1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Firmware Assisted dump: A robust mechanism to get reliable kernel crash
4 * dump with assistance from firmware. This approach does not use kexec,
5 * instead firmware assists in booting the kdump kernel while preserving
6 * memory contents. The most of the code implementation has been adapted
7 * from phyp assisted dump implementation written by Linas Vepstas and
8 * Manish Ahuja
9 *
10 * Copyright 2011 IBM Corporation
11 * Author: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
12 */
13
14 #undef DEBUG
15 #define pr_fmt(fmt) "fadump: " fmt
16
17 #include <linux/string.h>
18 #include <linux/memblock.h>
19 #include <linux/delay.h>
20 #include <linux/seq_file.h>
21 #include <linux/crash_dump.h>
22 #include <linux/kobject.h>
23 #include <linux/sysfs.h>
24 #include <linux/slab.h>
25 #include <linux/cma.h>
26 #include <linux/hugetlb.h>
27
28 #include <asm/debugfs.h>
29 #include <asm/page.h>
30 #include <asm/prom.h>
31 #include <asm/fadump.h>
32 #include <asm/fadump-internal.h>
33 #include <asm/setup.h>
34
35 static struct fw_dump fw_dump;
36
37 static void __init fadump_reserve_crash_area(u64 base);
38
39 #ifndef CONFIG_PRESERVE_FA_DUMP
40 static DEFINE_MUTEX(fadump_mutex);
41 struct fadump_mrange_info crash_mrange_info = { "crash", NULL, 0, 0, 0 };
42 struct fadump_mrange_info reserved_mrange_info = { "reserved", NULL, 0, 0, 0 };
43
44 #ifdef CONFIG_CMA
45 static struct cma *fadump_cma;
46
47 /*
48 * fadump_cma_init() - Initialize CMA area from a fadump reserved memory
49 *
50 * This function initializes CMA area from fadump reserved memory.
51 * The total size of fadump reserved memory covers for boot memory size
52 * + cpu data size + hpte size and metadata.
53 * Initialize only the area equivalent to boot memory size for CMA use.
54 * The reamining portion of fadump reserved memory will be not given
55 * to CMA and pages for thoes will stay reserved. boot memory size is
56 * aligned per CMA requirement to satisy cma_init_reserved_mem() call.
57 * But for some reason even if it fails we still have the memory reservation
58 * with us and we can still continue doing fadump.
59 */
fadump_cma_init(void)60 int __init fadump_cma_init(void)
61 {
62 unsigned long long base, size;
63 int rc;
64
65 if (!fw_dump.fadump_enabled)
66 return 0;
67
68 /*
69 * Do not use CMA if user has provided fadump=nocma kernel parameter.
70 * Return 1 to continue with fadump old behaviour.
71 */
72 if (fw_dump.nocma)
73 return 1;
74
75 base = fw_dump.reserve_dump_area_start;
76 size = fw_dump.boot_memory_size;
77
78 if (!size)
79 return 0;
80
81 rc = cma_init_reserved_mem(base, size, 0, "fadump_cma", &fadump_cma);
82 if (rc) {
83 pr_err("Failed to init cma area for firmware-assisted dump,%d\n", rc);
84 /*
85 * Though the CMA init has failed we still have memory
86 * reservation with us. The reserved memory will be
87 * blocked from production system usage. Hence return 1,
88 * so that we can continue with fadump.
89 */
90 return 1;
91 }
92
93 /*
94 * So we now have successfully initialized cma area for fadump.
95 */
96 pr_info("Initialized 0x%lx bytes cma area at %ldMB from 0x%lx "
97 "bytes of memory reserved for firmware-assisted dump\n",
98 cma_get_size(fadump_cma),
99 (unsigned long)cma_get_base(fadump_cma) >> 20,
100 fw_dump.reserve_dump_area_size);
101 return 1;
102 }
103 #else
fadump_cma_init(void)104 static int __init fadump_cma_init(void) { return 1; }
105 #endif /* CONFIG_CMA */
106
107 /* Scan the Firmware Assisted dump configuration details. */
early_init_dt_scan_fw_dump(unsigned long node,const char * uname,int depth,void * data)108 int __init early_init_dt_scan_fw_dump(unsigned long node, const char *uname,
109 int depth, void *data)
110 {
111 if (depth != 1)
112 return 0;
113
114 if (strcmp(uname, "rtas") == 0) {
115 rtas_fadump_dt_scan(&fw_dump, node);
116 return 1;
117 }
118
119 if (strcmp(uname, "ibm,opal") == 0) {
120 opal_fadump_dt_scan(&fw_dump, node);
121 return 1;
122 }
123
124 return 0;
125 }
126
127 /*
128 * If fadump is registered, check if the memory provided
129 * falls within boot memory area and reserved memory area.
130 */
is_fadump_memory_area(u64 addr,unsigned long size)131 int is_fadump_memory_area(u64 addr, unsigned long size)
132 {
133 u64 d_start, d_end;
134
135 if (!fw_dump.dump_registered)
136 return 0;
137
138 if (!size)
139 return 0;
140
141 d_start = fw_dump.reserve_dump_area_start;
142 d_end = d_start + fw_dump.reserve_dump_area_size;
143 if (((addr + size) > d_start) && (addr <= d_end))
144 return 1;
145
146 return (addr <= fw_dump.boot_mem_top);
147 }
148
should_fadump_crash(void)149 int should_fadump_crash(void)
150 {
151 if (!fw_dump.dump_registered || !fw_dump.fadumphdr_addr)
152 return 0;
153 return 1;
154 }
155
is_fadump_active(void)156 int is_fadump_active(void)
157 {
158 return fw_dump.dump_active;
159 }
160
161 /*
162 * Returns true, if there are no holes in memory area between d_start to d_end,
163 * false otherwise.
164 */
is_fadump_mem_area_contiguous(u64 d_start,u64 d_end)165 static bool is_fadump_mem_area_contiguous(u64 d_start, u64 d_end)
166 {
167 struct memblock_region *reg;
168 bool ret = false;
169 u64 start, end;
170
171 for_each_memblock(memory, reg) {
172 start = max_t(u64, d_start, reg->base);
173 end = min_t(u64, d_end, (reg->base + reg->size));
174 if (d_start < end) {
175 /* Memory hole from d_start to start */
176 if (start > d_start)
177 break;
178
179 if (end == d_end) {
180 ret = true;
181 break;
182 }
183
184 d_start = end + 1;
185 }
186 }
187
188 return ret;
189 }
190
191 /*
192 * Returns true, if there are no holes in boot memory area,
193 * false otherwise.
194 */
is_fadump_boot_mem_contiguous(void)195 bool is_fadump_boot_mem_contiguous(void)
196 {
197 unsigned long d_start, d_end;
198 bool ret = false;
199 int i;
200
201 for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) {
202 d_start = fw_dump.boot_mem_addr[i];
203 d_end = d_start + fw_dump.boot_mem_sz[i];
204
205 ret = is_fadump_mem_area_contiguous(d_start, d_end);
206 if (!ret)
207 break;
208 }
209
210 return ret;
211 }
212
213 /*
214 * Returns true, if there are no holes in reserved memory area,
215 * false otherwise.
216 */
is_fadump_reserved_mem_contiguous(void)217 bool is_fadump_reserved_mem_contiguous(void)
218 {
219 u64 d_start, d_end;
220
221 d_start = fw_dump.reserve_dump_area_start;
222 d_end = d_start + fw_dump.reserve_dump_area_size;
223 return is_fadump_mem_area_contiguous(d_start, d_end);
224 }
225
226 /* Print firmware assisted dump configurations for debugging purpose. */
fadump_show_config(void)227 static void fadump_show_config(void)
228 {
229 int i;
230
231 pr_debug("Support for firmware-assisted dump (fadump): %s\n",
232 (fw_dump.fadump_supported ? "present" : "no support"));
233
234 if (!fw_dump.fadump_supported)
235 return;
236
237 pr_debug("Fadump enabled : %s\n",
238 (fw_dump.fadump_enabled ? "yes" : "no"));
239 pr_debug("Dump Active : %s\n",
240 (fw_dump.dump_active ? "yes" : "no"));
241 pr_debug("Dump section sizes:\n");
242 pr_debug(" CPU state data size: %lx\n", fw_dump.cpu_state_data_size);
243 pr_debug(" HPTE region size : %lx\n", fw_dump.hpte_region_size);
244 pr_debug(" Boot memory size : %lx\n", fw_dump.boot_memory_size);
245 pr_debug(" Boot memory top : %llx\n", fw_dump.boot_mem_top);
246 pr_debug("Boot memory regions cnt: %llx\n", fw_dump.boot_mem_regs_cnt);
247 for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) {
248 pr_debug("[%03d] base = %llx, size = %llx\n", i,
249 fw_dump.boot_mem_addr[i], fw_dump.boot_mem_sz[i]);
250 }
251 }
252
253 /**
254 * fadump_calculate_reserve_size(): reserve variable boot area 5% of System RAM
255 *
256 * Function to find the largest memory size we need to reserve during early
257 * boot process. This will be the size of the memory that is required for a
258 * kernel to boot successfully.
259 *
260 * This function has been taken from phyp-assisted dump feature implementation.
261 *
262 * returns larger of 256MB or 5% rounded down to multiples of 256MB.
263 *
264 * TODO: Come up with better approach to find out more accurate memory size
265 * that is required for a kernel to boot successfully.
266 *
267 */
fadump_calculate_reserve_size(void)268 static inline u64 fadump_calculate_reserve_size(void)
269 {
270 u64 base, size, bootmem_min;
271 int ret;
272
273 if (fw_dump.reserve_bootvar)
274 pr_warn("'fadump_reserve_mem=' parameter is deprecated in favor of 'crashkernel=' parameter.\n");
275
276 /*
277 * Check if the size is specified through crashkernel= cmdline
278 * option. If yes, then use that but ignore base as fadump reserves
279 * memory at a predefined offset.
280 */
281 ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(),
282 &size, &base);
283 if (ret == 0 && size > 0) {
284 unsigned long max_size;
285
286 if (fw_dump.reserve_bootvar)
287 pr_info("Using 'crashkernel=' parameter for memory reservation.\n");
288
289 fw_dump.reserve_bootvar = (unsigned long)size;
290
291 /*
292 * Adjust if the boot memory size specified is above
293 * the upper limit.
294 */
295 max_size = memblock_phys_mem_size() / MAX_BOOT_MEM_RATIO;
296 if (fw_dump.reserve_bootvar > max_size) {
297 fw_dump.reserve_bootvar = max_size;
298 pr_info("Adjusted boot memory size to %luMB\n",
299 (fw_dump.reserve_bootvar >> 20));
300 }
301
302 return fw_dump.reserve_bootvar;
303 } else if (fw_dump.reserve_bootvar) {
304 /*
305 * 'fadump_reserve_mem=' is being used to reserve memory
306 * for firmware-assisted dump.
307 */
308 return fw_dump.reserve_bootvar;
309 }
310
311 /* divide by 20 to get 5% of value */
312 size = memblock_phys_mem_size() / 20;
313
314 /* round it down in multiples of 256 */
315 size = size & ~0x0FFFFFFFUL;
316
317 /* Truncate to memory_limit. We don't want to over reserve the memory.*/
318 if (memory_limit && size > memory_limit)
319 size = memory_limit;
320
321 bootmem_min = fw_dump.ops->fadump_get_bootmem_min();
322 return (size > bootmem_min ? size : bootmem_min);
323 }
324
325 /*
326 * Calculate the total memory size required to be reserved for
327 * firmware-assisted dump registration.
328 */
get_fadump_area_size(void)329 static unsigned long get_fadump_area_size(void)
330 {
331 unsigned long size = 0;
332
333 size += fw_dump.cpu_state_data_size;
334 size += fw_dump.hpte_region_size;
335 size += fw_dump.boot_memory_size;
336 size += sizeof(struct fadump_crash_info_header);
337 size += sizeof(struct elfhdr); /* ELF core header.*/
338 size += sizeof(struct elf_phdr); /* place holder for cpu notes */
339 /* Program headers for crash memory regions. */
340 size += sizeof(struct elf_phdr) * (memblock_num_regions(memory) + 2);
341
342 size = PAGE_ALIGN(size);
343
344 /* This is to hold kernel metadata on platforms that support it */
345 size += (fw_dump.ops->fadump_get_metadata_size ?
346 fw_dump.ops->fadump_get_metadata_size() : 0);
347 return size;
348 }
349
add_boot_mem_region(unsigned long rstart,unsigned long rsize)350 static int __init add_boot_mem_region(unsigned long rstart,
351 unsigned long rsize)
352 {
353 int i = fw_dump.boot_mem_regs_cnt++;
354
355 if (fw_dump.boot_mem_regs_cnt > FADUMP_MAX_MEM_REGS) {
356 fw_dump.boot_mem_regs_cnt = FADUMP_MAX_MEM_REGS;
357 return 0;
358 }
359
360 pr_debug("Added boot memory range[%d] [%#016lx-%#016lx)\n",
361 i, rstart, (rstart + rsize));
362 fw_dump.boot_mem_addr[i] = rstart;
363 fw_dump.boot_mem_sz[i] = rsize;
364 return 1;
365 }
366
367 /*
368 * Firmware usually has a hard limit on the data it can copy per region.
369 * Honour that by splitting a memory range into multiple regions.
370 */
add_boot_mem_regions(unsigned long mstart,unsigned long msize)371 static int __init add_boot_mem_regions(unsigned long mstart,
372 unsigned long msize)
373 {
374 unsigned long rstart, rsize, max_size;
375 int ret = 1;
376
377 rstart = mstart;
378 max_size = fw_dump.max_copy_size ? fw_dump.max_copy_size : msize;
379 while (msize) {
380 if (msize > max_size)
381 rsize = max_size;
382 else
383 rsize = msize;
384
385 ret = add_boot_mem_region(rstart, rsize);
386 if (!ret)
387 break;
388
389 msize -= rsize;
390 rstart += rsize;
391 }
392
393 return ret;
394 }
395
fadump_get_boot_mem_regions(void)396 static int __init fadump_get_boot_mem_regions(void)
397 {
398 unsigned long base, size, cur_size, hole_size, last_end;
399 unsigned long mem_size = fw_dump.boot_memory_size;
400 struct memblock_region *reg;
401 int ret = 1;
402
403 fw_dump.boot_mem_regs_cnt = 0;
404
405 last_end = 0;
406 hole_size = 0;
407 cur_size = 0;
408 for_each_memblock(memory, reg) {
409 base = reg->base;
410 size = reg->size;
411 hole_size += (base - last_end);
412
413 if ((cur_size + size) >= mem_size) {
414 size = (mem_size - cur_size);
415 ret = add_boot_mem_regions(base, size);
416 break;
417 }
418
419 mem_size -= size;
420 cur_size += size;
421 ret = add_boot_mem_regions(base, size);
422 if (!ret)
423 break;
424
425 last_end = base + size;
426 }
427 fw_dump.boot_mem_top = PAGE_ALIGN(fw_dump.boot_memory_size + hole_size);
428
429 return ret;
430 }
431
fadump_reserve_mem(void)432 int __init fadump_reserve_mem(void)
433 {
434 u64 base, size, mem_boundary, bootmem_min, align = PAGE_SIZE;
435 bool is_memblock_bottom_up = memblock_bottom_up();
436 int ret = 1;
437
438 if (!fw_dump.fadump_enabled)
439 return 0;
440
441 if (!fw_dump.fadump_supported) {
442 pr_info("Firmware-Assisted Dump is not supported on this hardware\n");
443 goto error_out;
444 }
445
446 /*
447 * Initialize boot memory size
448 * If dump is active then we have already calculated the size during
449 * first kernel.
450 */
451 if (!fw_dump.dump_active) {
452 fw_dump.boot_memory_size =
453 PAGE_ALIGN(fadump_calculate_reserve_size());
454 #ifdef CONFIG_CMA
455 if (!fw_dump.nocma) {
456 align = FADUMP_CMA_ALIGNMENT;
457 fw_dump.boot_memory_size =
458 ALIGN(fw_dump.boot_memory_size, align);
459 }
460 #endif
461
462 bootmem_min = fw_dump.ops->fadump_get_bootmem_min();
463 if (fw_dump.boot_memory_size < bootmem_min) {
464 pr_err("Can't enable fadump with boot memory size (0x%lx) less than 0x%llx\n",
465 fw_dump.boot_memory_size, bootmem_min);
466 goto error_out;
467 }
468
469 if (!fadump_get_boot_mem_regions()) {
470 pr_err("Too many holes in boot memory area to enable fadump\n");
471 goto error_out;
472 }
473 }
474
475 /*
476 * Calculate the memory boundary.
477 * If memory_limit is less than actual memory boundary then reserve
478 * the memory for fadump beyond the memory_limit and adjust the
479 * memory_limit accordingly, so that the running kernel can run with
480 * specified memory_limit.
481 */
482 if (memory_limit && memory_limit < memblock_end_of_DRAM()) {
483 size = get_fadump_area_size();
484 if ((memory_limit + size) < memblock_end_of_DRAM())
485 memory_limit += size;
486 else
487 memory_limit = memblock_end_of_DRAM();
488 printk(KERN_INFO "Adjusted memory_limit for firmware-assisted"
489 " dump, now %#016llx\n", memory_limit);
490 }
491 if (memory_limit)
492 mem_boundary = memory_limit;
493 else
494 mem_boundary = memblock_end_of_DRAM();
495
496 base = fw_dump.boot_mem_top;
497 size = get_fadump_area_size();
498 fw_dump.reserve_dump_area_size = size;
499 if (fw_dump.dump_active) {
500 pr_info("Firmware-assisted dump is active.\n");
501
502 #ifdef CONFIG_HUGETLB_PAGE
503 /*
504 * FADump capture kernel doesn't care much about hugepages.
505 * In fact, handling hugepages in capture kernel is asking for
506 * trouble. So, disable HugeTLB support when fadump is active.
507 */
508 hugetlb_disabled = true;
509 #endif
510 /*
511 * If last boot has crashed then reserve all the memory
512 * above boot memory size so that we don't touch it until
513 * dump is written to disk by userspace tool. This memory
514 * can be released for general use by invalidating fadump.
515 */
516 fadump_reserve_crash_area(base);
517
518 pr_debug("fadumphdr_addr = %#016lx\n", fw_dump.fadumphdr_addr);
519 pr_debug("Reserve dump area start address: 0x%lx\n",
520 fw_dump.reserve_dump_area_start);
521 } else {
522 /*
523 * Reserve memory at an offset closer to bottom of the RAM to
524 * minimize the impact of memory hot-remove operation.
525 */
526 memblock_set_bottom_up(true);
527 base = memblock_find_in_range(base, mem_boundary, size, align);
528
529 /* Restore the previous allocation mode */
530 memblock_set_bottom_up(is_memblock_bottom_up);
531
532 if (!base) {
533 pr_err("Failed to find memory chunk for reservation!\n");
534 goto error_out;
535 }
536 fw_dump.reserve_dump_area_start = base;
537
538 /*
539 * Calculate the kernel metadata address and register it with
540 * f/w if the platform supports.
541 */
542 if (fw_dump.ops->fadump_setup_metadata &&
543 (fw_dump.ops->fadump_setup_metadata(&fw_dump) < 0))
544 goto error_out;
545
546 if (memblock_reserve(base, size)) {
547 pr_err("Failed to reserve memory!\n");
548 goto error_out;
549 }
550
551 pr_info("Reserved %lldMB of memory at %#016llx (System RAM: %lldMB)\n",
552 (size >> 20), base, (memblock_phys_mem_size() >> 20));
553
554 ret = fadump_cma_init();
555 }
556
557 return ret;
558 error_out:
559 fw_dump.fadump_enabled = 0;
560 return 0;
561 }
562
563 /* Look for fadump= cmdline option. */
early_fadump_param(char * p)564 static int __init early_fadump_param(char *p)
565 {
566 if (!p)
567 return 1;
568
569 if (strncmp(p, "on", 2) == 0)
570 fw_dump.fadump_enabled = 1;
571 else if (strncmp(p, "off", 3) == 0)
572 fw_dump.fadump_enabled = 0;
573 else if (strncmp(p, "nocma", 5) == 0) {
574 fw_dump.fadump_enabled = 1;
575 fw_dump.nocma = 1;
576 }
577
578 return 0;
579 }
580 early_param("fadump", early_fadump_param);
581
582 /*
583 * Look for fadump_reserve_mem= cmdline option
584 * TODO: Remove references to 'fadump_reserve_mem=' parameter,
585 * the sooner 'crashkernel=' parameter is accustomed to.
586 */
early_fadump_reserve_mem(char * p)587 static int __init early_fadump_reserve_mem(char *p)
588 {
589 if (p)
590 fw_dump.reserve_bootvar = memparse(p, &p);
591 return 0;
592 }
593 early_param("fadump_reserve_mem", early_fadump_reserve_mem);
594
crash_fadump(struct pt_regs * regs,const char * str)595 void crash_fadump(struct pt_regs *regs, const char *str)
596 {
597 struct fadump_crash_info_header *fdh = NULL;
598 int old_cpu, this_cpu;
599
600 if (!should_fadump_crash())
601 return;
602
603 /*
604 * old_cpu == -1 means this is the first CPU which has come here,
605 * go ahead and trigger fadump.
606 *
607 * old_cpu != -1 means some other CPU has already on it's way
608 * to trigger fadump, just keep looping here.
609 */
610 this_cpu = smp_processor_id();
611 old_cpu = cmpxchg(&crashing_cpu, -1, this_cpu);
612
613 if (old_cpu != -1) {
614 /*
615 * We can't loop here indefinitely. Wait as long as fadump
616 * is in force. If we race with fadump un-registration this
617 * loop will break and then we go down to normal panic path
618 * and reboot. If fadump is in force the first crashing
619 * cpu will definitely trigger fadump.
620 */
621 while (fw_dump.dump_registered)
622 cpu_relax();
623 return;
624 }
625
626 fdh = __va(fw_dump.fadumphdr_addr);
627 fdh->crashing_cpu = crashing_cpu;
628 crash_save_vmcoreinfo();
629
630 if (regs)
631 fdh->regs = *regs;
632 else
633 ppc_save_regs(&fdh->regs);
634
635 fdh->online_mask = *cpu_online_mask;
636
637 fw_dump.ops->fadump_trigger(fdh, str);
638 }
639
fadump_regs_to_elf_notes(u32 * buf,struct pt_regs * regs)640 u32 *fadump_regs_to_elf_notes(u32 *buf, struct pt_regs *regs)
641 {
642 struct elf_prstatus prstatus;
643
644 memset(&prstatus, 0, sizeof(prstatus));
645 /*
646 * FIXME: How do i get PID? Do I really need it?
647 * prstatus.pr_pid = ????
648 */
649 elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
650 buf = append_elf_note(buf, CRASH_CORE_NOTE_NAME, NT_PRSTATUS,
651 &prstatus, sizeof(prstatus));
652 return buf;
653 }
654
fadump_update_elfcore_header(char * bufp)655 void fadump_update_elfcore_header(char *bufp)
656 {
657 struct elfhdr *elf;
658 struct elf_phdr *phdr;
659
660 elf = (struct elfhdr *)bufp;
661 bufp += sizeof(struct elfhdr);
662
663 /* First note is a place holder for cpu notes info. */
664 phdr = (struct elf_phdr *)bufp;
665
666 if (phdr->p_type == PT_NOTE) {
667 phdr->p_paddr = __pa(fw_dump.cpu_notes_buf_vaddr);
668 phdr->p_offset = phdr->p_paddr;
669 phdr->p_filesz = fw_dump.cpu_notes_buf_size;
670 phdr->p_memsz = fw_dump.cpu_notes_buf_size;
671 }
672 return;
673 }
674
fadump_alloc_buffer(unsigned long size)675 static void *fadump_alloc_buffer(unsigned long size)
676 {
677 unsigned long count, i;
678 struct page *page;
679 void *vaddr;
680
681 vaddr = alloc_pages_exact(size, GFP_KERNEL | __GFP_ZERO);
682 if (!vaddr)
683 return NULL;
684
685 count = PAGE_ALIGN(size) / PAGE_SIZE;
686 page = virt_to_page(vaddr);
687 for (i = 0; i < count; i++)
688 mark_page_reserved(page + i);
689 return vaddr;
690 }
691
fadump_free_buffer(unsigned long vaddr,unsigned long size)692 static void fadump_free_buffer(unsigned long vaddr, unsigned long size)
693 {
694 free_reserved_area((void *)vaddr, (void *)(vaddr + size), -1, NULL);
695 }
696
fadump_setup_cpu_notes_buf(u32 num_cpus)697 s32 fadump_setup_cpu_notes_buf(u32 num_cpus)
698 {
699 /* Allocate buffer to hold cpu crash notes. */
700 fw_dump.cpu_notes_buf_size = num_cpus * sizeof(note_buf_t);
701 fw_dump.cpu_notes_buf_size = PAGE_ALIGN(fw_dump.cpu_notes_buf_size);
702 fw_dump.cpu_notes_buf_vaddr =
703 (unsigned long)fadump_alloc_buffer(fw_dump.cpu_notes_buf_size);
704 if (!fw_dump.cpu_notes_buf_vaddr) {
705 pr_err("Failed to allocate %ld bytes for CPU notes buffer\n",
706 fw_dump.cpu_notes_buf_size);
707 return -ENOMEM;
708 }
709
710 pr_debug("Allocated buffer for cpu notes of size %ld at 0x%lx\n",
711 fw_dump.cpu_notes_buf_size,
712 fw_dump.cpu_notes_buf_vaddr);
713 return 0;
714 }
715
fadump_free_cpu_notes_buf(void)716 void fadump_free_cpu_notes_buf(void)
717 {
718 if (!fw_dump.cpu_notes_buf_vaddr)
719 return;
720
721 fadump_free_buffer(fw_dump.cpu_notes_buf_vaddr,
722 fw_dump.cpu_notes_buf_size);
723 fw_dump.cpu_notes_buf_vaddr = 0;
724 fw_dump.cpu_notes_buf_size = 0;
725 }
726
fadump_free_mem_ranges(struct fadump_mrange_info * mrange_info)727 static void fadump_free_mem_ranges(struct fadump_mrange_info *mrange_info)
728 {
729 kfree(mrange_info->mem_ranges);
730 mrange_info->mem_ranges = NULL;
731 mrange_info->mem_ranges_sz = 0;
732 mrange_info->max_mem_ranges = 0;
733 }
734
735 /*
736 * Allocate or reallocate mem_ranges array in incremental units
737 * of PAGE_SIZE.
738 */
fadump_alloc_mem_ranges(struct fadump_mrange_info * mrange_info)739 static int fadump_alloc_mem_ranges(struct fadump_mrange_info *mrange_info)
740 {
741 struct fadump_memory_range *new_array;
742 u64 new_size;
743
744 new_size = mrange_info->mem_ranges_sz + PAGE_SIZE;
745 pr_debug("Allocating %llu bytes of memory for %s memory ranges\n",
746 new_size, mrange_info->name);
747
748 new_array = krealloc(mrange_info->mem_ranges, new_size, GFP_KERNEL);
749 if (new_array == NULL) {
750 pr_err("Insufficient memory for setting up %s memory ranges\n",
751 mrange_info->name);
752 fadump_free_mem_ranges(mrange_info);
753 return -ENOMEM;
754 }
755
756 mrange_info->mem_ranges = new_array;
757 mrange_info->mem_ranges_sz = new_size;
758 mrange_info->max_mem_ranges = (new_size /
759 sizeof(struct fadump_memory_range));
760 return 0;
761 }
762
fadump_add_mem_range(struct fadump_mrange_info * mrange_info,u64 base,u64 end)763 static inline int fadump_add_mem_range(struct fadump_mrange_info *mrange_info,
764 u64 base, u64 end)
765 {
766 struct fadump_memory_range *mem_ranges = mrange_info->mem_ranges;
767 bool is_adjacent = false;
768 u64 start, size;
769
770 if (base == end)
771 return 0;
772
773 /*
774 * Fold adjacent memory ranges to bring down the memory ranges/
775 * PT_LOAD segments count.
776 */
777 if (mrange_info->mem_range_cnt) {
778 start = mem_ranges[mrange_info->mem_range_cnt - 1].base;
779 size = mem_ranges[mrange_info->mem_range_cnt - 1].size;
780
781 if ((start + size) == base)
782 is_adjacent = true;
783 }
784 if (!is_adjacent) {
785 /* resize the array on reaching the limit */
786 if (mrange_info->mem_range_cnt == mrange_info->max_mem_ranges) {
787 int ret;
788
789 ret = fadump_alloc_mem_ranges(mrange_info);
790 if (ret)
791 return ret;
792
793 /* Update to the new resized array */
794 mem_ranges = mrange_info->mem_ranges;
795 }
796
797 start = base;
798 mem_ranges[mrange_info->mem_range_cnt].base = start;
799 mrange_info->mem_range_cnt++;
800 }
801
802 mem_ranges[mrange_info->mem_range_cnt - 1].size = (end - start);
803 pr_debug("%s_memory_range[%d] [%#016llx-%#016llx], %#llx bytes\n",
804 mrange_info->name, (mrange_info->mem_range_cnt - 1),
805 start, end - 1, (end - start));
806 return 0;
807 }
808
fadump_exclude_reserved_area(u64 start,u64 end)809 static int fadump_exclude_reserved_area(u64 start, u64 end)
810 {
811 u64 ra_start, ra_end;
812 int ret = 0;
813
814 ra_start = fw_dump.reserve_dump_area_start;
815 ra_end = ra_start + fw_dump.reserve_dump_area_size;
816
817 if ((ra_start < end) && (ra_end > start)) {
818 if ((start < ra_start) && (end > ra_end)) {
819 ret = fadump_add_mem_range(&crash_mrange_info,
820 start, ra_start);
821 if (ret)
822 return ret;
823
824 ret = fadump_add_mem_range(&crash_mrange_info,
825 ra_end, end);
826 } else if (start < ra_start) {
827 ret = fadump_add_mem_range(&crash_mrange_info,
828 start, ra_start);
829 } else if (ra_end < end) {
830 ret = fadump_add_mem_range(&crash_mrange_info,
831 ra_end, end);
832 }
833 } else
834 ret = fadump_add_mem_range(&crash_mrange_info, start, end);
835
836 return ret;
837 }
838
fadump_init_elfcore_header(char * bufp)839 static int fadump_init_elfcore_header(char *bufp)
840 {
841 struct elfhdr *elf;
842
843 elf = (struct elfhdr *) bufp;
844 bufp += sizeof(struct elfhdr);
845 memcpy(elf->e_ident, ELFMAG, SELFMAG);
846 elf->e_ident[EI_CLASS] = ELF_CLASS;
847 elf->e_ident[EI_DATA] = ELF_DATA;
848 elf->e_ident[EI_VERSION] = EV_CURRENT;
849 elf->e_ident[EI_OSABI] = ELF_OSABI;
850 memset(elf->e_ident+EI_PAD, 0, EI_NIDENT-EI_PAD);
851 elf->e_type = ET_CORE;
852 elf->e_machine = ELF_ARCH;
853 elf->e_version = EV_CURRENT;
854 elf->e_entry = 0;
855 elf->e_phoff = sizeof(struct elfhdr);
856 elf->e_shoff = 0;
857 #if defined(_CALL_ELF)
858 elf->e_flags = _CALL_ELF;
859 #else
860 elf->e_flags = 0;
861 #endif
862 elf->e_ehsize = sizeof(struct elfhdr);
863 elf->e_phentsize = sizeof(struct elf_phdr);
864 elf->e_phnum = 0;
865 elf->e_shentsize = 0;
866 elf->e_shnum = 0;
867 elf->e_shstrndx = 0;
868
869 return 0;
870 }
871
872 /*
873 * Traverse through memblock structure and setup crash memory ranges. These
874 * ranges will be used create PT_LOAD program headers in elfcore header.
875 */
fadump_setup_crash_memory_ranges(void)876 static int fadump_setup_crash_memory_ranges(void)
877 {
878 struct memblock_region *reg;
879 u64 start, end;
880 int i, ret;
881
882 pr_debug("Setup crash memory ranges.\n");
883 crash_mrange_info.mem_range_cnt = 0;
884
885 /*
886 * Boot memory region(s) registered with firmware are moved to
887 * different location at the time of crash. Create separate program
888 * header(s) for this memory chunk(s) with the correct offset.
889 */
890 for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) {
891 start = fw_dump.boot_mem_addr[i];
892 end = start + fw_dump.boot_mem_sz[i];
893 ret = fadump_add_mem_range(&crash_mrange_info, start, end);
894 if (ret)
895 return ret;
896 }
897
898 for_each_memblock(memory, reg) {
899 start = (u64)reg->base;
900 end = start + (u64)reg->size;
901
902 /*
903 * skip the memory chunk that is already added
904 * (0 through boot_memory_top).
905 */
906 if (start < fw_dump.boot_mem_top) {
907 if (end > fw_dump.boot_mem_top)
908 start = fw_dump.boot_mem_top;
909 else
910 continue;
911 }
912
913 /* add this range excluding the reserved dump area. */
914 ret = fadump_exclude_reserved_area(start, end);
915 if (ret)
916 return ret;
917 }
918
919 return 0;
920 }
921
922 /*
923 * If the given physical address falls within the boot memory region then
924 * return the relocated address that points to the dump region reserved
925 * for saving initial boot memory contents.
926 */
fadump_relocate(unsigned long paddr)927 static inline unsigned long fadump_relocate(unsigned long paddr)
928 {
929 unsigned long raddr, rstart, rend, rlast, hole_size;
930 int i;
931
932 hole_size = 0;
933 rlast = 0;
934 raddr = paddr;
935 for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) {
936 rstart = fw_dump.boot_mem_addr[i];
937 rend = rstart + fw_dump.boot_mem_sz[i];
938 hole_size += (rstart - rlast);
939
940 if (paddr >= rstart && paddr < rend) {
941 raddr += fw_dump.boot_mem_dest_addr - hole_size;
942 break;
943 }
944
945 rlast = rend;
946 }
947
948 pr_debug("vmcoreinfo: paddr = 0x%lx, raddr = 0x%lx\n", paddr, raddr);
949 return raddr;
950 }
951
fadump_create_elfcore_headers(char * bufp)952 static int fadump_create_elfcore_headers(char *bufp)
953 {
954 unsigned long long raddr, offset;
955 struct elf_phdr *phdr;
956 struct elfhdr *elf;
957 int i, j;
958
959 fadump_init_elfcore_header(bufp);
960 elf = (struct elfhdr *)bufp;
961 bufp += sizeof(struct elfhdr);
962
963 /*
964 * setup ELF PT_NOTE, place holder for cpu notes info. The notes info
965 * will be populated during second kernel boot after crash. Hence
966 * this PT_NOTE will always be the first elf note.
967 *
968 * NOTE: Any new ELF note addition should be placed after this note.
969 */
970 phdr = (struct elf_phdr *)bufp;
971 bufp += sizeof(struct elf_phdr);
972 phdr->p_type = PT_NOTE;
973 phdr->p_flags = 0;
974 phdr->p_vaddr = 0;
975 phdr->p_align = 0;
976
977 phdr->p_offset = 0;
978 phdr->p_paddr = 0;
979 phdr->p_filesz = 0;
980 phdr->p_memsz = 0;
981
982 (elf->e_phnum)++;
983
984 /* setup ELF PT_NOTE for vmcoreinfo */
985 phdr = (struct elf_phdr *)bufp;
986 bufp += sizeof(struct elf_phdr);
987 phdr->p_type = PT_NOTE;
988 phdr->p_flags = 0;
989 phdr->p_vaddr = 0;
990 phdr->p_align = 0;
991
992 phdr->p_paddr = fadump_relocate(paddr_vmcoreinfo_note());
993 phdr->p_offset = phdr->p_paddr;
994 phdr->p_memsz = phdr->p_filesz = VMCOREINFO_NOTE_SIZE;
995
996 /* Increment number of program headers. */
997 (elf->e_phnum)++;
998
999 /* setup PT_LOAD sections. */
1000 j = 0;
1001 offset = 0;
1002 raddr = fw_dump.boot_mem_addr[0];
1003 for (i = 0; i < crash_mrange_info.mem_range_cnt; i++) {
1004 u64 mbase, msize;
1005
1006 mbase = crash_mrange_info.mem_ranges[i].base;
1007 msize = crash_mrange_info.mem_ranges[i].size;
1008 if (!msize)
1009 continue;
1010
1011 phdr = (struct elf_phdr *)bufp;
1012 bufp += sizeof(struct elf_phdr);
1013 phdr->p_type = PT_LOAD;
1014 phdr->p_flags = PF_R|PF_W|PF_X;
1015 phdr->p_offset = mbase;
1016
1017 if (mbase == raddr) {
1018 /*
1019 * The entire real memory region will be moved by
1020 * firmware to the specified destination_address.
1021 * Hence set the correct offset.
1022 */
1023 phdr->p_offset = fw_dump.boot_mem_dest_addr + offset;
1024 if (j < (fw_dump.boot_mem_regs_cnt - 1)) {
1025 offset += fw_dump.boot_mem_sz[j];
1026 raddr = fw_dump.boot_mem_addr[++j];
1027 }
1028 }
1029
1030 phdr->p_paddr = mbase;
1031 phdr->p_vaddr = (unsigned long)__va(mbase);
1032 phdr->p_filesz = msize;
1033 phdr->p_memsz = msize;
1034 phdr->p_align = 0;
1035
1036 /* Increment number of program headers. */
1037 (elf->e_phnum)++;
1038 }
1039 return 0;
1040 }
1041
init_fadump_header(unsigned long addr)1042 static unsigned long init_fadump_header(unsigned long addr)
1043 {
1044 struct fadump_crash_info_header *fdh;
1045
1046 if (!addr)
1047 return 0;
1048
1049 fdh = __va(addr);
1050 addr += sizeof(struct fadump_crash_info_header);
1051
1052 memset(fdh, 0, sizeof(struct fadump_crash_info_header));
1053 fdh->magic_number = FADUMP_CRASH_INFO_MAGIC;
1054 fdh->elfcorehdr_addr = addr;
1055 /* We will set the crashing cpu id in crash_fadump() during crash. */
1056 fdh->crashing_cpu = FADUMP_CPU_UNKNOWN;
1057
1058 return addr;
1059 }
1060
register_fadump(void)1061 static int register_fadump(void)
1062 {
1063 unsigned long addr;
1064 void *vaddr;
1065 int ret;
1066
1067 /*
1068 * If no memory is reserved then we can not register for firmware-
1069 * assisted dump.
1070 */
1071 if (!fw_dump.reserve_dump_area_size)
1072 return -ENODEV;
1073
1074 ret = fadump_setup_crash_memory_ranges();
1075 if (ret)
1076 return ret;
1077
1078 addr = fw_dump.fadumphdr_addr;
1079
1080 /* Initialize fadump crash info header. */
1081 addr = init_fadump_header(addr);
1082 vaddr = __va(addr);
1083
1084 pr_debug("Creating ELF core headers at %#016lx\n", addr);
1085 fadump_create_elfcore_headers(vaddr);
1086
1087 /* register the future kernel dump with firmware. */
1088 pr_debug("Registering for firmware-assisted kernel dump...\n");
1089 return fw_dump.ops->fadump_register(&fw_dump);
1090 }
1091
fadump_cleanup(void)1092 void fadump_cleanup(void)
1093 {
1094 if (!fw_dump.fadump_supported)
1095 return;
1096
1097 /* Invalidate the registration only if dump is active. */
1098 if (fw_dump.dump_active) {
1099 pr_debug("Invalidating firmware-assisted dump registration\n");
1100 fw_dump.ops->fadump_invalidate(&fw_dump);
1101 } else if (fw_dump.dump_registered) {
1102 /* Un-register Firmware-assisted dump if it was registered. */
1103 fw_dump.ops->fadump_unregister(&fw_dump);
1104 fadump_free_mem_ranges(&crash_mrange_info);
1105 }
1106
1107 if (fw_dump.ops->fadump_cleanup)
1108 fw_dump.ops->fadump_cleanup(&fw_dump);
1109 }
1110
fadump_free_reserved_memory(unsigned long start_pfn,unsigned long end_pfn)1111 static void fadump_free_reserved_memory(unsigned long start_pfn,
1112 unsigned long end_pfn)
1113 {
1114 unsigned long pfn;
1115 unsigned long time_limit = jiffies + HZ;
1116
1117 pr_info("freeing reserved memory (0x%llx - 0x%llx)\n",
1118 PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
1119
1120 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1121 free_reserved_page(pfn_to_page(pfn));
1122
1123 if (time_after(jiffies, time_limit)) {
1124 cond_resched();
1125 time_limit = jiffies + HZ;
1126 }
1127 }
1128 }
1129
1130 /*
1131 * Skip memory holes and free memory that was actually reserved.
1132 */
fadump_release_reserved_area(u64 start,u64 end)1133 static void fadump_release_reserved_area(u64 start, u64 end)
1134 {
1135 u64 tstart, tend, spfn, epfn;
1136 struct memblock_region *reg;
1137
1138 spfn = PHYS_PFN(start);
1139 epfn = PHYS_PFN(end);
1140 for_each_memblock(memory, reg) {
1141 tstart = max_t(u64, spfn, memblock_region_memory_base_pfn(reg));
1142 tend = min_t(u64, epfn, memblock_region_memory_end_pfn(reg));
1143 if (tstart < tend) {
1144 fadump_free_reserved_memory(tstart, tend);
1145
1146 if (tend == epfn)
1147 break;
1148
1149 spfn = tend;
1150 }
1151 }
1152 }
1153
1154 /*
1155 * Sort the mem ranges in-place and merge adjacent ranges
1156 * to minimize the memory ranges count.
1157 */
sort_and_merge_mem_ranges(struct fadump_mrange_info * mrange_info)1158 static void sort_and_merge_mem_ranges(struct fadump_mrange_info *mrange_info)
1159 {
1160 struct fadump_memory_range *mem_ranges;
1161 struct fadump_memory_range tmp_range;
1162 u64 base, size;
1163 int i, j, idx;
1164
1165 if (!reserved_mrange_info.mem_range_cnt)
1166 return;
1167
1168 /* Sort the memory ranges */
1169 mem_ranges = mrange_info->mem_ranges;
1170 for (i = 0; i < mrange_info->mem_range_cnt; i++) {
1171 idx = i;
1172 for (j = (i + 1); j < mrange_info->mem_range_cnt; j++) {
1173 if (mem_ranges[idx].base > mem_ranges[j].base)
1174 idx = j;
1175 }
1176 if (idx != i) {
1177 tmp_range = mem_ranges[idx];
1178 mem_ranges[idx] = mem_ranges[i];
1179 mem_ranges[i] = tmp_range;
1180 }
1181 }
1182
1183 /* Merge adjacent reserved ranges */
1184 idx = 0;
1185 for (i = 1; i < mrange_info->mem_range_cnt; i++) {
1186 base = mem_ranges[i-1].base;
1187 size = mem_ranges[i-1].size;
1188 if (mem_ranges[i].base == (base + size))
1189 mem_ranges[idx].size += mem_ranges[i].size;
1190 else {
1191 idx++;
1192 if (i == idx)
1193 continue;
1194
1195 mem_ranges[idx] = mem_ranges[i];
1196 }
1197 }
1198 mrange_info->mem_range_cnt = idx + 1;
1199 }
1200
1201 /*
1202 * Scan reserved-ranges to consider them while reserving/releasing
1203 * memory for FADump.
1204 */
fadump_scan_reserved_mem_ranges(void)1205 static inline int fadump_scan_reserved_mem_ranges(void)
1206 {
1207 struct device_node *root;
1208 const __be32 *prop;
1209 int len, ret = -1;
1210 unsigned long i;
1211
1212 root = of_find_node_by_path("/");
1213 if (!root)
1214 return ret;
1215
1216 prop = of_get_property(root, "reserved-ranges", &len);
1217 if (!prop)
1218 return ret;
1219
1220 /*
1221 * Each reserved range is an (address,size) pair, 2 cells each,
1222 * totalling 4 cells per range.
1223 */
1224 for (i = 0; i < len / (sizeof(*prop) * 4); i++) {
1225 u64 base, size;
1226
1227 base = of_read_number(prop + (i * 4) + 0, 2);
1228 size = of_read_number(prop + (i * 4) + 2, 2);
1229
1230 if (size) {
1231 ret = fadump_add_mem_range(&reserved_mrange_info,
1232 base, base + size);
1233 if (ret < 0) {
1234 pr_warn("some reserved ranges are ignored!\n");
1235 break;
1236 }
1237 }
1238 }
1239
1240 return ret;
1241 }
1242
1243 /*
1244 * Release the memory that was reserved during early boot to preserve the
1245 * crash'ed kernel's memory contents except reserved dump area (permanent
1246 * reservation) and reserved ranges used by F/W. The released memory will
1247 * be available for general use.
1248 */
fadump_release_memory(u64 begin,u64 end)1249 static void fadump_release_memory(u64 begin, u64 end)
1250 {
1251 u64 ra_start, ra_end, tstart;
1252 int i, ret;
1253
1254 fadump_scan_reserved_mem_ranges();
1255
1256 ra_start = fw_dump.reserve_dump_area_start;
1257 ra_end = ra_start + fw_dump.reserve_dump_area_size;
1258
1259 /*
1260 * Add reserved dump area to reserved ranges list
1261 * and exclude all these ranges while releasing memory.
1262 */
1263 ret = fadump_add_mem_range(&reserved_mrange_info, ra_start, ra_end);
1264 if (ret != 0) {
1265 /*
1266 * Not enough memory to setup reserved ranges but the system is
1267 * running shortage of memory. So, release all the memory except
1268 * Reserved dump area (reused for next fadump registration).
1269 */
1270 if (begin < ra_end && end > ra_start) {
1271 if (begin < ra_start)
1272 fadump_release_reserved_area(begin, ra_start);
1273 if (end > ra_end)
1274 fadump_release_reserved_area(ra_end, end);
1275 } else
1276 fadump_release_reserved_area(begin, end);
1277
1278 return;
1279 }
1280
1281 /* Get the reserved ranges list in order first. */
1282 sort_and_merge_mem_ranges(&reserved_mrange_info);
1283
1284 /* Exclude reserved ranges and release remaining memory */
1285 tstart = begin;
1286 for (i = 0; i < reserved_mrange_info.mem_range_cnt; i++) {
1287 ra_start = reserved_mrange_info.mem_ranges[i].base;
1288 ra_end = ra_start + reserved_mrange_info.mem_ranges[i].size;
1289
1290 if (tstart >= ra_end)
1291 continue;
1292
1293 if (tstart < ra_start)
1294 fadump_release_reserved_area(tstart, ra_start);
1295 tstart = ra_end;
1296 }
1297
1298 if (tstart < end)
1299 fadump_release_reserved_area(tstart, end);
1300 }
1301
fadump_invalidate_release_mem(void)1302 static void fadump_invalidate_release_mem(void)
1303 {
1304 mutex_lock(&fadump_mutex);
1305 if (!fw_dump.dump_active) {
1306 mutex_unlock(&fadump_mutex);
1307 return;
1308 }
1309
1310 fadump_cleanup();
1311 mutex_unlock(&fadump_mutex);
1312
1313 fadump_release_memory(fw_dump.boot_mem_top, memblock_end_of_DRAM());
1314 fadump_free_cpu_notes_buf();
1315
1316 /*
1317 * Setup kernel metadata and initialize the kernel dump
1318 * memory structure for FADump re-registration.
1319 */
1320 if (fw_dump.ops->fadump_setup_metadata &&
1321 (fw_dump.ops->fadump_setup_metadata(&fw_dump) < 0))
1322 pr_warn("Failed to setup kernel metadata!\n");
1323 fw_dump.ops->fadump_init_mem_struct(&fw_dump);
1324 }
1325
fadump_release_memory_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)1326 static ssize_t fadump_release_memory_store(struct kobject *kobj,
1327 struct kobj_attribute *attr,
1328 const char *buf, size_t count)
1329 {
1330 int input = -1;
1331
1332 if (!fw_dump.dump_active)
1333 return -EPERM;
1334
1335 if (kstrtoint(buf, 0, &input))
1336 return -EINVAL;
1337
1338 if (input == 1) {
1339 /*
1340 * Take away the '/proc/vmcore'. We are releasing the dump
1341 * memory, hence it will not be valid anymore.
1342 */
1343 #ifdef CONFIG_PROC_VMCORE
1344 vmcore_cleanup();
1345 #endif
1346 fadump_invalidate_release_mem();
1347
1348 } else
1349 return -EINVAL;
1350 return count;
1351 }
1352
fadump_enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1353 static ssize_t fadump_enabled_show(struct kobject *kobj,
1354 struct kobj_attribute *attr,
1355 char *buf)
1356 {
1357 return sprintf(buf, "%d\n", fw_dump.fadump_enabled);
1358 }
1359
fadump_register_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1360 static ssize_t fadump_register_show(struct kobject *kobj,
1361 struct kobj_attribute *attr,
1362 char *buf)
1363 {
1364 return sprintf(buf, "%d\n", fw_dump.dump_registered);
1365 }
1366
fadump_register_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)1367 static ssize_t fadump_register_store(struct kobject *kobj,
1368 struct kobj_attribute *attr,
1369 const char *buf, size_t count)
1370 {
1371 int ret = 0;
1372 int input = -1;
1373
1374 if (!fw_dump.fadump_enabled || fw_dump.dump_active)
1375 return -EPERM;
1376
1377 if (kstrtoint(buf, 0, &input))
1378 return -EINVAL;
1379
1380 mutex_lock(&fadump_mutex);
1381
1382 switch (input) {
1383 case 0:
1384 if (fw_dump.dump_registered == 0) {
1385 goto unlock_out;
1386 }
1387
1388 /* Un-register Firmware-assisted dump */
1389 pr_debug("Un-register firmware-assisted dump\n");
1390 fw_dump.ops->fadump_unregister(&fw_dump);
1391 break;
1392 case 1:
1393 if (fw_dump.dump_registered == 1) {
1394 /* Un-register Firmware-assisted dump */
1395 fw_dump.ops->fadump_unregister(&fw_dump);
1396 }
1397 /* Register Firmware-assisted dump */
1398 ret = register_fadump();
1399 break;
1400 default:
1401 ret = -EINVAL;
1402 break;
1403 }
1404
1405 unlock_out:
1406 mutex_unlock(&fadump_mutex);
1407 return ret < 0 ? ret : count;
1408 }
1409
fadump_region_show(struct seq_file * m,void * private)1410 static int fadump_region_show(struct seq_file *m, void *private)
1411 {
1412 if (!fw_dump.fadump_enabled)
1413 return 0;
1414
1415 mutex_lock(&fadump_mutex);
1416 fw_dump.ops->fadump_region_show(&fw_dump, m);
1417 mutex_unlock(&fadump_mutex);
1418 return 0;
1419 }
1420
1421 static struct kobj_attribute fadump_release_attr = __ATTR(fadump_release_mem,
1422 0200, NULL,
1423 fadump_release_memory_store);
1424 static struct kobj_attribute fadump_attr = __ATTR(fadump_enabled,
1425 0444, fadump_enabled_show,
1426 NULL);
1427 static struct kobj_attribute fadump_register_attr = __ATTR(fadump_registered,
1428 0644, fadump_register_show,
1429 fadump_register_store);
1430
1431 DEFINE_SHOW_ATTRIBUTE(fadump_region);
1432
fadump_init_files(void)1433 static void fadump_init_files(void)
1434 {
1435 struct dentry *debugfs_file;
1436 int rc = 0;
1437
1438 rc = sysfs_create_file(kernel_kobj, &fadump_attr.attr);
1439 if (rc)
1440 printk(KERN_ERR "fadump: unable to create sysfs file"
1441 " fadump_enabled (%d)\n", rc);
1442
1443 rc = sysfs_create_file(kernel_kobj, &fadump_register_attr.attr);
1444 if (rc)
1445 printk(KERN_ERR "fadump: unable to create sysfs file"
1446 " fadump_registered (%d)\n", rc);
1447
1448 debugfs_file = debugfs_create_file("fadump_region", 0444,
1449 powerpc_debugfs_root, NULL,
1450 &fadump_region_fops);
1451 if (!debugfs_file)
1452 printk(KERN_ERR "fadump: unable to create debugfs file"
1453 " fadump_region\n");
1454
1455 if (fw_dump.dump_active) {
1456 rc = sysfs_create_file(kernel_kobj, &fadump_release_attr.attr);
1457 if (rc)
1458 printk(KERN_ERR "fadump: unable to create sysfs file"
1459 " fadump_release_mem (%d)\n", rc);
1460 }
1461 return;
1462 }
1463
1464 /*
1465 * Prepare for firmware-assisted dump.
1466 */
setup_fadump(void)1467 int __init setup_fadump(void)
1468 {
1469 if (!fw_dump.fadump_enabled)
1470 return 0;
1471
1472 if (!fw_dump.fadump_supported) {
1473 printk(KERN_ERR "Firmware-assisted dump is not supported on"
1474 " this hardware\n");
1475 return 0;
1476 }
1477
1478 fadump_show_config();
1479 /*
1480 * If dump data is available then see if it is valid and prepare for
1481 * saving it to the disk.
1482 */
1483 if (fw_dump.dump_active) {
1484 /*
1485 * if dump process fails then invalidate the registration
1486 * and release memory before proceeding for re-registration.
1487 */
1488 if (fw_dump.ops->fadump_process(&fw_dump) < 0)
1489 fadump_invalidate_release_mem();
1490 }
1491 /* Initialize the kernel dump memory structure for FAD registration. */
1492 else if (fw_dump.reserve_dump_area_size)
1493 fw_dump.ops->fadump_init_mem_struct(&fw_dump);
1494
1495 fadump_init_files();
1496
1497 return 1;
1498 }
1499 subsys_initcall(setup_fadump);
1500 #else /* !CONFIG_PRESERVE_FA_DUMP */
1501
1502 /* Scan the Firmware Assisted dump configuration details. */
early_init_dt_scan_fw_dump(unsigned long node,const char * uname,int depth,void * data)1503 int __init early_init_dt_scan_fw_dump(unsigned long node, const char *uname,
1504 int depth, void *data)
1505 {
1506 if ((depth != 1) || (strcmp(uname, "ibm,opal") != 0))
1507 return 0;
1508
1509 opal_fadump_dt_scan(&fw_dump, node);
1510 return 1;
1511 }
1512
1513 /*
1514 * When dump is active but PRESERVE_FA_DUMP is enabled on the kernel,
1515 * preserve crash data. The subsequent memory preserving kernel boot
1516 * is likely to process this crash data.
1517 */
fadump_reserve_mem(void)1518 int __init fadump_reserve_mem(void)
1519 {
1520 if (fw_dump.dump_active) {
1521 /*
1522 * If last boot has crashed then reserve all the memory
1523 * above boot memory to preserve crash data.
1524 */
1525 pr_info("Preserving crash data for processing in next boot.\n");
1526 fadump_reserve_crash_area(fw_dump.boot_mem_top);
1527 } else
1528 pr_debug("FADump-aware kernel..\n");
1529
1530 return 1;
1531 }
1532 #endif /* CONFIG_PRESERVE_FA_DUMP */
1533
1534 /* Preserve everything above the base address */
fadump_reserve_crash_area(u64 base)1535 static void __init fadump_reserve_crash_area(u64 base)
1536 {
1537 struct memblock_region *reg;
1538 u64 mstart, msize;
1539
1540 for_each_memblock(memory, reg) {
1541 mstart = reg->base;
1542 msize = reg->size;
1543
1544 if ((mstart + msize) < base)
1545 continue;
1546
1547 if (mstart < base) {
1548 msize -= (base - mstart);
1549 mstart = base;
1550 }
1551
1552 pr_info("Reserving %lluMB of memory at %#016llx for preserving crash data",
1553 (msize >> 20), mstart);
1554 memblock_reserve(mstart, msize);
1555 }
1556 }
1557
arch_reserved_kernel_pages(void)1558 unsigned long __init arch_reserved_kernel_pages(void)
1559 {
1560 return memblock_reserved_size() / PAGE_SIZE;
1561 }
1562