1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine -- Performance Monitoring Unit support
4 *
5 * Copyright 2015 Red Hat, Inc. and/or its affiliates.
6 *
7 * Authors:
8 * Avi Kivity <avi@redhat.com>
9 * Gleb Natapov <gleb@redhat.com>
10 * Wei Huang <wei@redhat.com>
11 */
12
13 #include <linux/types.h>
14 #include <linux/kvm_host.h>
15 #include <linux/perf_event.h>
16 #include <asm/perf_event.h>
17 #include "x86.h"
18 #include "cpuid.h"
19 #include "lapic.h"
20 #include "pmu.h"
21
22 /* This is enough to filter the vast majority of currently defined events. */
23 #define KVM_PMU_EVENT_FILTER_MAX_EVENTS 300
24
25 /* NOTE:
26 * - Each perf counter is defined as "struct kvm_pmc";
27 * - There are two types of perf counters: general purpose (gp) and fixed.
28 * gp counters are stored in gp_counters[] and fixed counters are stored
29 * in fixed_counters[] respectively. Both of them are part of "struct
30 * kvm_pmu";
31 * - pmu.c understands the difference between gp counters and fixed counters.
32 * However AMD doesn't support fixed-counters;
33 * - There are three types of index to access perf counters (PMC):
34 * 1. MSR (named msr): For example Intel has MSR_IA32_PERFCTRn and AMD
35 * has MSR_K7_PERFCTRn.
36 * 2. MSR Index (named idx): This normally is used by RDPMC instruction.
37 * For instance AMD RDPMC instruction uses 0000_0003h in ECX to access
38 * C001_0007h (MSR_K7_PERCTR3). Intel has a similar mechanism, except
39 * that it also supports fixed counters. idx can be used to as index to
40 * gp and fixed counters.
41 * 3. Global PMC Index (named pmc): pmc is an index specific to PMU
42 * code. Each pmc, stored in kvm_pmc.idx field, is unique across
43 * all perf counters (both gp and fixed). The mapping relationship
44 * between pmc and perf counters is as the following:
45 * * Intel: [0 .. INTEL_PMC_MAX_GENERIC-1] <=> gp counters
46 * [INTEL_PMC_IDX_FIXED .. INTEL_PMC_IDX_FIXED + 2] <=> fixed
47 * * AMD: [0 .. AMD64_NUM_COUNTERS-1] <=> gp counters
48 */
49
kvm_pmi_trigger_fn(struct irq_work * irq_work)50 static void kvm_pmi_trigger_fn(struct irq_work *irq_work)
51 {
52 struct kvm_pmu *pmu = container_of(irq_work, struct kvm_pmu, irq_work);
53 struct kvm_vcpu *vcpu = pmu_to_vcpu(pmu);
54
55 kvm_pmu_deliver_pmi(vcpu);
56 }
57
kvm_perf_overflow(struct perf_event * perf_event,struct perf_sample_data * data,struct pt_regs * regs)58 static void kvm_perf_overflow(struct perf_event *perf_event,
59 struct perf_sample_data *data,
60 struct pt_regs *regs)
61 {
62 struct kvm_pmc *pmc = perf_event->overflow_handler_context;
63 struct kvm_pmu *pmu = pmc_to_pmu(pmc);
64
65 if (!test_and_set_bit(pmc->idx, pmu->reprogram_pmi)) {
66 __set_bit(pmc->idx, (unsigned long *)&pmu->global_status);
67 kvm_make_request(KVM_REQ_PMU, pmc->vcpu);
68 }
69 }
70
kvm_perf_overflow_intr(struct perf_event * perf_event,struct perf_sample_data * data,struct pt_regs * regs)71 static void kvm_perf_overflow_intr(struct perf_event *perf_event,
72 struct perf_sample_data *data,
73 struct pt_regs *regs)
74 {
75 struct kvm_pmc *pmc = perf_event->overflow_handler_context;
76 struct kvm_pmu *pmu = pmc_to_pmu(pmc);
77
78 if (!test_and_set_bit(pmc->idx, pmu->reprogram_pmi)) {
79 __set_bit(pmc->idx, (unsigned long *)&pmu->global_status);
80 kvm_make_request(KVM_REQ_PMU, pmc->vcpu);
81
82 /*
83 * Inject PMI. If vcpu was in a guest mode during NMI PMI
84 * can be ejected on a guest mode re-entry. Otherwise we can't
85 * be sure that vcpu wasn't executing hlt instruction at the
86 * time of vmexit and is not going to re-enter guest mode until
87 * woken up. So we should wake it, but this is impossible from
88 * NMI context. Do it from irq work instead.
89 */
90 if (!kvm_is_in_guest())
91 irq_work_queue(&pmc_to_pmu(pmc)->irq_work);
92 else
93 kvm_make_request(KVM_REQ_PMI, pmc->vcpu);
94 }
95 }
96
pmc_reprogram_counter(struct kvm_pmc * pmc,u32 type,unsigned config,bool exclude_user,bool exclude_kernel,bool intr,bool in_tx,bool in_tx_cp)97 static void pmc_reprogram_counter(struct kvm_pmc *pmc, u32 type,
98 unsigned config, bool exclude_user,
99 bool exclude_kernel, bool intr,
100 bool in_tx, bool in_tx_cp)
101 {
102 struct perf_event *event;
103 struct perf_event_attr attr = {
104 .type = type,
105 .size = sizeof(attr),
106 .pinned = true,
107 .exclude_idle = true,
108 .exclude_host = 1,
109 .exclude_user = exclude_user,
110 .exclude_kernel = exclude_kernel,
111 .config = config,
112 };
113
114 attr.sample_period = get_sample_period(pmc, pmc->counter);
115
116 if (in_tx)
117 attr.config |= HSW_IN_TX;
118 if (in_tx_cp) {
119 /*
120 * HSW_IN_TX_CHECKPOINTED is not supported with nonzero
121 * period. Just clear the sample period so at least
122 * allocating the counter doesn't fail.
123 */
124 attr.sample_period = 0;
125 attr.config |= HSW_IN_TX_CHECKPOINTED;
126 }
127
128 event = perf_event_create_kernel_counter(&attr, -1, current,
129 intr ? kvm_perf_overflow_intr :
130 kvm_perf_overflow, pmc);
131 if (IS_ERR(event)) {
132 pr_debug_ratelimited("kvm_pmu: event creation failed %ld for pmc->idx = %d\n",
133 PTR_ERR(event), pmc->idx);
134 return;
135 }
136
137 pmc->perf_event = event;
138 pmc_to_pmu(pmc)->event_count++;
139 clear_bit(pmc->idx, pmc_to_pmu(pmc)->reprogram_pmi);
140 }
141
pmc_pause_counter(struct kvm_pmc * pmc)142 static void pmc_pause_counter(struct kvm_pmc *pmc)
143 {
144 u64 counter = pmc->counter;
145
146 if (!pmc->perf_event)
147 return;
148
149 /* update counter, reset event value to avoid redundant accumulation */
150 counter += perf_event_pause(pmc->perf_event, true);
151 pmc->counter = counter & pmc_bitmask(pmc);
152 }
153
pmc_resume_counter(struct kvm_pmc * pmc)154 static bool pmc_resume_counter(struct kvm_pmc *pmc)
155 {
156 if (!pmc->perf_event)
157 return false;
158
159 /* recalibrate sample period and check if it's accepted by perf core */
160 if (perf_event_period(pmc->perf_event,
161 get_sample_period(pmc, pmc->counter)))
162 return false;
163
164 /* reuse perf_event to serve as pmc_reprogram_counter() does*/
165 perf_event_enable(pmc->perf_event);
166
167 clear_bit(pmc->idx, (unsigned long *)&pmc_to_pmu(pmc)->reprogram_pmi);
168 return true;
169 }
170
reprogram_gp_counter(struct kvm_pmc * pmc,u64 eventsel)171 void reprogram_gp_counter(struct kvm_pmc *pmc, u64 eventsel)
172 {
173 unsigned config, type = PERF_TYPE_RAW;
174 u8 event_select, unit_mask;
175 struct kvm *kvm = pmc->vcpu->kvm;
176 struct kvm_pmu_event_filter *filter;
177 int i;
178 bool allow_event = true;
179
180 if (eventsel & ARCH_PERFMON_EVENTSEL_PIN_CONTROL)
181 printk_once("kvm pmu: pin control bit is ignored\n");
182
183 pmc->eventsel = eventsel;
184
185 pmc_pause_counter(pmc);
186
187 if (!(eventsel & ARCH_PERFMON_EVENTSEL_ENABLE) || !pmc_is_enabled(pmc))
188 return;
189
190 filter = srcu_dereference(kvm->arch.pmu_event_filter, &kvm->srcu);
191 if (filter) {
192 for (i = 0; i < filter->nevents; i++)
193 if (filter->events[i] ==
194 (eventsel & AMD64_RAW_EVENT_MASK_NB))
195 break;
196 if (filter->action == KVM_PMU_EVENT_ALLOW &&
197 i == filter->nevents)
198 allow_event = false;
199 if (filter->action == KVM_PMU_EVENT_DENY &&
200 i < filter->nevents)
201 allow_event = false;
202 }
203 if (!allow_event)
204 return;
205
206 event_select = eventsel & ARCH_PERFMON_EVENTSEL_EVENT;
207 unit_mask = (eventsel & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
208
209 if (!(eventsel & (ARCH_PERFMON_EVENTSEL_EDGE |
210 ARCH_PERFMON_EVENTSEL_INV |
211 ARCH_PERFMON_EVENTSEL_CMASK |
212 HSW_IN_TX |
213 HSW_IN_TX_CHECKPOINTED))) {
214 config = kvm_x86_ops.pmu_ops->find_arch_event(pmc_to_pmu(pmc),
215 event_select,
216 unit_mask);
217 if (config != PERF_COUNT_HW_MAX)
218 type = PERF_TYPE_HARDWARE;
219 }
220
221 if (type == PERF_TYPE_RAW)
222 config = eventsel & X86_RAW_EVENT_MASK;
223
224 if (pmc->current_config == eventsel && pmc_resume_counter(pmc))
225 return;
226
227 pmc_release_perf_event(pmc);
228
229 pmc->current_config = eventsel;
230 pmc_reprogram_counter(pmc, type, config,
231 !(eventsel & ARCH_PERFMON_EVENTSEL_USR),
232 !(eventsel & ARCH_PERFMON_EVENTSEL_OS),
233 eventsel & ARCH_PERFMON_EVENTSEL_INT,
234 (eventsel & HSW_IN_TX),
235 (eventsel & HSW_IN_TX_CHECKPOINTED));
236 }
237 EXPORT_SYMBOL_GPL(reprogram_gp_counter);
238
reprogram_fixed_counter(struct kvm_pmc * pmc,u8 ctrl,int idx)239 void reprogram_fixed_counter(struct kvm_pmc *pmc, u8 ctrl, int idx)
240 {
241 unsigned en_field = ctrl & 0x3;
242 bool pmi = ctrl & 0x8;
243 struct kvm_pmu_event_filter *filter;
244 struct kvm *kvm = pmc->vcpu->kvm;
245
246 pmc_pause_counter(pmc);
247
248 if (!en_field || !pmc_is_enabled(pmc))
249 return;
250
251 filter = srcu_dereference(kvm->arch.pmu_event_filter, &kvm->srcu);
252 if (filter) {
253 if (filter->action == KVM_PMU_EVENT_DENY &&
254 test_bit(idx, (ulong *)&filter->fixed_counter_bitmap))
255 return;
256 if (filter->action == KVM_PMU_EVENT_ALLOW &&
257 !test_bit(idx, (ulong *)&filter->fixed_counter_bitmap))
258 return;
259 }
260
261 if (pmc->current_config == (u64)ctrl && pmc_resume_counter(pmc))
262 return;
263
264 pmc_release_perf_event(pmc);
265
266 pmc->current_config = (u64)ctrl;
267 pmc_reprogram_counter(pmc, PERF_TYPE_HARDWARE,
268 kvm_x86_ops.pmu_ops->find_fixed_event(idx),
269 !(en_field & 0x2), /* exclude user */
270 !(en_field & 0x1), /* exclude kernel */
271 pmi, false, false);
272 }
273 EXPORT_SYMBOL_GPL(reprogram_fixed_counter);
274
reprogram_counter(struct kvm_pmu * pmu,int pmc_idx)275 void reprogram_counter(struct kvm_pmu *pmu, int pmc_idx)
276 {
277 struct kvm_pmc *pmc = kvm_x86_ops.pmu_ops->pmc_idx_to_pmc(pmu, pmc_idx);
278
279 if (!pmc)
280 return;
281
282 if (pmc_is_gp(pmc))
283 reprogram_gp_counter(pmc, pmc->eventsel);
284 else {
285 int idx = pmc_idx - INTEL_PMC_IDX_FIXED;
286 u8 ctrl = fixed_ctrl_field(pmu->fixed_ctr_ctrl, idx);
287
288 reprogram_fixed_counter(pmc, ctrl, idx);
289 }
290 }
291 EXPORT_SYMBOL_GPL(reprogram_counter);
292
kvm_pmu_handle_event(struct kvm_vcpu * vcpu)293 void kvm_pmu_handle_event(struct kvm_vcpu *vcpu)
294 {
295 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
296 int bit;
297
298 for_each_set_bit(bit, pmu->reprogram_pmi, X86_PMC_IDX_MAX) {
299 struct kvm_pmc *pmc = kvm_x86_ops.pmu_ops->pmc_idx_to_pmc(pmu, bit);
300
301 if (unlikely(!pmc || !pmc->perf_event)) {
302 clear_bit(bit, pmu->reprogram_pmi);
303 continue;
304 }
305
306 reprogram_counter(pmu, bit);
307 }
308
309 /*
310 * Unused perf_events are only released if the corresponding MSRs
311 * weren't accessed during the last vCPU time slice. kvm_arch_sched_in
312 * triggers KVM_REQ_PMU if cleanup is needed.
313 */
314 if (unlikely(pmu->need_cleanup))
315 kvm_pmu_cleanup(vcpu);
316 }
317
318 /* check if idx is a valid index to access PMU */
kvm_pmu_is_valid_rdpmc_ecx(struct kvm_vcpu * vcpu,unsigned int idx)319 int kvm_pmu_is_valid_rdpmc_ecx(struct kvm_vcpu *vcpu, unsigned int idx)
320 {
321 return kvm_x86_ops.pmu_ops->is_valid_rdpmc_ecx(vcpu, idx);
322 }
323
is_vmware_backdoor_pmc(u32 pmc_idx)324 bool is_vmware_backdoor_pmc(u32 pmc_idx)
325 {
326 switch (pmc_idx) {
327 case VMWARE_BACKDOOR_PMC_HOST_TSC:
328 case VMWARE_BACKDOOR_PMC_REAL_TIME:
329 case VMWARE_BACKDOOR_PMC_APPARENT_TIME:
330 return true;
331 }
332 return false;
333 }
334
kvm_pmu_rdpmc_vmware(struct kvm_vcpu * vcpu,unsigned idx,u64 * data)335 static int kvm_pmu_rdpmc_vmware(struct kvm_vcpu *vcpu, unsigned idx, u64 *data)
336 {
337 u64 ctr_val;
338
339 switch (idx) {
340 case VMWARE_BACKDOOR_PMC_HOST_TSC:
341 ctr_val = rdtsc();
342 break;
343 case VMWARE_BACKDOOR_PMC_REAL_TIME:
344 ctr_val = ktime_get_boottime_ns();
345 break;
346 case VMWARE_BACKDOOR_PMC_APPARENT_TIME:
347 ctr_val = ktime_get_boottime_ns() +
348 vcpu->kvm->arch.kvmclock_offset;
349 break;
350 default:
351 return 1;
352 }
353
354 *data = ctr_val;
355 return 0;
356 }
357
kvm_pmu_rdpmc(struct kvm_vcpu * vcpu,unsigned idx,u64 * data)358 int kvm_pmu_rdpmc(struct kvm_vcpu *vcpu, unsigned idx, u64 *data)
359 {
360 bool fast_mode = idx & (1u << 31);
361 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
362 struct kvm_pmc *pmc;
363 u64 mask = fast_mode ? ~0u : ~0ull;
364
365 if (!pmu->version)
366 return 1;
367
368 if (is_vmware_backdoor_pmc(idx))
369 return kvm_pmu_rdpmc_vmware(vcpu, idx, data);
370
371 pmc = kvm_x86_ops.pmu_ops->rdpmc_ecx_to_pmc(vcpu, idx, &mask);
372 if (!pmc)
373 return 1;
374
375 if (!(kvm_read_cr4(vcpu) & X86_CR4_PCE) &&
376 (kvm_x86_ops.get_cpl(vcpu) != 0) &&
377 (kvm_read_cr0(vcpu) & X86_CR0_PE))
378 return 1;
379
380 *data = pmc_read_counter(pmc) & mask;
381 return 0;
382 }
383
kvm_pmu_deliver_pmi(struct kvm_vcpu * vcpu)384 void kvm_pmu_deliver_pmi(struct kvm_vcpu *vcpu)
385 {
386 if (lapic_in_kernel(vcpu))
387 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTPC);
388 }
389
kvm_pmu_is_valid_msr(struct kvm_vcpu * vcpu,u32 msr)390 bool kvm_pmu_is_valid_msr(struct kvm_vcpu *vcpu, u32 msr)
391 {
392 return kvm_x86_ops.pmu_ops->msr_idx_to_pmc(vcpu, msr) ||
393 kvm_x86_ops.pmu_ops->is_valid_msr(vcpu, msr);
394 }
395
kvm_pmu_mark_pmc_in_use(struct kvm_vcpu * vcpu,u32 msr)396 static void kvm_pmu_mark_pmc_in_use(struct kvm_vcpu *vcpu, u32 msr)
397 {
398 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
399 struct kvm_pmc *pmc = kvm_x86_ops.pmu_ops->msr_idx_to_pmc(vcpu, msr);
400
401 if (pmc)
402 __set_bit(pmc->idx, pmu->pmc_in_use);
403 }
404
kvm_pmu_get_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)405 int kvm_pmu_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
406 {
407 return kvm_x86_ops.pmu_ops->get_msr(vcpu, msr_info);
408 }
409
kvm_pmu_set_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)410 int kvm_pmu_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
411 {
412 kvm_pmu_mark_pmc_in_use(vcpu, msr_info->index);
413 return kvm_x86_ops.pmu_ops->set_msr(vcpu, msr_info);
414 }
415
416 /* refresh PMU settings. This function generally is called when underlying
417 * settings are changed (such as changes of PMU CPUID by guest VMs), which
418 * should rarely happen.
419 */
kvm_pmu_refresh(struct kvm_vcpu * vcpu)420 void kvm_pmu_refresh(struct kvm_vcpu *vcpu)
421 {
422 kvm_x86_ops.pmu_ops->refresh(vcpu);
423 }
424
kvm_pmu_reset(struct kvm_vcpu * vcpu)425 void kvm_pmu_reset(struct kvm_vcpu *vcpu)
426 {
427 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
428
429 irq_work_sync(&pmu->irq_work);
430 kvm_x86_ops.pmu_ops->reset(vcpu);
431 }
432
kvm_pmu_init(struct kvm_vcpu * vcpu)433 void kvm_pmu_init(struct kvm_vcpu *vcpu)
434 {
435 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
436
437 memset(pmu, 0, sizeof(*pmu));
438 kvm_x86_ops.pmu_ops->init(vcpu);
439 init_irq_work(&pmu->irq_work, kvm_pmi_trigger_fn);
440 pmu->event_count = 0;
441 pmu->need_cleanup = false;
442 kvm_pmu_refresh(vcpu);
443 }
444
pmc_speculative_in_use(struct kvm_pmc * pmc)445 static inline bool pmc_speculative_in_use(struct kvm_pmc *pmc)
446 {
447 struct kvm_pmu *pmu = pmc_to_pmu(pmc);
448
449 if (pmc_is_fixed(pmc))
450 return fixed_ctrl_field(pmu->fixed_ctr_ctrl,
451 pmc->idx - INTEL_PMC_IDX_FIXED) & 0x3;
452
453 return pmc->eventsel & ARCH_PERFMON_EVENTSEL_ENABLE;
454 }
455
456 /* Release perf_events for vPMCs that have been unused for a full time slice. */
kvm_pmu_cleanup(struct kvm_vcpu * vcpu)457 void kvm_pmu_cleanup(struct kvm_vcpu *vcpu)
458 {
459 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
460 struct kvm_pmc *pmc = NULL;
461 DECLARE_BITMAP(bitmask, X86_PMC_IDX_MAX);
462 int i;
463
464 pmu->need_cleanup = false;
465
466 bitmap_andnot(bitmask, pmu->all_valid_pmc_idx,
467 pmu->pmc_in_use, X86_PMC_IDX_MAX);
468
469 for_each_set_bit(i, bitmask, X86_PMC_IDX_MAX) {
470 pmc = kvm_x86_ops.pmu_ops->pmc_idx_to_pmc(pmu, i);
471
472 if (pmc && pmc->perf_event && !pmc_speculative_in_use(pmc))
473 pmc_stop_counter(pmc);
474 }
475
476 bitmap_zero(pmu->pmc_in_use, X86_PMC_IDX_MAX);
477 }
478
kvm_pmu_destroy(struct kvm_vcpu * vcpu)479 void kvm_pmu_destroy(struct kvm_vcpu *vcpu)
480 {
481 kvm_pmu_reset(vcpu);
482 }
483
kvm_vm_ioctl_set_pmu_event_filter(struct kvm * kvm,void __user * argp)484 int kvm_vm_ioctl_set_pmu_event_filter(struct kvm *kvm, void __user *argp)
485 {
486 struct kvm_pmu_event_filter tmp, *filter;
487 size_t size;
488 int r;
489
490 if (copy_from_user(&tmp, argp, sizeof(tmp)))
491 return -EFAULT;
492
493 if (tmp.action != KVM_PMU_EVENT_ALLOW &&
494 tmp.action != KVM_PMU_EVENT_DENY)
495 return -EINVAL;
496
497 if (tmp.flags != 0)
498 return -EINVAL;
499
500 if (tmp.nevents > KVM_PMU_EVENT_FILTER_MAX_EVENTS)
501 return -E2BIG;
502
503 size = struct_size(filter, events, tmp.nevents);
504 filter = kmalloc(size, GFP_KERNEL_ACCOUNT);
505 if (!filter)
506 return -ENOMEM;
507
508 r = -EFAULT;
509 if (copy_from_user(filter, argp, size))
510 goto cleanup;
511
512 /* Ensure nevents can't be changed between the user copies. */
513 *filter = tmp;
514
515 mutex_lock(&kvm->lock);
516 filter = rcu_replace_pointer(kvm->arch.pmu_event_filter, filter,
517 mutex_is_locked(&kvm->lock));
518 mutex_unlock(&kvm->lock);
519
520 synchronize_srcu_expedited(&kvm->srcu);
521 r = 0;
522 cleanup:
523 kfree(filter);
524 return r;
525 }
526