1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /*
3 * Copyright (C) 2012-2014, 2018-2023 Intel Corporation
4 * Copyright (C) 2013-2015 Intel Mobile Communications GmbH
5 * Copyright (C) 2015-2017 Intel Deutschland GmbH
6 */
7 #include <linux/etherdevice.h>
8 #include <linux/skbuff.h>
9 #include "iwl-trans.h"
10 #include "mvm.h"
11 #include "fw-api.h"
12 #include "time-sync.h"
13
iwl_mvm_check_pn(struct iwl_mvm * mvm,struct sk_buff * skb,int queue,struct ieee80211_sta * sta)14 static inline int iwl_mvm_check_pn(struct iwl_mvm *mvm, struct sk_buff *skb,
15 int queue, struct ieee80211_sta *sta)
16 {
17 struct iwl_mvm_sta *mvmsta;
18 struct ieee80211_hdr *hdr = (void *)skb_mac_header(skb);
19 struct ieee80211_rx_status *stats = IEEE80211_SKB_RXCB(skb);
20 struct iwl_mvm_key_pn *ptk_pn;
21 int res;
22 u8 tid, keyidx;
23 u8 pn[IEEE80211_CCMP_PN_LEN];
24 u8 *extiv;
25
26 /* do PN checking */
27
28 /* multicast and non-data only arrives on default queue */
29 if (!ieee80211_is_data(hdr->frame_control) ||
30 is_multicast_ether_addr(hdr->addr1))
31 return 0;
32
33 /* do not check PN for open AP */
34 if (!(stats->flag & RX_FLAG_DECRYPTED))
35 return 0;
36
37 /*
38 * avoid checking for default queue - we don't want to replicate
39 * all the logic that's necessary for checking the PN on fragmented
40 * frames, leave that to mac80211
41 */
42 if (queue == 0)
43 return 0;
44
45 /* if we are here - this for sure is either CCMP or GCMP */
46 if (IS_ERR_OR_NULL(sta)) {
47 IWL_DEBUG_DROP(mvm,
48 "expected hw-decrypted unicast frame for station\n");
49 return -1;
50 }
51
52 mvmsta = iwl_mvm_sta_from_mac80211(sta);
53
54 extiv = (u8 *)hdr + ieee80211_hdrlen(hdr->frame_control);
55 keyidx = extiv[3] >> 6;
56
57 ptk_pn = rcu_dereference(mvmsta->ptk_pn[keyidx]);
58 if (!ptk_pn)
59 return -1;
60
61 if (ieee80211_is_data_qos(hdr->frame_control))
62 tid = ieee80211_get_tid(hdr);
63 else
64 tid = 0;
65
66 /* we don't use HCCA/802.11 QoS TSPECs, so drop such frames */
67 if (tid >= IWL_MAX_TID_COUNT)
68 return -1;
69
70 /* load pn */
71 pn[0] = extiv[7];
72 pn[1] = extiv[6];
73 pn[2] = extiv[5];
74 pn[3] = extiv[4];
75 pn[4] = extiv[1];
76 pn[5] = extiv[0];
77
78 res = memcmp(pn, ptk_pn->q[queue].pn[tid], IEEE80211_CCMP_PN_LEN);
79 if (res < 0)
80 return -1;
81 if (!res && !(stats->flag & RX_FLAG_ALLOW_SAME_PN))
82 return -1;
83
84 memcpy(ptk_pn->q[queue].pn[tid], pn, IEEE80211_CCMP_PN_LEN);
85 stats->flag |= RX_FLAG_PN_VALIDATED;
86
87 return 0;
88 }
89
90 /* iwl_mvm_create_skb Adds the rxb to a new skb */
iwl_mvm_create_skb(struct iwl_mvm * mvm,struct sk_buff * skb,struct ieee80211_hdr * hdr,u16 len,u8 crypt_len,struct iwl_rx_cmd_buffer * rxb)91 static int iwl_mvm_create_skb(struct iwl_mvm *mvm, struct sk_buff *skb,
92 struct ieee80211_hdr *hdr, u16 len, u8 crypt_len,
93 struct iwl_rx_cmd_buffer *rxb)
94 {
95 struct iwl_rx_packet *pkt = rxb_addr(rxb);
96 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
97 unsigned int headlen, fraglen, pad_len = 0;
98 unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control);
99 u8 mic_crc_len = u8_get_bits(desc->mac_flags1,
100 IWL_RX_MPDU_MFLG1_MIC_CRC_LEN_MASK) << 1;
101
102 if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) {
103 len -= 2;
104 pad_len = 2;
105 }
106
107 /*
108 * For non monitor interface strip the bytes the RADA might not have
109 * removed (it might be disabled, e.g. for mgmt frames). As a monitor
110 * interface cannot exist with other interfaces, this removal is safe
111 * and sufficient, in monitor mode there's no decryption being done.
112 */
113 if (len > mic_crc_len && !ieee80211_hw_check(mvm->hw, RX_INCLUDES_FCS))
114 len -= mic_crc_len;
115
116 /* If frame is small enough to fit in skb->head, pull it completely.
117 * If not, only pull ieee80211_hdr (including crypto if present, and
118 * an additional 8 bytes for SNAP/ethertype, see below) so that
119 * splice() or TCP coalesce are more efficient.
120 *
121 * Since, in addition, ieee80211_data_to_8023() always pull in at
122 * least 8 bytes (possibly more for mesh) we can do the same here
123 * to save the cost of doing it later. That still doesn't pull in
124 * the actual IP header since the typical case has a SNAP header.
125 * If the latter changes (there are efforts in the standards group
126 * to do so) we should revisit this and ieee80211_data_to_8023().
127 */
128 headlen = (len <= skb_tailroom(skb)) ? len :
129 hdrlen + crypt_len + 8;
130
131 /* The firmware may align the packet to DWORD.
132 * The padding is inserted after the IV.
133 * After copying the header + IV skip the padding if
134 * present before copying packet data.
135 */
136 hdrlen += crypt_len;
137
138 if (unlikely(headlen < hdrlen))
139 return -EINVAL;
140
141 /* Since data doesn't move data while putting data on skb and that is
142 * the only way we use, data + len is the next place that hdr would be put
143 */
144 skb_set_mac_header(skb, skb->len);
145 skb_put_data(skb, hdr, hdrlen);
146 skb_put_data(skb, (u8 *)hdr + hdrlen + pad_len, headlen - hdrlen);
147
148 /*
149 * If we did CHECKSUM_COMPLETE, the hardware only does it right for
150 * certain cases and starts the checksum after the SNAP. Check if
151 * this is the case - it's easier to just bail out to CHECKSUM_NONE
152 * in the cases the hardware didn't handle, since it's rare to see
153 * such packets, even though the hardware did calculate the checksum
154 * in this case, just starting after the MAC header instead.
155 *
156 * Starting from Bz hardware, it calculates starting directly after
157 * the MAC header, so that matches mac80211's expectation.
158 */
159 if (skb->ip_summed == CHECKSUM_COMPLETE) {
160 struct {
161 u8 hdr[6];
162 __be16 type;
163 } __packed *shdr = (void *)((u8 *)hdr + hdrlen + pad_len);
164
165 if (unlikely(headlen - hdrlen < sizeof(*shdr) ||
166 !ether_addr_equal(shdr->hdr, rfc1042_header) ||
167 (shdr->type != htons(ETH_P_IP) &&
168 shdr->type != htons(ETH_P_ARP) &&
169 shdr->type != htons(ETH_P_IPV6) &&
170 shdr->type != htons(ETH_P_8021Q) &&
171 shdr->type != htons(ETH_P_PAE) &&
172 shdr->type != htons(ETH_P_TDLS))))
173 skb->ip_summed = CHECKSUM_NONE;
174 else if (mvm->trans->trans_cfg->device_family < IWL_DEVICE_FAMILY_BZ)
175 /* mac80211 assumes full CSUM including SNAP header */
176 skb_postpush_rcsum(skb, shdr, sizeof(*shdr));
177 }
178
179 fraglen = len - headlen;
180
181 if (fraglen) {
182 int offset = (u8 *)hdr + headlen + pad_len -
183 (u8 *)rxb_addr(rxb) + rxb_offset(rxb);
184
185 skb_add_rx_frag(skb, 0, rxb_steal_page(rxb), offset,
186 fraglen, rxb->truesize);
187 }
188
189 return 0;
190 }
191
192 /* put a TLV on the skb and return data pointer
193 *
194 * Also pad to 4 the len and zero out all data part
195 */
196 static void *
iwl_mvm_radiotap_put_tlv(struct sk_buff * skb,u16 type,u16 len)197 iwl_mvm_radiotap_put_tlv(struct sk_buff *skb, u16 type, u16 len)
198 {
199 struct ieee80211_radiotap_tlv *tlv;
200
201 tlv = skb_put(skb, sizeof(*tlv));
202 tlv->type = cpu_to_le16(type);
203 tlv->len = cpu_to_le16(len);
204 return skb_put_zero(skb, ALIGN(len, 4));
205 }
206
iwl_mvm_add_rtap_sniffer_config(struct iwl_mvm * mvm,struct sk_buff * skb)207 static void iwl_mvm_add_rtap_sniffer_config(struct iwl_mvm *mvm,
208 struct sk_buff *skb)
209 {
210 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
211 struct ieee80211_radiotap_vendor_content *radiotap;
212 const u16 vendor_data_len = sizeof(mvm->cur_aid);
213
214 if (!mvm->cur_aid)
215 return;
216
217 radiotap = iwl_mvm_radiotap_put_tlv(skb,
218 IEEE80211_RADIOTAP_VENDOR_NAMESPACE,
219 sizeof(*radiotap) + vendor_data_len);
220
221 /* Intel OUI */
222 radiotap->oui[0] = 0xf6;
223 radiotap->oui[1] = 0x54;
224 radiotap->oui[2] = 0x25;
225 /* radiotap sniffer config sub-namespace */
226 radiotap->oui_subtype = 1;
227 radiotap->vendor_type = 0;
228
229 /* fill the data now */
230 memcpy(radiotap->data, &mvm->cur_aid, sizeof(mvm->cur_aid));
231
232 rx_status->flag |= RX_FLAG_RADIOTAP_TLV_AT_END;
233 }
234
235 /* iwl_mvm_pass_packet_to_mac80211 - passes the packet for mac80211 */
iwl_mvm_pass_packet_to_mac80211(struct iwl_mvm * mvm,struct napi_struct * napi,struct sk_buff * skb,int queue,struct ieee80211_sta * sta,struct ieee80211_link_sta * link_sta)236 static void iwl_mvm_pass_packet_to_mac80211(struct iwl_mvm *mvm,
237 struct napi_struct *napi,
238 struct sk_buff *skb, int queue,
239 struct ieee80211_sta *sta,
240 struct ieee80211_link_sta *link_sta)
241 {
242 if (unlikely(iwl_mvm_check_pn(mvm, skb, queue, sta))) {
243 kfree_skb(skb);
244 return;
245 }
246
247 if (sta && sta->valid_links && link_sta) {
248 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
249
250 rx_status->link_valid = 1;
251 rx_status->link_id = link_sta->link_id;
252 }
253
254 ieee80211_rx_napi(mvm->hw, sta, skb, napi);
255 }
256
iwl_mvm_get_signal_strength(struct iwl_mvm * mvm,struct ieee80211_rx_status * rx_status,u32 rate_n_flags,int energy_a,int energy_b)257 static void iwl_mvm_get_signal_strength(struct iwl_mvm *mvm,
258 struct ieee80211_rx_status *rx_status,
259 u32 rate_n_flags, int energy_a,
260 int energy_b)
261 {
262 int max_energy;
263 u32 rate_flags = rate_n_flags;
264
265 energy_a = energy_a ? -energy_a : S8_MIN;
266 energy_b = energy_b ? -energy_b : S8_MIN;
267 max_energy = max(energy_a, energy_b);
268
269 IWL_DEBUG_STATS(mvm, "energy In A %d B %d, and max %d\n",
270 energy_a, energy_b, max_energy);
271
272 rx_status->signal = max_energy;
273 rx_status->chains =
274 (rate_flags & RATE_MCS_ANT_AB_MSK) >> RATE_MCS_ANT_POS;
275 rx_status->chain_signal[0] = energy_a;
276 rx_status->chain_signal[1] = energy_b;
277 }
278
iwl_mvm_rx_mgmt_prot(struct ieee80211_sta * sta,struct ieee80211_hdr * hdr,struct iwl_rx_mpdu_desc * desc,u32 status,struct ieee80211_rx_status * stats)279 static int iwl_mvm_rx_mgmt_prot(struct ieee80211_sta *sta,
280 struct ieee80211_hdr *hdr,
281 struct iwl_rx_mpdu_desc *desc,
282 u32 status,
283 struct ieee80211_rx_status *stats)
284 {
285 struct iwl_mvm_sta *mvmsta;
286 struct iwl_mvm_vif *mvmvif;
287 u8 keyid;
288 struct ieee80211_key_conf *key;
289 u32 len = le16_to_cpu(desc->mpdu_len);
290 const u8 *frame = (void *)hdr;
291
292 if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) == IWL_RX_MPDU_STATUS_SEC_NONE)
293 return 0;
294
295 /*
296 * For non-beacon, we don't really care. But beacons may
297 * be filtered out, and we thus need the firmware's replay
298 * detection, otherwise beacons the firmware previously
299 * filtered could be replayed, or something like that, and
300 * it can filter a lot - though usually only if nothing has
301 * changed.
302 */
303 if (!ieee80211_is_beacon(hdr->frame_control))
304 return 0;
305
306 /* key mismatch - will also report !MIC_OK but we shouldn't count it */
307 if (!(status & IWL_RX_MPDU_STATUS_KEY_VALID))
308 return -1;
309
310 /* good cases */
311 if (likely(status & IWL_RX_MPDU_STATUS_MIC_OK &&
312 !(status & IWL_RX_MPDU_STATUS_REPLAY_ERROR))) {
313 stats->flag |= RX_FLAG_DECRYPTED;
314 return 0;
315 }
316
317 if (!sta)
318 return -1;
319
320 mvmsta = iwl_mvm_sta_from_mac80211(sta);
321
322 mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif);
323
324 /*
325 * both keys will have the same cipher and MIC length, use
326 * whichever one is available
327 */
328 key = rcu_dereference(mvmvif->bcn_prot.keys[0]);
329 if (!key) {
330 key = rcu_dereference(mvmvif->bcn_prot.keys[1]);
331 if (!key)
332 return -1;
333 }
334
335 if (len < key->icv_len + IEEE80211_GMAC_PN_LEN + 2)
336 return -1;
337
338 /* get the real key ID */
339 keyid = frame[len - key->icv_len - IEEE80211_GMAC_PN_LEN - 2];
340 /* and if that's the other key, look it up */
341 if (keyid != key->keyidx) {
342 /*
343 * shouldn't happen since firmware checked, but be safe
344 * in case the MIC length is wrong too, for example
345 */
346 if (keyid != 6 && keyid != 7)
347 return -1;
348 key = rcu_dereference(mvmvif->bcn_prot.keys[keyid - 6]);
349 if (!key)
350 return -1;
351 }
352
353 /* Report status to mac80211 */
354 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK))
355 ieee80211_key_mic_failure(key);
356 else if (status & IWL_RX_MPDU_STATUS_REPLAY_ERROR)
357 ieee80211_key_replay(key);
358
359 return -1;
360 }
361
iwl_mvm_rx_crypto(struct iwl_mvm * mvm,struct ieee80211_sta * sta,struct ieee80211_hdr * hdr,struct ieee80211_rx_status * stats,u16 phy_info,struct iwl_rx_mpdu_desc * desc,u32 pkt_flags,int queue,u8 * crypt_len)362 static int iwl_mvm_rx_crypto(struct iwl_mvm *mvm, struct ieee80211_sta *sta,
363 struct ieee80211_hdr *hdr,
364 struct ieee80211_rx_status *stats, u16 phy_info,
365 struct iwl_rx_mpdu_desc *desc,
366 u32 pkt_flags, int queue, u8 *crypt_len)
367 {
368 u32 status = le32_to_cpu(desc->status);
369
370 /*
371 * Drop UNKNOWN frames in aggregation, unless in monitor mode
372 * (where we don't have the keys).
373 * We limit this to aggregation because in TKIP this is a valid
374 * scenario, since we may not have the (correct) TTAK (phase 1
375 * key) in the firmware.
376 */
377 if (phy_info & IWL_RX_MPDU_PHY_AMPDU &&
378 (status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
379 IWL_RX_MPDU_STATUS_SEC_UNKNOWN && !mvm->monitor_on)
380 return -1;
381
382 if (unlikely(ieee80211_is_mgmt(hdr->frame_control) &&
383 !ieee80211_has_protected(hdr->frame_control)))
384 return iwl_mvm_rx_mgmt_prot(sta, hdr, desc, status, stats);
385
386 if (!ieee80211_has_protected(hdr->frame_control) ||
387 (status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
388 IWL_RX_MPDU_STATUS_SEC_NONE)
389 return 0;
390
391 /* TODO: handle packets encrypted with unknown alg */
392
393 switch (status & IWL_RX_MPDU_STATUS_SEC_MASK) {
394 case IWL_RX_MPDU_STATUS_SEC_CCM:
395 case IWL_RX_MPDU_STATUS_SEC_GCM:
396 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != IEEE80211_GCMP_PN_LEN);
397 /* alg is CCM: check MIC only */
398 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK))
399 return -1;
400
401 stats->flag |= RX_FLAG_DECRYPTED | RX_FLAG_MIC_STRIPPED;
402 *crypt_len = IEEE80211_CCMP_HDR_LEN;
403 return 0;
404 case IWL_RX_MPDU_STATUS_SEC_TKIP:
405 /* Don't drop the frame and decrypt it in SW */
406 if (!fw_has_api(&mvm->fw->ucode_capa,
407 IWL_UCODE_TLV_API_DEPRECATE_TTAK) &&
408 !(status & IWL_RX_MPDU_RES_STATUS_TTAK_OK))
409 return 0;
410
411 if (mvm->trans->trans_cfg->gen2 &&
412 !(status & RX_MPDU_RES_STATUS_MIC_OK))
413 stats->flag |= RX_FLAG_MMIC_ERROR;
414
415 *crypt_len = IEEE80211_TKIP_IV_LEN;
416 fallthrough;
417 case IWL_RX_MPDU_STATUS_SEC_WEP:
418 if (!(status & IWL_RX_MPDU_STATUS_ICV_OK))
419 return -1;
420
421 stats->flag |= RX_FLAG_DECRYPTED;
422 if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
423 IWL_RX_MPDU_STATUS_SEC_WEP)
424 *crypt_len = IEEE80211_WEP_IV_LEN;
425
426 if (pkt_flags & FH_RSCSR_RADA_EN) {
427 stats->flag |= RX_FLAG_ICV_STRIPPED;
428 if (mvm->trans->trans_cfg->gen2)
429 stats->flag |= RX_FLAG_MMIC_STRIPPED;
430 }
431
432 return 0;
433 case IWL_RX_MPDU_STATUS_SEC_EXT_ENC:
434 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK))
435 return -1;
436 stats->flag |= RX_FLAG_DECRYPTED;
437 return 0;
438 case RX_MPDU_RES_STATUS_SEC_CMAC_GMAC_ENC:
439 break;
440 default:
441 /*
442 * Sometimes we can get frames that were not decrypted
443 * because the firmware didn't have the keys yet. This can
444 * happen after connection where we can get multicast frames
445 * before the GTK is installed.
446 * Silently drop those frames.
447 * Also drop un-decrypted frames in monitor mode.
448 */
449 if (!is_multicast_ether_addr(hdr->addr1) &&
450 !mvm->monitor_on && net_ratelimit())
451 IWL_WARN(mvm, "Unhandled alg: 0x%x\n", status);
452 }
453
454 return 0;
455 }
456
iwl_mvm_rx_csum(struct iwl_mvm * mvm,struct ieee80211_sta * sta,struct sk_buff * skb,struct iwl_rx_packet * pkt)457 static void iwl_mvm_rx_csum(struct iwl_mvm *mvm,
458 struct ieee80211_sta *sta,
459 struct sk_buff *skb,
460 struct iwl_rx_packet *pkt)
461 {
462 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
463
464 if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
465 if (pkt->len_n_flags & cpu_to_le32(FH_RSCSR_RPA_EN)) {
466 u16 hwsum = be16_to_cpu(desc->v3.raw_xsum);
467
468 skb->ip_summed = CHECKSUM_COMPLETE;
469 skb->csum = csum_unfold(~(__force __sum16)hwsum);
470 }
471 } else {
472 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
473 struct iwl_mvm_vif *mvmvif;
474 u16 flags = le16_to_cpu(desc->l3l4_flags);
475 u8 l3_prot = (u8)((flags & IWL_RX_L3L4_L3_PROTO_MASK) >>
476 IWL_RX_L3_PROTO_POS);
477
478 mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif);
479
480 if (mvmvif->features & NETIF_F_RXCSUM &&
481 flags & IWL_RX_L3L4_TCP_UDP_CSUM_OK &&
482 (flags & IWL_RX_L3L4_IP_HDR_CSUM_OK ||
483 l3_prot == IWL_RX_L3_TYPE_IPV6 ||
484 l3_prot == IWL_RX_L3_TYPE_IPV6_FRAG))
485 skb->ip_summed = CHECKSUM_UNNECESSARY;
486 }
487 }
488
489 /*
490 * returns true if a packet is a duplicate or invalid tid and should be dropped.
491 * Updates AMSDU PN tracking info
492 */
iwl_mvm_is_dup(struct ieee80211_sta * sta,int queue,struct ieee80211_rx_status * rx_status,struct ieee80211_hdr * hdr,struct iwl_rx_mpdu_desc * desc)493 static bool iwl_mvm_is_dup(struct ieee80211_sta *sta, int queue,
494 struct ieee80211_rx_status *rx_status,
495 struct ieee80211_hdr *hdr,
496 struct iwl_rx_mpdu_desc *desc)
497 {
498 struct iwl_mvm_sta *mvm_sta;
499 struct iwl_mvm_rxq_dup_data *dup_data;
500 u8 tid, sub_frame_idx;
501
502 if (WARN_ON(IS_ERR_OR_NULL(sta)))
503 return false;
504
505 mvm_sta = iwl_mvm_sta_from_mac80211(sta);
506 dup_data = &mvm_sta->dup_data[queue];
507
508 /*
509 * Drop duplicate 802.11 retransmissions
510 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
511 */
512 if (ieee80211_is_ctl(hdr->frame_control) ||
513 ieee80211_is_qos_nullfunc(hdr->frame_control) ||
514 is_multicast_ether_addr(hdr->addr1)) {
515 rx_status->flag |= RX_FLAG_DUP_VALIDATED;
516 return false;
517 }
518
519 if (ieee80211_is_data_qos(hdr->frame_control)) {
520 /* frame has qos control */
521 tid = ieee80211_get_tid(hdr);
522 if (tid >= IWL_MAX_TID_COUNT)
523 return true;
524 } else {
525 tid = IWL_MAX_TID_COUNT;
526 }
527
528 /* If this wasn't a part of an A-MSDU the sub-frame index will be 0 */
529 sub_frame_idx = desc->amsdu_info &
530 IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK;
531
532 if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
533 dup_data->last_seq[tid] == hdr->seq_ctrl &&
534 dup_data->last_sub_frame[tid] >= sub_frame_idx))
535 return true;
536
537 /* Allow same PN as the first subframe for following sub frames */
538 if (dup_data->last_seq[tid] == hdr->seq_ctrl &&
539 sub_frame_idx > dup_data->last_sub_frame[tid] &&
540 desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU)
541 rx_status->flag |= RX_FLAG_ALLOW_SAME_PN;
542
543 dup_data->last_seq[tid] = hdr->seq_ctrl;
544 dup_data->last_sub_frame[tid] = sub_frame_idx;
545
546 rx_status->flag |= RX_FLAG_DUP_VALIDATED;
547
548 return false;
549 }
550
551 /*
552 * Returns true if sn2 - buffer_size < sn1 < sn2.
553 * To be used only in order to compare reorder buffer head with NSSN.
554 * We fully trust NSSN unless it is behind us due to reorder timeout.
555 * Reorder timeout can only bring us up to buffer_size SNs ahead of NSSN.
556 */
iwl_mvm_is_sn_less(u16 sn1,u16 sn2,u16 buffer_size)557 static bool iwl_mvm_is_sn_less(u16 sn1, u16 sn2, u16 buffer_size)
558 {
559 return ieee80211_sn_less(sn1, sn2) &&
560 !ieee80211_sn_less(sn1, sn2 - buffer_size);
561 }
562
iwl_mvm_sync_nssn(struct iwl_mvm * mvm,u8 baid,u16 nssn)563 static void iwl_mvm_sync_nssn(struct iwl_mvm *mvm, u8 baid, u16 nssn)
564 {
565 if (IWL_MVM_USE_NSSN_SYNC) {
566 struct iwl_mvm_nssn_sync_data notif = {
567 .baid = baid,
568 .nssn = nssn,
569 };
570
571 iwl_mvm_sync_rx_queues_internal(mvm, IWL_MVM_RXQ_NSSN_SYNC, false,
572 ¬if, sizeof(notif));
573 }
574 }
575
576 #define RX_REORDER_BUF_TIMEOUT_MQ (HZ / 10)
577
578 enum iwl_mvm_release_flags {
579 IWL_MVM_RELEASE_SEND_RSS_SYNC = BIT(0),
580 IWL_MVM_RELEASE_FROM_RSS_SYNC = BIT(1),
581 };
582
iwl_mvm_release_frames(struct iwl_mvm * mvm,struct ieee80211_sta * sta,struct napi_struct * napi,struct iwl_mvm_baid_data * baid_data,struct iwl_mvm_reorder_buffer * reorder_buf,u16 nssn,u32 flags)583 static void iwl_mvm_release_frames(struct iwl_mvm *mvm,
584 struct ieee80211_sta *sta,
585 struct napi_struct *napi,
586 struct iwl_mvm_baid_data *baid_data,
587 struct iwl_mvm_reorder_buffer *reorder_buf,
588 u16 nssn, u32 flags)
589 {
590 struct iwl_mvm_reorder_buf_entry *entries =
591 &baid_data->entries[reorder_buf->queue *
592 baid_data->entries_per_queue];
593 u16 ssn = reorder_buf->head_sn;
594
595 lockdep_assert_held(&reorder_buf->lock);
596
597 /*
598 * We keep the NSSN not too far behind, if we are sync'ing it and it
599 * is more than 2048 ahead of us, it must be behind us. Discard it.
600 * This can happen if the queue that hit the 0 / 2048 seqno was lagging
601 * behind and this queue already processed packets. The next if
602 * would have caught cases where this queue would have processed less
603 * than 64 packets, but it may have processed more than 64 packets.
604 */
605 if ((flags & IWL_MVM_RELEASE_FROM_RSS_SYNC) &&
606 ieee80211_sn_less(nssn, ssn))
607 goto set_timer;
608
609 /* ignore nssn smaller than head sn - this can happen due to timeout */
610 if (iwl_mvm_is_sn_less(nssn, ssn, reorder_buf->buf_size))
611 goto set_timer;
612
613 while (iwl_mvm_is_sn_less(ssn, nssn, reorder_buf->buf_size)) {
614 int index = ssn % reorder_buf->buf_size;
615 struct sk_buff_head *skb_list = &entries[index].e.frames;
616 struct sk_buff *skb;
617
618 ssn = ieee80211_sn_inc(ssn);
619 if ((flags & IWL_MVM_RELEASE_SEND_RSS_SYNC) &&
620 (ssn == 2048 || ssn == 0))
621 iwl_mvm_sync_nssn(mvm, baid_data->baid, ssn);
622
623 /*
624 * Empty the list. Will have more than one frame for A-MSDU.
625 * Empty list is valid as well since nssn indicates frames were
626 * received.
627 */
628 while ((skb = __skb_dequeue(skb_list))) {
629 iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb,
630 reorder_buf->queue,
631 sta, NULL /* FIXME */);
632 reorder_buf->num_stored--;
633 }
634 }
635 reorder_buf->head_sn = nssn;
636
637 set_timer:
638 if (reorder_buf->num_stored && !reorder_buf->removed) {
639 u16 index = reorder_buf->head_sn % reorder_buf->buf_size;
640
641 while (skb_queue_empty(&entries[index].e.frames))
642 index = (index + 1) % reorder_buf->buf_size;
643 /* modify timer to match next frame's expiration time */
644 mod_timer(&reorder_buf->reorder_timer,
645 entries[index].e.reorder_time + 1 +
646 RX_REORDER_BUF_TIMEOUT_MQ);
647 } else {
648 del_timer(&reorder_buf->reorder_timer);
649 }
650 }
651
iwl_mvm_reorder_timer_expired(struct timer_list * t)652 void iwl_mvm_reorder_timer_expired(struct timer_list *t)
653 {
654 struct iwl_mvm_reorder_buffer *buf = from_timer(buf, t, reorder_timer);
655 struct iwl_mvm_baid_data *baid_data =
656 iwl_mvm_baid_data_from_reorder_buf(buf);
657 struct iwl_mvm_reorder_buf_entry *entries =
658 &baid_data->entries[buf->queue * baid_data->entries_per_queue];
659 int i;
660 u16 sn = 0, index = 0;
661 bool expired = false;
662 bool cont = false;
663
664 spin_lock(&buf->lock);
665
666 if (!buf->num_stored || buf->removed) {
667 spin_unlock(&buf->lock);
668 return;
669 }
670
671 for (i = 0; i < buf->buf_size ; i++) {
672 index = (buf->head_sn + i) % buf->buf_size;
673
674 if (skb_queue_empty(&entries[index].e.frames)) {
675 /*
676 * If there is a hole and the next frame didn't expire
677 * we want to break and not advance SN
678 */
679 cont = false;
680 continue;
681 }
682 if (!cont &&
683 !time_after(jiffies, entries[index].e.reorder_time +
684 RX_REORDER_BUF_TIMEOUT_MQ))
685 break;
686
687 expired = true;
688 /* continue until next hole after this expired frames */
689 cont = true;
690 sn = ieee80211_sn_add(buf->head_sn, i + 1);
691 }
692
693 if (expired) {
694 struct ieee80211_sta *sta;
695 struct iwl_mvm_sta *mvmsta;
696 u8 sta_id = ffs(baid_data->sta_mask) - 1;
697
698 rcu_read_lock();
699 sta = rcu_dereference(buf->mvm->fw_id_to_mac_id[sta_id]);
700 if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta))) {
701 rcu_read_unlock();
702 goto out;
703 }
704
705 mvmsta = iwl_mvm_sta_from_mac80211(sta);
706
707 /* SN is set to the last expired frame + 1 */
708 IWL_DEBUG_HT(buf->mvm,
709 "Releasing expired frames for sta %u, sn %d\n",
710 sta_id, sn);
711 iwl_mvm_event_frame_timeout_callback(buf->mvm, mvmsta->vif,
712 sta, baid_data->tid);
713 iwl_mvm_release_frames(buf->mvm, sta, NULL, baid_data,
714 buf, sn, IWL_MVM_RELEASE_SEND_RSS_SYNC);
715 rcu_read_unlock();
716 } else {
717 /*
718 * If no frame expired and there are stored frames, index is now
719 * pointing to the first unexpired frame - modify timer
720 * accordingly to this frame.
721 */
722 mod_timer(&buf->reorder_timer,
723 entries[index].e.reorder_time +
724 1 + RX_REORDER_BUF_TIMEOUT_MQ);
725 }
726
727 out:
728 spin_unlock(&buf->lock);
729 }
730
iwl_mvm_del_ba(struct iwl_mvm * mvm,int queue,struct iwl_mvm_delba_data * data)731 static void iwl_mvm_del_ba(struct iwl_mvm *mvm, int queue,
732 struct iwl_mvm_delba_data *data)
733 {
734 struct iwl_mvm_baid_data *ba_data;
735 struct ieee80211_sta *sta;
736 struct iwl_mvm_reorder_buffer *reorder_buf;
737 u8 baid = data->baid;
738 u32 sta_id;
739
740 if (WARN_ONCE(baid >= IWL_MAX_BAID, "invalid BAID: %x\n", baid))
741 return;
742
743 rcu_read_lock();
744
745 ba_data = rcu_dereference(mvm->baid_map[baid]);
746 if (WARN_ON_ONCE(!ba_data))
747 goto out;
748
749 /* pick any STA ID to find the pointer */
750 sta_id = ffs(ba_data->sta_mask) - 1;
751 sta = rcu_dereference(mvm->fw_id_to_mac_id[sta_id]);
752 if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta)))
753 goto out;
754
755 reorder_buf = &ba_data->reorder_buf[queue];
756
757 /* release all frames that are in the reorder buffer to the stack */
758 spin_lock_bh(&reorder_buf->lock);
759 iwl_mvm_release_frames(mvm, sta, NULL, ba_data, reorder_buf,
760 ieee80211_sn_add(reorder_buf->head_sn,
761 reorder_buf->buf_size),
762 0);
763 spin_unlock_bh(&reorder_buf->lock);
764 del_timer_sync(&reorder_buf->reorder_timer);
765
766 out:
767 rcu_read_unlock();
768 }
769
iwl_mvm_release_frames_from_notif(struct iwl_mvm * mvm,struct napi_struct * napi,u8 baid,u16 nssn,int queue,u32 flags)770 static void iwl_mvm_release_frames_from_notif(struct iwl_mvm *mvm,
771 struct napi_struct *napi,
772 u8 baid, u16 nssn, int queue,
773 u32 flags)
774 {
775 struct ieee80211_sta *sta;
776 struct iwl_mvm_reorder_buffer *reorder_buf;
777 struct iwl_mvm_baid_data *ba_data;
778 u32 sta_id;
779
780 IWL_DEBUG_HT(mvm, "Frame release notification for BAID %u, NSSN %d\n",
781 baid, nssn);
782
783 if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID ||
784 baid >= ARRAY_SIZE(mvm->baid_map)))
785 return;
786
787 rcu_read_lock();
788
789 ba_data = rcu_dereference(mvm->baid_map[baid]);
790 if (!ba_data) {
791 WARN(!(flags & IWL_MVM_RELEASE_FROM_RSS_SYNC),
792 "BAID %d not found in map\n", baid);
793 goto out;
794 }
795
796 /* pick any STA ID to find the pointer */
797 sta_id = ffs(ba_data->sta_mask) - 1;
798 sta = rcu_dereference(mvm->fw_id_to_mac_id[sta_id]);
799 if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta)))
800 goto out;
801
802 reorder_buf = &ba_data->reorder_buf[queue];
803
804 spin_lock_bh(&reorder_buf->lock);
805 iwl_mvm_release_frames(mvm, sta, napi, ba_data,
806 reorder_buf, nssn, flags);
807 spin_unlock_bh(&reorder_buf->lock);
808
809 out:
810 rcu_read_unlock();
811 }
812
iwl_mvm_nssn_sync(struct iwl_mvm * mvm,struct napi_struct * napi,int queue,const struct iwl_mvm_nssn_sync_data * data)813 static void iwl_mvm_nssn_sync(struct iwl_mvm *mvm,
814 struct napi_struct *napi, int queue,
815 const struct iwl_mvm_nssn_sync_data *data)
816 {
817 iwl_mvm_release_frames_from_notif(mvm, napi, data->baid,
818 data->nssn, queue,
819 IWL_MVM_RELEASE_FROM_RSS_SYNC);
820 }
821
iwl_mvm_rx_queue_notif(struct iwl_mvm * mvm,struct napi_struct * napi,struct iwl_rx_cmd_buffer * rxb,int queue)822 void iwl_mvm_rx_queue_notif(struct iwl_mvm *mvm, struct napi_struct *napi,
823 struct iwl_rx_cmd_buffer *rxb, int queue)
824 {
825 struct iwl_rx_packet *pkt = rxb_addr(rxb);
826 struct iwl_rxq_sync_notification *notif;
827 struct iwl_mvm_internal_rxq_notif *internal_notif;
828 u32 len = iwl_rx_packet_payload_len(pkt);
829
830 notif = (void *)pkt->data;
831 internal_notif = (void *)notif->payload;
832
833 if (WARN_ONCE(len < sizeof(*notif) + sizeof(*internal_notif),
834 "invalid notification size %d (%d)",
835 len, (int)(sizeof(*notif) + sizeof(*internal_notif))))
836 return;
837 len -= sizeof(*notif) + sizeof(*internal_notif);
838
839 if (internal_notif->sync &&
840 mvm->queue_sync_cookie != internal_notif->cookie) {
841 WARN_ONCE(1, "Received expired RX queue sync message\n");
842 return;
843 }
844
845 switch (internal_notif->type) {
846 case IWL_MVM_RXQ_EMPTY:
847 WARN_ONCE(len, "invalid empty notification size %d", len);
848 break;
849 case IWL_MVM_RXQ_NOTIF_DEL_BA:
850 if (WARN_ONCE(len != sizeof(struct iwl_mvm_delba_data),
851 "invalid delba notification size %d (%d)",
852 len, (int)sizeof(struct iwl_mvm_delba_data)))
853 break;
854 iwl_mvm_del_ba(mvm, queue, (void *)internal_notif->data);
855 break;
856 case IWL_MVM_RXQ_NSSN_SYNC:
857 if (WARN_ONCE(len != sizeof(struct iwl_mvm_nssn_sync_data),
858 "invalid nssn sync notification size %d (%d)",
859 len, (int)sizeof(struct iwl_mvm_nssn_sync_data)))
860 break;
861 iwl_mvm_nssn_sync(mvm, napi, queue,
862 (void *)internal_notif->data);
863 break;
864 default:
865 WARN_ONCE(1, "Invalid identifier %d", internal_notif->type);
866 }
867
868 if (internal_notif->sync) {
869 WARN_ONCE(!test_and_clear_bit(queue, &mvm->queue_sync_state),
870 "queue sync: queue %d responded a second time!\n",
871 queue);
872 if (READ_ONCE(mvm->queue_sync_state) == 0)
873 wake_up(&mvm->rx_sync_waitq);
874 }
875 }
876
iwl_mvm_oldsn_workaround(struct iwl_mvm * mvm,struct ieee80211_sta * sta,int tid,struct iwl_mvm_reorder_buffer * buffer,u32 reorder,u32 gp2,int queue)877 static void iwl_mvm_oldsn_workaround(struct iwl_mvm *mvm,
878 struct ieee80211_sta *sta, int tid,
879 struct iwl_mvm_reorder_buffer *buffer,
880 u32 reorder, u32 gp2, int queue)
881 {
882 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
883
884 if (gp2 != buffer->consec_oldsn_ampdu_gp2) {
885 /* we have a new (A-)MPDU ... */
886
887 /*
888 * reset counter to 0 if we didn't have any oldsn in
889 * the last A-MPDU (as detected by GP2 being identical)
890 */
891 if (!buffer->consec_oldsn_prev_drop)
892 buffer->consec_oldsn_drops = 0;
893
894 /* either way, update our tracking state */
895 buffer->consec_oldsn_ampdu_gp2 = gp2;
896 } else if (buffer->consec_oldsn_prev_drop) {
897 /*
898 * tracking state didn't change, and we had an old SN
899 * indication before - do nothing in this case, we
900 * already noted this one down and are waiting for the
901 * next A-MPDU (by GP2)
902 */
903 return;
904 }
905
906 /* return unless this MPDU has old SN */
907 if (!(reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN))
908 return;
909
910 /* update state */
911 buffer->consec_oldsn_prev_drop = 1;
912 buffer->consec_oldsn_drops++;
913
914 /* if limit is reached, send del BA and reset state */
915 if (buffer->consec_oldsn_drops == IWL_MVM_AMPDU_CONSEC_DROPS_DELBA) {
916 IWL_WARN(mvm,
917 "reached %d old SN frames from %pM on queue %d, stopping BA session on TID %d\n",
918 IWL_MVM_AMPDU_CONSEC_DROPS_DELBA,
919 sta->addr, queue, tid);
920 ieee80211_stop_rx_ba_session(mvmsta->vif, BIT(tid), sta->addr);
921 buffer->consec_oldsn_prev_drop = 0;
922 buffer->consec_oldsn_drops = 0;
923 }
924 }
925
926 /*
927 * Returns true if the MPDU was buffered\dropped, false if it should be passed
928 * to upper layer.
929 */
iwl_mvm_reorder(struct iwl_mvm * mvm,struct napi_struct * napi,int queue,struct ieee80211_sta * sta,struct sk_buff * skb,struct iwl_rx_mpdu_desc * desc)930 static bool iwl_mvm_reorder(struct iwl_mvm *mvm,
931 struct napi_struct *napi,
932 int queue,
933 struct ieee80211_sta *sta,
934 struct sk_buff *skb,
935 struct iwl_rx_mpdu_desc *desc)
936 {
937 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
938 struct ieee80211_hdr *hdr = (void *)skb_mac_header(skb);
939 struct iwl_mvm_baid_data *baid_data;
940 struct iwl_mvm_reorder_buffer *buffer;
941 struct sk_buff *tail;
942 u32 reorder = le32_to_cpu(desc->reorder_data);
943 bool amsdu = desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU;
944 bool last_subframe =
945 desc->amsdu_info & IWL_RX_MPDU_AMSDU_LAST_SUBFRAME;
946 u8 tid = ieee80211_get_tid(hdr);
947 u8 sub_frame_idx = desc->amsdu_info &
948 IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK;
949 struct iwl_mvm_reorder_buf_entry *entries;
950 u32 sta_mask;
951 int index;
952 u16 nssn, sn;
953 u8 baid;
954
955 baid = (reorder & IWL_RX_MPDU_REORDER_BAID_MASK) >>
956 IWL_RX_MPDU_REORDER_BAID_SHIFT;
957
958 /*
959 * This also covers the case of receiving a Block Ack Request
960 * outside a BA session; we'll pass it to mac80211 and that
961 * then sends a delBA action frame.
962 * This also covers pure monitor mode, in which case we won't
963 * have any BA sessions.
964 */
965 if (baid == IWL_RX_REORDER_DATA_INVALID_BAID)
966 return false;
967
968 /* no sta yet */
969 if (WARN_ONCE(IS_ERR_OR_NULL(sta),
970 "Got valid BAID without a valid station assigned\n"))
971 return false;
972
973 /* not a data packet or a bar */
974 if (!ieee80211_is_back_req(hdr->frame_control) &&
975 (!ieee80211_is_data_qos(hdr->frame_control) ||
976 is_multicast_ether_addr(hdr->addr1)))
977 return false;
978
979 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
980 return false;
981
982 baid_data = rcu_dereference(mvm->baid_map[baid]);
983 if (!baid_data) {
984 IWL_DEBUG_RX(mvm,
985 "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n",
986 baid, reorder);
987 return false;
988 }
989
990 rcu_read_lock();
991 sta_mask = iwl_mvm_sta_fw_id_mask(mvm, sta, -1);
992 rcu_read_unlock();
993
994 if (IWL_FW_CHECK(mvm,
995 tid != baid_data->tid ||
996 !(sta_mask & baid_data->sta_mask),
997 "baid 0x%x is mapped to sta_mask:0x%x tid:%d, but was received for sta_mask:0x%x tid:%d\n",
998 baid, baid_data->sta_mask, baid_data->tid,
999 sta_mask, tid))
1000 return false;
1001
1002 nssn = reorder & IWL_RX_MPDU_REORDER_NSSN_MASK;
1003 sn = (reorder & IWL_RX_MPDU_REORDER_SN_MASK) >>
1004 IWL_RX_MPDU_REORDER_SN_SHIFT;
1005
1006 buffer = &baid_data->reorder_buf[queue];
1007 entries = &baid_data->entries[queue * baid_data->entries_per_queue];
1008
1009 spin_lock_bh(&buffer->lock);
1010
1011 if (!buffer->valid) {
1012 if (reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN) {
1013 spin_unlock_bh(&buffer->lock);
1014 return false;
1015 }
1016 buffer->valid = true;
1017 }
1018
1019 if (ieee80211_is_back_req(hdr->frame_control)) {
1020 iwl_mvm_release_frames(mvm, sta, napi, baid_data,
1021 buffer, nssn, 0);
1022 goto drop;
1023 }
1024
1025 /*
1026 * If there was a significant jump in the nssn - adjust.
1027 * If the SN is smaller than the NSSN it might need to first go into
1028 * the reorder buffer, in which case we just release up to it and the
1029 * rest of the function will take care of storing it and releasing up to
1030 * the nssn.
1031 * This should not happen. This queue has been lagging and it should
1032 * have been updated by a IWL_MVM_RXQ_NSSN_SYNC notification. Be nice
1033 * and update the other queues.
1034 */
1035 if (!iwl_mvm_is_sn_less(nssn, buffer->head_sn + buffer->buf_size,
1036 buffer->buf_size) ||
1037 !ieee80211_sn_less(sn, buffer->head_sn + buffer->buf_size)) {
1038 u16 min_sn = ieee80211_sn_less(sn, nssn) ? sn : nssn;
1039
1040 iwl_mvm_release_frames(mvm, sta, napi, baid_data, buffer,
1041 min_sn, IWL_MVM_RELEASE_SEND_RSS_SYNC);
1042 }
1043
1044 iwl_mvm_oldsn_workaround(mvm, sta, tid, buffer, reorder,
1045 rx_status->device_timestamp, queue);
1046
1047 /* drop any oudated packets */
1048 if (ieee80211_sn_less(sn, buffer->head_sn))
1049 goto drop;
1050
1051 /* release immediately if allowed by nssn and no stored frames */
1052 if (!buffer->num_stored && ieee80211_sn_less(sn, nssn)) {
1053 if (iwl_mvm_is_sn_less(buffer->head_sn, nssn,
1054 buffer->buf_size) &&
1055 (!amsdu || last_subframe)) {
1056 /*
1057 * If we crossed the 2048 or 0 SN, notify all the
1058 * queues. This is done in order to avoid having a
1059 * head_sn that lags behind for too long. When that
1060 * happens, we can get to a situation where the head_sn
1061 * is within the interval [nssn - buf_size : nssn]
1062 * which will make us think that the nssn is a packet
1063 * that we already freed because of the reordering
1064 * buffer and we will ignore it. So maintain the
1065 * head_sn somewhat updated across all the queues:
1066 * when it crosses 0 and 2048.
1067 */
1068 if (sn == 2048 || sn == 0)
1069 iwl_mvm_sync_nssn(mvm, baid, sn);
1070 buffer->head_sn = nssn;
1071 }
1072 /* No need to update AMSDU last SN - we are moving the head */
1073 spin_unlock_bh(&buffer->lock);
1074 return false;
1075 }
1076
1077 /*
1078 * release immediately if there are no stored frames, and the sn is
1079 * equal to the head.
1080 * This can happen due to reorder timer, where NSSN is behind head_sn.
1081 * When we released everything, and we got the next frame in the
1082 * sequence, according to the NSSN we can't release immediately,
1083 * while technically there is no hole and we can move forward.
1084 */
1085 if (!buffer->num_stored && sn == buffer->head_sn) {
1086 if (!amsdu || last_subframe) {
1087 if (sn == 2048 || sn == 0)
1088 iwl_mvm_sync_nssn(mvm, baid, sn);
1089 buffer->head_sn = ieee80211_sn_inc(buffer->head_sn);
1090 }
1091 /* No need to update AMSDU last SN - we are moving the head */
1092 spin_unlock_bh(&buffer->lock);
1093 return false;
1094 }
1095
1096 index = sn % buffer->buf_size;
1097
1098 /*
1099 * Check if we already stored this frame
1100 * As AMSDU is either received or not as whole, logic is simple:
1101 * If we have frames in that position in the buffer and the last frame
1102 * originated from AMSDU had a different SN then it is a retransmission.
1103 * If it is the same SN then if the subframe index is incrementing it
1104 * is the same AMSDU - otherwise it is a retransmission.
1105 */
1106 tail = skb_peek_tail(&entries[index].e.frames);
1107 if (tail && !amsdu)
1108 goto drop;
1109 else if (tail && (sn != buffer->last_amsdu ||
1110 buffer->last_sub_index >= sub_frame_idx))
1111 goto drop;
1112
1113 /* put in reorder buffer */
1114 __skb_queue_tail(&entries[index].e.frames, skb);
1115 buffer->num_stored++;
1116 entries[index].e.reorder_time = jiffies;
1117
1118 if (amsdu) {
1119 buffer->last_amsdu = sn;
1120 buffer->last_sub_index = sub_frame_idx;
1121 }
1122
1123 /*
1124 * We cannot trust NSSN for AMSDU sub-frames that are not the last.
1125 * The reason is that NSSN advances on the first sub-frame, and may
1126 * cause the reorder buffer to advance before all the sub-frames arrive.
1127 * Example: reorder buffer contains SN 0 & 2, and we receive AMSDU with
1128 * SN 1. NSSN for first sub frame will be 3 with the result of driver
1129 * releasing SN 0,1, 2. When sub-frame 1 arrives - reorder buffer is
1130 * already ahead and it will be dropped.
1131 * If the last sub-frame is not on this queue - we will get frame
1132 * release notification with up to date NSSN.
1133 */
1134 if (!amsdu || last_subframe)
1135 iwl_mvm_release_frames(mvm, sta, napi, baid_data,
1136 buffer, nssn,
1137 IWL_MVM_RELEASE_SEND_RSS_SYNC);
1138
1139 spin_unlock_bh(&buffer->lock);
1140 return true;
1141
1142 drop:
1143 kfree_skb(skb);
1144 spin_unlock_bh(&buffer->lock);
1145 return true;
1146 }
1147
iwl_mvm_agg_rx_received(struct iwl_mvm * mvm,u32 reorder_data,u8 baid)1148 static void iwl_mvm_agg_rx_received(struct iwl_mvm *mvm,
1149 u32 reorder_data, u8 baid)
1150 {
1151 unsigned long now = jiffies;
1152 unsigned long timeout;
1153 struct iwl_mvm_baid_data *data;
1154
1155 rcu_read_lock();
1156
1157 data = rcu_dereference(mvm->baid_map[baid]);
1158 if (!data) {
1159 IWL_DEBUG_RX(mvm,
1160 "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n",
1161 baid, reorder_data);
1162 goto out;
1163 }
1164
1165 if (!data->timeout)
1166 goto out;
1167
1168 timeout = data->timeout;
1169 /*
1170 * Do not update last rx all the time to avoid cache bouncing
1171 * between the rx queues.
1172 * Update it every timeout. Worst case is the session will
1173 * expire after ~ 2 * timeout, which doesn't matter that much.
1174 */
1175 if (time_before(data->last_rx + TU_TO_JIFFIES(timeout), now))
1176 /* Update is atomic */
1177 data->last_rx = now;
1178
1179 out:
1180 rcu_read_unlock();
1181 }
1182
iwl_mvm_flip_address(u8 * addr)1183 static void iwl_mvm_flip_address(u8 *addr)
1184 {
1185 int i;
1186 u8 mac_addr[ETH_ALEN];
1187
1188 for (i = 0; i < ETH_ALEN; i++)
1189 mac_addr[i] = addr[ETH_ALEN - i - 1];
1190 ether_addr_copy(addr, mac_addr);
1191 }
1192
1193 struct iwl_mvm_rx_phy_data {
1194 enum iwl_rx_phy_info_type info_type;
1195 __le32 d0, d1, d2, d3, eht_d4, d5;
1196 __le16 d4;
1197 bool with_data;
1198 bool first_subframe;
1199 __le32 rx_vec[4];
1200
1201 u32 rate_n_flags;
1202 u32 gp2_on_air_rise;
1203 u16 phy_info;
1204 u8 energy_a, energy_b;
1205 u8 channel;
1206 };
1207
iwl_mvm_decode_he_mu_ext(struct iwl_mvm * mvm,struct iwl_mvm_rx_phy_data * phy_data,struct ieee80211_radiotap_he_mu * he_mu)1208 static void iwl_mvm_decode_he_mu_ext(struct iwl_mvm *mvm,
1209 struct iwl_mvm_rx_phy_data *phy_data,
1210 struct ieee80211_radiotap_he_mu *he_mu)
1211 {
1212 u32 phy_data2 = le32_to_cpu(phy_data->d2);
1213 u32 phy_data3 = le32_to_cpu(phy_data->d3);
1214 u16 phy_data4 = le16_to_cpu(phy_data->d4);
1215 u32 rate_n_flags = phy_data->rate_n_flags;
1216
1217 if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CRC_OK, phy_data4)) {
1218 he_mu->flags1 |=
1219 cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_RU_KNOWN |
1220 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU_KNOWN);
1221
1222 he_mu->flags1 |=
1223 le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CTR_RU,
1224 phy_data4),
1225 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU);
1226
1227 he_mu->ru_ch1[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU0,
1228 phy_data2);
1229 he_mu->ru_ch1[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU1,
1230 phy_data3);
1231 he_mu->ru_ch1[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU2,
1232 phy_data2);
1233 he_mu->ru_ch1[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU3,
1234 phy_data3);
1235 }
1236
1237 if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CRC_OK, phy_data4) &&
1238 (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK_V1) != RATE_MCS_CHAN_WIDTH_20) {
1239 he_mu->flags1 |=
1240 cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_RU_KNOWN |
1241 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_CTR_26T_RU_KNOWN);
1242
1243 he_mu->flags2 |=
1244 le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CTR_RU,
1245 phy_data4),
1246 IEEE80211_RADIOTAP_HE_MU_FLAGS2_CH2_CTR_26T_RU);
1247
1248 he_mu->ru_ch2[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU0,
1249 phy_data2);
1250 he_mu->ru_ch2[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU1,
1251 phy_data3);
1252 he_mu->ru_ch2[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU2,
1253 phy_data2);
1254 he_mu->ru_ch2[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU3,
1255 phy_data3);
1256 }
1257 }
1258
1259 static void
iwl_mvm_decode_he_phy_ru_alloc(struct iwl_mvm_rx_phy_data * phy_data,struct ieee80211_radiotap_he * he,struct ieee80211_radiotap_he_mu * he_mu,struct ieee80211_rx_status * rx_status)1260 iwl_mvm_decode_he_phy_ru_alloc(struct iwl_mvm_rx_phy_data *phy_data,
1261 struct ieee80211_radiotap_he *he,
1262 struct ieee80211_radiotap_he_mu *he_mu,
1263 struct ieee80211_rx_status *rx_status)
1264 {
1265 /*
1266 * Unfortunately, we have to leave the mac80211 data
1267 * incorrect for the case that we receive an HE-MU
1268 * transmission and *don't* have the HE phy data (due
1269 * to the bits being used for TSF). This shouldn't
1270 * happen though as management frames where we need
1271 * the TSF/timers are not be transmitted in HE-MU.
1272 */
1273 u8 ru = le32_get_bits(phy_data->d1, IWL_RX_PHY_DATA1_HE_RU_ALLOC_MASK);
1274 u32 rate_n_flags = phy_data->rate_n_flags;
1275 u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK_V1;
1276 u8 offs = 0;
1277
1278 rx_status->bw = RATE_INFO_BW_HE_RU;
1279
1280 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN);
1281
1282 switch (ru) {
1283 case 0 ... 36:
1284 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_26;
1285 offs = ru;
1286 break;
1287 case 37 ... 52:
1288 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_52;
1289 offs = ru - 37;
1290 break;
1291 case 53 ... 60:
1292 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106;
1293 offs = ru - 53;
1294 break;
1295 case 61 ... 64:
1296 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_242;
1297 offs = ru - 61;
1298 break;
1299 case 65 ... 66:
1300 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_484;
1301 offs = ru - 65;
1302 break;
1303 case 67:
1304 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_996;
1305 break;
1306 case 68:
1307 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_2x996;
1308 break;
1309 }
1310 he->data2 |= le16_encode_bits(offs,
1311 IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET);
1312 he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_KNOWN |
1313 IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET_KNOWN);
1314 if (phy_data->d1 & cpu_to_le32(IWL_RX_PHY_DATA1_HE_RU_ALLOC_SEC80))
1315 he->data2 |=
1316 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_SEC);
1317
1318 #define CHECK_BW(bw) \
1319 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_ ## bw ## MHZ != \
1320 RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS); \
1321 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_ ## bw ## MHZ != \
1322 RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS)
1323 CHECK_BW(20);
1324 CHECK_BW(40);
1325 CHECK_BW(80);
1326 CHECK_BW(160);
1327
1328 if (he_mu)
1329 he_mu->flags2 |=
1330 le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK_V1,
1331 rate_n_flags),
1332 IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW);
1333 else if (he_type == RATE_MCS_HE_TYPE_TRIG_V1)
1334 he->data6 |=
1335 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_KNOWN) |
1336 le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK_V1,
1337 rate_n_flags),
1338 IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW);
1339 }
1340
iwl_mvm_decode_he_phy_data(struct iwl_mvm * mvm,struct iwl_mvm_rx_phy_data * phy_data,struct ieee80211_radiotap_he * he,struct ieee80211_radiotap_he_mu * he_mu,struct ieee80211_rx_status * rx_status,int queue)1341 static void iwl_mvm_decode_he_phy_data(struct iwl_mvm *mvm,
1342 struct iwl_mvm_rx_phy_data *phy_data,
1343 struct ieee80211_radiotap_he *he,
1344 struct ieee80211_radiotap_he_mu *he_mu,
1345 struct ieee80211_rx_status *rx_status,
1346 int queue)
1347 {
1348 switch (phy_data->info_type) {
1349 case IWL_RX_PHY_INFO_TYPE_NONE:
1350 case IWL_RX_PHY_INFO_TYPE_CCK:
1351 case IWL_RX_PHY_INFO_TYPE_OFDM_LGCY:
1352 case IWL_RX_PHY_INFO_TYPE_HT:
1353 case IWL_RX_PHY_INFO_TYPE_VHT_SU:
1354 case IWL_RX_PHY_INFO_TYPE_VHT_MU:
1355 case IWL_RX_PHY_INFO_TYPE_EHT_MU:
1356 case IWL_RX_PHY_INFO_TYPE_EHT_TB:
1357 case IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT:
1358 case IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT:
1359 return;
1360 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
1361 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN |
1362 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE2_KNOWN |
1363 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE3_KNOWN |
1364 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE4_KNOWN);
1365 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1366 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE1),
1367 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE1);
1368 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1369 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE2),
1370 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE2);
1371 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1372 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE3),
1373 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE3);
1374 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1375 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE4),
1376 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE4);
1377 fallthrough;
1378 case IWL_RX_PHY_INFO_TYPE_HE_SU:
1379 case IWL_RX_PHY_INFO_TYPE_HE_MU:
1380 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1381 case IWL_RX_PHY_INFO_TYPE_HE_TB:
1382 /* HE common */
1383 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_LDPC_XSYMSEG_KNOWN |
1384 IEEE80211_RADIOTAP_HE_DATA1_DOPPLER_KNOWN |
1385 IEEE80211_RADIOTAP_HE_DATA1_BSS_COLOR_KNOWN);
1386 he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRE_FEC_PAD_KNOWN |
1387 IEEE80211_RADIOTAP_HE_DATA2_PE_DISAMBIG_KNOWN |
1388 IEEE80211_RADIOTAP_HE_DATA2_TXOP_KNOWN |
1389 IEEE80211_RADIOTAP_HE_DATA2_NUM_LTF_SYMS_KNOWN);
1390 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1391 IWL_RX_PHY_DATA0_HE_BSS_COLOR_MASK),
1392 IEEE80211_RADIOTAP_HE_DATA3_BSS_COLOR);
1393 if (phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB &&
1394 phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB_EXT) {
1395 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_UL_DL_KNOWN);
1396 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1397 IWL_RX_PHY_DATA0_HE_UPLINK),
1398 IEEE80211_RADIOTAP_HE_DATA3_UL_DL);
1399 }
1400 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1401 IWL_RX_PHY_DATA0_HE_LDPC_EXT_SYM),
1402 IEEE80211_RADIOTAP_HE_DATA3_LDPC_XSYMSEG);
1403 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1404 IWL_RX_PHY_DATA0_HE_PRE_FEC_PAD_MASK),
1405 IEEE80211_RADIOTAP_HE_DATA5_PRE_FEC_PAD);
1406 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1407 IWL_RX_PHY_DATA0_HE_PE_DISAMBIG),
1408 IEEE80211_RADIOTAP_HE_DATA5_PE_DISAMBIG);
1409 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d1,
1410 IWL_RX_PHY_DATA1_HE_LTF_NUM_MASK),
1411 IEEE80211_RADIOTAP_HE_DATA5_NUM_LTF_SYMS);
1412 he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1413 IWL_RX_PHY_DATA0_HE_TXOP_DUR_MASK),
1414 IEEE80211_RADIOTAP_HE_DATA6_TXOP);
1415 he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1416 IWL_RX_PHY_DATA0_HE_DOPPLER),
1417 IEEE80211_RADIOTAP_HE_DATA6_DOPPLER);
1418 break;
1419 }
1420
1421 switch (phy_data->info_type) {
1422 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1423 case IWL_RX_PHY_INFO_TYPE_HE_MU:
1424 case IWL_RX_PHY_INFO_TYPE_HE_SU:
1425 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN);
1426 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1427 IWL_RX_PHY_DATA0_HE_SPATIAL_REUSE_MASK),
1428 IEEE80211_RADIOTAP_HE_DATA4_SU_MU_SPTL_REUSE);
1429 break;
1430 default:
1431 /* nothing here */
1432 break;
1433 }
1434
1435 switch (phy_data->info_type) {
1436 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1437 he_mu->flags1 |=
1438 le16_encode_bits(le16_get_bits(phy_data->d4,
1439 IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_DCM),
1440 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM);
1441 he_mu->flags1 |=
1442 le16_encode_bits(le16_get_bits(phy_data->d4,
1443 IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_MCS_MASK),
1444 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS);
1445 he_mu->flags2 |=
1446 le16_encode_bits(le16_get_bits(phy_data->d4,
1447 IWL_RX_PHY_DATA4_HE_MU_EXT_PREAMBLE_PUNC_TYPE_MASK),
1448 IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW);
1449 iwl_mvm_decode_he_mu_ext(mvm, phy_data, he_mu);
1450 fallthrough;
1451 case IWL_RX_PHY_INFO_TYPE_HE_MU:
1452 he_mu->flags2 |=
1453 le16_encode_bits(le32_get_bits(phy_data->d1,
1454 IWL_RX_PHY_DATA1_HE_MU_SIBG_SYM_OR_USER_NUM_MASK),
1455 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_SYMS_USERS);
1456 he_mu->flags2 |=
1457 le16_encode_bits(le32_get_bits(phy_data->d1,
1458 IWL_RX_PHY_DATA1_HE_MU_SIGB_COMPRESSION),
1459 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_COMP);
1460 fallthrough;
1461 case IWL_RX_PHY_INFO_TYPE_HE_TB:
1462 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
1463 iwl_mvm_decode_he_phy_ru_alloc(phy_data, he, he_mu, rx_status);
1464 break;
1465 case IWL_RX_PHY_INFO_TYPE_HE_SU:
1466 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BEAM_CHANGE_KNOWN);
1467 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1468 IWL_RX_PHY_DATA0_HE_BEAM_CHNG),
1469 IEEE80211_RADIOTAP_HE_DATA3_BEAM_CHANGE);
1470 break;
1471 default:
1472 /* nothing */
1473 break;
1474 }
1475 }
1476
1477 #define LE32_DEC_ENC(value, dec_bits, enc_bits) \
1478 le32_encode_bits(le32_get_bits(value, dec_bits), enc_bits)
1479
1480 #define IWL_MVM_ENC_USIG_VALUE_MASK(usig, in_value, dec_bits, enc_bits) do { \
1481 typeof(enc_bits) _enc_bits = enc_bits; \
1482 typeof(usig) _usig = usig; \
1483 (_usig)->mask |= cpu_to_le32(_enc_bits); \
1484 (_usig)->value |= LE32_DEC_ENC(in_value, dec_bits, _enc_bits); \
1485 } while (0)
1486
1487 #define __IWL_MVM_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru) \
1488 eht->data[(rt_data)] |= \
1489 (cpu_to_le32 \
1490 (IEEE80211_RADIOTAP_EHT_DATA ## rt_data ## _RU_ALLOC_CC_ ## rt_ru ## _KNOWN) | \
1491 LE32_DEC_ENC(data ## fw_data, \
1492 IWL_RX_PHY_DATA ## fw_data ## _EHT_MU_EXT_RU_ALLOC_ ## fw_ru, \
1493 IEEE80211_RADIOTAP_EHT_DATA ## rt_data ## _RU_ALLOC_CC_ ## rt_ru))
1494
1495 #define _IWL_MVM_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru) \
1496 __IWL_MVM_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru)
1497
1498 #define IEEE80211_RADIOTAP_RU_DATA_1_1_1 1
1499 #define IEEE80211_RADIOTAP_RU_DATA_2_1_1 2
1500 #define IEEE80211_RADIOTAP_RU_DATA_1_1_2 2
1501 #define IEEE80211_RADIOTAP_RU_DATA_2_1_2 2
1502 #define IEEE80211_RADIOTAP_RU_DATA_1_2_1 3
1503 #define IEEE80211_RADIOTAP_RU_DATA_2_2_1 3
1504 #define IEEE80211_RADIOTAP_RU_DATA_1_2_2 3
1505 #define IEEE80211_RADIOTAP_RU_DATA_2_2_2 4
1506
1507 #define IWL_RX_RU_DATA_A1 2
1508 #define IWL_RX_RU_DATA_A2 2
1509 #define IWL_RX_RU_DATA_B1 2
1510 #define IWL_RX_RU_DATA_B2 3
1511 #define IWL_RX_RU_DATA_C1 3
1512 #define IWL_RX_RU_DATA_C2 3
1513 #define IWL_RX_RU_DATA_D1 4
1514 #define IWL_RX_RU_DATA_D2 4
1515
1516 #define IWL_MVM_ENC_EHT_RU(rt_ru, fw_ru) \
1517 _IWL_MVM_ENC_EHT_RU(IEEE80211_RADIOTAP_RU_DATA_ ## rt_ru, \
1518 rt_ru, \
1519 IWL_RX_RU_DATA_ ## fw_ru, \
1520 fw_ru)
1521
iwl_mvm_decode_eht_ext_mu(struct iwl_mvm * mvm,struct iwl_mvm_rx_phy_data * phy_data,struct ieee80211_rx_status * rx_status,struct ieee80211_radiotap_eht * eht,struct ieee80211_radiotap_eht_usig * usig)1522 static void iwl_mvm_decode_eht_ext_mu(struct iwl_mvm *mvm,
1523 struct iwl_mvm_rx_phy_data *phy_data,
1524 struct ieee80211_rx_status *rx_status,
1525 struct ieee80211_radiotap_eht *eht,
1526 struct ieee80211_radiotap_eht_usig *usig)
1527 {
1528 if (phy_data->with_data) {
1529 __le32 data1 = phy_data->d1;
1530 __le32 data2 = phy_data->d2;
1531 __le32 data3 = phy_data->d3;
1532 __le32 data4 = phy_data->eht_d4;
1533 __le32 data5 = phy_data->d5;
1534 u32 phy_bw = phy_data->rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK;
1535
1536 IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5,
1537 IWL_RX_PHY_DATA5_EHT_TYPE_AND_COMP,
1538 IEEE80211_RADIOTAP_EHT_USIG2_MU_B0_B1_PPDU_TYPE);
1539 IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5,
1540 IWL_RX_PHY_DATA5_EHT_MU_PUNC_CH_CODE,
1541 IEEE80211_RADIOTAP_EHT_USIG2_MU_B3_B7_PUNCTURED_INFO);
1542 IWL_MVM_ENC_USIG_VALUE_MASK(usig, data4,
1543 IWL_RX_PHY_DATA4_EHT_MU_EXT_SIGB_MCS,
1544 IEEE80211_RADIOTAP_EHT_USIG2_MU_B9_B10_SIG_MCS);
1545 IWL_MVM_ENC_USIG_VALUE_MASK
1546 (usig, data1, IWL_RX_PHY_DATA1_EHT_MU_NUM_SIG_SYM_USIGA2,
1547 IEEE80211_RADIOTAP_EHT_USIG2_MU_B11_B15_EHT_SIG_SYMBOLS);
1548
1549 eht->user_info[0] |=
1550 cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_STA_ID_KNOWN) |
1551 LE32_DEC_ENC(data5, IWL_RX_PHY_DATA5_EHT_MU_STA_ID_USR,
1552 IEEE80211_RADIOTAP_EHT_USER_INFO_STA_ID);
1553
1554 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_NR_NON_OFDMA_USERS_M);
1555 eht->data[7] |= LE32_DEC_ENC
1556 (data5, IWL_RX_PHY_DATA5_EHT_MU_NUM_USR_NON_OFDMA,
1557 IEEE80211_RADIOTAP_EHT_DATA7_NUM_OF_NON_OFDMA_USERS);
1558
1559 /*
1560 * Hardware labels the content channels/RU allocation values
1561 * as follows:
1562 * Content Channel 1 Content Channel 2
1563 * 20 MHz: A1
1564 * 40 MHz: A1 B1
1565 * 80 MHz: A1 C1 B1 D1
1566 * 160 MHz: A1 C1 A2 C2 B1 D1 B2 D2
1567 * 320 MHz: A1 C1 A2 C2 A3 C3 A4 C4 B1 D1 B2 D2 B3 D3 B4 D4
1568 *
1569 * However firmware can only give us A1-D2, so the higher
1570 * frequencies are missing.
1571 */
1572
1573 switch (phy_bw) {
1574 case RATE_MCS_CHAN_WIDTH_320:
1575 /* additional values are missing in RX metadata */
1576 case RATE_MCS_CHAN_WIDTH_160:
1577 /* content channel 1 */
1578 IWL_MVM_ENC_EHT_RU(1_2_1, A2);
1579 IWL_MVM_ENC_EHT_RU(1_2_2, C2);
1580 /* content channel 2 */
1581 IWL_MVM_ENC_EHT_RU(2_2_1, B2);
1582 IWL_MVM_ENC_EHT_RU(2_2_2, D2);
1583 fallthrough;
1584 case RATE_MCS_CHAN_WIDTH_80:
1585 /* content channel 1 */
1586 IWL_MVM_ENC_EHT_RU(1_1_2, C1);
1587 /* content channel 2 */
1588 IWL_MVM_ENC_EHT_RU(2_1_2, D1);
1589 fallthrough;
1590 case RATE_MCS_CHAN_WIDTH_40:
1591 /* content channel 2 */
1592 IWL_MVM_ENC_EHT_RU(2_1_1, B1);
1593 fallthrough;
1594 case RATE_MCS_CHAN_WIDTH_20:
1595 IWL_MVM_ENC_EHT_RU(1_1_1, A1);
1596 break;
1597 }
1598 } else {
1599 __le32 usig_a1 = phy_data->rx_vec[0];
1600 __le32 usig_a2 = phy_data->rx_vec[1];
1601
1602 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a1,
1603 IWL_RX_USIG_A1_DISREGARD,
1604 IEEE80211_RADIOTAP_EHT_USIG1_MU_B20_B24_DISREGARD);
1605 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a1,
1606 IWL_RX_USIG_A1_VALIDATE,
1607 IEEE80211_RADIOTAP_EHT_USIG1_MU_B25_VALIDATE);
1608 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1609 IWL_RX_USIG_A2_EHT_PPDU_TYPE,
1610 IEEE80211_RADIOTAP_EHT_USIG2_MU_B0_B1_PPDU_TYPE);
1611 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1612 IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B2,
1613 IEEE80211_RADIOTAP_EHT_USIG2_MU_B2_VALIDATE);
1614 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1615 IWL_RX_USIG_A2_EHT_PUNC_CHANNEL,
1616 IEEE80211_RADIOTAP_EHT_USIG2_MU_B3_B7_PUNCTURED_INFO);
1617 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1618 IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B8,
1619 IEEE80211_RADIOTAP_EHT_USIG2_MU_B8_VALIDATE);
1620 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1621 IWL_RX_USIG_A2_EHT_SIG_MCS,
1622 IEEE80211_RADIOTAP_EHT_USIG2_MU_B9_B10_SIG_MCS);
1623 IWL_MVM_ENC_USIG_VALUE_MASK
1624 (usig, usig_a2, IWL_RX_USIG_A2_EHT_SIG_SYM_NUM,
1625 IEEE80211_RADIOTAP_EHT_USIG2_MU_B11_B15_EHT_SIG_SYMBOLS);
1626 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1627 IWL_RX_USIG_A2_EHT_CRC_OK,
1628 IEEE80211_RADIOTAP_EHT_USIG2_MU_B16_B19_CRC);
1629 }
1630 }
1631
iwl_mvm_decode_eht_ext_tb(struct iwl_mvm * mvm,struct iwl_mvm_rx_phy_data * phy_data,struct ieee80211_rx_status * rx_status,struct ieee80211_radiotap_eht * eht,struct ieee80211_radiotap_eht_usig * usig)1632 static void iwl_mvm_decode_eht_ext_tb(struct iwl_mvm *mvm,
1633 struct iwl_mvm_rx_phy_data *phy_data,
1634 struct ieee80211_rx_status *rx_status,
1635 struct ieee80211_radiotap_eht *eht,
1636 struct ieee80211_radiotap_eht_usig *usig)
1637 {
1638 if (phy_data->with_data) {
1639 __le32 data5 = phy_data->d5;
1640
1641 IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5,
1642 IWL_RX_PHY_DATA5_EHT_TYPE_AND_COMP,
1643 IEEE80211_RADIOTAP_EHT_USIG2_TB_B0_B1_PPDU_TYPE);
1644 IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5,
1645 IWL_RX_PHY_DATA5_EHT_TB_SPATIAL_REUSE1,
1646 IEEE80211_RADIOTAP_EHT_USIG2_TB_B3_B6_SPATIAL_REUSE_1);
1647
1648 IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5,
1649 IWL_RX_PHY_DATA5_EHT_TB_SPATIAL_REUSE2,
1650 IEEE80211_RADIOTAP_EHT_USIG2_TB_B7_B10_SPATIAL_REUSE_2);
1651 } else {
1652 __le32 usig_a1 = phy_data->rx_vec[0];
1653 __le32 usig_a2 = phy_data->rx_vec[1];
1654
1655 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a1,
1656 IWL_RX_USIG_A1_DISREGARD,
1657 IEEE80211_RADIOTAP_EHT_USIG1_TB_B20_B25_DISREGARD);
1658 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1659 IWL_RX_USIG_A2_EHT_PPDU_TYPE,
1660 IEEE80211_RADIOTAP_EHT_USIG2_TB_B0_B1_PPDU_TYPE);
1661 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1662 IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B2,
1663 IEEE80211_RADIOTAP_EHT_USIG2_TB_B2_VALIDATE);
1664 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1665 IWL_RX_USIG_A2_EHT_TRIG_SPATIAL_REUSE_1,
1666 IEEE80211_RADIOTAP_EHT_USIG2_TB_B3_B6_SPATIAL_REUSE_1);
1667 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1668 IWL_RX_USIG_A2_EHT_TRIG_SPATIAL_REUSE_2,
1669 IEEE80211_RADIOTAP_EHT_USIG2_TB_B7_B10_SPATIAL_REUSE_2);
1670 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1671 IWL_RX_USIG_A2_EHT_TRIG_USIG2_DISREGARD,
1672 IEEE80211_RADIOTAP_EHT_USIG2_TB_B11_B15_DISREGARD);
1673 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1674 IWL_RX_USIG_A2_EHT_CRC_OK,
1675 IEEE80211_RADIOTAP_EHT_USIG2_TB_B16_B19_CRC);
1676 }
1677 }
1678
iwl_mvm_decode_eht_ru(struct iwl_mvm * mvm,struct ieee80211_rx_status * rx_status,struct ieee80211_radiotap_eht * eht)1679 static void iwl_mvm_decode_eht_ru(struct iwl_mvm *mvm,
1680 struct ieee80211_rx_status *rx_status,
1681 struct ieee80211_radiotap_eht *eht)
1682 {
1683 u32 ru = le32_get_bits(eht->data[8],
1684 IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B7_B1);
1685 enum nl80211_eht_ru_alloc nl_ru;
1686
1687 /* Using D1.5 Table 9-53a - Encoding of PS160 and RU Allocation subfields
1688 * in an EHT variant User Info field
1689 */
1690
1691 switch (ru) {
1692 case 0 ... 36:
1693 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_26;
1694 break;
1695 case 37 ... 52:
1696 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_52;
1697 break;
1698 case 53 ... 60:
1699 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_106;
1700 break;
1701 case 61 ... 64:
1702 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_242;
1703 break;
1704 case 65 ... 66:
1705 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_484;
1706 break;
1707 case 67:
1708 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996;
1709 break;
1710 case 68:
1711 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_2x996;
1712 break;
1713 case 69:
1714 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_4x996;
1715 break;
1716 case 70 ... 81:
1717 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_52P26;
1718 break;
1719 case 82 ... 89:
1720 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_106P26;
1721 break;
1722 case 90 ... 93:
1723 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_484P242;
1724 break;
1725 case 94 ... 95:
1726 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996P484;
1727 break;
1728 case 96 ... 99:
1729 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996P484P242;
1730 break;
1731 case 100 ... 103:
1732 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_2x996P484;
1733 break;
1734 case 104:
1735 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_3x996;
1736 break;
1737 case 105 ... 106:
1738 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_3x996P484;
1739 break;
1740 default:
1741 return;
1742 }
1743
1744 rx_status->bw = RATE_INFO_BW_EHT_RU;
1745 rx_status->eht.ru = nl_ru;
1746 }
1747
iwl_mvm_decode_eht_phy_data(struct iwl_mvm * mvm,struct iwl_mvm_rx_phy_data * phy_data,struct ieee80211_rx_status * rx_status,struct ieee80211_radiotap_eht * eht,struct ieee80211_radiotap_eht_usig * usig)1748 static void iwl_mvm_decode_eht_phy_data(struct iwl_mvm *mvm,
1749 struct iwl_mvm_rx_phy_data *phy_data,
1750 struct ieee80211_rx_status *rx_status,
1751 struct ieee80211_radiotap_eht *eht,
1752 struct ieee80211_radiotap_eht_usig *usig)
1753
1754 {
1755 __le32 data0 = phy_data->d0;
1756 __le32 data1 = phy_data->d1;
1757 __le32 usig_a1 = phy_data->rx_vec[0];
1758 u8 info_type = phy_data->info_type;
1759
1760 /* Not in EHT range */
1761 if (info_type < IWL_RX_PHY_INFO_TYPE_EHT_MU ||
1762 info_type > IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT)
1763 return;
1764
1765 usig->common |= cpu_to_le32
1766 (IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL_KNOWN |
1767 IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR_KNOWN);
1768 if (phy_data->with_data) {
1769 usig->common |= LE32_DEC_ENC(data0,
1770 IWL_RX_PHY_DATA0_EHT_UPLINK,
1771 IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL);
1772 usig->common |= LE32_DEC_ENC(data0,
1773 IWL_RX_PHY_DATA0_EHT_BSS_COLOR_MASK,
1774 IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR);
1775 } else {
1776 usig->common |= LE32_DEC_ENC(usig_a1,
1777 IWL_RX_USIG_A1_UL_FLAG,
1778 IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL);
1779 usig->common |= LE32_DEC_ENC(usig_a1,
1780 IWL_RX_USIG_A1_BSS_COLOR,
1781 IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR);
1782 }
1783
1784 if (fw_has_capa(&mvm->fw->ucode_capa,
1785 IWL_UCODE_TLV_CAPA_SNIFF_VALIDATE_SUPPORT)) {
1786 usig->common |=
1787 cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_VALIDATE_BITS_CHECKED);
1788 usig->common |=
1789 LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_VALIDATE,
1790 IEEE80211_RADIOTAP_EHT_USIG_COMMON_VALIDATE_BITS_OK);
1791 }
1792
1793 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_SPATIAL_REUSE);
1794 eht->data[0] |= LE32_DEC_ENC(data0,
1795 IWL_RX_PHY_DATA0_ETH_SPATIAL_REUSE_MASK,
1796 IEEE80211_RADIOTAP_EHT_DATA0_SPATIAL_REUSE);
1797
1798 /* All RU allocating size/index is in TB format */
1799 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_RU_ALLOC_TB_FMT);
1800 eht->data[8] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PS160,
1801 IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_PS_160);
1802 eht->data[8] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_RU_ALLOC_B0,
1803 IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B0);
1804 eht->data[8] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_RU_ALLOC_B1_B7,
1805 IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B7_B1);
1806
1807 iwl_mvm_decode_eht_ru(mvm, rx_status, eht);
1808
1809 /* We only get here in case of IWL_RX_MPDU_PHY_TSF_OVERLOAD is set
1810 * which is on only in case of monitor mode so no need to check monitor
1811 * mode
1812 */
1813 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PRIMARY_80);
1814 eht->data[1] |=
1815 le32_encode_bits(mvm->monitor_p80,
1816 IEEE80211_RADIOTAP_EHT_DATA1_PRIMARY_80);
1817
1818 usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP_KNOWN);
1819 if (phy_data->with_data)
1820 usig->common |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_TXOP_DUR_MASK,
1821 IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP);
1822 else
1823 usig->common |= LE32_DEC_ENC(usig_a1, IWL_RX_USIG_A1_TXOP_DURATION,
1824 IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP);
1825
1826 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_LDPC_EXTRA_SYM_OM);
1827 eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_LDPC_EXT_SYM,
1828 IEEE80211_RADIOTAP_EHT_DATA0_LDPC_EXTRA_SYM_OM);
1829
1830 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PRE_PADD_FACOR_OM);
1831 eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PRE_FEC_PAD_MASK,
1832 IEEE80211_RADIOTAP_EHT_DATA0_PRE_PADD_FACOR_OM);
1833
1834 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PE_DISAMBIGUITY_OM);
1835 eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PE_DISAMBIG,
1836 IEEE80211_RADIOTAP_EHT_DATA0_PE_DISAMBIGUITY_OM);
1837
1838 /* TODO: what about IWL_RX_PHY_DATA0_EHT_BW320_SLOT */
1839
1840 if (!le32_get_bits(data0, IWL_RX_PHY_DATA0_EHT_SIGA_CRC_OK))
1841 usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BAD_USIG_CRC);
1842
1843 usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_PHY_VER_KNOWN);
1844 usig->common |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PHY_VER,
1845 IEEE80211_RADIOTAP_EHT_USIG_COMMON_PHY_VER);
1846
1847 /*
1848 * TODO: what about TB - IWL_RX_PHY_DATA1_EHT_TB_PILOT_TYPE,
1849 * IWL_RX_PHY_DATA1_EHT_TB_LOW_SS
1850 */
1851
1852 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_EHT_LTF);
1853 eht->data[0] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_SIG_LTF_NUM,
1854 IEEE80211_RADIOTAP_EHT_DATA0_EHT_LTF);
1855
1856 if (info_type == IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT ||
1857 info_type == IWL_RX_PHY_INFO_TYPE_EHT_TB)
1858 iwl_mvm_decode_eht_ext_tb(mvm, phy_data, rx_status, eht, usig);
1859
1860 if (info_type == IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT ||
1861 info_type == IWL_RX_PHY_INFO_TYPE_EHT_MU)
1862 iwl_mvm_decode_eht_ext_mu(mvm, phy_data, rx_status, eht, usig);
1863 }
1864
iwl_mvm_rx_eht(struct iwl_mvm * mvm,struct sk_buff * skb,struct iwl_mvm_rx_phy_data * phy_data,int queue)1865 static void iwl_mvm_rx_eht(struct iwl_mvm *mvm, struct sk_buff *skb,
1866 struct iwl_mvm_rx_phy_data *phy_data,
1867 int queue)
1868 {
1869 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
1870
1871 struct ieee80211_radiotap_eht *eht;
1872 struct ieee80211_radiotap_eht_usig *usig;
1873 size_t eht_len = sizeof(*eht);
1874
1875 u32 rate_n_flags = phy_data->rate_n_flags;
1876 u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK;
1877 /* EHT and HE have the same valus for LTF */
1878 u8 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN;
1879 u16 phy_info = phy_data->phy_info;
1880 u32 bw;
1881
1882 /* u32 for 1 user_info */
1883 if (phy_data->with_data)
1884 eht_len += sizeof(u32);
1885
1886 eht = iwl_mvm_radiotap_put_tlv(skb, IEEE80211_RADIOTAP_EHT, eht_len);
1887
1888 usig = iwl_mvm_radiotap_put_tlv(skb, IEEE80211_RADIOTAP_EHT_USIG,
1889 sizeof(*usig));
1890 rx_status->flag |= RX_FLAG_RADIOTAP_TLV_AT_END;
1891 usig->common |=
1892 cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BW_KNOWN);
1893
1894 /* specific handling for 320MHz */
1895 bw = FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK, rate_n_flags);
1896 if (bw == RATE_MCS_CHAN_WIDTH_320_VAL)
1897 bw += FIELD_GET(IWL_RX_PHY_DATA0_EHT_BW320_SLOT,
1898 le32_to_cpu(phy_data->d0));
1899
1900 usig->common |= cpu_to_le32
1901 (FIELD_PREP(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BW, bw));
1902
1903 /* report the AMPDU-EOF bit on single frames */
1904 if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
1905 rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
1906 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
1907 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF))
1908 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
1909 }
1910
1911 /* update aggregation data for monitor sake on default queue */
1912 if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) &&
1913 (phy_info & IWL_RX_MPDU_PHY_AMPDU) && phy_data->first_subframe) {
1914 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
1915 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF))
1916 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
1917 }
1918
1919 if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
1920 iwl_mvm_decode_eht_phy_data(mvm, phy_data, rx_status, eht, usig);
1921
1922 #define CHECK_TYPE(F) \
1923 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F != \
1924 (RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS))
1925
1926 CHECK_TYPE(SU);
1927 CHECK_TYPE(EXT_SU);
1928 CHECK_TYPE(MU);
1929 CHECK_TYPE(TRIG);
1930
1931 switch (FIELD_GET(RATE_MCS_HE_GI_LTF_MSK, rate_n_flags)) {
1932 case 0:
1933 if (he_type == RATE_MCS_HE_TYPE_TRIG) {
1934 rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_1_6;
1935 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X;
1936 } else {
1937 rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_0_8;
1938 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
1939 }
1940 break;
1941 case 1:
1942 rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_1_6;
1943 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
1944 break;
1945 case 2:
1946 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1947 if (he_type == RATE_MCS_HE_TYPE_TRIG)
1948 rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_3_2;
1949 else
1950 rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_0_8;
1951 break;
1952 case 3:
1953 if (he_type != RATE_MCS_HE_TYPE_TRIG) {
1954 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1955 rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_3_2;
1956 }
1957 break;
1958 default:
1959 /* nothing here */
1960 break;
1961 }
1962
1963 if (ltf != IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN) {
1964 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_GI);
1965 eht->data[0] |= cpu_to_le32
1966 (FIELD_PREP(IEEE80211_RADIOTAP_EHT_DATA0_LTF,
1967 ltf) |
1968 FIELD_PREP(IEEE80211_RADIOTAP_EHT_DATA0_GI,
1969 rx_status->eht.gi));
1970 }
1971
1972
1973 if (!phy_data->with_data) {
1974 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_NSS_S |
1975 IEEE80211_RADIOTAP_EHT_KNOWN_BEAMFORMED_S);
1976 eht->data[7] |=
1977 le32_encode_bits(le32_get_bits(phy_data->rx_vec[2],
1978 RX_NO_DATA_RX_VEC2_EHT_NSTS_MSK),
1979 IEEE80211_RADIOTAP_EHT_DATA7_NSS_S);
1980 if (rate_n_flags & RATE_MCS_BF_MSK)
1981 eht->data[7] |=
1982 cpu_to_le32(IEEE80211_RADIOTAP_EHT_DATA7_BEAMFORMED_S);
1983 } else {
1984 eht->user_info[0] |=
1985 cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_MCS_KNOWN |
1986 IEEE80211_RADIOTAP_EHT_USER_INFO_CODING_KNOWN |
1987 IEEE80211_RADIOTAP_EHT_USER_INFO_NSS_KNOWN_O |
1988 IEEE80211_RADIOTAP_EHT_USER_INFO_BEAMFORMING_KNOWN_O |
1989 IEEE80211_RADIOTAP_EHT_USER_INFO_DATA_FOR_USER);
1990
1991 if (rate_n_flags & RATE_MCS_BF_MSK)
1992 eht->user_info[0] |=
1993 cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_BEAMFORMING_O);
1994
1995 if (rate_n_flags & RATE_MCS_LDPC_MSK)
1996 eht->user_info[0] |=
1997 cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_CODING);
1998
1999 eht->user_info[0] |= cpu_to_le32
2000 (FIELD_PREP(IEEE80211_RADIOTAP_EHT_USER_INFO_MCS,
2001 FIELD_GET(RATE_VHT_MCS_RATE_CODE_MSK,
2002 rate_n_flags)) |
2003 FIELD_PREP(IEEE80211_RADIOTAP_EHT_USER_INFO_NSS_O,
2004 FIELD_GET(RATE_MCS_NSS_MSK, rate_n_flags)));
2005 }
2006 }
2007
iwl_mvm_rx_he(struct iwl_mvm * mvm,struct sk_buff * skb,struct iwl_mvm_rx_phy_data * phy_data,int queue)2008 static void iwl_mvm_rx_he(struct iwl_mvm *mvm, struct sk_buff *skb,
2009 struct iwl_mvm_rx_phy_data *phy_data,
2010 int queue)
2011 {
2012 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
2013 struct ieee80211_radiotap_he *he = NULL;
2014 struct ieee80211_radiotap_he_mu *he_mu = NULL;
2015 u32 rate_n_flags = phy_data->rate_n_flags;
2016 u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK;
2017 u8 ltf;
2018 static const struct ieee80211_radiotap_he known = {
2019 .data1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_DATA_MCS_KNOWN |
2020 IEEE80211_RADIOTAP_HE_DATA1_DATA_DCM_KNOWN |
2021 IEEE80211_RADIOTAP_HE_DATA1_STBC_KNOWN |
2022 IEEE80211_RADIOTAP_HE_DATA1_CODING_KNOWN),
2023 .data2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_GI_KNOWN |
2024 IEEE80211_RADIOTAP_HE_DATA2_TXBF_KNOWN),
2025 };
2026 static const struct ieee80211_radiotap_he_mu mu_known = {
2027 .flags1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS_KNOWN |
2028 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM_KNOWN |
2029 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_SYMS_USERS_KNOWN |
2030 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_COMP_KNOWN),
2031 .flags2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW_KNOWN |
2032 IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_KNOWN),
2033 };
2034 u16 phy_info = phy_data->phy_info;
2035
2036 he = skb_put_data(skb, &known, sizeof(known));
2037 rx_status->flag |= RX_FLAG_RADIOTAP_HE;
2038
2039 if (phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU ||
2040 phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU_EXT) {
2041 he_mu = skb_put_data(skb, &mu_known, sizeof(mu_known));
2042 rx_status->flag |= RX_FLAG_RADIOTAP_HE_MU;
2043 }
2044
2045 /* report the AMPDU-EOF bit on single frames */
2046 if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
2047 rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
2048 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
2049 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF))
2050 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
2051 }
2052
2053 if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
2054 iwl_mvm_decode_he_phy_data(mvm, phy_data, he, he_mu, rx_status,
2055 queue);
2056
2057 /* update aggregation data for monitor sake on default queue */
2058 if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) &&
2059 (phy_info & IWL_RX_MPDU_PHY_AMPDU) && phy_data->first_subframe) {
2060 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
2061 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF))
2062 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
2063 }
2064
2065 if (he_type == RATE_MCS_HE_TYPE_EXT_SU &&
2066 rate_n_flags & RATE_MCS_HE_106T_MSK) {
2067 rx_status->bw = RATE_INFO_BW_HE_RU;
2068 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106;
2069 }
2070
2071 /* actually data is filled in mac80211 */
2072 if (he_type == RATE_MCS_HE_TYPE_SU ||
2073 he_type == RATE_MCS_HE_TYPE_EXT_SU)
2074 he->data1 |=
2075 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN);
2076
2077 #define CHECK_TYPE(F) \
2078 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F != \
2079 (RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS))
2080
2081 CHECK_TYPE(SU);
2082 CHECK_TYPE(EXT_SU);
2083 CHECK_TYPE(MU);
2084 CHECK_TYPE(TRIG);
2085
2086 he->data1 |= cpu_to_le16(he_type >> RATE_MCS_HE_TYPE_POS);
2087
2088 if (rate_n_flags & RATE_MCS_BF_MSK)
2089 he->data5 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA5_TXBF);
2090
2091 switch ((rate_n_flags & RATE_MCS_HE_GI_LTF_MSK) >>
2092 RATE_MCS_HE_GI_LTF_POS) {
2093 case 0:
2094 if (he_type == RATE_MCS_HE_TYPE_TRIG)
2095 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
2096 else
2097 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
2098 if (he_type == RATE_MCS_HE_TYPE_MU)
2099 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
2100 else
2101 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X;
2102 break;
2103 case 1:
2104 if (he_type == RATE_MCS_HE_TYPE_TRIG)
2105 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
2106 else
2107 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
2108 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
2109 break;
2110 case 2:
2111 if (he_type == RATE_MCS_HE_TYPE_TRIG) {
2112 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2;
2113 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
2114 } else {
2115 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
2116 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
2117 }
2118 break;
2119 case 3:
2120 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2;
2121 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
2122 break;
2123 case 4:
2124 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
2125 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
2126 break;
2127 default:
2128 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN;
2129 }
2130
2131 he->data5 |= le16_encode_bits(ltf,
2132 IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE);
2133 }
2134
iwl_mvm_decode_lsig(struct sk_buff * skb,struct iwl_mvm_rx_phy_data * phy_data)2135 static void iwl_mvm_decode_lsig(struct sk_buff *skb,
2136 struct iwl_mvm_rx_phy_data *phy_data)
2137 {
2138 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
2139 struct ieee80211_radiotap_lsig *lsig;
2140
2141 switch (phy_data->info_type) {
2142 case IWL_RX_PHY_INFO_TYPE_HT:
2143 case IWL_RX_PHY_INFO_TYPE_VHT_SU:
2144 case IWL_RX_PHY_INFO_TYPE_VHT_MU:
2145 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
2146 case IWL_RX_PHY_INFO_TYPE_HE_SU:
2147 case IWL_RX_PHY_INFO_TYPE_HE_MU:
2148 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
2149 case IWL_RX_PHY_INFO_TYPE_HE_TB:
2150 case IWL_RX_PHY_INFO_TYPE_EHT_MU:
2151 case IWL_RX_PHY_INFO_TYPE_EHT_TB:
2152 case IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT:
2153 case IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT:
2154 lsig = skb_put(skb, sizeof(*lsig));
2155 lsig->data1 = cpu_to_le16(IEEE80211_RADIOTAP_LSIG_DATA1_LENGTH_KNOWN);
2156 lsig->data2 = le16_encode_bits(le32_get_bits(phy_data->d1,
2157 IWL_RX_PHY_DATA1_LSIG_LEN_MASK),
2158 IEEE80211_RADIOTAP_LSIG_DATA2_LENGTH);
2159 rx_status->flag |= RX_FLAG_RADIOTAP_LSIG;
2160 break;
2161 default:
2162 break;
2163 }
2164 }
2165
iwl_mvm_nl80211_band_from_rx_msdu(u8 phy_band)2166 static inline u8 iwl_mvm_nl80211_band_from_rx_msdu(u8 phy_band)
2167 {
2168 switch (phy_band) {
2169 case PHY_BAND_24:
2170 return NL80211_BAND_2GHZ;
2171 case PHY_BAND_5:
2172 return NL80211_BAND_5GHZ;
2173 case PHY_BAND_6:
2174 return NL80211_BAND_6GHZ;
2175 default:
2176 WARN_ONCE(1, "Unsupported phy band (%u)\n", phy_band);
2177 return NL80211_BAND_5GHZ;
2178 }
2179 }
2180
2181 struct iwl_rx_sta_csa {
2182 bool all_sta_unblocked;
2183 struct ieee80211_vif *vif;
2184 };
2185
iwl_mvm_rx_get_sta_block_tx(void * data,struct ieee80211_sta * sta)2186 static void iwl_mvm_rx_get_sta_block_tx(void *data, struct ieee80211_sta *sta)
2187 {
2188 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
2189 struct iwl_rx_sta_csa *rx_sta_csa = data;
2190
2191 if (mvmsta->vif != rx_sta_csa->vif)
2192 return;
2193
2194 if (mvmsta->disable_tx)
2195 rx_sta_csa->all_sta_unblocked = false;
2196 }
2197
2198 /*
2199 * Note: requires also rx_status->band to be prefilled, as well
2200 * as phy_data (apart from phy_data->info_type)
2201 */
iwl_mvm_rx_fill_status(struct iwl_mvm * mvm,struct sk_buff * skb,struct iwl_mvm_rx_phy_data * phy_data,int queue)2202 static void iwl_mvm_rx_fill_status(struct iwl_mvm *mvm,
2203 struct sk_buff *skb,
2204 struct iwl_mvm_rx_phy_data *phy_data,
2205 int queue)
2206 {
2207 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
2208 u32 rate_n_flags = phy_data->rate_n_flags;
2209 u8 stbc = u32_get_bits(rate_n_flags, RATE_MCS_STBC_MSK);
2210 u32 format = rate_n_flags & RATE_MCS_MOD_TYPE_MSK;
2211 bool is_sgi;
2212
2213 phy_data->info_type = IWL_RX_PHY_INFO_TYPE_NONE;
2214
2215 if (phy_data->phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
2216 phy_data->info_type =
2217 le32_get_bits(phy_data->d1,
2218 IWL_RX_PHY_DATA1_INFO_TYPE_MASK);
2219
2220 /* This may be overridden by iwl_mvm_rx_he() to HE_RU */
2221 switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) {
2222 case RATE_MCS_CHAN_WIDTH_20:
2223 break;
2224 case RATE_MCS_CHAN_WIDTH_40:
2225 rx_status->bw = RATE_INFO_BW_40;
2226 break;
2227 case RATE_MCS_CHAN_WIDTH_80:
2228 rx_status->bw = RATE_INFO_BW_80;
2229 break;
2230 case RATE_MCS_CHAN_WIDTH_160:
2231 rx_status->bw = RATE_INFO_BW_160;
2232 break;
2233 case RATE_MCS_CHAN_WIDTH_320:
2234 rx_status->bw = RATE_INFO_BW_320;
2235 break;
2236 }
2237
2238 /* must be before L-SIG data */
2239 if (format == RATE_MCS_HE_MSK)
2240 iwl_mvm_rx_he(mvm, skb, phy_data, queue);
2241
2242 iwl_mvm_decode_lsig(skb, phy_data);
2243
2244 rx_status->device_timestamp = phy_data->gp2_on_air_rise;
2245 rx_status->freq = ieee80211_channel_to_frequency(phy_data->channel,
2246 rx_status->band);
2247 iwl_mvm_get_signal_strength(mvm, rx_status, rate_n_flags,
2248 phy_data->energy_a, phy_data->energy_b);
2249
2250 /* using TLV format and must be after all fixed len fields */
2251 if (format == RATE_MCS_EHT_MSK)
2252 iwl_mvm_rx_eht(mvm, skb, phy_data, queue);
2253
2254 if (unlikely(mvm->monitor_on))
2255 iwl_mvm_add_rtap_sniffer_config(mvm, skb);
2256
2257 is_sgi = format == RATE_MCS_HE_MSK ?
2258 iwl_he_is_sgi(rate_n_flags) :
2259 rate_n_flags & RATE_MCS_SGI_MSK;
2260
2261 if (!(format == RATE_MCS_CCK_MSK) && is_sgi)
2262 rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
2263
2264 if (rate_n_flags & RATE_MCS_LDPC_MSK)
2265 rx_status->enc_flags |= RX_ENC_FLAG_LDPC;
2266
2267 switch (format) {
2268 case RATE_MCS_VHT_MSK:
2269 rx_status->encoding = RX_ENC_VHT;
2270 break;
2271 case RATE_MCS_HE_MSK:
2272 rx_status->encoding = RX_ENC_HE;
2273 rx_status->he_dcm =
2274 !!(rate_n_flags & RATE_HE_DUAL_CARRIER_MODE_MSK);
2275 break;
2276 case RATE_MCS_EHT_MSK:
2277 rx_status->encoding = RX_ENC_EHT;
2278 break;
2279 }
2280
2281 switch (format) {
2282 case RATE_MCS_HT_MSK:
2283 rx_status->encoding = RX_ENC_HT;
2284 rx_status->rate_idx = RATE_HT_MCS_INDEX(rate_n_flags);
2285 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
2286 break;
2287 case RATE_MCS_VHT_MSK:
2288 case RATE_MCS_HE_MSK:
2289 case RATE_MCS_EHT_MSK:
2290 rx_status->nss =
2291 u32_get_bits(rate_n_flags, RATE_MCS_NSS_MSK) + 1;
2292 rx_status->rate_idx = rate_n_flags & RATE_MCS_CODE_MSK;
2293 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
2294 break;
2295 default: {
2296 int rate = iwl_mvm_legacy_hw_idx_to_mac80211_idx(rate_n_flags,
2297 rx_status->band);
2298
2299 rx_status->rate_idx = rate;
2300
2301 if ((rate < 0 || rate > 0xFF)) {
2302 rx_status->rate_idx = 0;
2303 if (net_ratelimit())
2304 IWL_ERR(mvm, "Invalid rate flags 0x%x, band %d,\n",
2305 rate_n_flags, rx_status->band);
2306 }
2307
2308 break;
2309 }
2310 }
2311 }
2312
iwl_mvm_rx_mpdu_mq(struct iwl_mvm * mvm,struct napi_struct * napi,struct iwl_rx_cmd_buffer * rxb,int queue)2313 void iwl_mvm_rx_mpdu_mq(struct iwl_mvm *mvm, struct napi_struct *napi,
2314 struct iwl_rx_cmd_buffer *rxb, int queue)
2315 {
2316 struct ieee80211_rx_status *rx_status;
2317 struct iwl_rx_packet *pkt = rxb_addr(rxb);
2318 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
2319 struct ieee80211_hdr *hdr;
2320 u32 len;
2321 u32 pkt_len = iwl_rx_packet_payload_len(pkt);
2322 struct ieee80211_sta *sta = NULL;
2323 struct ieee80211_link_sta *link_sta = NULL;
2324 struct sk_buff *skb;
2325 u8 crypt_len = 0;
2326 size_t desc_size;
2327 struct iwl_mvm_rx_phy_data phy_data = {};
2328 u32 format;
2329
2330 if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status)))
2331 return;
2332
2333 if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210)
2334 desc_size = sizeof(*desc);
2335 else
2336 desc_size = IWL_RX_DESC_SIZE_V1;
2337
2338 if (unlikely(pkt_len < desc_size)) {
2339 IWL_DEBUG_DROP(mvm, "Bad REPLY_RX_MPDU_CMD size\n");
2340 return;
2341 }
2342
2343 if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
2344 phy_data.rate_n_flags = le32_to_cpu(desc->v3.rate_n_flags);
2345 phy_data.channel = desc->v3.channel;
2346 phy_data.gp2_on_air_rise = le32_to_cpu(desc->v3.gp2_on_air_rise);
2347 phy_data.energy_a = desc->v3.energy_a;
2348 phy_data.energy_b = desc->v3.energy_b;
2349
2350 phy_data.d0 = desc->v3.phy_data0;
2351 phy_data.d1 = desc->v3.phy_data1;
2352 phy_data.d2 = desc->v3.phy_data2;
2353 phy_data.d3 = desc->v3.phy_data3;
2354 phy_data.eht_d4 = desc->phy_eht_data4;
2355 phy_data.d5 = desc->v3.phy_data5;
2356 } else {
2357 phy_data.rate_n_flags = le32_to_cpu(desc->v1.rate_n_flags);
2358 phy_data.channel = desc->v1.channel;
2359 phy_data.gp2_on_air_rise = le32_to_cpu(desc->v1.gp2_on_air_rise);
2360 phy_data.energy_a = desc->v1.energy_a;
2361 phy_data.energy_b = desc->v1.energy_b;
2362
2363 phy_data.d0 = desc->v1.phy_data0;
2364 phy_data.d1 = desc->v1.phy_data1;
2365 phy_data.d2 = desc->v1.phy_data2;
2366 phy_data.d3 = desc->v1.phy_data3;
2367 }
2368
2369 if (iwl_fw_lookup_notif_ver(mvm->fw, LEGACY_GROUP,
2370 REPLY_RX_MPDU_CMD, 0) < 4) {
2371 phy_data.rate_n_flags = iwl_new_rate_from_v1(phy_data.rate_n_flags);
2372 IWL_DEBUG_DROP(mvm, "Got old format rate, converting. New rate: 0x%x\n",
2373 phy_data.rate_n_flags);
2374 }
2375
2376 format = phy_data.rate_n_flags & RATE_MCS_MOD_TYPE_MSK;
2377
2378 len = le16_to_cpu(desc->mpdu_len);
2379
2380 if (unlikely(len + desc_size > pkt_len)) {
2381 IWL_DEBUG_DROP(mvm, "FW lied about packet len\n");
2382 return;
2383 }
2384
2385 phy_data.with_data = true;
2386 phy_data.phy_info = le16_to_cpu(desc->phy_info);
2387 phy_data.d4 = desc->phy_data4;
2388
2389 hdr = (void *)(pkt->data + desc_size);
2390 /* Dont use dev_alloc_skb(), we'll have enough headroom once
2391 * ieee80211_hdr pulled.
2392 */
2393 skb = alloc_skb(128, GFP_ATOMIC);
2394 if (!skb) {
2395 IWL_ERR(mvm, "alloc_skb failed\n");
2396 return;
2397 }
2398
2399 if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) {
2400 /*
2401 * If the device inserted padding it means that (it thought)
2402 * the 802.11 header wasn't a multiple of 4 bytes long. In
2403 * this case, reserve two bytes at the start of the SKB to
2404 * align the payload properly in case we end up copying it.
2405 */
2406 skb_reserve(skb, 2);
2407 }
2408
2409 rx_status = IEEE80211_SKB_RXCB(skb);
2410
2411 /*
2412 * Keep packets with CRC errors (and with overrun) for monitor mode
2413 * (otherwise the firmware discards them) but mark them as bad.
2414 */
2415 if (!(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_CRC_OK)) ||
2416 !(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_OVERRUN_OK))) {
2417 IWL_DEBUG_RX(mvm, "Bad CRC or FIFO: 0x%08X.\n",
2418 le32_to_cpu(desc->status));
2419 rx_status->flag |= RX_FLAG_FAILED_FCS_CRC;
2420 }
2421
2422 /* set the preamble flag if appropriate */
2423 if (format == RATE_MCS_CCK_MSK &&
2424 phy_data.phy_info & IWL_RX_MPDU_PHY_SHORT_PREAMBLE)
2425 rx_status->enc_flags |= RX_ENC_FLAG_SHORTPRE;
2426
2427 if (likely(!(phy_data.phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD))) {
2428 u64 tsf_on_air_rise;
2429
2430 if (mvm->trans->trans_cfg->device_family >=
2431 IWL_DEVICE_FAMILY_AX210)
2432 tsf_on_air_rise = le64_to_cpu(desc->v3.tsf_on_air_rise);
2433 else
2434 tsf_on_air_rise = le64_to_cpu(desc->v1.tsf_on_air_rise);
2435
2436 rx_status->mactime = tsf_on_air_rise;
2437 /* TSF as indicated by the firmware is at INA time */
2438 rx_status->flag |= RX_FLAG_MACTIME_PLCP_START;
2439 }
2440
2441 if (iwl_mvm_is_band_in_rx_supported(mvm)) {
2442 u8 band = BAND_IN_RX_STATUS(desc->mac_phy_idx);
2443
2444 rx_status->band = iwl_mvm_nl80211_band_from_rx_msdu(band);
2445 } else {
2446 rx_status->band = phy_data.channel > 14 ? NL80211_BAND_5GHZ :
2447 NL80211_BAND_2GHZ;
2448 }
2449
2450 /* update aggregation data for monitor sake on default queue */
2451 if (!queue && (phy_data.phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
2452 bool toggle_bit;
2453
2454 toggle_bit = phy_data.phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE;
2455 rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
2456 /*
2457 * Toggle is switched whenever new aggregation starts. Make
2458 * sure ampdu_reference is never 0 so we can later use it to
2459 * see if the frame was really part of an A-MPDU or not.
2460 */
2461 if (toggle_bit != mvm->ampdu_toggle) {
2462 mvm->ampdu_ref++;
2463 if (mvm->ampdu_ref == 0)
2464 mvm->ampdu_ref++;
2465 mvm->ampdu_toggle = toggle_bit;
2466 phy_data.first_subframe = true;
2467 }
2468 rx_status->ampdu_reference = mvm->ampdu_ref;
2469 }
2470
2471 rcu_read_lock();
2472
2473 if (desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_SRC_STA_FOUND)) {
2474 u8 id = le32_get_bits(desc->status, IWL_RX_MPDU_STATUS_STA_ID);
2475
2476 if (!WARN_ON_ONCE(id >= mvm->fw->ucode_capa.num_stations)) {
2477 sta = rcu_dereference(mvm->fw_id_to_mac_id[id]);
2478 if (IS_ERR(sta))
2479 sta = NULL;
2480 link_sta = rcu_dereference(mvm->fw_id_to_link_sta[id]);
2481 }
2482 } else if (!is_multicast_ether_addr(hdr->addr2)) {
2483 /*
2484 * This is fine since we prevent two stations with the same
2485 * address from being added.
2486 */
2487 sta = ieee80211_find_sta_by_ifaddr(mvm->hw, hdr->addr2, NULL);
2488 }
2489
2490 if (iwl_mvm_rx_crypto(mvm, sta, hdr, rx_status, phy_data.phy_info, desc,
2491 le32_to_cpu(pkt->len_n_flags), queue,
2492 &crypt_len)) {
2493 kfree_skb(skb);
2494 goto out;
2495 }
2496
2497 iwl_mvm_rx_fill_status(mvm, skb, &phy_data, queue);
2498
2499 if (sta) {
2500 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
2501 struct ieee80211_vif *tx_blocked_vif =
2502 rcu_dereference(mvm->csa_tx_blocked_vif);
2503 u8 baid = (u8)((le32_to_cpu(desc->reorder_data) &
2504 IWL_RX_MPDU_REORDER_BAID_MASK) >>
2505 IWL_RX_MPDU_REORDER_BAID_SHIFT);
2506 struct iwl_fw_dbg_trigger_tlv *trig;
2507 struct ieee80211_vif *vif = mvmsta->vif;
2508
2509 if (!mvm->tcm.paused && len >= sizeof(*hdr) &&
2510 !is_multicast_ether_addr(hdr->addr1) &&
2511 ieee80211_is_data(hdr->frame_control) &&
2512 time_after(jiffies, mvm->tcm.ts + MVM_TCM_PERIOD))
2513 schedule_delayed_work(&mvm->tcm.work, 0);
2514
2515 /*
2516 * We have tx blocked stations (with CS bit). If we heard
2517 * frames from a blocked station on a new channel we can
2518 * TX to it again.
2519 */
2520 if (unlikely(tx_blocked_vif) && tx_blocked_vif == vif) {
2521 struct iwl_mvm_vif *mvmvif =
2522 iwl_mvm_vif_from_mac80211(tx_blocked_vif);
2523 struct iwl_rx_sta_csa rx_sta_csa = {
2524 .all_sta_unblocked = true,
2525 .vif = tx_blocked_vif,
2526 };
2527
2528 if (mvmvif->csa_target_freq == rx_status->freq)
2529 iwl_mvm_sta_modify_disable_tx_ap(mvm, sta,
2530 false);
2531 ieee80211_iterate_stations_atomic(mvm->hw,
2532 iwl_mvm_rx_get_sta_block_tx,
2533 &rx_sta_csa);
2534
2535 if (rx_sta_csa.all_sta_unblocked) {
2536 RCU_INIT_POINTER(mvm->csa_tx_blocked_vif, NULL);
2537 /* Unblock BCAST / MCAST station */
2538 iwl_mvm_modify_all_sta_disable_tx(mvm, mvmvif, false);
2539 cancel_delayed_work(&mvm->cs_tx_unblock_dwork);
2540 }
2541 }
2542
2543 rs_update_last_rssi(mvm, mvmsta, rx_status);
2544
2545 trig = iwl_fw_dbg_trigger_on(&mvm->fwrt,
2546 ieee80211_vif_to_wdev(vif),
2547 FW_DBG_TRIGGER_RSSI);
2548
2549 if (trig && ieee80211_is_beacon(hdr->frame_control)) {
2550 struct iwl_fw_dbg_trigger_low_rssi *rssi_trig;
2551 s32 rssi;
2552
2553 rssi_trig = (void *)trig->data;
2554 rssi = le32_to_cpu(rssi_trig->rssi);
2555
2556 if (rx_status->signal < rssi)
2557 iwl_fw_dbg_collect_trig(&mvm->fwrt, trig,
2558 NULL);
2559 }
2560
2561 if (ieee80211_is_data(hdr->frame_control))
2562 iwl_mvm_rx_csum(mvm, sta, skb, pkt);
2563
2564 if (iwl_mvm_is_dup(sta, queue, rx_status, hdr, desc)) {
2565 kfree_skb(skb);
2566 goto out;
2567 }
2568
2569 /*
2570 * Our hardware de-aggregates AMSDUs but copies the mac header
2571 * as it to the de-aggregated MPDUs. We need to turn off the
2572 * AMSDU bit in the QoS control ourselves.
2573 * In addition, HW reverses addr3 and addr4 - reverse it back.
2574 */
2575 if ((desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) &&
2576 !WARN_ON(!ieee80211_is_data_qos(hdr->frame_control))) {
2577 u8 *qc = ieee80211_get_qos_ctl(hdr);
2578
2579 *qc &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT;
2580
2581 if (mvm->trans->trans_cfg->device_family ==
2582 IWL_DEVICE_FAMILY_9000) {
2583 iwl_mvm_flip_address(hdr->addr3);
2584
2585 if (ieee80211_has_a4(hdr->frame_control))
2586 iwl_mvm_flip_address(hdr->addr4);
2587 }
2588 }
2589 if (baid != IWL_RX_REORDER_DATA_INVALID_BAID) {
2590 u32 reorder_data = le32_to_cpu(desc->reorder_data);
2591
2592 iwl_mvm_agg_rx_received(mvm, reorder_data, baid);
2593 }
2594 }
2595
2596 /* management stuff on default queue */
2597 if (!queue) {
2598 if (unlikely((ieee80211_is_beacon(hdr->frame_control) ||
2599 ieee80211_is_probe_resp(hdr->frame_control)) &&
2600 mvm->sched_scan_pass_all ==
2601 SCHED_SCAN_PASS_ALL_ENABLED))
2602 mvm->sched_scan_pass_all = SCHED_SCAN_PASS_ALL_FOUND;
2603
2604 if (unlikely(ieee80211_is_beacon(hdr->frame_control) ||
2605 ieee80211_is_probe_resp(hdr->frame_control)))
2606 rx_status->boottime_ns = ktime_get_boottime_ns();
2607 }
2608
2609 if (iwl_mvm_create_skb(mvm, skb, hdr, len, crypt_len, rxb)) {
2610 kfree_skb(skb);
2611 goto out;
2612 }
2613
2614 if (!iwl_mvm_reorder(mvm, napi, queue, sta, skb, desc) &&
2615 likely(!iwl_mvm_time_sync_frame(mvm, skb, hdr->addr2)) &&
2616 likely(!iwl_mvm_mei_filter_scan(mvm, skb)))
2617 iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb, queue, sta,
2618 link_sta);
2619 out:
2620 rcu_read_unlock();
2621 }
2622
iwl_mvm_rx_monitor_no_data(struct iwl_mvm * mvm,struct napi_struct * napi,struct iwl_rx_cmd_buffer * rxb,int queue)2623 void iwl_mvm_rx_monitor_no_data(struct iwl_mvm *mvm, struct napi_struct *napi,
2624 struct iwl_rx_cmd_buffer *rxb, int queue)
2625 {
2626 struct ieee80211_rx_status *rx_status;
2627 struct iwl_rx_packet *pkt = rxb_addr(rxb);
2628 struct iwl_rx_no_data_ver_3 *desc = (void *)pkt->data;
2629 u32 rssi;
2630 u32 info_type;
2631 struct ieee80211_sta *sta = NULL;
2632 struct sk_buff *skb;
2633 struct iwl_mvm_rx_phy_data phy_data;
2634 u32 format;
2635
2636 if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status)))
2637 return;
2638
2639 if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(struct iwl_rx_no_data)))
2640 return;
2641
2642 rssi = le32_to_cpu(desc->rssi);
2643 info_type = le32_to_cpu(desc->info) & RX_NO_DATA_INFO_TYPE_MSK;
2644 phy_data.d0 = desc->phy_info[0];
2645 phy_data.d1 = desc->phy_info[1];
2646 phy_data.phy_info = IWL_RX_MPDU_PHY_TSF_OVERLOAD;
2647 phy_data.gp2_on_air_rise = le32_to_cpu(desc->on_air_rise_time);
2648 phy_data.rate_n_flags = le32_to_cpu(desc->rate);
2649 phy_data.energy_a = u32_get_bits(rssi, RX_NO_DATA_CHAIN_A_MSK);
2650 phy_data.energy_b = u32_get_bits(rssi, RX_NO_DATA_CHAIN_B_MSK);
2651 phy_data.channel = u32_get_bits(rssi, RX_NO_DATA_CHANNEL_MSK);
2652 phy_data.with_data = false;
2653 phy_data.rx_vec[0] = desc->rx_vec[0];
2654 phy_data.rx_vec[1] = desc->rx_vec[1];
2655
2656 if (iwl_fw_lookup_notif_ver(mvm->fw, DATA_PATH_GROUP,
2657 RX_NO_DATA_NOTIF, 0) < 2) {
2658 IWL_DEBUG_DROP(mvm, "Got an old rate format. Old rate: 0x%x\n",
2659 phy_data.rate_n_flags);
2660 phy_data.rate_n_flags = iwl_new_rate_from_v1(phy_data.rate_n_flags);
2661 IWL_DEBUG_DROP(mvm, " Rate after conversion to the new format: 0x%x\n",
2662 phy_data.rate_n_flags);
2663 }
2664
2665 format = phy_data.rate_n_flags & RATE_MCS_MOD_TYPE_MSK;
2666
2667 if (iwl_fw_lookup_notif_ver(mvm->fw, DATA_PATH_GROUP,
2668 RX_NO_DATA_NOTIF, 0) >= 3) {
2669 if (unlikely(iwl_rx_packet_payload_len(pkt) <
2670 sizeof(struct iwl_rx_no_data_ver_3)))
2671 /* invalid len for ver 3 */
2672 return;
2673 phy_data.rx_vec[2] = desc->rx_vec[2];
2674 phy_data.rx_vec[3] = desc->rx_vec[3];
2675 } else {
2676 if (format == RATE_MCS_EHT_MSK)
2677 /* no support for EHT before version 3 API */
2678 return;
2679 }
2680
2681 /* Dont use dev_alloc_skb(), we'll have enough headroom once
2682 * ieee80211_hdr pulled.
2683 */
2684 skb = alloc_skb(128, GFP_ATOMIC);
2685 if (!skb) {
2686 IWL_ERR(mvm, "alloc_skb failed\n");
2687 return;
2688 }
2689
2690 rx_status = IEEE80211_SKB_RXCB(skb);
2691
2692 /* 0-length PSDU */
2693 rx_status->flag |= RX_FLAG_NO_PSDU;
2694
2695 switch (info_type) {
2696 case RX_NO_DATA_INFO_TYPE_NDP:
2697 rx_status->zero_length_psdu_type =
2698 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_SOUNDING;
2699 break;
2700 case RX_NO_DATA_INFO_TYPE_MU_UNMATCHED:
2701 case RX_NO_DATA_INFO_TYPE_TB_UNMATCHED:
2702 rx_status->zero_length_psdu_type =
2703 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_NOT_CAPTURED;
2704 break;
2705 default:
2706 rx_status->zero_length_psdu_type =
2707 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_VENDOR;
2708 break;
2709 }
2710
2711 rx_status->band = phy_data.channel > 14 ? NL80211_BAND_5GHZ :
2712 NL80211_BAND_2GHZ;
2713
2714 iwl_mvm_rx_fill_status(mvm, skb, &phy_data, queue);
2715
2716 /* no more radio tap info should be put after this point.
2717 *
2718 * We mark it as mac header, for upper layers to know where
2719 * all radio tap header ends.
2720 */
2721 skb_reset_mac_header(skb);
2722
2723 /*
2724 * Override the nss from the rx_vec since the rate_n_flags has
2725 * only 2 bits for the nss which gives a max of 4 ss but there
2726 * may be up to 8 spatial streams.
2727 */
2728 switch (format) {
2729 case RATE_MCS_VHT_MSK:
2730 rx_status->nss =
2731 le32_get_bits(desc->rx_vec[0],
2732 RX_NO_DATA_RX_VEC0_VHT_NSTS_MSK) + 1;
2733 break;
2734 case RATE_MCS_HE_MSK:
2735 rx_status->nss =
2736 le32_get_bits(desc->rx_vec[0],
2737 RX_NO_DATA_RX_VEC0_HE_NSTS_MSK) + 1;
2738 break;
2739 case RATE_MCS_EHT_MSK:
2740 rx_status->nss =
2741 le32_get_bits(desc->rx_vec[2],
2742 RX_NO_DATA_RX_VEC2_EHT_NSTS_MSK) + 1;
2743 }
2744
2745 rcu_read_lock();
2746 ieee80211_rx_napi(mvm->hw, sta, skb, napi);
2747 rcu_read_unlock();
2748 }
2749
iwl_mvm_rx_frame_release(struct iwl_mvm * mvm,struct napi_struct * napi,struct iwl_rx_cmd_buffer * rxb,int queue)2750 void iwl_mvm_rx_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi,
2751 struct iwl_rx_cmd_buffer *rxb, int queue)
2752 {
2753 struct iwl_rx_packet *pkt = rxb_addr(rxb);
2754 struct iwl_frame_release *release = (void *)pkt->data;
2755
2756 if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(*release)))
2757 return;
2758
2759 iwl_mvm_release_frames_from_notif(mvm, napi, release->baid,
2760 le16_to_cpu(release->nssn),
2761 queue, 0);
2762 }
2763
iwl_mvm_rx_bar_frame_release(struct iwl_mvm * mvm,struct napi_struct * napi,struct iwl_rx_cmd_buffer * rxb,int queue)2764 void iwl_mvm_rx_bar_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi,
2765 struct iwl_rx_cmd_buffer *rxb, int queue)
2766 {
2767 struct iwl_rx_packet *pkt = rxb_addr(rxb);
2768 struct iwl_bar_frame_release *release = (void *)pkt->data;
2769 unsigned int baid = le32_get_bits(release->ba_info,
2770 IWL_BAR_FRAME_RELEASE_BAID_MASK);
2771 unsigned int nssn = le32_get_bits(release->ba_info,
2772 IWL_BAR_FRAME_RELEASE_NSSN_MASK);
2773 unsigned int sta_id = le32_get_bits(release->sta_tid,
2774 IWL_BAR_FRAME_RELEASE_STA_MASK);
2775 unsigned int tid = le32_get_bits(release->sta_tid,
2776 IWL_BAR_FRAME_RELEASE_TID_MASK);
2777 struct iwl_mvm_baid_data *baid_data;
2778
2779 if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(*release)))
2780 return;
2781
2782 if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID ||
2783 baid >= ARRAY_SIZE(mvm->baid_map)))
2784 return;
2785
2786 rcu_read_lock();
2787 baid_data = rcu_dereference(mvm->baid_map[baid]);
2788 if (!baid_data) {
2789 IWL_DEBUG_RX(mvm,
2790 "Got valid BAID %d but not allocated, invalid BAR release!\n",
2791 baid);
2792 goto out;
2793 }
2794
2795 if (WARN(tid != baid_data->tid || sta_id > IWL_MVM_STATION_COUNT_MAX ||
2796 !(baid_data->sta_mask & BIT(sta_id)),
2797 "baid 0x%x is mapped to sta_mask:0x%x tid:%d, but BAR release received for sta:%d tid:%d\n",
2798 baid, baid_data->sta_mask, baid_data->tid, sta_id,
2799 tid))
2800 goto out;
2801
2802 iwl_mvm_release_frames_from_notif(mvm, napi, baid, nssn, queue, 0);
2803 out:
2804 rcu_read_unlock();
2805 }
2806