1 /******************************************************************************
2  *
3  * This file is provided under a dual BSD/GPLv2 license.  When using or
4  * redistributing this file, you may do so under either license.
5  *
6  * GPL LICENSE SUMMARY
7  *
8  * Copyright(c) 2012 - 2014 Intel Corporation. All rights reserved.
9  * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
10  * Copyright(c) 2016 - 2017 Intel Deutschland GmbH
11  * Copyright(c) 2018        Intel Corporation
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of version 2 of the GNU General Public License as
15  * published by the Free Software Foundation.
16  *
17  * This program is distributed in the hope that it will be useful, but
18  * WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
20  * General Public License for more details.
21  *
22  * The full GNU General Public License is included in this distribution
23  * in the file called COPYING.
24  *
25  * Contact Information:
26  *  Intel Linux Wireless <linuxwifi@intel.com>
27  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
28  *
29  * BSD LICENSE
30  *
31  * Copyright(c) 2012 - 2014 Intel Corporation. All rights reserved.
32  * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
33  * Copyright(c) 2016 - 2017 Intel Deutschland GmbH
34  * Copyright(c) 2018        Intel Corporation
35  * All rights reserved.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  *
41  *  * Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  *  * Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in
45  *    the documentation and/or other materials provided with the
46  *    distribution.
47  *  * Neither the name Intel Corporation nor the names of its
48  *    contributors may be used to endorse or promote products derived
49  *    from this software without specific prior written permission.
50  *
51  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
52  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
53  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
54  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
55  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
56  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
57  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
58  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
59  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
60  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
61  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
62  *
63  *****************************************************************************/
64 #include <linux/firmware.h>
65 #include <linux/rtnetlink.h>
66 #include "iwl-trans.h"
67 #include "iwl-csr.h"
68 #include "mvm.h"
69 #include "iwl-eeprom-parse.h"
70 #include "iwl-eeprom-read.h"
71 #include "iwl-nvm-parse.h"
72 #include "iwl-prph.h"
73 #include "fw/acpi.h"
74 
75 /* Default NVM size to read */
76 #define IWL_NVM_DEFAULT_CHUNK_SIZE (2 * 1024)
77 
78 #define NVM_WRITE_OPCODE 1
79 #define NVM_READ_OPCODE 0
80 
81 /* load nvm chunk response */
82 enum {
83 	READ_NVM_CHUNK_SUCCEED = 0,
84 	READ_NVM_CHUNK_NOT_VALID_ADDRESS = 1
85 };
86 
87 /*
88  * prepare the NVM host command w/ the pointers to the nvm buffer
89  * and send it to fw
90  */
iwl_nvm_write_chunk(struct iwl_mvm * mvm,u16 section,u16 offset,u16 length,const u8 * data)91 static int iwl_nvm_write_chunk(struct iwl_mvm *mvm, u16 section,
92 			       u16 offset, u16 length, const u8 *data)
93 {
94 	struct iwl_nvm_access_cmd nvm_access_cmd = {
95 		.offset = cpu_to_le16(offset),
96 		.length = cpu_to_le16(length),
97 		.type = cpu_to_le16(section),
98 		.op_code = NVM_WRITE_OPCODE,
99 	};
100 	struct iwl_host_cmd cmd = {
101 		.id = NVM_ACCESS_CMD,
102 		.len = { sizeof(struct iwl_nvm_access_cmd), length },
103 		.flags = CMD_WANT_SKB | CMD_SEND_IN_RFKILL,
104 		.data = { &nvm_access_cmd, data },
105 		/* data may come from vmalloc, so use _DUP */
106 		.dataflags = { 0, IWL_HCMD_DFL_DUP },
107 	};
108 	struct iwl_rx_packet *pkt;
109 	struct iwl_nvm_access_resp *nvm_resp;
110 	int ret;
111 
112 	ret = iwl_mvm_send_cmd(mvm, &cmd);
113 	if (ret)
114 		return ret;
115 
116 	pkt = cmd.resp_pkt;
117 	/* Extract & check NVM write response */
118 	nvm_resp = (void *)pkt->data;
119 	if (le16_to_cpu(nvm_resp->status) != READ_NVM_CHUNK_SUCCEED) {
120 		IWL_ERR(mvm,
121 			"NVM access write command failed for section %u (status = 0x%x)\n",
122 			section, le16_to_cpu(nvm_resp->status));
123 		ret = -EIO;
124 	}
125 
126 	iwl_free_resp(&cmd);
127 	return ret;
128 }
129 
iwl_nvm_read_chunk(struct iwl_mvm * mvm,u16 section,u16 offset,u16 length,u8 * data)130 static int iwl_nvm_read_chunk(struct iwl_mvm *mvm, u16 section,
131 			      u16 offset, u16 length, u8 *data)
132 {
133 	struct iwl_nvm_access_cmd nvm_access_cmd = {
134 		.offset = cpu_to_le16(offset),
135 		.length = cpu_to_le16(length),
136 		.type = cpu_to_le16(section),
137 		.op_code = NVM_READ_OPCODE,
138 	};
139 	struct iwl_nvm_access_resp *nvm_resp;
140 	struct iwl_rx_packet *pkt;
141 	struct iwl_host_cmd cmd = {
142 		.id = NVM_ACCESS_CMD,
143 		.flags = CMD_WANT_SKB | CMD_SEND_IN_RFKILL,
144 		.data = { &nvm_access_cmd, },
145 	};
146 	int ret, bytes_read, offset_read;
147 	u8 *resp_data;
148 
149 	cmd.len[0] = sizeof(struct iwl_nvm_access_cmd);
150 
151 	ret = iwl_mvm_send_cmd(mvm, &cmd);
152 	if (ret)
153 		return ret;
154 
155 	pkt = cmd.resp_pkt;
156 
157 	/* Extract NVM response */
158 	nvm_resp = (void *)pkt->data;
159 	ret = le16_to_cpu(nvm_resp->status);
160 	bytes_read = le16_to_cpu(nvm_resp->length);
161 	offset_read = le16_to_cpu(nvm_resp->offset);
162 	resp_data = nvm_resp->data;
163 	if (ret) {
164 		if ((offset != 0) &&
165 		    (ret == READ_NVM_CHUNK_NOT_VALID_ADDRESS)) {
166 			/*
167 			 * meaning of NOT_VALID_ADDRESS:
168 			 * driver try to read chunk from address that is
169 			 * multiple of 2K and got an error since addr is empty.
170 			 * meaning of (offset != 0): driver already
171 			 * read valid data from another chunk so this case
172 			 * is not an error.
173 			 */
174 			IWL_DEBUG_EEPROM(mvm->trans->dev,
175 					 "NVM access command failed on offset 0x%x since that section size is multiple 2K\n",
176 					 offset);
177 			ret = 0;
178 		} else {
179 			IWL_DEBUG_EEPROM(mvm->trans->dev,
180 					 "NVM access command failed with status %d (device: %s)\n",
181 					 ret, mvm->cfg->name);
182 			ret = -ENODATA;
183 		}
184 		goto exit;
185 	}
186 
187 	if (offset_read != offset) {
188 		IWL_ERR(mvm, "NVM ACCESS response with invalid offset %d\n",
189 			offset_read);
190 		ret = -EINVAL;
191 		goto exit;
192 	}
193 
194 	/* Write data to NVM */
195 	memcpy(data + offset, resp_data, bytes_read);
196 	ret = bytes_read;
197 
198 exit:
199 	iwl_free_resp(&cmd);
200 	return ret;
201 }
202 
iwl_nvm_write_section(struct iwl_mvm * mvm,u16 section,const u8 * data,u16 length)203 static int iwl_nvm_write_section(struct iwl_mvm *mvm, u16 section,
204 				 const u8 *data, u16 length)
205 {
206 	int offset = 0;
207 
208 	/* copy data in chunks of 2k (and remainder if any) */
209 
210 	while (offset < length) {
211 		int chunk_size, ret;
212 
213 		chunk_size = min(IWL_NVM_DEFAULT_CHUNK_SIZE,
214 				 length - offset);
215 
216 		ret = iwl_nvm_write_chunk(mvm, section, offset,
217 					  chunk_size, data + offset);
218 		if (ret < 0)
219 			return ret;
220 
221 		offset += chunk_size;
222 	}
223 
224 	return 0;
225 }
226 
227 /*
228  * Reads an NVM section completely.
229  * NICs prior to 7000 family doesn't have a real NVM, but just read
230  * section 0 which is the EEPROM. Because the EEPROM reading is unlimited
231  * by uCode, we need to manually check in this case that we don't
232  * overflow and try to read more than the EEPROM size.
233  * For 7000 family NICs, we supply the maximal size we can read, and
234  * the uCode fills the response with as much data as we can,
235  * without overflowing, so no check is needed.
236  */
iwl_nvm_read_section(struct iwl_mvm * mvm,u16 section,u8 * data,u32 size_read)237 static int iwl_nvm_read_section(struct iwl_mvm *mvm, u16 section,
238 				u8 *data, u32 size_read)
239 {
240 	u16 length, offset = 0;
241 	int ret;
242 
243 	/* Set nvm section read length */
244 	length = IWL_NVM_DEFAULT_CHUNK_SIZE;
245 
246 	ret = length;
247 
248 	/* Read the NVM until exhausted (reading less than requested) */
249 	while (ret == length) {
250 		/* Check no memory assumptions fail and cause an overflow */
251 		if ((size_read + offset + length) >
252 		    mvm->trans->trans_cfg->base_params->eeprom_size) {
253 			IWL_ERR(mvm, "EEPROM size is too small for NVM\n");
254 			return -ENOBUFS;
255 		}
256 
257 		ret = iwl_nvm_read_chunk(mvm, section, offset, length, data);
258 		if (ret < 0) {
259 			IWL_DEBUG_EEPROM(mvm->trans->dev,
260 					 "Cannot read NVM from section %d offset %d, length %d\n",
261 					 section, offset, length);
262 			return ret;
263 		}
264 		offset += ret;
265 	}
266 
267 	iwl_nvm_fixups(mvm->trans->hw_id, section, data, offset);
268 
269 	IWL_DEBUG_EEPROM(mvm->trans->dev,
270 			 "NVM section %d read completed\n", section);
271 	return offset;
272 }
273 
274 static struct iwl_nvm_data *
iwl_parse_nvm_sections(struct iwl_mvm * mvm)275 iwl_parse_nvm_sections(struct iwl_mvm *mvm)
276 {
277 	struct iwl_nvm_section *sections = mvm->nvm_sections;
278 	const __be16 *hw;
279 	const __le16 *sw, *calib, *regulatory, *mac_override, *phy_sku;
280 	bool lar_enabled;
281 	int regulatory_type;
282 
283 	/* Checking for required sections */
284 	if (mvm->trans->cfg->nvm_type != IWL_NVM_EXT) {
285 		if (!mvm->nvm_sections[NVM_SECTION_TYPE_SW].data ||
286 		    !mvm->nvm_sections[mvm->cfg->nvm_hw_section_num].data) {
287 			IWL_ERR(mvm, "Can't parse empty OTP/NVM sections\n");
288 			return NULL;
289 		}
290 	} else {
291 		if (mvm->trans->cfg->nvm_type == IWL_NVM_SDP)
292 			regulatory_type = NVM_SECTION_TYPE_REGULATORY_SDP;
293 		else
294 			regulatory_type = NVM_SECTION_TYPE_REGULATORY;
295 
296 		/* SW and REGULATORY sections are mandatory */
297 		if (!mvm->nvm_sections[NVM_SECTION_TYPE_SW].data ||
298 		    !mvm->nvm_sections[regulatory_type].data) {
299 			IWL_ERR(mvm,
300 				"Can't parse empty family 8000 OTP/NVM sections\n");
301 			return NULL;
302 		}
303 		/* MAC_OVERRIDE or at least HW section must exist */
304 		if (!mvm->nvm_sections[mvm->cfg->nvm_hw_section_num].data &&
305 		    !mvm->nvm_sections[NVM_SECTION_TYPE_MAC_OVERRIDE].data) {
306 			IWL_ERR(mvm,
307 				"Can't parse mac_address, empty sections\n");
308 			return NULL;
309 		}
310 
311 		/* PHY_SKU section is mandatory in B0 */
312 		if (!mvm->nvm_sections[NVM_SECTION_TYPE_PHY_SKU].data) {
313 			IWL_ERR(mvm,
314 				"Can't parse phy_sku in B0, empty sections\n");
315 			return NULL;
316 		}
317 	}
318 
319 	hw = (const __be16 *)sections[mvm->cfg->nvm_hw_section_num].data;
320 	sw = (const __le16 *)sections[NVM_SECTION_TYPE_SW].data;
321 	calib = (const __le16 *)sections[NVM_SECTION_TYPE_CALIBRATION].data;
322 	mac_override =
323 		(const __le16 *)sections[NVM_SECTION_TYPE_MAC_OVERRIDE].data;
324 	phy_sku = (const __le16 *)sections[NVM_SECTION_TYPE_PHY_SKU].data;
325 
326 	regulatory = mvm->trans->cfg->nvm_type == IWL_NVM_SDP ?
327 		(const __le16 *)sections[NVM_SECTION_TYPE_REGULATORY_SDP].data :
328 		(const __le16 *)sections[NVM_SECTION_TYPE_REGULATORY].data;
329 
330 	lar_enabled = !iwlwifi_mod_params.lar_disable &&
331 		      fw_has_capa(&mvm->fw->ucode_capa,
332 				  IWL_UCODE_TLV_CAPA_LAR_SUPPORT);
333 
334 	return iwl_parse_nvm_data(mvm->trans, mvm->cfg, hw, sw, calib,
335 				  regulatory, mac_override, phy_sku,
336 				  mvm->fw->valid_tx_ant, mvm->fw->valid_rx_ant,
337 				  lar_enabled);
338 }
339 
340 /* Loads the NVM data stored in mvm->nvm_sections into the NIC */
iwl_mvm_load_nvm_to_nic(struct iwl_mvm * mvm)341 int iwl_mvm_load_nvm_to_nic(struct iwl_mvm *mvm)
342 {
343 	int i, ret = 0;
344 	struct iwl_nvm_section *sections = mvm->nvm_sections;
345 
346 	IWL_DEBUG_EEPROM(mvm->trans->dev, "'Write to NVM\n");
347 
348 	for (i = 0; i < ARRAY_SIZE(mvm->nvm_sections); i++) {
349 		if (!mvm->nvm_sections[i].data || !mvm->nvm_sections[i].length)
350 			continue;
351 		ret = iwl_nvm_write_section(mvm, i, sections[i].data,
352 					    sections[i].length);
353 		if (ret < 0) {
354 			IWL_ERR(mvm, "iwl_mvm_send_cmd failed: %d\n", ret);
355 			break;
356 		}
357 	}
358 	return ret;
359 }
360 
iwl_nvm_init(struct iwl_mvm * mvm)361 int iwl_nvm_init(struct iwl_mvm *mvm)
362 {
363 	int ret, section;
364 	u32 size_read = 0;
365 	u8 *nvm_buffer, *temp;
366 	const char *nvm_file_C = mvm->cfg->default_nvm_file_C_step;
367 
368 	if (WARN_ON_ONCE(mvm->cfg->nvm_hw_section_num >= NVM_MAX_NUM_SECTIONS))
369 		return -EINVAL;
370 
371 	/* load NVM values from nic */
372 	/* Read From FW NVM */
373 	IWL_DEBUG_EEPROM(mvm->trans->dev, "Read from NVM\n");
374 
375 	nvm_buffer = kmalloc(mvm->trans->trans_cfg->base_params->eeprom_size,
376 			     GFP_KERNEL);
377 	if (!nvm_buffer)
378 		return -ENOMEM;
379 	for (section = 0; section < NVM_MAX_NUM_SECTIONS; section++) {
380 		/* we override the constness for initial read */
381 		ret = iwl_nvm_read_section(mvm, section, nvm_buffer,
382 					   size_read);
383 		if (ret == -ENODATA) {
384 			ret = 0;
385 			continue;
386 		}
387 		if (ret < 0)
388 			break;
389 		size_read += ret;
390 		temp = kmemdup(nvm_buffer, ret, GFP_KERNEL);
391 		if (!temp) {
392 			ret = -ENOMEM;
393 			break;
394 		}
395 
396 		iwl_nvm_fixups(mvm->trans->hw_id, section, temp, ret);
397 
398 		mvm->nvm_sections[section].data = temp;
399 		mvm->nvm_sections[section].length = ret;
400 
401 #ifdef CONFIG_IWLWIFI_DEBUGFS
402 		switch (section) {
403 		case NVM_SECTION_TYPE_SW:
404 			mvm->nvm_sw_blob.data = temp;
405 			mvm->nvm_sw_blob.size  = ret;
406 			break;
407 		case NVM_SECTION_TYPE_CALIBRATION:
408 			mvm->nvm_calib_blob.data = temp;
409 			mvm->nvm_calib_blob.size  = ret;
410 			break;
411 		case NVM_SECTION_TYPE_PRODUCTION:
412 			mvm->nvm_prod_blob.data = temp;
413 			mvm->nvm_prod_blob.size  = ret;
414 			break;
415 		case NVM_SECTION_TYPE_PHY_SKU:
416 			mvm->nvm_phy_sku_blob.data = temp;
417 			mvm->nvm_phy_sku_blob.size  = ret;
418 			break;
419 		case NVM_SECTION_TYPE_REGULATORY_SDP:
420 		case NVM_SECTION_TYPE_REGULATORY:
421 			mvm->nvm_reg_blob.data = temp;
422 			mvm->nvm_reg_blob.size  = ret;
423 			break;
424 		default:
425 			if (section == mvm->cfg->nvm_hw_section_num) {
426 				mvm->nvm_hw_blob.data = temp;
427 				mvm->nvm_hw_blob.size = ret;
428 				break;
429 			}
430 		}
431 #endif
432 	}
433 	if (!size_read)
434 		IWL_ERR(mvm, "OTP is blank\n");
435 	kfree(nvm_buffer);
436 
437 	/* Only if PNVM selected in the mod param - load external NVM  */
438 	if (mvm->nvm_file_name) {
439 		/* read External NVM file from the mod param */
440 		ret = iwl_read_external_nvm(mvm->trans, mvm->nvm_file_name,
441 					    mvm->nvm_sections);
442 		if (ret) {
443 			mvm->nvm_file_name = nvm_file_C;
444 
445 			if ((ret == -EFAULT || ret == -ENOENT) &&
446 			    mvm->nvm_file_name) {
447 				/* in case nvm file was failed try again */
448 				ret = iwl_read_external_nvm(mvm->trans,
449 							    mvm->nvm_file_name,
450 							    mvm->nvm_sections);
451 				if (ret)
452 					return ret;
453 			} else {
454 				return ret;
455 			}
456 		}
457 	}
458 
459 	/* parse the relevant nvm sections */
460 	mvm->nvm_data = iwl_parse_nvm_sections(mvm);
461 	if (!mvm->nvm_data)
462 		return -ENODATA;
463 	IWL_DEBUG_EEPROM(mvm->trans->dev, "nvm version = %x\n",
464 			 mvm->nvm_data->nvm_version);
465 
466 	return ret < 0 ? ret : 0;
467 }
468 
469 struct iwl_mcc_update_resp *
iwl_mvm_update_mcc(struct iwl_mvm * mvm,const char * alpha2,enum iwl_mcc_source src_id)470 iwl_mvm_update_mcc(struct iwl_mvm *mvm, const char *alpha2,
471 		   enum iwl_mcc_source src_id)
472 {
473 	struct iwl_mcc_update_cmd mcc_update_cmd = {
474 		.mcc = cpu_to_le16(alpha2[0] << 8 | alpha2[1]),
475 		.source_id = (u8)src_id,
476 	};
477 	struct iwl_mcc_update_resp *resp_cp;
478 	struct iwl_rx_packet *pkt;
479 	struct iwl_host_cmd cmd = {
480 		.id = MCC_UPDATE_CMD,
481 		.flags = CMD_WANT_SKB,
482 		.data = { &mcc_update_cmd },
483 	};
484 
485 	int ret;
486 	u32 status;
487 	int resp_len, n_channels;
488 	u16 mcc;
489 
490 	if (WARN_ON_ONCE(!iwl_mvm_is_lar_supported(mvm)))
491 		return ERR_PTR(-EOPNOTSUPP);
492 
493 	cmd.len[0] = sizeof(struct iwl_mcc_update_cmd);
494 
495 	IWL_DEBUG_LAR(mvm, "send MCC update to FW with '%c%c' src = %d\n",
496 		      alpha2[0], alpha2[1], src_id);
497 
498 	ret = iwl_mvm_send_cmd(mvm, &cmd);
499 	if (ret)
500 		return ERR_PTR(ret);
501 
502 	pkt = cmd.resp_pkt;
503 
504 	/* Extract MCC response */
505 	if (fw_has_capa(&mvm->fw->ucode_capa,
506 			IWL_UCODE_TLV_CAPA_MCC_UPDATE_11AX_SUPPORT)) {
507 		struct iwl_mcc_update_resp *mcc_resp = (void *)pkt->data;
508 
509 		n_channels =  __le32_to_cpu(mcc_resp->n_channels);
510 		resp_len = sizeof(struct iwl_mcc_update_resp) +
511 			   n_channels * sizeof(__le32);
512 		resp_cp = kmemdup(mcc_resp, resp_len, GFP_KERNEL);
513 		if (!resp_cp) {
514 			resp_cp = ERR_PTR(-ENOMEM);
515 			goto exit;
516 		}
517 	} else {
518 		struct iwl_mcc_update_resp_v3 *mcc_resp_v3 = (void *)pkt->data;
519 
520 		n_channels =  __le32_to_cpu(mcc_resp_v3->n_channels);
521 		resp_len = sizeof(struct iwl_mcc_update_resp) +
522 			   n_channels * sizeof(__le32);
523 		resp_cp = kzalloc(resp_len, GFP_KERNEL);
524 		if (!resp_cp) {
525 			resp_cp = ERR_PTR(-ENOMEM);
526 			goto exit;
527 		}
528 
529 		resp_cp->status = mcc_resp_v3->status;
530 		resp_cp->mcc = mcc_resp_v3->mcc;
531 		resp_cp->cap = cpu_to_le16(mcc_resp_v3->cap);
532 		resp_cp->source_id = mcc_resp_v3->source_id;
533 		resp_cp->time = mcc_resp_v3->time;
534 		resp_cp->geo_info = mcc_resp_v3->geo_info;
535 		resp_cp->n_channels = mcc_resp_v3->n_channels;
536 		memcpy(resp_cp->channels, mcc_resp_v3->channels,
537 		       n_channels * sizeof(__le32));
538 	}
539 
540 	status = le32_to_cpu(resp_cp->status);
541 
542 	mcc = le16_to_cpu(resp_cp->mcc);
543 
544 	/* W/A for a FW/NVM issue - returns 0x00 for the world domain */
545 	if (mcc == 0) {
546 		mcc = 0x3030;  /* "00" - world */
547 		resp_cp->mcc = cpu_to_le16(mcc);
548 	}
549 
550 	IWL_DEBUG_LAR(mvm,
551 		      "MCC response status: 0x%x. new MCC: 0x%x ('%c%c') n_chans: %d\n",
552 		      status, mcc, mcc >> 8, mcc & 0xff, n_channels);
553 
554 exit:
555 	iwl_free_resp(&cmd);
556 	return resp_cp;
557 }
558 
iwl_mvm_init_mcc(struct iwl_mvm * mvm)559 int iwl_mvm_init_mcc(struct iwl_mvm *mvm)
560 {
561 	bool tlv_lar;
562 	bool nvm_lar;
563 	int retval;
564 	struct ieee80211_regdomain *regd;
565 	char mcc[3];
566 
567 	if (mvm->cfg->nvm_type == IWL_NVM_EXT) {
568 		tlv_lar = fw_has_capa(&mvm->fw->ucode_capa,
569 				      IWL_UCODE_TLV_CAPA_LAR_SUPPORT);
570 		nvm_lar = mvm->nvm_data->lar_enabled;
571 		if (tlv_lar != nvm_lar)
572 			IWL_INFO(mvm,
573 				 "Conflict between TLV & NVM regarding enabling LAR (TLV = %s NVM =%s)\n",
574 				 tlv_lar ? "enabled" : "disabled",
575 				 nvm_lar ? "enabled" : "disabled");
576 	}
577 
578 	if (!iwl_mvm_is_lar_supported(mvm))
579 		return 0;
580 
581 	/*
582 	 * try to replay the last set MCC to FW. If it doesn't exist,
583 	 * queue an update to cfg80211 to retrieve the default alpha2 from FW.
584 	 */
585 	retval = iwl_mvm_init_fw_regd(mvm);
586 	if (retval != -ENOENT)
587 		return retval;
588 
589 	/*
590 	 * Driver regulatory hint for initial update, this also informs the
591 	 * firmware we support wifi location updates.
592 	 * Disallow scans that might crash the FW while the LAR regdomain
593 	 * is not set.
594 	 */
595 	mvm->lar_regdom_set = false;
596 
597 	regd = iwl_mvm_get_current_regdomain(mvm, NULL);
598 	if (IS_ERR_OR_NULL(regd))
599 		return -EIO;
600 
601 	if (iwl_mvm_is_wifi_mcc_supported(mvm) &&
602 	    !iwl_acpi_get_mcc(mvm->dev, mcc)) {
603 		kfree(regd);
604 		regd = iwl_mvm_get_regdomain(mvm->hw->wiphy, mcc,
605 					     MCC_SOURCE_BIOS, NULL);
606 		if (IS_ERR_OR_NULL(regd))
607 			return -EIO;
608 	}
609 
610 	retval = regulatory_set_wiphy_regd_sync_rtnl(mvm->hw->wiphy, regd);
611 	kfree(regd);
612 	return retval;
613 }
614 
iwl_mvm_rx_chub_update_mcc(struct iwl_mvm * mvm,struct iwl_rx_cmd_buffer * rxb)615 void iwl_mvm_rx_chub_update_mcc(struct iwl_mvm *mvm,
616 				struct iwl_rx_cmd_buffer *rxb)
617 {
618 	struct iwl_rx_packet *pkt = rxb_addr(rxb);
619 	struct iwl_mcc_chub_notif *notif = (void *)pkt->data;
620 	enum iwl_mcc_source src;
621 	char mcc[3];
622 	struct ieee80211_regdomain *regd;
623 	int wgds_tbl_idx;
624 
625 	lockdep_assert_held(&mvm->mutex);
626 
627 	if (iwl_mvm_is_vif_assoc(mvm) && notif->source_id == MCC_SOURCE_WIFI) {
628 		IWL_DEBUG_LAR(mvm, "Ignore mcc update while associated\n");
629 		return;
630 	}
631 
632 	if (WARN_ON_ONCE(!iwl_mvm_is_lar_supported(mvm)))
633 		return;
634 
635 	mcc[0] = le16_to_cpu(notif->mcc) >> 8;
636 	mcc[1] = le16_to_cpu(notif->mcc) & 0xff;
637 	mcc[2] = '\0';
638 	src = notif->source_id;
639 
640 	IWL_DEBUG_LAR(mvm,
641 		      "RX: received chub update mcc cmd (mcc '%s' src %d)\n",
642 		      mcc, src);
643 	regd = iwl_mvm_get_regdomain(mvm->hw->wiphy, mcc, src, NULL);
644 	if (IS_ERR_OR_NULL(regd))
645 		return;
646 
647 	wgds_tbl_idx = iwl_mvm_get_sar_geo_profile(mvm);
648 	if (wgds_tbl_idx < 0)
649 		IWL_DEBUG_INFO(mvm, "SAR WGDS is disabled (%d)\n",
650 			       wgds_tbl_idx);
651 	else
652 		IWL_DEBUG_INFO(mvm, "SAR WGDS: geo profile %d is configured\n",
653 			       wgds_tbl_idx);
654 
655 	regulatory_set_wiphy_regd(mvm->hw->wiphy, regd);
656 	kfree(regd);
657 }
658