1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2020-2023 Intel Corporation
4 */
5
6 #include <linux/circ_buf.h>
7 #include <linux/highmem.h>
8
9 #include "ivpu_drv.h"
10 #include "ivpu_hw_37xx_reg.h"
11 #include "ivpu_hw_reg_io.h"
12 #include "ivpu_mmu.h"
13 #include "ivpu_mmu_context.h"
14 #include "ivpu_pm.h"
15
16 #define IVPU_MMU_IDR0_REF 0x080f3e0f
17 #define IVPU_MMU_IDR0_REF_SIMICS 0x080f3e1f
18 #define IVPU_MMU_IDR1_REF 0x0e739d18
19 #define IVPU_MMU_IDR3_REF 0x0000003c
20 #define IVPU_MMU_IDR5_REF 0x00040070
21 #define IVPU_MMU_IDR5_REF_SIMICS 0x00000075
22 #define IVPU_MMU_IDR5_REF_FPGA 0x00800075
23
24 #define IVPU_MMU_CDTAB_ENT_SIZE 64
25 #define IVPU_MMU_CDTAB_ENT_COUNT_LOG2 8 /* 256 entries */
26 #define IVPU_MMU_CDTAB_ENT_COUNT ((u32)1 << IVPU_MMU_CDTAB_ENT_COUNT_LOG2)
27
28 #define IVPU_MMU_STREAM_ID0 0
29 #define IVPU_MMU_STREAM_ID3 3
30
31 #define IVPU_MMU_STRTAB_ENT_SIZE 64
32 #define IVPU_MMU_STRTAB_ENT_COUNT 4
33 #define IVPU_MMU_STRTAB_CFG_LOG2SIZE 2
34 #define IVPU_MMU_STRTAB_CFG IVPU_MMU_STRTAB_CFG_LOG2SIZE
35
36 #define IVPU_MMU_Q_COUNT_LOG2 4 /* 16 entries */
37 #define IVPU_MMU_Q_COUNT ((u32)1 << IVPU_MMU_Q_COUNT_LOG2)
38 #define IVPU_MMU_Q_WRAP_BIT (IVPU_MMU_Q_COUNT << 1)
39 #define IVPU_MMU_Q_WRAP_MASK (IVPU_MMU_Q_WRAP_BIT - 1)
40 #define IVPU_MMU_Q_IDX_MASK (IVPU_MMU_Q_COUNT - 1)
41 #define IVPU_MMU_Q_IDX(val) ((val) & IVPU_MMU_Q_IDX_MASK)
42
43 #define IVPU_MMU_CMDQ_CMD_SIZE 16
44 #define IVPU_MMU_CMDQ_SIZE (IVPU_MMU_Q_COUNT * IVPU_MMU_CMDQ_CMD_SIZE)
45
46 #define IVPU_MMU_EVTQ_CMD_SIZE 32
47 #define IVPU_MMU_EVTQ_SIZE (IVPU_MMU_Q_COUNT * IVPU_MMU_EVTQ_CMD_SIZE)
48
49 #define IVPU_MMU_CMD_OPCODE GENMASK(7, 0)
50
51 #define IVPU_MMU_CMD_SYNC_0_CS GENMASK(13, 12)
52 #define IVPU_MMU_CMD_SYNC_0_MSH GENMASK(23, 22)
53 #define IVPU_MMU_CMD_SYNC_0_MSI_ATTR GENMASK(27, 24)
54 #define IVPU_MMU_CMD_SYNC_0_MSI_ATTR GENMASK(27, 24)
55 #define IVPU_MMU_CMD_SYNC_0_MSI_DATA GENMASK(63, 32)
56
57 #define IVPU_MMU_CMD_CFGI_0_SSEC BIT(10)
58 #define IVPU_MMU_CMD_CFGI_0_SSV BIT(11)
59 #define IVPU_MMU_CMD_CFGI_0_SSID GENMASK(31, 12)
60 #define IVPU_MMU_CMD_CFGI_0_SID GENMASK(63, 32)
61 #define IVPU_MMU_CMD_CFGI_1_RANGE GENMASK(4, 0)
62
63 #define IVPU_MMU_CMD_TLBI_0_ASID GENMASK(63, 48)
64 #define IVPU_MMU_CMD_TLBI_0_VMID GENMASK(47, 32)
65
66 #define CMD_PREFETCH_CFG 0x1
67 #define CMD_CFGI_STE 0x3
68 #define CMD_CFGI_ALL 0x4
69 #define CMD_CFGI_CD 0x5
70 #define CMD_CFGI_CD_ALL 0x6
71 #define CMD_TLBI_NH_ASID 0x11
72 #define CMD_TLBI_EL2_ALL 0x20
73 #define CMD_TLBI_NSNH_ALL 0x30
74 #define CMD_SYNC 0x46
75
76 #define IVPU_MMU_EVT_F_UUT 0x01
77 #define IVPU_MMU_EVT_C_BAD_STREAMID 0x02
78 #define IVPU_MMU_EVT_F_STE_FETCH 0x03
79 #define IVPU_MMU_EVT_C_BAD_STE 0x04
80 #define IVPU_MMU_EVT_F_BAD_ATS_TREQ 0x05
81 #define IVPU_MMU_EVT_F_STREAM_DISABLED 0x06
82 #define IVPU_MMU_EVT_F_TRANSL_FORBIDDEN 0x07
83 #define IVPU_MMU_EVT_C_BAD_SUBSTREAMID 0x08
84 #define IVPU_MMU_EVT_F_CD_FETCH 0x09
85 #define IVPU_MMU_EVT_C_BAD_CD 0x0a
86 #define IVPU_MMU_EVT_F_WALK_EABT 0x0b
87 #define IVPU_MMU_EVT_F_TRANSLATION 0x10
88 #define IVPU_MMU_EVT_F_ADDR_SIZE 0x11
89 #define IVPU_MMU_EVT_F_ACCESS 0x12
90 #define IVPU_MMU_EVT_F_PERMISSION 0x13
91 #define IVPU_MMU_EVT_F_TLB_CONFLICT 0x20
92 #define IVPU_MMU_EVT_F_CFG_CONFLICT 0x21
93 #define IVPU_MMU_EVT_E_PAGE_REQUEST 0x24
94 #define IVPU_MMU_EVT_F_VMS_FETCH 0x25
95
96 #define IVPU_MMU_EVT_OP_MASK GENMASK_ULL(7, 0)
97 #define IVPU_MMU_EVT_SSID_MASK GENMASK_ULL(31, 12)
98
99 #define IVPU_MMU_Q_BASE_RWA BIT(62)
100 #define IVPU_MMU_Q_BASE_ADDR_MASK GENMASK_ULL(51, 5)
101 #define IVPU_MMU_STRTAB_BASE_RA BIT(62)
102 #define IVPU_MMU_STRTAB_BASE_ADDR_MASK GENMASK_ULL(51, 6)
103
104 #define IVPU_MMU_IRQ_EVTQ_EN BIT(2)
105 #define IVPU_MMU_IRQ_GERROR_EN BIT(0)
106
107 #define IVPU_MMU_CR0_ATSCHK BIT(4)
108 #define IVPU_MMU_CR0_CMDQEN BIT(3)
109 #define IVPU_MMU_CR0_EVTQEN BIT(2)
110 #define IVPU_MMU_CR0_PRIQEN BIT(1)
111 #define IVPU_MMU_CR0_SMMUEN BIT(0)
112
113 #define IVPU_MMU_CR1_TABLE_SH GENMASK(11, 10)
114 #define IVPU_MMU_CR1_TABLE_OC GENMASK(9, 8)
115 #define IVPU_MMU_CR1_TABLE_IC GENMASK(7, 6)
116 #define IVPU_MMU_CR1_QUEUE_SH GENMASK(5, 4)
117 #define IVPU_MMU_CR1_QUEUE_OC GENMASK(3, 2)
118 #define IVPU_MMU_CR1_QUEUE_IC GENMASK(1, 0)
119 #define IVPU_MMU_CACHE_NC 0
120 #define IVPU_MMU_CACHE_WB 1
121 #define IVPU_MMU_CACHE_WT 2
122 #define IVPU_MMU_SH_NSH 0
123 #define IVPU_MMU_SH_OSH 2
124 #define IVPU_MMU_SH_ISH 3
125
126 #define IVPU_MMU_CMDQ_OP GENMASK_ULL(7, 0)
127
128 #define IVPU_MMU_CD_0_TCR_T0SZ GENMASK_ULL(5, 0)
129 #define IVPU_MMU_CD_0_TCR_TG0 GENMASK_ULL(7, 6)
130 #define IVPU_MMU_CD_0_TCR_IRGN0 GENMASK_ULL(9, 8)
131 #define IVPU_MMU_CD_0_TCR_ORGN0 GENMASK_ULL(11, 10)
132 #define IVPU_MMU_CD_0_TCR_SH0 GENMASK_ULL(13, 12)
133 #define IVPU_MMU_CD_0_TCR_EPD0 BIT_ULL(14)
134 #define IVPU_MMU_CD_0_TCR_EPD1 BIT_ULL(30)
135 #define IVPU_MMU_CD_0_ENDI BIT(15)
136 #define IVPU_MMU_CD_0_V BIT(31)
137 #define IVPU_MMU_CD_0_TCR_IPS GENMASK_ULL(34, 32)
138 #define IVPU_MMU_CD_0_TCR_TBI0 BIT_ULL(38)
139 #define IVPU_MMU_CD_0_AA64 BIT(41)
140 #define IVPU_MMU_CD_0_S BIT(44)
141 #define IVPU_MMU_CD_0_R BIT(45)
142 #define IVPU_MMU_CD_0_A BIT(46)
143 #define IVPU_MMU_CD_0_ASET BIT(47)
144 #define IVPU_MMU_CD_0_ASID GENMASK_ULL(63, 48)
145
146 #define IVPU_MMU_T0SZ_48BIT 16
147 #define IVPU_MMU_T0SZ_38BIT 26
148
149 #define IVPU_MMU_IPS_48BIT 5
150 #define IVPU_MMU_IPS_44BIT 4
151 #define IVPU_MMU_IPS_42BIT 3
152 #define IVPU_MMU_IPS_40BIT 2
153 #define IVPU_MMU_IPS_36BIT 1
154 #define IVPU_MMU_IPS_32BIT 0
155
156 #define IVPU_MMU_CD_1_TTB0_MASK GENMASK_ULL(51, 4)
157
158 #define IVPU_MMU_STE_0_S1CDMAX GENMASK_ULL(63, 59)
159 #define IVPU_MMU_STE_0_S1FMT GENMASK_ULL(5, 4)
160 #define IVPU_MMU_STE_0_S1FMT_LINEAR 0
161 #define IVPU_MMU_STE_DWORDS 8
162 #define IVPU_MMU_STE_0_CFG_S1_TRANS 5
163 #define IVPU_MMU_STE_0_CFG GENMASK_ULL(3, 1)
164 #define IVPU_MMU_STE_0_S1CTXPTR_MASK GENMASK_ULL(51, 6)
165 #define IVPU_MMU_STE_0_V BIT(0)
166
167 #define IVPU_MMU_STE_1_STRW_NSEL1 0ul
168 #define IVPU_MMU_STE_1_CONT GENMASK_ULL(16, 13)
169 #define IVPU_MMU_STE_1_STRW GENMASK_ULL(31, 30)
170 #define IVPU_MMU_STE_1_PRIVCFG GENMASK_ULL(49, 48)
171 #define IVPU_MMU_STE_1_PRIVCFG_UNPRIV 2ul
172 #define IVPU_MMU_STE_1_INSTCFG GENMASK_ULL(51, 50)
173 #define IVPU_MMU_STE_1_INSTCFG_DATA 2ul
174 #define IVPU_MMU_STE_1_MEV BIT(19)
175 #define IVPU_MMU_STE_1_S1STALLD BIT(27)
176 #define IVPU_MMU_STE_1_S1C_CACHE_NC 0ul
177 #define IVPU_MMU_STE_1_S1C_CACHE_WBRA 1ul
178 #define IVPU_MMU_STE_1_S1C_CACHE_WT 2ul
179 #define IVPU_MMU_STE_1_S1C_CACHE_WB 3ul
180 #define IVPU_MMU_STE_1_S1CIR GENMASK_ULL(3, 2)
181 #define IVPU_MMU_STE_1_S1COR GENMASK_ULL(5, 4)
182 #define IVPU_MMU_STE_1_S1CSH GENMASK_ULL(7, 6)
183 #define IVPU_MMU_STE_1_S1DSS GENMASK_ULL(1, 0)
184 #define IVPU_MMU_STE_1_S1DSS_TERMINATE 0x0
185
186 #define IVPU_MMU_REG_TIMEOUT_US (10 * USEC_PER_MSEC)
187 #define IVPU_MMU_QUEUE_TIMEOUT_US (100 * USEC_PER_MSEC)
188
189 #define IVPU_MMU_GERROR_ERR_MASK ((REG_FLD(VPU_37XX_HOST_MMU_GERROR, CMDQ)) | \
190 (REG_FLD(VPU_37XX_HOST_MMU_GERROR, EVTQ_ABT)) | \
191 (REG_FLD(VPU_37XX_HOST_MMU_GERROR, PRIQ_ABT)) | \
192 (REG_FLD(VPU_37XX_HOST_MMU_GERROR, MSI_CMDQ_ABT)) | \
193 (REG_FLD(VPU_37XX_HOST_MMU_GERROR, MSI_EVTQ_ABT)) | \
194 (REG_FLD(VPU_37XX_HOST_MMU_GERROR, MSI_PRIQ_ABT)) | \
195 (REG_FLD(VPU_37XX_HOST_MMU_GERROR, MSI_ABT)))
196
ivpu_mmu_event_to_str(u32 cmd)197 static char *ivpu_mmu_event_to_str(u32 cmd)
198 {
199 switch (cmd) {
200 case IVPU_MMU_EVT_F_UUT:
201 return "Unsupported Upstream Transaction";
202 case IVPU_MMU_EVT_C_BAD_STREAMID:
203 return "Transaction StreamID out of range";
204 case IVPU_MMU_EVT_F_STE_FETCH:
205 return "Fetch of STE caused external abort";
206 case IVPU_MMU_EVT_C_BAD_STE:
207 return "Used STE invalid";
208 case IVPU_MMU_EVT_F_BAD_ATS_TREQ:
209 return "Address Request disallowed for a StreamID";
210 case IVPU_MMU_EVT_F_STREAM_DISABLED:
211 return "Transaction marks non-substream disabled";
212 case IVPU_MMU_EVT_F_TRANSL_FORBIDDEN:
213 return "MMU bypass is disallowed for this StreamID";
214 case IVPU_MMU_EVT_C_BAD_SUBSTREAMID:
215 return "Invalid StreamID";
216 case IVPU_MMU_EVT_F_CD_FETCH:
217 return "Fetch of CD caused external abort";
218 case IVPU_MMU_EVT_C_BAD_CD:
219 return "Fetched CD invalid";
220 case IVPU_MMU_EVT_F_WALK_EABT:
221 return " An external abort occurred fetching a TLB";
222 case IVPU_MMU_EVT_F_TRANSLATION:
223 return "Translation fault";
224 case IVPU_MMU_EVT_F_ADDR_SIZE:
225 return " Output address caused address size fault";
226 case IVPU_MMU_EVT_F_ACCESS:
227 return "Access flag fault";
228 case IVPU_MMU_EVT_F_PERMISSION:
229 return "Permission fault occurred on page access";
230 case IVPU_MMU_EVT_F_TLB_CONFLICT:
231 return "A TLB conflict";
232 case IVPU_MMU_EVT_F_CFG_CONFLICT:
233 return "A configuration cache conflict";
234 case IVPU_MMU_EVT_E_PAGE_REQUEST:
235 return "Page request hint from a client device";
236 case IVPU_MMU_EVT_F_VMS_FETCH:
237 return "Fetch of VMS caused external abort";
238 default:
239 return "Unknown CMDQ command";
240 }
241 }
242
ivpu_mmu_config_check(struct ivpu_device * vdev)243 static void ivpu_mmu_config_check(struct ivpu_device *vdev)
244 {
245 u32 val_ref;
246 u32 val;
247
248 if (ivpu_is_simics(vdev))
249 val_ref = IVPU_MMU_IDR0_REF_SIMICS;
250 else
251 val_ref = IVPU_MMU_IDR0_REF;
252
253 val = REGV_RD32(VPU_37XX_HOST_MMU_IDR0);
254 if (val != val_ref)
255 ivpu_dbg(vdev, MMU, "IDR0 0x%x != IDR0_REF 0x%x\n", val, val_ref);
256
257 val = REGV_RD32(VPU_37XX_HOST_MMU_IDR1);
258 if (val != IVPU_MMU_IDR1_REF)
259 ivpu_dbg(vdev, MMU, "IDR1 0x%x != IDR1_REF 0x%x\n", val, IVPU_MMU_IDR1_REF);
260
261 val = REGV_RD32(VPU_37XX_HOST_MMU_IDR3);
262 if (val != IVPU_MMU_IDR3_REF)
263 ivpu_dbg(vdev, MMU, "IDR3 0x%x != IDR3_REF 0x%x\n", val, IVPU_MMU_IDR3_REF);
264
265 if (ivpu_is_simics(vdev))
266 val_ref = IVPU_MMU_IDR5_REF_SIMICS;
267 else if (ivpu_is_fpga(vdev))
268 val_ref = IVPU_MMU_IDR5_REF_FPGA;
269 else
270 val_ref = IVPU_MMU_IDR5_REF;
271
272 val = REGV_RD32(VPU_37XX_HOST_MMU_IDR5);
273 if (val != val_ref)
274 ivpu_dbg(vdev, MMU, "IDR5 0x%x != IDR5_REF 0x%x\n", val, val_ref);
275 }
276
ivpu_mmu_cdtab_alloc(struct ivpu_device * vdev)277 static int ivpu_mmu_cdtab_alloc(struct ivpu_device *vdev)
278 {
279 struct ivpu_mmu_info *mmu = vdev->mmu;
280 struct ivpu_mmu_cdtab *cdtab = &mmu->cdtab;
281 size_t size = IVPU_MMU_CDTAB_ENT_COUNT * IVPU_MMU_CDTAB_ENT_SIZE;
282
283 cdtab->base = dmam_alloc_coherent(vdev->drm.dev, size, &cdtab->dma, GFP_KERNEL);
284 if (!cdtab->base)
285 return -ENOMEM;
286
287 ivpu_dbg(vdev, MMU, "CDTAB alloc: dma=%pad size=%zu\n", &cdtab->dma, size);
288
289 return 0;
290 }
291
ivpu_mmu_strtab_alloc(struct ivpu_device * vdev)292 static int ivpu_mmu_strtab_alloc(struct ivpu_device *vdev)
293 {
294 struct ivpu_mmu_info *mmu = vdev->mmu;
295 struct ivpu_mmu_strtab *strtab = &mmu->strtab;
296 size_t size = IVPU_MMU_STRTAB_ENT_COUNT * IVPU_MMU_STRTAB_ENT_SIZE;
297
298 strtab->base = dmam_alloc_coherent(vdev->drm.dev, size, &strtab->dma, GFP_KERNEL);
299 if (!strtab->base)
300 return -ENOMEM;
301
302 strtab->base_cfg = IVPU_MMU_STRTAB_CFG;
303 strtab->dma_q = IVPU_MMU_STRTAB_BASE_RA;
304 strtab->dma_q |= strtab->dma & IVPU_MMU_STRTAB_BASE_ADDR_MASK;
305
306 ivpu_dbg(vdev, MMU, "STRTAB alloc: dma=%pad dma_q=%pad size=%zu\n",
307 &strtab->dma, &strtab->dma_q, size);
308
309 return 0;
310 }
311
ivpu_mmu_cmdq_alloc(struct ivpu_device * vdev)312 static int ivpu_mmu_cmdq_alloc(struct ivpu_device *vdev)
313 {
314 struct ivpu_mmu_info *mmu = vdev->mmu;
315 struct ivpu_mmu_queue *q = &mmu->cmdq;
316
317 q->base = dmam_alloc_coherent(vdev->drm.dev, IVPU_MMU_CMDQ_SIZE, &q->dma, GFP_KERNEL);
318 if (!q->base)
319 return -ENOMEM;
320
321 q->dma_q = IVPU_MMU_Q_BASE_RWA;
322 q->dma_q |= q->dma & IVPU_MMU_Q_BASE_ADDR_MASK;
323 q->dma_q |= IVPU_MMU_Q_COUNT_LOG2;
324
325 ivpu_dbg(vdev, MMU, "CMDQ alloc: dma=%pad dma_q=%pad size=%u\n",
326 &q->dma, &q->dma_q, IVPU_MMU_CMDQ_SIZE);
327
328 return 0;
329 }
330
ivpu_mmu_evtq_alloc(struct ivpu_device * vdev)331 static int ivpu_mmu_evtq_alloc(struct ivpu_device *vdev)
332 {
333 struct ivpu_mmu_info *mmu = vdev->mmu;
334 struct ivpu_mmu_queue *q = &mmu->evtq;
335
336 q->base = dmam_alloc_coherent(vdev->drm.dev, IVPU_MMU_EVTQ_SIZE, &q->dma, GFP_KERNEL);
337 if (!q->base)
338 return -ENOMEM;
339
340 q->dma_q = IVPU_MMU_Q_BASE_RWA;
341 q->dma_q |= q->dma & IVPU_MMU_Q_BASE_ADDR_MASK;
342 q->dma_q |= IVPU_MMU_Q_COUNT_LOG2;
343
344 ivpu_dbg(vdev, MMU, "EVTQ alloc: dma=%pad dma_q=%pad size=%u\n",
345 &q->dma, &q->dma_q, IVPU_MMU_EVTQ_SIZE);
346
347 return 0;
348 }
349
ivpu_mmu_structs_alloc(struct ivpu_device * vdev)350 static int ivpu_mmu_structs_alloc(struct ivpu_device *vdev)
351 {
352 int ret;
353
354 ret = ivpu_mmu_cdtab_alloc(vdev);
355 if (ret) {
356 ivpu_err(vdev, "Failed to allocate cdtab: %d\n", ret);
357 return ret;
358 }
359
360 ret = ivpu_mmu_strtab_alloc(vdev);
361 if (ret) {
362 ivpu_err(vdev, "Failed to allocate strtab: %d\n", ret);
363 return ret;
364 }
365
366 ret = ivpu_mmu_cmdq_alloc(vdev);
367 if (ret) {
368 ivpu_err(vdev, "Failed to allocate cmdq: %d\n", ret);
369 return ret;
370 }
371
372 ret = ivpu_mmu_evtq_alloc(vdev);
373 if (ret)
374 ivpu_err(vdev, "Failed to allocate evtq: %d\n", ret);
375
376 return ret;
377 }
378
ivpu_mmu_reg_write(struct ivpu_device * vdev,u32 reg,u32 val)379 static int ivpu_mmu_reg_write(struct ivpu_device *vdev, u32 reg, u32 val)
380 {
381 u32 reg_ack = reg + 4; /* ACK register is 4B after base register */
382 u32 val_ack;
383 int ret;
384
385 REGV_WR32(reg, val);
386
387 ret = REGV_POLL(reg_ack, val_ack, (val == val_ack), IVPU_MMU_REG_TIMEOUT_US);
388 if (ret)
389 ivpu_err(vdev, "Failed to write register 0x%x\n", reg);
390
391 return ret;
392 }
393
ivpu_mmu_irqs_setup(struct ivpu_device * vdev)394 static int ivpu_mmu_irqs_setup(struct ivpu_device *vdev)
395 {
396 u32 irq_ctrl = IVPU_MMU_IRQ_EVTQ_EN | IVPU_MMU_IRQ_GERROR_EN;
397 int ret;
398
399 ret = ivpu_mmu_reg_write(vdev, VPU_37XX_HOST_MMU_IRQ_CTRL, 0);
400 if (ret)
401 return ret;
402
403 return ivpu_mmu_reg_write(vdev, VPU_37XX_HOST_MMU_IRQ_CTRL, irq_ctrl);
404 }
405
ivpu_mmu_cmdq_wait_for_cons(struct ivpu_device * vdev)406 static int ivpu_mmu_cmdq_wait_for_cons(struct ivpu_device *vdev)
407 {
408 struct ivpu_mmu_queue *cmdq = &vdev->mmu->cmdq;
409
410 return REGV_POLL(VPU_37XX_HOST_MMU_CMDQ_CONS, cmdq->cons, (cmdq->prod == cmdq->cons),
411 IVPU_MMU_QUEUE_TIMEOUT_US);
412 }
413
ivpu_mmu_cmdq_cmd_write(struct ivpu_device * vdev,const char * name,u64 data0,u64 data1)414 static int ivpu_mmu_cmdq_cmd_write(struct ivpu_device *vdev, const char *name, u64 data0, u64 data1)
415 {
416 struct ivpu_mmu_queue *q = &vdev->mmu->cmdq;
417 u64 *queue_buffer = q->base;
418 int idx = IVPU_MMU_Q_IDX(q->prod) * (IVPU_MMU_CMDQ_CMD_SIZE / sizeof(*queue_buffer));
419
420 if (!CIRC_SPACE(IVPU_MMU_Q_IDX(q->prod), IVPU_MMU_Q_IDX(q->cons), IVPU_MMU_Q_COUNT)) {
421 ivpu_err(vdev, "Failed to write MMU CMD %s\n", name);
422 return -EBUSY;
423 }
424
425 queue_buffer[idx] = data0;
426 queue_buffer[idx + 1] = data1;
427 q->prod = (q->prod + 1) & IVPU_MMU_Q_WRAP_MASK;
428
429 ivpu_dbg(vdev, MMU, "CMD write: %s data: 0x%llx 0x%llx\n", name, data0, data1);
430
431 return 0;
432 }
433
ivpu_mmu_cmdq_sync(struct ivpu_device * vdev)434 static int ivpu_mmu_cmdq_sync(struct ivpu_device *vdev)
435 {
436 struct ivpu_mmu_queue *q = &vdev->mmu->cmdq;
437 u64 val;
438 int ret;
439
440 val = FIELD_PREP(IVPU_MMU_CMD_OPCODE, CMD_SYNC) |
441 FIELD_PREP(IVPU_MMU_CMD_SYNC_0_CS, 0x2) |
442 FIELD_PREP(IVPU_MMU_CMD_SYNC_0_MSH, 0x3) |
443 FIELD_PREP(IVPU_MMU_CMD_SYNC_0_MSI_ATTR, 0xf);
444
445 ret = ivpu_mmu_cmdq_cmd_write(vdev, "SYNC", val, 0);
446 if (ret)
447 return ret;
448
449 clflush_cache_range(q->base, IVPU_MMU_CMDQ_SIZE);
450 REGV_WR32(VPU_37XX_HOST_MMU_CMDQ_PROD, q->prod);
451
452 ret = ivpu_mmu_cmdq_wait_for_cons(vdev);
453 if (ret)
454 ivpu_err(vdev, "Timed out waiting for consumer: %d\n", ret);
455
456 return ret;
457 }
458
ivpu_mmu_cmdq_write_cfgi_all(struct ivpu_device * vdev)459 static int ivpu_mmu_cmdq_write_cfgi_all(struct ivpu_device *vdev)
460 {
461 u64 data0 = FIELD_PREP(IVPU_MMU_CMD_OPCODE, CMD_CFGI_ALL);
462 u64 data1 = FIELD_PREP(IVPU_MMU_CMD_CFGI_1_RANGE, 0x1f);
463
464 return ivpu_mmu_cmdq_cmd_write(vdev, "CFGI_ALL", data0, data1);
465 }
466
ivpu_mmu_cmdq_write_tlbi_nh_asid(struct ivpu_device * vdev,u16 ssid)467 static int ivpu_mmu_cmdq_write_tlbi_nh_asid(struct ivpu_device *vdev, u16 ssid)
468 {
469 u64 val = FIELD_PREP(IVPU_MMU_CMD_OPCODE, CMD_TLBI_NH_ASID) |
470 FIELD_PREP(IVPU_MMU_CMD_TLBI_0_ASID, ssid);
471
472 return ivpu_mmu_cmdq_cmd_write(vdev, "TLBI_NH_ASID", val, 0);
473 }
474
ivpu_mmu_cmdq_write_tlbi_nsnh_all(struct ivpu_device * vdev)475 static int ivpu_mmu_cmdq_write_tlbi_nsnh_all(struct ivpu_device *vdev)
476 {
477 u64 val = FIELD_PREP(IVPU_MMU_CMD_OPCODE, CMD_TLBI_NSNH_ALL);
478
479 return ivpu_mmu_cmdq_cmd_write(vdev, "TLBI_NSNH_ALL", val, 0);
480 }
481
ivpu_mmu_reset(struct ivpu_device * vdev)482 static int ivpu_mmu_reset(struct ivpu_device *vdev)
483 {
484 struct ivpu_mmu_info *mmu = vdev->mmu;
485 u32 val;
486 int ret;
487
488 memset(mmu->cmdq.base, 0, IVPU_MMU_CMDQ_SIZE);
489 clflush_cache_range(mmu->cmdq.base, IVPU_MMU_CMDQ_SIZE);
490 mmu->cmdq.prod = 0;
491 mmu->cmdq.cons = 0;
492
493 memset(mmu->evtq.base, 0, IVPU_MMU_EVTQ_SIZE);
494 clflush_cache_range(mmu->evtq.base, IVPU_MMU_EVTQ_SIZE);
495 mmu->evtq.prod = 0;
496 mmu->evtq.cons = 0;
497
498 ret = ivpu_mmu_reg_write(vdev, VPU_37XX_HOST_MMU_CR0, 0);
499 if (ret)
500 return ret;
501
502 val = FIELD_PREP(IVPU_MMU_CR1_TABLE_SH, IVPU_MMU_SH_ISH) |
503 FIELD_PREP(IVPU_MMU_CR1_TABLE_OC, IVPU_MMU_CACHE_WB) |
504 FIELD_PREP(IVPU_MMU_CR1_TABLE_IC, IVPU_MMU_CACHE_WB) |
505 FIELD_PREP(IVPU_MMU_CR1_QUEUE_SH, IVPU_MMU_SH_ISH) |
506 FIELD_PREP(IVPU_MMU_CR1_QUEUE_OC, IVPU_MMU_CACHE_WB) |
507 FIELD_PREP(IVPU_MMU_CR1_QUEUE_IC, IVPU_MMU_CACHE_WB);
508 REGV_WR32(VPU_37XX_HOST_MMU_CR1, val);
509
510 REGV_WR64(VPU_37XX_HOST_MMU_STRTAB_BASE, mmu->strtab.dma_q);
511 REGV_WR32(VPU_37XX_HOST_MMU_STRTAB_BASE_CFG, mmu->strtab.base_cfg);
512
513 REGV_WR64(VPU_37XX_HOST_MMU_CMDQ_BASE, mmu->cmdq.dma_q);
514 REGV_WR32(VPU_37XX_HOST_MMU_CMDQ_PROD, 0);
515 REGV_WR32(VPU_37XX_HOST_MMU_CMDQ_CONS, 0);
516
517 val = IVPU_MMU_CR0_CMDQEN;
518 ret = ivpu_mmu_reg_write(vdev, VPU_37XX_HOST_MMU_CR0, val);
519 if (ret)
520 return ret;
521
522 ret = ivpu_mmu_cmdq_write_cfgi_all(vdev);
523 if (ret)
524 return ret;
525
526 ret = ivpu_mmu_cmdq_write_tlbi_nsnh_all(vdev);
527 if (ret)
528 return ret;
529
530 ret = ivpu_mmu_cmdq_sync(vdev);
531 if (ret)
532 return ret;
533
534 REGV_WR64(VPU_37XX_HOST_MMU_EVTQ_BASE, mmu->evtq.dma_q);
535 REGV_WR32(VPU_37XX_HOST_MMU_EVTQ_PROD_SEC, 0);
536 REGV_WR32(VPU_37XX_HOST_MMU_EVTQ_CONS_SEC, 0);
537
538 val |= IVPU_MMU_CR0_EVTQEN;
539 ret = ivpu_mmu_reg_write(vdev, VPU_37XX_HOST_MMU_CR0, val);
540 if (ret)
541 return ret;
542
543 val |= IVPU_MMU_CR0_ATSCHK;
544 ret = ivpu_mmu_reg_write(vdev, VPU_37XX_HOST_MMU_CR0, val);
545 if (ret)
546 return ret;
547
548 ret = ivpu_mmu_irqs_setup(vdev);
549 if (ret)
550 return ret;
551
552 val |= IVPU_MMU_CR0_SMMUEN;
553 return ivpu_mmu_reg_write(vdev, VPU_37XX_HOST_MMU_CR0, val);
554 }
555
ivpu_mmu_strtab_link_cd(struct ivpu_device * vdev,u32 sid)556 static void ivpu_mmu_strtab_link_cd(struct ivpu_device *vdev, u32 sid)
557 {
558 struct ivpu_mmu_info *mmu = vdev->mmu;
559 struct ivpu_mmu_strtab *strtab = &mmu->strtab;
560 struct ivpu_mmu_cdtab *cdtab = &mmu->cdtab;
561 u64 *entry = strtab->base + (sid * IVPU_MMU_STRTAB_ENT_SIZE);
562 u64 str[2];
563
564 str[0] = FIELD_PREP(IVPU_MMU_STE_0_CFG, IVPU_MMU_STE_0_CFG_S1_TRANS) |
565 FIELD_PREP(IVPU_MMU_STE_0_S1CDMAX, IVPU_MMU_CDTAB_ENT_COUNT_LOG2) |
566 FIELD_PREP(IVPU_MMU_STE_0_S1FMT, IVPU_MMU_STE_0_S1FMT_LINEAR) |
567 IVPU_MMU_STE_0_V |
568 (cdtab->dma & IVPU_MMU_STE_0_S1CTXPTR_MASK);
569
570 str[1] = FIELD_PREP(IVPU_MMU_STE_1_S1DSS, IVPU_MMU_STE_1_S1DSS_TERMINATE) |
571 FIELD_PREP(IVPU_MMU_STE_1_S1CIR, IVPU_MMU_STE_1_S1C_CACHE_NC) |
572 FIELD_PREP(IVPU_MMU_STE_1_S1COR, IVPU_MMU_STE_1_S1C_CACHE_NC) |
573 FIELD_PREP(IVPU_MMU_STE_1_S1CSH, IVPU_MMU_SH_NSH) |
574 FIELD_PREP(IVPU_MMU_STE_1_PRIVCFG, IVPU_MMU_STE_1_PRIVCFG_UNPRIV) |
575 FIELD_PREP(IVPU_MMU_STE_1_INSTCFG, IVPU_MMU_STE_1_INSTCFG_DATA) |
576 FIELD_PREP(IVPU_MMU_STE_1_STRW, IVPU_MMU_STE_1_STRW_NSEL1) |
577 FIELD_PREP(IVPU_MMU_STE_1_CONT, IVPU_MMU_STRTAB_CFG_LOG2SIZE) |
578 IVPU_MMU_STE_1_MEV |
579 IVPU_MMU_STE_1_S1STALLD;
580
581 WRITE_ONCE(entry[1], str[1]);
582 WRITE_ONCE(entry[0], str[0]);
583
584 clflush_cache_range(entry, IVPU_MMU_STRTAB_ENT_SIZE);
585
586 ivpu_dbg(vdev, MMU, "STRTAB write entry (SSID=%u): 0x%llx, 0x%llx\n", sid, str[0], str[1]);
587 }
588
ivpu_mmu_strtab_init(struct ivpu_device * vdev)589 static int ivpu_mmu_strtab_init(struct ivpu_device *vdev)
590 {
591 ivpu_mmu_strtab_link_cd(vdev, IVPU_MMU_STREAM_ID0);
592 ivpu_mmu_strtab_link_cd(vdev, IVPU_MMU_STREAM_ID3);
593
594 return 0;
595 }
596
ivpu_mmu_invalidate_tlb(struct ivpu_device * vdev,u16 ssid)597 int ivpu_mmu_invalidate_tlb(struct ivpu_device *vdev, u16 ssid)
598 {
599 struct ivpu_mmu_info *mmu = vdev->mmu;
600 int ret = 0;
601
602 mutex_lock(&mmu->lock);
603 if (!mmu->on)
604 goto unlock;
605
606 ret = ivpu_mmu_cmdq_write_tlbi_nh_asid(vdev, ssid);
607 if (ret)
608 goto unlock;
609
610 ret = ivpu_mmu_cmdq_sync(vdev);
611 unlock:
612 mutex_unlock(&mmu->lock);
613 return ret;
614 }
615
ivpu_mmu_cd_add(struct ivpu_device * vdev,u32 ssid,u64 cd_dma)616 static int ivpu_mmu_cd_add(struct ivpu_device *vdev, u32 ssid, u64 cd_dma)
617 {
618 struct ivpu_mmu_info *mmu = vdev->mmu;
619 struct ivpu_mmu_cdtab *cdtab = &mmu->cdtab;
620 u64 *entry;
621 u64 cd[4];
622 int ret = 0;
623
624 if (ssid > IVPU_MMU_CDTAB_ENT_COUNT)
625 return -EINVAL;
626
627 entry = cdtab->base + (ssid * IVPU_MMU_CDTAB_ENT_SIZE);
628
629 if (cd_dma != 0) {
630 cd[0] = FIELD_PREP(IVPU_MMU_CD_0_TCR_T0SZ, IVPU_MMU_T0SZ_48BIT) |
631 FIELD_PREP(IVPU_MMU_CD_0_TCR_TG0, 0) |
632 FIELD_PREP(IVPU_MMU_CD_0_TCR_IRGN0, 0) |
633 FIELD_PREP(IVPU_MMU_CD_0_TCR_ORGN0, 0) |
634 FIELD_PREP(IVPU_MMU_CD_0_TCR_SH0, 0) |
635 FIELD_PREP(IVPU_MMU_CD_0_TCR_IPS, IVPU_MMU_IPS_48BIT) |
636 FIELD_PREP(IVPU_MMU_CD_0_ASID, ssid) |
637 IVPU_MMU_CD_0_TCR_EPD1 |
638 IVPU_MMU_CD_0_AA64 |
639 IVPU_MMU_CD_0_R |
640 IVPU_MMU_CD_0_ASET |
641 IVPU_MMU_CD_0_V;
642 cd[1] = cd_dma & IVPU_MMU_CD_1_TTB0_MASK;
643 cd[2] = 0;
644 cd[3] = 0x0000000000007444;
645
646 /* For global context generate memory fault on VPU */
647 if (ssid == IVPU_GLOBAL_CONTEXT_MMU_SSID)
648 cd[0] |= IVPU_MMU_CD_0_A;
649 } else {
650 memset(cd, 0, sizeof(cd));
651 }
652
653 WRITE_ONCE(entry[1], cd[1]);
654 WRITE_ONCE(entry[2], cd[2]);
655 WRITE_ONCE(entry[3], cd[3]);
656 WRITE_ONCE(entry[0], cd[0]);
657
658 clflush_cache_range(entry, IVPU_MMU_CDTAB_ENT_SIZE);
659
660 ivpu_dbg(vdev, MMU, "CDTAB %s entry (SSID=%u, dma=%pad): 0x%llx, 0x%llx, 0x%llx, 0x%llx\n",
661 cd_dma ? "write" : "clear", ssid, &cd_dma, cd[0], cd[1], cd[2], cd[3]);
662
663 mutex_lock(&mmu->lock);
664 if (!mmu->on)
665 goto unlock;
666
667 ret = ivpu_mmu_cmdq_write_cfgi_all(vdev);
668 if (ret)
669 goto unlock;
670
671 ret = ivpu_mmu_cmdq_sync(vdev);
672 unlock:
673 mutex_unlock(&mmu->lock);
674 return ret;
675 }
676
ivpu_mmu_cd_add_gbl(struct ivpu_device * vdev)677 static int ivpu_mmu_cd_add_gbl(struct ivpu_device *vdev)
678 {
679 int ret;
680
681 ret = ivpu_mmu_cd_add(vdev, 0, vdev->gctx.pgtable.pgd_dma);
682 if (ret)
683 ivpu_err(vdev, "Failed to add global CD entry: %d\n", ret);
684
685 return ret;
686 }
687
ivpu_mmu_cd_add_user(struct ivpu_device * vdev,u32 ssid,dma_addr_t cd_dma)688 static int ivpu_mmu_cd_add_user(struct ivpu_device *vdev, u32 ssid, dma_addr_t cd_dma)
689 {
690 int ret;
691
692 if (ssid == 0) {
693 ivpu_err(vdev, "Invalid SSID: %u\n", ssid);
694 return -EINVAL;
695 }
696
697 ret = ivpu_mmu_cd_add(vdev, ssid, cd_dma);
698 if (ret)
699 ivpu_err(vdev, "Failed to add CD entry SSID=%u: %d\n", ssid, ret);
700
701 return ret;
702 }
703
ivpu_mmu_init(struct ivpu_device * vdev)704 int ivpu_mmu_init(struct ivpu_device *vdev)
705 {
706 struct ivpu_mmu_info *mmu = vdev->mmu;
707 int ret;
708
709 ivpu_dbg(vdev, MMU, "Init..\n");
710
711 drmm_mutex_init(&vdev->drm, &mmu->lock);
712 ivpu_mmu_config_check(vdev);
713
714 ret = ivpu_mmu_structs_alloc(vdev);
715 if (ret)
716 return ret;
717
718 ret = ivpu_mmu_strtab_init(vdev);
719 if (ret) {
720 ivpu_err(vdev, "Failed to initialize strtab: %d\n", ret);
721 return ret;
722 }
723
724 ret = ivpu_mmu_cd_add_gbl(vdev);
725 if (ret) {
726 ivpu_err(vdev, "Failed to initialize strtab: %d\n", ret);
727 return ret;
728 }
729
730 ret = ivpu_mmu_enable(vdev);
731 if (ret) {
732 ivpu_err(vdev, "Failed to resume MMU: %d\n", ret);
733 return ret;
734 }
735
736 ivpu_dbg(vdev, MMU, "Init done\n");
737
738 return 0;
739 }
740
ivpu_mmu_enable(struct ivpu_device * vdev)741 int ivpu_mmu_enable(struct ivpu_device *vdev)
742 {
743 struct ivpu_mmu_info *mmu = vdev->mmu;
744 int ret;
745
746 mutex_lock(&mmu->lock);
747
748 mmu->on = true;
749
750 ret = ivpu_mmu_reset(vdev);
751 if (ret) {
752 ivpu_err(vdev, "Failed to reset MMU: %d\n", ret);
753 goto err;
754 }
755
756 ret = ivpu_mmu_cmdq_write_cfgi_all(vdev);
757 if (ret)
758 goto err;
759
760 ret = ivpu_mmu_cmdq_write_tlbi_nsnh_all(vdev);
761 if (ret)
762 goto err;
763
764 ret = ivpu_mmu_cmdq_sync(vdev);
765 if (ret)
766 goto err;
767
768 mutex_unlock(&mmu->lock);
769
770 return 0;
771 err:
772 mmu->on = false;
773 mutex_unlock(&mmu->lock);
774 return ret;
775 }
776
ivpu_mmu_disable(struct ivpu_device * vdev)777 void ivpu_mmu_disable(struct ivpu_device *vdev)
778 {
779 struct ivpu_mmu_info *mmu = vdev->mmu;
780
781 mutex_lock(&mmu->lock);
782 mmu->on = false;
783 mutex_unlock(&mmu->lock);
784 }
785
ivpu_mmu_dump_event(struct ivpu_device * vdev,u32 * event)786 static void ivpu_mmu_dump_event(struct ivpu_device *vdev, u32 *event)
787 {
788 u32 ssid = FIELD_GET(IVPU_MMU_EVT_SSID_MASK, event[0]);
789 u32 op = FIELD_GET(IVPU_MMU_EVT_OP_MASK, event[0]);
790 u64 fetch_addr = ((u64)event[7]) << 32 | event[6];
791 u64 in_addr = ((u64)event[5]) << 32 | event[4];
792 u32 sid = event[1];
793
794 ivpu_err(vdev, "MMU EVTQ: 0x%x (%s) SSID: %d SID: %d, e[2] %08x, e[3] %08x, in addr: 0x%llx, fetch addr: 0x%llx\n",
795 op, ivpu_mmu_event_to_str(op), ssid, sid, event[2], event[3], in_addr, fetch_addr);
796 }
797
ivpu_mmu_get_event(struct ivpu_device * vdev)798 static u32 *ivpu_mmu_get_event(struct ivpu_device *vdev)
799 {
800 struct ivpu_mmu_queue *evtq = &vdev->mmu->evtq;
801 u32 idx = IVPU_MMU_Q_IDX(evtq->cons);
802 u32 *evt = evtq->base + (idx * IVPU_MMU_EVTQ_CMD_SIZE);
803
804 evtq->prod = REGV_RD32(VPU_37XX_HOST_MMU_EVTQ_PROD_SEC);
805 if (!CIRC_CNT(IVPU_MMU_Q_IDX(evtq->prod), IVPU_MMU_Q_IDX(evtq->cons), IVPU_MMU_Q_COUNT))
806 return NULL;
807
808 clflush_cache_range(evt, IVPU_MMU_EVTQ_CMD_SIZE);
809
810 evtq->cons = (evtq->cons + 1) & IVPU_MMU_Q_WRAP_MASK;
811 REGV_WR32(VPU_37XX_HOST_MMU_EVTQ_CONS_SEC, evtq->cons);
812
813 return evt;
814 }
815
ivpu_mmu_irq_evtq_handler(struct ivpu_device * vdev)816 void ivpu_mmu_irq_evtq_handler(struct ivpu_device *vdev)
817 {
818 bool schedule_recovery = false;
819 u32 *event;
820 u32 ssid;
821
822 ivpu_dbg(vdev, IRQ, "MMU event queue\n");
823
824 while ((event = ivpu_mmu_get_event(vdev)) != NULL) {
825 ivpu_mmu_dump_event(vdev, event);
826
827 ssid = FIELD_GET(IVPU_MMU_EVT_SSID_MASK, event[0]);
828 if (ssid == IVPU_GLOBAL_CONTEXT_MMU_SSID)
829 schedule_recovery = true;
830 else
831 ivpu_mmu_user_context_mark_invalid(vdev, ssid);
832 }
833
834 if (schedule_recovery)
835 ivpu_pm_schedule_recovery(vdev);
836 }
837
ivpu_mmu_irq_gerr_handler(struct ivpu_device * vdev)838 void ivpu_mmu_irq_gerr_handler(struct ivpu_device *vdev)
839 {
840 u32 gerror_val, gerrorn_val, active;
841
842 ivpu_dbg(vdev, IRQ, "MMU error\n");
843
844 gerror_val = REGV_RD32(VPU_37XX_HOST_MMU_GERROR);
845 gerrorn_val = REGV_RD32(VPU_37XX_HOST_MMU_GERRORN);
846
847 active = gerror_val ^ gerrorn_val;
848 if (!(active & IVPU_MMU_GERROR_ERR_MASK))
849 return;
850
851 if (REG_TEST_FLD(VPU_37XX_HOST_MMU_GERROR, MSI_ABT, active))
852 ivpu_warn_ratelimited(vdev, "MMU MSI ABT write aborted\n");
853
854 if (REG_TEST_FLD(VPU_37XX_HOST_MMU_GERROR, MSI_PRIQ_ABT, active))
855 ivpu_warn_ratelimited(vdev, "MMU PRIQ MSI ABT write aborted\n");
856
857 if (REG_TEST_FLD(VPU_37XX_HOST_MMU_GERROR, MSI_EVTQ_ABT, active))
858 ivpu_warn_ratelimited(vdev, "MMU EVTQ MSI ABT write aborted\n");
859
860 if (REG_TEST_FLD(VPU_37XX_HOST_MMU_GERROR, MSI_CMDQ_ABT, active))
861 ivpu_warn_ratelimited(vdev, "MMU CMDQ MSI ABT write aborted\n");
862
863 if (REG_TEST_FLD(VPU_37XX_HOST_MMU_GERROR, PRIQ_ABT, active))
864 ivpu_err_ratelimited(vdev, "MMU PRIQ write aborted\n");
865
866 if (REG_TEST_FLD(VPU_37XX_HOST_MMU_GERROR, EVTQ_ABT, active))
867 ivpu_err_ratelimited(vdev, "MMU EVTQ write aborted\n");
868
869 if (REG_TEST_FLD(VPU_37XX_HOST_MMU_GERROR, CMDQ, active))
870 ivpu_err_ratelimited(vdev, "MMU CMDQ write aborted\n");
871
872 REGV_WR32(VPU_37XX_HOST_MMU_GERRORN, gerror_val);
873 }
874
ivpu_mmu_set_pgtable(struct ivpu_device * vdev,int ssid,struct ivpu_mmu_pgtable * pgtable)875 int ivpu_mmu_set_pgtable(struct ivpu_device *vdev, int ssid, struct ivpu_mmu_pgtable *pgtable)
876 {
877 return ivpu_mmu_cd_add_user(vdev, ssid, pgtable->pgd_dma);
878 }
879
ivpu_mmu_clear_pgtable(struct ivpu_device * vdev,int ssid)880 void ivpu_mmu_clear_pgtable(struct ivpu_device *vdev, int ssid)
881 {
882 ivpu_mmu_cd_add_user(vdev, ssid, 0); /* 0 will clear CD entry */
883 }
884