi_struct *napi,
537 struct iwl_mvm_baid_data *baid_data,
538 struct iwl_mvm_reorder_buffer *reorder_buf,
539 u16 nssn, u32 flags)
540 {
541 struct iwl_mvm_reorder_buf_entry *entries =
542 &baid_data->entries[reorder_buf->queue *
543 baid_data->entries_per_queue];
544 u16 ssn = reorder_buf->head_sn;
545
546 lockdep_assert_held(&reorder_buf->lock);
547
548 /*
549 * We keep the NSSN not too far behind, if we are sync'ing it and it
550 * is more than 2048 ahead of us, it must be behind us. Discard it.
551 * This can happen if the queue that hit the 0 / 2048 seqno was lagging
552 * behind and this queue already processed packets. The next if
553 * would have caught cases where this queue would have processed less
554 * than 64 packets, but it may have processed more than 64 packets.
555 */
556 if ((flags & IWL_MVM_RELEASE_FROM_RSS_SYNC) &&
557 ieee80211_sn_less(nssn, ssn))
558 goto set_timer;
559
560 /* ignore nssn smaller than head sn - this can happen due to timeout */
561 if (iwl_mvm_is_sn_less(nssn, ssn, reorder_buf->buf_size))
562 goto set_timer;
563
564 while (iwl_mvm_is_sn_less(ssn, nssn, reorder_buf->buf_size)) {
565 int index = ssn % reorder_buf->buf_size;
566 struct sk_buff_head *skb_list = &entries[index].e.frames;
567 struct sk_buff *skb;
568
569 ssn = ieee80211_sn_inc(ssn);
570 if ((flags & IWL_MVM_RELEASE_SEND_RSS_SYNC) &&
571 (ssn == 2048 || ssn == 0))
572 iwl_mvm_sync_nssn(mvm, baid_data->baid, ssn);
573
574 /*
575 * Empty the list. Will have more than one frame for A-MSDU.
576 * Empty list is valid as well since nssn indicates frames were
577 * received.
578 */
579 while ((skb = __skb_dequeue(skb_list))) {
580 iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb,
581 reorder_buf->queue,
582 sta, false);
583 reorder_buf->num_stored--;
584 }
585 }
586 reorder_buf->head_sn = nssn;
587
588 set_timer:
589 if (reorder_buf->num_stored && !reorder_buf->removed) {
590 u16 index = reorder_buf->head_sn % reorder_buf->buf_size;
591
592 while (skb_queue_empty(&entries[index].e.frames))
593 index = (index + 1) % reorder_buf->buf_size;
594 /* modify timer to match next frame's expiration time */
595 mod_timer(&reorder_buf->reorder_timer,
596 entries[index].e.reorder_time + 1 +
597 RX_REORDER_BUF_TIMEOUT_MQ);
598 } else {
599 del_timer(&reorder_buf->reorder_timer);
600 }
601 }
602
iwl_mvm_reorder_timer_expired(struct timer_list * t)603 void iwl_mvm_reorder_timer_expired(struct timer_list *t)
604 {
605 struct iwl_mvm_reorder_buffer *buf = from_timer(buf, t, reorder_timer);
606 struct iwl_mvm_baid_data *baid_data =
607 iwl_mvm_baid_data_from_reorder_buf(buf);
608 struct iwl_mvm_reorder_buf_entry *entries =
609 &baid_data->entries[buf->queue * baid_data->entries_per_queue];
610 int i;
611 u16 sn = 0, index = 0;
612 bool expired = false;
613 bool cont = false;
614
615 spin_lock(&buf->lock);
616
617 if (!buf->num_stored || buf->removed) {
618 spin_unlock(&buf->lock);
619 return;
620 }
621
622 for (i = 0; i < buf->buf_size ; i++) {
623 index = (buf->head_sn + i) % buf->buf_size;
624
625 if (skb_queue_empty(&entries[index].e.frames)) {
626 /*
627 * If there is a hole and the next frame didn't expire
628 * we want to break and not advance SN
629 */
630 cont = false;
631 continue;
632 }
633 if (!cont &&
634 !time_after(jiffies, entries[index].e.reorder_time +
635 RX_REORDER_BUF_TIMEOUT_MQ))
636 break;
637
638 expired = true;
639 /* continue until next hole after this expired frames */
640 cont = true;
641 sn = ieee80211_sn_add(buf->head_sn, i + 1);
642 }
643
644 if (expired) {
645 struct ieee80211_sta *sta;
646 struct iwl_mvm_sta *mvmsta;
647 u8 sta_id = baid_data->sta_id;
648
649 rcu_read_lock();
650 sta = rcu_dereference(buf->mvm->fw_id_to_mac_id[sta_id]);
651 mvmsta = iwl_mvm_sta_from_mac80211(sta);
652
653 /* SN is set to the last expired frame + 1 */
654 IWL_DEBUG_HT(buf->mvm,
655 "Releasing expired frames for sta %u, sn %d\n",
656 sta_id, sn);
657 iwl_mvm_event_frame_timeout_callback(buf->mvm, mvmsta->vif,
658 sta, baid_data->tid);
659 iwl_mvm_release_frames(buf->mvm, sta, NULL, baid_data,
660 buf, sn, IWL_MVM_RELEASE_SEND_RSS_SYNC);
661 rcu_read_unlock();
662 } else {
663 /*
664 * If no frame expired and there are stored frames, index is now
665 * pointing to the first unexpired frame - modify timer
666 * accordingly to this frame.
667 */
668 mod_timer(&buf->reorder_timer,
669 entries[index].e.reorder_time +
670 1 + RX_REORDER_BUF_TIMEOUT_MQ);
671 }
672 spin_unlock(&buf->lock);
673 }
674
iwl_mvm_del_ba(struct iwl_mvm * mvm,int queue,struct iwl_mvm_delba_data * data)675 static void iwl_mvm_del_ba(struct iwl_mvm *mvm, int queue,
676 struct iwl_mvm_delba_data *data)
677 {
678 struct iwl_mvm_baid_data *ba_data;
679 struct ieee80211_sta *sta;
680 struct iwl_mvm_reorder_buffer *reorder_buf;
681 u8 baid = data->baid;
682
683 if (WARN_ONCE(baid >= IWL_MAX_BAID, "invalid BAID: %x\n", baid))
684 return;
685
686 rcu_read_lock();
687
688 ba_data = rcu_dereference(mvm->baid_map[baid]);
689 if (WARN_ON_ONCE(!ba_data))
690 goto out;
691
692 sta = rcu_dereference(mvm->fw_id_to_mac_id[ba_data->sta_id]);
693 if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta)))
694 goto out;
695
696 reorder_buf = &ba_data->reorder_buf[queue];
697
698 /* release all frames that are in the reorder buffer to the stack */
699 spin_lock_bh(&reorder_buf->lock);
700 iwl_mvm_release_frames(mvm, sta, NULL, ba_data, reorder_buf,
701 ieee80211_sn_add(reorder_buf->head_sn,
702 reorder_buf->buf_size),
703 0);
704 spin_unlock_bh(&reorder_buf->lock);
705 del_timer_sync(&reorder_buf->reorder_timer);
706
707 out:
708 rcu_read_unlock();
709 }
710
iwl_mvm_release_frames_from_notif(struct iwl_mvm * mvm,struct napi_struct * napi,u8 baid,u16 nssn,int queue,u32 flags)711 static void iwl_mvm_release_frames_from_notif(struct iwl_mvm *mvm,
712 struct napi_struct *napi,
713 u8 baid, u16 nssn, int queue,
714 u32 flags)
715 {
716 struct ieee80211_sta *sta;
717 struct iwl_mvm_reorder_buffer *reorder_buf;
718 struct iwl_mvm_baid_data *ba_data;
719
720 IWL_DEBUG_HT(mvm, "Frame release notification for BAID %u, NSSN %d\n",
721 baid, nssn);
722
723 if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID ||
724 baid >= ARRAY_SIZE(mvm->baid_map)))
725 return;
726
727 rcu_read_lock();
728
729 ba_data = rcu_dereference(mvm->baid_map[baid]);
730 if (WARN_ON_ONCE(!ba_data))
731 goto out;
732
733 sta = rcu_dereference(mvm->fw_id_to_mac_id[ba_data->sta_id]);
734 if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta)))
735 goto out;
736
737 reorder_buf = &ba_data->reorder_buf[queue];
738
739 spin_lock_bh(&reorder_buf->lock);
740 iwl_mvm_release_frames(mvm, sta, napi, ba_data,
741 reorder_buf, nssn, flags);
742 spin_unlock_bh(&reorder_buf->lock);
743
744 out:
745 rcu_read_unlock();
746 }
747
iwl_mvm_nssn_sync(struct iwl_mvm * mvm,struct napi_struct * napi,int queue,const struct iwl_mvm_nssn_sync_data * data)748 static void iwl_mvm_nssn_sync(struct iwl_mvm *mvm,
749 struct napi_struct *napi, int queue,
750 const struct iwl_mvm_nssn_sync_data *data)
751 {
752 iwl_mvm_release_frames_from_notif(mvm, napi, data->baid,
753 data->nssn, queue,
754 IWL_MVM_RELEASE_FROM_RSS_SYNC);
755 }
756
iwl_mvm_rx_queue_notif(struct iwl_mvm * mvm,struct napi_struct * napi,struct iwl_rx_cmd_buffer * rxb,int queue)757 void iwl_mvm_rx_queue_notif(struct iwl_mvm *mvm, struct napi_struct *napi,
758 struct iwl_rx_cmd_buffer *rxb, int queue)
759 {
760 struct iwl_rx_packet *pkt = rxb_addr(rxb);
761 struct iwl_rxq_sync_notification *notif;
762 struct iwl_mvm_internal_rxq_notif *internal_notif;
763
764 notif = (void *)pkt->data;
765 internal_notif = (void *)notif->payload;
766
767 if (internal_notif->sync &&
768 mvm->queue_sync_cookie != internal_notif->cookie) {
769 WARN_ONCE(1, "Received expired RX queue sync message\n");
770 return;
771 }
772
773 switch (internal_notif->type) {
774 case IWL_MVM_RXQ_EMPTY:
775 break;
776 case IWL_MVM_RXQ_NOTIF_DEL_BA:
777 iwl_mvm_del_ba(mvm, queue, (void *)internal_notif->data);
778 break;
779 case IWL_MVM_RXQ_NSSN_SYNC:
780 iwl_mvm_nssn_sync(mvm, napi, queue,
781 (void *)internal_notif->data);
782 break;
783 default:
784 WARN_ONCE(1, "Invalid identifier %d", internal_notif->type);
785 }
786
787 if (internal_notif->sync &&
788 !atomic_dec_return(&mvm->queue_sync_counter))
789 wake_up(&mvm->rx_sync_waitq);
790 }
791
iwl_mvm_oldsn_workaround(struct iwl_mvm * mvm,struct ieee80211_sta * sta,int tid,struct iwl_mvm_reorder_buffer * buffer,u32 reorder,u32 gp2,int queue)792 static void iwl_mvm_oldsn_workaround(struct iwl_mvm *mvm,
793 struct ieee80211_sta *sta, int tid,
794 struct iwl_mvm_reorder_buffer *buffer,
795 u32 reorder, u32 gp2, int queue)
796 {
797 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
798
799 if (gp2 != buffer->consec_oldsn_ampdu_gp2) {
800 /* we have a new (A-)MPDU ... */
801
802 /*
803 * reset counter to 0 if we didn't have any oldsn in
804 * the last A-MPDU (as detected by GP2 being identical)
805 */
806 if (!buffer->consec_oldsn_prev_drop)
807 buffer->consec_oldsn_drops = 0;
808
809 /* either way, update our tracking state */
810 buffer->consec_oldsn_ampdu_gp2 = gp2;
811 } else if (buffer->consec_oldsn_prev_drop) {
812 /*
813 * tracking state didn't change, and we had an old SN
814 * indication before - do nothing in this case, we
815 * already noted this one down and are waiting for the
816 * next A-MPDU (by GP2)
817 */
818 return;
819 }
820
821 /* return unless this MPDU has old SN */
822 if (!(reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN))
823 return;
824
825 /* update state */
826 buffer->consec_oldsn_prev_drop = 1;
827 buffer->consec_oldsn_drops++;
828
829 /* if limit is reached, send del BA and reset state */
830 if (buffer->consec_oldsn_drops == IWL_MVM_AMPDU_CONSEC_DROPS_DELBA) {
831 IWL_WARN(mvm,
832 "reached %d old SN frames from %pM on queue %d, stopping BA session on TID %d\n",
833 IWL_MVM_AMPDU_CONSEC_DROPS_DELBA,
834 sta->addr, queue, tid);
835 ieee80211_stop_rx_ba_session(mvmsta->vif, BIT(tid), sta->addr);
836 buffer->consec_oldsn_prev_drop = 0;
837 buffer->consec_oldsn_drops = 0;
838 }
839 }
840
841 /*
842 * Returns true if the MPDU was buffered\dropped, false if it should be passed
843 * to upper layer.
844 */
iwl_mvm_reorder(struct iwl_mvm * mvm,struct napi_struct * napi,int queue,struct ieee80211_sta * sta,struct sk_buff * skb,struct iwl_rx_mpdu_desc * desc)845 static bool iwl_mvm_reorder(struct iwl_mvm *mvm,
846 struct napi_struct *napi,
847 int queue,
848 struct ieee80211_sta *sta,
849 struct sk_buff *skb,
850 struct iwl_rx_mpdu_desc *desc)
851 {
852 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
853 struct ieee80211_hdr *hdr = iwl_mvm_skb_get_hdr(skb);
854 struct iwl_mvm_sta *mvm_sta;
855 struct iwl_mvm_baid_data *baid_data;
856 struct iwl_mvm_reorder_buffer *buffer;
857 struct sk_buff *tail;
858 u32 reorder = le32_to_cpu(desc->reorder_data);
859 bool amsdu = desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU;
860 bool last_subframe =
861 desc->amsdu_info & IWL_RX_MPDU_AMSDU_LAST_SUBFRAME;
862 u8 tid = ieee80211_get_tid(hdr);
863 u8 sub_frame_idx = desc->amsdu_info &
864 IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK;
865 struct iwl_mvm_reorder_buf_entry *entries;
866 int index;
867 u16 nssn, sn;
868 u8 baid;
869
870 baid = (reorder & IWL_RX_MPDU_REORDER_BAID_MASK) >>
871 IWL_RX_MPDU_REORDER_BAID_SHIFT;
872
873 /*
874 * This also covers the case of receiving a Block Ack Request
875 * outside a BA session; we'll pass it to mac80211 and that
876 * then sends a delBA action frame.
877 * This also covers pure monitor mode, in which case we won't
878 * have any BA sessions.
879 */
880 if (baid == IWL_RX_REORDER_DATA_INVALID_BAID)
881 return false;
882
883 /* no sta yet */
884 if (WARN_ONCE(IS_ERR_OR_NULL(sta),
885 "Got valid BAID without a valid station assigned\n"))
886 return false;
887
888 mvm_sta = iwl_mvm_sta_from_mac80211(sta);
889
890 /* not a data packet or a bar */
891 if (!ieee80211_is_back_req(hdr->frame_control) &&
892 (!ieee80211_is_data_qos(hdr->frame_control) ||
893 is_multicast_ether_addr(hdr->addr1)))
894 return false;
895
896 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
897 return false;
898
899 baid_data = rcu_dereference(mvm->baid_map[baid]);
900 if (!baid_data) {
901 IWL_DEBUG_RX(mvm,
902 "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n",
903 baid, reorder);
904 return false;
905 }
906
907 if (WARN(tid != baid_data->tid || mvm_sta->sta_id != baid_data->sta_id,
908 "baid 0x%x is mapped to sta:%d tid:%d, but was received for sta:%d tid:%d\n",
909 baid, baid_data->sta_id, baid_data->tid, mvm_sta->sta_id,
910 tid))
911 return false;
912
913 nssn = reorder & IWL_RX_MPDU_REORDER_NSSN_MASK;
914 sn = (reorder & IWL_RX_MPDU_REORDER_SN_MASK) >>
915 IWL_RX_MPDU_REORDER_SN_SHIFT;
916
917 buffer = &baid_data->reorder_buf[queue];
918 entries = &baid_data->entries[queue * baid_data->entries_per_queue];
919
920 spin_lock_bh(&buffer->lock);
921
922 if (!buffer->valid) {
923 if (reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN) {
924 spin_unlock_bh(&buffer->lock);
925 return false;
926 }
927 buffer->valid = true;
928 }
929
930 if (ieee80211_is_back_req(hdr->frame_control)) {
931 iwl_mvm_release_frames(mvm, sta, napi, baid_data,
932 buffer, nssn, 0);
933 goto drop;
934 }
935
936 /*
937 * If there was a significant jump in the nssn - adjust.
938 * If the SN is smaller than the NSSN it might need to first go into
939 * the reorder buffer, in which case we just release up to it and the
940 * rest of the function will take care of storing it and releasing up to
941 * the nssn.
942 * This should not happen. This queue has been lagging and it should
943 * have been updated by a IWL_MVM_RXQ_NSSN_SYNC notification. Be nice
944 * and update the other queues.
945 */
946 if (!iwl_mvm_is_sn_less(nssn, buffer->head_sn + buffer->buf_size,
947 buffer->buf_size) ||
948 !ieee80211_sn_less(sn, buffer->head_sn + buffer->buf_size)) {
949 u16 min_sn = ieee80211_sn_less(sn, nssn) ? sn : nssn;
950
951 iwl_mvm_release_frames(mvm, sta, napi, baid_data, buffer,
952 min_sn, IWL_MVM_RELEASE_SEND_RSS_SYNC);
953 }
954
955 iwl_mvm_oldsn_workaround(mvm, sta, tid, buffer, reorder,
956 rx_status->device_timestamp, queue);
957
958 /* drop any oudated packets */
959 if (ieee80211_sn_less(sn, buffer->head_sn))
960 goto drop;
961
962 /* release immediately if allowed by nssn and no stored frames */
963 if (!buffer->num_stored && ieee80211_sn_less(sn, nssn)) {
964 if (iwl_mvm_is_sn_less(buffer->head_sn, nssn,
965 buffer->buf_size) &&
966 (!amsdu || last_subframe)) {
967 /*
968 * If we crossed the 2048 or 0 SN, notify all the
969 * queues. This is done in order to avoid having a
970 * head_sn that lags behind for too long. When that
971 * happens, we can get to a situation where the head_sn
972 * is within the interval [nssn - buf_size : nssn]
973 * which will make us think that the nssn is a packet
974 * that we already freed because of the reordering
975 * buffer and we will ignore it. So maintain the
976 * head_sn somewhat updated across all the queues:
977 * when it crosses 0 and 2048.
978 */
979 if (sn == 2048 || sn == 0)
980 iwl_mvm_sync_nssn(mvm, baid, sn);
981 buffer->head_sn = nssn;
982 }
983 /* No need to update AMSDU last SN - we are moving the head */
984 spin_unlock_bh(&buffer->lock);
985 return false;
986 }
987
988 /*
989 * release immediately if there are no stored frames, and the sn is
990 * equal to the head.
991 * This can happen due to reorder timer, where NSSN is behind head_sn.
992 * When we released everything, and we got the next frame in the
993 * sequence, according to the NSSN we can't release immediately,
994 * while technically there is no hole and we can move forward.
995 */
996 if (!buffer->num_stored && sn == buffer->head_sn) {
997 if (!amsdu || last_subframe) {
998 if (sn == 2048 || sn == 0)
999 iwl_mvm_sync_nssn(mvm, baid, sn);
1000 buffer->head_sn = ieee80211_sn_inc(buffer->head_sn);
1001 }
1002 /* No need to update AMSDU last SN - we are moving the head */
1003 spin_unlock_bh(&buffer->lock);
1004 return false;
1005 }
1006
1007 index = sn % buffer->buf_size;
1008
1009 /*
1010 * Check if we already stored this frame
1011 * As AMSDU is either received or not as whole, logic is simple:
1012 * If we have frames in that position in the buffer and the last frame
1013 * originated from AMSDU had a different SN then it is a retransmission.
1014 * If it is the same SN then if the subframe index is incrementing it
1015 * is the same AMSDU - otherwise it is a retransmission.
1016 */
1017 tail = skb_peek_tail(&entries[index].e.frames);
1018 if (tail && !amsdu)
1019 goto drop;
1020 else if (tail && (sn != buffer->last_amsdu ||
1021 buffer->last_sub_index >= sub_frame_idx))
1022 goto drop;
1023
1024 /* put in reorder buffer */
1025 __skb_queue_tail(&entries[index].e.frames, skb);
1026 buffer->num_stored++;
1027 entries[index].e.reorder_time = jiffies;
1028
1029 if (amsdu) {
1030 buffer->last_amsdu = sn;
1031 buffer->last_sub_index = sub_frame_idx;
1032 }
1033
1034 /*
1035 * We cannot trust NSSN for AMSDU sub-frames that are not the last.
1036 * The reason is that NSSN advances on the first sub-frame, and may
1037 * cause the reorder buffer to advance before all the sub-frames arrive.
1038 * Example: reorder buffer contains SN 0 & 2, and we receive AMSDU with
1039 * SN 1. NSSN for first sub frame will be 3 with the result of driver
1040 * releasing SN 0,1, 2. When sub-frame 1 arrives - reorder buffer is
1041 * already ahead and it will be dropped.
1042 * If the last sub-frame is not on this queue - we will get frame
1043 * release notification with up to date NSSN.
1044 */
1045 if (!amsdu || last_subframe)
1046 iwl_mvm_release_frames(mvm, sta, napi, baid_data,
1047 buffer, nssn,
1048 IWL_MVM_RELEASE_SEND_RSS_SYNC);
1049
1050 spin_unlock_bh(&buffer->lock);
1051 return true;
1052
1053 drop:
1054 kfree_skb(skb);
1055 spin_unlock_bh(&buffer->lock);
1056 return true;
1057 }
1058
iwl_mvm_agg_rx_received(struct iwl_mvm * mvm,u32 reorder_data,u8 baid)1059 static void iwl_mvm_agg_rx_received(struct iwl_mvm *mvm,
1060 u32 reorder_data, u8 baid)
1061 {
1062 unsigned long now = jiffies;
1063 unsigned long timeout;
1064 struct iwl_mvm_baid_data *data;
1065
1066 rcu_read_lock();
1067
1068 data = rcu_dereference(mvm->baid_map[baid]);
1069 if (!data) {
1070 IWL_DEBUG_RX(mvm,
1071 "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n",
1072 baid, reorder_data);
1073 goto out;
1074 }
1075
1076 if (!data->timeout)
1077 goto out;
1078
1079 timeout = data->timeout;
1080 /*
1081 * Do not update last rx all the time to avoid cache bouncing
1082 * between the rx queues.
1083 * Update it every timeout. Worst case is the session will
1084 * expire after ~ 2 * timeout, which doesn't matter that much.
1085 */
1086 if (time_before(data->last_rx + TU_TO_JIFFIES(timeout), now))
1087 /* Update is atomic */
1088 data->last_rx = now;
1089
1090 out:
1091 rcu_read_unlock();
1092 }
1093
iwl_mvm_flip_address(u8 * addr)1094 static void iwl_mvm_flip_address(u8 *addr)
1095 {
1096 int i;
1097 u8 mac_addr[ETH_ALEN];
1098
1099 for (i = 0; i < ETH_ALEN; i++)
1100 mac_addr[i] = addr[ETH_ALEN - i - 1];
1101 ether_addr_copy(addr, mac_addr);
1102 }
1103
1104 struct iwl_mvm_rx_phy_data {
1105 enum iwl_rx_phy_info_type info_type;
1106 __le32 d0, d1, d2, d3;
1107 __le16 d4;
1108 };
1109
iwl_mvm_decode_he_mu_ext(struct iwl_mvm * mvm,struct iwl_mvm_rx_phy_data * phy_data,u32 rate_n_flags,struct ieee80211_radiotap_he_mu * he_mu)1110 static void iwl_mvm_decode_he_mu_ext(struct iwl_mvm *mvm,
1111 struct iwl_mvm_rx_phy_data *phy_data,
1112 u32 rate_n_flags,
1113 struct ieee80211_radiotap_he_mu *he_mu)
1114 {
1115 u32 phy_data2 = le32_to_cpu(phy_data->d2);
1116 u32 phy_data3 = le32_to_cpu(phy_data->d3);
1117 u16 phy_data4 = le16_to_cpu(phy_data->d4);
1118
1119 if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CRC_OK, phy_data4)) {
1120 he_mu->flags1 |=
1121 cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_RU_KNOWN |
1122 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU_KNOWN);
1123
1124 he_mu->flags1 |=
1125 le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CTR_RU,
1126 phy_data4),
1127 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU);
1128
1129 he_mu->ru_ch1[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU0,
1130 phy_data2);
1131 he_mu->ru_ch1[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU1,
1132 phy_data3);
1133 he_mu->ru_ch1[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU2,
1134 phy_data2);
1135 he_mu->ru_ch1[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU3,
1136 phy_data3);
1137 }
1138
1139 if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CRC_OK, phy_data4) &&
1140 (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) != RATE_MCS_CHAN_WIDTH_20) {
1141 he_mu->flags1 |=
1142 cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_RU_KNOWN |
1143 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_CTR_26T_RU_KNOWN);
1144
1145 he_mu->flags2 |=
1146 le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CTR_RU,
1147 phy_data4),
1148 IEEE80211_RADIOTAP_HE_MU_FLAGS2_CH2_CTR_26T_RU);
1149
1150 he_mu->ru_ch2[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU0,
1151 phy_data2);
1152 he_mu->ru_ch2[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU1,
1153 phy_data3);
1154 he_mu->ru_ch2[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU2,
1155 phy_data2);
1156 he_mu->ru_ch2[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU3,
1157 phy_data3);
1158 }
1159 }
1160
1161 static void
iwl_mvm_decode_he_phy_ru_alloc(struct iwl_mvm_rx_phy_data * phy_data,u32 rate_n_flags,struct ieee80211_radiotap_he * he,struct ieee80211_radiotap_he_mu * he_mu,struct ieee80211_rx_status * rx_status)1162 iwl_mvm_decode_he_phy_ru_alloc(struct iwl_mvm_rx_phy_data *phy_data,
1163 u32 rate_n_flags,
1164 struct ieee80211_radiotap_he *he,
1165 struct ieee80211_radiotap_he_mu *he_mu,
1166 struct ieee80211_rx_status *rx_status)
1167 {
1168 /*
1169 * Unfortunately, we have to leave the mac80211 data
1170 * incorrect for the case that we receive an HE-MU
1171 * transmission and *don't* have the HE phy data (due
1172 * to the bits being used for TSF). This shouldn't
1173 * happen though as management frames where we need
1174 * the TSF/timers are not be transmitted in HE-MU.
1175 */
1176 u8 ru = le32_get_bits(phy_data->d1, IWL_RX_PHY_DATA1_HE_RU_ALLOC_MASK);
1177 u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK;
1178 u8 offs = 0;
1179
1180 rx_status->bw = RATE_INFO_BW_HE_RU;
1181
1182 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN);
1183
1184 switch (ru) {
1185 case 0 ... 36:
1186 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_26;
1187 offs = ru;
1188 break;
1189 case 37 ... 52:
1190 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_52;
1191 offs = ru - 37;
1192 break;
1193 case 53 ... 60:
1194 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106;
1195 offs = ru - 53;
1196 break;
1197 case 61 ... 64:
1198 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_242;
1199 offs = ru - 61;
1200 break;
1201 case 65 ... 66:
1202 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_484;
1203 offs = ru - 65;
1204 break;
1205 case 67:
1206 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_996;
1207 break;
1208 case 68:
1209 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_2x996;
1210 break;
1211 }
1212 he->data2 |= le16_encode_bits(offs,
1213 IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET);
1214 he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_KNOWN |
1215 IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET_KNOWN);
1216 if (phy_data->d1 & cpu_to_le32(IWL_RX_PHY_DATA1_HE_RU_ALLOC_SEC80))
1217 he->data2 |=
1218 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_SEC);
1219
1220 #define CHECK_BW(bw) \
1221 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_ ## bw ## MHZ != \
1222 RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS); \
1223 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_ ## bw ## MHZ != \
1224 RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS)
1225 CHECK_BW(20);
1226 CHECK_BW(40);
1227 CHECK_BW(80);
1228 CHECK_BW(160);
1229
1230 if (he_mu)
1231 he_mu->flags2 |=
1232 le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK,
1233 rate_n_flags),
1234 IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW);
1235 else if (he_type == RATE_MCS_HE_TYPE_TRIG)
1236 he->data6 |=
1237 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_KNOWN) |
1238 le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK,
1239 rate_n_flags),
1240 IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW);
1241 }
1242
iwl_mvm_decode_he_phy_data(struct iwl_mvm * mvm,struct iwl_mvm_rx_phy_data * phy_data,struct ieee80211_radiotap_he * he,struct ieee80211_radiotap_he_mu * he_mu,struct ieee80211_rx_status * rx_status,u32 rate_n_flags,int queue)1243 static void iwl_mvm_decode_he_phy_data(struct iwl_mvm *mvm,
1244 struct iwl_mvm_rx_phy_data *phy_data,
1245 struct ieee80211_radiotap_he *he,
1246 struct ieee80211_radiotap_he_mu *he_mu,
1247 struct ieee80211_rx_status *rx_status,
1248 u32 rate_n_flags, int queue)
1249 {
1250 switch (phy_data->info_type) {
1251 case IWL_RX_PHY_INFO_TYPE_NONE:
1252 case IWL_RX_PHY_INFO_TYPE_CCK:
1253 case IWL_RX_PHY_INFO_TYPE_OFDM_LGCY:
1254 case IWL_RX_PHY_INFO_TYPE_HT:
1255 case IWL_RX_PHY_INFO_TYPE_VHT_SU:
1256 case IWL_RX_PHY_INFO_TYPE_VHT_MU:
1257 return;
1258 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
1259 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN |
1260 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE2_KNOWN |
1261 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE3_KNOWN |
1262 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE4_KNOWN);
1263 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1264 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE1),
1265 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE1);
1266 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1267 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE2),
1268 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE2);
1269 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1270 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE3),
1271 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE3);
1272 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1273 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE4),
1274 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE4);
1275 /* fall through */
1276 case IWL_RX_PHY_INFO_TYPE_HE_SU:
1277 case IWL_RX_PHY_INFO_TYPE_HE_MU:
1278 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1279 case IWL_RX_PHY_INFO_TYPE_HE_TB:
1280 /* HE common */
1281 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_LDPC_XSYMSEG_KNOWN |
1282 IEEE80211_RADIOTAP_HE_DATA1_DOPPLER_KNOWN |
1283 IEEE80211_RADIOTAP_HE_DATA1_BSS_COLOR_KNOWN);
1284 he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRE_FEC_PAD_KNOWN |
1285 IEEE80211_RADIOTAP_HE_DATA2_PE_DISAMBIG_KNOWN |
1286 IEEE80211_RADIOTAP_HE_DATA2_TXOP_KNOWN |
1287 IEEE80211_RADIOTAP_HE_DATA2_NUM_LTF_SYMS_KNOWN);
1288 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1289 IWL_RX_PHY_DATA0_HE_BSS_COLOR_MASK),
1290 IEEE80211_RADIOTAP_HE_DATA3_BSS_COLOR);
1291 if (phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB &&
1292 phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB_EXT) {
1293 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_UL_DL_KNOWN);
1294 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1295 IWL_RX_PHY_DATA0_HE_UPLINK),
1296 IEEE80211_RADIOTAP_HE_DATA3_UL_DL);
1297 }
1298 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1299 IWL_RX_PHY_DATA0_HE_LDPC_EXT_SYM),
1300 IEEE80211_RADIOTAP_HE_DATA3_LDPC_XSYMSEG);
1301 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1302 IWL_RX_PHY_DATA0_HE_PRE_FEC_PAD_MASK),
1303 IEEE80211_RADIOTAP_HE_DATA5_PRE_FEC_PAD);
1304 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1305 IWL_RX_PHY_DATA0_HE_PE_DISAMBIG),
1306 IEEE80211_RADIOTAP_HE_DATA5_PE_DISAMBIG);
1307 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d1,
1308 IWL_RX_PHY_DATA1_HE_LTF_NUM_MASK),
1309 IEEE80211_RADIOTAP_HE_DATA5_NUM_LTF_SYMS);
1310 he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1311 IWL_RX_PHY_DATA0_HE_TXOP_DUR_MASK),
1312 IEEE80211_RADIOTAP_HE_DATA6_TXOP);
1313 he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1314 IWL_RX_PHY_DATA0_HE_DOPPLER),
1315 IEEE80211_RADIOTAP_HE_DATA6_DOPPLER);
1316 break;
1317 }
1318
1319 switch (phy_data->info_type) {
1320 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1321 case IWL_RX_PHY_INFO_TYPE_HE_MU:
1322 case IWL_RX_PHY_INFO_TYPE_HE_SU:
1323 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN);
1324 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1325 IWL_RX_PHY_DATA0_HE_SPATIAL_REUSE_MASK),
1326 IEEE80211_RADIOTAP_HE_DATA4_SU_MU_SPTL_REUSE);
1327 break;
1328 default:
1329 /* nothing here */
1330 break;
1331 }
1332
1333 switch (phy_data->info_type) {
1334 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1335 he_mu->flags1 |=
1336 le16_encode_bits(le16_get_bits(phy_data->d4,
1337 IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_DCM),
1338 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM);
1339 he_mu->flags1 |=
1340 le16_encode_bits(le16_get_bits(phy_data->d4,
1341 IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_MCS_MASK),
1342 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS);
1343 he_mu->flags2 |=
1344 le16_encode_bits(le16_get_bits(phy_data->d4,
1345 IWL_RX_PHY_DATA4_HE_MU_EXT_PREAMBLE_PUNC_TYPE_MASK),
1346 IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW);
1347 iwl_mvm_decode_he_mu_ext(mvm, phy_data, rate_n_flags, he_mu);
1348 /* fall through */
1349 case IWL_RX_PHY_INFO_TYPE_HE_MU:
1350 he_mu->flags2 |=
1351 le16_encode_bits(le32_get_bits(phy_data->d1,
1352 IWL_RX_PHY_DATA1_HE_MU_SIBG_SYM_OR_USER_NUM_MASK),
1353 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_SYMS_USERS);
1354 he_mu->flags2 |=
1355 le16_encode_bits(le32_get_bits(phy_data->d1,
1356 IWL_RX_PHY_DATA1_HE_MU_SIGB_COMPRESSION),
1357 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_COMP);
1358 /* fall through */
1359 case IWL_RX_PHY_INFO_TYPE_HE_TB:
1360 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
1361 iwl_mvm_decode_he_phy_ru_alloc(phy_data, rate_n_flags,
1362 he, he_mu, rx_status);
1363 break;
1364 case IWL_RX_PHY_INFO_TYPE_HE_SU:
1365 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BEAM_CHANGE_KNOWN);
1366 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1367 IWL_RX_PHY_DATA0_HE_BEAM_CHNG),
1368 IEEE80211_RADIOTAP_HE_DATA3_BEAM_CHANGE);
1369 break;
1370 default:
1371 /* nothing */
1372 break;
1373 }
1374 }
1375
iwl_mvm_rx_he(struct iwl_mvm * mvm,struct sk_buff * skb,struct iwl_mvm_rx_phy_data * phy_data,u32 rate_n_flags,u16 phy_info,int queue)1376 static void iwl_mvm_rx_he(struct iwl_mvm *mvm, struct sk_buff *skb,
1377 struct iwl_mvm_rx_phy_data *phy_data,
1378 u32 rate_n_flags, u16 phy_info, int queue)
1379 {
1380 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
1381 struct ieee80211_radiotap_he *he = NULL;
1382 struct ieee80211_radiotap_he_mu *he_mu = NULL;
1383 u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK;
1384 u8 stbc, ltf;
1385 static const struct ieee80211_radiotap_he known = {
1386 .data1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_DATA_MCS_KNOWN |
1387 IEEE80211_RADIOTAP_HE_DATA1_DATA_DCM_KNOWN |
1388 IEEE80211_RADIOTAP_HE_DATA1_STBC_KNOWN |
1389 IEEE80211_RADIOTAP_HE_DATA1_CODING_KNOWN),
1390 .data2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_GI_KNOWN |
1391 IEEE80211_RADIOTAP_HE_DATA2_TXBF_KNOWN),
1392 };
1393 static const struct ieee80211_radiotap_he_mu mu_known = {
1394 .flags1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS_KNOWN |
1395 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM_KNOWN |
1396 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_SYMS_USERS_KNOWN |
1397 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_COMP_KNOWN),
1398 .flags2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW_KNOWN |
1399 IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_KNOWN),
1400 };
1401
1402 he = skb_put_data(skb, &known, sizeof(known));
1403 rx_status->flag |= RX_FLAG_RADIOTAP_HE;
1404
1405 if (phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU ||
1406 phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU_EXT) {
1407 he_mu = skb_put_data(skb, &mu_known, sizeof(mu_known));
1408 rx_status->flag |= RX_FLAG_RADIOTAP_HE_MU;
1409 }
1410
1411 /* report the AMPDU-EOF bit on single frames */
1412 if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
1413 rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
1414 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
1415 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF))
1416 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
1417 }
1418
1419 if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
1420 iwl_mvm_decode_he_phy_data(mvm, phy_data, he, he_mu, rx_status,
1421 rate_n_flags, queue);
1422
1423 /* update aggregation data for monitor sake on default queue */
1424 if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) &&
1425 (phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
1426 bool toggle_bit = phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE;
1427
1428 /* toggle is switched whenever new aggregation starts */
1429 if (toggle_bit != mvm->ampdu_toggle) {
1430 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
1431 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF))
1432 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
1433 }
1434 }
1435
1436 if (he_type == RATE_MCS_HE_TYPE_EXT_SU &&
1437 rate_n_flags & RATE_MCS_HE_106T_MSK) {
1438 rx_status->bw = RATE_INFO_BW_HE_RU;
1439 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106;
1440 }
1441
1442 /* actually data is filled in mac80211 */
1443 if (he_type == RATE_MCS_HE_TYPE_SU ||
1444 he_type == RATE_MCS_HE_TYPE_EXT_SU)
1445 he->data1 |=
1446 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN);
1447
1448 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >> RATE_MCS_STBC_POS;
1449 rx_status->nss =
1450 ((rate_n_flags & RATE_VHT_MCS_NSS_MSK) >>
1451 RATE_VHT_MCS_NSS_POS) + 1;
1452 rx_status->rate_idx = rate_n_flags & RATE_VHT_MCS_RATE_CODE_MSK;
1453 rx_status->encoding = RX_ENC_HE;
1454 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
1455 if (rate_n_flags & RATE_MCS_BF_MSK)
1456 rx_status->enc_flags |= RX_ENC_FLAG_BF;
1457
1458 rx_status->he_dcm =
1459 !!(rate_n_flags & RATE_HE_DUAL_CARRIER_MODE_MSK);
1460
1461 #define CHECK_TYPE(F) \
1462 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F != \
1463 (RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS))
1464
1465 CHECK_TYPE(SU);
1466 CHECK_TYPE(EXT_SU);
1467 CHECK_TYPE(MU);
1468 CHECK_TYPE(TRIG);
1469
1470 he->data1 |= cpu_to_le16(he_type >> RATE_MCS_HE_TYPE_POS);
1471
1472 if (rate_n_flags & RATE_MCS_BF_MSK)
1473 he->data5 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA5_TXBF);
1474
1475 switch ((rate_n_flags & RATE_MCS_HE_GI_LTF_MSK) >>
1476 RATE_MCS_HE_GI_LTF_POS) {
1477 case 0:
1478 if (he_type == RATE_MCS_HE_TYPE_TRIG)
1479 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
1480 else
1481 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
1482 if (he_type == RATE_MCS_HE_TYPE_MU)
1483 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1484 else
1485 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X;
1486 break;
1487 case 1:
1488 if (he_type == RATE_MCS_HE_TYPE_TRIG)
1489 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
1490 else
1491 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
1492 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
1493 break;
1494 case 2:
1495 if (he_type == RATE_MCS_HE_TYPE_TRIG) {
1496 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2;
1497 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1498 } else {
1499 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
1500 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
1501 }
1502 break;
1503 case 3:
1504 if ((he_type == RATE_MCS_HE_TYPE_SU ||
1505 he_type == RATE_MCS_HE_TYPE_EXT_SU) &&
1506 rate_n_flags & RATE_MCS_SGI_MSK)
1507 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
1508 else
1509 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2;
1510 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1511 break;
1512 }
1513
1514 he->data5 |= le16_encode_bits(ltf,
1515 IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE);
1516 }
1517
iwl_mvm_decode_lsig(struct sk_buff * skb,struct iwl_mvm_rx_phy_data * phy_data)1518 static void iwl_mvm_decode_lsig(struct sk_buff *skb,
1519 struct iwl_mvm_rx_phy_data *phy_data)
1520 {
1521 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
1522 struct ieee80211_radiotap_lsig *lsig;
1523
1524 switch (phy_data->info_type) {
1525 case IWL_RX_PHY_INFO_TYPE_HT:
1526 case IWL_RX_PHY_INFO_TYPE_VHT_SU:
1527 case IWL_RX_PHY_INFO_TYPE_VHT_MU:
1528 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
1529 case IWL_RX_PHY_INFO_TYPE_HE_SU:
1530 case IWL_RX_PHY_INFO_TYPE_HE_MU:
1531 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1532 case IWL_RX_PHY_INFO_TYPE_HE_TB:
1533 lsig = skb_put(skb, sizeof(*lsig));
1534 lsig->data1 = cpu_to_le16(IEEE80211_RADIOTAP_LSIG_DATA1_LENGTH_KNOWN);
1535 lsig->data2 = le16_encode_bits(le32_get_bits(phy_data->d1,
1536 IWL_RX_PHY_DATA1_LSIG_LEN_MASK),
1537 IEEE80211_RADIOTAP_LSIG_DATA2_LENGTH);
1538 rx_status->flag |= RX_FLAG_RADIOTAP_LSIG;
1539 break;
1540 default:
1541 break;
1542 }
1543 }
1544
iwl_mvm_rx_mpdu_mq(struct iwl_mvm * mvm,struct napi_struct * napi,struct iwl_rx_cmd_buffer * rxb,int queue)1545 void iwl_mvm_rx_mpdu_mq(struct iwl_mvm *mvm, struct napi_struct *napi,
1546 struct iwl_rx_cmd_buffer *rxb, int queue)
1547 {
1548 struct ieee80211_rx_status *rx_status;
1549 struct iwl_rx_packet *pkt = rxb_addr(rxb);
1550 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
1551 struct ieee80211_hdr *hdr;
1552 u32 len = le16_to_cpu(desc->mpdu_len);
1553 u32 rate_n_flags, gp2_on_air_rise;
1554 u16 phy_info = le16_to_cpu(desc->phy_info);
1555 struct ieee80211_sta *sta = NULL;
1556 struct sk_buff *skb;
1557 u8 crypt_len = 0, channel, energy_a, energy_b;
1558 size_t desc_size;
1559 struct iwl_mvm_rx_phy_data phy_data = {
1560 .d4 = desc->phy_data4,
1561 .info_type = IWL_RX_PHY_INFO_TYPE_NONE,
1562 };
1563 bool csi = false;
1564
1565 if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status)))
1566 return;
1567
1568 if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_22560) {
1569 rate_n_flags = le32_to_cpu(desc->v3.rate_n_flags);
1570 channel = desc->v3.channel;
1571 gp2_on_air_rise = le32_to_cpu(desc->v3.gp2_on_air_rise);
1572 energy_a = desc->v3.energy_a;
1573 energy_b = desc->v3.energy_b;
1574 desc_size = sizeof(*desc);
1575
1576 phy_data.d0 = desc->v3.phy_data0;
1577 phy_data.d1 = desc->v3.phy_data1;
1578 phy_data.d2 = desc->v3.phy_data2;
1579 phy_data.d3 = desc->v3.phy_data3;
1580 } else {
1581 rate_n_flags = le32_to_cpu(desc->v1.rate_n_flags);
1582 channel = desc->v1.channel;
1583 gp2_on_air_rise = le32_to_cpu(desc->v1.gp2_on_air_rise);
1584 energy_a = desc->v1.energy_a;
1585 energy_b = desc->v1.energy_b;
1586 desc_size = IWL_RX_DESC_SIZE_V1;
1587
1588 phy_data.d0 = desc->v1.phy_data0;
1589 phy_data.d1 = desc->v1.phy_data1;
1590 phy_data.d2 = desc->v1.phy_data2;
1591 phy_data.d3 = desc->v1.phy_data3;
1592 }
1593
1594 if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
1595 phy_data.info_type =
1596 le32_get_bits(phy_data.d1,
1597 IWL_RX_PHY_DATA1_INFO_TYPE_MASK);
1598
1599 hdr = (void *)(pkt->data + desc_size);
1600 /* Dont use dev_alloc_skb(), we'll have enough headroom once
1601 * ieee80211_hdr pulled.
1602 */
1603 skb = alloc_skb(128, GFP_ATOMIC);
1604 if (!skb) {
1605 IWL_ERR(mvm, "alloc_skb failed\n");
1606 return;
1607 }
1608
1609 if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) {
1610 /*
1611 * If the device inserted padding it means that (it thought)
1612 * the 802.11 header wasn't a multiple of 4 bytes long. In
1613 * this case, reserve two bytes at the start of the SKB to
1614 * align the payload properly in case we end up copying it.
1615 */
1616 skb_reserve(skb, 2);
1617 }
1618
1619 rx_status = IEEE80211_SKB_RXCB(skb);
1620
1621 /* This may be overridden by iwl_mvm_rx_he() to HE_RU */
1622 switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) {
1623 case RATE_MCS_CHAN_WIDTH_20:
1624 break;
1625 case RATE_MCS_CHAN_WIDTH_40:
1626 rx_status->bw = RATE_INFO_BW_40;
1627 break;
1628 case RATE_MCS_CHAN_WIDTH_80:
1629 rx_status->bw = RATE_INFO_BW_80;
1630 break;
1631 case RATE_MCS_CHAN_WIDTH_160:
1632 rx_status->bw = RATE_INFO_BW_160;
1633 break;
1634 }
1635
1636 if (rate_n_flags & RATE_MCS_HE_MSK)
1637 iwl_mvm_rx_he(mvm, skb, &phy_data, rate_n_flags,
1638 phy_info, queue);
1639
1640 iwl_mvm_decode_lsig(skb, &phy_data);
1641
1642 rx_status = IEEE80211_SKB_RXCB(skb);
1643
1644 if (iwl_mvm_rx_crypto(mvm, hdr, rx_status, phy_info, desc,
1645 le32_to_cpu(pkt->len_n_flags), queue,
1646 &crypt_len)) {
1647 kfree_skb(skb);
1648 return;
1649 }
1650
1651 /*
1652 * Keep packets with CRC errors (and with overrun) for monitor mode
1653 * (otherwise the firmware discards them) but mark them as bad.
1654 */
1655 if (!(desc->status & cpu_to_le16(IWL_RX_MPDU_STATUS_CRC_OK)) ||
1656 !(desc->status & cpu_to_le16(IWL_RX_MPDU_STATUS_OVERRUN_OK))) {
1657 IWL_DEBUG_RX(mvm, "Bad CRC or FIFO: 0x%08X.\n",
1658 le16_to_cpu(desc->status));
1659 rx_status->flag |= RX_FLAG_FAILED_FCS_CRC;
1660 }
1661 /* set the preamble flag if appropriate */
1662 if (rate_n_flags & RATE_MCS_CCK_MSK &&
1663 phy_info & IWL_RX_MPDU_PHY_SHORT_PREAMBLE)
1664 rx_status->enc_flags |= RX_ENC_FLAG_SHORTPRE;
1665
1666 if (likely(!(phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD))) {
1667 u64 tsf_on_air_rise;
1668
1669 if (mvm->trans->trans_cfg->device_family >=
1670 IWL_DEVICE_FAMILY_22560)
1671 tsf_on_air_rise = le64_to_cpu(desc->v3.tsf_on_air_rise);
1672 else
1673 tsf_on_air_rise = le64_to_cpu(desc->v1.tsf_on_air_rise);
1674
1675 rx_status->mactime = tsf_on_air_rise;
1676 /* TSF as indicated by the firmware is at INA time */
1677 rx_status->flag |= RX_FLAG_MACTIME_PLCP_START;
1678 }
1679
1680 rx_status->device_timestamp = gp2_on_air_rise;
1681 rx_status->band = channel > 14 ? NL80211_BAND_5GHZ :
1682 NL80211_BAND_2GHZ;
1683 rx_status->freq = ieee80211_channel_to_frequency(channel,
1684 rx_status->band);
1685 iwl_mvm_get_signal_strength(mvm, rx_status, rate_n_flags, energy_a,
1686 energy_b);
1687
1688 /* update aggregation data for monitor sake on default queue */
1689 if (!queue && (phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
1690 bool toggle_bit = phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE;
1691
1692 rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
1693 /*
1694 * Toggle is switched whenever new aggregation starts. Make
1695 * sure ampdu_reference is never 0 so we can later use it to
1696 * see if the frame was really part of an A-MPDU or not.
1697 */
1698 if (toggle_bit != mvm->ampdu_toggle) {
1699 mvm->ampdu_ref++;
1700 if (mvm->ampdu_ref == 0)
1701 mvm->ampdu_ref++;
1702 mvm->ampdu_toggle = toggle_bit;
1703 }
1704 rx_status->ampdu_reference = mvm->ampdu_ref;
1705 }
1706
1707 if (unlikely(mvm->monitor_on))
1708 iwl_mvm_add_rtap_sniffer_config(mvm, skb);
1709
1710 rcu_read_lock();
1711
1712 if (desc->status & cpu_to_le16(IWL_RX_MPDU_STATUS_SRC_STA_FOUND)) {
1713 u8 id = desc->sta_id_flags & IWL_RX_MPDU_SIF_STA_ID_MASK;
1714
1715 if (!WARN_ON_ONCE(id >= ARRAY_SIZE(mvm->fw_id_to_mac_id))) {
1716 sta = rcu_dereference(mvm->fw_id_to_mac_id[id]);
1717 if (IS_ERR(sta))
1718 sta = NULL;
1719 }
1720 } else if (!is_multicast_ether_addr(hdr->addr2)) {
1721 /*
1722 * This is fine since we prevent two stations with the same
1723 * address from being added.
1724 */
1725 sta = ieee80211_find_sta_by_ifaddr(mvm->hw, hdr->addr2, NULL);
1726 }
1727
1728 if (sta) {
1729 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
1730 struct ieee80211_vif *tx_blocked_vif =
1731 rcu_dereference(mvm->csa_tx_blocked_vif);
1732 u8 baid = (u8)((le32_to_cpu(desc->reorder_data) &
1733 IWL_RX_MPDU_REORDER_BAID_MASK) >>
1734 IWL_RX_MPDU_REORDER_BAID_SHIFT);
1735 struct iwl_fw_dbg_trigger_tlv *trig;
1736 struct ieee80211_vif *vif = mvmsta->vif;
1737
1738 if (!mvm->tcm.paused && len >= sizeof(*hdr) &&
1739 !is_multicast_ether_addr(hdr->addr1) &&
1740 ieee80211_is_data(hdr->frame_control) &&
1741 time_after(jiffies, mvm->tcm.ts + MVM_TCM_PERIOD))
1742 schedule_delayed_work(&mvm->tcm.work, 0);
1743
1744 /*
1745 * We have tx blocked stations (with CS bit). If we heard
1746 * frames from a blocked station on a new channel we can
1747 * TX to it again.
1748 */
1749 if (unlikely(tx_blocked_vif) && tx_blocked_vif == vif) {
1750 struct iwl_mvm_vif *mvmvif =
1751 iwl_mvm_vif_from_mac80211(tx_blocked_vif);
1752
1753 if (mvmvif->csa_target_freq == rx_status->freq)
1754 iwl_mvm_sta_modify_disable_tx_ap(mvm, sta,
1755 false);
1756 }
1757
1758 rs_update_last_rssi(mvm, mvmsta, rx_status);
1759
1760 trig = iwl_fw_dbg_trigger_on(&mvm->fwrt,
1761 ieee80211_vif_to_wdev(vif),
1762 FW_DBG_TRIGGER_RSSI);
1763
1764 if (trig && ieee80211_is_beacon(hdr->frame_control)) {
1765 struct iwl_fw_dbg_trigger_low_rssi *rssi_trig;
1766 s32 rssi;
1767
1768 rssi_trig = (void *)trig->data;
1769 rssi = le32_to_cpu(rssi_trig->rssi);
1770
1771 if (rx_status->signal < rssi)
1772 iwl_fw_dbg_collect_trig(&mvm->fwrt, trig,
1773 NULL);
1774 }
1775
1776 if (ieee80211_is_data(hdr->frame_control))
1777 iwl_mvm_rx_csum(sta, skb, desc);
1778
1779 if (iwl_mvm_is_dup(sta, queue, rx_status, hdr, desc)) {
1780 kfree_skb(skb);
1781 goto out;
1782 }
1783
1784 /*
1785 * Our hardware de-aggregates AMSDUs but copies the mac header
1786 * as it to the de-aggregated MPDUs. We need to turn off the
1787 * AMSDU bit in the QoS control ourselves.
1788 * In addition, HW reverses addr3 and addr4 - reverse it back.
1789 */
1790 if ((desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) &&
1791 !WARN_ON(!ieee80211_is_data_qos(hdr->frame_control))) {
1792 u8 *qc = ieee80211_get_qos_ctl(hdr);
1793
1794 *qc &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT;
1795
1796 if (mvm->trans->trans_cfg->device_family ==
1797 IWL_DEVICE_FAMILY_9000) {
1798 iwl_mvm_flip_address(hdr->addr3);
1799
1800 if (ieee80211_has_a4(hdr->frame_control))
1801 iwl_mvm_flip_address(hdr->addr4);
1802 }
1803 }
1804 if (baid != IWL_RX_REORDER_DATA_INVALID_BAID) {
1805 u32 reorder_data = le32_to_cpu(desc->reorder_data);
1806
1807 iwl_mvm_agg_rx_received(mvm, reorder_data, baid);
1808 }
1809 }
1810
1811 if (!(rate_n_flags & RATE_MCS_CCK_MSK) &&
1812 rate_n_flags & RATE_MCS_SGI_MSK)
1813 rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
1814 if (rate_n_flags & RATE_HT_MCS_GF_MSK)
1815 rx_status->enc_flags |= RX_ENC_FLAG_HT_GF;
1816 if (rate_n_flags & RATE_MCS_LDPC_MSK)
1817 rx_status->enc_flags |= RX_ENC_FLAG_LDPC;
1818 if (rate_n_flags & RATE_MCS_HT_MSK) {
1819 u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >>
1820 RATE_MCS_STBC_POS;
1821 rx_status->encoding = RX_ENC_HT;
1822 rx_status->rate_idx = rate_n_flags & RATE_HT_MCS_INDEX_MSK;
1823 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
1824 } else if (rate_n_flags & RATE_MCS_VHT_MSK) {
1825 u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >>
1826 RATE_MCS_STBC_POS;
1827 rx_status->nss =
1828 ((rate_n_flags & RATE_VHT_MCS_NSS_MSK) >>
1829 RATE_VHT_MCS_NSS_POS) + 1;
1830 rx_status->rate_idx = rate_n_flags & RATE_VHT_MCS_RATE_CODE_MSK;
1831 rx_status->encoding = RX_ENC_VHT;
1832 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
1833 if (rate_n_flags & RATE_MCS_BF_MSK)
1834 rx_status->enc_flags |= RX_ENC_FLAG_BF;
1835 } else if (!(rate_n_flags & RATE_MCS_HE_MSK)) {
1836 int rate = iwl_mvm_legacy_rate_to_mac80211_idx(rate_n_flags,
1837 rx_status->band);
1838
1839 if (WARN(rate < 0 || rate > 0xFF,
1840 "Invalid rate flags 0x%x, band %d,\n",
1841 rate_n_flags, rx_status->band)) {
1842 kfree_skb(skb);
1843 goto out;
1844 }
1845 rx_status->rate_idx = rate;
1846 }
1847
1848 /* management stuff on default queue */
1849 if (!queue) {
1850 if (unlikely((ieee80211_is_beacon(hdr->frame_control) ||
1851 ieee80211_is_probe_resp(hdr->frame_control)) &&
1852 mvm->sched_scan_pass_all ==
1853 SCHED_SCAN_PASS_ALL_ENABLED))
1854 mvm->sched_scan_pass_all = SCHED_SCAN_PASS_ALL_FOUND;
1855
1856 if (unlikely(ieee80211_is_beacon(hdr->frame_control) ||
1857 ieee80211_is_probe_resp(hdr->frame_control)))
1858 rx_status->boottime_ns = ktime_get_boottime_ns();
1859 }
1860
1861 if (iwl_mvm_create_skb(mvm, skb, hdr, len, crypt_len, rxb)) {
1862 kfree_skb(skb);
1863 goto out;
1864 }
1865
1866 if (!iwl_mvm_reorder(mvm, napi, queue, sta, skb, desc))
1867 iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb, queue,
1868 sta, csi);
1869 out:
1870 rcu_read_unlock();
1871 }
1872
iwl_mvm_rx_monitor_no_data(struct iwl_mvm * mvm,struct napi_struct * napi,struct iwl_rx_cmd_buffer * rxb,int queue)1873 void iwl_mvm_rx_monitor_no_data(struct iwl_mvm *mvm, struct napi_struct *napi,
1874 struct iwl_rx_cmd_buffer *rxb, int queue)
1875 {
1876 struct ieee80211_rx_status *rx_status;
1877 struct iwl_rx_packet *pkt = rxb_addr(rxb);
1878 struct iwl_rx_no_data *desc = (void *)pkt->data;
1879 u32 rate_n_flags = le32_to_cpu(desc->rate);
1880 u32 gp2_on_air_rise = le32_to_cpu(desc->on_air_rise_time);
1881 u32 rssi = le32_to_cpu(desc->rssi);
1882 u32 info_type = le32_to_cpu(desc->info) & RX_NO_DATA_INFO_TYPE_MSK;
1883 u16 phy_info = IWL_RX_MPDU_PHY_TSF_OVERLOAD;
1884 struct ieee80211_sta *sta = NULL;
1885 struct sk_buff *skb;
1886 u8 channel, energy_a, energy_b;
1887 struct iwl_mvm_rx_phy_data phy_data = {
1888 .d0 = desc->phy_info[0],
1889 .info_type = IWL_RX_PHY_INFO_TYPE_NONE,
1890 };
1891
1892 if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status)))
1893 return;
1894
1895 energy_a = (rssi & RX_NO_DATA_CHAIN_A_MSK) >> RX_NO_DATA_CHAIN_A_POS;
1896 energy_b = (rssi & RX_NO_DATA_CHAIN_B_MSK) >> RX_NO_DATA_CHAIN_B_POS;
1897 channel = (rssi & RX_NO_DATA_CHANNEL_MSK) >> RX_NO_DATA_CHANNEL_POS;
1898
1899 phy_data.info_type =
1900 le32_get_bits(desc->phy_info[1],
1901 IWL_RX_PHY_DATA1_INFO_TYPE_MASK);
1902
1903 /* Dont use dev_alloc_skb(), we'll have enough headroom once
1904 * ieee80211_hdr pulled.
1905 */
1906 skb = alloc_skb(128, GFP_ATOMIC);
1907 if (!skb) {
1908 IWL_ERR(mvm, "alloc_skb failed\n");
1909 return;
1910 }
1911
1912 rx_status = IEEE80211_SKB_RXCB(skb);
1913
1914 /* 0-length PSDU */
1915 rx_status->flag |= RX_FLAG_NO_PSDU;
1916
1917 switch (info_type) {
1918 case RX_NO_DATA_INFO_TYPE_NDP:
1919 rx_status->zero_length_psdu_type =
1920 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_SOUNDING;
1921 break;
1922 case RX_NO_DATA_INFO_TYPE_MU_UNMATCHED:
1923 case RX_NO_DATA_INFO_TYPE_HE_TB_UNMATCHED:
1924 rx_status->zero_length_psdu_type =
1925 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_NOT_CAPTURED;
1926 break;
1927 default:
1928 rx_status->zero_length_psdu_type =
1929 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_VENDOR;
1930 break;
1931 }
1932
1933 /* This may be overridden by iwl_mvm_rx_he() to HE_RU */
1934 switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) {
1935 case RATE_MCS_CHAN_WIDTH_20:
1936 break;
1937 case RATE_MCS_CHAN_WIDTH_40:
1938 rx_status->bw = RATE_INFO_BW_40;
1939 break;
1940 case RATE_MCS_CHAN_WIDTH_80:
1941 rx_status->bw = RATE_INFO_BW_80;
1942 break;
1943 case RATE_MCS_CHAN_WIDTH_160:
1944 rx_status->bw = RATE_INFO_BW_160;
1945 break;
1946 }
1947
1948 if (rate_n_flags & RATE_MCS_HE_MSK)
1949 iwl_mvm_rx_he(mvm, skb, &phy_data, rate_n_flags,
1950 phy_info, queue);
1951
1952 iwl_mvm_decode_lsig(skb, &phy_data);
1953
1954 rx_status->device_timestamp = gp2_on_air_rise;
1955 rx_status->band = channel > 14 ? NL80211_BAND_5GHZ :
1956 NL80211_BAND_2GHZ;
1957 rx_status->freq = ieee80211_channel_to_frequency(channel,
1958 rx_status->band);
1959 iwl_mvm_get_signal_strength(mvm, rx_status, rate_n_flags, energy_a,
1960 energy_b);
1961
1962 rcu_read_lock();
1963
1964 if (!(rate_n_flags & RATE_MCS_CCK_MSK) &&
1965 rate_n_flags & RATE_MCS_SGI_MSK)
1966 rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
1967 if (rate_n_flags & RATE_HT_MCS_GF_MSK)
1968 rx_status->enc_flags |= RX_ENC_FLAG_HT_GF;
1969 if (rate_n_flags & RATE_MCS_LDPC_MSK)
1970 rx_status->enc_flags |= RX_ENC_FLAG_LDPC;
1971 if (rate_n_flags & RATE_MCS_HT_MSK) {
1972 u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >>
1973 RATE_MCS_STBC_POS;
1974 rx_status->encoding = RX_ENC_HT;
1975 rx_status->rate_idx = rate_n_flags & RATE_HT_MCS_INDEX_MSK;
1976 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
1977 } else if (rate_n_flags & RATE_MCS_VHT_MSK) {
1978 u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >>
1979 RATE_MCS_STBC_POS;
1980 rx_status->rate_idx = rate_n_flags & RATE_VHT_MCS_RATE_CODE_MSK;
1981 rx_status->encoding = RX_ENC_VHT;
1982 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
1983 if (rate_n_flags & RATE_MCS_BF_MSK)
1984 rx_status->enc_flags |= RX_ENC_FLAG_BF;
1985 /*
1986 * take the nss from the rx_vec since the rate_n_flags has
1987 * only 2 bits for the nss which gives a max of 4 ss but
1988 * there may be up to 8 spatial streams
1989 */
1990 rx_status->nss =
1991 le32_get_bits(desc->rx_vec[0],
1992 RX_NO_DATA_RX_VEC0_VHT_NSTS_MSK) + 1;
1993 } else if (rate_n_flags & RATE_MCS_HE_MSK) {
1994 rx_status->nss =
1995 le32_get_bits(desc->rx_vec[0],
1996 RX_NO_DATA_RX_VEC0_HE_NSTS_MSK) + 1;
1997 } else {
1998 int rate = iwl_mvm_legacy_rate_to_mac80211_idx(rate_n_flags,
1999 rx_status->band);
2000
2001 if (WARN(rate < 0 || rate > 0xFF,
2002 "Invalid rate flags 0x%x, band %d,\n",
2003 rate_n_flags, rx_status->band)) {
2004 kfree_skb(skb);
2005 goto out;
2006 }
2007 rx_status->rate_idx = rate;
2008 }
2009
2010 ieee80211_rx_napi(mvm->hw, sta, skb, napi);
2011 out:
2012 rcu_read_unlock();
2013 }
2014
iwl_mvm_rx_frame_release(struct iwl_mvm * mvm,struct napi_struct * napi,struct iwl_rx_cmd_buffer * rxb,int queue)2015 void iwl_mvm_rx_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi,
2016 struct iwl_rx_cmd_buffer *rxb, int queue)
2017 {
2018 struct iwl_rx_packet *pkt = rxb_addr(rxb);
2019 struct iwl_frame_release *release = (void *)pkt->data;
2020
2021 iwl_mvm_release_frames_from_notif(mvm, napi, release->baid,
2022 le16_to_cpu(release->nssn),
2023 queue, 0);
2024 }
2025
iwl_mvm_rx_bar_frame_release(struct iwl_mvm * mvm,struct napi_struct * napi,struct iwl_rx_cmd_buffer * rxb,int queue)2026 void iwl_mvm_rx_bar_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi,
2027 struct iwl_rx_cmd_buffer *rxb, int queue)
2028 {
2029 struct iwl_rx_packet *pkt = rxb_addr(rxb);
2030 struct iwl_bar_frame_release *release = (void *)pkt->data;
2031 unsigned int baid = le32_get_bits(release->ba_info,
2032 IWL_BAR_FRAME_RELEASE_BAID_MASK);
2033 unsigned int nssn = le32_get_bits(release->ba_info,
2034 IWL_BAR_FRAME_RELEASE_NSSN_MASK);
2035 unsigned int sta_id = le32_get_bits(release->sta_tid,
2036 IWL_BAR_FRAME_RELEASE_STA_MASK);
2037 unsigned int tid = le32_get_bits(release->sta_tid,
2038 IWL_BAR_FRAME_RELEASE_TID_MASK);
2039 struct iwl_mvm_baid_data *baid_data;
2040
2041 if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID ||
2042 baid >= ARRAY_SIZE(mvm->baid_map)))
2043 return;
2044
2045 rcu_read_lock();
2046 baid_data = rcu_dereference(mvm->baid_map[baid]);
2047 if (!baid_data) {
2048 IWL_DEBUG_RX(mvm,
2049 "Got valid BAID %d but not allocated, invalid BAR release!\n",
2050 baid);
2051 goto out;
2052 }
2053
2054 if (WARN(tid != baid_data->tid || sta_id != baid_data->sta_id,
2055 "baid 0x%x is mapped to sta:%d tid:%d, but BAR release received for sta:%d tid:%d\n",
2056 baid, baid_data->sta_id, baid_data->tid, sta_id,
2057 tid))
2058 goto out;
2059
2060 iwl_mvm_release_frames_from_notif(mvm, napi, baid, nssn, queue, 0);
2061 out:
2062 rcu_read_unlock();
2063 }
2064