1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3 *
4 * Copyright SUSE Linux Products GmbH 2010
5 *
6 * Authors: Alexander Graf <agraf@suse.de>
7 */
8
9 #ifndef __ASM_KVM_BOOK3S_64_H__
10 #define __ASM_KVM_BOOK3S_64_H__
11
12 #include <linux/string.h>
13 #include <asm/bitops.h>
14 #include <asm/book3s/64/mmu-hash.h>
15 #include <asm/cpu_has_feature.h>
16 #include <asm/ppc-opcode.h>
17
18 #ifdef CONFIG_PPC_PSERIES
kvmhv_on_pseries(void)19 static inline bool kvmhv_on_pseries(void)
20 {
21 return !cpu_has_feature(CPU_FTR_HVMODE);
22 }
23 #else
kvmhv_on_pseries(void)24 static inline bool kvmhv_on_pseries(void)
25 {
26 return false;
27 }
28 #endif
29
30 /*
31 * Structure for a nested guest, that is, for a guest that is managed by
32 * one of our guests.
33 */
34 struct kvm_nested_guest {
35 struct kvm *l1_host; /* L1 VM that owns this nested guest */
36 int l1_lpid; /* lpid L1 guest thinks this guest is */
37 int shadow_lpid; /* real lpid of this nested guest */
38 pgd_t *shadow_pgtable; /* our page table for this guest */
39 u64 l1_gr_to_hr; /* L1's addr of part'n-scoped table */
40 u64 process_table; /* process table entry for this guest */
41 long refcnt; /* number of pointers to this struct */
42 struct mutex tlb_lock; /* serialize page faults and tlbies */
43 struct kvm_nested_guest *next;
44 cpumask_t need_tlb_flush;
45 cpumask_t cpu_in_guest;
46 short prev_cpu[NR_CPUS];
47 u8 radix; /* is this nested guest radix */
48 };
49
50 /*
51 * We define a nested rmap entry as a single 64-bit quantity
52 * 0xFFF0000000000000 12-bit lpid field
53 * 0x000FFFFFFFFFF000 40-bit guest 4k page frame number
54 * 0x0000000000000001 1-bit single entry flag
55 */
56 #define RMAP_NESTED_LPID_MASK 0xFFF0000000000000UL
57 #define RMAP_NESTED_LPID_SHIFT (52)
58 #define RMAP_NESTED_GPA_MASK 0x000FFFFFFFFFF000UL
59 #define RMAP_NESTED_IS_SINGLE_ENTRY 0x0000000000000001UL
60
61 /* Structure for a nested guest rmap entry */
62 struct rmap_nested {
63 struct llist_node list;
64 u64 rmap;
65 };
66
67 /*
68 * for_each_nest_rmap_safe - iterate over the list of nested rmap entries
69 * safe against removal of the list entry or NULL list
70 * @pos: a (struct rmap_nested *) to use as a loop cursor
71 * @node: pointer to the first entry
72 * NOTE: this can be NULL
73 * @rmapp: an (unsigned long *) in which to return the rmap entries on each
74 * iteration
75 * NOTE: this must point to already allocated memory
76 *
77 * The nested_rmap is a llist of (struct rmap_nested) entries pointed to by the
78 * rmap entry in the memslot. The list is always terminated by a "single entry"
79 * stored in the list element of the final entry of the llist. If there is ONLY
80 * a single entry then this is itself in the rmap entry of the memslot, not a
81 * llist head pointer.
82 *
83 * Note that the iterator below assumes that a nested rmap entry is always
84 * non-zero. This is true for our usage because the LPID field is always
85 * non-zero (zero is reserved for the host).
86 *
87 * This should be used to iterate over the list of rmap_nested entries with
88 * processing done on the u64 rmap value given by each iteration. This is safe
89 * against removal of list entries and it is always safe to call free on (pos).
90 *
91 * e.g.
92 * struct rmap_nested *cursor;
93 * struct llist_node *first;
94 * unsigned long rmap;
95 * for_each_nest_rmap_safe(cursor, first, &rmap) {
96 * do_something(rmap);
97 * free(cursor);
98 * }
99 */
100 #define for_each_nest_rmap_safe(pos, node, rmapp) \
101 for ((pos) = llist_entry((node), typeof(*(pos)), list); \
102 (node) && \
103 (*(rmapp) = ((RMAP_NESTED_IS_SINGLE_ENTRY & ((u64) (node))) ? \
104 ((u64) (node)) : ((pos)->rmap))) && \
105 (((node) = ((RMAP_NESTED_IS_SINGLE_ENTRY & ((u64) (node))) ? \
106 ((struct llist_node *) ((pos) = NULL)) : \
107 (pos)->list.next)), true); \
108 (pos) = llist_entry((node), typeof(*(pos)), list))
109
110 struct kvm_nested_guest *kvmhv_get_nested(struct kvm *kvm, int l1_lpid,
111 bool create);
112 void kvmhv_put_nested(struct kvm_nested_guest *gp);
113 int kvmhv_nested_next_lpid(struct kvm *kvm, int lpid);
114
115 /* Encoding of first parameter for H_TLB_INVALIDATE */
116 #define H_TLBIE_P1_ENC(ric, prs, r) (___PPC_RIC(ric) | ___PPC_PRS(prs) | \
117 ___PPC_R(r))
118
119 /* Power architecture requires HPT is at least 256kiB, at most 64TiB */
120 #define PPC_MIN_HPT_ORDER 18
121 #define PPC_MAX_HPT_ORDER 46
122
123 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
svcpu_get(struct kvm_vcpu * vcpu)124 static inline struct kvmppc_book3s_shadow_vcpu *svcpu_get(struct kvm_vcpu *vcpu)
125 {
126 preempt_disable();
127 return &get_paca()->shadow_vcpu;
128 }
129
svcpu_put(struct kvmppc_book3s_shadow_vcpu * svcpu)130 static inline void svcpu_put(struct kvmppc_book3s_shadow_vcpu *svcpu)
131 {
132 preempt_enable();
133 }
134 #endif
135
136 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
137
kvm_is_radix(struct kvm * kvm)138 static inline bool kvm_is_radix(struct kvm *kvm)
139 {
140 return kvm->arch.radix;
141 }
142
kvmhv_vcpu_is_radix(struct kvm_vcpu * vcpu)143 static inline bool kvmhv_vcpu_is_radix(struct kvm_vcpu *vcpu)
144 {
145 bool radix;
146
147 if (vcpu->arch.nested)
148 radix = vcpu->arch.nested->radix;
149 else
150 radix = kvm_is_radix(vcpu->kvm);
151
152 return radix;
153 }
154
155 #define KVM_DEFAULT_HPT_ORDER 24 /* 16MB HPT by default */
156 #endif
157
158 /*
159 * We use a lock bit in HPTE dword 0 to synchronize updates and
160 * accesses to each HPTE, and another bit to indicate non-present
161 * HPTEs.
162 */
163 #define HPTE_V_HVLOCK 0x40UL
164 #define HPTE_V_ABSENT 0x20UL
165
166 /*
167 * We use this bit in the guest_rpte field of the revmap entry
168 * to indicate a modified HPTE.
169 */
170 #define HPTE_GR_MODIFIED (1ul << 62)
171
172 /* These bits are reserved in the guest view of the HPTE */
173 #define HPTE_GR_RESERVED HPTE_GR_MODIFIED
174
try_lock_hpte(__be64 * hpte,unsigned long bits)175 static inline long try_lock_hpte(__be64 *hpte, unsigned long bits)
176 {
177 unsigned long tmp, old;
178 __be64 be_lockbit, be_bits;
179
180 /*
181 * We load/store in native endian, but the HTAB is in big endian. If
182 * we byte swap all data we apply on the PTE we're implicitly correct
183 * again.
184 */
185 be_lockbit = cpu_to_be64(HPTE_V_HVLOCK);
186 be_bits = cpu_to_be64(bits);
187
188 asm volatile(" ldarx %0,0,%2\n"
189 " and. %1,%0,%3\n"
190 " bne 2f\n"
191 " or %0,%0,%4\n"
192 " stdcx. %0,0,%2\n"
193 " beq+ 2f\n"
194 " mr %1,%3\n"
195 "2: isync"
196 : "=&r" (tmp), "=&r" (old)
197 : "r" (hpte), "r" (be_bits), "r" (be_lockbit)
198 : "cc", "memory");
199 return old == 0;
200 }
201
unlock_hpte(__be64 * hpte,unsigned long hpte_v)202 static inline void unlock_hpte(__be64 *hpte, unsigned long hpte_v)
203 {
204 hpte_v &= ~HPTE_V_HVLOCK;
205 asm volatile(PPC_RELEASE_BARRIER "" : : : "memory");
206 hpte[0] = cpu_to_be64(hpte_v);
207 }
208
209 /* Without barrier */
__unlock_hpte(__be64 * hpte,unsigned long hpte_v)210 static inline void __unlock_hpte(__be64 *hpte, unsigned long hpte_v)
211 {
212 hpte_v &= ~HPTE_V_HVLOCK;
213 hpte[0] = cpu_to_be64(hpte_v);
214 }
215
216 /*
217 * These functions encode knowledge of the POWER7/8/9 hardware
218 * interpretations of the HPTE LP (large page size) field.
219 */
kvmppc_hpte_page_shifts(unsigned long h,unsigned long l)220 static inline int kvmppc_hpte_page_shifts(unsigned long h, unsigned long l)
221 {
222 unsigned int lphi;
223
224 if (!(h & HPTE_V_LARGE))
225 return 12; /* 4kB */
226 lphi = (l >> 16) & 0xf;
227 switch ((l >> 12) & 0xf) {
228 case 0:
229 return !lphi ? 24 : 0; /* 16MB */
230 break;
231 case 1:
232 return 16; /* 64kB */
233 break;
234 case 3:
235 return !lphi ? 34 : 0; /* 16GB */
236 break;
237 case 7:
238 return (16 << 8) + 12; /* 64kB in 4kB */
239 break;
240 case 8:
241 if (!lphi)
242 return (24 << 8) + 16; /* 16MB in 64kkB */
243 if (lphi == 3)
244 return (24 << 8) + 12; /* 16MB in 4kB */
245 break;
246 }
247 return 0;
248 }
249
kvmppc_hpte_base_page_shift(unsigned long h,unsigned long l)250 static inline int kvmppc_hpte_base_page_shift(unsigned long h, unsigned long l)
251 {
252 return kvmppc_hpte_page_shifts(h, l) & 0xff;
253 }
254
kvmppc_hpte_actual_page_shift(unsigned long h,unsigned long l)255 static inline int kvmppc_hpte_actual_page_shift(unsigned long h, unsigned long l)
256 {
257 int tmp = kvmppc_hpte_page_shifts(h, l);
258
259 if (tmp >= 0x100)
260 tmp >>= 8;
261 return tmp;
262 }
263
kvmppc_actual_pgsz(unsigned long v,unsigned long r)264 static inline unsigned long kvmppc_actual_pgsz(unsigned long v, unsigned long r)
265 {
266 int shift = kvmppc_hpte_actual_page_shift(v, r);
267
268 if (shift)
269 return 1ul << shift;
270 return 0;
271 }
272
kvmppc_pgsize_lp_encoding(int base_shift,int actual_shift)273 static inline int kvmppc_pgsize_lp_encoding(int base_shift, int actual_shift)
274 {
275 switch (base_shift) {
276 case 12:
277 switch (actual_shift) {
278 case 12:
279 return 0;
280 case 16:
281 return 7;
282 case 24:
283 return 0x38;
284 }
285 break;
286 case 16:
287 switch (actual_shift) {
288 case 16:
289 return 1;
290 case 24:
291 return 8;
292 }
293 break;
294 case 24:
295 return 0;
296 }
297 return -1;
298 }
299
compute_tlbie_rb(unsigned long v,unsigned long r,unsigned long pte_index)300 static inline unsigned long compute_tlbie_rb(unsigned long v, unsigned long r,
301 unsigned long pte_index)
302 {
303 int a_pgshift, b_pgshift;
304 unsigned long rb = 0, va_low, sllp;
305
306 b_pgshift = a_pgshift = kvmppc_hpte_page_shifts(v, r);
307 if (a_pgshift >= 0x100) {
308 b_pgshift &= 0xff;
309 a_pgshift >>= 8;
310 }
311
312 /*
313 * Ignore the top 14 bits of va
314 * v have top two bits covering segment size, hence move
315 * by 16 bits, Also clear the lower HPTE_V_AVPN_SHIFT (7) bits.
316 * AVA field in v also have the lower 23 bits ignored.
317 * For base page size 4K we need 14 .. 65 bits (so need to
318 * collect extra 11 bits)
319 * For others we need 14..14+i
320 */
321 /* This covers 14..54 bits of va*/
322 rb = (v & ~0x7fUL) << 16; /* AVA field */
323
324 /*
325 * AVA in v had cleared lower 23 bits. We need to derive
326 * that from pteg index
327 */
328 va_low = pte_index >> 3;
329 if (v & HPTE_V_SECONDARY)
330 va_low = ~va_low;
331 /*
332 * get the vpn bits from va_low using reverse of hashing.
333 * In v we have va with 23 bits dropped and then left shifted
334 * HPTE_V_AVPN_SHIFT (7) bits. Now to find vsid we need
335 * right shift it with (SID_SHIFT - (23 - 7))
336 */
337 if (!(v & HPTE_V_1TB_SEG))
338 va_low ^= v >> (SID_SHIFT - 16);
339 else
340 va_low ^= v >> (SID_SHIFT_1T - 16);
341 va_low &= 0x7ff;
342
343 if (b_pgshift <= 12) {
344 if (a_pgshift > 12) {
345 sllp = (a_pgshift == 16) ? 5 : 4;
346 rb |= sllp << 5; /* AP field */
347 }
348 rb |= (va_low & 0x7ff) << 12; /* remaining 11 bits of AVA */
349 } else {
350 int aval_shift;
351 /*
352 * remaining bits of AVA/LP fields
353 * Also contain the rr bits of LP
354 */
355 rb |= (va_low << b_pgshift) & 0x7ff000;
356 /*
357 * Now clear not needed LP bits based on actual psize
358 */
359 rb &= ~((1ul << a_pgshift) - 1);
360 /*
361 * AVAL field 58..77 - base_page_shift bits of va
362 * we have space for 58..64 bits, Missing bits should
363 * be zero filled. +1 is to take care of L bit shift
364 */
365 aval_shift = 64 - (77 - b_pgshift) + 1;
366 rb |= ((va_low << aval_shift) & 0xfe);
367
368 rb |= 1; /* L field */
369 rb |= r & 0xff000 & ((1ul << a_pgshift) - 1); /* LP field */
370 }
371 rb |= (v >> HPTE_V_SSIZE_SHIFT) << 8; /* B field */
372 return rb;
373 }
374
hpte_rpn(unsigned long ptel,unsigned long psize)375 static inline unsigned long hpte_rpn(unsigned long ptel, unsigned long psize)
376 {
377 return ((ptel & HPTE_R_RPN) & ~(psize - 1)) >> PAGE_SHIFT;
378 }
379
hpte_is_writable(unsigned long ptel)380 static inline int hpte_is_writable(unsigned long ptel)
381 {
382 unsigned long pp = ptel & (HPTE_R_PP0 | HPTE_R_PP);
383
384 return pp != PP_RXRX && pp != PP_RXXX;
385 }
386
hpte_make_readonly(unsigned long ptel)387 static inline unsigned long hpte_make_readonly(unsigned long ptel)
388 {
389 if ((ptel & HPTE_R_PP0) || (ptel & HPTE_R_PP) == PP_RWXX)
390 ptel = (ptel & ~HPTE_R_PP) | PP_RXXX;
391 else
392 ptel |= PP_RXRX;
393 return ptel;
394 }
395
hpte_cache_flags_ok(unsigned long hptel,bool is_ci)396 static inline bool hpte_cache_flags_ok(unsigned long hptel, bool is_ci)
397 {
398 unsigned int wimg = hptel & HPTE_R_WIMG;
399
400 /* Handle SAO */
401 if (wimg == (HPTE_R_W | HPTE_R_I | HPTE_R_M) &&
402 cpu_has_feature(CPU_FTR_ARCH_206))
403 wimg = HPTE_R_M;
404
405 if (!is_ci)
406 return wimg == HPTE_R_M;
407 /*
408 * if host is mapped cache inhibited, make sure hptel also have
409 * cache inhibited.
410 */
411 if (wimg & HPTE_R_W) /* FIXME!! is this ok for all guest. ? */
412 return false;
413 return !!(wimg & HPTE_R_I);
414 }
415
416 /*
417 * If it's present and writable, atomically set dirty and referenced bits and
418 * return the PTE, otherwise return 0.
419 */
kvmppc_read_update_linux_pte(pte_t * ptep,int writing)420 static inline pte_t kvmppc_read_update_linux_pte(pte_t *ptep, int writing)
421 {
422 pte_t old_pte, new_pte = __pte(0);
423
424 while (1) {
425 /*
426 * Make sure we don't reload from ptep
427 */
428 old_pte = READ_ONCE(*ptep);
429 /*
430 * wait until H_PAGE_BUSY is clear then set it atomically
431 */
432 if (unlikely(pte_val(old_pte) & H_PAGE_BUSY)) {
433 cpu_relax();
434 continue;
435 }
436 /* If pte is not present return None */
437 if (unlikely(!(pte_val(old_pte) & _PAGE_PRESENT)))
438 return __pte(0);
439
440 new_pte = pte_mkyoung(old_pte);
441 if (writing && pte_write(old_pte))
442 new_pte = pte_mkdirty(new_pte);
443
444 if (pte_xchg(ptep, old_pte, new_pte))
445 break;
446 }
447 return new_pte;
448 }
449
hpte_read_permission(unsigned long pp,unsigned long key)450 static inline bool hpte_read_permission(unsigned long pp, unsigned long key)
451 {
452 if (key)
453 return PP_RWRX <= pp && pp <= PP_RXRX;
454 return true;
455 }
456
hpte_write_permission(unsigned long pp,unsigned long key)457 static inline bool hpte_write_permission(unsigned long pp, unsigned long key)
458 {
459 if (key)
460 return pp == PP_RWRW;
461 return pp <= PP_RWRW;
462 }
463
hpte_get_skey_perm(unsigned long hpte_r,unsigned long amr)464 static inline int hpte_get_skey_perm(unsigned long hpte_r, unsigned long amr)
465 {
466 unsigned long skey;
467
468 skey = ((hpte_r & HPTE_R_KEY_HI) >> 57) |
469 ((hpte_r & HPTE_R_KEY_LO) >> 9);
470 return (amr >> (62 - 2 * skey)) & 3;
471 }
472
lock_rmap(unsigned long * rmap)473 static inline void lock_rmap(unsigned long *rmap)
474 {
475 do {
476 while (test_bit(KVMPPC_RMAP_LOCK_BIT, rmap))
477 cpu_relax();
478 } while (test_and_set_bit_lock(KVMPPC_RMAP_LOCK_BIT, rmap));
479 }
480
unlock_rmap(unsigned long * rmap)481 static inline void unlock_rmap(unsigned long *rmap)
482 {
483 __clear_bit_unlock(KVMPPC_RMAP_LOCK_BIT, rmap);
484 }
485
slot_is_aligned(struct kvm_memory_slot * memslot,unsigned long pagesize)486 static inline bool slot_is_aligned(struct kvm_memory_slot *memslot,
487 unsigned long pagesize)
488 {
489 unsigned long mask = (pagesize >> PAGE_SHIFT) - 1;
490
491 if (pagesize <= PAGE_SIZE)
492 return true;
493 return !(memslot->base_gfn & mask) && !(memslot->npages & mask);
494 }
495
496 /*
497 * This works for 4k, 64k and 16M pages on POWER7,
498 * and 4k and 16M pages on PPC970.
499 */
slb_pgsize_encoding(unsigned long psize)500 static inline unsigned long slb_pgsize_encoding(unsigned long psize)
501 {
502 unsigned long senc = 0;
503
504 if (psize > 0x1000) {
505 senc = SLB_VSID_L;
506 if (psize == 0x10000)
507 senc |= SLB_VSID_LP_01;
508 }
509 return senc;
510 }
511
is_vrma_hpte(unsigned long hpte_v)512 static inline int is_vrma_hpte(unsigned long hpte_v)
513 {
514 return (hpte_v & ~0xffffffUL) ==
515 (HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)));
516 }
517
518 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
519 /*
520 * Note modification of an HPTE; set the HPTE modified bit
521 * if anyone is interested.
522 */
note_hpte_modification(struct kvm * kvm,struct revmap_entry * rev)523 static inline void note_hpte_modification(struct kvm *kvm,
524 struct revmap_entry *rev)
525 {
526 if (atomic_read(&kvm->arch.hpte_mod_interest))
527 rev->guest_rpte |= HPTE_GR_MODIFIED;
528 }
529
530 /*
531 * Like kvm_memslots(), but for use in real mode when we can't do
532 * any RCU stuff (since the secondary threads are offline from the
533 * kernel's point of view), and we can't print anything.
534 * Thus we use rcu_dereference_raw() rather than rcu_dereference_check().
535 */
kvm_memslots_raw(struct kvm * kvm)536 static inline struct kvm_memslots *kvm_memslots_raw(struct kvm *kvm)
537 {
538 return rcu_dereference_raw_check(kvm->memslots[0]);
539 }
540
541 extern void kvmppc_mmu_debugfs_init(struct kvm *kvm);
542 extern void kvmhv_radix_debugfs_init(struct kvm *kvm);
543
544 extern void kvmhv_rm_send_ipi(int cpu);
545
kvmppc_hpt_npte(struct kvm_hpt_info * hpt)546 static inline unsigned long kvmppc_hpt_npte(struct kvm_hpt_info *hpt)
547 {
548 /* HPTEs are 2**4 bytes long */
549 return 1UL << (hpt->order - 4);
550 }
551
kvmppc_hpt_mask(struct kvm_hpt_info * hpt)552 static inline unsigned long kvmppc_hpt_mask(struct kvm_hpt_info *hpt)
553 {
554 /* 128 (2**7) bytes in each HPTEG */
555 return (1UL << (hpt->order - 7)) - 1;
556 }
557
558 /* Set bits in a dirty bitmap, which is in LE format */
set_dirty_bits(unsigned long * map,unsigned long i,unsigned long npages)559 static inline void set_dirty_bits(unsigned long *map, unsigned long i,
560 unsigned long npages)
561 {
562
563 if (npages >= 8)
564 memset((char *)map + i / 8, 0xff, npages / 8);
565 else
566 for (; npages; ++i, --npages)
567 __set_bit_le(i, map);
568 }
569
set_dirty_bits_atomic(unsigned long * map,unsigned long i,unsigned long npages)570 static inline void set_dirty_bits_atomic(unsigned long *map, unsigned long i,
571 unsigned long npages)
572 {
573 if (npages >= 8)
574 memset((char *)map + i / 8, 0xff, npages / 8);
575 else
576 for (; npages; ++i, --npages)
577 set_bit_le(i, map);
578 }
579
sanitize_msr(u64 msr)580 static inline u64 sanitize_msr(u64 msr)
581 {
582 msr &= ~MSR_HV;
583 msr |= MSR_ME;
584 return msr;
585 }
586
587 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
copy_from_checkpoint(struct kvm_vcpu * vcpu)588 static inline void copy_from_checkpoint(struct kvm_vcpu *vcpu)
589 {
590 vcpu->arch.regs.ccr = vcpu->arch.cr_tm;
591 vcpu->arch.regs.xer = vcpu->arch.xer_tm;
592 vcpu->arch.regs.link = vcpu->arch.lr_tm;
593 vcpu->arch.regs.ctr = vcpu->arch.ctr_tm;
594 vcpu->arch.amr = vcpu->arch.amr_tm;
595 vcpu->arch.ppr = vcpu->arch.ppr_tm;
596 vcpu->arch.dscr = vcpu->arch.dscr_tm;
597 vcpu->arch.tar = vcpu->arch.tar_tm;
598 memcpy(vcpu->arch.regs.gpr, vcpu->arch.gpr_tm,
599 sizeof(vcpu->arch.regs.gpr));
600 vcpu->arch.fp = vcpu->arch.fp_tm;
601 vcpu->arch.vr = vcpu->arch.vr_tm;
602 vcpu->arch.vrsave = vcpu->arch.vrsave_tm;
603 }
604
copy_to_checkpoint(struct kvm_vcpu * vcpu)605 static inline void copy_to_checkpoint(struct kvm_vcpu *vcpu)
606 {
607 vcpu->arch.cr_tm = vcpu->arch.regs.ccr;
608 vcpu->arch.xer_tm = vcpu->arch.regs.xer;
609 vcpu->arch.lr_tm = vcpu->arch.regs.link;
610 vcpu->arch.ctr_tm = vcpu->arch.regs.ctr;
611 vcpu->arch.amr_tm = vcpu->arch.amr;
612 vcpu->arch.ppr_tm = vcpu->arch.ppr;
613 vcpu->arch.dscr_tm = vcpu->arch.dscr;
614 vcpu->arch.tar_tm = vcpu->arch.tar;
615 memcpy(vcpu->arch.gpr_tm, vcpu->arch.regs.gpr,
616 sizeof(vcpu->arch.regs.gpr));
617 vcpu->arch.fp_tm = vcpu->arch.fp;
618 vcpu->arch.vr_tm = vcpu->arch.vr;
619 vcpu->arch.vrsave_tm = vcpu->arch.vrsave;
620 }
621 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
622
623 extern int kvmppc_create_pte(struct kvm *kvm, pgd_t *pgtable, pte_t pte,
624 unsigned long gpa, unsigned int level,
625 unsigned long mmu_seq, unsigned int lpid,
626 unsigned long *rmapp, struct rmap_nested **n_rmap);
627 extern void kvmhv_insert_nest_rmap(struct kvm *kvm, unsigned long *rmapp,
628 struct rmap_nested **n_rmap);
629 extern void kvmhv_update_nest_rmap_rc_list(struct kvm *kvm, unsigned long *rmapp,
630 unsigned long clr, unsigned long set,
631 unsigned long hpa, unsigned long nbytes);
632 extern void kvmhv_remove_nest_rmap_range(struct kvm *kvm,
633 const struct kvm_memory_slot *memslot,
634 unsigned long gpa, unsigned long hpa,
635 unsigned long nbytes);
636
637 #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
638
639 #endif /* __ASM_KVM_BOOK3S_64_H__ */
640