1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2020-2023 Intel Corporation
4  */
5 
6 #include <linux/circ_buf.h>
7 #include <linux/highmem.h>
8 
9 #include "ivpu_drv.h"
10 #include "ivpu_hw_37xx_reg.h"
11 #include "ivpu_hw_reg_io.h"
12 #include "ivpu_mmu.h"
13 #include "ivpu_mmu_context.h"
14 #include "ivpu_pm.h"
15 
16 #define IVPU_MMU_IDR0_REF		0x080f3e0f
17 #define IVPU_MMU_IDR0_REF_SIMICS	0x080f3e1f
18 #define IVPU_MMU_IDR1_REF		0x0e739d18
19 #define IVPU_MMU_IDR3_REF		0x0000003c
20 #define IVPU_MMU_IDR5_REF		0x00040070
21 #define IVPU_MMU_IDR5_REF_SIMICS	0x00000075
22 #define IVPU_MMU_IDR5_REF_FPGA		0x00800075
23 
24 #define IVPU_MMU_CDTAB_ENT_SIZE		64
25 #define IVPU_MMU_CDTAB_ENT_COUNT_LOG2	8 /* 256 entries */
26 #define IVPU_MMU_CDTAB_ENT_COUNT	((u32)1 << IVPU_MMU_CDTAB_ENT_COUNT_LOG2)
27 
28 #define IVPU_MMU_STREAM_ID0		0
29 #define IVPU_MMU_STREAM_ID3		3
30 
31 #define IVPU_MMU_STRTAB_ENT_SIZE	64
32 #define IVPU_MMU_STRTAB_ENT_COUNT	4
33 #define IVPU_MMU_STRTAB_CFG_LOG2SIZE	2
34 #define IVPU_MMU_STRTAB_CFG		IVPU_MMU_STRTAB_CFG_LOG2SIZE
35 
36 #define IVPU_MMU_Q_COUNT_LOG2		4 /* 16 entries */
37 #define IVPU_MMU_Q_COUNT		((u32)1 << IVPU_MMU_Q_COUNT_LOG2)
38 #define IVPU_MMU_Q_WRAP_BIT		(IVPU_MMU_Q_COUNT << 1)
39 #define IVPU_MMU_Q_WRAP_MASK		(IVPU_MMU_Q_WRAP_BIT - 1)
40 #define IVPU_MMU_Q_IDX_MASK		(IVPU_MMU_Q_COUNT - 1)
41 #define IVPU_MMU_Q_IDX(val)		((val) & IVPU_MMU_Q_IDX_MASK)
42 
43 #define IVPU_MMU_CMDQ_CMD_SIZE		16
44 #define IVPU_MMU_CMDQ_SIZE		(IVPU_MMU_Q_COUNT * IVPU_MMU_CMDQ_CMD_SIZE)
45 
46 #define IVPU_MMU_EVTQ_CMD_SIZE		32
47 #define IVPU_MMU_EVTQ_SIZE		(IVPU_MMU_Q_COUNT * IVPU_MMU_EVTQ_CMD_SIZE)
48 
49 #define IVPU_MMU_CMD_OPCODE		GENMASK(7, 0)
50 
51 #define IVPU_MMU_CMD_SYNC_0_CS		GENMASK(13, 12)
52 #define IVPU_MMU_CMD_SYNC_0_MSH		GENMASK(23, 22)
53 #define IVPU_MMU_CMD_SYNC_0_MSI_ATTR	GENMASK(27, 24)
54 #define IVPU_MMU_CMD_SYNC_0_MSI_ATTR	GENMASK(27, 24)
55 #define IVPU_MMU_CMD_SYNC_0_MSI_DATA	GENMASK(63, 32)
56 
57 #define IVPU_MMU_CMD_CFGI_0_SSEC	BIT(10)
58 #define IVPU_MMU_CMD_CFGI_0_SSV		BIT(11)
59 #define IVPU_MMU_CMD_CFGI_0_SSID	GENMASK(31, 12)
60 #define IVPU_MMU_CMD_CFGI_0_SID		GENMASK(63, 32)
61 #define IVPU_MMU_CMD_CFGI_1_RANGE	GENMASK(4, 0)
62 
63 #define IVPU_MMU_CMD_TLBI_0_ASID	GENMASK(63, 48)
64 #define IVPU_MMU_CMD_TLBI_0_VMID	GENMASK(47, 32)
65 
66 #define CMD_PREFETCH_CFG		0x1
67 #define CMD_CFGI_STE			0x3
68 #define CMD_CFGI_ALL			0x4
69 #define CMD_CFGI_CD			0x5
70 #define CMD_CFGI_CD_ALL			0x6
71 #define CMD_TLBI_NH_ASID		0x11
72 #define CMD_TLBI_EL2_ALL		0x20
73 #define CMD_TLBI_NSNH_ALL		0x30
74 #define CMD_SYNC			0x46
75 
76 #define IVPU_MMU_EVT_F_UUT		0x01
77 #define IVPU_MMU_EVT_C_BAD_STREAMID	0x02
78 #define IVPU_MMU_EVT_F_STE_FETCH	0x03
79 #define IVPU_MMU_EVT_C_BAD_STE		0x04
80 #define IVPU_MMU_EVT_F_BAD_ATS_TREQ	0x05
81 #define IVPU_MMU_EVT_F_STREAM_DISABLED	0x06
82 #define IVPU_MMU_EVT_F_TRANSL_FORBIDDEN	0x07
83 #define IVPU_MMU_EVT_C_BAD_SUBSTREAMID	0x08
84 #define IVPU_MMU_EVT_F_CD_FETCH		0x09
85 #define IVPU_MMU_EVT_C_BAD_CD		0x0a
86 #define IVPU_MMU_EVT_F_WALK_EABT	0x0b
87 #define IVPU_MMU_EVT_F_TRANSLATION	0x10
88 #define IVPU_MMU_EVT_F_ADDR_SIZE	0x11
89 #define IVPU_MMU_EVT_F_ACCESS		0x12
90 #define IVPU_MMU_EVT_F_PERMISSION	0x13
91 #define IVPU_MMU_EVT_F_TLB_CONFLICT	0x20
92 #define IVPU_MMU_EVT_F_CFG_CONFLICT	0x21
93 #define IVPU_MMU_EVT_E_PAGE_REQUEST	0x24
94 #define IVPU_MMU_EVT_F_VMS_FETCH	0x25
95 
96 #define IVPU_MMU_EVT_OP_MASK		GENMASK_ULL(7, 0)
97 #define IVPU_MMU_EVT_SSID_MASK		GENMASK_ULL(31, 12)
98 
99 #define IVPU_MMU_Q_BASE_RWA		BIT(62)
100 #define IVPU_MMU_Q_BASE_ADDR_MASK	GENMASK_ULL(51, 5)
101 #define IVPU_MMU_STRTAB_BASE_RA		BIT(62)
102 #define IVPU_MMU_STRTAB_BASE_ADDR_MASK	GENMASK_ULL(51, 6)
103 
104 #define IVPU_MMU_IRQ_EVTQ_EN		BIT(2)
105 #define IVPU_MMU_IRQ_GERROR_EN		BIT(0)
106 
107 #define IVPU_MMU_CR0_ATSCHK		BIT(4)
108 #define IVPU_MMU_CR0_CMDQEN		BIT(3)
109 #define IVPU_MMU_CR0_EVTQEN		BIT(2)
110 #define IVPU_MMU_CR0_PRIQEN		BIT(1)
111 #define IVPU_MMU_CR0_SMMUEN		BIT(0)
112 
113 #define IVPU_MMU_CR1_TABLE_SH		GENMASK(11, 10)
114 #define IVPU_MMU_CR1_TABLE_OC		GENMASK(9, 8)
115 #define IVPU_MMU_CR1_TABLE_IC		GENMASK(7, 6)
116 #define IVPU_MMU_CR1_QUEUE_SH		GENMASK(5, 4)
117 #define IVPU_MMU_CR1_QUEUE_OC		GENMASK(3, 2)
118 #define IVPU_MMU_CR1_QUEUE_IC		GENMASK(1, 0)
119 #define IVPU_MMU_CACHE_NC		0
120 #define IVPU_MMU_CACHE_WB		1
121 #define IVPU_MMU_CACHE_WT		2
122 #define IVPU_MMU_SH_NSH			0
123 #define IVPU_MMU_SH_OSH			2
124 #define IVPU_MMU_SH_ISH			3
125 
126 #define IVPU_MMU_CMDQ_OP		GENMASK_ULL(7, 0)
127 
128 #define IVPU_MMU_CD_0_TCR_T0SZ		GENMASK_ULL(5, 0)
129 #define IVPU_MMU_CD_0_TCR_TG0		GENMASK_ULL(7, 6)
130 #define IVPU_MMU_CD_0_TCR_IRGN0		GENMASK_ULL(9, 8)
131 #define IVPU_MMU_CD_0_TCR_ORGN0		GENMASK_ULL(11, 10)
132 #define IVPU_MMU_CD_0_TCR_SH0		GENMASK_ULL(13, 12)
133 #define IVPU_MMU_CD_0_TCR_EPD0		BIT_ULL(14)
134 #define IVPU_MMU_CD_0_TCR_EPD1		BIT_ULL(30)
135 #define IVPU_MMU_CD_0_ENDI		BIT(15)
136 #define IVPU_MMU_CD_0_V			BIT(31)
137 #define IVPU_MMU_CD_0_TCR_IPS		GENMASK_ULL(34, 32)
138 #define IVPU_MMU_CD_0_TCR_TBI0		BIT_ULL(38)
139 #define IVPU_MMU_CD_0_AA64		BIT(41)
140 #define IVPU_MMU_CD_0_S			BIT(44)
141 #define IVPU_MMU_CD_0_R			BIT(45)
142 #define IVPU_MMU_CD_0_A			BIT(46)
143 #define IVPU_MMU_CD_0_ASET		BIT(47)
144 #define IVPU_MMU_CD_0_ASID		GENMASK_ULL(63, 48)
145 
146 #define IVPU_MMU_T0SZ_48BIT             16
147 #define IVPU_MMU_T0SZ_38BIT             26
148 
149 #define IVPU_MMU_IPS_48BIT		5
150 #define IVPU_MMU_IPS_44BIT		4
151 #define IVPU_MMU_IPS_42BIT		3
152 #define IVPU_MMU_IPS_40BIT		2
153 #define IVPU_MMU_IPS_36BIT		1
154 #define IVPU_MMU_IPS_32BIT		0
155 
156 #define IVPU_MMU_CD_1_TTB0_MASK		GENMASK_ULL(51, 4)
157 
158 #define IVPU_MMU_STE_0_S1CDMAX		GENMASK_ULL(63, 59)
159 #define IVPU_MMU_STE_0_S1FMT		GENMASK_ULL(5, 4)
160 #define IVPU_MMU_STE_0_S1FMT_LINEAR	0
161 #define IVPU_MMU_STE_DWORDS		8
162 #define IVPU_MMU_STE_0_CFG_S1_TRANS	5
163 #define IVPU_MMU_STE_0_CFG		GENMASK_ULL(3, 1)
164 #define IVPU_MMU_STE_0_S1CTXPTR_MASK	GENMASK_ULL(51, 6)
165 #define IVPU_MMU_STE_0_V			BIT(0)
166 
167 #define IVPU_MMU_STE_1_STRW_NSEL1	0ul
168 #define IVPU_MMU_STE_1_CONT		GENMASK_ULL(16, 13)
169 #define IVPU_MMU_STE_1_STRW		GENMASK_ULL(31, 30)
170 #define IVPU_MMU_STE_1_PRIVCFG		GENMASK_ULL(49, 48)
171 #define IVPU_MMU_STE_1_PRIVCFG_UNPRIV	2ul
172 #define IVPU_MMU_STE_1_INSTCFG		GENMASK_ULL(51, 50)
173 #define IVPU_MMU_STE_1_INSTCFG_DATA	2ul
174 #define IVPU_MMU_STE_1_MEV		BIT(19)
175 #define IVPU_MMU_STE_1_S1STALLD		BIT(27)
176 #define IVPU_MMU_STE_1_S1C_CACHE_NC	0ul
177 #define IVPU_MMU_STE_1_S1C_CACHE_WBRA	1ul
178 #define IVPU_MMU_STE_1_S1C_CACHE_WT	2ul
179 #define IVPU_MMU_STE_1_S1C_CACHE_WB	3ul
180 #define IVPU_MMU_STE_1_S1CIR		GENMASK_ULL(3, 2)
181 #define IVPU_MMU_STE_1_S1COR		GENMASK_ULL(5, 4)
182 #define IVPU_MMU_STE_1_S1CSH		GENMASK_ULL(7, 6)
183 #define IVPU_MMU_STE_1_S1DSS		GENMASK_ULL(1, 0)
184 #define IVPU_MMU_STE_1_S1DSS_TERMINATE	0x0
185 
186 #define IVPU_MMU_REG_TIMEOUT_US		(10 * USEC_PER_MSEC)
187 #define IVPU_MMU_QUEUE_TIMEOUT_US	(100 * USEC_PER_MSEC)
188 
189 #define IVPU_MMU_GERROR_ERR_MASK ((REG_FLD(VPU_37XX_HOST_MMU_GERROR, CMDQ)) | \
190 				  (REG_FLD(VPU_37XX_HOST_MMU_GERROR, EVTQ_ABT)) | \
191 				  (REG_FLD(VPU_37XX_HOST_MMU_GERROR, PRIQ_ABT)) | \
192 				  (REG_FLD(VPU_37XX_HOST_MMU_GERROR, MSI_CMDQ_ABT)) | \
193 				  (REG_FLD(VPU_37XX_HOST_MMU_GERROR, MSI_EVTQ_ABT)) | \
194 				  (REG_FLD(VPU_37XX_HOST_MMU_GERROR, MSI_PRIQ_ABT)) | \
195 				  (REG_FLD(VPU_37XX_HOST_MMU_GERROR, MSI_ABT)))
196 
ivpu_mmu_event_to_str(u32 cmd)197 static char *ivpu_mmu_event_to_str(u32 cmd)
198 {
199 	switch (cmd) {
200 	case IVPU_MMU_EVT_F_UUT:
201 		return "Unsupported Upstream Transaction";
202 	case IVPU_MMU_EVT_C_BAD_STREAMID:
203 		return "Transaction StreamID out of range";
204 	case IVPU_MMU_EVT_F_STE_FETCH:
205 		return "Fetch of STE caused external abort";
206 	case IVPU_MMU_EVT_C_BAD_STE:
207 		return "Used STE invalid";
208 	case IVPU_MMU_EVT_F_BAD_ATS_TREQ:
209 		return "Address Request disallowed for a StreamID";
210 	case IVPU_MMU_EVT_F_STREAM_DISABLED:
211 		return "Transaction marks non-substream disabled";
212 	case IVPU_MMU_EVT_F_TRANSL_FORBIDDEN:
213 		return "MMU bypass is disallowed for this StreamID";
214 	case IVPU_MMU_EVT_C_BAD_SUBSTREAMID:
215 		return "Invalid StreamID";
216 	case IVPU_MMU_EVT_F_CD_FETCH:
217 		return "Fetch of CD caused external abort";
218 	case IVPU_MMU_EVT_C_BAD_CD:
219 		return "Fetched CD invalid";
220 	case IVPU_MMU_EVT_F_WALK_EABT:
221 		return " An external abort occurred fetching a TLB";
222 	case IVPU_MMU_EVT_F_TRANSLATION:
223 		return "Translation fault";
224 	case IVPU_MMU_EVT_F_ADDR_SIZE:
225 		return " Output address caused address size fault";
226 	case IVPU_MMU_EVT_F_ACCESS:
227 		return "Access flag fault";
228 	case IVPU_MMU_EVT_F_PERMISSION:
229 		return "Permission fault occurred on page access";
230 	case IVPU_MMU_EVT_F_TLB_CONFLICT:
231 		return "A TLB conflict";
232 	case IVPU_MMU_EVT_F_CFG_CONFLICT:
233 		return "A configuration cache conflict";
234 	case IVPU_MMU_EVT_E_PAGE_REQUEST:
235 		return "Page request hint from a client device";
236 	case IVPU_MMU_EVT_F_VMS_FETCH:
237 		return "Fetch of VMS caused external abort";
238 	default:
239 		return "Unknown CMDQ command";
240 	}
241 }
242 
ivpu_mmu_config_check(struct ivpu_device * vdev)243 static void ivpu_mmu_config_check(struct ivpu_device *vdev)
244 {
245 	u32 val_ref;
246 	u32 val;
247 
248 	if (ivpu_is_simics(vdev))
249 		val_ref = IVPU_MMU_IDR0_REF_SIMICS;
250 	else
251 		val_ref = IVPU_MMU_IDR0_REF;
252 
253 	val = REGV_RD32(VPU_37XX_HOST_MMU_IDR0);
254 	if (val != val_ref)
255 		ivpu_dbg(vdev, MMU, "IDR0 0x%x != IDR0_REF 0x%x\n", val, val_ref);
256 
257 	val = REGV_RD32(VPU_37XX_HOST_MMU_IDR1);
258 	if (val != IVPU_MMU_IDR1_REF)
259 		ivpu_dbg(vdev, MMU, "IDR1 0x%x != IDR1_REF 0x%x\n", val, IVPU_MMU_IDR1_REF);
260 
261 	val = REGV_RD32(VPU_37XX_HOST_MMU_IDR3);
262 	if (val != IVPU_MMU_IDR3_REF)
263 		ivpu_dbg(vdev, MMU, "IDR3 0x%x != IDR3_REF 0x%x\n", val, IVPU_MMU_IDR3_REF);
264 
265 	if (ivpu_is_simics(vdev))
266 		val_ref = IVPU_MMU_IDR5_REF_SIMICS;
267 	else if (ivpu_is_fpga(vdev))
268 		val_ref = IVPU_MMU_IDR5_REF_FPGA;
269 	else
270 		val_ref = IVPU_MMU_IDR5_REF;
271 
272 	val = REGV_RD32(VPU_37XX_HOST_MMU_IDR5);
273 	if (val != val_ref)
274 		ivpu_dbg(vdev, MMU, "IDR5 0x%x != IDR5_REF 0x%x\n", val, val_ref);
275 }
276 
ivpu_mmu_cdtab_alloc(struct ivpu_device * vdev)277 static int ivpu_mmu_cdtab_alloc(struct ivpu_device *vdev)
278 {
279 	struct ivpu_mmu_info *mmu = vdev->mmu;
280 	struct ivpu_mmu_cdtab *cdtab = &mmu->cdtab;
281 	size_t size = IVPU_MMU_CDTAB_ENT_COUNT * IVPU_MMU_CDTAB_ENT_SIZE;
282 
283 	cdtab->base = dmam_alloc_coherent(vdev->drm.dev, size, &cdtab->dma, GFP_KERNEL);
284 	if (!cdtab->base)
285 		return -ENOMEM;
286 
287 	ivpu_dbg(vdev, MMU, "CDTAB alloc: dma=%pad size=%zu\n", &cdtab->dma, size);
288 
289 	return 0;
290 }
291 
ivpu_mmu_strtab_alloc(struct ivpu_device * vdev)292 static int ivpu_mmu_strtab_alloc(struct ivpu_device *vdev)
293 {
294 	struct ivpu_mmu_info *mmu = vdev->mmu;
295 	struct ivpu_mmu_strtab *strtab = &mmu->strtab;
296 	size_t size = IVPU_MMU_STRTAB_ENT_COUNT * IVPU_MMU_STRTAB_ENT_SIZE;
297 
298 	strtab->base = dmam_alloc_coherent(vdev->drm.dev, size, &strtab->dma, GFP_KERNEL);
299 	if (!strtab->base)
300 		return -ENOMEM;
301 
302 	strtab->base_cfg = IVPU_MMU_STRTAB_CFG;
303 	strtab->dma_q = IVPU_MMU_STRTAB_BASE_RA;
304 	strtab->dma_q |= strtab->dma & IVPU_MMU_STRTAB_BASE_ADDR_MASK;
305 
306 	ivpu_dbg(vdev, MMU, "STRTAB alloc: dma=%pad dma_q=%pad size=%zu\n",
307 		 &strtab->dma, &strtab->dma_q, size);
308 
309 	return 0;
310 }
311 
ivpu_mmu_cmdq_alloc(struct ivpu_device * vdev)312 static int ivpu_mmu_cmdq_alloc(struct ivpu_device *vdev)
313 {
314 	struct ivpu_mmu_info *mmu = vdev->mmu;
315 	struct ivpu_mmu_queue *q = &mmu->cmdq;
316 
317 	q->base = dmam_alloc_coherent(vdev->drm.dev, IVPU_MMU_CMDQ_SIZE, &q->dma, GFP_KERNEL);
318 	if (!q->base)
319 		return -ENOMEM;
320 
321 	q->dma_q = IVPU_MMU_Q_BASE_RWA;
322 	q->dma_q |= q->dma & IVPU_MMU_Q_BASE_ADDR_MASK;
323 	q->dma_q |= IVPU_MMU_Q_COUNT_LOG2;
324 
325 	ivpu_dbg(vdev, MMU, "CMDQ alloc: dma=%pad dma_q=%pad size=%u\n",
326 		 &q->dma, &q->dma_q, IVPU_MMU_CMDQ_SIZE);
327 
328 	return 0;
329 }
330 
ivpu_mmu_evtq_alloc(struct ivpu_device * vdev)331 static int ivpu_mmu_evtq_alloc(struct ivpu_device *vdev)
332 {
333 	struct ivpu_mmu_info *mmu = vdev->mmu;
334 	struct ivpu_mmu_queue *q = &mmu->evtq;
335 
336 	q->base = dmam_alloc_coherent(vdev->drm.dev, IVPU_MMU_EVTQ_SIZE, &q->dma, GFP_KERNEL);
337 	if (!q->base)
338 		return -ENOMEM;
339 
340 	q->dma_q = IVPU_MMU_Q_BASE_RWA;
341 	q->dma_q |= q->dma & IVPU_MMU_Q_BASE_ADDR_MASK;
342 	q->dma_q |= IVPU_MMU_Q_COUNT_LOG2;
343 
344 	ivpu_dbg(vdev, MMU, "EVTQ alloc: dma=%pad dma_q=%pad size=%u\n",
345 		 &q->dma, &q->dma_q, IVPU_MMU_EVTQ_SIZE);
346 
347 	return 0;
348 }
349 
ivpu_mmu_structs_alloc(struct ivpu_device * vdev)350 static int ivpu_mmu_structs_alloc(struct ivpu_device *vdev)
351 {
352 	int ret;
353 
354 	ret = ivpu_mmu_cdtab_alloc(vdev);
355 	if (ret) {
356 		ivpu_err(vdev, "Failed to allocate cdtab: %d\n", ret);
357 		return ret;
358 	}
359 
360 	ret = ivpu_mmu_strtab_alloc(vdev);
361 	if (ret) {
362 		ivpu_err(vdev, "Failed to allocate strtab: %d\n", ret);
363 		return ret;
364 	}
365 
366 	ret = ivpu_mmu_cmdq_alloc(vdev);
367 	if (ret) {
368 		ivpu_err(vdev, "Failed to allocate cmdq: %d\n", ret);
369 		return ret;
370 	}
371 
372 	ret = ivpu_mmu_evtq_alloc(vdev);
373 	if (ret)
374 		ivpu_err(vdev, "Failed to allocate evtq: %d\n", ret);
375 
376 	return ret;
377 }
378 
ivpu_mmu_reg_write(struct ivpu_device * vdev,u32 reg,u32 val)379 static int ivpu_mmu_reg_write(struct ivpu_device *vdev, u32 reg, u32 val)
380 {
381 	u32 reg_ack = reg + 4; /* ACK register is 4B after base register */
382 	u32 val_ack;
383 	int ret;
384 
385 	REGV_WR32(reg, val);
386 
387 	ret = REGV_POLL(reg_ack, val_ack, (val == val_ack), IVPU_MMU_REG_TIMEOUT_US);
388 	if (ret)
389 		ivpu_err(vdev, "Failed to write register 0x%x\n", reg);
390 
391 	return ret;
392 }
393 
ivpu_mmu_irqs_setup(struct ivpu_device * vdev)394 static int ivpu_mmu_irqs_setup(struct ivpu_device *vdev)
395 {
396 	u32 irq_ctrl = IVPU_MMU_IRQ_EVTQ_EN | IVPU_MMU_IRQ_GERROR_EN;
397 	int ret;
398 
399 	ret = ivpu_mmu_reg_write(vdev, VPU_37XX_HOST_MMU_IRQ_CTRL, 0);
400 	if (ret)
401 		return ret;
402 
403 	return ivpu_mmu_reg_write(vdev, VPU_37XX_HOST_MMU_IRQ_CTRL, irq_ctrl);
404 }
405 
ivpu_mmu_cmdq_wait_for_cons(struct ivpu_device * vdev)406 static int ivpu_mmu_cmdq_wait_for_cons(struct ivpu_device *vdev)
407 {
408 	struct ivpu_mmu_queue *cmdq = &vdev->mmu->cmdq;
409 
410 	return REGV_POLL(VPU_37XX_HOST_MMU_CMDQ_CONS, cmdq->cons, (cmdq->prod == cmdq->cons),
411 			 IVPU_MMU_QUEUE_TIMEOUT_US);
412 }
413 
ivpu_mmu_cmdq_cmd_write(struct ivpu_device * vdev,const char * name,u64 data0,u64 data1)414 static int ivpu_mmu_cmdq_cmd_write(struct ivpu_device *vdev, const char *name, u64 data0, u64 data1)
415 {
416 	struct ivpu_mmu_queue *q = &vdev->mmu->cmdq;
417 	u64 *queue_buffer = q->base;
418 	int idx = IVPU_MMU_Q_IDX(q->prod) * (IVPU_MMU_CMDQ_CMD_SIZE / sizeof(*queue_buffer));
419 
420 	if (!CIRC_SPACE(IVPU_MMU_Q_IDX(q->prod), IVPU_MMU_Q_IDX(q->cons), IVPU_MMU_Q_COUNT)) {
421 		ivpu_err(vdev, "Failed to write MMU CMD %s\n", name);
422 		return -EBUSY;
423 	}
424 
425 	queue_buffer[idx] = data0;
426 	queue_buffer[idx + 1] = data1;
427 	q->prod = (q->prod + 1) & IVPU_MMU_Q_WRAP_MASK;
428 
429 	ivpu_dbg(vdev, MMU, "CMD write: %s data: 0x%llx 0x%llx\n", name, data0, data1);
430 
431 	return 0;
432 }
433 
ivpu_mmu_cmdq_sync(struct ivpu_device * vdev)434 static int ivpu_mmu_cmdq_sync(struct ivpu_device *vdev)
435 {
436 	struct ivpu_mmu_queue *q = &vdev->mmu->cmdq;
437 	u64 val;
438 	int ret;
439 
440 	val = FIELD_PREP(IVPU_MMU_CMD_OPCODE, CMD_SYNC) |
441 	      FIELD_PREP(IVPU_MMU_CMD_SYNC_0_CS, 0x2) |
442 	      FIELD_PREP(IVPU_MMU_CMD_SYNC_0_MSH, 0x3) |
443 	      FIELD_PREP(IVPU_MMU_CMD_SYNC_0_MSI_ATTR, 0xf);
444 
445 	ret = ivpu_mmu_cmdq_cmd_write(vdev, "SYNC", val, 0);
446 	if (ret)
447 		return ret;
448 
449 	clflush_cache_range(q->base, IVPU_MMU_CMDQ_SIZE);
450 	REGV_WR32(VPU_37XX_HOST_MMU_CMDQ_PROD, q->prod);
451 
452 	ret = ivpu_mmu_cmdq_wait_for_cons(vdev);
453 	if (ret)
454 		ivpu_err(vdev, "Timed out waiting for consumer: %d\n", ret);
455 
456 	return ret;
457 }
458 
ivpu_mmu_cmdq_write_cfgi_all(struct ivpu_device * vdev)459 static int ivpu_mmu_cmdq_write_cfgi_all(struct ivpu_device *vdev)
460 {
461 	u64 data0 = FIELD_PREP(IVPU_MMU_CMD_OPCODE, CMD_CFGI_ALL);
462 	u64 data1 = FIELD_PREP(IVPU_MMU_CMD_CFGI_1_RANGE, 0x1f);
463 
464 	return ivpu_mmu_cmdq_cmd_write(vdev, "CFGI_ALL", data0, data1);
465 }
466 
ivpu_mmu_cmdq_write_tlbi_nh_asid(struct ivpu_device * vdev,u16 ssid)467 static int ivpu_mmu_cmdq_write_tlbi_nh_asid(struct ivpu_device *vdev, u16 ssid)
468 {
469 	u64 val = FIELD_PREP(IVPU_MMU_CMD_OPCODE, CMD_TLBI_NH_ASID) |
470 		  FIELD_PREP(IVPU_MMU_CMD_TLBI_0_ASID, ssid);
471 
472 	return ivpu_mmu_cmdq_cmd_write(vdev, "TLBI_NH_ASID", val, 0);
473 }
474 
ivpu_mmu_cmdq_write_tlbi_nsnh_all(struct ivpu_device * vdev)475 static int ivpu_mmu_cmdq_write_tlbi_nsnh_all(struct ivpu_device *vdev)
476 {
477 	u64 val = FIELD_PREP(IVPU_MMU_CMD_OPCODE, CMD_TLBI_NSNH_ALL);
478 
479 	return ivpu_mmu_cmdq_cmd_write(vdev, "TLBI_NSNH_ALL", val, 0);
480 }
481 
ivpu_mmu_reset(struct ivpu_device * vdev)482 static int ivpu_mmu_reset(struct ivpu_device *vdev)
483 {
484 	struct ivpu_mmu_info *mmu = vdev->mmu;
485 	u32 val;
486 	int ret;
487 
488 	memset(mmu->cmdq.base, 0, IVPU_MMU_CMDQ_SIZE);
489 	clflush_cache_range(mmu->cmdq.base, IVPU_MMU_CMDQ_SIZE);
490 	mmu->cmdq.prod = 0;
491 	mmu->cmdq.cons = 0;
492 
493 	memset(mmu->evtq.base, 0, IVPU_MMU_EVTQ_SIZE);
494 	clflush_cache_range(mmu->evtq.base, IVPU_MMU_EVTQ_SIZE);
495 	mmu->evtq.prod = 0;
496 	mmu->evtq.cons = 0;
497 
498 	ret = ivpu_mmu_reg_write(vdev, VPU_37XX_HOST_MMU_CR0, 0);
499 	if (ret)
500 		return ret;
501 
502 	val = FIELD_PREP(IVPU_MMU_CR1_TABLE_SH, IVPU_MMU_SH_ISH) |
503 	      FIELD_PREP(IVPU_MMU_CR1_TABLE_OC, IVPU_MMU_CACHE_WB) |
504 	      FIELD_PREP(IVPU_MMU_CR1_TABLE_IC, IVPU_MMU_CACHE_WB) |
505 	      FIELD_PREP(IVPU_MMU_CR1_QUEUE_SH, IVPU_MMU_SH_ISH) |
506 	      FIELD_PREP(IVPU_MMU_CR1_QUEUE_OC, IVPU_MMU_CACHE_WB) |
507 	      FIELD_PREP(IVPU_MMU_CR1_QUEUE_IC, IVPU_MMU_CACHE_WB);
508 	REGV_WR32(VPU_37XX_HOST_MMU_CR1, val);
509 
510 	REGV_WR64(VPU_37XX_HOST_MMU_STRTAB_BASE, mmu->strtab.dma_q);
511 	REGV_WR32(VPU_37XX_HOST_MMU_STRTAB_BASE_CFG, mmu->strtab.base_cfg);
512 
513 	REGV_WR64(VPU_37XX_HOST_MMU_CMDQ_BASE, mmu->cmdq.dma_q);
514 	REGV_WR32(VPU_37XX_HOST_MMU_CMDQ_PROD, 0);
515 	REGV_WR32(VPU_37XX_HOST_MMU_CMDQ_CONS, 0);
516 
517 	val = IVPU_MMU_CR0_CMDQEN;
518 	ret = ivpu_mmu_reg_write(vdev, VPU_37XX_HOST_MMU_CR0, val);
519 	if (ret)
520 		return ret;
521 
522 	ret = ivpu_mmu_cmdq_write_cfgi_all(vdev);
523 	if (ret)
524 		return ret;
525 
526 	ret = ivpu_mmu_cmdq_write_tlbi_nsnh_all(vdev);
527 	if (ret)
528 		return ret;
529 
530 	ret = ivpu_mmu_cmdq_sync(vdev);
531 	if (ret)
532 		return ret;
533 
534 	REGV_WR64(VPU_37XX_HOST_MMU_EVTQ_BASE, mmu->evtq.dma_q);
535 	REGV_WR32(VPU_37XX_HOST_MMU_EVTQ_PROD_SEC, 0);
536 	REGV_WR32(VPU_37XX_HOST_MMU_EVTQ_CONS_SEC, 0);
537 
538 	val |= IVPU_MMU_CR0_EVTQEN;
539 	ret = ivpu_mmu_reg_write(vdev, VPU_37XX_HOST_MMU_CR0, val);
540 	if (ret)
541 		return ret;
542 
543 	val |= IVPU_MMU_CR0_ATSCHK;
544 	ret = ivpu_mmu_reg_write(vdev, VPU_37XX_HOST_MMU_CR0, val);
545 	if (ret)
546 		return ret;
547 
548 	ret = ivpu_mmu_irqs_setup(vdev);
549 	if (ret)
550 		return ret;
551 
552 	val |= IVPU_MMU_CR0_SMMUEN;
553 	return ivpu_mmu_reg_write(vdev, VPU_37XX_HOST_MMU_CR0, val);
554 }
555 
ivpu_mmu_strtab_link_cd(struct ivpu_device * vdev,u32 sid)556 static void ivpu_mmu_strtab_link_cd(struct ivpu_device *vdev, u32 sid)
557 {
558 	struct ivpu_mmu_info *mmu = vdev->mmu;
559 	struct ivpu_mmu_strtab *strtab = &mmu->strtab;
560 	struct ivpu_mmu_cdtab *cdtab = &mmu->cdtab;
561 	u64 *entry = strtab->base + (sid * IVPU_MMU_STRTAB_ENT_SIZE);
562 	u64 str[2];
563 
564 	str[0] = FIELD_PREP(IVPU_MMU_STE_0_CFG, IVPU_MMU_STE_0_CFG_S1_TRANS) |
565 		 FIELD_PREP(IVPU_MMU_STE_0_S1CDMAX, IVPU_MMU_CDTAB_ENT_COUNT_LOG2) |
566 		 FIELD_PREP(IVPU_MMU_STE_0_S1FMT, IVPU_MMU_STE_0_S1FMT_LINEAR) |
567 		 IVPU_MMU_STE_0_V |
568 		 (cdtab->dma & IVPU_MMU_STE_0_S1CTXPTR_MASK);
569 
570 	str[1] = FIELD_PREP(IVPU_MMU_STE_1_S1DSS, IVPU_MMU_STE_1_S1DSS_TERMINATE) |
571 		 FIELD_PREP(IVPU_MMU_STE_1_S1CIR, IVPU_MMU_STE_1_S1C_CACHE_NC) |
572 		 FIELD_PREP(IVPU_MMU_STE_1_S1COR, IVPU_MMU_STE_1_S1C_CACHE_NC) |
573 		 FIELD_PREP(IVPU_MMU_STE_1_S1CSH, IVPU_MMU_SH_NSH) |
574 		 FIELD_PREP(IVPU_MMU_STE_1_PRIVCFG, IVPU_MMU_STE_1_PRIVCFG_UNPRIV) |
575 		 FIELD_PREP(IVPU_MMU_STE_1_INSTCFG, IVPU_MMU_STE_1_INSTCFG_DATA) |
576 		 FIELD_PREP(IVPU_MMU_STE_1_STRW, IVPU_MMU_STE_1_STRW_NSEL1) |
577 		 FIELD_PREP(IVPU_MMU_STE_1_CONT, IVPU_MMU_STRTAB_CFG_LOG2SIZE) |
578 		 IVPU_MMU_STE_1_MEV |
579 		 IVPU_MMU_STE_1_S1STALLD;
580 
581 	WRITE_ONCE(entry[1], str[1]);
582 	WRITE_ONCE(entry[0], str[0]);
583 
584 	clflush_cache_range(entry, IVPU_MMU_STRTAB_ENT_SIZE);
585 
586 	ivpu_dbg(vdev, MMU, "STRTAB write entry (SSID=%u): 0x%llx, 0x%llx\n", sid, str[0], str[1]);
587 }
588 
ivpu_mmu_strtab_init(struct ivpu_device * vdev)589 static int ivpu_mmu_strtab_init(struct ivpu_device *vdev)
590 {
591 	ivpu_mmu_strtab_link_cd(vdev, IVPU_MMU_STREAM_ID0);
592 	ivpu_mmu_strtab_link_cd(vdev, IVPU_MMU_STREAM_ID3);
593 
594 	return 0;
595 }
596 
ivpu_mmu_invalidate_tlb(struct ivpu_device * vdev,u16 ssid)597 int ivpu_mmu_invalidate_tlb(struct ivpu_device *vdev, u16 ssid)
598 {
599 	struct ivpu_mmu_info *mmu = vdev->mmu;
600 	int ret = 0;
601 
602 	mutex_lock(&mmu->lock);
603 	if (!mmu->on)
604 		goto unlock;
605 
606 	ret = ivpu_mmu_cmdq_write_tlbi_nh_asid(vdev, ssid);
607 	if (ret)
608 		goto unlock;
609 
610 	ret = ivpu_mmu_cmdq_sync(vdev);
611 unlock:
612 	mutex_unlock(&mmu->lock);
613 	return ret;
614 }
615 
ivpu_mmu_cd_add(struct ivpu_device * vdev,u32 ssid,u64 cd_dma)616 static int ivpu_mmu_cd_add(struct ivpu_device *vdev, u32 ssid, u64 cd_dma)
617 {
618 	struct ivpu_mmu_info *mmu = vdev->mmu;
619 	struct ivpu_mmu_cdtab *cdtab = &mmu->cdtab;
620 	u64 *entry;
621 	u64 cd[4];
622 	int ret = 0;
623 
624 	if (ssid > IVPU_MMU_CDTAB_ENT_COUNT)
625 		return -EINVAL;
626 
627 	entry = cdtab->base + (ssid * IVPU_MMU_CDTAB_ENT_SIZE);
628 
629 	if (cd_dma != 0) {
630 		cd[0] = FIELD_PREP(IVPU_MMU_CD_0_TCR_T0SZ, IVPU_MMU_T0SZ_48BIT) |
631 			FIELD_PREP(IVPU_MMU_CD_0_TCR_TG0, 0) |
632 			FIELD_PREP(IVPU_MMU_CD_0_TCR_IRGN0, 0) |
633 			FIELD_PREP(IVPU_MMU_CD_0_TCR_ORGN0, 0) |
634 			FIELD_PREP(IVPU_MMU_CD_0_TCR_SH0, 0) |
635 			FIELD_PREP(IVPU_MMU_CD_0_TCR_IPS, IVPU_MMU_IPS_48BIT) |
636 			FIELD_PREP(IVPU_MMU_CD_0_ASID, ssid) |
637 			IVPU_MMU_CD_0_TCR_EPD1 |
638 			IVPU_MMU_CD_0_AA64 |
639 			IVPU_MMU_CD_0_R |
640 			IVPU_MMU_CD_0_ASET |
641 			IVPU_MMU_CD_0_V;
642 		cd[1] = cd_dma & IVPU_MMU_CD_1_TTB0_MASK;
643 		cd[2] = 0;
644 		cd[3] = 0x0000000000007444;
645 
646 		/* For global context generate memory fault on VPU */
647 		if (ssid == IVPU_GLOBAL_CONTEXT_MMU_SSID)
648 			cd[0] |= IVPU_MMU_CD_0_A;
649 	} else {
650 		memset(cd, 0, sizeof(cd));
651 	}
652 
653 	WRITE_ONCE(entry[1], cd[1]);
654 	WRITE_ONCE(entry[2], cd[2]);
655 	WRITE_ONCE(entry[3], cd[3]);
656 	WRITE_ONCE(entry[0], cd[0]);
657 
658 	clflush_cache_range(entry, IVPU_MMU_CDTAB_ENT_SIZE);
659 
660 	ivpu_dbg(vdev, MMU, "CDTAB %s entry (SSID=%u, dma=%pad): 0x%llx, 0x%llx, 0x%llx, 0x%llx\n",
661 		 cd_dma ? "write" : "clear", ssid, &cd_dma, cd[0], cd[1], cd[2], cd[3]);
662 
663 	mutex_lock(&mmu->lock);
664 	if (!mmu->on)
665 		goto unlock;
666 
667 	ret = ivpu_mmu_cmdq_write_cfgi_all(vdev);
668 	if (ret)
669 		goto unlock;
670 
671 	ret = ivpu_mmu_cmdq_sync(vdev);
672 unlock:
673 	mutex_unlock(&mmu->lock);
674 	return ret;
675 }
676 
ivpu_mmu_cd_add_gbl(struct ivpu_device * vdev)677 static int ivpu_mmu_cd_add_gbl(struct ivpu_device *vdev)
678 {
679 	int ret;
680 
681 	ret = ivpu_mmu_cd_add(vdev, 0, vdev->gctx.pgtable.pgd_dma);
682 	if (ret)
683 		ivpu_err(vdev, "Failed to add global CD entry: %d\n", ret);
684 
685 	return ret;
686 }
687 
ivpu_mmu_cd_add_user(struct ivpu_device * vdev,u32 ssid,dma_addr_t cd_dma)688 static int ivpu_mmu_cd_add_user(struct ivpu_device *vdev, u32 ssid, dma_addr_t cd_dma)
689 {
690 	int ret;
691 
692 	if (ssid == 0) {
693 		ivpu_err(vdev, "Invalid SSID: %u\n", ssid);
694 		return -EINVAL;
695 	}
696 
697 	ret = ivpu_mmu_cd_add(vdev, ssid, cd_dma);
698 	if (ret)
699 		ivpu_err(vdev, "Failed to add CD entry SSID=%u: %d\n", ssid, ret);
700 
701 	return ret;
702 }
703 
ivpu_mmu_init(struct ivpu_device * vdev)704 int ivpu_mmu_init(struct ivpu_device *vdev)
705 {
706 	struct ivpu_mmu_info *mmu = vdev->mmu;
707 	int ret;
708 
709 	ivpu_dbg(vdev, MMU, "Init..\n");
710 
711 	drmm_mutex_init(&vdev->drm, &mmu->lock);
712 	ivpu_mmu_config_check(vdev);
713 
714 	ret = ivpu_mmu_structs_alloc(vdev);
715 	if (ret)
716 		return ret;
717 
718 	ret = ivpu_mmu_strtab_init(vdev);
719 	if (ret) {
720 		ivpu_err(vdev, "Failed to initialize strtab: %d\n", ret);
721 		return ret;
722 	}
723 
724 	ret = ivpu_mmu_cd_add_gbl(vdev);
725 	if (ret) {
726 		ivpu_err(vdev, "Failed to initialize strtab: %d\n", ret);
727 		return ret;
728 	}
729 
730 	ret = ivpu_mmu_enable(vdev);
731 	if (ret) {
732 		ivpu_err(vdev, "Failed to resume MMU: %d\n", ret);
733 		return ret;
734 	}
735 
736 	ivpu_dbg(vdev, MMU, "Init done\n");
737 
738 	return 0;
739 }
740 
ivpu_mmu_enable(struct ivpu_device * vdev)741 int ivpu_mmu_enable(struct ivpu_device *vdev)
742 {
743 	struct ivpu_mmu_info *mmu = vdev->mmu;
744 	int ret;
745 
746 	mutex_lock(&mmu->lock);
747 
748 	mmu->on = true;
749 
750 	ret = ivpu_mmu_reset(vdev);
751 	if (ret) {
752 		ivpu_err(vdev, "Failed to reset MMU: %d\n", ret);
753 		goto err;
754 	}
755 
756 	ret = ivpu_mmu_cmdq_write_cfgi_all(vdev);
757 	if (ret)
758 		goto err;
759 
760 	ret = ivpu_mmu_cmdq_write_tlbi_nsnh_all(vdev);
761 	if (ret)
762 		goto err;
763 
764 	ret = ivpu_mmu_cmdq_sync(vdev);
765 	if (ret)
766 		goto err;
767 
768 	mutex_unlock(&mmu->lock);
769 
770 	return 0;
771 err:
772 	mmu->on = false;
773 	mutex_unlock(&mmu->lock);
774 	return ret;
775 }
776 
ivpu_mmu_disable(struct ivpu_device * vdev)777 void ivpu_mmu_disable(struct ivpu_device *vdev)
778 {
779 	struct ivpu_mmu_info *mmu = vdev->mmu;
780 
781 	mutex_lock(&mmu->lock);
782 	mmu->on = false;
783 	mutex_unlock(&mmu->lock);
784 }
785 
ivpu_mmu_dump_event(struct ivpu_device * vdev,u32 * event)786 static void ivpu_mmu_dump_event(struct ivpu_device *vdev, u32 *event)
787 {
788 	u32 ssid = FIELD_GET(IVPU_MMU_EVT_SSID_MASK, event[0]);
789 	u32 op = FIELD_GET(IVPU_MMU_EVT_OP_MASK, event[0]);
790 	u64 fetch_addr = ((u64)event[7]) << 32 | event[6];
791 	u64 in_addr = ((u64)event[5]) << 32 | event[4];
792 	u32 sid = event[1];
793 
794 	ivpu_err(vdev, "MMU EVTQ: 0x%x (%s) SSID: %d SID: %d, e[2] %08x, e[3] %08x, in addr: 0x%llx, fetch addr: 0x%llx\n",
795 		 op, ivpu_mmu_event_to_str(op), ssid, sid, event[2], event[3], in_addr, fetch_addr);
796 }
797 
ivpu_mmu_get_event(struct ivpu_device * vdev)798 static u32 *ivpu_mmu_get_event(struct ivpu_device *vdev)
799 {
800 	struct ivpu_mmu_queue *evtq = &vdev->mmu->evtq;
801 	u32 idx = IVPU_MMU_Q_IDX(evtq->cons);
802 	u32 *evt = evtq->base + (idx * IVPU_MMU_EVTQ_CMD_SIZE);
803 
804 	evtq->prod = REGV_RD32(VPU_37XX_HOST_MMU_EVTQ_PROD_SEC);
805 	if (!CIRC_CNT(IVPU_MMU_Q_IDX(evtq->prod), IVPU_MMU_Q_IDX(evtq->cons), IVPU_MMU_Q_COUNT))
806 		return NULL;
807 
808 	clflush_cache_range(evt, IVPU_MMU_EVTQ_CMD_SIZE);
809 
810 	evtq->cons = (evtq->cons + 1) & IVPU_MMU_Q_WRAP_MASK;
811 	REGV_WR32(VPU_37XX_HOST_MMU_EVTQ_CONS_SEC, evtq->cons);
812 
813 	return evt;
814 }
815 
ivpu_mmu_irq_evtq_handler(struct ivpu_device * vdev)816 void ivpu_mmu_irq_evtq_handler(struct ivpu_device *vdev)
817 {
818 	bool schedule_recovery = false;
819 	u32 *event;
820 	u32 ssid;
821 
822 	ivpu_dbg(vdev, IRQ, "MMU event queue\n");
823 
824 	while ((event = ivpu_mmu_get_event(vdev)) != NULL) {
825 		ivpu_mmu_dump_event(vdev, event);
826 
827 		ssid = FIELD_GET(IVPU_MMU_EVT_SSID_MASK, event[0]);
828 		if (ssid == IVPU_GLOBAL_CONTEXT_MMU_SSID)
829 			schedule_recovery = true;
830 		else
831 			ivpu_mmu_user_context_mark_invalid(vdev, ssid);
832 	}
833 
834 	if (schedule_recovery)
835 		ivpu_pm_schedule_recovery(vdev);
836 }
837 
ivpu_mmu_irq_gerr_handler(struct ivpu_device * vdev)838 void ivpu_mmu_irq_gerr_handler(struct ivpu_device *vdev)
839 {
840 	u32 gerror_val, gerrorn_val, active;
841 
842 	ivpu_dbg(vdev, IRQ, "MMU error\n");
843 
844 	gerror_val = REGV_RD32(VPU_37XX_HOST_MMU_GERROR);
845 	gerrorn_val = REGV_RD32(VPU_37XX_HOST_MMU_GERRORN);
846 
847 	active = gerror_val ^ gerrorn_val;
848 	if (!(active & IVPU_MMU_GERROR_ERR_MASK))
849 		return;
850 
851 	if (REG_TEST_FLD(VPU_37XX_HOST_MMU_GERROR, MSI_ABT, active))
852 		ivpu_warn_ratelimited(vdev, "MMU MSI ABT write aborted\n");
853 
854 	if (REG_TEST_FLD(VPU_37XX_HOST_MMU_GERROR, MSI_PRIQ_ABT, active))
855 		ivpu_warn_ratelimited(vdev, "MMU PRIQ MSI ABT write aborted\n");
856 
857 	if (REG_TEST_FLD(VPU_37XX_HOST_MMU_GERROR, MSI_EVTQ_ABT, active))
858 		ivpu_warn_ratelimited(vdev, "MMU EVTQ MSI ABT write aborted\n");
859 
860 	if (REG_TEST_FLD(VPU_37XX_HOST_MMU_GERROR, MSI_CMDQ_ABT, active))
861 		ivpu_warn_ratelimited(vdev, "MMU CMDQ MSI ABT write aborted\n");
862 
863 	if (REG_TEST_FLD(VPU_37XX_HOST_MMU_GERROR, PRIQ_ABT, active))
864 		ivpu_err_ratelimited(vdev, "MMU PRIQ write aborted\n");
865 
866 	if (REG_TEST_FLD(VPU_37XX_HOST_MMU_GERROR, EVTQ_ABT, active))
867 		ivpu_err_ratelimited(vdev, "MMU EVTQ write aborted\n");
868 
869 	if (REG_TEST_FLD(VPU_37XX_HOST_MMU_GERROR, CMDQ, active))
870 		ivpu_err_ratelimited(vdev, "MMU CMDQ write aborted\n");
871 
872 	REGV_WR32(VPU_37XX_HOST_MMU_GERRORN, gerror_val);
873 }
874 
ivpu_mmu_set_pgtable(struct ivpu_device * vdev,int ssid,struct ivpu_mmu_pgtable * pgtable)875 int ivpu_mmu_set_pgtable(struct ivpu_device *vdev, int ssid, struct ivpu_mmu_pgtable *pgtable)
876 {
877 	return ivpu_mmu_cd_add_user(vdev, ssid, pgtable->pgd_dma);
878 }
879 
ivpu_mmu_clear_pgtable(struct ivpu_device * vdev,int ssid)880 void ivpu_mmu_clear_pgtable(struct ivpu_device *vdev, int ssid)
881 {
882 	ivpu_mmu_cd_add_user(vdev, ssid, 0); /* 0 will clear CD entry */
883 }
884