1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Wireless utility functions
4  *
5  * Copyright 2007-2009	Johannes Berg <johannes@sipsolutions.net>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright 2017	Intel Deutschland GmbH
8  * Copyright (C) 2018-2019 Intel Corporation
9  */
10 #include <linux/export.h>
11 #include <linux/bitops.h>
12 #include <linux/etherdevice.h>
13 #include <linux/slab.h>
14 #include <linux/ieee80211.h>
15 #include <net/cfg80211.h>
16 #include <net/ip.h>
17 #include <net/dsfield.h>
18 #include <linux/if_vlan.h>
19 #include <linux/mpls.h>
20 #include <linux/gcd.h>
21 #include <linux/bitfield.h>
22 #include <linux/nospec.h>
23 #include "core.h"
24 #include "rdev-ops.h"
25 
26 
27 struct ieee80211_rate *
ieee80211_get_response_rate(struct ieee80211_supported_band * sband,u32 basic_rates,int bitrate)28 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
29 			    u32 basic_rates, int bitrate)
30 {
31 	struct ieee80211_rate *result = &sband->bitrates[0];
32 	int i;
33 
34 	for (i = 0; i < sband->n_bitrates; i++) {
35 		if (!(basic_rates & BIT(i)))
36 			continue;
37 		if (sband->bitrates[i].bitrate > bitrate)
38 			continue;
39 		result = &sband->bitrates[i];
40 	}
41 
42 	return result;
43 }
44 EXPORT_SYMBOL(ieee80211_get_response_rate);
45 
ieee80211_mandatory_rates(struct ieee80211_supported_band * sband,enum nl80211_bss_scan_width scan_width)46 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
47 			      enum nl80211_bss_scan_width scan_width)
48 {
49 	struct ieee80211_rate *bitrates;
50 	u32 mandatory_rates = 0;
51 	enum ieee80211_rate_flags mandatory_flag;
52 	int i;
53 
54 	if (WARN_ON(!sband))
55 		return 1;
56 
57 	if (sband->band == NL80211_BAND_2GHZ) {
58 		if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
59 		    scan_width == NL80211_BSS_CHAN_WIDTH_10)
60 			mandatory_flag = IEEE80211_RATE_MANDATORY_G;
61 		else
62 			mandatory_flag = IEEE80211_RATE_MANDATORY_B;
63 	} else {
64 		mandatory_flag = IEEE80211_RATE_MANDATORY_A;
65 	}
66 
67 	bitrates = sband->bitrates;
68 	for (i = 0; i < sband->n_bitrates; i++)
69 		if (bitrates[i].flags & mandatory_flag)
70 			mandatory_rates |= BIT(i);
71 	return mandatory_rates;
72 }
73 EXPORT_SYMBOL(ieee80211_mandatory_rates);
74 
ieee80211_channel_to_frequency(int chan,enum nl80211_band band)75 int ieee80211_channel_to_frequency(int chan, enum nl80211_band band)
76 {
77 	/* see 802.11 17.3.8.3.2 and Annex J
78 	 * there are overlapping channel numbers in 5GHz and 2GHz bands */
79 	if (chan <= 0)
80 		return 0; /* not supported */
81 	switch (band) {
82 	case NL80211_BAND_2GHZ:
83 		if (chan == 14)
84 			return 2484;
85 		else if (chan < 14)
86 			return 2407 + chan * 5;
87 		break;
88 	case NL80211_BAND_5GHZ:
89 		if (chan >= 182 && chan <= 196)
90 			return 4000 + chan * 5;
91 		else
92 			return 5000 + chan * 5;
93 		break;
94 	case NL80211_BAND_6GHZ:
95 		/* see 802.11ax D4.1 27.3.22.2 */
96 		if (chan <= 253)
97 			return 5940 + chan * 5;
98 		break;
99 	case NL80211_BAND_60GHZ:
100 		if (chan < 7)
101 			return 56160 + chan * 2160;
102 		break;
103 	default:
104 		;
105 	}
106 	return 0; /* not supported */
107 }
108 EXPORT_SYMBOL(ieee80211_channel_to_frequency);
109 
ieee80211_frequency_to_channel(int freq)110 int ieee80211_frequency_to_channel(int freq)
111 {
112 	/* see 802.11 17.3.8.3.2 and Annex J */
113 	if (freq == 2484)
114 		return 14;
115 	else if (freq < 2484)
116 		return (freq - 2407) / 5;
117 	else if (freq >= 4910 && freq <= 4980)
118 		return (freq - 4000) / 5;
119 	else if (freq < 5945)
120 		return (freq - 5000) / 5;
121 	else if (freq <= 45000) /* DMG band lower limit */
122 		/* see 802.11ax D4.1 27.3.22.2 */
123 		return (freq - 5940) / 5;
124 	else if (freq >= 58320 && freq <= 70200)
125 		return (freq - 56160) / 2160;
126 	else
127 		return 0;
128 }
129 EXPORT_SYMBOL(ieee80211_frequency_to_channel);
130 
ieee80211_get_channel(struct wiphy * wiphy,int freq)131 struct ieee80211_channel *ieee80211_get_channel(struct wiphy *wiphy, int freq)
132 {
133 	enum nl80211_band band;
134 	struct ieee80211_supported_band *sband;
135 	int i;
136 
137 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
138 		sband = wiphy->bands[band];
139 
140 		if (!sband)
141 			continue;
142 
143 		for (i = 0; i < sband->n_channels; i++) {
144 			if (sband->channels[i].center_freq == freq)
145 				return &sband->channels[i];
146 		}
147 	}
148 
149 	return NULL;
150 }
151 EXPORT_SYMBOL(ieee80211_get_channel);
152 
set_mandatory_flags_band(struct ieee80211_supported_band * sband)153 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband)
154 {
155 	int i, want;
156 
157 	switch (sband->band) {
158 	case NL80211_BAND_5GHZ:
159 	case NL80211_BAND_6GHZ:
160 		want = 3;
161 		for (i = 0; i < sband->n_bitrates; i++) {
162 			if (sband->bitrates[i].bitrate == 60 ||
163 			    sband->bitrates[i].bitrate == 120 ||
164 			    sband->bitrates[i].bitrate == 240) {
165 				sband->bitrates[i].flags |=
166 					IEEE80211_RATE_MANDATORY_A;
167 				want--;
168 			}
169 		}
170 		WARN_ON(want);
171 		break;
172 	case NL80211_BAND_2GHZ:
173 		want = 7;
174 		for (i = 0; i < sband->n_bitrates; i++) {
175 			switch (sband->bitrates[i].bitrate) {
176 			case 10:
177 			case 20:
178 			case 55:
179 			case 110:
180 				sband->bitrates[i].flags |=
181 					IEEE80211_RATE_MANDATORY_B |
182 					IEEE80211_RATE_MANDATORY_G;
183 				want--;
184 				break;
185 			case 60:
186 			case 120:
187 			case 240:
188 				sband->bitrates[i].flags |=
189 					IEEE80211_RATE_MANDATORY_G;
190 				want--;
191 				/* fall through */
192 			default:
193 				sband->bitrates[i].flags |=
194 					IEEE80211_RATE_ERP_G;
195 				break;
196 			}
197 		}
198 		WARN_ON(want != 0 && want != 3);
199 		break;
200 	case NL80211_BAND_60GHZ:
201 		/* check for mandatory HT MCS 1..4 */
202 		WARN_ON(!sband->ht_cap.ht_supported);
203 		WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
204 		break;
205 	case NUM_NL80211_BANDS:
206 	default:
207 		WARN_ON(1);
208 		break;
209 	}
210 }
211 
ieee80211_set_bitrate_flags(struct wiphy * wiphy)212 void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
213 {
214 	enum nl80211_band band;
215 
216 	for (band = 0; band < NUM_NL80211_BANDS; band++)
217 		if (wiphy->bands[band])
218 			set_mandatory_flags_band(wiphy->bands[band]);
219 }
220 
cfg80211_supported_cipher_suite(struct wiphy * wiphy,u32 cipher)221 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
222 {
223 	int i;
224 	for (i = 0; i < wiphy->n_cipher_suites; i++)
225 		if (cipher == wiphy->cipher_suites[i])
226 			return true;
227 	return false;
228 }
229 
cfg80211_validate_key_settings(struct cfg80211_registered_device * rdev,struct key_params * params,int key_idx,bool pairwise,const u8 * mac_addr)230 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
231 				   struct key_params *params, int key_idx,
232 				   bool pairwise, const u8 *mac_addr)
233 {
234 	if (key_idx < 0 || key_idx > 5)
235 		return -EINVAL;
236 
237 	if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
238 		return -EINVAL;
239 
240 	if (pairwise && !mac_addr)
241 		return -EINVAL;
242 
243 	switch (params->cipher) {
244 	case WLAN_CIPHER_SUITE_TKIP:
245 		/* Extended Key ID can only be used with CCMP/GCMP ciphers */
246 		if ((pairwise && key_idx) ||
247 		    params->mode != NL80211_KEY_RX_TX)
248 			return -EINVAL;
249 		break;
250 	case WLAN_CIPHER_SUITE_CCMP:
251 	case WLAN_CIPHER_SUITE_CCMP_256:
252 	case WLAN_CIPHER_SUITE_GCMP:
253 	case WLAN_CIPHER_SUITE_GCMP_256:
254 		/* IEEE802.11-2016 allows only 0 and - when supporting
255 		 * Extended Key ID - 1 as index for pairwise keys.
256 		 * @NL80211_KEY_NO_TX is only allowed for pairwise keys when
257 		 * the driver supports Extended Key ID.
258 		 * @NL80211_KEY_SET_TX can't be set when installing and
259 		 * validating a key.
260 		 */
261 		if ((params->mode == NL80211_KEY_NO_TX && !pairwise) ||
262 		    params->mode == NL80211_KEY_SET_TX)
263 			return -EINVAL;
264 		if (wiphy_ext_feature_isset(&rdev->wiphy,
265 					    NL80211_EXT_FEATURE_EXT_KEY_ID)) {
266 			if (pairwise && (key_idx < 0 || key_idx > 1))
267 				return -EINVAL;
268 		} else if (pairwise && key_idx) {
269 			return -EINVAL;
270 		}
271 		break;
272 	case WLAN_CIPHER_SUITE_AES_CMAC:
273 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
274 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
275 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
276 		/* Disallow BIP (group-only) cipher as pairwise cipher */
277 		if (pairwise)
278 			return -EINVAL;
279 		if (key_idx < 4)
280 			return -EINVAL;
281 		break;
282 	case WLAN_CIPHER_SUITE_WEP40:
283 	case WLAN_CIPHER_SUITE_WEP104:
284 		if (key_idx > 3)
285 			return -EINVAL;
286 	default:
287 		break;
288 	}
289 
290 	switch (params->cipher) {
291 	case WLAN_CIPHER_SUITE_WEP40:
292 		if (params->key_len != WLAN_KEY_LEN_WEP40)
293 			return -EINVAL;
294 		break;
295 	case WLAN_CIPHER_SUITE_TKIP:
296 		if (params->key_len != WLAN_KEY_LEN_TKIP)
297 			return -EINVAL;
298 		break;
299 	case WLAN_CIPHER_SUITE_CCMP:
300 		if (params->key_len != WLAN_KEY_LEN_CCMP)
301 			return -EINVAL;
302 		break;
303 	case WLAN_CIPHER_SUITE_CCMP_256:
304 		if (params->key_len != WLAN_KEY_LEN_CCMP_256)
305 			return -EINVAL;
306 		break;
307 	case WLAN_CIPHER_SUITE_GCMP:
308 		if (params->key_len != WLAN_KEY_LEN_GCMP)
309 			return -EINVAL;
310 		break;
311 	case WLAN_CIPHER_SUITE_GCMP_256:
312 		if (params->key_len != WLAN_KEY_LEN_GCMP_256)
313 			return -EINVAL;
314 		break;
315 	case WLAN_CIPHER_SUITE_WEP104:
316 		if (params->key_len != WLAN_KEY_LEN_WEP104)
317 			return -EINVAL;
318 		break;
319 	case WLAN_CIPHER_SUITE_AES_CMAC:
320 		if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
321 			return -EINVAL;
322 		break;
323 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
324 		if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
325 			return -EINVAL;
326 		break;
327 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
328 		if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
329 			return -EINVAL;
330 		break;
331 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
332 		if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
333 			return -EINVAL;
334 		break;
335 	default:
336 		/*
337 		 * We don't know anything about this algorithm,
338 		 * allow using it -- but the driver must check
339 		 * all parameters! We still check below whether
340 		 * or not the driver supports this algorithm,
341 		 * of course.
342 		 */
343 		break;
344 	}
345 
346 	if (params->seq) {
347 		switch (params->cipher) {
348 		case WLAN_CIPHER_SUITE_WEP40:
349 		case WLAN_CIPHER_SUITE_WEP104:
350 			/* These ciphers do not use key sequence */
351 			return -EINVAL;
352 		case WLAN_CIPHER_SUITE_TKIP:
353 		case WLAN_CIPHER_SUITE_CCMP:
354 		case WLAN_CIPHER_SUITE_CCMP_256:
355 		case WLAN_CIPHER_SUITE_GCMP:
356 		case WLAN_CIPHER_SUITE_GCMP_256:
357 		case WLAN_CIPHER_SUITE_AES_CMAC:
358 		case WLAN_CIPHER_SUITE_BIP_CMAC_256:
359 		case WLAN_CIPHER_SUITE_BIP_GMAC_128:
360 		case WLAN_CIPHER_SUITE_BIP_GMAC_256:
361 			if (params->seq_len != 6)
362 				return -EINVAL;
363 			break;
364 		}
365 	}
366 
367 	if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
368 		return -EINVAL;
369 
370 	return 0;
371 }
372 
ieee80211_hdrlen(__le16 fc)373 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
374 {
375 	unsigned int hdrlen = 24;
376 
377 	if (ieee80211_is_data(fc)) {
378 		if (ieee80211_has_a4(fc))
379 			hdrlen = 30;
380 		if (ieee80211_is_data_qos(fc)) {
381 			hdrlen += IEEE80211_QOS_CTL_LEN;
382 			if (ieee80211_has_order(fc))
383 				hdrlen += IEEE80211_HT_CTL_LEN;
384 		}
385 		goto out;
386 	}
387 
388 	if (ieee80211_is_mgmt(fc)) {
389 		if (ieee80211_has_order(fc))
390 			hdrlen += IEEE80211_HT_CTL_LEN;
391 		goto out;
392 	}
393 
394 	if (ieee80211_is_ctl(fc)) {
395 		/*
396 		 * ACK and CTS are 10 bytes, all others 16. To see how
397 		 * to get this condition consider
398 		 *   subtype mask:   0b0000000011110000 (0x00F0)
399 		 *   ACK subtype:    0b0000000011010000 (0x00D0)
400 		 *   CTS subtype:    0b0000000011000000 (0x00C0)
401 		 *   bits that matter:         ^^^      (0x00E0)
402 		 *   value of those: 0b0000000011000000 (0x00C0)
403 		 */
404 		if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
405 			hdrlen = 10;
406 		else
407 			hdrlen = 16;
408 	}
409 out:
410 	return hdrlen;
411 }
412 EXPORT_SYMBOL(ieee80211_hdrlen);
413 
ieee80211_get_hdrlen_from_skb(const struct sk_buff * skb)414 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
415 {
416 	const struct ieee80211_hdr *hdr =
417 			(const struct ieee80211_hdr *)skb->data;
418 	unsigned int hdrlen;
419 
420 	if (unlikely(skb->len < 10))
421 		return 0;
422 	hdrlen = ieee80211_hdrlen(hdr->frame_control);
423 	if (unlikely(hdrlen > skb->len))
424 		return 0;
425 	return hdrlen;
426 }
427 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
428 
__ieee80211_get_mesh_hdrlen(u8 flags)429 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
430 {
431 	int ae = flags & MESH_FLAGS_AE;
432 	/* 802.11-2012, 8.2.4.7.3 */
433 	switch (ae) {
434 	default:
435 	case 0:
436 		return 6;
437 	case MESH_FLAGS_AE_A4:
438 		return 12;
439 	case MESH_FLAGS_AE_A5_A6:
440 		return 18;
441 	}
442 }
443 
ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr * meshhdr)444 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
445 {
446 	return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
447 }
448 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
449 
ieee80211_data_to_8023_exthdr(struct sk_buff * skb,struct ethhdr * ehdr,const u8 * addr,enum nl80211_iftype iftype,u8 data_offset)450 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
451 				  const u8 *addr, enum nl80211_iftype iftype,
452 				  u8 data_offset)
453 {
454 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
455 	struct {
456 		u8 hdr[ETH_ALEN] __aligned(2);
457 		__be16 proto;
458 	} payload;
459 	struct ethhdr tmp;
460 	u16 hdrlen;
461 	u8 mesh_flags = 0;
462 
463 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
464 		return -1;
465 
466 	hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset;
467 	if (skb->len < hdrlen + 8)
468 		return -1;
469 
470 	/* convert IEEE 802.11 header + possible LLC headers into Ethernet
471 	 * header
472 	 * IEEE 802.11 address fields:
473 	 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
474 	 *   0     0   DA    SA    BSSID n/a
475 	 *   0     1   DA    BSSID SA    n/a
476 	 *   1     0   BSSID SA    DA    n/a
477 	 *   1     1   RA    TA    DA    SA
478 	 */
479 	memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
480 	memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
481 
482 	if (iftype == NL80211_IFTYPE_MESH_POINT)
483 		skb_copy_bits(skb, hdrlen, &mesh_flags, 1);
484 
485 	mesh_flags &= MESH_FLAGS_AE;
486 
487 	switch (hdr->frame_control &
488 		cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
489 	case cpu_to_le16(IEEE80211_FCTL_TODS):
490 		if (unlikely(iftype != NL80211_IFTYPE_AP &&
491 			     iftype != NL80211_IFTYPE_AP_VLAN &&
492 			     iftype != NL80211_IFTYPE_P2P_GO))
493 			return -1;
494 		break;
495 	case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
496 		if (unlikely(iftype != NL80211_IFTYPE_WDS &&
497 			     iftype != NL80211_IFTYPE_MESH_POINT &&
498 			     iftype != NL80211_IFTYPE_AP_VLAN &&
499 			     iftype != NL80211_IFTYPE_STATION))
500 			return -1;
501 		if (iftype == NL80211_IFTYPE_MESH_POINT) {
502 			if (mesh_flags == MESH_FLAGS_AE_A4)
503 				return -1;
504 			if (mesh_flags == MESH_FLAGS_AE_A5_A6) {
505 				skb_copy_bits(skb, hdrlen +
506 					offsetof(struct ieee80211s_hdr, eaddr1),
507 					tmp.h_dest, 2 * ETH_ALEN);
508 			}
509 			hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
510 		}
511 		break;
512 	case cpu_to_le16(IEEE80211_FCTL_FROMDS):
513 		if ((iftype != NL80211_IFTYPE_STATION &&
514 		     iftype != NL80211_IFTYPE_P2P_CLIENT &&
515 		     iftype != NL80211_IFTYPE_MESH_POINT) ||
516 		    (is_multicast_ether_addr(tmp.h_dest) &&
517 		     ether_addr_equal(tmp.h_source, addr)))
518 			return -1;
519 		if (iftype == NL80211_IFTYPE_MESH_POINT) {
520 			if (mesh_flags == MESH_FLAGS_AE_A5_A6)
521 				return -1;
522 			if (mesh_flags == MESH_FLAGS_AE_A4)
523 				skb_copy_bits(skb, hdrlen +
524 					offsetof(struct ieee80211s_hdr, eaddr1),
525 					tmp.h_source, ETH_ALEN);
526 			hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
527 		}
528 		break;
529 	case cpu_to_le16(0):
530 		if (iftype != NL80211_IFTYPE_ADHOC &&
531 		    iftype != NL80211_IFTYPE_STATION &&
532 		    iftype != NL80211_IFTYPE_OCB)
533 				return -1;
534 		break;
535 	}
536 
537 	skb_copy_bits(skb, hdrlen, &payload, sizeof(payload));
538 	tmp.h_proto = payload.proto;
539 
540 	if (likely((ether_addr_equal(payload.hdr, rfc1042_header) &&
541 		    tmp.h_proto != htons(ETH_P_AARP) &&
542 		    tmp.h_proto != htons(ETH_P_IPX)) ||
543 		   ether_addr_equal(payload.hdr, bridge_tunnel_header)))
544 		/* remove RFC1042 or Bridge-Tunnel encapsulation and
545 		 * replace EtherType */
546 		hdrlen += ETH_ALEN + 2;
547 	else
548 		tmp.h_proto = htons(skb->len - hdrlen);
549 
550 	pskb_pull(skb, hdrlen);
551 
552 	if (!ehdr)
553 		ehdr = skb_push(skb, sizeof(struct ethhdr));
554 	memcpy(ehdr, &tmp, sizeof(tmp));
555 
556 	return 0;
557 }
558 EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
559 
560 static void
__frame_add_frag(struct sk_buff * skb,struct page * page,void * ptr,int len,int size)561 __frame_add_frag(struct sk_buff *skb, struct page *page,
562 		 void *ptr, int len, int size)
563 {
564 	struct skb_shared_info *sh = skb_shinfo(skb);
565 	int page_offset;
566 
567 	page_ref_inc(page);
568 	page_offset = ptr - page_address(page);
569 	skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
570 }
571 
572 static void
__ieee80211_amsdu_copy_frag(struct sk_buff * skb,struct sk_buff * frame,int offset,int len)573 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
574 			    int offset, int len)
575 {
576 	struct skb_shared_info *sh = skb_shinfo(skb);
577 	const skb_frag_t *frag = &sh->frags[0];
578 	struct page *frag_page;
579 	void *frag_ptr;
580 	int frag_len, frag_size;
581 	int head_size = skb->len - skb->data_len;
582 	int cur_len;
583 
584 	frag_page = virt_to_head_page(skb->head);
585 	frag_ptr = skb->data;
586 	frag_size = head_size;
587 
588 	while (offset >= frag_size) {
589 		offset -= frag_size;
590 		frag_page = skb_frag_page(frag);
591 		frag_ptr = skb_frag_address(frag);
592 		frag_size = skb_frag_size(frag);
593 		frag++;
594 	}
595 
596 	frag_ptr += offset;
597 	frag_len = frag_size - offset;
598 
599 	cur_len = min(len, frag_len);
600 
601 	__frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
602 	len -= cur_len;
603 
604 	while (len > 0) {
605 		frag_len = skb_frag_size(frag);
606 		cur_len = min(len, frag_len);
607 		__frame_add_frag(frame, skb_frag_page(frag),
608 				 skb_frag_address(frag), cur_len, frag_len);
609 		len -= cur_len;
610 		frag++;
611 	}
612 }
613 
614 static struct sk_buff *
__ieee80211_amsdu_copy(struct sk_buff * skb,unsigned int hlen,int offset,int len,bool reuse_frag)615 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
616 		       int offset, int len, bool reuse_frag)
617 {
618 	struct sk_buff *frame;
619 	int cur_len = len;
620 
621 	if (skb->len - offset < len)
622 		return NULL;
623 
624 	/*
625 	 * When reusing framents, copy some data to the head to simplify
626 	 * ethernet header handling and speed up protocol header processing
627 	 * in the stack later.
628 	 */
629 	if (reuse_frag)
630 		cur_len = min_t(int, len, 32);
631 
632 	/*
633 	 * Allocate and reserve two bytes more for payload
634 	 * alignment since sizeof(struct ethhdr) is 14.
635 	 */
636 	frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
637 	if (!frame)
638 		return NULL;
639 
640 	skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
641 	skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
642 
643 	len -= cur_len;
644 	if (!len)
645 		return frame;
646 
647 	offset += cur_len;
648 	__ieee80211_amsdu_copy_frag(skb, frame, offset, len);
649 
650 	return frame;
651 }
652 
ieee80211_amsdu_to_8023s(struct sk_buff * skb,struct sk_buff_head * list,const u8 * addr,enum nl80211_iftype iftype,const unsigned int extra_headroom,const u8 * check_da,const u8 * check_sa)653 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
654 			      const u8 *addr, enum nl80211_iftype iftype,
655 			      const unsigned int extra_headroom,
656 			      const u8 *check_da, const u8 *check_sa)
657 {
658 	unsigned int hlen = ALIGN(extra_headroom, 4);
659 	struct sk_buff *frame = NULL;
660 	u16 ethertype;
661 	u8 *payload;
662 	int offset = 0, remaining;
663 	struct ethhdr eth;
664 	bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
665 	bool reuse_skb = false;
666 	bool last = false;
667 
668 	while (!last) {
669 		unsigned int subframe_len;
670 		int len;
671 		u8 padding;
672 
673 		skb_copy_bits(skb, offset, &eth, sizeof(eth));
674 		len = ntohs(eth.h_proto);
675 		subframe_len = sizeof(struct ethhdr) + len;
676 		padding = (4 - subframe_len) & 0x3;
677 
678 		/* the last MSDU has no padding */
679 		remaining = skb->len - offset;
680 		if (subframe_len > remaining)
681 			goto purge;
682 
683 		offset += sizeof(struct ethhdr);
684 		last = remaining <= subframe_len + padding;
685 
686 		/* FIXME: should we really accept multicast DA? */
687 		if ((check_da && !is_multicast_ether_addr(eth.h_dest) &&
688 		     !ether_addr_equal(check_da, eth.h_dest)) ||
689 		    (check_sa && !ether_addr_equal(check_sa, eth.h_source))) {
690 			offset += len + padding;
691 			continue;
692 		}
693 
694 		/* reuse skb for the last subframe */
695 		if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
696 			skb_pull(skb, offset);
697 			frame = skb;
698 			reuse_skb = true;
699 		} else {
700 			frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
701 						       reuse_frag);
702 			if (!frame)
703 				goto purge;
704 
705 			offset += len + padding;
706 		}
707 
708 		skb_reset_network_header(frame);
709 		frame->dev = skb->dev;
710 		frame->priority = skb->priority;
711 
712 		payload = frame->data;
713 		ethertype = (payload[6] << 8) | payload[7];
714 		if (likely((ether_addr_equal(payload, rfc1042_header) &&
715 			    ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
716 			   ether_addr_equal(payload, bridge_tunnel_header))) {
717 			eth.h_proto = htons(ethertype);
718 			skb_pull(frame, ETH_ALEN + 2);
719 		}
720 
721 		memcpy(skb_push(frame, sizeof(eth)), &eth, sizeof(eth));
722 		__skb_queue_tail(list, frame);
723 	}
724 
725 	if (!reuse_skb)
726 		dev_kfree_skb(skb);
727 
728 	return;
729 
730  purge:
731 	__skb_queue_purge(list);
732 	dev_kfree_skb(skb);
733 }
734 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
735 
736 /* Given a data frame determine the 802.1p/1d tag to use. */
cfg80211_classify8021d(struct sk_buff * skb,struct cfg80211_qos_map * qos_map)737 unsigned int cfg80211_classify8021d(struct sk_buff *skb,
738 				    struct cfg80211_qos_map *qos_map)
739 {
740 	unsigned int dscp;
741 	unsigned char vlan_priority;
742 	unsigned int ret;
743 
744 	/* skb->priority values from 256->263 are magic values to
745 	 * directly indicate a specific 802.1d priority.  This is used
746 	 * to allow 802.1d priority to be passed directly in from VLAN
747 	 * tags, etc.
748 	 */
749 	if (skb->priority >= 256 && skb->priority <= 263) {
750 		ret = skb->priority - 256;
751 		goto out;
752 	}
753 
754 	if (skb_vlan_tag_present(skb)) {
755 		vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
756 			>> VLAN_PRIO_SHIFT;
757 		if (vlan_priority > 0) {
758 			ret = vlan_priority;
759 			goto out;
760 		}
761 	}
762 
763 	switch (skb->protocol) {
764 	case htons(ETH_P_IP):
765 		dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
766 		break;
767 	case htons(ETH_P_IPV6):
768 		dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
769 		break;
770 	case htons(ETH_P_MPLS_UC):
771 	case htons(ETH_P_MPLS_MC): {
772 		struct mpls_label mpls_tmp, *mpls;
773 
774 		mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
775 					  sizeof(*mpls), &mpls_tmp);
776 		if (!mpls)
777 			return 0;
778 
779 		ret = (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
780 			>> MPLS_LS_TC_SHIFT;
781 		goto out;
782 	}
783 	case htons(ETH_P_80221):
784 		/* 802.21 is always network control traffic */
785 		return 7;
786 	default:
787 		return 0;
788 	}
789 
790 	if (qos_map) {
791 		unsigned int i, tmp_dscp = dscp >> 2;
792 
793 		for (i = 0; i < qos_map->num_des; i++) {
794 			if (tmp_dscp == qos_map->dscp_exception[i].dscp) {
795 				ret = qos_map->dscp_exception[i].up;
796 				goto out;
797 			}
798 		}
799 
800 		for (i = 0; i < 8; i++) {
801 			if (tmp_dscp >= qos_map->up[i].low &&
802 			    tmp_dscp <= qos_map->up[i].high) {
803 				ret = i;
804 				goto out;
805 			}
806 		}
807 	}
808 
809 	ret = dscp >> 5;
810 out:
811 	return array_index_nospec(ret, IEEE80211_NUM_TIDS);
812 }
813 EXPORT_SYMBOL(cfg80211_classify8021d);
814 
ieee80211_bss_get_elem(struct cfg80211_bss * bss,u8 id)815 const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id)
816 {
817 	const struct cfg80211_bss_ies *ies;
818 
819 	ies = rcu_dereference(bss->ies);
820 	if (!ies)
821 		return NULL;
822 
823 	return cfg80211_find_elem(id, ies->data, ies->len);
824 }
825 EXPORT_SYMBOL(ieee80211_bss_get_elem);
826 
cfg80211_upload_connect_keys(struct wireless_dev * wdev)827 void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
828 {
829 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
830 	struct net_device *dev = wdev->netdev;
831 	int i;
832 
833 	if (!wdev->connect_keys)
834 		return;
835 
836 	for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) {
837 		if (!wdev->connect_keys->params[i].cipher)
838 			continue;
839 		if (rdev_add_key(rdev, dev, i, false, NULL,
840 				 &wdev->connect_keys->params[i])) {
841 			netdev_err(dev, "failed to set key %d\n", i);
842 			continue;
843 		}
844 		if (wdev->connect_keys->def == i &&
845 		    rdev_set_default_key(rdev, dev, i, true, true)) {
846 			netdev_err(dev, "failed to set defkey %d\n", i);
847 			continue;
848 		}
849 	}
850 
851 	kzfree(wdev->connect_keys);
852 	wdev->connect_keys = NULL;
853 }
854 
cfg80211_process_wdev_events(struct wireless_dev * wdev)855 void cfg80211_process_wdev_events(struct wireless_dev *wdev)
856 {
857 	struct cfg80211_event *ev;
858 	unsigned long flags;
859 
860 	spin_lock_irqsave(&wdev->event_lock, flags);
861 	while (!list_empty(&wdev->event_list)) {
862 		ev = list_first_entry(&wdev->event_list,
863 				      struct cfg80211_event, list);
864 		list_del(&ev->list);
865 		spin_unlock_irqrestore(&wdev->event_lock, flags);
866 
867 		wdev_lock(wdev);
868 		switch (ev->type) {
869 		case EVENT_CONNECT_RESULT:
870 			__cfg80211_connect_result(
871 				wdev->netdev,
872 				&ev->cr,
873 				ev->cr.status == WLAN_STATUS_SUCCESS);
874 			break;
875 		case EVENT_ROAMED:
876 			__cfg80211_roamed(wdev, &ev->rm);
877 			break;
878 		case EVENT_DISCONNECTED:
879 			__cfg80211_disconnected(wdev->netdev,
880 						ev->dc.ie, ev->dc.ie_len,
881 						ev->dc.reason,
882 						!ev->dc.locally_generated);
883 			break;
884 		case EVENT_IBSS_JOINED:
885 			__cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
886 					       ev->ij.channel);
887 			break;
888 		case EVENT_STOPPED:
889 			__cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
890 			break;
891 		case EVENT_PORT_AUTHORIZED:
892 			__cfg80211_port_authorized(wdev, ev->pa.bssid);
893 			break;
894 		}
895 		wdev_unlock(wdev);
896 
897 		kfree(ev);
898 
899 		spin_lock_irqsave(&wdev->event_lock, flags);
900 	}
901 	spin_unlock_irqrestore(&wdev->event_lock, flags);
902 }
903 
cfg80211_process_rdev_events(struct cfg80211_registered_device * rdev)904 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
905 {
906 	struct wireless_dev *wdev;
907 
908 	ASSERT_RTNL();
909 
910 	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
911 		cfg80211_process_wdev_events(wdev);
912 }
913 
cfg80211_change_iface(struct cfg80211_registered_device * rdev,struct net_device * dev,enum nl80211_iftype ntype,struct vif_params * params)914 int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
915 			  struct net_device *dev, enum nl80211_iftype ntype,
916 			  struct vif_params *params)
917 {
918 	int err;
919 	enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
920 
921 	ASSERT_RTNL();
922 
923 	/* don't support changing VLANs, you just re-create them */
924 	if (otype == NL80211_IFTYPE_AP_VLAN)
925 		return -EOPNOTSUPP;
926 
927 	/* cannot change into P2P device or NAN */
928 	if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
929 	    ntype == NL80211_IFTYPE_NAN)
930 		return -EOPNOTSUPP;
931 
932 	if (!rdev->ops->change_virtual_intf ||
933 	    !(rdev->wiphy.interface_modes & (1 << ntype)))
934 		return -EOPNOTSUPP;
935 
936 	/* if it's part of a bridge, reject changing type to station/ibss */
937 	if ((dev->priv_flags & IFF_BRIDGE_PORT) &&
938 	    (ntype == NL80211_IFTYPE_ADHOC ||
939 	     ntype == NL80211_IFTYPE_STATION ||
940 	     ntype == NL80211_IFTYPE_P2P_CLIENT))
941 		return -EBUSY;
942 
943 	if (ntype != otype) {
944 		dev->ieee80211_ptr->use_4addr = false;
945 		dev->ieee80211_ptr->mesh_id_up_len = 0;
946 		wdev_lock(dev->ieee80211_ptr);
947 		rdev_set_qos_map(rdev, dev, NULL);
948 		wdev_unlock(dev->ieee80211_ptr);
949 
950 		switch (otype) {
951 		case NL80211_IFTYPE_AP:
952 			cfg80211_stop_ap(rdev, dev, true);
953 			break;
954 		case NL80211_IFTYPE_ADHOC:
955 			cfg80211_leave_ibss(rdev, dev, false);
956 			break;
957 		case NL80211_IFTYPE_STATION:
958 		case NL80211_IFTYPE_P2P_CLIENT:
959 			wdev_lock(dev->ieee80211_ptr);
960 			cfg80211_disconnect(rdev, dev,
961 					    WLAN_REASON_DEAUTH_LEAVING, true);
962 			wdev_unlock(dev->ieee80211_ptr);
963 			break;
964 		case NL80211_IFTYPE_MESH_POINT:
965 			/* mesh should be handled? */
966 			break;
967 		default:
968 			break;
969 		}
970 
971 		cfg80211_process_rdev_events(rdev);
972 		cfg80211_mlme_purge_registrations(dev->ieee80211_ptr);
973 	}
974 
975 	err = rdev_change_virtual_intf(rdev, dev, ntype, params);
976 
977 	WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
978 
979 	if (!err && params && params->use_4addr != -1)
980 		dev->ieee80211_ptr->use_4addr = params->use_4addr;
981 
982 	if (!err) {
983 		dev->priv_flags &= ~IFF_DONT_BRIDGE;
984 		switch (ntype) {
985 		case NL80211_IFTYPE_STATION:
986 			if (dev->ieee80211_ptr->use_4addr)
987 				break;
988 			/* fall through */
989 		case NL80211_IFTYPE_OCB:
990 		case NL80211_IFTYPE_P2P_CLIENT:
991 		case NL80211_IFTYPE_ADHOC:
992 			dev->priv_flags |= IFF_DONT_BRIDGE;
993 			break;
994 		case NL80211_IFTYPE_P2P_GO:
995 		case NL80211_IFTYPE_AP:
996 		case NL80211_IFTYPE_AP_VLAN:
997 		case NL80211_IFTYPE_WDS:
998 		case NL80211_IFTYPE_MESH_POINT:
999 			/* bridging OK */
1000 			break;
1001 		case NL80211_IFTYPE_MONITOR:
1002 			/* monitor can't bridge anyway */
1003 			break;
1004 		case NL80211_IFTYPE_UNSPECIFIED:
1005 		case NUM_NL80211_IFTYPES:
1006 			/* not happening */
1007 			break;
1008 		case NL80211_IFTYPE_P2P_DEVICE:
1009 		case NL80211_IFTYPE_NAN:
1010 			WARN_ON(1);
1011 			break;
1012 		}
1013 	}
1014 
1015 	if (!err && ntype != otype && netif_running(dev)) {
1016 		cfg80211_update_iface_num(rdev, ntype, 1);
1017 		cfg80211_update_iface_num(rdev, otype, -1);
1018 	}
1019 
1020 	return err;
1021 }
1022 
cfg80211_calculate_bitrate_ht(struct rate_info * rate)1023 static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate)
1024 {
1025 	int modulation, streams, bitrate;
1026 
1027 	/* the formula below does only work for MCS values smaller than 32 */
1028 	if (WARN_ON_ONCE(rate->mcs >= 32))
1029 		return 0;
1030 
1031 	modulation = rate->mcs & 7;
1032 	streams = (rate->mcs >> 3) + 1;
1033 
1034 	bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
1035 
1036 	if (modulation < 4)
1037 		bitrate *= (modulation + 1);
1038 	else if (modulation == 4)
1039 		bitrate *= (modulation + 2);
1040 	else
1041 		bitrate *= (modulation + 3);
1042 
1043 	bitrate *= streams;
1044 
1045 	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1046 		bitrate = (bitrate / 9) * 10;
1047 
1048 	/* do NOT round down here */
1049 	return (bitrate + 50000) / 100000;
1050 }
1051 
cfg80211_calculate_bitrate_dmg(struct rate_info * rate)1052 static u32 cfg80211_calculate_bitrate_dmg(struct rate_info *rate)
1053 {
1054 	static const u32 __mcs2bitrate[] = {
1055 		/* control PHY */
1056 		[0] =   275,
1057 		/* SC PHY */
1058 		[1] =  3850,
1059 		[2] =  7700,
1060 		[3] =  9625,
1061 		[4] = 11550,
1062 		[5] = 12512, /* 1251.25 mbps */
1063 		[6] = 15400,
1064 		[7] = 19250,
1065 		[8] = 23100,
1066 		[9] = 25025,
1067 		[10] = 30800,
1068 		[11] = 38500,
1069 		[12] = 46200,
1070 		/* OFDM PHY */
1071 		[13] =  6930,
1072 		[14] =  8662, /* 866.25 mbps */
1073 		[15] = 13860,
1074 		[16] = 17325,
1075 		[17] = 20790,
1076 		[18] = 27720,
1077 		[19] = 34650,
1078 		[20] = 41580,
1079 		[21] = 45045,
1080 		[22] = 51975,
1081 		[23] = 62370,
1082 		[24] = 67568, /* 6756.75 mbps */
1083 		/* LP-SC PHY */
1084 		[25] =  6260,
1085 		[26] =  8340,
1086 		[27] = 11120,
1087 		[28] = 12510,
1088 		[29] = 16680,
1089 		[30] = 22240,
1090 		[31] = 25030,
1091 	};
1092 
1093 	if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1094 		return 0;
1095 
1096 	return __mcs2bitrate[rate->mcs];
1097 }
1098 
cfg80211_calculate_bitrate_edmg(struct rate_info * rate)1099 static u32 cfg80211_calculate_bitrate_edmg(struct rate_info *rate)
1100 {
1101 	static const u32 __mcs2bitrate[] = {
1102 		/* control PHY */
1103 		[0] =   275,
1104 		/* SC PHY */
1105 		[1] =  3850,
1106 		[2] =  7700,
1107 		[3] =  9625,
1108 		[4] = 11550,
1109 		[5] = 12512, /* 1251.25 mbps */
1110 		[6] = 13475,
1111 		[7] = 15400,
1112 		[8] = 19250,
1113 		[9] = 23100,
1114 		[10] = 25025,
1115 		[11] = 26950,
1116 		[12] = 30800,
1117 		[13] = 38500,
1118 		[14] = 46200,
1119 		[15] = 50050,
1120 		[16] = 53900,
1121 		[17] = 57750,
1122 		[18] = 69300,
1123 		[19] = 75075,
1124 		[20] = 80850,
1125 	};
1126 
1127 	if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1128 		return 0;
1129 
1130 	return __mcs2bitrate[rate->mcs] * rate->n_bonded_ch;
1131 }
1132 
cfg80211_calculate_bitrate_vht(struct rate_info * rate)1133 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1134 {
1135 	static const u32 base[4][10] = {
1136 		{   6500000,
1137 		   13000000,
1138 		   19500000,
1139 		   26000000,
1140 		   39000000,
1141 		   52000000,
1142 		   58500000,
1143 		   65000000,
1144 		   78000000,
1145 		/* not in the spec, but some devices use this: */
1146 		   86500000,
1147 		},
1148 		{  13500000,
1149 		   27000000,
1150 		   40500000,
1151 		   54000000,
1152 		   81000000,
1153 		  108000000,
1154 		  121500000,
1155 		  135000000,
1156 		  162000000,
1157 		  180000000,
1158 		},
1159 		{  29300000,
1160 		   58500000,
1161 		   87800000,
1162 		  117000000,
1163 		  175500000,
1164 		  234000000,
1165 		  263300000,
1166 		  292500000,
1167 		  351000000,
1168 		  390000000,
1169 		},
1170 		{  58500000,
1171 		  117000000,
1172 		  175500000,
1173 		  234000000,
1174 		  351000000,
1175 		  468000000,
1176 		  526500000,
1177 		  585000000,
1178 		  702000000,
1179 		  780000000,
1180 		},
1181 	};
1182 	u32 bitrate;
1183 	int idx;
1184 
1185 	if (rate->mcs > 9)
1186 		goto warn;
1187 
1188 	switch (rate->bw) {
1189 	case RATE_INFO_BW_160:
1190 		idx = 3;
1191 		break;
1192 	case RATE_INFO_BW_80:
1193 		idx = 2;
1194 		break;
1195 	case RATE_INFO_BW_40:
1196 		idx = 1;
1197 		break;
1198 	case RATE_INFO_BW_5:
1199 	case RATE_INFO_BW_10:
1200 	default:
1201 		goto warn;
1202 	case RATE_INFO_BW_20:
1203 		idx = 0;
1204 	}
1205 
1206 	bitrate = base[idx][rate->mcs];
1207 	bitrate *= rate->nss;
1208 
1209 	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1210 		bitrate = (bitrate / 9) * 10;
1211 
1212 	/* do NOT round down here */
1213 	return (bitrate + 50000) / 100000;
1214  warn:
1215 	WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1216 		  rate->bw, rate->mcs, rate->nss);
1217 	return 0;
1218 }
1219 
cfg80211_calculate_bitrate_he(struct rate_info * rate)1220 static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate)
1221 {
1222 #define SCALE 2048
1223 	u16 mcs_divisors[12] = {
1224 		34133, /* 16.666666... */
1225 		17067, /*  8.333333... */
1226 		11378, /*  5.555555... */
1227 		 8533, /*  4.166666... */
1228 		 5689, /*  2.777777... */
1229 		 4267, /*  2.083333... */
1230 		 3923, /*  1.851851... */
1231 		 3413, /*  1.666666... */
1232 		 2844, /*  1.388888... */
1233 		 2560, /*  1.250000... */
1234 		 2276, /*  1.111111... */
1235 		 2048, /*  1.000000... */
1236 	};
1237 	u32 rates_160M[3] = { 960777777, 907400000, 816666666 };
1238 	u32 rates_969[3] =  { 480388888, 453700000, 408333333 };
1239 	u32 rates_484[3] =  { 229411111, 216666666, 195000000 };
1240 	u32 rates_242[3] =  { 114711111, 108333333,  97500000 };
1241 	u32 rates_106[3] =  {  40000000,  37777777,  34000000 };
1242 	u32 rates_52[3]  =  {  18820000,  17777777,  16000000 };
1243 	u32 rates_26[3]  =  {   9411111,   8888888,   8000000 };
1244 	u64 tmp;
1245 	u32 result;
1246 
1247 	if (WARN_ON_ONCE(rate->mcs > 11))
1248 		return 0;
1249 
1250 	if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2))
1251 		return 0;
1252 	if (WARN_ON_ONCE(rate->he_ru_alloc >
1253 			 NL80211_RATE_INFO_HE_RU_ALLOC_2x996))
1254 		return 0;
1255 	if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1256 		return 0;
1257 
1258 	if (rate->bw == RATE_INFO_BW_160)
1259 		result = rates_160M[rate->he_gi];
1260 	else if (rate->bw == RATE_INFO_BW_80 ||
1261 		 (rate->bw == RATE_INFO_BW_HE_RU &&
1262 		  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996))
1263 		result = rates_969[rate->he_gi];
1264 	else if (rate->bw == RATE_INFO_BW_40 ||
1265 		 (rate->bw == RATE_INFO_BW_HE_RU &&
1266 		  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484))
1267 		result = rates_484[rate->he_gi];
1268 	else if (rate->bw == RATE_INFO_BW_20 ||
1269 		 (rate->bw == RATE_INFO_BW_HE_RU &&
1270 		  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242))
1271 		result = rates_242[rate->he_gi];
1272 	else if (rate->bw == RATE_INFO_BW_HE_RU &&
1273 		 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106)
1274 		result = rates_106[rate->he_gi];
1275 	else if (rate->bw == RATE_INFO_BW_HE_RU &&
1276 		 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52)
1277 		result = rates_52[rate->he_gi];
1278 	else if (rate->bw == RATE_INFO_BW_HE_RU &&
1279 		 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26)
1280 		result = rates_26[rate->he_gi];
1281 	else {
1282 		WARN(1, "invalid HE MCS: bw:%d, ru:%d\n",
1283 		     rate->bw, rate->he_ru_alloc);
1284 		return 0;
1285 	}
1286 
1287 	/* now scale to the appropriate MCS */
1288 	tmp = result;
1289 	tmp *= SCALE;
1290 	do_div(tmp, mcs_divisors[rate->mcs]);
1291 	result = tmp;
1292 
1293 	/* and take NSS, DCM into account */
1294 	result = (result * rate->nss) / 8;
1295 	if (rate->he_dcm)
1296 		result /= 2;
1297 
1298 	return result / 10000;
1299 }
1300 
cfg80211_calculate_bitrate(struct rate_info * rate)1301 u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1302 {
1303 	if (rate->flags & RATE_INFO_FLAGS_MCS)
1304 		return cfg80211_calculate_bitrate_ht(rate);
1305 	if (rate->flags & RATE_INFO_FLAGS_DMG)
1306 		return cfg80211_calculate_bitrate_dmg(rate);
1307 	if (rate->flags & RATE_INFO_FLAGS_EDMG)
1308 		return cfg80211_calculate_bitrate_edmg(rate);
1309 	if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1310 		return cfg80211_calculate_bitrate_vht(rate);
1311 	if (rate->flags & RATE_INFO_FLAGS_HE_MCS)
1312 		return cfg80211_calculate_bitrate_he(rate);
1313 
1314 	return rate->legacy;
1315 }
1316 EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1317 
cfg80211_get_p2p_attr(const u8 * ies,unsigned int len,enum ieee80211_p2p_attr_id attr,u8 * buf,unsigned int bufsize)1318 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1319 			  enum ieee80211_p2p_attr_id attr,
1320 			  u8 *buf, unsigned int bufsize)
1321 {
1322 	u8 *out = buf;
1323 	u16 attr_remaining = 0;
1324 	bool desired_attr = false;
1325 	u16 desired_len = 0;
1326 
1327 	while (len > 0) {
1328 		unsigned int iedatalen;
1329 		unsigned int copy;
1330 		const u8 *iedata;
1331 
1332 		if (len < 2)
1333 			return -EILSEQ;
1334 		iedatalen = ies[1];
1335 		if (iedatalen + 2 > len)
1336 			return -EILSEQ;
1337 
1338 		if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1339 			goto cont;
1340 
1341 		if (iedatalen < 4)
1342 			goto cont;
1343 
1344 		iedata = ies + 2;
1345 
1346 		/* check WFA OUI, P2P subtype */
1347 		if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1348 		    iedata[2] != 0x9a || iedata[3] != 0x09)
1349 			goto cont;
1350 
1351 		iedatalen -= 4;
1352 		iedata += 4;
1353 
1354 		/* check attribute continuation into this IE */
1355 		copy = min_t(unsigned int, attr_remaining, iedatalen);
1356 		if (copy && desired_attr) {
1357 			desired_len += copy;
1358 			if (out) {
1359 				memcpy(out, iedata, min(bufsize, copy));
1360 				out += min(bufsize, copy);
1361 				bufsize -= min(bufsize, copy);
1362 			}
1363 
1364 
1365 			if (copy == attr_remaining)
1366 				return desired_len;
1367 		}
1368 
1369 		attr_remaining -= copy;
1370 		if (attr_remaining)
1371 			goto cont;
1372 
1373 		iedatalen -= copy;
1374 		iedata += copy;
1375 
1376 		while (iedatalen > 0) {
1377 			u16 attr_len;
1378 
1379 			/* P2P attribute ID & size must fit */
1380 			if (iedatalen < 3)
1381 				return -EILSEQ;
1382 			desired_attr = iedata[0] == attr;
1383 			attr_len = get_unaligned_le16(iedata + 1);
1384 			iedatalen -= 3;
1385 			iedata += 3;
1386 
1387 			copy = min_t(unsigned int, attr_len, iedatalen);
1388 
1389 			if (desired_attr) {
1390 				desired_len += copy;
1391 				if (out) {
1392 					memcpy(out, iedata, min(bufsize, copy));
1393 					out += min(bufsize, copy);
1394 					bufsize -= min(bufsize, copy);
1395 				}
1396 
1397 				if (copy == attr_len)
1398 					return desired_len;
1399 			}
1400 
1401 			iedata += copy;
1402 			iedatalen -= copy;
1403 			attr_remaining = attr_len - copy;
1404 		}
1405 
1406  cont:
1407 		len -= ies[1] + 2;
1408 		ies += ies[1] + 2;
1409 	}
1410 
1411 	if (attr_remaining && desired_attr)
1412 		return -EILSEQ;
1413 
1414 	return -ENOENT;
1415 }
1416 EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1417 
ieee80211_id_in_list(const u8 * ids,int n_ids,u8 id,bool id_ext)1418 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext)
1419 {
1420 	int i;
1421 
1422 	/* Make sure array values are legal */
1423 	if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION))
1424 		return false;
1425 
1426 	i = 0;
1427 	while (i < n_ids) {
1428 		if (ids[i] == WLAN_EID_EXTENSION) {
1429 			if (id_ext && (ids[i + 1] == id))
1430 				return true;
1431 
1432 			i += 2;
1433 			continue;
1434 		}
1435 
1436 		if (ids[i] == id && !id_ext)
1437 			return true;
1438 
1439 		i++;
1440 	}
1441 	return false;
1442 }
1443 
skip_ie(const u8 * ies,size_t ielen,size_t pos)1444 static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos)
1445 {
1446 	/* we assume a validly formed IEs buffer */
1447 	u8 len = ies[pos + 1];
1448 
1449 	pos += 2 + len;
1450 
1451 	/* the IE itself must have 255 bytes for fragments to follow */
1452 	if (len < 255)
1453 		return pos;
1454 
1455 	while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) {
1456 		len = ies[pos + 1];
1457 		pos += 2 + len;
1458 	}
1459 
1460 	return pos;
1461 }
1462 
ieee80211_ie_split_ric(const u8 * ies,size_t ielen,const u8 * ids,int n_ids,const u8 * after_ric,int n_after_ric,size_t offset)1463 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1464 			      const u8 *ids, int n_ids,
1465 			      const u8 *after_ric, int n_after_ric,
1466 			      size_t offset)
1467 {
1468 	size_t pos = offset;
1469 
1470 	while (pos < ielen) {
1471 		u8 ext = 0;
1472 
1473 		if (ies[pos] == WLAN_EID_EXTENSION)
1474 			ext = 2;
1475 		if ((pos + ext) >= ielen)
1476 			break;
1477 
1478 		if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext],
1479 					  ies[pos] == WLAN_EID_EXTENSION))
1480 			break;
1481 
1482 		if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
1483 			pos = skip_ie(ies, ielen, pos);
1484 
1485 			while (pos < ielen) {
1486 				if (ies[pos] == WLAN_EID_EXTENSION)
1487 					ext = 2;
1488 				else
1489 					ext = 0;
1490 
1491 				if ((pos + ext) >= ielen)
1492 					break;
1493 
1494 				if (!ieee80211_id_in_list(after_ric,
1495 							  n_after_ric,
1496 							  ies[pos + ext],
1497 							  ext == 2))
1498 					pos = skip_ie(ies, ielen, pos);
1499 				else
1500 					break;
1501 			}
1502 		} else {
1503 			pos = skip_ie(ies, ielen, pos);
1504 		}
1505 	}
1506 
1507 	return pos;
1508 }
1509 EXPORT_SYMBOL(ieee80211_ie_split_ric);
1510 
ieee80211_operating_class_to_band(u8 operating_class,enum nl80211_band * band)1511 bool ieee80211_operating_class_to_band(u8 operating_class,
1512 				       enum nl80211_band *band)
1513 {
1514 	switch (operating_class) {
1515 	case 112:
1516 	case 115 ... 127:
1517 	case 128 ... 130:
1518 		*band = NL80211_BAND_5GHZ;
1519 		return true;
1520 	case 131 ... 135:
1521 		*band = NL80211_BAND_6GHZ;
1522 		return true;
1523 	case 81:
1524 	case 82:
1525 	case 83:
1526 	case 84:
1527 		*band = NL80211_BAND_2GHZ;
1528 		return true;
1529 	case 180:
1530 		*band = NL80211_BAND_60GHZ;
1531 		return true;
1532 	}
1533 
1534 	return false;
1535 }
1536 EXPORT_SYMBOL(ieee80211_operating_class_to_band);
1537 
ieee80211_chandef_to_operating_class(struct cfg80211_chan_def * chandef,u8 * op_class)1538 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
1539 					  u8 *op_class)
1540 {
1541 	u8 vht_opclass;
1542 	u32 freq = chandef->center_freq1;
1543 
1544 	if (freq >= 2412 && freq <= 2472) {
1545 		if (chandef->width > NL80211_CHAN_WIDTH_40)
1546 			return false;
1547 
1548 		/* 2.407 GHz, channels 1..13 */
1549 		if (chandef->width == NL80211_CHAN_WIDTH_40) {
1550 			if (freq > chandef->chan->center_freq)
1551 				*op_class = 83; /* HT40+ */
1552 			else
1553 				*op_class = 84; /* HT40- */
1554 		} else {
1555 			*op_class = 81;
1556 		}
1557 
1558 		return true;
1559 	}
1560 
1561 	if (freq == 2484) {
1562 		/* channel 14 is only for IEEE 802.11b */
1563 		if (chandef->width != NL80211_CHAN_WIDTH_20_NOHT)
1564 			return false;
1565 
1566 		*op_class = 82; /* channel 14 */
1567 		return true;
1568 	}
1569 
1570 	switch (chandef->width) {
1571 	case NL80211_CHAN_WIDTH_80:
1572 		vht_opclass = 128;
1573 		break;
1574 	case NL80211_CHAN_WIDTH_160:
1575 		vht_opclass = 129;
1576 		break;
1577 	case NL80211_CHAN_WIDTH_80P80:
1578 		vht_opclass = 130;
1579 		break;
1580 	case NL80211_CHAN_WIDTH_10:
1581 	case NL80211_CHAN_WIDTH_5:
1582 		return false; /* unsupported for now */
1583 	default:
1584 		vht_opclass = 0;
1585 		break;
1586 	}
1587 
1588 	/* 5 GHz, channels 36..48 */
1589 	if (freq >= 5180 && freq <= 5240) {
1590 		if (vht_opclass) {
1591 			*op_class = vht_opclass;
1592 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1593 			if (freq > chandef->chan->center_freq)
1594 				*op_class = 116;
1595 			else
1596 				*op_class = 117;
1597 		} else {
1598 			*op_class = 115;
1599 		}
1600 
1601 		return true;
1602 	}
1603 
1604 	/* 5 GHz, channels 52..64 */
1605 	if (freq >= 5260 && freq <= 5320) {
1606 		if (vht_opclass) {
1607 			*op_class = vht_opclass;
1608 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1609 			if (freq > chandef->chan->center_freq)
1610 				*op_class = 119;
1611 			else
1612 				*op_class = 120;
1613 		} else {
1614 			*op_class = 118;
1615 		}
1616 
1617 		return true;
1618 	}
1619 
1620 	/* 5 GHz, channels 100..144 */
1621 	if (freq >= 5500 && freq <= 5720) {
1622 		if (vht_opclass) {
1623 			*op_class = vht_opclass;
1624 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1625 			if (freq > chandef->chan->center_freq)
1626 				*op_class = 122;
1627 			else
1628 				*op_class = 123;
1629 		} else {
1630 			*op_class = 121;
1631 		}
1632 
1633 		return true;
1634 	}
1635 
1636 	/* 5 GHz, channels 149..169 */
1637 	if (freq >= 5745 && freq <= 5845) {
1638 		if (vht_opclass) {
1639 			*op_class = vht_opclass;
1640 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1641 			if (freq > chandef->chan->center_freq)
1642 				*op_class = 126;
1643 			else
1644 				*op_class = 127;
1645 		} else if (freq <= 5805) {
1646 			*op_class = 124;
1647 		} else {
1648 			*op_class = 125;
1649 		}
1650 
1651 		return true;
1652 	}
1653 
1654 	/* 56.16 GHz, channel 1..4 */
1655 	if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) {
1656 		if (chandef->width >= NL80211_CHAN_WIDTH_40)
1657 			return false;
1658 
1659 		*op_class = 180;
1660 		return true;
1661 	}
1662 
1663 	/* not supported yet */
1664 	return false;
1665 }
1666 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
1667 
cfg80211_calculate_bi_data(struct wiphy * wiphy,u32 new_beacon_int,u32 * beacon_int_gcd,bool * beacon_int_different)1668 static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int,
1669 				       u32 *beacon_int_gcd,
1670 				       bool *beacon_int_different)
1671 {
1672 	struct wireless_dev *wdev;
1673 
1674 	*beacon_int_gcd = 0;
1675 	*beacon_int_different = false;
1676 
1677 	list_for_each_entry(wdev, &wiphy->wdev_list, list) {
1678 		if (!wdev->beacon_interval)
1679 			continue;
1680 
1681 		if (!*beacon_int_gcd) {
1682 			*beacon_int_gcd = wdev->beacon_interval;
1683 			continue;
1684 		}
1685 
1686 		if (wdev->beacon_interval == *beacon_int_gcd)
1687 			continue;
1688 
1689 		*beacon_int_different = true;
1690 		*beacon_int_gcd = gcd(*beacon_int_gcd, wdev->beacon_interval);
1691 	}
1692 
1693 	if (new_beacon_int && *beacon_int_gcd != new_beacon_int) {
1694 		if (*beacon_int_gcd)
1695 			*beacon_int_different = true;
1696 		*beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int);
1697 	}
1698 }
1699 
cfg80211_validate_beacon_int(struct cfg80211_registered_device * rdev,enum nl80211_iftype iftype,u32 beacon_int)1700 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
1701 				 enum nl80211_iftype iftype, u32 beacon_int)
1702 {
1703 	/*
1704 	 * This is just a basic pre-condition check; if interface combinations
1705 	 * are possible the driver must already be checking those with a call
1706 	 * to cfg80211_check_combinations(), in which case we'll validate more
1707 	 * through the cfg80211_calculate_bi_data() call and code in
1708 	 * cfg80211_iter_combinations().
1709 	 */
1710 
1711 	if (beacon_int < 10 || beacon_int > 10000)
1712 		return -EINVAL;
1713 
1714 	return 0;
1715 }
1716 
cfg80211_iter_combinations(struct wiphy * wiphy,struct iface_combination_params * params,void (* iter)(const struct ieee80211_iface_combination * c,void * data),void * data)1717 int cfg80211_iter_combinations(struct wiphy *wiphy,
1718 			       struct iface_combination_params *params,
1719 			       void (*iter)(const struct ieee80211_iface_combination *c,
1720 					    void *data),
1721 			       void *data)
1722 {
1723 	const struct ieee80211_regdomain *regdom;
1724 	enum nl80211_dfs_regions region = 0;
1725 	int i, j, iftype;
1726 	int num_interfaces = 0;
1727 	u32 used_iftypes = 0;
1728 	u32 beacon_int_gcd;
1729 	bool beacon_int_different;
1730 
1731 	/*
1732 	 * This is a bit strange, since the iteration used to rely only on
1733 	 * the data given by the driver, but here it now relies on context,
1734 	 * in form of the currently operating interfaces.
1735 	 * This is OK for all current users, and saves us from having to
1736 	 * push the GCD calculations into all the drivers.
1737 	 * In the future, this should probably rely more on data that's in
1738 	 * cfg80211 already - the only thing not would appear to be any new
1739 	 * interfaces (while being brought up) and channel/radar data.
1740 	 */
1741 	cfg80211_calculate_bi_data(wiphy, params->new_beacon_int,
1742 				   &beacon_int_gcd, &beacon_int_different);
1743 
1744 	if (params->radar_detect) {
1745 		rcu_read_lock();
1746 		regdom = rcu_dereference(cfg80211_regdomain);
1747 		if (regdom)
1748 			region = regdom->dfs_region;
1749 		rcu_read_unlock();
1750 	}
1751 
1752 	for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1753 		num_interfaces += params->iftype_num[iftype];
1754 		if (params->iftype_num[iftype] > 0 &&
1755 		    !cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
1756 			used_iftypes |= BIT(iftype);
1757 	}
1758 
1759 	for (i = 0; i < wiphy->n_iface_combinations; i++) {
1760 		const struct ieee80211_iface_combination *c;
1761 		struct ieee80211_iface_limit *limits;
1762 		u32 all_iftypes = 0;
1763 
1764 		c = &wiphy->iface_combinations[i];
1765 
1766 		if (num_interfaces > c->max_interfaces)
1767 			continue;
1768 		if (params->num_different_channels > c->num_different_channels)
1769 			continue;
1770 
1771 		limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
1772 				 GFP_KERNEL);
1773 		if (!limits)
1774 			return -ENOMEM;
1775 
1776 		for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1777 			if (cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
1778 				continue;
1779 			for (j = 0; j < c->n_limits; j++) {
1780 				all_iftypes |= limits[j].types;
1781 				if (!(limits[j].types & BIT(iftype)))
1782 					continue;
1783 				if (limits[j].max < params->iftype_num[iftype])
1784 					goto cont;
1785 				limits[j].max -= params->iftype_num[iftype];
1786 			}
1787 		}
1788 
1789 		if (params->radar_detect !=
1790 			(c->radar_detect_widths & params->radar_detect))
1791 			goto cont;
1792 
1793 		if (params->radar_detect && c->radar_detect_regions &&
1794 		    !(c->radar_detect_regions & BIT(region)))
1795 			goto cont;
1796 
1797 		/* Finally check that all iftypes that we're currently
1798 		 * using are actually part of this combination. If they
1799 		 * aren't then we can't use this combination and have
1800 		 * to continue to the next.
1801 		 */
1802 		if ((all_iftypes & used_iftypes) != used_iftypes)
1803 			goto cont;
1804 
1805 		if (beacon_int_gcd) {
1806 			if (c->beacon_int_min_gcd &&
1807 			    beacon_int_gcd < c->beacon_int_min_gcd)
1808 				goto cont;
1809 			if (!c->beacon_int_min_gcd && beacon_int_different)
1810 				goto cont;
1811 		}
1812 
1813 		/* This combination covered all interface types and
1814 		 * supported the requested numbers, so we're good.
1815 		 */
1816 
1817 		(*iter)(c, data);
1818  cont:
1819 		kfree(limits);
1820 	}
1821 
1822 	return 0;
1823 }
1824 EXPORT_SYMBOL(cfg80211_iter_combinations);
1825 
1826 static void
cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination * c,void * data)1827 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
1828 			  void *data)
1829 {
1830 	int *num = data;
1831 	(*num)++;
1832 }
1833 
cfg80211_check_combinations(struct wiphy * wiphy,struct iface_combination_params * params)1834 int cfg80211_check_combinations(struct wiphy *wiphy,
1835 				struct iface_combination_params *params)
1836 {
1837 	int err, num = 0;
1838 
1839 	err = cfg80211_iter_combinations(wiphy, params,
1840 					 cfg80211_iter_sum_ifcombs, &num);
1841 	if (err)
1842 		return err;
1843 	if (num == 0)
1844 		return -EBUSY;
1845 
1846 	return 0;
1847 }
1848 EXPORT_SYMBOL(cfg80211_check_combinations);
1849 
ieee80211_get_ratemask(struct ieee80211_supported_band * sband,const u8 * rates,unsigned int n_rates,u32 * mask)1850 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
1851 			   const u8 *rates, unsigned int n_rates,
1852 			   u32 *mask)
1853 {
1854 	int i, j;
1855 
1856 	if (!sband)
1857 		return -EINVAL;
1858 
1859 	if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
1860 		return -EINVAL;
1861 
1862 	*mask = 0;
1863 
1864 	for (i = 0; i < n_rates; i++) {
1865 		int rate = (rates[i] & 0x7f) * 5;
1866 		bool found = false;
1867 
1868 		for (j = 0; j < sband->n_bitrates; j++) {
1869 			if (sband->bitrates[j].bitrate == rate) {
1870 				found = true;
1871 				*mask |= BIT(j);
1872 				break;
1873 			}
1874 		}
1875 		if (!found)
1876 			return -EINVAL;
1877 	}
1878 
1879 	/*
1880 	 * mask must have at least one bit set here since we
1881 	 * didn't accept a 0-length rates array nor allowed
1882 	 * entries in the array that didn't exist
1883 	 */
1884 
1885 	return 0;
1886 }
1887 
ieee80211_get_num_supported_channels(struct wiphy * wiphy)1888 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
1889 {
1890 	enum nl80211_band band;
1891 	unsigned int n_channels = 0;
1892 
1893 	for (band = 0; band < NUM_NL80211_BANDS; band++)
1894 		if (wiphy->bands[band])
1895 			n_channels += wiphy->bands[band]->n_channels;
1896 
1897 	return n_channels;
1898 }
1899 EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
1900 
cfg80211_get_station(struct net_device * dev,const u8 * mac_addr,struct station_info * sinfo)1901 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
1902 			 struct station_info *sinfo)
1903 {
1904 	struct cfg80211_registered_device *rdev;
1905 	struct wireless_dev *wdev;
1906 
1907 	wdev = dev->ieee80211_ptr;
1908 	if (!wdev)
1909 		return -EOPNOTSUPP;
1910 
1911 	rdev = wiphy_to_rdev(wdev->wiphy);
1912 	if (!rdev->ops->get_station)
1913 		return -EOPNOTSUPP;
1914 
1915 	memset(sinfo, 0, sizeof(*sinfo));
1916 
1917 	return rdev_get_station(rdev, dev, mac_addr, sinfo);
1918 }
1919 EXPORT_SYMBOL(cfg80211_get_station);
1920 
cfg80211_free_nan_func(struct cfg80211_nan_func * f)1921 void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
1922 {
1923 	int i;
1924 
1925 	if (!f)
1926 		return;
1927 
1928 	kfree(f->serv_spec_info);
1929 	kfree(f->srf_bf);
1930 	kfree(f->srf_macs);
1931 	for (i = 0; i < f->num_rx_filters; i++)
1932 		kfree(f->rx_filters[i].filter);
1933 
1934 	for (i = 0; i < f->num_tx_filters; i++)
1935 		kfree(f->tx_filters[i].filter);
1936 
1937 	kfree(f->rx_filters);
1938 	kfree(f->tx_filters);
1939 	kfree(f);
1940 }
1941 EXPORT_SYMBOL(cfg80211_free_nan_func);
1942 
cfg80211_does_bw_fit_range(const struct ieee80211_freq_range * freq_range,u32 center_freq_khz,u32 bw_khz)1943 bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range,
1944 				u32 center_freq_khz, u32 bw_khz)
1945 {
1946 	u32 start_freq_khz, end_freq_khz;
1947 
1948 	start_freq_khz = center_freq_khz - (bw_khz / 2);
1949 	end_freq_khz = center_freq_khz + (bw_khz / 2);
1950 
1951 	if (start_freq_khz >= freq_range->start_freq_khz &&
1952 	    end_freq_khz <= freq_range->end_freq_khz)
1953 		return true;
1954 
1955 	return false;
1956 }
1957 
cfg80211_sinfo_alloc_tid_stats(struct station_info * sinfo,gfp_t gfp)1958 int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp)
1959 {
1960 	sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1,
1961 				sizeof(*(sinfo->pertid)),
1962 				gfp);
1963 	if (!sinfo->pertid)
1964 		return -ENOMEM;
1965 
1966 	return 0;
1967 }
1968 EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats);
1969 
1970 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
1971 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
1972 const unsigned char rfc1042_header[] __aligned(2) =
1973 	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
1974 EXPORT_SYMBOL(rfc1042_header);
1975 
1976 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
1977 const unsigned char bridge_tunnel_header[] __aligned(2) =
1978 	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
1979 EXPORT_SYMBOL(bridge_tunnel_header);
1980 
1981 /* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */
1982 struct iapp_layer2_update {
1983 	u8 da[ETH_ALEN];	/* broadcast */
1984 	u8 sa[ETH_ALEN];	/* STA addr */
1985 	__be16 len;		/* 6 */
1986 	u8 dsap;		/* 0 */
1987 	u8 ssap;		/* 0 */
1988 	u8 control;
1989 	u8 xid_info[3];
1990 } __packed;
1991 
cfg80211_send_layer2_update(struct net_device * dev,const u8 * addr)1992 void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr)
1993 {
1994 	struct iapp_layer2_update *msg;
1995 	struct sk_buff *skb;
1996 
1997 	/* Send Level 2 Update Frame to update forwarding tables in layer 2
1998 	 * bridge devices */
1999 
2000 	skb = dev_alloc_skb(sizeof(*msg));
2001 	if (!skb)
2002 		return;
2003 	msg = skb_put(skb, sizeof(*msg));
2004 
2005 	/* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID)
2006 	 * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */
2007 
2008 	eth_broadcast_addr(msg->da);
2009 	ether_addr_copy(msg->sa, addr);
2010 	msg->len = htons(6);
2011 	msg->dsap = 0;
2012 	msg->ssap = 0x01;	/* NULL LSAP, CR Bit: Response */
2013 	msg->control = 0xaf;	/* XID response lsb.1111F101.
2014 				 * F=0 (no poll command; unsolicited frame) */
2015 	msg->xid_info[0] = 0x81;	/* XID format identifier */
2016 	msg->xid_info[1] = 1;	/* LLC types/classes: Type 1 LLC */
2017 	msg->xid_info[2] = 0;	/* XID sender's receive window size (RW) */
2018 
2019 	skb->dev = dev;
2020 	skb->protocol = eth_type_trans(skb, dev);
2021 	memset(skb->cb, 0, sizeof(skb->cb));
2022 	netif_rx_ni(skb);
2023 }
2024 EXPORT_SYMBOL(cfg80211_send_layer2_update);
2025 
ieee80211_get_vht_max_nss(struct ieee80211_vht_cap * cap,enum ieee80211_vht_chanwidth bw,int mcs,bool ext_nss_bw_capable)2026 int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap,
2027 			      enum ieee80211_vht_chanwidth bw,
2028 			      int mcs, bool ext_nss_bw_capable)
2029 {
2030 	u16 map = le16_to_cpu(cap->supp_mcs.rx_mcs_map);
2031 	int max_vht_nss = 0;
2032 	int ext_nss_bw;
2033 	int supp_width;
2034 	int i, mcs_encoding;
2035 
2036 	if (map == 0xffff)
2037 		return 0;
2038 
2039 	if (WARN_ON(mcs > 9))
2040 		return 0;
2041 	if (mcs <= 7)
2042 		mcs_encoding = 0;
2043 	else if (mcs == 8)
2044 		mcs_encoding = 1;
2045 	else
2046 		mcs_encoding = 2;
2047 
2048 	/* find max_vht_nss for the given MCS */
2049 	for (i = 7; i >= 0; i--) {
2050 		int supp = (map >> (2 * i)) & 3;
2051 
2052 		if (supp == 3)
2053 			continue;
2054 
2055 		if (supp >= mcs_encoding) {
2056 			max_vht_nss = i + 1;
2057 			break;
2058 		}
2059 	}
2060 
2061 	if (!(cap->supp_mcs.tx_mcs_map &
2062 			cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE)))
2063 		return max_vht_nss;
2064 
2065 	ext_nss_bw = le32_get_bits(cap->vht_cap_info,
2066 				   IEEE80211_VHT_CAP_EXT_NSS_BW_MASK);
2067 	supp_width = le32_get_bits(cap->vht_cap_info,
2068 				   IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK);
2069 
2070 	/* if not capable, treat ext_nss_bw as 0 */
2071 	if (!ext_nss_bw_capable)
2072 		ext_nss_bw = 0;
2073 
2074 	/* This is invalid */
2075 	if (supp_width == 3)
2076 		return 0;
2077 
2078 	/* This is an invalid combination so pretend nothing is supported */
2079 	if (supp_width == 2 && (ext_nss_bw == 1 || ext_nss_bw == 2))
2080 		return 0;
2081 
2082 	/*
2083 	 * Cover all the special cases according to IEEE 802.11-2016
2084 	 * Table 9-250. All other cases are either factor of 1 or not
2085 	 * valid/supported.
2086 	 */
2087 	switch (bw) {
2088 	case IEEE80211_VHT_CHANWIDTH_USE_HT:
2089 	case IEEE80211_VHT_CHANWIDTH_80MHZ:
2090 		if ((supp_width == 1 || supp_width == 2) &&
2091 		    ext_nss_bw == 3)
2092 			return 2 * max_vht_nss;
2093 		break;
2094 	case IEEE80211_VHT_CHANWIDTH_160MHZ:
2095 		if (supp_width == 0 &&
2096 		    (ext_nss_bw == 1 || ext_nss_bw == 2))
2097 			return max_vht_nss / 2;
2098 		if (supp_width == 0 &&
2099 		    ext_nss_bw == 3)
2100 			return (3 * max_vht_nss) / 4;
2101 		if (supp_width == 1 &&
2102 		    ext_nss_bw == 3)
2103 			return 2 * max_vht_nss;
2104 		break;
2105 	case IEEE80211_VHT_CHANWIDTH_80P80MHZ:
2106 		if (supp_width == 0 && ext_nss_bw == 1)
2107 			return 0; /* not possible */
2108 		if (supp_width == 0 &&
2109 		    ext_nss_bw == 2)
2110 			return max_vht_nss / 2;
2111 		if (supp_width == 0 &&
2112 		    ext_nss_bw == 3)
2113 			return (3 * max_vht_nss) / 4;
2114 		if (supp_width == 1 &&
2115 		    ext_nss_bw == 0)
2116 			return 0; /* not possible */
2117 		if (supp_width == 1 &&
2118 		    ext_nss_bw == 1)
2119 			return max_vht_nss / 2;
2120 		if (supp_width == 1 &&
2121 		    ext_nss_bw == 2)
2122 			return (3 * max_vht_nss) / 4;
2123 		break;
2124 	}
2125 
2126 	/* not covered or invalid combination received */
2127 	return max_vht_nss;
2128 }
2129 EXPORT_SYMBOL(ieee80211_get_vht_max_nss);
2130 
cfg80211_iftype_allowed(struct wiphy * wiphy,enum nl80211_iftype iftype,bool is_4addr,u8 check_swif)2131 bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype,
2132 			     bool is_4addr, u8 check_swif)
2133 
2134 {
2135 	bool is_vlan = iftype == NL80211_IFTYPE_AP_VLAN;
2136 
2137 	switch (check_swif) {
2138 	case 0:
2139 		if (is_vlan && is_4addr)
2140 			return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2141 		return wiphy->interface_modes & BIT(iftype);
2142 	case 1:
2143 		if (!(wiphy->software_iftypes & BIT(iftype)) && is_vlan)
2144 			return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2145 		return wiphy->software_iftypes & BIT(iftype);
2146 	default:
2147 		break;
2148 	}
2149 
2150 	return false;
2151 }
2152 EXPORT_SYMBOL(cfg80211_iftype_allowed);
2153