1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  S390 version
4  *    Copyright IBM Corp. 1999
5  *    Author(s): Hartmut Penner (hp@de.ibm.com)
6  *               Ulrich Weigand (uweigand@de.ibm.com)
7  *
8  *  Derived from "arch/i386/mm/fault.c"
9  *    Copyright (C) 1995  Linus Torvalds
10  */
11 
12 #include <linux/kernel_stat.h>
13 #include <linux/perf_event.h>
14 #include <linux/signal.h>
15 #include <linux/sched.h>
16 #include <linux/sched/debug.h>
17 #include <linux/kernel.h>
18 #include <linux/errno.h>
19 #include <linux/string.h>
20 #include <linux/types.h>
21 #include <linux/ptrace.h>
22 #include <linux/mman.h>
23 #include <linux/mm.h>
24 #include <linux/compat.h>
25 #include <linux/smp.h>
26 #include <linux/kdebug.h>
27 #include <linux/init.h>
28 #include <linux/console.h>
29 #include <linux/extable.h>
30 #include <linux/hardirq.h>
31 #include <linux/kprobes.h>
32 #include <linux/uaccess.h>
33 #include <linux/hugetlb.h>
34 #include <asm/asm-offsets.h>
35 #include <asm/diag.h>
36 #include <asm/pgtable.h>
37 #include <asm/gmap.h>
38 #include <asm/irq.h>
39 #include <asm/mmu_context.h>
40 #include <asm/facility.h>
41 #include "../kernel/entry.h"
42 
43 #define __FAIL_ADDR_MASK -4096L
44 #define __SUBCODE_MASK 0x0600
45 #define __PF_RES_FIELD 0x8000000000000000ULL
46 
47 #define VM_FAULT_BADCONTEXT	0x010000
48 #define VM_FAULT_BADMAP		0x020000
49 #define VM_FAULT_BADACCESS	0x040000
50 #define VM_FAULT_SIGNAL		0x080000
51 #define VM_FAULT_PFAULT		0x100000
52 
53 enum fault_type {
54 	KERNEL_FAULT,
55 	USER_FAULT,
56 	VDSO_FAULT,
57 	GMAP_FAULT,
58 };
59 
60 static unsigned long store_indication __read_mostly;
61 
fault_init(void)62 static int __init fault_init(void)
63 {
64 	if (test_facility(75))
65 		store_indication = 0xc00;
66 	return 0;
67 }
68 early_initcall(fault_init);
69 
notify_page_fault(struct pt_regs * regs)70 static inline int notify_page_fault(struct pt_regs *regs)
71 {
72 	int ret = 0;
73 
74 	/* kprobe_running() needs smp_processor_id() */
75 	if (kprobes_built_in() && !user_mode(regs)) {
76 		preempt_disable();
77 		if (kprobe_running() && kprobe_fault_handler(regs, 14))
78 			ret = 1;
79 		preempt_enable();
80 	}
81 	return ret;
82 }
83 
84 
85 /*
86  * Unlock any spinlocks which will prevent us from getting the
87  * message out.
88  */
bust_spinlocks(int yes)89 void bust_spinlocks(int yes)
90 {
91 	if (yes) {
92 		oops_in_progress = 1;
93 	} else {
94 		int loglevel_save = console_loglevel;
95 		console_unblank();
96 		oops_in_progress = 0;
97 		/*
98 		 * OK, the message is on the console.  Now we call printk()
99 		 * without oops_in_progress set so that printk will give klogd
100 		 * a poke.  Hold onto your hats...
101 		 */
102 		console_loglevel = 15;
103 		printk(" ");
104 		console_loglevel = loglevel_save;
105 	}
106 }
107 
108 /*
109  * Find out which address space caused the exception.
110  * Access register mode is impossible, ignore space == 3.
111  */
get_fault_type(struct pt_regs * regs)112 static inline enum fault_type get_fault_type(struct pt_regs *regs)
113 {
114 	unsigned long trans_exc_code;
115 
116 	trans_exc_code = regs->int_parm_long & 3;
117 	if (likely(trans_exc_code == 0)) {
118 		/* primary space exception */
119 		if (IS_ENABLED(CONFIG_PGSTE) &&
120 		    test_pt_regs_flag(regs, PIF_GUEST_FAULT))
121 			return GMAP_FAULT;
122 		if (current->thread.mm_segment == USER_DS)
123 			return USER_FAULT;
124 		return KERNEL_FAULT;
125 	}
126 	if (trans_exc_code == 2) {
127 		/* secondary space exception */
128 		if (current->thread.mm_segment & 1) {
129 			if (current->thread.mm_segment == USER_DS_SACF)
130 				return USER_FAULT;
131 			return KERNEL_FAULT;
132 		}
133 		return VDSO_FAULT;
134 	}
135 	/* home space exception -> access via kernel ASCE */
136 	return KERNEL_FAULT;
137 }
138 
bad_address(void * p)139 static int bad_address(void *p)
140 {
141 	unsigned long dummy;
142 
143 	return probe_kernel_address((unsigned long *)p, dummy);
144 }
145 
dump_pagetable(unsigned long asce,unsigned long address)146 static void dump_pagetable(unsigned long asce, unsigned long address)
147 {
148 	unsigned long *table = __va(asce & _ASCE_ORIGIN);
149 
150 	pr_alert("AS:%016lx ", asce);
151 	switch (asce & _ASCE_TYPE_MASK) {
152 	case _ASCE_TYPE_REGION1:
153 		table += (address & _REGION1_INDEX) >> _REGION1_SHIFT;
154 		if (bad_address(table))
155 			goto bad;
156 		pr_cont("R1:%016lx ", *table);
157 		if (*table & _REGION_ENTRY_INVALID)
158 			goto out;
159 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
160 		/* fallthrough */
161 	case _ASCE_TYPE_REGION2:
162 		table += (address & _REGION2_INDEX) >> _REGION2_SHIFT;
163 		if (bad_address(table))
164 			goto bad;
165 		pr_cont("R2:%016lx ", *table);
166 		if (*table & _REGION_ENTRY_INVALID)
167 			goto out;
168 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
169 		/* fallthrough */
170 	case _ASCE_TYPE_REGION3:
171 		table += (address & _REGION3_INDEX) >> _REGION3_SHIFT;
172 		if (bad_address(table))
173 			goto bad;
174 		pr_cont("R3:%016lx ", *table);
175 		if (*table & (_REGION_ENTRY_INVALID | _REGION3_ENTRY_LARGE))
176 			goto out;
177 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
178 		/* fallthrough */
179 	case _ASCE_TYPE_SEGMENT:
180 		table += (address & _SEGMENT_INDEX) >> _SEGMENT_SHIFT;
181 		if (bad_address(table))
182 			goto bad;
183 		pr_cont("S:%016lx ", *table);
184 		if (*table & (_SEGMENT_ENTRY_INVALID | _SEGMENT_ENTRY_LARGE))
185 			goto out;
186 		table = (unsigned long *)(*table & _SEGMENT_ENTRY_ORIGIN);
187 	}
188 	table += (address & _PAGE_INDEX) >> _PAGE_SHIFT;
189 	if (bad_address(table))
190 		goto bad;
191 	pr_cont("P:%016lx ", *table);
192 out:
193 	pr_cont("\n");
194 	return;
195 bad:
196 	pr_cont("BAD\n");
197 }
198 
dump_fault_info(struct pt_regs * regs)199 static void dump_fault_info(struct pt_regs *regs)
200 {
201 	unsigned long asce;
202 
203 	pr_alert("Failing address: %016lx TEID: %016lx\n",
204 		 regs->int_parm_long & __FAIL_ADDR_MASK, regs->int_parm_long);
205 	pr_alert("Fault in ");
206 	switch (regs->int_parm_long & 3) {
207 	case 3:
208 		pr_cont("home space ");
209 		break;
210 	case 2:
211 		pr_cont("secondary space ");
212 		break;
213 	case 1:
214 		pr_cont("access register ");
215 		break;
216 	case 0:
217 		pr_cont("primary space ");
218 		break;
219 	}
220 	pr_cont("mode while using ");
221 	switch (get_fault_type(regs)) {
222 	case USER_FAULT:
223 		asce = S390_lowcore.user_asce;
224 		pr_cont("user ");
225 		break;
226 	case VDSO_FAULT:
227 		asce = S390_lowcore.vdso_asce;
228 		pr_cont("vdso ");
229 		break;
230 	case GMAP_FAULT:
231 		asce = ((struct gmap *) S390_lowcore.gmap)->asce;
232 		pr_cont("gmap ");
233 		break;
234 	case KERNEL_FAULT:
235 		asce = S390_lowcore.kernel_asce;
236 		pr_cont("kernel ");
237 		break;
238 	}
239 	pr_cont("ASCE.\n");
240 	dump_pagetable(asce, regs->int_parm_long & __FAIL_ADDR_MASK);
241 }
242 
243 int show_unhandled_signals = 1;
244 
report_user_fault(struct pt_regs * regs,long signr,int is_mm_fault)245 void report_user_fault(struct pt_regs *regs, long signr, int is_mm_fault)
246 {
247 	if ((task_pid_nr(current) > 1) && !show_unhandled_signals)
248 		return;
249 	if (!unhandled_signal(current, signr))
250 		return;
251 	if (!printk_ratelimit())
252 		return;
253 	printk(KERN_ALERT "User process fault: interruption code %04x ilc:%d ",
254 	       regs->int_code & 0xffff, regs->int_code >> 17);
255 	print_vma_addr(KERN_CONT "in ", regs->psw.addr);
256 	printk(KERN_CONT "\n");
257 	if (is_mm_fault)
258 		dump_fault_info(regs);
259 	show_regs(regs);
260 }
261 
262 /*
263  * Send SIGSEGV to task.  This is an external routine
264  * to keep the stack usage of do_page_fault small.
265  */
do_sigsegv(struct pt_regs * regs,int si_code)266 static noinline void do_sigsegv(struct pt_regs *regs, int si_code)
267 {
268 	report_user_fault(regs, SIGSEGV, 1);
269 	force_sig_fault(SIGSEGV, si_code,
270 			(void __user *)(regs->int_parm_long & __FAIL_ADDR_MASK),
271 			current);
272 }
273 
do_no_context(struct pt_regs * regs)274 static noinline void do_no_context(struct pt_regs *regs)
275 {
276 	const struct exception_table_entry *fixup;
277 
278 	/* Are we prepared to handle this kernel fault?  */
279 	fixup = search_exception_tables(regs->psw.addr);
280 	if (fixup) {
281 		regs->psw.addr = extable_fixup(fixup);
282 		return;
283 	}
284 
285 	/*
286 	 * Oops. The kernel tried to access some bad page. We'll have to
287 	 * terminate things with extreme prejudice.
288 	 */
289 	if (get_fault_type(regs) == KERNEL_FAULT)
290 		printk(KERN_ALERT "Unable to handle kernel pointer dereference"
291 		       " in virtual kernel address space\n");
292 	else
293 		printk(KERN_ALERT "Unable to handle kernel paging request"
294 		       " in virtual user address space\n");
295 	dump_fault_info(regs);
296 	die(regs, "Oops");
297 	do_exit(SIGKILL);
298 }
299 
do_low_address(struct pt_regs * regs)300 static noinline void do_low_address(struct pt_regs *regs)
301 {
302 	/* Low-address protection hit in kernel mode means
303 	   NULL pointer write access in kernel mode.  */
304 	if (regs->psw.mask & PSW_MASK_PSTATE) {
305 		/* Low-address protection hit in user mode 'cannot happen'. */
306 		die (regs, "Low-address protection");
307 		do_exit(SIGKILL);
308 	}
309 
310 	do_no_context(regs);
311 }
312 
do_sigbus(struct pt_regs * regs)313 static noinline void do_sigbus(struct pt_regs *regs)
314 {
315 	/*
316 	 * Send a sigbus, regardless of whether we were in kernel
317 	 * or user mode.
318 	 */
319 	force_sig_fault(SIGBUS, BUS_ADRERR,
320 			(void __user *)(regs->int_parm_long & __FAIL_ADDR_MASK),
321 			current);
322 }
323 
signal_return(struct pt_regs * regs)324 static noinline int signal_return(struct pt_regs *regs)
325 {
326 	u16 instruction;
327 	int rc;
328 
329 	rc = __get_user(instruction, (u16 __user *) regs->psw.addr);
330 	if (rc)
331 		return rc;
332 	if (instruction == 0x0a77) {
333 		set_pt_regs_flag(regs, PIF_SYSCALL);
334 		regs->int_code = 0x00040077;
335 		return 0;
336 	} else if (instruction == 0x0aad) {
337 		set_pt_regs_flag(regs, PIF_SYSCALL);
338 		regs->int_code = 0x000400ad;
339 		return 0;
340 	}
341 	return -EACCES;
342 }
343 
do_fault_error(struct pt_regs * regs,int access,vm_fault_t fault)344 static noinline void do_fault_error(struct pt_regs *regs, int access,
345 					vm_fault_t fault)
346 {
347 	int si_code;
348 
349 	switch (fault) {
350 	case VM_FAULT_BADACCESS:
351 		if (access == VM_EXEC && signal_return(regs) == 0)
352 			break;
353 	case VM_FAULT_BADMAP:
354 		/* Bad memory access. Check if it is kernel or user space. */
355 		if (user_mode(regs)) {
356 			/* User mode accesses just cause a SIGSEGV */
357 			si_code = (fault == VM_FAULT_BADMAP) ?
358 				SEGV_MAPERR : SEGV_ACCERR;
359 			do_sigsegv(regs, si_code);
360 			break;
361 		}
362 	case VM_FAULT_BADCONTEXT:
363 	case VM_FAULT_PFAULT:
364 		do_no_context(regs);
365 		break;
366 	case VM_FAULT_SIGNAL:
367 		if (!user_mode(regs))
368 			do_no_context(regs);
369 		break;
370 	default: /* fault & VM_FAULT_ERROR */
371 		if (fault & VM_FAULT_OOM) {
372 			if (!user_mode(regs))
373 				do_no_context(regs);
374 			else
375 				pagefault_out_of_memory();
376 		} else if (fault & VM_FAULT_SIGSEGV) {
377 			/* Kernel mode? Handle exceptions or die */
378 			if (!user_mode(regs))
379 				do_no_context(regs);
380 			else
381 				do_sigsegv(regs, SEGV_MAPERR);
382 		} else if (fault & VM_FAULT_SIGBUS) {
383 			/* Kernel mode? Handle exceptions or die */
384 			if (!user_mode(regs))
385 				do_no_context(regs);
386 			else
387 				do_sigbus(regs);
388 		} else
389 			BUG();
390 		break;
391 	}
392 }
393 
394 /*
395  * This routine handles page faults.  It determines the address,
396  * and the problem, and then passes it off to one of the appropriate
397  * routines.
398  *
399  * interruption code (int_code):
400  *   04       Protection           ->  Write-Protection  (suprression)
401  *   10       Segment translation  ->  Not present       (nullification)
402  *   11       Page translation     ->  Not present       (nullification)
403  *   3b       Region third trans.  ->  Not present       (nullification)
404  */
do_exception(struct pt_regs * regs,int access)405 static inline vm_fault_t do_exception(struct pt_regs *regs, int access)
406 {
407 	struct gmap *gmap;
408 	struct task_struct *tsk;
409 	struct mm_struct *mm;
410 	struct vm_area_struct *vma;
411 	enum fault_type type;
412 	unsigned long trans_exc_code;
413 	unsigned long address;
414 	unsigned int flags;
415 	vm_fault_t fault;
416 
417 	tsk = current;
418 	/*
419 	 * The instruction that caused the program check has
420 	 * been nullified. Don't signal single step via SIGTRAP.
421 	 */
422 	clear_pt_regs_flag(regs, PIF_PER_TRAP);
423 
424 	if (notify_page_fault(regs))
425 		return 0;
426 
427 	mm = tsk->mm;
428 	trans_exc_code = regs->int_parm_long;
429 
430 	/*
431 	 * Verify that the fault happened in user space, that
432 	 * we are not in an interrupt and that there is a
433 	 * user context.
434 	 */
435 	fault = VM_FAULT_BADCONTEXT;
436 	type = get_fault_type(regs);
437 	switch (type) {
438 	case KERNEL_FAULT:
439 		goto out;
440 	case VDSO_FAULT:
441 		fault = VM_FAULT_BADMAP;
442 		goto out;
443 	case USER_FAULT:
444 	case GMAP_FAULT:
445 		if (faulthandler_disabled() || !mm)
446 			goto out;
447 		break;
448 	}
449 
450 	address = trans_exc_code & __FAIL_ADDR_MASK;
451 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
452 	flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
453 	if (user_mode(regs))
454 		flags |= FAULT_FLAG_USER;
455 	if (access == VM_WRITE || (trans_exc_code & store_indication) == 0x400)
456 		flags |= FAULT_FLAG_WRITE;
457 	down_read(&mm->mmap_sem);
458 
459 	gmap = NULL;
460 	if (IS_ENABLED(CONFIG_PGSTE) && type == GMAP_FAULT) {
461 		gmap = (struct gmap *) S390_lowcore.gmap;
462 		current->thread.gmap_addr = address;
463 		current->thread.gmap_write_flag = !!(flags & FAULT_FLAG_WRITE);
464 		current->thread.gmap_int_code = regs->int_code & 0xffff;
465 		address = __gmap_translate(gmap, address);
466 		if (address == -EFAULT) {
467 			fault = VM_FAULT_BADMAP;
468 			goto out_up;
469 		}
470 		if (gmap->pfault_enabled)
471 			flags |= FAULT_FLAG_RETRY_NOWAIT;
472 	}
473 
474 retry:
475 	fault = VM_FAULT_BADMAP;
476 	vma = find_vma(mm, address);
477 	if (!vma)
478 		goto out_up;
479 
480 	if (unlikely(vma->vm_start > address)) {
481 		if (!(vma->vm_flags & VM_GROWSDOWN))
482 			goto out_up;
483 		if (expand_stack(vma, address))
484 			goto out_up;
485 	}
486 
487 	/*
488 	 * Ok, we have a good vm_area for this memory access, so
489 	 * we can handle it..
490 	 */
491 	fault = VM_FAULT_BADACCESS;
492 	if (unlikely(!(vma->vm_flags & access)))
493 		goto out_up;
494 
495 	if (is_vm_hugetlb_page(vma))
496 		address &= HPAGE_MASK;
497 	/*
498 	 * If for any reason at all we couldn't handle the fault,
499 	 * make sure we exit gracefully rather than endlessly redo
500 	 * the fault.
501 	 */
502 	fault = handle_mm_fault(vma, address, flags);
503 	/* No reason to continue if interrupted by SIGKILL. */
504 	if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current)) {
505 		fault = VM_FAULT_SIGNAL;
506 		if (flags & FAULT_FLAG_RETRY_NOWAIT)
507 			goto out_up;
508 		goto out;
509 	}
510 	if (unlikely(fault & VM_FAULT_ERROR))
511 		goto out_up;
512 
513 	/*
514 	 * Major/minor page fault accounting is only done on the
515 	 * initial attempt. If we go through a retry, it is extremely
516 	 * likely that the page will be found in page cache at that point.
517 	 */
518 	if (flags & FAULT_FLAG_ALLOW_RETRY) {
519 		if (fault & VM_FAULT_MAJOR) {
520 			tsk->maj_flt++;
521 			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
522 				      regs, address);
523 		} else {
524 			tsk->min_flt++;
525 			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
526 				      regs, address);
527 		}
528 		if (fault & VM_FAULT_RETRY) {
529 			if (IS_ENABLED(CONFIG_PGSTE) && gmap &&
530 			    (flags & FAULT_FLAG_RETRY_NOWAIT)) {
531 				/* FAULT_FLAG_RETRY_NOWAIT has been set,
532 				 * mmap_sem has not been released */
533 				current->thread.gmap_pfault = 1;
534 				fault = VM_FAULT_PFAULT;
535 				goto out_up;
536 			}
537 			/* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
538 			 * of starvation. */
539 			flags &= ~(FAULT_FLAG_ALLOW_RETRY |
540 				   FAULT_FLAG_RETRY_NOWAIT);
541 			flags |= FAULT_FLAG_TRIED;
542 			down_read(&mm->mmap_sem);
543 			goto retry;
544 		}
545 	}
546 	if (IS_ENABLED(CONFIG_PGSTE) && gmap) {
547 		address =  __gmap_link(gmap, current->thread.gmap_addr,
548 				       address);
549 		if (address == -EFAULT) {
550 			fault = VM_FAULT_BADMAP;
551 			goto out_up;
552 		}
553 		if (address == -ENOMEM) {
554 			fault = VM_FAULT_OOM;
555 			goto out_up;
556 		}
557 	}
558 	fault = 0;
559 out_up:
560 	up_read(&mm->mmap_sem);
561 out:
562 	return fault;
563 }
564 
do_protection_exception(struct pt_regs * regs)565 void do_protection_exception(struct pt_regs *regs)
566 {
567 	unsigned long trans_exc_code;
568 	int access;
569 	vm_fault_t fault;
570 
571 	trans_exc_code = regs->int_parm_long;
572 	/*
573 	 * Protection exceptions are suppressing, decrement psw address.
574 	 * The exception to this rule are aborted transactions, for these
575 	 * the PSW already points to the correct location.
576 	 */
577 	if (!(regs->int_code & 0x200))
578 		regs->psw.addr = __rewind_psw(regs->psw, regs->int_code >> 16);
579 	/*
580 	 * Check for low-address protection.  This needs to be treated
581 	 * as a special case because the translation exception code
582 	 * field is not guaranteed to contain valid data in this case.
583 	 */
584 	if (unlikely(!(trans_exc_code & 4))) {
585 		do_low_address(regs);
586 		return;
587 	}
588 	if (unlikely(MACHINE_HAS_NX && (trans_exc_code & 0x80))) {
589 		regs->int_parm_long = (trans_exc_code & ~PAGE_MASK) |
590 					(regs->psw.addr & PAGE_MASK);
591 		access = VM_EXEC;
592 		fault = VM_FAULT_BADACCESS;
593 	} else {
594 		access = VM_WRITE;
595 		fault = do_exception(regs, access);
596 	}
597 	if (unlikely(fault))
598 		do_fault_error(regs, access, fault);
599 }
600 NOKPROBE_SYMBOL(do_protection_exception);
601 
do_dat_exception(struct pt_regs * regs)602 void do_dat_exception(struct pt_regs *regs)
603 {
604 	int access;
605 	vm_fault_t fault;
606 
607 	access = VM_READ | VM_EXEC | VM_WRITE;
608 	fault = do_exception(regs, access);
609 	if (unlikely(fault))
610 		do_fault_error(regs, access, fault);
611 }
612 NOKPROBE_SYMBOL(do_dat_exception);
613 
614 #ifdef CONFIG_PFAULT
615 /*
616  * 'pfault' pseudo page faults routines.
617  */
618 static int pfault_disable;
619 
nopfault(char * str)620 static int __init nopfault(char *str)
621 {
622 	pfault_disable = 1;
623 	return 1;
624 }
625 
626 __setup("nopfault", nopfault);
627 
628 struct pfault_refbk {
629 	u16 refdiagc;
630 	u16 reffcode;
631 	u16 refdwlen;
632 	u16 refversn;
633 	u64 refgaddr;
634 	u64 refselmk;
635 	u64 refcmpmk;
636 	u64 reserved;
637 } __attribute__ ((packed, aligned(8)));
638 
pfault_init(void)639 int pfault_init(void)
640 {
641 	struct pfault_refbk refbk = {
642 		.refdiagc = 0x258,
643 		.reffcode = 0,
644 		.refdwlen = 5,
645 		.refversn = 2,
646 		.refgaddr = __LC_LPP,
647 		.refselmk = 1ULL << 48,
648 		.refcmpmk = 1ULL << 48,
649 		.reserved = __PF_RES_FIELD };
650         int rc;
651 
652 	if (pfault_disable)
653 		return -1;
654 	diag_stat_inc(DIAG_STAT_X258);
655 	asm volatile(
656 		"	diag	%1,%0,0x258\n"
657 		"0:	j	2f\n"
658 		"1:	la	%0,8\n"
659 		"2:\n"
660 		EX_TABLE(0b,1b)
661 		: "=d" (rc) : "a" (&refbk), "m" (refbk) : "cc");
662         return rc;
663 }
664 
pfault_fini(void)665 void pfault_fini(void)
666 {
667 	struct pfault_refbk refbk = {
668 		.refdiagc = 0x258,
669 		.reffcode = 1,
670 		.refdwlen = 5,
671 		.refversn = 2,
672 	};
673 
674 	if (pfault_disable)
675 		return;
676 	diag_stat_inc(DIAG_STAT_X258);
677 	asm volatile(
678 		"	diag	%0,0,0x258\n"
679 		"0:	nopr	%%r7\n"
680 		EX_TABLE(0b,0b)
681 		: : "a" (&refbk), "m" (refbk) : "cc");
682 }
683 
684 static DEFINE_SPINLOCK(pfault_lock);
685 static LIST_HEAD(pfault_list);
686 
687 #define PF_COMPLETE	0x0080
688 
689 /*
690  * The mechanism of our pfault code: if Linux is running as guest, runs a user
691  * space process and the user space process accesses a page that the host has
692  * paged out we get a pfault interrupt.
693  *
694  * This allows us, within the guest, to schedule a different process. Without
695  * this mechanism the host would have to suspend the whole virtual cpu until
696  * the page has been paged in.
697  *
698  * So when we get such an interrupt then we set the state of the current task
699  * to uninterruptible and also set the need_resched flag. Both happens within
700  * interrupt context(!). If we later on want to return to user space we
701  * recognize the need_resched flag and then call schedule().  It's not very
702  * obvious how this works...
703  *
704  * Of course we have a lot of additional fun with the completion interrupt (->
705  * host signals that a page of a process has been paged in and the process can
706  * continue to run). This interrupt can arrive on any cpu and, since we have
707  * virtual cpus, actually appear before the interrupt that signals that a page
708  * is missing.
709  */
pfault_interrupt(struct ext_code ext_code,unsigned int param32,unsigned long param64)710 static void pfault_interrupt(struct ext_code ext_code,
711 			     unsigned int param32, unsigned long param64)
712 {
713 	struct task_struct *tsk;
714 	__u16 subcode;
715 	pid_t pid;
716 
717 	/*
718 	 * Get the external interruption subcode & pfault initial/completion
719 	 * signal bit. VM stores this in the 'cpu address' field associated
720 	 * with the external interrupt.
721 	 */
722 	subcode = ext_code.subcode;
723 	if ((subcode & 0xff00) != __SUBCODE_MASK)
724 		return;
725 	inc_irq_stat(IRQEXT_PFL);
726 	/* Get the token (= pid of the affected task). */
727 	pid = param64 & LPP_PID_MASK;
728 	rcu_read_lock();
729 	tsk = find_task_by_pid_ns(pid, &init_pid_ns);
730 	if (tsk)
731 		get_task_struct(tsk);
732 	rcu_read_unlock();
733 	if (!tsk)
734 		return;
735 	spin_lock(&pfault_lock);
736 	if (subcode & PF_COMPLETE) {
737 		/* signal bit is set -> a page has been swapped in by VM */
738 		if (tsk->thread.pfault_wait == 1) {
739 			/* Initial interrupt was faster than the completion
740 			 * interrupt. pfault_wait is valid. Set pfault_wait
741 			 * back to zero and wake up the process. This can
742 			 * safely be done because the task is still sleeping
743 			 * and can't produce new pfaults. */
744 			tsk->thread.pfault_wait = 0;
745 			list_del(&tsk->thread.list);
746 			wake_up_process(tsk);
747 			put_task_struct(tsk);
748 		} else {
749 			/* Completion interrupt was faster than initial
750 			 * interrupt. Set pfault_wait to -1 so the initial
751 			 * interrupt doesn't put the task to sleep.
752 			 * If the task is not running, ignore the completion
753 			 * interrupt since it must be a leftover of a PFAULT
754 			 * CANCEL operation which didn't remove all pending
755 			 * completion interrupts. */
756 			if (tsk->state == TASK_RUNNING)
757 				tsk->thread.pfault_wait = -1;
758 		}
759 	} else {
760 		/* signal bit not set -> a real page is missing. */
761 		if (WARN_ON_ONCE(tsk != current))
762 			goto out;
763 		if (tsk->thread.pfault_wait == 1) {
764 			/* Already on the list with a reference: put to sleep */
765 			goto block;
766 		} else if (tsk->thread.pfault_wait == -1) {
767 			/* Completion interrupt was faster than the initial
768 			 * interrupt (pfault_wait == -1). Set pfault_wait
769 			 * back to zero and exit. */
770 			tsk->thread.pfault_wait = 0;
771 		} else {
772 			/* Initial interrupt arrived before completion
773 			 * interrupt. Let the task sleep.
774 			 * An extra task reference is needed since a different
775 			 * cpu may set the task state to TASK_RUNNING again
776 			 * before the scheduler is reached. */
777 			get_task_struct(tsk);
778 			tsk->thread.pfault_wait = 1;
779 			list_add(&tsk->thread.list, &pfault_list);
780 block:
781 			/* Since this must be a userspace fault, there
782 			 * is no kernel task state to trample. Rely on the
783 			 * return to userspace schedule() to block. */
784 			__set_current_state(TASK_UNINTERRUPTIBLE);
785 			set_tsk_need_resched(tsk);
786 			set_preempt_need_resched();
787 		}
788 	}
789 out:
790 	spin_unlock(&pfault_lock);
791 	put_task_struct(tsk);
792 }
793 
pfault_cpu_dead(unsigned int cpu)794 static int pfault_cpu_dead(unsigned int cpu)
795 {
796 	struct thread_struct *thread, *next;
797 	struct task_struct *tsk;
798 
799 	spin_lock_irq(&pfault_lock);
800 	list_for_each_entry_safe(thread, next, &pfault_list, list) {
801 		thread->pfault_wait = 0;
802 		list_del(&thread->list);
803 		tsk = container_of(thread, struct task_struct, thread);
804 		wake_up_process(tsk);
805 		put_task_struct(tsk);
806 	}
807 	spin_unlock_irq(&pfault_lock);
808 	return 0;
809 }
810 
pfault_irq_init(void)811 static int __init pfault_irq_init(void)
812 {
813 	int rc;
814 
815 	rc = register_external_irq(EXT_IRQ_CP_SERVICE, pfault_interrupt);
816 	if (rc)
817 		goto out_extint;
818 	rc = pfault_init() == 0 ? 0 : -EOPNOTSUPP;
819 	if (rc)
820 		goto out_pfault;
821 	irq_subclass_register(IRQ_SUBCLASS_SERVICE_SIGNAL);
822 	cpuhp_setup_state_nocalls(CPUHP_S390_PFAULT_DEAD, "s390/pfault:dead",
823 				  NULL, pfault_cpu_dead);
824 	return 0;
825 
826 out_pfault:
827 	unregister_external_irq(EXT_IRQ_CP_SERVICE, pfault_interrupt);
828 out_extint:
829 	pfault_disable = 1;
830 	return rc;
831 }
832 early_initcall(pfault_irq_init);
833 
834 #endif /* CONFIG_PFAULT */
835